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1. Introduction

The fiscal theory of the price level does not just describe inflation and deflation driven by

fiscal events. The fiscal theory of the price level also offers a cogent and unified description of

monetary policy: how governments can set interest rate targets; and how governments can affect

inflation and the real economy, by interest rate targets, by forward guidance about interest rate

targets, and by varying the quantity and maturity structure of government debt in open-market

and quantitative-easing operations, all without changes in fiscal surpluses.

In the presence of long-term debt, an interest rate rise can produce a temporarily lower inflation

rate in this fiscal theory. Higher nominal interest rates mean lower nominal bond prices, which

lower the nominal market value of outstanding government debt. If expected future surpluses do

not change, as I assume of “monetary policy,” and at the existing price level, the market value of

government debt is then less than its real value to consumers and investors. People then try to

buy government debt, and to buy less goods and services, i.e. aggregate demand declines. The

price level declines, until the real value of nominal debt again matches the real present value of

primary surpluses. Since the inflation-lowering effect of higher rates depends on long-term bond

prices, and thus centrally on expected future short term rates, this mechanism is also a model of

forward guidance.

Similarly, in the presence of long-term debt, buying back some long term debt, with no change

in surpluses, means less debt coming due at future dates, backed by unchanged surpluses. This

reduces the future price level. The extra money from today’s bond purchase drives up today’s

price level, an inflationary stimulus. The higher current and lower future price level imply a lower

long-term interest rate. This is a version of quantitative easing.

Eventually, however, the Fisher effect wins out, and persistently higher nominal interest rates

mean higher inflation. Sims (2011) calls this pattern of responses to a persistent interest rate rise

“stepping on a rake.” He offers it as an explanation of the 1970s: Attempts to lower inflation by

raising interest rates, without fiscal reform, temporarily lowered inflation, but then inflation came

back even more strongly.

This fiscal theory of monetary policy requires no frictions at all – no money demand, special

liquid asset, sticky prices, financial frictions, liquidity constraints, irrational expectations, and so

forth. Yes, one may add frictions and elaborations to obtain realistic dynamics. In particular,

pricing frictions deliver output effects of monetary policy. But we can now start with a simple

supply and demand benchmark, which delivers basic signs and intuitions, and then add frictions to
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match dynamics, as we do elsewhere in economics, rather than require frictions to even get going,

i.e. to determine the price level, to describe the central bank’s ability to control interest rates and

inflation, or to produce the basic sign of monetary policy.

Sims (2011) is a ready-made example. Sims specifies an interest rate target which rises with

inflation and output; fiscal surpluses that respond to output, with larger deficits in recessions; a

standard forward-looking sticky-price Phillips curve; a habit-like preference for smooth consump-

tion; and long-term government debt. His policy parameters are in the “passive-money / active-

fiscal” region of the Leeper (1991) categorization: Interest rates respond less than one for one to

inflation, and fiscal surpluses do not respond to validate revisions in the value of government debt

coming from arbitrary changes in the price level.

Sims shows that a rise in interest rates produces a transitory decline in inflation (see the top left

panel of figure 2 below). If the interest rate rise is persistent, inflation eventually rises. Sims also

generates smooth impulse response functions with signs and magnitudes typical of the active-money

New-Keynesian literature.

1.1. Context

One may be surprised that I focus on the temporary inflation decline rather than the eventual

long-term inflation rise in response to persistently higher interest rates. Common intuition suggests

that higher interest rates lower inflation, so the short-run negative response seems easy, and the long

run positive response seems a novelty. Indeed, Sims’ analysis of the 1970s was novel. Conventional

wisdom says that inflation grew out of control in the 1970s because rates were not raised high

enough or for long enough, not because they were raised too much or for too long.

However, it has since become clear that this theoretical presumption should be reversed. Models

with forward-looking people, including standard new-Keynesian models, produce higher long-run

inflation in response to persistently higher interest rates. They have great trouble to produce even

a temporarily lower inflation. The intuition is simple: In these models, the Fisher relation, that

nominal interest rate equals real rate plus expected inflation, is a stable steady state. Real rates

settle down eventually, so inflation is attracted to the nominal rate.

In fact, other than by this fiscal-theory mechanism, we do not have a simple, modern (rational

agents, market clearing) economic model that robustly produces even a short-run negative effect

of interest rates on inflation. (The qualifiers simple, modern, economic, and robust are important

to this statement. See Cochrane (2017a) for extensive discussion.) Thus, the ability to produce a
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negative inflation response fills a gaping hole for monetary theory in general, and not just for the

fiscal theory.

(Some confusion on this point comes down to the difference between interest rates and monetary

policy shocks. New-Keynesian models can have a negative response of inflation to monetary policy

shocks, but a positive response to interest rates, since interest rates also respond negatively to the

shock. In policy rule such as it = φππt + vit, with φπ > 1, when both i an π rise by the same

amount, vi declines.)

The standard intuition that higher interest rates lead to lower inflation comes from adaptive

expectations models. In these models, the Fisher equation is an unstable steady state, so a persistent

rise in the nominal rate sends inflation spiraling off negatively. Real rates rises by more than the

nominal rate. Adaptive expectations thinking remains strong in policy circles, so the short run

negative sign seems natural and the long run positive sign seems puzzling in that context. But

current economic theory in forward-looking models goes the opposite way.

That a negative sign is a gaping hole, and Sims’ success in filling it, is also not obvious from

reading either Sims or the standard active-money / passive-fiscal new-Keynesian literature. Super-

ficially, Sims’ model and impulse-response functions look similar to those of standard medium-scale

New-Keynesian models. For example, Smets and Wouters (2003) generate inflation that declines

and interest rates that rise after a monetary policy shock. After 5 months, inflation turns around

and is higher. Interest rates and inflation also go uniformly in the same direction in response to

an inflation objective shock. (See their figure 11, p. 1159 and figure 12, p. 1160.) Rotemberg

and Woodford (1997) produce a negative sign. Christiano, Eichenbaum and Trabandt (2016) add

a search and matching model, among other ingredients, to a new-Keynesian model and obtain a

nice movement of inflation opposite to an interest rate rise. (See their figure 1.) These models, like

Sims’, also produce output declines (“c” in figure 2).

Medium-scale new-Keynesian models thus seem already to provide the desired negative sign,

and the subsequent stepping on a rake rise, though the latter is frequently regarded as a bug not

a feature. It seems that Sims just says that there is a fiscal-theoretic alternative; that one can

produce roughly similar impulse-response functions from an active-fiscal / passive-money regime

in an otherwise fairly standard new-Keynesian model. Uniting both papers, the fiscal theory of

the price level is ready to compete directly with standard active-money new-Keynesian models as

a framework for understanding the macroeconomy.

That is already a large contribution, that was Sims’ other point in writing the model, and it is
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important if one accepts the theoretical difficulties of the standard new-Keynesian approach (e.g.

Cochrane (2011a)) and one wishes for an alternative. But it does not show gaping holes in the

standard approach, nor a particular empirical advantage of the fiscal framework.

However, the negative effect of interest rates on inflation in these standard new-Keynesian

models is fragile. It is sensitive to model complexities, such as the search and matching model

in Christiano, Eichenbaum and Trabandt (2016). It relies on transitory interest rate movements.

Interest rate changes all die out within 6 months in the above papers. In standard new-Keynesian

models, long-lasting interest rate rises lead to immediately higher inflation. Thus their negative

sign predictions fail the above qualifiers “simple” and “robust.”

The inflation decline from the fiscal stepping on a rake mechanism, by contrast, is stronger for

permanent interest rate rises, as they have larger effects on long-term bond prices. It is robust to

the monetary policy shock process, and to all of the other model elaborations. We can see the basic

effect in a completely frictionless model, as explored in the first section of this paper.

The contribution of this paper, then, is the architectural adage that “less is more.” You don’t

see this robustness, or the basic economic story of the inflation decline, in Sims’ full model. (Sims

also does not explore the main topic of the first half of this paper, how the government targets

nominal interest rates, or how the fiscal theory describes monetary policy in general.) Stripping

away the other ingredients – procyclical fiscal policy, policy rule reactions to output and inflation,

the preference for smooth consumption, even price stickiness – the basic negative sign remains.

Long-term debt and an unexpected shock are essential – the negative sign disappears without

these. But we didn’t know that either.

I also show that the model has a smooth frictionless limit, unlike many new-Keynesian models

(see Cochrane (2017b)). The hump-shaped responses, with no price-level jumps, in Sims’ model

smoothly approach the price-level jumps of the frictionless model. Thus, the frictionless model with

price-level jumps does provide useful guidance to how a model without jumps behaves.

Sims’ paper is therefore really the second step in a natural research program. It shows that

one can add common new-Keynesian elaborations to simple frictionless models, preserve the neg-

ative effect of interest rates on inflation, and achieve the same sort of reasonable impulse response

functions as the rest of the new-Keynesian literature.

Sims also does not state the model, he does not derive the equilibrium conditions, and he does

not explain how to compute impulse-response functions. I fill that gap, and confirm Sims’ results.

Sims’ paper is methodologically as well as historically important, so showing how to solve it is
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useful.

1.2. Limits and Literature

The stepping on a rake mechanism does not revive all classic monetary doctrines, beliefs, and

mechanisms surrounding a negative effect of interest rates on inflation. In particular, it only gives

a temporary inflation decline. It does not produce the view that steady high rates will slowly grind

down inflation, a common view of the 1980s. Rational expectations new-Keynesian models share

this feature.

Inflation declines when the rate rise is announced, not when it happens. A fully anticipated rate

rise has no effect. The inflation decline is stronger when prices are less sticky, counter to traditional

intuition. The aggregate demand reduction leading to lower inflation comes from a wealth effect of

long-term bonds, not from either intertemporal substitution or static IS shifts induced by a higher

contemporaneous interest rate. It can occur with no change in the contemporaneous rate. Thus, it

has nothing to do with the classic story that high nominal rates mean high real rates, which reduce

aggregate demand and via a Phillips curve reduce inflation. For these reasons, the stepping on a

rake mechanism also does not justify conventional policy conclusions based on adaptive expectations

ISLM thinking.

Finally, the response to “monetary” policy – a change in interest rates – depends crucially on

the associated fiscal policy – the maturity structure of outstanding debt, and how people expect

the treasury to adjust surpluses in reaction to economic events and monetary policy actions. More

long-term debt implies a larger effect of interest rates on inflation, an important and potentially

testable implication.

This paper is about theory: Can a simple, rational, economic model describe monetary policy,

and can such a model produce a negative response of inflation to interest rates in the short or long

run? Neither sign may true in the data. The evidence for a negative effect of monetary policy on

inflation is weak, and the evidence on long run signs even weaker. But it’s important to know that

monetary policy can produce this hallowed view in a simple rational model and how. Then, the

sign in the data is a matter of calibration, not a deep test of whole classes of theories. Similarly,

perhaps people are irrational. Perhaps super-rational central banks exploit irrational expectations,

via a mechanism whose sign has no rational economic foundation. Perhaps, thereby, the sign is

negative in the long and short run. I search for rational expectations models not for some rigid

insistence that only they can describe the world, but to find out if they even exist and what they
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can do.

This paper is somewhat integrative. Thinking about monetary policy within the fiscal theory

of the price level occurs scattered about in many sources, including my own, Cochrane (1998, 2005,

2011b, 2014, 2017a), as well as Leeper and Leith (2016), (see especially figure 6, with the stepping

on a rake pattern) Leeper and Walker (2013), Leeper and Zhou (2013), Leeper (2016), Jacobson,

Leeper and Preston (2017), other Sims papers, and those of other authors. The main novelty here is

to integrate interest rate targets with long-term debt, to integrate interest rate targets and quantity

operations, and to see how long-term debt creates a negative sign. And, it is perhaps a novelty

relative to many readers’ perceptions, to point out that the fiscal theory does not consign central

banks to irrelevance, that inflation is not just a fiscal phenomenon, and that the fiscal theory does

provide a cogent model of monetary policy.

In particular, stepping on a rake works by the same mechanism as the analysis of long-term debt

in Cochrane (2001). Section 5 of that paper shows how long-term debt sales can lower inflation

today, raise interest rates, and raise future inflation, quantitative tightening or easing. Stepping

on a rake is the mirror image, in which higher interest rates lower inflation today, raise future

inflation, and result in greater debt sales. Expressing the same policy in terms of interest rate

targets makes contact with the empirical literature and the standard monetary policy literature.

The connection to quantities, however, shows that the same mechanism lies behind interest rate

targets, open market operations, forward guidance, and quantitative easing, unifying monetary

policy in a single framework.

2. Monetary policy in a frictionless fiscal theory

This section sets out how monetary policy operates in a simple frictionless fiscal theory envi-

ronment. I focus on long-term debt and the stepping on a rake dynamics, which are more novel.

2.1. A frictionless rake

A rise in interest rates first causes inflation to fall, and then to rise, in a frictionless fiscal theory

model with long-term debt.

Use a constant real discount factor

β = 1/(1 + r)
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where r denotes the real rate of interest. Then the nominal interest rate it and inflation πt follow

the Fisher relationship,

1

1 + it
=

1

1 + r
Et

(
Pt
Pt+1

)
(1)

it ≈ r + Etπt+1 (2)

where Pt denotes the price level. A rise in the nominal interest rate implies an immediate rise in

expected inflation. But the price level can still jump down when the interest rate rise is announced.

(Throughout, I do not verbally distinguish between a rise in expected inflation and a decline in

E(Pt/Pt+1). )

At the beginning of period t, the government has outstanding B
(t+j)
t−1 discount bonds of maturity

j, each of which pays $1 at time t+ j. Then, the government debt valuation equation, which states

that the real value of nominal government debt equals the real present value of primary surpluses,

generalizes from the familiar version with one-period debt

B
(t)
t−1

Pt
= Et

∞∑
j=0

βjst+j , (3)

to ∑∞
j=0Q

(t+j)
t B

(t+j)
t−1

Pt
= Et

∞∑
j=0

βjst+j . (4)

Here, st+j denotes the real primary surplus, and Q
(t+j)
t denotes the time t nominal price of a j

period discount bond. The maturing bond has price Q
(t)
t = 1. For j > 0, the bond price is, in this

risk neutral constant real rate world,

Q
(t+j)
t = βjEt

(
Pt
Pt+j

)
. (5)

Now, take innovations (Et − Et−1) of (4). Define “monetary policy” as a change in current and

expected future interest rates, and hence bond prices, that involves no change in fiscal surpluses,

so (Et − Et−1) st+j = 0. (I generalize this definition considerably below.) We have

(Et − Et−1)

∑∞
j=0Q

(t+j)
t B

(t+j)
t−1

Pt
= (Et − Et−1)

∞∑
j=0

βjst+j = 0. (6)

Debt B
(t+j)
t−1 is predetermined. The real present value of surpluses does not change by assumption.

If an interest rate rise lowers bond prices Q
(t+j)
t , then the price level Pt must also fall. The price

level Pt must jump by the same proportional amount as the change in nominal market value of

government debt.
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If the price level does not change, then the real value of government debt to investors is greater

than its real market value. People try to buy more government debt, and thus less goods and

services. This lack of “aggregate demand” pushes the price level down. The deflationary force is

the same as that which occurs if the real present value of primary surpluses {st+j} increases. It is

a “wealth effect” of government debt.

The size of this short-term inflationary or disinflationary effect of monetary policy depends

exactly on how much the nominal market value of the debt changes. It is larger for greater bond-

price changes, and larger when more long-term debt is outstanding. Both restrictions may be useful

econometrically, in understanding episodes, and in practice.

From the Fisher equation (2), however, higher interest rates mean higher expected future infla-

tion. So, after the one-period price level drop, inflation rises – the stepping on a rake effect.

In the case of one-period debt, B
(t+j)
t−1 = 0, j > 0, (6) reads

(Et − Et−1)
B

(t)
t−1

Pt
= (Et − Et−1)

∞∑
j=0

βjst+j = 0. (7)

In this case, the price Pt does not change unless surpluses change. Long-term debt is crucial to the

temporary inflation decline.

2.2. Example

A geometric maturity structure B
(t+j)
t−1 = θjBt−1 is analytically convenient. A perpetuity is

θ = 1, and one-period debt is θ = 0. Suppose the interest rate it+j = i is expected to last forever,

and suppose surpluses are constant s. The bond price is then Q
(t+j)
t = 1/(1 + i)j . The valuation

equation (4) becomes∑∞
j=0Q

(j)
0 θjB−1

P0
=

∞∑
j=0

θj

(1 + i)j
B−1

P0
=

1 + i

1 + i− θ
B−1

P0
=

1 + r

r
s. (8)

Start at a steady state B−1 = B, P−1 = P , i−1 = r. In this steady state we have

1 + r

1 + r − θ
B

P
=

1 + r

r
s. (9)

Therefore, we can express (8) as

P0 =
(1 + i)

(1 + r)

(1 + r − θ)
(1 + i− θ)

P. (10)

The price level path for t ≥ 0 then displays greater inflation,

Pt =

(
1 + i

1 + r

)t
P0. (11)
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These formulas are prettier in continuous time, though keeping track of which variables can

and can’t jump is trickier. Sims’ model is in continuous time, and this is its frictionless limit. The

valuation equation (4) becomes∫∞
j=0Q

(t+j)
t B

(t+j)
t dj

Pt
= Et

∫ ∞
j=0

e−rjst+jdj.

With maturity structure B
(t+j)
t = ϑe−ϑjBt, and a constant interest rate it = i,

ϑ

∫ ∞
j=0

e−ije−ϑjdj
Bt
Pt

=
ϑ

i+ ϑ

Bt
Pt

=
s

r
. (12)

Here ϑ = 0 is the perpetuity and ϑ =∞ is instantaneous debt. Bt is predetermined. Pt can jump.

Starting from the it = r, t < 0 steady state, if i0 jumps to a new permanently higher value i, we

now have

P0 =
r + ϑ

i+ ϑ
P (13)

in place of (10). After that,

Pt = P0e
(i−r)t

in place of (11).

In the case of one-period debt, θ = 0 or ϑ = ∞, P0 = P and there is no downward jump. In

the case of a perpetuity, θ = 1 or ϑ = 0, (10) becomes

P0 =
1 + i

1 + r

r

i
P. (14)

and (13) becomes

P0 =
r

i
P. (15)

The price level P0 jumps down as the interest rate rises, and proportionally to the interest rate

rise. This is potentially a large effect; a rise in interest rates from r = 3% to i = 4% occasions a

25% price level drop. However, our governments maintain much shorter maturity structures, and

monetary policy changes in interest rates are not permanent, reducing the size of the effect.

The “log(Pt)” line of figure 1 plots inflation and the interest rate in the discrete-time version

of this example, (10)-(11), using θ = 0.8, which roughly approximates the maturity structure of

U.S. federal debt. At time 0, the interest rate rises permanently and unexpectedly from 3% to

4%. The log price level log(P0) jumps down by 3.3%. Thereafter, the price level grows by 1% per

period, mirroring the rise in nominal rate. Sims’ model in figures 3, 4 and 7 below gives this sort

of dynamics, smeared out by the elaborations of his model.
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Figure 1: Response of log price level to an interest rate rise. θ = 0.8.

The dashed line marked “short debt or expected” in figure 1 plots inflation in the θ = 0 case of

only one-period debt. In this case, inflation starts one period after the interest rate rise, with no

downward jump.

2.3. Expected interest rates and forward guidance

In this model, the expected path of interest rates matters more than the current rate in deter-

mining a deflationary force. Looking at the basic innovation equation (6), a credible, persistent

interest rate rise that lowers long term bond prices a lot has a stronger disinflationary effect than a

tentative or transitory rate rise that induces smaller changes to long-term bond prices. In this way,

this model gives an opposite picture from standard new-Keynesian models, that produce larger

inflation declines for transitory AR(1) interest rate movements than for persistent interest-rate

movements.

The short-term interest rate need not move at all. This model captures “forward guidance.” If

the central bank can credibly commit to higher or lower interest rates in the future, that announce-

ment will change long-term bond prices, and it will have an immediate inflationary or deflationary
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impact, even if it has no effect on the current interest rate.

The inflationary or deflationary force in this model has really nothing to do with the contem-

poraneous interest rate. There is no variation in real interest rates , no reduction in aggregate

demand due to a currently higher real interest rate, no Phillips curve, and so forth. The time-zero

disinflation is entirely a “wealth effect” stemming from the value of government debt.

However, an announcement today of a future interest rate change only affects the value of debt

whose maturity exceeds the time interval before rates change. Therefore, forward guidance has

a smaller effect on current inflation than the same expectations coupled with a current rate rise.

Forward guidance eventually loses its power altogether once the guidance period exceeds the longest

outstanding bond maturities.

Equivalently, interest rate rises have disinflationary effects on the date of their announcement,

not the date of the interest rate rise. Their effects are smaller, since a smaller range of bond prices

is affected, and their effects disappear once they are long-enough anticipated.

For example, suppose that at time 0, the government announces that interest rates will rise

starting at time T onward. Now, inflation starts in period T + 1, and only bond prices of maturity

T + 1 or greater are affected. Splitting the numerator of (4),∑T
j=0Q

(j)
0 B

(j)
−1 +

∑∞
j=T+1Q

(j)
0 B

(j)
−1

P0
= E0

∞∑
j=0

βjsj , (16)

only the second term in the numerator on the left hand side is affected. Furthermore, for given

interest rate rise, bond price declines in that second term are smaller: For a permanent rise from r

to i starting at time T , the prices of bonds that mature at j ≤ T are unaffected, and the the prices

of bonds that mature at T + j are

Q
(T+j)
0 =

1

(1 + r)T
1

(1 + i)j
>

1

(1 + i)T+j
.

The downward price jump happens at time 0 when the interest rate rise is announced, not at time

T when interest rates actually rise. When the time T of the interest rate rise exceeds the maturity

of debt outstanding – if B
(j)
−1 = 0 for j > T – the price-level jump disappears. In this sense, a fully

expected interest rate rise has no negative price effect.

Continuing the geometric maturity example, when the government announces at time 0 that

interest rates will rise from r to i starting at time T, equation (16) reads T∑
j=0

θj

(1 + r)j
+

∞∑
j=T+1

θT

(1 + r)T
θ(j−T )

(1 + i)(j−T )

 B−1

P0
=

s

1− β
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and with a bit of algebra

P0

P
− 1 =

(
θ

1 + r

)T [ (1 + i)

(1 + r)

(1 + r − θ)
(1 + i− θ)

− 1

]
,

generalizing (10). In continuous time, we have[
ϑ

∫ T

0
e−rje−ϑjdj + ϑ

∫ ∞
T

e−rT−i(j−T )e−ϑjdj

]
B0

P0
=
s

r
,

leading to
P0

P
− 1 = e−(r+ϑ)T

(
r + ϑ

i+ ϑ
− 1

)
,

generalizing (13).

The price level P0 still jumps – forward guidance works. Longer T or shorter maturity structures

— lower θ or larger ϑ – give a smaller price-level jump for a given interest rate rise. As T → ∞,

the downward price level jump goes to zero.

figure 1 includes the discrete-time version of this case, in which the interest rate rise is announced

at time −3. The price level jumps down at time −3, but that jump is smaller. The price level stays

at the new lower level until the interest rate rises. On the date 0 that the interest rate rises there

is no further jump. Inflation then rises following the higher nominal rate.

The line “short debt or expected” also presents the case that the interest rate rise is completely

expected, before any long-term debt was sold, the T →∞ limit. A fully expected rate rise has no

deflationary effect, even with long-term debt.

2.4. Quantities and mechanisms

To understand just how the government can set interest rates, the forces behind price-level de-

termination, and how the interest-rate setting mechanism is related to quantitative easing, forward

guidance, open market operations, and other debt operations, and how all this might be called

“monetary policy,” it is useful to follow the underlying bond purchases and sales.

It helps to tell a story about the sequence of events during a period. In the morning of period

t, coupons B
(t)
t−1 come due. The government prints up fresh cash to redeem the coupons. At the

end of the day, the government soaks up the newly printed cash by levying taxes net of spending

Ptst, and by selling new debt.

In equilibrium, all the cash is soaked up in this way, as nobody wants to hold non-interest

bearing cash overnight. Thus, we have the flow equilibrium condition

B
(t)
t−1 = Ptst +Q

(t+1)
t B

(t+1)
t (17)
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for one-period debt, and

B
(t)
t−1 = Ptst +

∞∑
j=1

Q
(t+j)
t

(
B

(t+j)
t −B(t+j)

t−1

)
(18)

with long-term debt. We can iterate (18) forward, with the consumer’s transversality condition

that the real value of nominal debt does not grow too fast, to obtain the present-value equilibrium

condition (4), and we can use (4) at two adjacent dates to obtain (18).

This flow condition helps us to understand fiscal price level determination. If the government

prints up more money in the morning to pay off maturing debt than it soaks up in the evening from

tax payments and debt sales, then as the evening approaches, people try to get rid of unneeded

money by buying goods and services. They bid up the price level, until larger net nominal tax

payments Ptst and bond sales soak up the money.

Printing money in the morning and soaking it up in the afternoon is a useful story, but not

necessary. There is no transactions demand for money and no cash in advance constraint. Trans-

actions in a frictionless economy can be handled with maturing government debt directly, or inside

claims to maturing government debt. The “day” can collapse to a single moment. Government

debt that promises to pay a dollar is valued even if there are no dollars, because it gives one the

right to be relieved of one dollar’s worth of tax liability. The dollar can remain a unit of account

even if it is not a medium of exchange. (The model also extends straightforwardly to zero nominal

interest rates, where cash and bonds are perfect substitutes, and to the case of a money demand

by which people want to hold some cash overnight despite its interest cost. )

2.5. Interest rate targets

Now, as above I defined “monetary policy” as a change in interest rates with no change in fiscal

surpluses, define here “monetary policy” as debt sales with no change in fiscal surpluses.

We can now answer, just how monetary policy can target the nominal interest rate, even with no

monetary, financial, or pricing frictions, and no money demand in particular. This is a frictionless

model, not just a frictionless limit in which the last dollar of money demand and money supply

determine the price level.

It is easiest to see the mechanism with one-period debt, and then see that it survives in the

presence of long-term debt. Consider what happens at the end of the day, if the government

decides to change the amount of debt it sells, without changing current and future surpluses. Using

Q
(t+1)
t = 1/(1 + it) = βEt(Pt/Pt+1) and the valuation formula (3) at time t + 1, the real revenue

14



the government obtains from selling such debt – the right hand term in the flow equation (17) – is

1

1 + it

B
(t+1)
t

Pt
=
Q

(t+1)
t B

(t+1)
t

Pt
= βEt

(
B

(t+1)
t

Pt+1

)
= Et

∞∑
j=0

βj+1st+1+j . (19)

The real revenue the government obtains by selling debt without changing surpluses is constant,

independent of the amount of debt it sells, and equal to the real present value of future surpluses

backing the debt. In this one-period debt case, all debt is rolled over every period, so the end of day

debt sale is a claim to all future surpluses. The bond price Q
(t+1)
t , interest rate it, and expected

inflation Et(Pt/Pt+1) all move proportionally as the government sells more debt B
(t+1)
t . Selling

additional debt is like a share split, which changes the number of shares without changing expected

future dividends, which moves prices one for one, and which does not raise any revenue.

Alternatively, the government can announce the interest rate it, and offer to sell any amount

of debt B
(t+1)
t at that price, again fixing surpluses. Now (19) describes the quantity of debt that

people will buy at the set price.

This is the key observation for an interest rate target. One might worry that in a frictionless

economy, an attempt by the government to set its interest rate with a flat debt supply curve would

lead to potentially infinite demands. This is not the case. The demand curve is unit-elastic, not

infinitely elastic. Furthermore, quantities are not large. The constant-revenue demand curve is

unit-elastic. To engineer a 1 percent higher interest rate, the government only needs to sell one

percent more nominal debt.

The government can target its nominal rate by this mechanism, but not its real rate. An

attempt to do that would, in this model, lead to infinite demands. Moreover, if the government

promised (even implicitly) to raise surpluses in response to debt sales, then the demand would be

indeterminate. Both cases can leave the impression that an interest rate target in a frictionless

economy is infeasible, but these are not the cases we are studying.

These operations have some of the feel of traditional money supply and demand stories. Selling

more debt B
(t+1)
t , in return for time t cash, raises interest rates, just as a traditional open market

operation is said to do, though by a completely different mechanism. Flat or vertical debt supply

curves work like flat or vertical money supply curves. A vertical debt supply curve sets the interest

rate, or a horizontal supply curve – an interest rate target – will determine the quantity of debt.

Nonetheless, both debt sales and interest rate targets with constant surpluses initially feel

distant from current institutions. Our treasuries, not central banks, issue debt. Treasuries sell

more debt in order to fund current deficits, negative st, with greater revenues. To do so they must
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promise implicitly or explicitly to raise future surpluses. Our treasuries issue fixed quantities of

debt at auction, they do not fix the interest rate and let the market determine the size of the issue.

Our treasuries conduct the equivalent of equity offerings, which raise revenue, do not depress prices,

and promise higher total dividends; not the equivalent of share splits, which raise no revenue, lower

prices, and promise no change in dividends.

However, on closer look, this mechanism can be read as a model of our central banks and

treasuries, taken to the frictionless limit. The central bank sets the short-term interest rate. It

does so by setting the interest rate on reserves, the discount rate, or by setting a corridor for

short-term borrowing. Our central banks allow free conversion of cash to interest-paying reserves,

which are short-term government debt, and they fix the rate on reserves. Thus, the interest on

reserves regime really is quite close to the fixed interest rate, horizontal supply regime described

above. That people still hold cash overnight makes little difference to the model. However, in this

context the central bank could as well be a committee that just announces the short-term rate.

Practically a defining feature of central banks is that they may not engage in policies with direct

fiscal consequences, such as helicopter money. They must always buy or sell one kind of debt in

exchange for another.

This interest rate, and its expected future values, determine bond prices. The treasury then

decides how much debt to sell at the new bond prices in order to finance its deficits. Given Q
(t+1)
t ,

Pt, and the surplus or deficit st the treasury must finance, (19) describes how much nominal debt

B
(t+1)
t the treasury must sell to finance the deficit. Therefore, the treasury can set a quantity to

sell, and not a price, as it does. If the central bank raises interest rates one percent, the treasury

will see one percent lower bond prices. The treasury will then raise the face value of debt it sells by

one percent, in order to sell enough debt to roll over existing debt and to cover the current surplus

or deficit. The government overall is really selling any quantity of debt at a fixed interest rate,

though neither treasury nor central bank may be aware of that fact.

This institutional separation between treasury and central bank is important. Since expectations

of future surpluses are somewhat nebulous, and treasury issues do not come with specific tax

streams, it is important to have one institutional structure for selling more debt without raising

revenue, without changing expected surpluses, and in order to affect interest rates and inflation;

and a distinct institutional structure for selling debt that does raise revenue, does change expected

future surpluses, and does not affect interest rates and inflation. By analogy, a share split and

a secondary offering both increase the number of shares outstanding, and so look identical in
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analogous asset pricing equations. But they are conducted in very different institutional structures.

One institutional structure – a share split – communicates no change in expected dividends, it

changes the stock price, and it raises no revenue. The other institutional structure – a secondary

offering – communicates a proportionate change in expected dividends, does not affect the stock

price (beyond implicit information revelation), and raises revenue.

However, for the purposes here, it is not important to match closely current central bank and

treasury operating procedures. This is the abstract, totally frictionless benchmark model. The

point here is to understand that such a simplified model can work; that the government can set

interest rates, expected inflation, and the price level in such a model; that the mechanics of such

a model make economic sense. Models that wish to really mimic the details of current or historic

operating procedures may well need to incorporate monetary, pricing, or financial frictions.

So, I continue to call “monetary policy” the setting of interest rates or bond prices, or chang-

ing the amount or maturity structure of debt {B(t+j)
t }, with no change in fiscal surpluses {st}

(generalized below), and I continue to call changes in those surpluses “fiscal policy”, potentially

accompanied by bond sales, both henceforth without quotes.

(This fiscal policy can create inflation too, which in the presence of price stickiness may increase

output. So, fiscal theory also contains a description of fiscal stimulus. It is also a completely different

mechanism than the usual multiplier, however. By credibly lowering future surpluses, it encourages

people to sell government debt, and thus try to buy goods and services. The decline in expected

future surpluses rather than the current deficit is the key to any stimulative effect.)

In sum, with one-period debt and in this frictionless model, a clean separation occurs. From

(7),

B
(t)
t−1

Pt−1
(Et − Et−1)

(
Pt
Pt−1

)
= (Et − Et−1)

∞∑
j=0

βjst+j , (20)

so unexpected inflation comes only from innovations to fiscal policy. From (19), monetary policy

can entirely control nominal interest rates, Furthermore, by setting interest rates, monetary policy

here directly controls expected inflation. So despite the fact that this is the “fiscal” theory of the

price level, and in a model with no monetary, pricing, or financial frictions, there is plenty for

“monetary” policy to do.

2.6. Long-term interest rates and quantitative easing

Monetary policy can also control long-term interest rates. Again, it can specify a vertical or

horizontal supply curve: Expected future debt sales determine expected future one-period interest
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rates, or, expected future interest rate targets determine expected future debt sales. Then, the

standard term structure of interest rates connects expected future one-period interest rates to

long-term bond prices. In the perfect foresight case,

Q
(t+j)
t =

j−1∏
k=0

1

1 + it+k
.

Monetary policy can also control long-term bond prices directly, by buying and selling long-term

bonds, in a policy that begins to look like quantitative easing. As a very simple example, suppose

only one-period debt B
(0)
−1 is outstanding at the beginning of period 0, so P0 is determined by

B
(0)
−1

P0
= E0

∞∑
j=0

βjsj . (21)

At the end of period 0, the government sells long-term debt for all periods j in the future, {B(j)
0 },

and then never buys, sells, or rolls over debt again so B
(j)
j−1 = B

(j)
0 . At period j, the government

pays off the maturing debt from time j surpluses, so the time j price level is set by

B
(j)
0

Pj
= sj . (22)

Now long-term bond prices are

Q
(j)
0

P0
= E0

(
βj

1

Pj

)
= βj

E0(sj)

B
(j)
0

. (23)

Surpluses sj are split among bond holders B
(j)
0 . The more bonds sold, the lower the price of each

bond. Equation (23) either describes how greater bond sales B
(j)
0 of each maturity lower bond

prices Q
(j)
0 and raise long-term yields at that maturity, or it describes how many bonds B

(j)
0 the

government will sell if it sets a fixed price Q
(j)
0 .

Combinations of the two policies – expectations that the government will buy or sell debt in the

future, in a state-contingent way, along with changes in the maturity structure of the debt today –

offer a rich set of possibilities for the management of interest rates and expected inflation. “Rich”

also means hard to analyze, however. This section stops with simple examples, as otherwise we are

soon drowned in algebra. However, state-contingent debt sales and repurchases, such as rolling over

more debt when a recession shocks surpluses, are a crucial way the government smooths surplus

shocks across time and states, and thereby smooths inflation. For empirical application or policy

analysis, we cannot stop with simple examples.
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2.7. Stepping on a rake: debt view

In the last example, the government could control long-term bond prices, but since there was

no long-term debt outstanding at period 0, changing interest rates or bond prices did not affect the

initial price level P0. Now, let us add outstanding long-term debt, to see the quantity side of the

stepping on a rake mechanism.

To see the mechanism in the simplest example, consider a two-period version of the model. At

time 0, there is long-term debt outstanding, coming due at time 1, B
(1)
−1 > 0. At the end of time 0,

the government may sell additional time 1 debt, in amount B
(1)
0 −B

(1)
−1 . (B

(1)
0 is the total amount

outstanding at the end of time 0, and B
(1)
0 − B

(1)
−1 is the amount sold at time 0. I highlight B

(1)
0

with boldface to focus on its influence.) The present value equation (4) determines prices at period

0 and 1 by

B
(0)
−1 +Q

(1)
0 B

(1)
−1

P0
= s0 + βE0s1 (24)

B
(1)
0

P1
= s1. (25)

Again, we fix surpluses s0, s1, pre-existing debt B
(0)
−1 , B

(1)
−1 , and look for effects on the price level,

P0, P1 and bond prices and interest rates

Q
(1)
0 =

1

1 + i0
= βE0

(
P0

P1

)
. (26)

Equation (25) directly determines P1. Substituting (26) and (25) into (24), P0 is given by

B
(0)
−1

P0
= s0 +

(
B

(1)
0 −B

(1)
−1

B
(1)
0

)
βE0 (s1) . (27)

With outstanding long-term debt B
(1)
−1 > 0, the price level P0 is now affected by debt sales B

(1)
0 −B

(1)
−1

at time 1, with no change in surpluses – by monetary policy in the form of quantitative easing or

tightening.

Examining (25) and (27), we see that raising B
(1)
0 raises P1 and lowers P0 – the stepping on a

rake effect. It thus raises the interest rate i0. Thus, by controlling the amount of debt to be sold

B
(1)
0 , monetary policy can still control the nominal interest rate and the expected inflation rate.

Conversely, the government can announce an interest rate target i0, and offer to buy and sell debt

B
(1)
0 freely at that rate. The model then tells us the demand for that debt.

The stepping on a rake effect happens because new long-term debt sales dilute existing long-

term debt as a claim to future surpluses. We can split (25) between existing and newly-sold debt,
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as
(B

(1)
0 −B

(1)
−1) +B

(1)
−1

P1
= s1.

The surpluses s1 are divided between new sales and existing bonds. The new sales transfer to new

bondholders resources that were expected by existing long-term bond holders. Selling such bonds

generates revenue at time 0, that soaks up money and pushes down the time 0 price level. To

see this fact, look the period 0 flow equation, the specialization of (18), which says that maturing

bonds must be paid by surpluses or by new bond sales,

B
(0)
−1

P0
= s0 +

Q
(1)
0 (B

(1)
0 −B

(1)
−1)

P0
. (28)

Using (25) and (26) in this flow equation, we can rewrite its second term, which represents the real

revenue raised by bond sales at the end of time 0, so (28) becomes

B
(0)
−1

P0
= s0 +

(
B

(1)
0 −B

(1)
−1

B
(1)
0

)
βE (s1) .

When there is long-term debt outstanding B
(1)
−1 , then selling new debt without changing future

surpluses provides revenue in period 0. Fixing surpluses s0, this revenue soaks up money and

drives down the price level P0.

2.8. Stepping on a rake: dynamic examples

Here, I consider the debt quantity side of the simple stepping on a rake examples plotted in

figure 1. With one-period debt, there is a unique debt policy that generates the interest rate rise.

With long-term debt, multiple debt policies produce the same interest rate and inflation path. I

examine three of them: I show how the government can implement the rate rise with future short-

term debt sales, with future long-term debt sales, and by a version of quantitative easing that

rearranges the maturity structure at time 0 only.

A general rule describes interest rate targets: With constant surpluses s and with perfect

foresight, the government debt valuation equation (4) implies that for interest rates {it}, debt must

follow ∑∞
j=0Q

(t+1+j)
t+1 B

(t+1+j)
t∑∞

j=0Q
(t+j)
t B

(t+j)
t−1

=
Pt+1

Pt
=

1 + it
1 + r

(29)

or, the market value of nominal debt must grow at the inflation rate.

In the case of one-period debt, this rule is simple as usual,

B
(t+1)
t

B
(t)
t−1

=
Pt+1

Pt
=

1 + it
1 + r

.
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For the interest rate to rise from r to i permanently, at time 0, with initial condition B
(0)
−1 , debt

must simply start to grow at the inflation rate,

B
(t+1)
t =

(
1 + i

1 + r

)t
B

(0)
−1 .

An interest rate target will lead to this path of debt; a quantity rule must have this path to generate

the desired path of interest rates.

With long-term debt, there are many debt policies consistent with a given interest rate path.

As long as the nominal market value of the debt grows at the interest rate, the maturity structure

of the debt is irrelevant to the impulse response function after date 0. (The maturity structure

matters to later shocks, of course.) All that maters to generating the interest rate path is that the

total nominal market value grow at the desired inflation rate.

As one example, suppose the economy starts at the steady state with perpetuities Bp outstand-

ing, and additional one-period debt B̃. (I use a tilde, B̃, because there is also a maturing coupon

in the perpetuity, so total one-period debt coming due at date t is B
(t)
t−1 = B̃

(t)
t−1 + Bp.) Suppose

surpluses are constant st = s.

Then, suppose first that monetary policy is implemented by buying and selling this one-period

debt only, in amounts B̃
(t+1)
t , as central banks traditionally did, and suppose the government does

not buy and sell any more long-term debt Bp
t = Bp. The government debt valuation equation (4)

now reads
B̃

(t)
t−1 +

∑∞
j=0

1
(1+i)j

Bp

Pt
=
B̃

(t)
t−1 + 1+i

i B
p

Pt
=

1 + r

r
s =

B̃ + 1+r
r Bp

P
. (30)

(The central term with s is the present value of surpluses, held constant here. The equality to the

right expresses the valuation equation at the initial steady state with it = r. The equalities to the

left express the valuation equation at the new interest rate it = i.) To produce an interest rate i,

or if the government fixes that rate and freely sells debt B̃
(t+1)
t at that price, the overall nominal

value of debt must grow at the inflation rate, from (29) and (30),

B̃
(t+1)
t + 1+i

i B
p

B̃
(t)
t−1 + 1+i

i B
p

=
1 + i

1 + r
.

With initial condition B̃
(0)
−1 = B̃, the path of one-period debt B̃

(t+1)
t must follow

B̃
(t+1)
t +

1 + i

i
Bp =

(
1 + i

1 + r

)t(
B̃ +

1 + i

i
Bp

)
.
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Here, monetary policy produces a persistent interest rate rise, by open market operations of

one-period debt. Expected future one-period debt sales lead to higher expected future interest rates

and expected future inflation.

The price-level jump at time 0 follows from the preexisting debt. At time 0, the condition that

the present value of surpluses is unchanged (30) implies

P0 =
B̃ + 1+i

i B
p

B̃ + 1+r
r Bp

P,

which leads to P0 = P in the one-period case Bp = 0, and to the downward jump proportional to

the interest rate rise (14) in the perpetuity case B̃ = 0.

The debt sales {B̃(t+1)
t } only set interest rates, they do not directly control the P0 jump. Higher

interest rates and a consequent lower market value of debt cause the price level P0 to jump. There

is no downward jump in debt. The current and expected future one-period debt sales devalue the

outstanding perpetuities as claims to future surpluses.

To generate forward guidance, an announcement at 0 that interest rates will rise starting at

time T, we follow the same idea. The market value of nominal debt must be expected to start

rising at time T.

Secondly, the government could target interest rates {it} by buying and selling perpetuities Bp
t ,

so B̃t = 0. The condition that the nominal value of the debt rises at the inflation rate would be

even simpler,

Bp
t = Bp

(
1 + i

1 + r

)t
. (31)

Governments typically do not do this. They typically accomplish monetary policy with short-term

debt, and they typically accomplish fiscal policy, which implies changes in surpluses, with long-term

debt. This separation may help to communicate different expectations of surpluses.

These examples rely on expected future debt sales or expected future interest rate targets to

drive the yield curve today. Third, as above, the government can set long-term interest rates

directly by transacting in long-term debt at time zero, in something like quantitative easing (QE)

operations. In the presence of outstanding long-term debt, long-term debt sales will raise rates

and lower the initial price level, and vice versa. By taking action immediately, the debt operation

may communicate a change in central bank intentions more effectively than promising a change in

future interest rate targets or future debt purchases and sales.

To generate a simple example, we can follow the same idea as in equation (23) – just sell debt at

each maturity to give the desired price path, with no future debt sales. Again, suppose that at the
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end of time 0, the government sets the maturity structure of the debt {B(j)
0 }, and thereafter neither

buys or sells any debt, B
(j)
j−1 = B

(j)
0 , simply paying off this debt as it comes due. Surpluses are

constant. With no future sales or purchases, the price level at time j is set as in (22), B
(j)
0 /Pj = s.

Then, to produce the interest rate i at all dates in the future, the maturity structure must be

B
(j)
0

B
(j−1)
0

=
Pj
Pj−1

=
1 + i

1 + r
. (32)

Debt across maturities at time 0 must grow at the inflation rate.

B
(j)
0 =

(
1 + i

1 + r

)j
B

(1)
0 . (33)

We find B
(1)
0 from the initial condition (29) stating that the market value of debt from 0 to 1

grows at the rate of inflation to produce i0 = i,

1 + i

1 + r
=

∑∞
j=0

1
(1+i)j

B
(j)
0∑∞

j=0
1

(1+i)j
Bp

=

∑∞
j=0

1
(1+i)j

(
1+i
1+r

)j
B

(1)
0

1+i
i B

p
=

1+r
r B

(1)
0

1+i
i B

p
. (34)

Uniting (33) and (34), to start with a perpetuity Bp, and create interest rates that rise from r

to i at time 0, promising no future debt sales, the date 0 maturity structure must be

B
(j)
0

Bp
=
r

i

(
1 + i

1 + r

)j+1

.

For small j, this number is less than one, while for large j, the number is greater than one. Thus, to

engineer the interest rate rise and consequent stepping on a rake inflation pattern, the government

buys back short-term debt, and sells long-term debt. Conversely, to produce an upward price-level

jump at time 0 (stimulus), and lower long-term interest rates, the government buys back long-term

debt and issues short-term debt, quantitative easing.

In sum, we see how the same mechanism and result lies behind interest rate policy, forward

guidance, and quantitative easing. The government can implement monetary policy by targeting

short term or long-term interest rates, or by buying and selling bonds.

2.9. A constraint

How far can monetary policy go with such debt operations, or interest rate targets, with constant

surpluses?

Using the bond price from (5), we can write the government debt valuation equation (4)

B
(0)
−1

1

P0
+

∞∑
j=1

βjB
(j)
−1E0

(
1

Pj

)
= E0

∞∑
j=0

βjsj . (35)
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With one-period debt, the second term is absent, ad surplus expectations alone drive shocks to

the price level P0. With long-term debt, surplus expectations at time 0 drive a moving average of

current and future inverse price levels, weighted by debt outstanding at time 0. In the presence

of outstanding long-term debt, the government can, by varying debt at time 0 or thereafter, or

equivalently by varying interest rate targets, achieve any price level path consistent with (35), and

only those levels. (This is equation (31) in Cochrane (2001), which has additional discussion.)

This equation makes precise an observation seen in the examples, and offers a general version

of Sims’ “stepping on a rake” observation. Monetary policy with constant surpluses can only lower

the price level P0 by raising prices at some other time. It cannot raise or lower the overall price

level at every date t ≥ 0. This part of the separation result (20) remains. Furthermore, for dates j

with no debt outstanding, B
(j)
−1 = 0, there is no trade-off. Monetary policy can still freely pick the

expected price level E0(1/Pj) for such periods, but doing so has no effect on the initial price level

P0.

Likewise, using Q
(j)
0 = E0(βjP0/Pj) we can write

B
(0)
−1

P0
+

∑∞
j=1 β

jB
(j)
−1Q

(j)
0

P0
= E0

∞∑
j=0

βjsj . (36)

This equation acts as a similar constraint linking bond prices and the initial price level. Monetary

policy can set any bond prices Q
(j)
0 > 0, either directly by offering debt at fixed prices, via debt

sales and purchases, or by expectations of future interest rates. Equation (36) then expresses the

effect of these bond prices on the time-0 price level.

2.10. Continuous time and sticky prices

Sims’ analysis seems to be quite different, in that it operates in continuous time and the price

level Pt cannot jump. Continuous time is not an important difference. If interest rates jump up

with no change in surplus, the price level P0 jumps down, and then starts to rise. The absence of

a price-level jump is an important difference.

In Sims’ model, with no price-level jump, a rise in interest rates sets off a period of deflation,

which cumulatively lowers the price level. As I show below, this apparent difference is not central.

As one removes price stickiness, Sims’ short period of deflation gets stronger, smoothly approaching

the downward jump predicted by the frictionless model. Thus, the price-level jump in this friction-

less model, which may seem artificial, is in fact a useful guide to drawn out disinflations of models

with sticky prices.
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The continuous-time setup with no price-level jumps is an important framework, and works a bit

differently from the discrete-time model presented above. It’s worth seeing here the basic mechanism

before stepping in to the full model. Simplifying to either a perpetuity or to instantaneous debt,

the risk-neutral (discounting at a constant real rate) government debt valuation equation (4) is

QtBt
Pt

= Et

∫ ∞
τ=t

e−
∫ τ
v=t(iv−πv)dvsτdτ. (37)

For short-term debt, Qt = 1 always. In discrete time, or if prices can jump, innovations in {sτ}

induce a jump in Pt. That channel disappears in continuous time with sticky-price models that

preclude price-level jumps. However, the present value relation (37) still selects equilibria. For

given {st} and {it}, there are typically multiple paths that equilibrium inflation {πt} can follow.

Only one of those paths is consistent with (37).

A discount rate effect on the right hand side operates in place of a price-level jump on the left.

Since Qt = 1, outstanding Bt, and by assumption Pt all cannot jump when there is a jump to

information about future sτ , then real discount rates {iv − πv} must change. If future s decline,

for example, the discount rates {iv − πv} must also decline so that the present value on the right

hand side of (37) is unchanged. Therefore, a sticky-price model with short-term debt, subject to a

fiscal shock, will substitute a period of higher inflation π for the immediate jump upward Pt of a

frictionless model.

With long-term debt, the nominal bond price Qt in (37) can jump down when monetary policy

raises interest rates. If the price level Pt cannot jump, the path {πt} on the right hand side must

adjust to produce a higher real discount rate and a lower present value of surpluses. At a majority

of dates on the path, πt must rise less than it so that real discount rates rise. Thus, the downward

price-level jump of the frictionless model becomes a period of lower inflation when the price level

cannot jump.

2.11. A last word on surpluses

For these simple examples, I have defined “monetary policy” as changes in nominal debt or

interest rate targets, holding surpluses fixed. While convenient for working out examples, this

definition is needlessly restrictive, and will need to be generalized for serious applied work.

Surpluses do not need to be fixed, or exogenous in the fiscal theory. For the fiscal theory to

work, the minimum requirement is that the surplus does not respond to alternative price levels in

a way that automatically validates the government debt valuation equation (4) for any price level.
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In simplest terms, the supply and demand curves may not lie on top of each other. That is a

weak requirement. It is a specification about off-equilibrium beliefs, as there is no way to test this

assumption by data from a given equilibrium: The government debt valuation equation (4) holds in

all models, active-fiscal or passive-fiscal. (Cochrane (2017a) sections 6.1-6.3 expand on this point,

with examples.)

Other endogenous surplus responses can, and likely should, be included. The question is, which

of these fiscal changes do we want to consider as fiscal policy and which do we want to consider as

endogenous responses to monetary policy?

For example, Sims includes the fact that surpluses rise and fall with GDP, due to procyclical

tax revenues, automatic stabilizers, and the predictable tendency of governments to engage in

countercyclical fiscal policy. One might well consider that endogenous response to be part of the

effects of monetary policy, as Sims does. The central bank cannot directly change expenditures or

tax rates. But if the central bank, by changing interest rates, increases output, and that increased

output raises fiscal surpluses, one would want to include the secondary effects of those surpluses on

the price level as part of the “effects of monetary policy,” at least for a quantitative analysis. One

might also include the fiscal effects of imperfect indexation and seigniorage.

One may want to exclude, on the other hand, independent fiscal responses, changes that require

action by fiscal authorities, and changes taken in response directly to shocks that would not be

taken in response to GDP, unemployment, and inflation that result from monetary policy actions.

This is a tricky distinction, both conceptually and in empirical applications. Fiscal policy typically

responds to the same events that occasion monetary policy. The recession of 2008 brought zero

rates and QE, but it also brought on deliberate fiscal stimulus. To evaluate the effects of monetary

policy in isolation, one wants the former but not the latter.

The delicate question of how fiscal authorities respond to monetary policy is important as well.

In the stepping on a rake mechanism, I assumed no response. But do fiscal authorities not respond

at all to interest rates or inflation? If, for example, fiscal authorities change surpluses so as to keep

constant the present value of government debt, then the stepping on a rake mechanism disappears

entirely. While one may not want to consider such responses as economic “effects of monetary

policy,” a central bank wanting to know the effects of its actions should definitely consider adverse

or cooperative responses from the treasury and congress.

These are issues beyond the current paper. The point here: The definition of “monetary policy”

going forward need not and should not be that there is no change at all in fiscal surpluses. Applied
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work will, as always, have to think hard about fiscal-monetary interactions.

3. Sims’ model

The completely frictionless model of the last section is transparent, but it is far from realistic. To

make a fiscal theory of monetary policy useful, we must embed it in a more realistic macroeconomic

setting. The most natural setting adds sticky prices and other frictions and elaborations of modern

DGSE models, designed to produce reasonable dynamics, but replacing fiscal theory of the price

level with “active” monetary policy to select equilibria. Sims (2011) has to some extent already

taken this step. But, as explained in the introduction, the connection of Sims’ model to the analysis

of the previous section is not at all obvious. It is not obvious that the frictionless model captures

the essence of the full model, which of Sims’ frictions are important for the stepping on a rake sign,

or how the frictionless limit works. I undertake that connection here.

I derive and solve Sims’ model in the appendix. The model is

dit = [−γ(it − r̄) + φππt + φcċt] dt+ dεmt (38)

dπt = (ρπt − κct) dt + dδπt (39)

dpt = πtdt (40)

dyt = yt (yt − it) dt+ dδyt (41)

dst = ωċtdt+ dεst (42)

dbt = [bt(it − πt)− st] dt−
bt
yt
dδyt (43)

dλt = −λt (rt − r̄ ) dt+ dδλt (44)

dct = ċtdt (45)

dċt =

[
λt
ψ
ect − 1

ψ
ecte−σct + r̄ċt

]
dt+ dδċt (46)

πt = it − rt. (47)

Equation (38) is the policy rule and dεmt is the monetary policy shock. The nominal interest

rate is it, r is the real interest rate with steady state and consumer discount rate r̄, π is inflation,

c is consumption equal to output. Equation (39) is the continuous-time Phillips curve. It is the

obvious analogue of the discrete-time curve πt = βEtπt+1 + κct. By (40), this Phillips curve allows

a jump in the inflation rate but not in the (log) price level p. The perpetuity yield is y, (1/y is the

price), and equation (41) is the expectations-hypothesis relation between long y and short i rates –
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there are no price-level jumps and no risk premiums. Equation (42) describes a primary surplus s

that rises and falls with consumption growth. It contains a shock, so we can calculate the economy’s

response to fiscal shocks. Equation (43) tracks the evolution of the real market value of debt b,

which consists of nominal perpetuities. The surplus does not respond to inflation-induced changes

in the value of government debt, and the debt in (43) grows at the real rate of interest. Thus,

for all but one equilibrium, debt will explode and violate the consumer’s transversality condition.

This is the “active fiscal” specification. Debt and yield share a shock dδyt. A shock to long bond

yields also shocks the market value of the debt. Equations (44)-(46) describe marginal utility λ and

consumption c with a “habit” term that values a smooth consumption path: The utility function

adds a penalty for the derivative of log consumption growth,

U = E

∫ ∞
t=0

e−r̄t

[
C1−σ
t

1− σ
− 1

2
ψ

(
1

C

dC

dt

)2
]
dt.

Equation (47) is the Fisher equation defining the real rate of interest.

Some equations only specify expected values. For example, the Phillips curve (47) is conven-

tionally written Et(dπt) = (ρπt − κct)dt. I include expectational shocks dδt to capture this fact.

They satisfy Etdδt = 0. I use δ to distinguish them from structural shocks dεt. For each such

expectational equation, we need one explosive eigenvalue of the system to uniquely determine the

corresponding expectational shock dδt by the rule that the system must not be expected to explode.

Like Sims, however, I only study perfect-foresight solutions with a single probability-zero jump

at time zero. This restriction also simplifies many of the model’s equations. In a fully stochastic

model, these equations would need additional terms such as risk premiums.

I linearize the model, and solve it in the usual way, sending unstable eigenvalues forward and

stable eigenvalues backward.

The fiscal block (41) - (43) operates independently of the rest of the model – other variables

enter here, but the variables y, s, b determined here do not feed back on the rest of the system.

As in other new-Keynesian models, the model without this block and passive monetary policy has

multiple equilibria. But all but one of those equilibria lead to an explosive path for the real value

of debt b̃t. Therefore, the fiscal block selects equilibria.

4. Impulse-response functions

Sims uses parameters γ = 0.5; φπ = 0.4; φc = 0.75; σ = 2; r̄ = 0.05; s̄ = 0.1; ρ = 0.1; δ = 0.2;

ω = 1.0; ψ = 2.0. Here, φπ < γ so we are in the fiscal theory of the price level region of passive
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Figure 2: Responses to a monetary policy shock. Replication of Sims (2011) figure 3. Sims’ variable labels are in

parentheses.
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Figure 3: Response of nominal rate and inflation to a monetary policy shock in the Sims (2011) model.

monetary policy and active fiscal policy.

figure 2 presents the response of all variables to the monetary policy shock dεm0. This figure

is visually identical to Sims (2011) figure 3. The price level and consumption do not jump at time

zero. All the other variables jump.

figure 3 shows the response of interest rates and inflation to the monetary policy shock. You

see the jump down in inflation, followed by its slow rise. The price level cannot jump, but inflation

can and does jump.

4.1. Habits, Taylor rules, and fiscal responses

How many of Sims’ ingredients are necessary to deliver a negative response of inflation to the

interest rate rise? How many ingredients are useful to match dynamics, but not essential to the

basic sign?

It turns out that the habit ψ, the Taylor rule γ, φc, φπ, and the fiscal policy response ω do not

matter for the negative response of inflation to the interest rate rise. Figure 4 presents the impulse

response function for the case γ = 0, a permanent rise in rates; φc = φπ = 0, an interest rate peg
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that does not respond to inflation or output; ω = 0, surpluses do not respond to output; and ψ = 0,

no habits.

The remaining model is, in place of (38)-(47),

dct =
1

σ
(it − πt)dt+ dδct (48)

dπt = (ρπt − κct) dt + dδπt (49)

dit = dεmt (50)

dst = dεst = 0 (51)

dyt = yt (yt − it) dt+ dδyt (52)

dbt = [bt(it − πt)− st] dt−
bt
yt
dδyt. (53)

This is the standard continuous-time new-Keynesian model (first two equations) with a non-

responsive interest rate target, so passive-money active-fiscal, and with long-term debt. I refer

to (48)-(53) as the “simple model” below.
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Figure 4: Response to a step-function rise in interest rates, in the simple model.

The short-run negative response of inflation to the interest rate rise is still there. It is stronger
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– most of Sims’ extra ingredients, which make the model more realistic, reduce the size of the basic

effect. The same 1% nominal interest rate rise as in figure 3 now produces a 5% fall in inflation,

not an 0.15% fall.

The largest reason for this difference is the permanent interest rate shock. A longer-lasting

nominal interest rate rise has a greater effect on nominal bond prices Q
(t+j)
t and so requires a

greater jump in the price level Pt.

4.2. Response to expected monetary policy

As in the frictionless analysis, to produce a decline in inflation, the interest rate rise must be

unexpected.

The top panel of figure 5 presents the response of inflation and interest rates of the full Sims

model to a fully expected monetary policy shock dεm0. In this case, the interest rate response is

Fisherian – inflation rises smoothly through the episode.

Interest rates respond in advance of the monetary policy shock at t = 0, because inflation and

output move in advance of the shock and the interest rate rule responds to inflation and output.

The bottom panel of figure 5 plots the response of the simplified model (48)-(53) to a fully

anticipated shock. The inflation rate rises smoothly throughout, just as in the discrete-time versions

of this calculation presented in Cochrane (2017a).

4.3. Short-term debt

Long-term debt is also necessary for the negative response of inflation to interest rates.

The top panel of figure 6 presents the response function for the full Sims model to an unexpected

monetary policy shock, with short-term debt in the place of long-term debt. (In a continuous-time

model, short-term debt means fixed value, floating-rate debt. The price is always one, and it pays

itdt interest.) Inflation jumps up and is positive throughout.

The bottom graph shows the same exercise in the simple model, with only price-stickiness left.

Here we see a perfectly Fisherian response to unexpected monetary policy – inflation rises instantly

to match the rise in interest rates. Yes, this is the standard two-equation new - Keynesian model,

with prices that are sticky and cannot jump. But inflation can jump. Recall equation (37),

QtBt
Pt

= Et

∫ ∞
τ=t

e−
∫ τ
v=t(iv−πv)dvsτdτ (54)

In the short-term debt case, the bond price Qt = 1 cannot move. So inflation πv moves exactly as

much as the nominal interest rate iv, leaving no change in present value on the right hand side and
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Figure 5: Response to expected monetary policy shocks. Top: Sims (2011) model. Bottom: simple model.

33



thus no need for the price level to jump on the left hand side.

With short-term debt, the responses to the expected shock are exactly the same as they are

for long-term debt, as already shown in figure 5. Hence, the only effect of long-term debt in this

model is that an unexpected shock can lower the value of long-term debt.

4.4. Varying price stickiness

How does price stickiness affect the responses? This question is interesting on its own. In addi-

tion, we want to verify that the frictionless limit is sensible. Many Keynesian and new-Keynesian

models blow up as one reduces frictions, even when the frictionless limit points are well-behaved.

(Cochrane (2017b).) Even when the frictionless limit is the same as the frictionless limit point, it is

useful to see if the basic sign and mechanisms hold in the frictionless limit, as analyzed in the first

part of this paper, leaving frictions to fill out dynamics and magnitudes, or whether the frictions

are essential to the basic signs and mechanisms of the model.

The top panel of figure 7 shows the response of the price level to the step-function interest

rate rise, in the simple model, as we reduce price stickiness. In this model, larger values of κ, the

coefficient on consumption in the Phillips curve (39), correspond to less price stickiness. As price

stickiness is reduced, the model steadily approaches the frictionless result of equation (15), a 20%

downward jump in the price level (r = 5%, i = r + 1%, P0/P = r/i), followed by steady growth

that is 1% higher, due to the 1% higher nominal rate.

Thus, both desirable properties hold. The frictionless limit equals the frictionless limit point.

The model does not suffer the frictionless-limit paradoxes. The central point – a temporary negative

inflation response to higher interest rates – holds in the frictionless limit. Price stickiness, like

habits, Taylor responses, and the fiscal response, is useful for producing realistic impulse-response

functions, but price stickiness is not necessary for the basic point.

Going in the other direction, we see that the reduction in inflation from an interest rate rise is re-

duced as prices become more sticky. As price stickiness becomes absolute, κ = 0, the disinflationary

effect vanishes entirely.

Like many other results, this one violates common intuition. But since the mechanism for a

negative sign is utterly different from ISLM intuition, we should not expect that intuition to guide

us. Price stickiness is not important for generating the sign, so there is no reason to expect more

price stickiness to generate a greater effect.
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Figure 6: Top: Responses of the Sims model (top) and the simple model (bottom) to an unexpected monetary policy

shock, with short-term debt. (The inflation and nominal rate lines lie on top of each other in the bottom panel.)

35



Time

-1 0 1 2 3 4 5 6 7 8 9 10

P
e

rc
e

n
t

-20

-15

-10

-5

0

i

κ =0.20

κ =1

κ =100

κ =0.020

κ =0.001

Time
0 5 10 15 20 25 30

P
e
rc

e
n
t

-1.5

-1

-0.5

0

0.5

1

i
t

p
t
, κ = 0.05, 0.2, 2, 200

Figure 7: Response of the price level as price stickiness κ varies. Top: simple model. Bottom: full model. κ = 0.2 is

the baseline value shown in other figures.

36



Equation (37),
QtBt
Pt

= Et

∫ ∞
τ=t

e−
∫ τ
v=t(iv−πv)dvsτdτ, (55)

helps to understand why stickier prices lead to a smaller effect. As prices become stickier, inflation

πv moves less. Higher nominal interest rates mean higher real interest rates. Higher real interest

rates then discount future surpluses more heavily. Now the present value of surpluses on the right

hand side declines just as the nominal bond price Qt on the left hand side declines. In the limit

that prices are perfectly sticky, inflation does not change at all, the nominal and real rates are the

same, so the real present value of the debt on the right hand side falls exactly by the same amount

as the nominal present value of the debt on the left hand side, and no disinflationary force remains.

The bottom panel of figure 7 shows the effect of greater or lesser price stickiness in the full Sims

model. The general pattern is the same. Less price stickiness leads to a limit in which the price

level jumps down by about 1.5%, and then inflation mirrors the nominal interest rate. As price

stickiness increases, the pattern is the same, but the magnitude of the disinflation decreases. Again,

this is the opposite of the usual sign, but again price stickiness is not generating the disinflation,

but merely smoothing it out.

5. Conclusions

The fiscal theory of the price level can provide a cogent description of monetary policy, uniting

the inflationary and disinflationary effects of interest rate policies, open market operations, forward

guidance, and quantitative easing. In the presence of long-term debt, the simplest fiscal theory

model produces a temporary inflation decline as a result of an interest rate rise. Sims (2011) shows

how to extend this structure to include price stickiness and the absence of price-level jumps, and a

form of habit persistence preferences, that generate reasonable impulse response functions broadly

similar to those of standard active-money/passive-fiscal new-Keynesian models.

Though it seems promising for matching experience, however, the resulting model is quite

different from standard monetary intuition. The decline in inflation is stronger for less price

stickiness. It only occurs for unexpected interest rate rises. It really has nothing to do with the

current interest rate; expectations of future interest rates reflected in the yield curve are the center

of the mechanism. The model does not capture standard intuition that high nominal rates raise

real rates, which reduce aggregate demand and through a Phillips curve lower inflation. The fact

that it works at all in a completely frictionless model is proof of that fact. Inflation comes entirely

37



from a “wealth effect” – as people try to hold more or fewer government bonds they lower or raise

their demands for goods and services. Permanent interest rate rises eventually raise inflation.

Furthermore, the fiscal foundations of a fiscal theory of monetary policy remain are important.

The disinflationary effect only happens in the presence of long-term government debt, and is driven

by the decline in market value of that debt. The endogenous reaction of surpluses matters a lot for

the sign and magnitude of the effects of monetary policy. Fiscal policy changes contemporaneous

with a monetary policy shock will contaminate empirical measurement of the effects of that shock.

All this remains a foundation. Sims’ model is a start, but one needs to develop a fully stochastic

model. One needs to compare impulse-responses and correlations to data, in the style of standard

active-money/passive-fiscal models. The full historical experience of the 1970s and 1980s remains

unexplored. Stepping on a rake is a good story for the 1970s, but not an econometric test. Just

how inflation declined in the 1980s remains a puzzle to rational expectations models, including the

standard active-money models. The suggestion here that the 1980s represent a joint monetary fiscal

stabilization remains to be fleshed out. Optimal policy, which has to trade off distorting taxation

for inflation, remains an interesting fiscal-theory question.
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Appendix to “Stepping on a rake: The fiscal theory of monetary policy.”

This Appendix derives, decodes, and solves the Sims (2011) model. Sims does not present either

a derivation or a solution, so this appendix fills that gap.

1. Model statement

The model as presented by Sims (2011), starting with his equation (15) on p. 52, is

˙(i)t = −γ(it − r̄) + φπṗt + φcċt + εmt (56)

it = rt + ṗt (∗) (57)

rt = − λ̇t
λt

+ r̄ (∗) (58)

ḃt = −btṗt − bt
ẏt
yt

+ ytbt − st (59)

it = yt −
ẏt
yt

(∗) (60)

p̈t = ρṗt − κct (∗) (61)

ṡt = ωċt + εst (62)

λt = e−σct + ψ [c̈t − r̄ċt] e−ct(∗). (63)

Here, it is the nominal interest rate (I do not need the cumbersome notation ˙(i)t = di/dt below),

r is the real interest rate with steady state and consumer discount rate r̄, p = log(Pt) is the log

price level, c is consumption which equals output, λ is the marginal utility of consumption, b is the

real market value of government debt, which consists of nominal perpetuities, y is the perpetuity

yield (1/y is the price), and st is the real primary surplus. The last equation differs from Sims’ by

a typo in Sims’ paper, that does not affect the calculations.

Here I translate from Sims’ notation to a more standard notation. Sims uses r instead of i, ρ

instead of r, τ̄+τt instead of st, a instead of y. Sims also uses parameters θ instead of φπ, φ instead

of φc, β instead of ρ, δ instead of κ.

Our goal is to calculate responses of this model to unexpected jumps in the shocks, εmt and εst.

2. The model derived and restated

We need to state the underlying model and derive these equilibrium conditions. We then need

to linearize the model, transform the model to dx/dt = Axt + εt form, and then we can solve it

1



as a first order linear differential equation. We need to understand jumps and “forward-looking”

equations marked by (∗). The impulse response functions (Sims’ figure 3 and 4, my figure 2) feature

jumps in all variables except pt and ct. So, we have to understand how variables respond to the

εmt or εst jumps, and what the rules about jumps are.

My first step is to derive the model, and write the equations as

dit = [−γ(it − r̄) + φππt + φcċt] dt+ dεmt (64)

dπt = (ρπt − κct) dt + dδπt (65)

dyt = yt (yt − it) dt+ dδyt (66)

dst = ωċtdt+ dεst (67)

dbt = [bt(it − πt)− st] dt−
bt
yt
dδyt (68)

dλt = −λt (rt − r̄ ) dt+ dδλt (69)

dct = ċtdt (70)

dċt =

[
λt
ψ
ect − 1

ψ
ecte−σct + r̄ċt

]
dt+ dδċt (71)

with two side conditions,

dpt = πtdt (72)

πt = it − rt. (73)

Sims’ starred (*) equations (57), (58), (60), (61) and (63) are “forward-looking.” They specify

the expectation of a forward-looking differential that may jump, or in a more general model, may

have a diffusion component. I express the same idea more conventionally with differential notation

dxt and expectational shocks dδxt with Et(dδxt) = 0. Like Sims, however, I only study perfect-

foresight solutions with a single probability-zero jump at time zero. This restriction also simplifies

many of the model’s equations. In a fully stochastic model, these equations would need additional

terms such as risk premiums.

To understand these issues, consider the simplest discrete-time new-Keynesian model consisting

only of a Fisher equation it = Etπt+1 and a Taylor rule it = φππt + wt with a serially correlated

disturbance wt+1 = θwt + εt+1. Eliminating it, equilibria follow

Etπt+1 − πt = (φπ − 1)πt + wt.

2



This equation is “forward-looking” like the starred equations in Sims’ model. Since it only ties

down expected inflation, not actual inflation, it admits multiple equilibria: Any path

πt+1 − πt = (φπ − 1)πt + wt + δt+1

with Et(δt+1) = 0 is an equilibrium. This δt+1 is the discrete-time equivalent of the expectational

jumps dδxt above.

The conventional new-Keynesian model specifies φπ > 1 so the dynamics are explosive. Then

the unique locally bounded equilibrium is

πt = −Et
∞∑
j=0

φ−(j+1)
π wt+j = − 1

φπ − θ
wt.

This solution amounts to a unique choice of the expectational shock δt in terms of the structural

monetary policy shock εt,

δt = − 1

φπ − θ
εt. (74)

This general principle applies to Sims’ model: In order to produce a unique equilibrium, for each

“forward-looking” or expectational difference equation, i.e. for each expectational shock δ, we need

one explosive eigenvalue and one variable that can jump, in order to determine one expectational

error δ in terms of structural shocks ε.

Now we can derive each equation in turn.

Policy Rule. Equation (64),

dit = [−γ(it − r̄) + φππt + φcċt] dt+ dεmt,

and its equivalent (56), are the monetary policy rule. The nominal interest rate mean-reverts, and

rises with inflation and consumption growth. The rule allows a jump dεmt, which is the monetary

policy shock. By examining the steady state dit = 0, you can see that φπ > γ is the Taylor rule

“active” region in which interest rates respond more than one-for-one to inflation, and φπ < γ is

the “passive money” region.

All the variables on the right hand side of the monetary policy rule can jump, so in principle

one should specify whether dit is driven by pre-jump or by post-jump values (right or left limits).

But since these variables are all multiplied by dt, and dεmt is a jump, it does not matter which one

specifies. For the same reason, when there is a jump dεmt, it jumps by the same amount dit = dεmt,

even though the other variables on the right hand side also respond to the jump.

3



Phillips. Equation (65),

dπt = (ρπt − κct) dt + dδπt

defines the forward-looking continuous-time Phillips curve. It is the analogue of the discrete-time

curve

πt = βEtπt+1 + κct

which can be written in the form

Etπt+1 − πt =

(
1− β
β

)
πt −

κ

α
ct

from which (65) follows immediately. Since (65) is a “forward-looking” equation, describing Etdπt,

it includes a jump to expectations dδπt.

This Phillips curve allows a jump in the inflation rate but not in the price level. The Phillips

curve comes from a Calvo fairy who allows a fraction (constant) × dt of firms to change prices at

any date. Since no mass of firms can change prices in an instant, prices cannot jump. This fact is

reflected in (72), dpt = πtdt, which has no jump term.

Sims’ Phillips curve, equation (61), also specifies a second derivative. The solution method is a

first-order differential equation, so when there are second derivatives, here and in the consumer first

order condition (63), I add an extra state variable to write the system in terms of first derivatives

only, and keep track of the definition of the first derivative in (72) and (70).

Fisher. Equation (73),

πt = it − rt

and Sims’ version (57), is the Fisher equation defining the real rate of interest. Sims introduces a

structural shock εit, but he does not use it, so I leave it out.

This version of the Fisher equation stems from the first order conditions for intertemporal

maximization. It adds no risk premium and imposes the absence of price-level jumps stemming

from the Phillips curve, as follows.

The generic asset pricing equation for a security whose real value process is vt and hence return

is dRt = dvt/vt is

EtdRt = rtdt− Et
(
dλt
λt
dRt

)
where λt is the marginal utility of consumption. However, the assumption that jumps are probabil-

ity zero means that the second, risk aversion, terms disappear from asset pricing formulas, leaving

us Et(dRt) = rtdt.
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In turn, the real return dRt on the nominal riskfree asset, whose nominal value process is

dVt/Vt = itdt and real value is vt = Vt/Pt, is

dRt =
dvt
vt

= itdt+
d(1/Pt)

(1/Pt)
.

Therefore, the continuous-time risk-neutral Fisher relation is

itdt+ Et

(
d(1/Pt)

(1/Pt)

)
= rtdt.

This Fisher equation is forward-looking, and allows for price-level jumps, so in general it should

have an expectational error. However, the Phillips curve does not allow for price-level jumps.

Therefore we can write d(1/Pt)/(1/Pt) = −dpt = πtdt, leaving only (73).

Each of the inflation rate πt, the nominal interest rate it and the real interest rate rt can jump.

This Fisher equation (73) means they must jump together, however, an example of a tie between

jumps in variables.

Term Structure. Equation (66) and Sims’ version (60) are the term structure relation between

long and short rates. The perpetuity has nominal yield yt, nominal price 1/yt and pays a constant

coupon 1dt. Thus, the condition that the expected nominal perpetuity return should equal the

riskfree nominal rate (there are no price-level jumps and no risk premiums) is

itdt =
1dt+ Etd (1/yt)

1/yt
≈ ytdt− Et

dyt
yt
.

There are jumps in yt, so the second equality is a linearization. The next step will be to linearize

the model anyway. However, if one wishes to extend Sims’ model by solving the nonlinear version,

or by including nonzero shock probability and hence risk premiums, one should keep the nonlinear

version. Rearranging, we have equation (66),

dyt = yt (yt − it) dt+ dδyt.

Surplus. Equation (67),

dst = ωċtdt+ dεst,

and Sims’ version (62) describe a primary surplus that rises and falls with consumption growth,

with surpluses in booms and deficits in recessions. The surplus can also jump, so we can plot the

economy’s response to fiscal shocks.

Debt. Equation (68),

dbt = [bt(it − πt)− st] dt−
bt
yt
dδyt

5



tracks the evolution of the real market value of debt b. With probability zero jumps, the expected

return on the perpetuity is the same as the expected return on short-term debt, it − πt, hence the

first term. Jumps to the perpetuity yield y induce jumps in the market value of the debt through

the last term.

By definition, bt ≡ Bt/(ytPt) is the real market value of government debt, where Bt is the

number of perpetuities outstanding. Start from the flow condition that the government must sell

new perpetuities at price 1/yt to cover the difference between coupon payments $1×Bt and primary

surpluses st,
1

ytPt
dBt =

Bt
Pt
dt− stdt. (75)

Bt does not jump. Now note

dbt = d

(
Bt
ytPt

)
=

1

ytPt
dBt + bt

d(1/yt)

1/yt
− btdpt,

Here I use the fact that there are no price-level jumps. Substituting into (75), with πtdt = dpt, and

solving for dbt, we obtain

dbt = [(yt − πt)bt − st] dt+ bt
d(1/yt)

1/yt
.

The market value of debt bt can jump, because the bond price can jump. However, this is an

ex-post equation, restricting how any jump in dbt is induced by the jump in bond prices dyt. It

does not just describe the expected change Et(dbt), so it does not require an expectational error or

an extra explosive eigenvalue.

To connect the jump in debt to the jump in bond prices, I use the same linearization of bond

prices,
d(1/yt)

1/yt
≈ −dyt

yt
,

giving Sims’ version (59),

dbt = [bt(yt − πt)− st] dt−
bt
yt
dyt.

I substitute for dyt from (66), which leads to (68).

Consumption. Equations (69)-(71), and Sims’ version (58) and (63), describe marginal utility

with a “habit” term that values a smooth consumption path. The utility function adds a penalty

for the derivative of log consumption growth,

U = E

∫ ∞
t=0

e−r̄t

[
C1−σ
t

1− σ
− 1

2
ψ

(
1

C

dC

dt

)2
]
dt.

6



To derive marginal utility, set this up as a Hamiltonian with a constraint that wealth grows at

the real interest rate

Ẇt = rtWt − Ct.

The state variables are xt = [Ct Wt] and the control variable is ut = dCt/dt. The current value

Hamiltonian is then

H =
C1−σ
t

1− σ
− 1

2
ψ

(
1

Ct

dCt
dt

)2

+ λt (rtWt − Ct) + γt
dCt
dt

.

The first order conditions are

∂H

∂u
= −ψ 1

C2
t

dCt
dt

+ γt = 0 (76)

∂H

∂C
= C−σt + ψ

1

C3
t

(
dCt
dt

)2

− λt = −γ̇t + r̄γt (77)

∂H

∂W
= λrt = −λ̇t + r̄λt. (78)

From (78), we have Sims’ expression (58),

rt = − λ̇t
λt

+ r̄. (79)

This is a forward-looking expectational equation in which marginal utility λ can jump. I add an

expectational shock to produce (69),

dλt = −λt (rt − r̄ ) dt+ dδλt.

Differentiating (76), and dropping t subscripts,

γ̇ = −2ψ
1

C3

(
dC

dt

)2

+ ψ
1

C2

d2C

dt2
. (80)

Substituting (80) and (76) into (77),

λ = C−σt − ψ

[
1

C2

(
dC

dt

)2

− 1

C

d2C

dt2
+ r̄

1

C

dC

dt

]
1

C
. (81)

Note with c = log(C),

dc

dt
=

1

C

dC

dt(
dc

dt

)2

=
1

C2

(
dC

dt

)2

d2c

dt2
+

(
dc

dt

)2

=
1

C

d2C

dt2
.
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Substituting in to (81),

λ = C−σt − ψ

[(
dc

dt

)2

− d2c

dt2
−
(
dc

dt

)2

+ r̄
dc

dt

]
1

C

λ = C−σt − ψ
[
−d

2c

dt2
+ r̄

dc

dt

]
1

C
.

This gives us equation (63),

λ = e−σc + ψ [c̈− r̄ċ] e−c. (82)

Sims gives the corresponding equation (his equation (22)) as

λ = e−σc + ψ
[
c̈− ċ2

]
e−c (83)

The presence of ċ2 in place of r̄ċ is a typo, confirmed by Sims. I verify that the typo does not affect

Sims’ calculations.

The penalty on the second derivative of log consumption means that consumption cannot jump.

Therefore, as with inflation, I introduce a state variable ċt of the first derivative of consumption,

adding (70), dct = ċtdt. I then specify the second-order differential equation (82) containing c̈, ċ,

and c as a paired first-order differential equation consisting of (70) and (71),

dċt =

[
λt
ψ
ect − 1

ψ
ecte−σct + r̄ċt

]
dt+ dδċt.

The first derivative of consumption can jump, so (82) implies a a forward-looking expectational

equation in Et [dċt]. I add the corresponding expectational shock dδċt.

3. Linearization

The next step is to linearize the model (64)-(73) around the steady state. The steady state

occurs where all time derivatives are zero, so the left hand sides of (64)-(72) are all equal to zero

and all shocks are zero. I use bars, x̄ to denote steady state values. Solving, we find that all rates

of return are equal, ī = r̄ = ȳ. Taxes pay for the coupons on debt, ȳb̄ = s̄. The Phillips curve (65)

means c̄ = 0, and then the marginal value of wealth is one, λ̄ = 1.

Linearizing around this steady state, and using tilde notation for differences from the steady

state for variables i, y, r, s, b, λ that are not zero at that state, x̃t ≡ xt− x̄t the linearized version

8



of (64)-(71) is

dĩt =
[
−γĩt + φππt + φcċt

]
dt+ dεmt (84)

dπt = (ρπt − κct) dt + dδπt (85)

dỹt = r̄(ỹt − ĩt)dt+ dδyt (86)

ds̃t = ωċtdt+ dεst (87)

db̃t =
[
b̄
(̃
it − πt

)
+ r̄b̃t − s̃t

]
dt− b̄

r̄
dδyt (88)

dλ̃t = −
(̃
it − πt

)
dt+ dδλt (89)

dct = ċtdt (90)

dċt =

[
1

ψ
λ̃t +

σ

ψ
ct + r̄ċt

]
dt+ dδċt . (91)

Here, I used the linearized (73), r̃t = πt − ĩt to eliminate the real interest rate r̃t. The price level

pt does not enter the model, so we do not need (72). We can just add dp̃t = πtdt to calculate the

price level when needed.

The linearization of (68) gives

db̃t =
[
r̄b̃t + b̄

(̃
it − πt

)
− s̃t

]
dt−

[
b̄

ȳ
+
b̃t
ȳ
− b̄

ȳ2
ỹt

]
dδyt. (92)

However, the impulse response function takes place when variables are at steady states, so I elimi-

nate the state-dependent shock response in (92) and simplify to (88).

4. Solution

Expressing the model in matrix notation, and reordering the equations with the structural

shocks first,

d



ĩt

s̃t

πt

ỹt

b̃t

λ̃t

ċt

ct



=



−γ 0 φπ 0 0 0 φc 0

0 0 0 0 0 0 ω 0

0 0 ρ 0 0 0 0 −κ

−r̄ 0 0 r̄ 0 0 0 0

b̄ −1 −b̄ 0 r̄ 0 0 0

−1 0 1 0 0 0 0 0

0 0 0 0 0 1/ψ r̄ σ/ψ

0 0 0 0 0 0 1 0



dt+



dεmt

dεst

dδπt

dδyt

−(b̄/r̄) dδyt

dδλt

dδċt

0


9



dxt = Axtdt+ dεt.

I solve the differential equation, and then use the shocks and jumps to set up a set of initial

conditions x0. Without the shock term, we have

dx

dt
= Axt = QΛQ−1xt

dQ−1xt
dt

= ΛQ−1xt

or

dzt
dt

= Λzt

zt = Q−1xt;xt = Qzt

where Q is a matrix of eigenvectors, and Λ a diagonal matrix of eigenvalues {νi} of A. To rule out

explosions, we must have zit = 0 for each element i of zt corresponding to an explosive eigenvalue

νi ≥ 0. Since the z are linear combinations of the x, this condition imposes a set of linear restrictions

on xt and x0 in particular, [
Q−1

]
i,:
x0 =

[
Q−1

]
i,:
dε0 = 0.

where
[
Q−1

]
i,:

denotes the ith row of Q−1. This is a set of linear restrictions on the shocks dε0. In

turn, this set of linear restrictions allows us to determine the expectational errors dδ0 as a function

of the underlying shocks dεm0, dεs0 just as in the simple case of equation (74). This system has

four undefined expectational errors, so we need exactly four non-negative eigenvalues for the model

to be uniquely determined, which is the case.

Here the active-fiscal passive-money assumption is important. With active fiscal policy, debt

explodes for all but one value of the initial conditions dδ0. With active monetary policy, interest

rates and inflation explode for all but one value of the initial conditions dδ0.
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To find the instantaneous response to the shocks, then, we must solve



[
Q−1

]
1,:[

Q−1
]
2,:[

Q−1
]
3,:[

Q−1
]
4,:


4×8



dεmt

dεst

dδπt

dδyt

−b̄/r̄dδyt

dδλt

dδċt

0


8×1

=


0

0

0

0


4×1

(93)

for dδπt, dδyt, dδλt, dδct where 1, 2, 3, 4 denote the indices of the explosive (νi > 0) eigenvalues.

Break up the ε and δ parts of the shock vector to write

dεmt

dεst

dδπt

dδyt

−b̄/r̄dδyt

dδλt

dδċt

0



=



0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 −b̄/r̄ 0 0

0 0 1 0

0 0 0 1

0 0 0 0




dδπt

dδyt

dδλt

dδct

+



dεmt

dεst

0

0

0

0

0

0



(94)

Then, we can solve (93),


dδπt

dδyt

dδλt

dδct

 = −





[
Q−1

]
1,:[

Q−1
]
2,:[

Q−1
]
3,:[

Q−1
]
4,:





0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

0 −b̄/r̄ 0 0

0 0 1 0

0 0 0 1

0 0 0 0





−1



[
Q−1

]
1,:[

Q−1
]
2,:[

Q−1
]
3,:[

Q−1
]
4,:





dεmt

dεst

0

0

0

0

0

0



.

Using (94) again, we now have the full jump shock vector dε0, and therefore the time-zero value

x0 of all variables.

11



It’s easiest to solve the differential equation forward using the transformed z variables, z0 =

Q−1x0. Finally, the impulse-response function is given by zjt = e−νjtz0i; xt = Qzt.

5. The model without habits

To calculate the ψ = 0 limit point, in which consumption can jump, we have to solve it separately

for that case, as 1/ψ terms show up in the regular model solution, and equations disappear.

In the model without habits, consumption can jump. So we have in place of (64)-(73),

dct =
1

σ
(it − πt)dt+ dδct (95)

dit = [−γit + φππt] dt+ φcdct + dεmt (96)

dst = ωdct + dεst. (97)

The remaining equations are unchanged. For completeness, they are

dπt = (ρπt − κct) dt + dδπt (98)

dyt = yt (yt − it) dt+ dδyt (99)

dbt = [bt(it − πt)− st] dt−
bt
yt
dδyt (100)

πt = it − rt. (101)

I solve this model and verify that the ψ = 0 limit of the full model approaches the solution of

this model. One might worry that consumption can jump at ψ = 0 and cannot jump for any ψ > 0,

no matter how small ψ. However, the fast hump-shaped responses smoothly approach a jump, as

they do when we remove price stickiness.

In the paper, I present results of a model (48)-(53) that further simplifies with γ = 0, φπ = 0,

φc = 0, ω = 0, retaining only price stickiness κ <∞ and long-term debt.

For the ψ = 0 case, i.e. standard power utility, instead of (69) - (71), we have

dλt = −λt (rt − r̄ ) dt+ dδλt (102)

λt = e−σct . (103)

We linearize to

dλ̃t = −r̃tdt+ dδλt (104)

λ̃t = −σct (105)

12



We can eliminate λ̃, so we have

dct =
1

σ
r̃tdt+ dδct =

1

σ
(̃it − πt)dt+ dδct.

λ̃ does not appear elsewhere.

Next, we must adapt the other appearances of the state variable ċt in the original model, and

the fact that the level of consumption may now jump. To allow a response of fiscal policy to

consumption, in place of

dst = ωċtdt+ dεst

we have

dst = ωdct + dεst =
ω

σ
(it − πt)dt+ ωdδct + dεst

When consumption jumps, so do taxes.

The monetary policy rule

dĩt =
[
−γĩt + φππt + φcċt

]
dt+ dεmt

becomes

dĩt =
[
−γĩt + φππt

]
dt+ φcdct + dεmt

dĩt =
[
−γĩt + φππt

]
dt+ φc

[
1

σ
(̃it − πt)dt+ dδct

]
+ dεmt

dĩt =

{(
φc
σ
− γ
)
ĩt +

(
φπ −

φc
σ

)
πt

}
dt+ φcdδct + dεmt

The system is then

d



ĩt

s̃t

πt

ỹt

b̃t

ct


=



φc
σ − γ 0 φπ − φc

σ 0 0 0

ω/σ 0 −ω/σ 0 0 0

0 0 ρ 0 0 −κ

−r̄ 0 0 r̄ 0 0

b −1 −b 0 r̄ 0

1/σ 0 −1/σ 0 0 0





ĩt

st

πt

ỹt

b̃t

ct


dt+



dεmt + φcdδct

dεst + ωdδct

dδπt

dδyt

−b̄/r̄ dδyt

dδct


.
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With three undetermined shocks dδt, we need three explosive eigenvalues. The shocks now solve


[
Q−1

]
1,:[

Q−1
]
2,:[

Q−1
]
3,:


3×6



dεmt + φcdδct

dεst + ωdδct

dδπt

dδyt

−b̄/r̄ dδyt

dδct


=


0

0

0



for dδπt, dδbt, dδct given dεmt, dεst. The matrix carpentry:

dεmt + φcdδct

dεst + ωdδct

dδπt

dδyt

−b̄/r̄dδyt

dδct


=



0 0 φc

0 0 ω

1 0 0

0 1 0

0 −b̄/r̄ 0

0 0 1




dδπt

dδyt

dδct

+



dεmt

dεst

0

0

0

0


(106)


dδπt

dδyt

dδct

 = −




[
Q−1

]
1,:[

Q−1
]
2,:[

Q−1
]
3,:





0 0 φc

0 0 ω

1 0 0

0 1 0

0 −b̄/r̄ 0

0 0 1





−1


[
Q−1

]
1,:[

Q−1
]
2,:[

Q−1
]
3,:





dεmt

dεst

0

0

0

0


.

This calculation produces a response to the chosen dεt shocks. The actual interest rate move

dit = dεmt +φcdδct is different when the policy rule responds to consumption growth; we no longer

have dit = dεmt.

6. Calculating the response to expected rate rises

When the monetary policy shock dεmt is expected, all the expectational errors dδt are equal to

zero. That makes solving the model a lot easier. I posit a single jump at time 0. The system is

dxt = Axtdt+ dεt

with

dεt =
[
dεmt 0 0 0 0 0

]′
.
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The bounded solutions are then:

νi > 0 :

zit = −
[[
Q−1

]
i,:
dε0

]
eνit; t ≤ 0;

zit = 0; t > 0

νi < 0 :

zit =
[[
Q−1

]
i,:
dε0

]
eνit; t ≥ 0;

zit = 0; t < 0.

In words, each state variable zit jumps by an amount
[
Q−1

]
i,:
dε0 at time 0. The state variables

corresponding to explosive eigenvalues trend down until they hit −
[
Q−1

]
i,:
dε0 at time t = 0, then

jump up to 0 at time t = 0 + ∆. The state variables corresponding to stable eigenvalues are zero

until time t = 0. They jump up to
[
Q−1

]
i,:
dε0 at time t = 0 + ∆, then decay exponentially.

7. Model with short-term debt

The maturity structure only matters to the dbt equation. To derive the dbt equation in the case

of short-term debt, start with the definition that the real value of the debt is bt ≡ Bt/Pt. Here Bt

is the quantity of instantaneous, floating-rate debt. I do not divide by yt as the price of such debt

is always one.

Then,

dbt =
dBt
Pt

+
Bt
Pt

d(1/Pt)

1/Pt
.

The flow condition now states that interest must be paid from surpluses or new debt issues,

Btitdt = Ptstdt+ dBt

btitdt = stdt+ dbt − bt
d(1/Pt)

1/Pt

dbt = (itbt − st)dt+ bt
d(1/Pt)

1/Pt

The instantaneous value of short-term debt can only jump if there is a price-level jump. Sims’

sticky-price model rules out such jumps, so the last term is

d(1/Pt)

1/Pt
= −πtdt.
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With it = rt + πt we then have

dbt = [bt (it − πt)− st] dt

whereas with long-term debt it was (68),

dbt = [bt (it − πt)− st] dt−
bt
yt
dδyt

The only difference between short and long-term debt in this model is that the instantaneous

response of the value of debt to a yield shock is absent for short-term debt.
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