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1 Introduction

This paper replicates Sims (2011), derives the model, shows how to solve it, offers some

extensions, and boils the paper down to its central ingredient.

Sims’ article is important: it is a simple modern economic model that produces a
temporary decline in inflation when the central bank persistently raises interest rates.
Cochrane (2016) surveys the literature and finds that new-Keynesian rational expecta-
tions models predict an increase in inflation, both in the short and long run, in response
to a persistent rise in interest rates. It also avoids the troublesome new-Keynesian as-
sumption that the central bank uses a never-observed threat of instability to produce
determinacy, relying on the fiscal theory of the price level instead. In old Keynesian
and monetarist models, a rise in interest rates sends inflation on an unstable down-
ward spiral, so both the short-run and long-run inflation effect is negative. However,
such models rely crucially on irrational adaptive expectations, and they are inconsis-
tent with the observed stability of inflation in the U.S. and Europe’s decade, and Japan’s

two decades, at the zero bound.

Sims’ paper is also methodologically useful. It adopts a simple, tractable continuous-
time specification with sticky prices, which is a convenient framework for further ex-

ploration.

However, Sims does not state the model, he does not derive the equilibrium condi-
tions, and he does not explain how to compute impulse-response functions. This paper

fills that gap, and confirms Sims’ results.

Sims also does not explore what the minimum set of ingredients is to deliver a tem-
porary negative sign. He’s after a bigger result, namely an impulse response function
that delivers an entire path consistent with VAR estimates, not just the basic sign. He

also does not offer much economic intuition for that sign.

I first explain the central, fiscal-theoretic, story for the temporary negative inflation
effect in a frictionless models. In words, higher nominal interest rates lower the nomi-
nal value of long-term debt. If we define “monetary policy” as a change in nominal in-
terest rates that does not affect primary surpluses, then such a change does not change

the real value of primary surpluses. For a lower nominal value of nominal debt to cor-
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respond to an unchanged real value of primary surpluses, the price level must fall. The
mechanism is simple “aggregate demand.” People want more government bonds and
fewer goods and services. This basic mechanism survives when the real interest rate
variation of the full sticky-price model is included, and changes the real present value

of unchanging surpluses.

I then derive Sims’ model and explain how to solve it and calculate impulse re-
sponses. I verify Sims’ calculations. I verify that the complications of Sims’ model,
habits, Taylor rule, and procyclical fiscal policy, do not matter for that central result.
They are useful for producing a realistic impulse-response function, and thus useful in-
gredients for applied modeling here, as in the standard new-Keynesian tradition such
as Christiano, Eichenbaum, and Evans (2005) and Smets and Wouters (2003). For ex-
ample, habits give a hump shape response. On the other hand, I show that long-term
debt and an unexpected shock are crucial to the negative sign. An expected monetary
policy tightening produces a rise in inflation throughout. Similarly, Sims’ model with
short-term debt produces an instant rise in inflation. The negative inflation response

is centrally a fiscal-theoretic phenomenon.

That is, I think, the most important lesson going forward. The response to “mon-
etary” policy — a change in interest rate target — depends crucially on the associated
fiscal policy — the maturity structure of outstanding debt, and how people expect the
Treasury will adjust surpluses in reaction to economic events and monetary policy ac-
tions. Furthermore, Sims’ basic mechanism works in an entirely frictionless model, so
has nothing to do with monetary or pricing distortions. Even the mechanism for tar-

geting interest rates requires no monetary or pricing distortions.

Sims’ negative sign does not justify conventional policy conclusions, such as the
desirability of the Taylor principle, or raising interest rates to permanently lower infla-
tion as in the 1980s. Since the short-term negative response of inflation only occurs
for unexpected interest rate rises, it does not work for systematic policy, the ¢, in the
Taylor rule i = ¢,m + m,y. And the stepping on a rake mechanism says that as rais-
ing rates eventually raises inflation, as happened in the 1970s, so raising rates does not
eventually lower inflation as occurred in the 1980s. In this framework, that permanent

disinflation requires fiscal policy cooperation.
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2 Africtionless rake

Here is how a totally frictionless model delivers the result that a rise in interest rates

first causes inflation to fall, and then to rise.

Use risk-neutral valuation at a constant real factor § = 1/(1+r). Then interest rates

1; and inflation follow
1 1 P;

— = E
1+i, 147 Py

where P, denotes the price level. A rise in nominal interest rates implies an immediate
rise in expected inflation. But the price level can still jump down when interest rates
increase unexpectedly.

At the beginning of period ¢, the government has outstanding Bt(tjj ) discount bonds

of maturity j, each of which pays $1 at time ¢ + j. Then, the government debt valuation
equation stating that the real value of nominal government debt equals the real present

value of primary surpluses is

S Q(t+j)B(t_+j) o
j=0 tPt t—1 :EtZBj5t+j' (1)
0

j=

Here, s, ; denotes the real primary surplus. The symbol Qgtﬂ ) denotes the time ¢ nom-
inal price of a j period discount bond, which pays $1 at time ¢ + j. Qgt) = 1 for the

maturing bond j = 0. For j > 0, the bond price is, in this risk neutral constant real rate

() Lo 1 P,
ERR— | | - | = B . 2
@ ! ( 1 +it+k—1> Q+r)y" <Pt+j> @

k=1

world,

Higher current or expected future interest rates lower bond prices.

Now, take innovations (F; — E;_1) of (1). Define "monetary policy” as a change
in current and expected future interest rates, and hence bond prices, that involves no

change in fiscal policy, so (E; — E¢_1) s¢+; = 0. We have

Y5 QB
By

= (B~ E1)Y_ s =0. 3)
j=0

(Ey — Ey—q)
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Debt B,_; is predetermined. The real value of surpluses does not change by assump-
tion. So any innovation to bond prices must have a corresponding innovation to the
price level. If an interest rate rise, including expectations of higher interest rates in the
future, lowers bond prices Q§t+j ), then the price level must also fall. The price level P,
must jump by exactly the same proportional amount as the change in nominal market

value of the debt.

The mechanism is just as if the real present value of primary surpluses {s;,;} had
increased. The real value of government debt is greater than its nominal value. People
try to buy more government debt, and thus less goods and services. It feels like a lack
of “aggregate demand.” That force pushes the price level down.

In the case of one-period debt, B,ft”) =0, j>0,

(t) 00

B, .
(Bt — Ei-1) thtl = (Ey— Ei1) ZﬁjStﬂ =0.
=0

so the price P, does not change unless surpluses change. Inflation rises when interest
rates rise, with no price level drop. The presence of long-term debt is crucial to to the

temporary price decline.

The deflationary force in this model depends entirely on how much the price of
long term bonds, and thus the nominal market value of the debt, declines. Bond prices
are determined by the path of expected future interest rates. Thus, in this model, the
expected path of interest rates matters far more than the current rate in determining a

deflationary force.

Therefore, this model gives a very simple role and explanation of “forward guid-
ance.” If the central bank can make an announcement that credibly commits to higher
or lower interest rates in the future, that announcement will change long-term bond

prices and have an immediate inflationary or deflationary impact.

The model also suggests a restriction useful econometrically and in practice. Mon-
etary policy actions and announcements exploit this mechanism to temporarily raise
and lower inflation only and to the extent that they lower the nominal market value of

government debt.
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A different view of Sims’ mechanism help intuition. Using the bond price from (2),

we can write the government debt valuation equation (1)

() 00
t + 5]Bt 1Et( ) EtZﬁ]Stﬂ (4)

By writing out the first term separately, we have before us the short-term debt case,
in which the second term is absent. With one-period debt, surplus expectations drive
shocks to the price level P,. With long-term debt, surplus expectations at time 0 drive
the debt-weighted moving average of current and future price levels instead. Within
that constraint, in the presence of long-term debt, the government can choose a dif-
ferent path of price levels without changing surpluses. A rise in nominal interest rates
means that price levels in the far future must rise. As a result, price levels in the near

future, to satisfy (4) must fall. (Cochrane (2001) explores this mechanism in detail.)

This formulation emphasizes the fiscal foundation of Sims’ effect. When the gov-
ernment chooses higher nominal interest rates, and hence higher inflation and a higher
future price level, it thereby devalues the long-dated coupons. This is great news for the
Treasury — it does not have to raise as many real taxes s, ; to pay off coupons. But in
Sims’ exercise, the Treasury stubbornly refuses: The central bank says, you can pay off
the $1 coupons with (say) half as many real resources. B, ;/ P, falls by half so you can,
if you wish lower s, ; by half. But the Treasury says, no, we're going to insist on paying
off the coupons B, ; with exactly the same real resources. How can this loggerhead
be solved? Well, by fixing interest rates, the central bank here only controls the time
path of prices P,;1/P,. It does not control the initial price level P,. So the initial price
level must jump down, so that overall bondholders are paid back the same amount as
before, just with a different time pattern. Long-term debt holders lose, short-term debt

holders gain.

Here, you can see the central assumption of the analysis. Why does the Treasury
stubbornly refuse to reduce surpluses when the central bank wants to inflate away
long-date coupons? Why does the Treasury not reduce future surpluses instead? That’s
not a question to answer here. We have defined “monetary policy” as a change in in-

terest rates without a change in surpluses, as central banks are not allowed to directly
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change fiscal surpluses. If actual treasuries respond to central bank actions, then one
would see different effects. If actual fiscal policies responded to the same events that
induce central banks to raise interest rates, then one would see different effects. This
discussion all emphasizes Sims’ (and my) main point: In order to understand the ef-
fects of interest rate changes, the central question is how fiscal policy behaves. Fixed
surpluses are a textbook, problem-set, assumption, worth working out but not the final

answer for policy or historical analysis.

And nothing else matters. By stripping Sims’ effect down to a simple frictionless
model, we see that Sims’ decline in inflation does not involve sticky prices, habits in
preferences, money, manipulation of real interest rates, IS and Philips curves, real inter-
est rates lowering investment or “aggregate demand,” or anything else remotely “mon-

etary.”

To gain more intuition and connect the point to Sims’ analysis, consider a very sim-
ple example: At time 0, interest rates rise unexpectedly and permanently from i; = i to
i = ¢*. Again there is no fiscal policy shock. Inflation immediately rises to

1 _ 140"
Py 147’

t>0.

where P;" denotes the price level after the interest rate change. But the price level P

may jump down.

Suppose government debt consists of nominal perpetuities, and surpluses are con-
stant s. Now we can write B(_Jf = B_j, since the coupon is the same for all dates. Bond

prices follow

G__ 1
QO (1_1_2‘*)]

Then, (1) becomes '
Y20QYBa 1+ B s
P, - Py 1-p

If the price and interest rate had been expected to be P and 4, giving the same relation

between unstarred variables, we can divide and write

Py 1+

P 1440
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In continuous time, it’s even simpler,
- = . 5)

Thus, If the government is funded by perpetuities, a positive permanent shock to interest
rates implies a equal proportionate jump down in the price level. A rise of interest rates
from 5% to 6% occasions a 20% price-level drop, before inflation increases by one per-
centage point. Sims’ model in Figure 7 below gives this sort of dynamics, smeared out

by the frictions of his model.

In the context of this example, it is algebraically easy to see how the government
raises interest rates, and we can see that Sims’ interest rate rise is equivalent to an in-
verse quantitative easing operation. To raise interest rates, the central bank sells long-
term bonds. Selling long-term bonds, in the face of constant surpluses, devalues ex-
isting bondholders’ claims, and thus raises future inflation. Buying and extinguishing
short-term bonds raises the value of existing bondholders’ claims, which lowers near-

term price levels.

Therefore, Sims’ mechanism describes quantitative easing, interest rate policy, and

forward guidance all in one breath, again needing no frictions.

To see how this works, consider again the case of a perpetuity and a one-time unex-
pected shock from i to i* at time 0. (1) is
Y20QVBa 1+ By 14

= . 6
Py ¥ Py r 5 ©)

The point is to determine P, in terms of predetermined B_; and the shock to interest

rates ¢*.
ii 1+7’i S
Py 144 r By

(7
Now, consider the same equation one period in the future,

1+43*B 1
—?—Z Lo _ —l—?’s )
* P r
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With
1 B 14r 1
Pl_l—l-i*Po
and (7), we have
1+34*
= B 9
0= 7B 9)

Similarly, to support interest rates that are i; = ¢* further in the future,

Bt:< “) B_,
1+7r

Equation (9) can be used and interpreted in two ways. If the government sells more

debt By at time 0, without changing surpluses, the value of that debt declines. Selling
more debt without changing surpluses is a lot like a share split, which changes the num-
ber of shares without changing dividends or earnings. Thus, by selling more debt B,
the government raises nominal interest rate i*, and vice versa. This is the “quantitative
easing” interpretation. In QE operations, central banks bought back more long ma-
turity debt, in a more complicated pattern, and thus lowered long-term interest rates

without changing the one period rate, but the mechanism is the same.

Second, the government can target interest rates i; = * and offer to sell as many
perpetuities as people want at that price. If the government can commit to keep sur-
pluses unchanged, equation (9) describes how many perpetuities the government will

sell at the price.

This equation thus answers just how the government can implement an interest
rate target, even in a completely frictionless model with no money, no reserve require-
ments, and so forth. One might worry, for example, that if the government announces
and interest rate and says it will sell any amount of bonds at that rate, it will face a
horizontal demand curve and be swamped. This equation reassures us that it will not.
Cochrane (2014a) argues that this mechanism in fact can describe our current institu-
tional arrangements in which a central bank sets an interest rate and Treasuries auction

an apparently fixed number of securities.

In sum, Sims’ mechanism operates even in a completely frictionless model — no

monetary frictions, no pricing frictions. If interest rates rise unexpectedly, or if ex-
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pected future rates rise unexpectedly so that long-term bond prices fall, prices will first
fall, and then rise. The crucial ingredient is outstanding long-term debt, and fiscal pol-
icy that does not fully absorb the inflationary impact of the interest rate change. The
mechanism treats interest rate targets, forward guidance about future rate changes,
and quantiative easing operations in the same breath. However, it only operates for
unexpected interest rate changes, and it operates on the day of announcement, not
on the day of interest rate change. Fully expected interest rate changes raise inflation

uniformly.

2.1 Continuous time and sticky prices

Sims’ analysis seems to be quite different, in that it operates in continuous time and
the price level P, cannot jump. A rise in interest rates sets off a period of deflation,
which cumulatively lowers the price level. However, as I show below, this apparent
difference is not central. As one removes price stickiness, Sims’ short period of deflation
gets stronger and stronger, smoothly approaching the downward jump predicted by the

frictionless model.

The continuous time setup with no price level jumps is an important framework,
and works a bit differently from the discrete time model presented above. Simplifying
to either a perpetuity or to instantaneous debt, the government debt valuation equa-

tion is

o
@B _ Et/ o= T iliv=mo)dvg g
Pt T=t

where @ is the bond price, B the number (face value) of bonds, P is the price level, i is

the nominal interest rate, 7 is the inflation rate and s is the real primary surplus.

For short-term debt, @; = 1 always. In discrete time, or if prices can jump, innova-
tions in s, can induce a jump in P,. That channel disappears in continuous time with
sticky-price models such as Sims’ that preclude price-level jumps. However, this fiscal
relation can still select equilibria. For given {s;} and {i;}, this relation implies a restric-
tion on what path {7} may follow, and still picks a unique equilibrium {7} from the

set of multiple equilibria allowed by sticky-price models.

Now, a discount rate effect must operate. If Q);, B;, and P, all cannot jump when
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there is a jump to information about future s., then the discount rates i, — m, must
change. If future s decline, for example, the discount rates must also decline so that
the present value is unchanged. Therefore, we anticipate that a sticky-price model with
one-period debt will substitute a period of higher inflation 7 for the immediate jump

upward P, of a frictionless model in response to a fiscal shock

When the central bank raises expected interest rates {i;}, with no change in sur-
pluses, in a model that disallows a jump in P, the path {7, } must rise so that the present
value on the right side is unchanged. The pure Fisherian result obtained in discrete
time will work, 7, = i; — r leaves discount rates unchanged. Models with price frictions
may have more complex dynamics, trading more inflation at some dates and less at
others, but the path of inflation must still produce no change in present value of the

surplus.

With long-term debt, however, the nominal bond price @; can jump down when the
central bank raises interest rates. If the price level P, cannot jump, the path {7;} on the
right hand side must therefore adjust, now to produce a higher real discount rate and
a lower present value of surpluses. At a majority of dates on the path, 7, must rise less
than #; so that real discount rates rise. Relative to short-term debt, we produce a path
with less inflation. Thus, the downward price jump of the frictionless model becomes

a period of lower inflation when the price level cannot jump.
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3 Sims' model

The model as presented by Sims (2011), starting with equation (15) on p. 52, is

7y = —(re — p) + 0Pt + ¢é + Eput (10)
re = pe +pr (%) (11
A
pr = —)Tt +p (%) (12)
t
; . at _
bt = _btpt — bt; + atbt — T+ — T (13)
t
o= ay — (%) (14)
at
P = Bpy — ocy (%) (15)
7"t = wc't + &t (16)
M=¢e 7%+ [Ct — ﬁct} €_ct(*) (17)

Here I use Sims’ notation, r instead of 7 for the nominal interest rate, p instead of r for
the real interest rate, and 7 + 7y instead of s for the real primary surplus. The other
symbols are p for the log price level, ¢ for log consumption, A for marginal utility, b for
the real value of government debt, « for the nominal perpetuity yield. I also use Sims’
nonstandard notation for parameters. The last equation differs from Sims’ by two typos

in Sims’ paper, that do not affect the calculations. Details in the derivation below.

Our goal is to calculate responses of this model to unexpected jumps in the shocks,

Eme and 4.

We need to state the underlying model and derive these equilibrium conditions. We
then need to linearize the model, transform the model to to dz/dt = Ax; + ¢, form, and
then solve it as a first order linear differential equation. We need to understand jumps
and “forward - looking” equations. The impulse response functions (Sims’ Figure 3
and 4) feature jumps in all variables except p; and ¢;. So, we have to understand how

variables respond to the ¢,,,; or ;4 jumps, and what the rules about jumps are.
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3.1 The model derived and restated

Sims’ model is a perfect-foresight continuous-time model, but allowing a probability-
zero jump in some variables. (Probability zero, because otherwise risk aversion terms

would show up in asset pricing formulas.)

Reordering the equations, and writing them in a more standard form,

dry = [—y(re — p) + 0 + ¢ée] dt + degmy (18)

Ey (dpy) = (re — pe) dt () (19)
dpy = mdt (20)

By (dmy) = (Bry — dey) dt (%) 21)
By (day) = ag (ag —1¢) dt - (+) 22)
dry = wiydt + deyy (23)

dby = (asby — bymy — 71— 7) dt — Zdat (24)

By (dA) = =M (pe —p)dt () (25)
dey = éydt (26)

B, [dé)] = <Ate L egoey pc't) dt (+) 27)

(0 Y

I use differential notation dx rather than derivative notation z for variables that can

jump.

The starred equations are “forward-looking,” they specify the expectation of a forward-
looking differential. To understand the issue, consider the simplest discrete-time new-
Keynesian model consisting only of a Fisher equation iy = FE;m;; and a Taylor rule

it = ¢ + wy. The equilibrium is

Eymip1 = om + wy

Wiyl = PWt + €441

This equation is “forward-looking” like the starred equations in Sims’ model. It admits
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multiple equilibria: Any path

41 = O + Wip1 + Opq1

with E6;+1 = 0is an equilibrium. This form with an expectational shock is useful for
solutions, as you don't have then to do anything special about expectations. It also
helps to keep track of how ¢ jumps in one variable are reflected in similar jumps to
other variables. Therefore, I reexpress Sims’ model with such expectational shocks in

the next step.

The conventional model specifies ¢ > 1 so the dynamics are explosive. Then the
unique non-explosive equilibrium is
m= =B ) 670wy = -

j=0

This solution amounts to a unique choice of §;. This general principle applies to Sims’
model: For each “forward-looking” or expectational difference equation, we need to
have one explosive eigenvalue and one variable that can jump to the non-explosive
saddle-path equilibrium, or equivalently one expectational error. This consideration

motivates several discussions in the derivation of the models’ equations.

Taylor. Equation (18) is the monetary policy rule. The nominal interest rate mean-
reverts, and rises with inflation and consumption growth. The rule allows a jump de,+,
which generates the monetary policy shock. By examining the steady state dr; = 0, you
can see that § > ~ is the Taylor rule region in which interest rates respond more than

one for one to inflation, and § < + is the “passive money” region.

All the variables on the right hand side of the monetary policy rule can jump, so
in principle one should specify whether dr; is driven by pre-jump or post-jump values
(right or left limits). But since these variables are all multiplied by dt it does not matter
which one specifies. For the same reason, when there is a jump de,,;,  jumps by the
same amount dr; = dep,, even though the other variables also respond to the jump,
and when there is a jump de,, we still have dr; = 0 even though the variables on the

right hand side may jump.
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Phillips. Equation (20) and (21) define the forward-looking Phillips curve. It is the

analogue of the discrete-time curve
T = abym + Koy

which can be written in the form

11—« K
Et7Tt+1 — T = < Tt — —Ct.
« «

from which (21) follows immediately. I use (20) to connect price changes and inflation
changes. The solution method is a first-order differential equation, so when there are
second derivatives involved, I add an extra state variable to write the system in terms of

first derivatives only.

Since this is a “forward-looking” equation, I write the Phillips curve below in the
form
dﬂ't = (57’(15 — (5Ct) dt + ddmg

where dd,; is an arbitrary expectational jump.

Fisher. Equation (19) is the Fisher equation defining the real rate of interest. It is
“forward looking” and allows a price level jump. In discrete time, this equation would

read
re = pt + Bt (pi4a — pt) = pe + By (Ti4n) -
Sims introduces a structural shock ¢,;, but he does not use it, so I leave it out.

The generic asset pricing equation for a security whose real value process is v; and

hence return is dR; = dv; /vy is

dA
Etht = ptdt - Et (Atht>
t

where )\; is the marginal utility of consumption. Sims avoids the second risk aversion

term by specifying an infinitesimal probability jump as the only source of randomness.

In the presence of a potential price level jump, the real return on the nominal short
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term bond is
d(1/P;)

dR; = ridt +
e (1/P)

so the risk-neutral Fisher relation is really

nﬁ+&<%%?>:mﬁ

Replacing the term in the expectation on the left with —F;(dp;) is a linearization or

approximation.

However, while this Fisher equation and (19) allow for price-level jumps, in Sims’
specification the Phillips curve does not allow for such jumps - inflation can jump, but
the price level cannot jump. The Phillips curve comes from a Calvo fairy who allows a
fraction (constant)dt of firms to change prices at any date. Since no mass of firms can

change prices in an instant, prices cannot jump.

Without price level jumps or (diffusion terms), we can write d(1/P;)/(1/P;) = —dp;
and with (20) dp; = mdt the Fisher equation becomes simply

T =Tt — Pt-

I use this form below.

In sum, with no price level jumps, the Fisher equation is no longer “forward-looking.”

We lose one expectational error, so we need one less an explosive eigenvalue.

Term Structure. Equation (22) is the term structure relation between long and short
rates. The perpetuity has nominal yield a;, nominal price 1/a; and pays a constant
coupon 1dt. Thus, the condition that the expected nominal perpetuity return should
equal the riskfree nominal rate (there are no price level jumps and no risk premiums)
is
_ ldt+ Ed(1/ay) day

~ ardt — By —.
1/at at tCLt

Tt dt

Equation (22) follows. There are jumps in a;, so and thus the second equality is a lin-
earization or approximation. The next step will be to linearize the model anyway. How-
ever, if one wishes to extend Sims’ model by solving the nonlinear version, or including

nonzero shock probability and hence risk premiums, one should keep the nonlinear
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version.

This is a forward-looking equation, so I introduce the corresponding expectational
error
da; = at(at — Tt)dt + dbgt (28)

Debt. Equations (23) and (24) describe government finances. Equation (23) de-
scribes a primary surplus that rises and falls with consumption growth, and can jump.
Equation (24) is the government budget constraint. By definition, b; = B;/(a:P;) is the
real market value of government debt, where B; is the number of perpetuities outstand-
ing and P, is the price level. Sims models the real value of government debt because the
consumer’s transversality condition states that this real value may not explode. That
condition is a key “forward-looking” condition which forces variables to jump when

shocks occur.

To derive this equation, start from the observation that the government must sell
new perpetuities at price 1/a; to cover the difference between coupon payments $1 x B,

and primary surpluses 7z + 7, (7 is the steady state, 7; the deviation from steady state)

1 B, _
el dB; = Edt — (1 + 7)dt. (29)

B, does not jump.

Now note

Bt 1 d(l/at)
dby=d| — ) = ——=dB;+b — bydpy.
¢ <atPt> ) t + 0t a: taAPt

Here I have used the fact that there are no price level jumps. Substituting into (29), and
with m.dt = dpy, and solving for db,,

d(1/at)

dby = b
t = 0t 1/a:

+ [(ar — m)by — (7 + 7)) d.

The face value of debt B, does not jump. The market value can jump, because the
bond price can jump. This is an ex-post equation, restricting the actual change db; not
just the expected change E.db;, so it does not require an expectational error or an ex-
tra explosive eigenvalue. (Forward differences and “forward-looking” are not the same

thing.) Its jump is entirely induced by the jump in bond prices.
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To connect the jump in debt to the jump in bond prices, I use the same linearization

of the latter, giving (24),
_ bt
dbt = [atbt — (Tt + T) — btﬂ't] dt — —dat.
at
In the next step, I split da; on the right hand side to
dat = Etdat + (dat — Etdat) = a¢ (CLt — ’I“t) dt + d5at

Then we can write

b
dbt = —;t [at (at — T‘t) dt + Cldat] + [atbt — btﬂ't — (Tt + ’77')] dt
t

b
dby = — [bt (7Tt — Tt) + 7+ 7__] dt — jdéat (30)
t

I use this form below.

Consumption. Equations (25)-(27) describe marginal utility with a “habit” term that
values a smooth consumption path. The utility function adds a penalty for the deriva-
tive of log consumption growth,

o

U=F e Pt
=0

clo 1 [1dC\?
- 2¥ (mu) dt.

To derive marginal utility, set this up as a Hamiltonian with a constraint that wealth

grows at the interest rate

Wt = pWi — Cy.

The state variables are x; = [C; W;] and the control variable is v; = dC}/dt. The current

value Hamiltonian is then

H

cl= 1 ([ 1dC dC;
"1, 2Y
g

2
Ctdt> +A (Wi = C) + -

The first order conditions are

OH 1 dC,
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OH ., 1 (dC\*> | .
oOH o
From (33), ]
A
Pt = b\ P

From (31), dropping ¢ subscripts,

1 dC
7—711@%

1 /dC\? 1 d2C
S — _oh— [ 2 el
V=2 (dt) Ve g

2
) +5—pv

so, from (32),
.1 (dC
A=GT TV (dt

Y 1 [/dC\? 1 &2C _ 1dC
A=GT Ve <dt> VeraE T PVer
Note with ¢ = log(C),
de _1dC
dt C dt
de\*_ 1 (dC\’
dt)  C?2 \ dt

d%c 1 (d0>2 1 d2C
— +

a2~ 2 \dt C dtz
Po (de)?_1&EC
dt? dt) — C dt?
SO )
o 1 [/dC 1d*C  1dC| 1
A=GT 02<dt) “cae TPca|c
— de\?  d%c de\? _de| 1
A=GT oY <dt> _dt2_<dt> TPalc

. d’c  _dc] 1
A=G _w[_cit?+pclt]0

A=e 7+ [é— pcle”. (34)
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Sims gives the corresponding equation (his equation (22)) as
A=e %+ yé—c?e (35)

The final p¢ term is missing in Sims’ paper, a typo confirmed by Sims. To keep track of
it I will use p in its place, and then we can choose p = p or p = 0. I verify that the typo
does not extend to Sims’ calculations. Sims includes a ¢ term, which I believe to be a
typo or algebra mistake. (It can result from omitting the second term in (32).) However
Sims’ subsequent linearization procedure drops this squared term, so its inclusion or

omission makes no difference to the calculations.

The marginal utility \ is as usual a forward-looking expectational equation which

can both jump, and for which we have to tie down an expectational error.
Ey(d\) = =i (pe — p ) dt(*)

The penalty on the second derivative of log consumption means that consump-
tion cannot jump. Therefore, as with inflation, I introduce a state variable ¢; of the first
derivative of consumption, and specify the second-order differential equation contain-
ing ¢, ¢, and c as a paired first-order differential equation. Finally, the first derivative of

consumption can jump, so we (34) implies a a forward-looking expectational equation,

EWMZ(Xﬁ—;&”M+%QﬁM. (36)

I add a corresponding expectational error do;; below
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3.2 Linearization

The model is now

dry = [=y(re — p) + Om + ¢é) dt + depe (37

T =Tt — Pt (38)
dmy = (B — dcy) dt + doqy (39)
day = ay (ay — 1) dt + ddgy (40)
dr = wédt + deqy (41)
d@z—&@pwﬁ+ﬁ+ﬂﬁ—2@a (42)
d\e = =M (pr — p ) dt + ddye (43)
de; = épdt (44)
déy = ﬁeci — iecte_“" + péy| dt + ddgy (45)

(G G

where I have introduced the expectational errors do;.

Since the price level does not enter the model, I drop the definition dp; = m;dt from

the model solution. We can use it later to compute the price level.

The steady state is where all time derivatives are zero. All rates of return equal p,

I use variables without ¢ subscripts to denote steady state values. Taxes pay for the
coupons,

ab=T.

The Phillips curve means ¢ = 0, and then the marginal value of wealth is one.

O=c; A=1 (46)

Linearizing around this steady state, working to dz; = Axz.dt + de; representation,

and using tilde notation for differences to the steady state for variables that are not zero
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at that state,

<
o~
Il
=
o~
|
]|

b=b—b
S\t = )\t — ].,
the linearized model is
dft = [—’th + (977,5 + qut] dt + dSmt (47)
dTFt = (,37Tt — (SCt) dt + d(sﬂ—t (48)
da, = p(ay — 7¢)dt + dogs (49)
th = wc‘tdt + dETt (50)
~ b
dby = — {b (my — 7¢) — pby + Tt] dt — Edisat (61
dh = — (7 — 7,) dt + dox (52)
dCt = étdt (53)
. 1< o .

dCt = |:w)\t + act + pCt:| dt + d5¢t (54)

Here, I used

T =Tt — Pt
to eliminate the real interest rate p;. Also, the linearization of (42) gives in fact

3 b b b
dby = — [b (7 — ) — pby + rt} dt — | =+ = — =y | dbas. (55)
a a a?

However, the impulse response function takes place when variables are at steady states,

so I eliminate the state-dependent shock response in (55) and simplify to (51).
The model is, at last, in the standard form dx; = Az:dt + de;.

The fiscal block (49), (50), (51) operates independently of the rest of the model —
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other variables enter here, but the variables «a, 7, b determined here do not feed back on
the rest of the system. As in other new-Keynesian models, the model without this block
and passive monetary policy is indeterminate, it has multiple equilibria. But all but one
of those equilibria lead to an explosive path for the real value of debt b;. Therefore, the

fiscal block selects equilibria.

3.3 Solution

Expressing the model in matrix notation

(W]l [ =+ 0 0 0 0 0o o ¢][#] [ dey |

T 0O 8 0 0 0 0 -6 0 T Ao

a -5 0 p 0 0 0 0 O a dba
R 0O 00 0 0 0 0 w . dent

by b b0 -1 5 0 0 0 by —(b/p) dby

At -1 1.0 0 0 0 0 0 At dox

ct O 0 0 0 0 0 0 1 ¢ 0

] L0 0 0 0 01/ o/ p|| | dow |

dxy = Axidt + dey.

It’s easiest to solve the differential equation, and then use the shocks and jumps to set

up a set of initial conditions xy. Without the shock term, we have

dx

T Az = QAQ 1xt
o A

dy;

—— =A

dt Yt

yr = Q w1 = Qu

where @ is a matrix of eigenvectors, and A a diagonal matrix of eigenvalues of A. To
rule out explosions, we must have y;; = 0 for each element : of y; corresponding to an

explosive eigenvalue \;; > 0. Since the y are linear combinations of the z, this condition
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imposes a set of linear restrictions on z; and x( in particular,

[Q_l]i : o = 0

)

where [Q‘l]i . denotes the ith row of Q™. Thus, also,

[Q_l]i,: dEO =0.

This is a set of linear restrictions on the shocks dsg. In turn, this set of linear restrictions
allows us to determine the expectational errors ¢ as a function of the underlying shocks
e. This system has four undefined expectational errors, so we need exactly four non-

negative eigenvalues for the model to be uniquely determined, which is the case.

To find the instantaneous response to the shocks, then, we must solve

de mt
d(sﬂ't

! déat

O

(7', | 0
%Q? .. dert _ 8 (56)
L[], | 0

)

Q ! _b/ﬁdéat

4x8 da)‘t - - 4x1
0

L déét 4 8x1

w

5

1

QO

4,

for doq¢, déar, doye, dé where ¢ = 1,2, 3,4 denotes the indices of the explosive eigenval-
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ues. Break up the e and ¢ parts of the shock vector in (56) to write

[ deyy | [0 0 o0 0] [ de |
Ay 1 0 0 0 0
64 0 1 0 0|/ dom | 0
0 0 0 00 dbg: dert
— + (57)
—b/pddg 0 =b/p 0 0 déx 0
b 0 0 10| [do]|,, 0
0 0 0 0 0 0
dd¢y 0 0 01 0
L 4 8x%x1 L 4 L 4 8x1
Then, we can solve (56),
— - -1 - -
0 0 0 0 demt
1 0 0 0 0
[ o | @] o 1 0o (@7, ] ] o
ddat _ [Q_l} 2,: 0 0 00 [Q_l] 2,: dert
065, [Q1],, 0 —b/p 0 0 (@5, || O
—1 —
| doet |, L[, 1,0 0 10 L[, ]| 0
0 0 0 0 0
0 0 0 1 0
L 4 L 4 8x1

Using (57) again, we now have the full jump shock vector dej, and therefore the

time-zero value z of all variables.

It’s easiest to solve the differential equation forward using the transformed y vari-
ables, yo = Q 'z, This should produce [y], = 0 for all nonzero eigenvalues, but it is
numerically safer to impose that fact, constructing instead[yo]; = [Q‘l]j .z only for

the non-positive eigenvalues j.

Finally, the impulse response function is given by y;: = e Ytyo;; 21 = Qus.
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4 Impulse-response functions

Sims uses parametersy = 0.5;0 = 0.4; ¢ = 0.75;0 = 2; p = 0.05; 7 = 0.1, 3 =0.1; § = 0.2;
w = 1.0; ¢» = 2.0. Here, § < v so we are in the fiscal theory of the price level region of

passive monetary policy and active fiscal policy, in the Leeper (1991) categorization.

Figure 1 shows the response of interest rates and inflation to the monetary policy

shock. You see the jump down in inflation, followed by its slow rise.

1F T T T T T T T T T T ]

0.8 -

0.6 Nominal rate r 7

04} -

Percent

0.2 .

Mﬂon T

_02 1 1 1 1 1 1 1 1 1 1
-1 0 1 2 3 4 . 5
Time

Figure 1: Response to a monetary policy shock in the Sims (2011) model.

Figure 2 presents the response of all variables to the monetary policy shock ds,,.

This figure is visually identical (to my eyes) to Sims (2011) Figure 3.

The price level and consumption do not jump at time zero. All the other variables
do jump downward, including inflation. Inflation could, like consumption, start at zero
and then build up in a hump-shaped pattern. It does not. The jump in inflation is

important. The model does not produce a decline in inflation without this jump.
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Figure 2: Responses to a monetary policy shock. Replication of Sims (2011) Figure 3.
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4.1 Habits, Taylor rules, and fiscal responses

How many of Sims’ ingredients are necessary to deliver a negative response of inflation
to the interest rate rise? How many ingredients are useful to match dynamics, but not

essential to the basic sign?

It turns out that the habit ¢, the Taylor rule v, ¢, 6, and the fiscal policy response w
do not matter for the negative response of inflation to the interest rate rise. Figure 3
presents the impulse response function for the case v = 0, a permanent rise in rates;
¢ = 6 = 0, an interest rate peg that does not respond to inflation or output; w = 0,
surpluses do not respond to output; and ¢» = 0, no habits. (Not shown, the limit of the
response functions as ¢» — 0 is well-behaved. One might worry that consumption can
jump at ¢ = 0 and cannot jump for any ¢ > 0, no matter how small ¢». However, the

fast hump-shaped responses smoothly approach a jump.)

1k \ 4 v v v v v v v v v
Nominal rate r /
0 -
Ak . -
Inflation =
<
o2l y
o
f -
[0)
o
3 -
4+ -
_5 - -
1 1 1 1 1 1 1 1 1 1
1 0 1 2 3 4 5 6 7 8 9 10
Time

Figure 3: Response to a step-function rise in interest rates, in the simple model. The
policy rule does not respond to output or inflation ¢ = 6 = 0, fiscal policy does not
respond to output w = 0, and there are no habits, u(c) = ¢ 7; ¢ = 0.
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The short-run negative response of inflation to the rise in interest rates is still there,
in fact stronger than ever. The same 1% nominal interest rate rise as in Figure 1 now
produces a 5% fall in inflation, not an 0.1% fall, and consequently a 6% rise in the real
rate of interest. This magnitude is driven by the duration of the interest rate shock,
permanent in this case. The longer-lasting the shock, the greater its effect on long term

bond prices.

4.2 Response to expected monetary policy

Two parts of Sims’ specification are necessary for the negative sign result: that the in-

terest rate shock is unexpected, and that debt is long term.

The top panel of Figure 4 presents the response of the full Sims model to an ex-
pected monetary policy shock. In this case, the interest rate response is fully Fisherian
— inflation rises smoothly through the episode. (The shock only happens at time ¢ = 0.
However, the endogenous responses of the interest rate rule to output and inflation
mean that interest rates move a bit ahead of the shock and move more than the shock

on its day.)

The bottom panel of Figure 4 plots the response of the simplified model with no
Taylor rule vy = v = ¢ = 0, no fiscal response w = 0 and no habits ¢ = 0 to a fully
anticipated shock. The inflation rate rises smoothly throughout, just as in the discrete-

time versions of this calculation presented in Cochrane (2016).

The negative response of inflation to an interest rate rise depends crucially on that
rise being unexpected, and therefore triggering a revision in the present value of future

surpluses.

4.2.1 Calculating the response to expected rate rises

When the monetary policy shock ¢,,; is expected, all the expectational errors 4, are
equal to zero. That makes solving the model a lot easier. I'll posit a single jump at
time 0. The system is

dl‘t = A.I‘tdt + dEt
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Figure 4: Response to expected monetary policy shocks. Top: 1 Sims (2011) model.
Bottom: Simple model with no habit, Taylor rule, or fiscal response.
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!
detz[smt 0000 0}

The bounded solutions are then:

)‘i >0:
v = — |[Q7"];, deo| X5t < 0;

yit = 0;t >0

A <0
Yir = [[Q‘l]@: dEO} ettt > 0;

yit = 056 <0

In words, each state variable y;; jumps by an amount [Qfl]z‘,: deo at time 0. The state
variables corresponding to explosive eigenvalues trend down until they hit — [Q~!] iy deg
at time ¢t = 0, then jump up to 0 at time ¢ = 0 + A. The state variables corresponding
to stable eigenvalues are zero until time ¢ = 0. They jump up to [Q‘l]W deg at time

t =0+ A, then decay exponentially.

4.3 Short-term debt

Long-term debt is also necessary for the negative response of inflation to interest rates.

Figure 5 presents the response function for the full Sims model to unexpected and
expected monetary shocks, with short-term debt in the place of long-term debt. (In
a continuous time model, short-term debt means fixed value, floating-rate debt. The
price is always one, and it pays r;dt interest.) For the unexpected shock, inflation jumps
up and is positive throughout. The response to the expected shock is exactly the same
as it was for long-term debt. Hence, the only effect of long-term debt in this model is

that an unexpected shock lowers the value of debt.

Figure 6 presents the response function of the simple model, with no Taylor rule,
habits, or fiscal responses, to an unexpected and expected permanent monetary policy
shock.
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Figure 5: Responses of the Sims model to a monetary policy shock, with short-term
debt. Top: response to an unexpected interest rate rise. Bottom: response to an ex-
pected interest rate rise.
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Figure 6: Responses of the simple model to a monetary policy shock, with short-term
debt. Top: response to an unexpected interest rate rise. Bottom: response to an ex-
pected interest rate rise.
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In the top graph, we see a perfectly Fisherian response to unexpected monetary
policy. Yes, this is the standard two-equation new - Keynesian model, with sticky prices
and prices cannot jump. But inflation can jump in this model, and with short term debt
it does. If inflation jumps to equal the jump in interest rate, then there is no change to
the present value of unchanged surpluses. Then B/P need not change, which is fortu-

nate since B is predetermined and P can’t jump.

The corresponding exercise in discrete time, the response to an unexpected interest-
rate shock with no change in surpluses, presented in Cochrane (2016) does not produce
a pure Fisherian response. Instead, inflation jumps up to a path that looks like the path
shown here for the expected case. In discrete time, the shortest bonds are one period,
and unexpected inflation also implies a price level jump, which affects the real value of
debt. The lesson is that predictions of this sort of model are sensitive to the maturity

structure of debt, even the difference between one year and zero.

The response to an expected interest rate rise is exactly as it was with long-term
debt. Long vs. short term debt affects the results only by inducing a change in the value
of debt at the time of the shock.

4.3.1 Model with short-term debt

The maturity structure only matters to the d B; equation. To derive the db, equation in

the case of short term debt, start with the definition that the real value of the debt is
bt = Bt/Pt

Here B, is the quantity of instantaneous, i.e. floating rate debt. I do not divide by a; as

the price of such debt is always one.

Then,
dB, B d(1/P)
dby = —4 + =L .
"= TR R

The flow budget constraint now states that interest must be paid from surpluses or new
debt issues,

BtTtdt = Pt(Tt + %)dt + dBt
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d(1/P,
byrydt = (14 + 7)dt + dby — bt(l//Ptt>

d(1/P,
dbt = thtdt - (Tt + %)dt + bt (1//_Ptt)

The instantaneous value of short term debt can only jump if there is a price level

jump. Sims’ sticky-price model rules out such jumps, so the last term is

With r; = p; + m we then have
dbt = [bt (T‘t — 7Tt) — (TS + 77')] dt

whereas with long term debt before it was

b
dbt = [bt (Tt — 7Tt) — (Tt + 7_')] dt — ;tdéat
t

The only difference between short and long term debt in this model is that the instanta-

neous response of the value of debt to a yield shock is absent for short term debt.

4.4 Less price stickiness

In any model, we want to verify that the frictionless limit is sensible. Many Keynesian
and new-Keynesian models blow up as one reduces frictions, though the frictionless
limit point is sensible. (See Cochrane (2014b).) When the frictionless limit is well-
behaved, it is useful see whether the basic sign and mechanisms hold in the frictionless
limit point, leaving frictions to fill out dynamics and magnitudes, or whether the fric-
tions are essential to the basic point. Both properties hold here. The frictionless limit
is smooth, and the central point — a temporary negative inflation response to higher
interest rates — holds in the frictionless limit and frictionless model. Price stickiness,
like habits, Taylor responses, and the fiscal response, is useful for producing realistic

impulse-response functions, but not necessary for the basic point.

Figure 7 shows the response of inflation (top) and of the price level (bottom) to the
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step-function interest rate rise, in the simple model, as we reduce price stickiness. In

this model, larger values of §, the coefficient on consumption in the Phillips curve (21),

Et (dﬂ't) = (Bﬂ't — 5Ct> dt

correspond to less price stickiness. As 0 rises, consumption varies less for a given vari-
ation in inflation; as 6 — oo, inflation is independent of consumption, which is the

frictionless model.

The response of inflation at the top of Figure 7 seems worrisome: as we reduce stick-
iness, the negative response of inflation to interest rate rises gets bigger and bigger.
This behavior also occurs in the full Sims model. This starts to look like one of the new-

Keynesian model pathologies.

But disinflation gets bigger and bigger for a shorter and shorter time. When we plot
the response of the price level to the interest rate shock, at the bottom of Figure 7, a
clearer picture emerges. The path of inflation approaches a 20% jump down in the
price level, followed by steady inflation at the 1% higher inflation rate corresponding to

the 1% higher nominal interest rate.

And that limit is also the limit point: A frictionless model with long term debt pro-

duces that result, as we saw following equation (21).
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Figure 7: Response of inflation (top) and price level (bottom) to a surprise step function
in interest rates, in the simple model with long term debt, as price stickiness is reduced.
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5 Conclusions

If you want to understand how monetary policy appears to lower interest rates — and
then often struggles with subsequent inflation — as happened in the 1970s, then Sims’

model is the basis for elaboration.

It is far from a model of “monetary policy” however. All the action comes from the
fiscal theory of the price level. Without a surprise, and a surprise change in the value of
government debt, and unless the fiscal authorities keep surpluses constant as inflation
devalues their long-term commitments, the model does not produce even the desired

negative sign.

That is, however, its most important point. We are used to thinking of fiscal under-
pinnings as a vague requirement that government finances not go totally off kilter, and
then monetary policy can do its job. No. Sims’ article points that the fiscal underpin-

nings are central to understand the sign and dynamics of “monetary” policy.
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6 Appendix. Solving the model without habits
To calculate the ¢y = 0 limit point, in which consumption can jump, we have to solve

it separately for that case, as 1/1) terms show up in the regular model solution. For the

1) = 0 case, instead of

d\t = =X (Pt —p ) dt + ddx (58)
dCt = Ctdt (59)
déy = ﬁeci — lecte_"cf + péy | dt + dog (60)
2 ¢ ‘
we have
d)\t = _>\t (Pt — ﬁ ) dt + d(;)\t (61)
>\t =e 7%, (62)
We linearize to
dM\ = —pdt + by (63)
S\t = —0(Ct (64)

We can eliminate )\, so we have
1. 1,
dCt = ;ptdt + déct == ;(T‘t - 7Tt)dt + déct.

A does not appear elsewhere. Next, we must adapt the other appearances of ¢;. To allow

aresponse of fiscal policy to consumption, in place of
th = Wétdt + d&Tt

we have

th == UJdCt + dETt = E(i"t - Wt)dt + wd(SCt + d&,—t
g

When consumption jumps, so do taxes.
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The linearized monetary policy rule
d’Ft = [—’Y’Ft + 97rt + qbct] dt + demt

becomes

dft = [—’yft + 077,5] dt + QZ)dCt + demt

1
dft = [—’Y?:t + (971',5] dt + ¢ |:O'(ft — TI't)dt + d5ct:| + dEmt

d’lzt = {(f —'y) 7:t+ <9— f) Wt}dt+¢d5ct+d€mt

The system is then

2 S_yv 0-20 0 0 0 |[# [ e + 6oy |
T 0 15} 0O 0 0 -¢ T Aot
dla ] e 0 5 0 0 0 a i Ao
T w/o —wfoc 0 0 0 0 T dert + wdde
b b b 0 -1 p 0 by —b/pdda
| | Yo ~1/o 0 0 0 0 || e | I db.

With three undetermined shocks ¢, we need three explosive eigenvalues. The shocks

now solve ) i}
demt + ¢ddc
Aoy
[Q_I]Q: - 0
1 ’ dery + wdbey 0
[Q ]3,: 3%6 _b/ﬁdéat 3x1
- déCt <4 6x1
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for dir¢, ddar, doye, doe. The matrix carpentry:

déﬂ't
d(sat
do, ct

Aot
ddat
dery + wdbey
—b/pdbat
dbct

[ deyms + ddon |

4 6x1 L

o O o o = O

-b/p

[0
1
0
0
0

0

- o O

_ o & o o ©

0
0
1
0

~b/p
0

— o £ o o ©

of
ddgt +
doct 3x1
-1
(@',
(@7,
@'

-4 6x1

41

(65)

- 8x1

Note this will produce a response to the chosen de; shocks. The actual interest rate

move will be larger.



