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1 Introduction

In a recent statement, Jason Furman, chairman of the Council of Economic Advisers (CEA) claimed

that “the need to foster greater innovation and productivity growth is one of the most important

economic challenges we face, and tax policy is one of several important levers that policymakers

can use.”1

Encouraging innovation is a key goal in many countries. Potential policies the government can

implement to reach this goal are to improve competition, to regulate the intellectual property rights

regime, to directly fund and perform R&D in public institutions, and to use tax policies that set

the right incentives for firms to internalize some of the positive spillovers that their innovations

have on society and on other firms. In this paper we focus on the latter and consider the optimal

design of taxation and R&D policies. We combine elements from the macro innovation literature,

theoretical tools of mechanism design, and firm-level data matched to patent data to discipline and

quantify our analysis.

R&D policies are widespread, not fully understood, and very costly. The U.S. spent 10.8

billion USD on the R&D tax credit in 2012, 50.56 billion USD on contracting with non Federally

Funded Research and Development Centers (FFRDCs), as well as 27.8 billion USD on college and

universities funding (Tyson and Linden, 2012). Governments all over the world already intervene

heavily in the innovation process of private businesses. The share of private business R&D spending

that is shouldered by the government is very high in many countries: in the U.S., it is 14%, while

in France or Canada, it reaches close to 25%.2

Not only do governments intervene in the private R&D and innovation process, they do so

through a very wide variety of policies, including, but not limited to, tax credits, tax deduction,

direct grants for research, contracting with private firms, subsidies for R&D costs, or direct funding

in FFRDCs.3 The configurations of these many policies also vary widely.4 Many countries have

size-dependent policies, through which small businesses are treated more favorably, for instance the

Small Business Innovation Research (SBIR) program in the U.S.. Policies sometimes depend on

firm age, e.g., to encourage new firm creation, as through the start-up credit in the U.S..

The sheer scale of public resources spent on R&D and the variety of the policies thus funded

raises the question of what the right design of R&D policies should be. Can we study the best set of

policy tools for innovation endogenously, without restricting them a priori? What key parameters

1“Encouraging Innovation and the Role of Tax Policy,” Remarks by Jason Furman, Chairman, Council of Economic
Advisers. Joint International Tax Policy Forum & Georgetown University Law Center Conference, March 11, 2016.
As prepared for delivery.

2Source: OECD R&D Tax Incentive Indicators (available at www.oecd.org/sti/rd-tax-stats.htm) and OECD,
National Accounts and Main Science and Technology Indicators, “direct government funding of business R&D and
tax incentives for R&D” table.

3They also directly fund areas perceived as being of high national priority, such as defense or health.
4For instance, some tax credits, as in the U.S., are computed based on the growth in R&D spending relative to

some base level of past R&D (previously a moving average of the company’s past investments, now an average over
a fixed period), others, as in France, are computed partially on the increment and partially on the absolute level of
spending.
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do optimal policies depend on? If the fully optimal policies are complex, how close could simpler

policies come? In this paper, we attempt to answer these questions theoretically and quantitatively.

There are two market failures in our setting that leave scope for some form of government

intervention. First, there are technology spillovers between firms, whereby one firm’s innovations

affect other firms’ productivities. This is the idea of “building on the shoulders of giants.”5 Second,

innovation is not appropriable and, absent intellectual property rights (IPR) policy, any firm could

use an “idea” embodied in an innovation. IPR policy may, however, create a distortion as well, as

is the case for instance of a patent system that grants firms monopoly rights.

The key feature of our analysis – and the main impediment to fixing the market distortions

in a non-distortionary way – is that firms are heterogeneous in their research productivity and,

importantly, this research productivity is private information and unobservable to the government.

A higher research productivity allows a firm to convert a given set of research inputs into a better

innovation output. In addition, while some of the inputs into the R&D process are observable

(we call them “R&D investment”), others are unobservable (“R&D effort”). The firm’s research

productivity evolves stochastically over time. Although the firm has some advance information

about its future productivity, it cannot perfectly foresee it. As a result, at the time when the firm

invests resources in R&D, the returns to R&D are uncertain.

In a world without private information, the government could perfectly correct for the technol-

ogy externality through a Pigouvian subsidy and for the inappropriability of innovation through,

for instance, a prize system. The asymmetric information means that the government needs to take

incentive constraints into account when designing its innovation policies and limits how close the

economy can get to full efficiency. We show that the need to screen firms may starkly modify the

recommendations that arise with observable firm types (or with homogeneous firms).

Empirically, the importance of firm heterogeneity and management quality as determinants of

firm productivity has been vividly highlighted in a series of key papers (Bloom and Van Reenen

(2007), Bloom, Sadun, and Van Reenen (2012), Bloom et al. (2013a)). It would naturally be

very difficult for the government to observe factors such as management quality, and to directly

condition public policies on those factors, which is exactly the asymmetric information problem

that is studied in this paper.

We focus on the optimal provision of incentives for innovation through the design of R&D policies

and corporate taxation. Intellectual property rights (IPR) policies are distinct from, but intimately

intertwined, with the latter. Indeed, if there is no IPR, any innovation immediately becomes public

knowledge, profits are zero, and, regardless of the strength of subsidies for research inputs, there

will be no investment in innovation. On the other hand, if there is full patent protection, part of

the benefit from the subsidy for inputs is dissipated as monopoly profits. While our main concern

5The saying is traditionally attributed to Isaac Newton, from a letter to his rival Robert Hooke dated February 5,
1676: “What Descartes did was a good step. You have added much several ways [...]. If I have seen further it is by
standing on the shoulders of giants.” It has been used extensively in the endogenous growth literature to talk about
the technology spillovers.
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is not the design of IPR policy, we do take IPR into account. In the first case we consider, we allow

the government to freely set the optimal IPR jointly with the optimal R&D policy. In settings in

which innovation quality is observable, the optimal IPR policy is very simple: it takes the form

either of a prize system, or, equivalently, of a patent system combined with a product price subsidy

that ensures efficient quantity. In the second case, we constrain the government to take the IPR

as given, which leads to a partial optimum, and shows how optimal R&D policies should be set in

the presence of (irremovable) patent protection.6

The model is presented in Section 2. In Section 3, we first illustrate the design of optimal

policies with asymmetric information in a simplified two-type, one-period toy model. In Section

4, we turn to the general dynamic, continuous types model and start by posing the problem as a

mechanism design in which we do not restrict the policies that the government can use: in this

direct revelation mechanism, the government can directly choose allocations for each firm type,

subject only to the asymmetric information incentive constraints. We build on new mechanism

design methods, and extend them by offering a new approach to allow for spillovers between agents

(firms) in the presence of asymmetric information.

Our first contribution, in Section 5, is to solve for and characterize these second-best constrained

efficient allocations with asymmetric information and spillovers. The optimal incentives for R&D

trade-off a Pigouvian correction for the technology spillover and a correction for the monopoly dis-

tortion against the need to screen good firms from bad ones. We highlight that a crucial statistic is

the complementarity of R&D investment to R&D effort (i.e., the complementarity between observ-

able and unobservable innovation inputs) relative to the complementarity of R&D investment to

firm productivity: the more complementary R&D investment is to firm productivity, the more rents

a firm can extract if R&D investment are subsidized. This puts a brake on how well the government

can set the Pigouvian correction and correct for the monopoly distortion., i.e., screening consider-

ations can dampen the policies. On the other hand, if R&D investments are more complementary

to unobservable firm R&D effort, they stimulate the firm to put in more of the unobservable input,

which is unambiguously good and would make R&D subsidies optimally larger.

Another main result of our paper is that two parsimonious implementations of the optimal

mechanism exist. First, the constrained efficient allocations can be implemented with a price

subsidy on the monopolists’ products that, for any given product quality, aligns the quantity

produced with the socially optimal one, plus a comprehensive R&D subsidy that depends on firm

age, current, one-period lagged, and first period quality, and current and one-period lagged R&D

investment. Equivalently, it can be implemented by a prize mechanism that also depends on firms’

6Even if the quality of innovation is observable in our benchmark setting, except in Section 7, the first-best
outcomes cannot be achieved because we want to channel investments to the most productive firms, and productivity
is private information. While we do want the most productive firms to produce their innovations, we do not want
them to appropriate the full surplus from it. IPR, when it can be freely set here, will achieve the efficient quantity
conditional on quality, but will not achieve the efficient quality unless firm-productivity specific taxes are available
(which is impossible with asymmetric information on firm type). Put differently, the problem solved in the mechanism
design part of this paper (Sections 3 - 5) is about how to transfer surplus from firms to consumers without discouraging
innovation.
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innovation inputs (R&D investment) and the change in the product quality. We also discuss the

age and cross-sectional patterns of the optimal policies, depending on the values of the parameters.

If the fundamental technological factors do not systematically vary with age or with size, then

the allocations of younger or lower productivity firms are more strongly distorted, i.e., they face

higher marginal taxes on profits and higher R&D subsidies. This minimizes the informational rents

extracted by high productivity firms.7

We take the model to the data in Section 6. We use COMPUSTAT firm data matched to U.S.

Patent Office Patent data, which allows us to see the inputs into R&D, the production decisions,

and the innovation output as captured by patents and their citations. We estimate the parameters

of our model by matching some key moments of the data, such as the elasticity of the patent quality

(measured by citations) to R&D investments, coefficients of variations in patent quality across firms

and within firms, and growth rates and R&D intensities, among others. We use the technology

spillover estimates in Bloom, Schankerman, and Van Reenen (2013) to discipline the magnitude of

spillovers in our model. We then numerically simulate and quantify the optimal policies that we

previously derived analytically. Younger firms on average face higher marginal taxes on profits and

higher marginal R&D subsidies. The same also goes for lower productivity firms, conditional on

age.

Our final contribution is to answer the key question of how close simpler innovation policies

can come to approximating the full unrestricted mechanism. In Section 7, we compare the revenue

raised from the full optimum to the one raised by a linear R&D subsidy combined with a linear

profit tax, by linear age-dependent R&D subsidies and profit taxes, by a price subsidy on the

product, or by a size-dependent R&D subsidy that varies with the level of R&D investments. In

each case, the revenue losses are quite large. The nonlinearity of the optimal policies highlighted

both analytically and numerically seems crucial in order to reap all the revenue gains.

Related Literature.

There is a long-standing contract theory literature on the regulation of firms under private

information to which our paper contributes (Laffont and Tirole, 1986; Baron and Myerson, 1982).

Very few papers consider the regulation of research and innovation: Sappington (1982) does so in

a simple static model.

Our paper contributes to the new dynamic public finance literature that focuses on the dynamic

income taxation of agents under idiosyncratic risk, including, among others, the papers by Farhi and

Werning (2013), Golosov, Tsyvinski, and Werning (2006), Golosov, Tsyvinski, and Werquin (2014),

and Werquin (2016). Most closely related in this literature are the papers by Stantcheva (2014)

and Stantcheva (2016), which incorporate endogenous investments in human capital. Our paper

considers the taxation of firms – rather than of individuals – when firms endogenously improve their

productivity through R&D investments and there are spillovers across firms. Also related is the

7Higher subsidies do not imply that small or young firms invest more in R&D – in fact, they invest less, but
require more incentives to do so.
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paper by Ales and Sleet (2016), who study income taxation when firm productivity is endogenous

because of manager talent (but not through the innovation channel as in our paper).

We also contribute to the theoretical and structural literatures on innovation, productivity, and

growth. Leahy and Neary (1997) consider the effects of R&D subsidies in a model of oligopoly

between firms. Akcigit and Kerr (2010) model heterogeneous innovations with spillovers like those

in our model. Acemoglu et al. (2013) consider optimal industrial policies for the reallocation

of resources in which firms are of heterogeneous qualities. Atkeson and Burstein (2015) study

analytically and quantitatively the impact of taxes and subsidies on firms’ investments in innovation.

The key new elements in our paper relative to this literature are the asymmetric information in

a dynamic setting with spillovers and the study of optimal R&D policies through a fully general

direct revelation mechanism.

We build on the empirical literature on R&D and productivity to discipline our model and our

empirical estimation.8 First, the empirical evidence on the importance of management practices

(Bloom and Van Reenen (2007), Bloom, Sadun, and Van Reenen (2012), Bloom et al. (2013a)) lends

support to the idea that firms are heterogeneous in their productivity and that these differences

may be exceedingly difficult for the government or regulator to see. A large literature documents

the important effects of tax incentives for R&D, thus justifying the detailed study of their optimal

design. Among many others are the papers by Hall and Van Reenen (2000), Bloom, Griffith, and

Van Reenen (2002), Bloom and Griffith (2001), Bloom, Chennells, Griffith, and Van Reenen (2002),

and Griffith, Redding and Van Reenen (2001). In the spirit of the present paper, Serrano-Velarde

(2009) examines the heterogeneous impacts of R&D subsidies on firm investments. We directly

make use of the technology spillover estimates from Bloom, Schankerman, and Van Reenen (2013).

While we focus on the design of tax and R&D policies in this paper, there is a large, quite distinct

literature on the design of IPR, in which the asymmetric information is typically on the value of

the innovation, rather than on the firm’s productivity to use research inputs. Worth mentioning,

however, is a closely related and highly complementary paper by Chari, Golosov, Tsyvinski (2012)

who focus on environments in which the value of the innovation (the quality in our model) is not

known, but there is a market signal about it. In Section 7, we also consider restricted policies for

which the tax or subsidy rate do not condition on innovation quality, i.e., which do not assume

that innovation quality is known to the planner.9

8Early papers that pioneered the use of patent data to study firms’ innovation choices are Pakes and Griliches
(1984), Pakes (1985), Pakes (1986), and Pakes and Schankerman (1986).

9Within the intellectual property policy protection literature, Scotchmer (1999) and Cornelli and Schankerman
(1999) focus on the optimal patent renewal policy in a simple, stylized environment. Except in very special cases (see
Scotchmer (1999)), the patent renewal policy is not the most general mechanism, but rather a restricted tool. Kremer
(1998) studies patent buyouts as a way to foster innovation and counter the monopoly power that patents would
provide. Information about the value of the patent is extracted through an auction which exploits the information
of other firms in the same industry.
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2 A Dynamic Innovation Model

Intermediate good producers’ R&D decisions: The core of the model are the intermediate

goods producers. Each intermediate good producer has product quality qt at time t, that can be

improved through R&D investment and R&D effort. Quality evolves according to:

qt = H(qt−1, λt) (1)

where λt is the endogenous step size:

λt = λt(rt−1, lt, θt) (2)

which depends on three components:

(i) Observable R&D investments: rt−1 denotes the resources that the firm invested in its R&D

in period t−1. They include the pay of scientists and researchers, lab equipment, material supplies,

and raw materials for research and innovation. Their monetary cost is Mt(rt), with M ′t(rt) > 0 and

M ′′t (rt) ≥ 0.10

(ii) Unobservable R&D inputs or research effort: Each firm also needs to provide some unob-

servable R&D inputs, which cannot be directly monitored by the government. The most natural

interpretation is that unobservable investments relate to research effort, which is required in order

to transform the material resources into an innovation output. The effort is denoted by lt and

requires a cost φt(lt).

(iii) Firm type: Every firm has a type θt that determines the efficiency with which it produces

quality (innovation) out of the given set of inputs rt−1 and lt. The type is a potentially composite

measure of the exogenous characteristics of a firm. For instance, θ may represent managerial

productivity in innovation, an interpretation bolstered by recent literature on the importance and

heterogeneity of management practices across firms (Bloom and Van Reenen (2007), Bloom, Sadun,

and Van Reenen (2012), Bloom et al. (2013a)).

The type θt evolves over time according to a Markov process f t(θt|θt−1) on Θ = [θ, θ̄]. Denote

by θt the history of type realizations until time t, i.e., θt = {θ1, ..., θt} and by

P (θt) := f t(θt|θt−1)...f1(θ1)

the probability of that history.

We assume that:
∂λ

∂θ
> 0

∂λ

∂r
> 0

∂λ

∂l
> 0

∂2λ

∂θ∂l
> 0

10Taking a broad view of these material inputs is consistent with the fact that many types of material inputs and
expenses are eligible for R&D tax credits or subsidies (Tyson and Linden, 2012).
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so that higher realizations of productivity θ, higher R&D investments and effort lead to a higher step

size, and the marginal returns to effort are higher for higher types of firms (the latter assumption

will permit screening types).

Note that because the step size depends on lagged R&D investments and on the stochastic

realization of θt, about which the firm has some, but not perfect, advance information at the time

the R&D investment decisions are made, the returns to R&D are both stochastic and heterogeneous

across different types of firms. This captures the notion that a given spending on R&D has uncertain

returns and is not guaranteed to lead to a good innovation.

Input complementarity: We can characterize the complementarity between the three different

inputs that enter the step size using the Hicksian coefficient of complementarity (Hicks, 1970),

which will be important for the results. For any two variables (x, y) ∈ {θt, rt−1, lt} × {θt, rt−1, lt},
the Hicksian coefficient of complementarity between variables x and y in the step size creation is

denoted by:

ρxy =

∂2λ
∂x∂yλ

∂λ
∂x

∂λ
∂y

(3)

The higher coefficient ρxy is, the more inputs x and y are complementary in the production of the

step size. To give a few examples, suppose that the step size function takes the multiplicatively

separable form:

λt(rt−1, lt, θt) = h1
t (rt−1)h2

t (lt)h
3
t (θt)

for some increasing functions h1
t , h

2
t , and h3

t . Then, ρθl = ρθr = ρlr = 1. On the other hand, an

additively separable step size function

λt(rt−1, lt, θt) = h1
t (rt−1) + h2

t (lt) + h3
t (θt)

would have ρθl = ρθr = ρlr = 0. Finally, a CES function of the form:

λt(rt−1, lt, θt) = (αrr
1−ρt
t−1 + αθθ

1−ρt
t + αll

1−ρt
t )

1
1−ρt

has ρθl = ρθr = ρlr = ρt.

Quality Spillovers: An important element of the model is the presence of technology spillovers

between firms. One firm’s quality has a beneficial effect on the production costs of other firms. Such

knowledge spillovers are one of the key elements in the endogenous growth literature, embodying

the idea of “standing on the shoulders of giants” (see, among others, Klenow and Rodriguez-Clare

(2005), Aghion and Howitt (1992)). They can reflect the direct use of better technologies and

processes in production and learning from new technologies. The specific shape of the knowledge

spillovers is as modeled by Akcigit and Kerr (2010).11

11It would be easy, as an extension, to introduce additional knowledge spillovers in the step size production without
changing the logic of the mechanism presented below. There would then be an additional Pigouvian correction term.
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Figure 1: Model Summary

Household

Government

Final Goods producer Intermediate Goods producers

Yt =
∫
i Y (qt(i), kt(i))di

•
•
••
•

spillovers q̄t

• Production

– Quality qt(i), quantity kt(i)

– Demand: p(kt(i), qt(i))

– Spillover: aggregate quality: q̄t =
∫
i qt(i)di

– π(qt(i), q̄t) = max
k
{p(k, qt(i))k − C(k, q̄t)}

Intellectual
Property Policy

Max consumption

R&D & Tax Policies

Demand p(k(i), q(i))

1

Aggregate quality is given by:

q̄t =

∫

Θt
qt(θ

t)P (θt)dθt (4)

The production cost of each firm is decreasing in aggregate quality so that the cost of producing k

units of intermediate goods costs Ct(k, q̄t).

Final goods production: The final good is produced competitively using the intermediate goods

with the production technology:

Yt =

∫

Θt
Y (qt(θ

t), kt(θ
t))P (θt)d(θt) (5)

where Y (qt(θ
t), kt(θ

t)) is the consumption of the good produced by producer θt as valued by con-

sumers, kt(θ
t) is the quantity produced, and qt(θ

t) is the quality of the producer with history θt.

We normalize the price of the final good to one.

Intellectual Property Rights (IPR) Regime and Market Specification: The IPR regime

9



here can be modeled through the structure of the market between the final and intermediate good

producers. One way of capturing different IPR regimes is through different demand functions

p(qt(θ
t), kt(θ

t)). We provide two examples here for illustration.

For instance, with full patent protection, the intermediate good producer has monopoly power

in his intermediate good and faces a downward sloping demand curve derived from the final good’s

(competitive) market as a function of its quality and quantity, p(qt(θ
t), kt(θ

t)) = ∂Y (q,k)
∂k .

Another example is a prize system, in which the government buys the innovation in exchange

for a prize, and directly takes over the production. When the quality of the innovation is observ-

able, the optimal prize system will lead to production at the socially efficient level, conditional on

quality. There is a demand function that can mimic this prize mechanism: the efficient quantity

(conditional on quality) can also be obtained through a price subsidy that inflates the intermedi-

ate good producer’s valuation to equal the social one. The prize system’s outcome can hence be

mimicked by a demand schedule for the intermediate good given by p(q, k) = Y (q,k)
k .

Firm Life Cycle: Firms live for T periods (possibly, T = ∞) and can borrow at a gross rate R.

Let θt|θ1 denote a history θt such that the period 1 type realization is θ1 and let P (θt|θ1) be the

probability of that history after initial realization θ1. In the laissez-faire economy presented here

(potentially with an IPR regime that generates a demand function), the firm chooses quality qt(θ
t),

quantity kt(θ
t), R&D investments rt(θ

t), and R&D effort lt(θ
t) to maximize its objective given its

initial type θ1, initial quality q0 and R&D investments r0:

T∑

t=1

(
1

R

)t−1 ∫

Θt

(
p(qt(θ

t), kt(θ
t))kt(θ

t)− C(kt(θ
t), q̄t)−Mt(rt(θ

t))
)
P (θt|θ1)d(θt|θ1)

subject to the law of motion of quality qt(θ
t) = H(qt−1(θt−1), λt(lt(θ

t), rt−1(θt−1), θt)).

Production decision: Given the demand function p(q, k) (which is specified according to the IPR

regime in place as just explained), profits are:

π(qt(θ
t), q̄t) := max

k
{p(qt(θt), k)k − C(k, q̄t)}

Figure 1 summarizes the model in schematic form.

2.1 Two Market Failures and First Best Allocation

There are two market failures in this setting (in the absence of any government intervention): first,

the lack of appropriability of innovation means that there will be no investment in innovation

as long as producers’ profits are not protected by some IPR. Second, there are non-internalized

technology spillovers that affect others’ production technologies.

Suppose the planner could directly mandate production and R&D inputs for each type to

maximize net household consumption, W first-best, equal to total expected discounted output net of

10



production costs and R&D investment costs:

W first-best =
T∑

t=1

(
1

R

)t−1(∫

Θt

(
Y (kt(θ

t), qt(θ
t))− C(kt(θ

t), q̄t)−Mt(rt(θ
t))
)
P (θt)d(θt)

)

The first-best maximization program is:

max
{lt(θt),rt(θt),kt(θt)}t,θt

W first-best s.t. qt(θ
t) = H(qt−1(θt−1), λt(lt(θ

t), rt−1(θt−1), θt))

with q0 and r0 given.

Conditional on a given quality qt(θ
t), the production choice of the planner is k∗(qt(θ

t), q̄t). De-

note by Y ∗(qt(θ
t), q̄t) = Y (k∗t (qt(θ

t), q̄t), qt(θ
t)) the optimized consumption and by Ỹ ∗(qt(θ

t), q̄t) =

Y ∗(qt(θ
t), q̄t)− C(k∗(qt(θ

t), q̄t), q̄t) consumption net of production costs.

For the exposition, we simplify the accumulation equation of quality to be

qt = (1− δ)qt−1 + λt with 0 < δ < 1 (6)

where δ is the depreciation factor. None of the results depend on this simplification, but the

notation is much lightened.

The optimal choice of R&D investment and firm effort is then such that their total marginal

social benefit equals their marginal costs:

M ′t(rt(θ
t)) =

1

R
E

(
T∑

s=t+1

(
1− δ
R

)s−t−1
(
∂Ỹ ∗(qt(θ

s), q̄t)

∂qs
+
∂Ỹ ∗(qt(θ

s), q̄t)

∂q̄s

)
∂λt+1(θt+1)

∂rt(θt)

)

φ′t(lt(θ
t)) = E

(
T∑

s=t

(
1− δ
R

)s−t(∂Ỹ ∗(qt(θs), q̄t)
∂qs

+
∂Ỹ ∗(qt(θ

s), q̄t)

∂q̄s

))
∂λt(θ

t)

∂lt(θt)

where the expectation operator is over histories θt. Finally, the full surplus can be extracted

lump-sum from each producer of type θt and entirely transferred to households.

2.2 Asymmetric Information and Government Policies

2.2.1 Asymmetric Information

The core asymmetry of information, which holds throughout this paper, is that the history of type

realizations θt and the unobservable R&D effort lt are private information of each firm. In addition,

other actions may or may not be observable and we consider several cases.

In the benchmark case, the government observes the full histories of the step size λt, the realized

quality qt, the R&D investment rt, and the production kt.
12 This amounts to the government being

12In the first two cases considered, product quality qt is assumed to be observable. This is reasonable because, first,
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essentially free to set the IPR policy, which, at the optimum, and because innovation quality is

directly observable, is either a prize system or a patent system with a price subsidy that aligns the

monopolist’s valuation with the social one.

We also consider the case in which quantity k(θt) is unobservable as well, or, equivalently, cannot

be conditioned on by the government. This means that the patent system has to be taken as given

and only the R&D subsidy and corporate tax can be set to stimulate investment in innovation.

It is worth briefly discussing why, despite the fact that quality qt is observable, the first best

cannot be implemented in these two cases. Normally, since firms are risk-neutral, the technology

externality could be corrected by a prize mechanism or through a patent system where the monopoly

distortion is resolved through a price subsidy that inflates the monopolist’s perceived value from a

marginal unit produced to be equal to the social value. Under both of these mechanisms, all the

surplus from innovation goes to the firm or manager, and the household has zero consumption. To

extract some of that surplus from the firm and transfer it to households in a non-distortionary way,

we would need a tax that depends directly on firm type, which is not feasible with asymmetric

information. Any tax that depends on endogenous observables, such as quality, is going to be

distortionary and move the manager’s effort and investment decisions away from the socially optimal

choice, pushing us into the mechanism design realm considered in this paper.

Under two sets of circumstances, asymmetric information would not be a problem: First, if

managers and households get the exact same weight in the social objective, or, equivalently, if

there is no revenue requirement for the government. Second, if the government does care about

households but is able to recoup all the social surplus through a lump-sum tax over all firms (that

does not depend on quality). In this case, some firms will end up paying more (potentially, much

more) than their total revenues. This situation is hence infeasible if there is limited liability. Thus,

the constraints that make asymmetric information binding are the presence of non-equal weights

on households and managers (or, equivalently, revenue concerns) and limited liability for firms.

Finally, in Section 7, we consider cases in which quality is not observable. In this case, policy

instruments are more restricted and take the form of taxes and subsidies that are linear (i.e., tax

rates and subsidies do not depend on quality) or nonlinear in the inputs only. These policies do

not require the government to observe the quality of innovations.13

there is a tight link between profits and quality in the model. Saying that the policy maker can condition on quality
is equivalent to saying that he can condition on profits (or, sales). Second, several papers deal with the question of
observing product (or innovation) quality. For instance Cremer and Scotchmer (1996) show that with correlation in
the firms’ private information on the innovation value, a mechanism can elicit this information without costs. Kremer
(1998) also focuses on a way to elicit patent quality in auctions. Third, there are measures of quality such as patent
citations that could be used (as we do in Section 6) albeit with some delay in time, to measure the quality of the
innovation: the reward could be delayed until the measure of quality (e.g., citations) becomes available to the policy
maker. This would not alter the theoretical results’ main forces. Finally, a useful extension would be to study the
case in which quality is observed with some noise and the planner can only condition on that noisy signal.

13With linear instruments, all that is required is that the government can see some measure of aggregate quality
or profits and keeps a constant share of it (equal to the linear tax rate). There is no need to observe the identity of
individual firms and individual quantities.
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2.2.2 Direct versus Indirect Screening:

Why should the government screen agents indirectly through a mechanism rather than try to

directly extract information on their type? Direct research funding such as through the National

Science Foundation or the National Institute of Health often takes the direct screening approach:

grant money is handed out after an involved screening process that tries to get at the “type”

θt of the researcher or the project directly. There are several drawbacks to such direct screening.

First, unlike decentralized instruments such as taxes and subsidies, these mechanisms are not easily

scaleable. In addition, even if after detailed scrutiny, the government is able to get some signal

about the difference between, say, SpaceX and Microsoft, it is not clear that this can be explicitly

conditioned on in a systematic way in policy. Posting a menu of contracts and letting firms self-

select seems more feasible. Second, a lot of discretion will be required by isolated institutions,

which poses issues of accountability and transparency. This discretion also means that there may

be a large temptation to extract all the surplus from high value innovations ex post, which would

pose issues of commitment, and also leaves room for lobbying by interest groups. Third, unless the

productivity of the potential grantees can be perfectly screened, grants which are not conditional

on performance (i.e., on produced quality) but only on past performance or inputs will likely lead

to underinvestment in the unobservable research inputs.

2.2.3 Government Policies Considered

We consider several types of government policies. The restrictions on the government’s tools as-

sumed in each case have a close relation to the various informational structures described above.

First, we take a mechanism design approach and consider the optimal unrestricted direct revela-

tion mechanism which is subject only to the incentive compatibility constraints that arise due to

asymmetric information on firm type and R&D effort. We do not constrain policy tools ex ante,

but rather find the policy tools (prizes, price subsidies, or taxes) that will be able to implement

these allocations.

We then turn to studying the shape of and revenue losses from restricted, Ramsey-type instru-

ments which impose lower informational requirements on the government. In none of these cases

does the quality of the innovation have to be observed by the government. We consider the opti-

mal linear (i.e., size- and age-independent) corporate tax and R&D subsidies, the optimal linear,

age-dependent corporate tax and R&D subsidies, and nonlinear R&D subsidies.

2.3 Discussion of the Model

We briefly discuss several of our modeling choices and their possible generalization.

First, the horizon of the problem is finite, but it could be very large or infinite. A finite and

shorter horizon underscores the “firm life cycle” aspect of the optimal policies. One interpretation

for T is as the horizon of policy making. It is realistic to think of policies as being set for a limited
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time. For the exposition, it is assumed that firms disappear after period T . Alternatively, one could

specify a terminal continuation value for each type of firm at time T which would be endogenous

to policy.

Second, firms may be heterogeneous along many dimensions, such as their sector or the type

of product. If the government or regulator wants to fine tune the policy for firms according to

some observable vector of characteristics X, then the mechanism needs to condition on X. Since

X is observable, this does not require adding any incentive constraints and only increases the state

space to be kept track of.

Third, in the model firms make intensive margin decisions about how much to produce. Exit

and entry can, however, be captured to some extent. The corner solution of zero production could

represent exit (for some periods or forever after). The assumption needed is that, even if the firm

is not active, its latent type θ continues to evolve according to its stochastic process, and that the

underlying quality of the firm qt remains in place (and possibly gets augmented by the step size

if the firm still engages in R&D). It is reasonable to assume that the firm’s “knowledge” stock qt

still remains in place and contributes to aggregate quality q̄t since that knowledge still exists and is

known publicly. Empirically, firms at different ages have heterogeneous exit rates, with exit rates

declining with age conditional on having survived until that age. This can be captured by letting

R depend on firm age.

Fourth, we take the competition structure in the market as exogenously given. In reality, it

may be endogenous to fiscal and innovation policy, a very interesting avenue for future research.

Finally, we consider two cases related to the ability of the government to control production by

private producers: one in which quantity produced can be controlled and one in which it cannot.

This allows us to discuss the impact of the IPR policy on the optimal policies. The case in which

quantity is directly controlled by the planner corresponds to a situation in which the planner can

choose the optimal IPR regime. In our setting, because quality of innovation is observable, the

optimal IPR is very simple and amounts to paying the innovating intermediate good producer a

prize to buy the innovation (and then produce the socially optimal quantity). Equivalently, it

corresponds to a case in which, even if there is a patent system granting monopoly power to the

innovator, the planner can pay a nonlinear price subsidy to the monopolist that would align the

private valuation of quantity with its social valuation.

The case in which quantity cannot be directly controlled mimics a situation in which the IPR

policy, in the form of a patent system, has to be taken as given. This amounts to solving for the

optimal profit tax and R&D subsidy given a patent system. The taxes and subsidies will then serve

to indirectly counter the monopoly distortion created by patents.

3 Optimal Policies in a Simple Two-type, One Period Model

In this section, we illustrate the underlying logic of the optimal mechanism in a very simple two-

type, one-period model.
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Suppose that firms can be of the high productivity type θ2 or of the low productivity type θ1.

The fractions in the population of firms of types high and low are, respectively, f2 and f1, with

f2 = 1−f1. The problem is static: Firms enter period 1 with a knowledge of their type realization,

chose R&D investments r(θi) and R&D effort l(θi) at the beginning of the period. The step size

is λ(θi) = λ(r(θi), l(θi), θi) and quality is q(θi) = q0 + λ(θi), where q0 is given. At the end of the

period firms receive a transfer T (θi) from the government. For the exposition, suppose that the

step size takes the form:

λ(r, l, θi) = w(r, θi)l

for an increasing and concave function w.

The market structure between the intermediate goods and the final goods producer generates a

demand function p(q, k) for the intermediate goods, the shape of which depends on the IPR, in the

exact same way as described in Section 2. Profits are denoted by π(q, q̄) as a function of quality q

and aggregate quality q̄ = f1q(θ1) + f2q(θ2).

In the planning problem, the planner sets a menu of contracts (r(θi), l(θi), k(θi), T (θi)) for

i = 1, 2 and lets firms self-select allocations from this menu. We consider two cases.

Planning problem when quantity can be controlled: First, suppose that the planner can

directly control quantity. The planner will then produce the socially efficient quantity conditional

on a given quality. This is equivalent here to effectively optimizing the IPR policy, which, since

quality is observable, takes the simple form of either a patent system plus a nonlinear price subsidy

that aligns private and social valuations and solves the underprovision problem of the monopolist,

or a prize system.

For any quality, the government should choose the socially optimal quantity, leading to out-

put net of production costs Ỹ ∗(q(θi), q̄) for type θi.
14 The remaining components of the menu

(r(θi), l(θi), T (θi))i=1,2 and q̄ are chosen to maximize the consumption of the households equal to:

W = f1

(
Ỹ ∗(q(θ1), q̄)−M(r(θ1))− T (θ1)

)
+ f2

(
Ỹ ∗(q(θ2), q̄)−M(r(θ2))− T (θ2)

)

subject to q(θi) = q0 + λ(θi) with q0 given, and subject to firms’ participation constraints:

T (θi)− φ(l(θi)) ≥ 0

We can also allow for some different thresholds in the participation constraint, such that T (θi) −
φ(l(θi)) ≥ V (θi). In the first best, firm type is observable and the planner makes each firm invest

the efficient level of effort and inputs, such that the marginal effort and R&D investment costs

equal the social impact, as in section 2.1, and surplus is extracted in a lump-sum fashion from the

14This is because the optimal quantity to be produced is only conditional on quality and there is no reason to
distort it (although the quality decision itself may be distorted).
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firms, i.e.,15

T (θi) = φ(l(θi))

The second-best problem imposes an incentive constraint for each type i:

T (θi)− φ(l(θi)) ≥ T (θj)− φ
(
w(r(θj), θj)l(θj)

w(r(θj), θi)

)
∀(i, j)

Given that the goal is to minimize total transfers to the firms, one can show that the constraint

of type θ2 and the participation constraint of type θ1 will be binding.16 Indeed, at the first-best

allocations and transfer levels, high productivity firms will be tempted to pretend that they are

low productivity firms. This is because they have to forfeit all their surplus to the planner, but,

since they are able to reach any step size at a lower R&D effort cost than low productivity firms,

they could achieve a positive surplus by selecting the low productivity firm’s first-best allocation.

To prevent this from happening, the allocation of the low productivity firms needs to be distorted

so as to make it less attractive to high productivity firms.

The transfers then have to satisfy:

T (θ1) = φ (l(θ1))

T (θ2)− φ (l(θ2)) ≥ T (θ1)− φ
(
w(r(θ1), θ1)l(θ1)

w(r(θ1), θ2)

)

Substituting these expressions into the social objective, we obtain the so-called virtual surplus,

which is social surplus minus the informational rent forfeited to the high type θ2 to induce him

to truthfully reveal his type. The social optimum will maximize allocative efficiency (the first line

below) while trying to reduce the informational rent forfeited to the high type (the second line).

W = f1

(
Ỹ ∗(q1(θ1), q̄1)−M(r(θ1))− φ (l(θ1))

)
+ f2

(
Ỹ ∗(q(θ2), q̄)−M(r(θ2)− φ (l(θ2))

)

−f2

(
φ (l(θ1))− φ

(
w(r(θ1), θ1)l(θ1)

w(r(θ1), θ2)

))
(7)

Characterization of the optimal allocation in terms of wedges. The constrained efficient

allocation can be described using so-called wedges or implicit taxes and subsidies, which measure

15More precisely,

M ′(r(θi)) =

(
∂Ỹ ∗(q(θi), q̄)

∂q
+

(
f1
∂Ỹ ∗(q(θ1), q̄)

∂q̄
+ f2

∂Ỹ ∗(q(θ2), q̄)

∂q̄

))
∂λ(r(θi), l(θi), θi)

∂r(θi)

φ(l(θi))

w(r(θi), θi)
=
∂Ỹ ∗(q(θi), q̄)

∂q
+

(
f1
∂Ỹ ∗(q(θ1), q̄)

∂q̄
+ f2

∂Ỹ ∗(q(θ2), q̄)

∂q̄

)
16As is usual in these types of screening problems, the slackness of the low type’s omitted incentive constraint can

be checked ex post.
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the deviation of the allocation relative to the laissez-faire economy with patent protection. In

the laissez-faire economy with patent protection, profits are a function of the firm’s quality and

aggregate quality, π(q(θi), q̄), as defined in Section 2. The effort wedge, τ(θi) on type θi is defined

as the gap between the marginal private benefit of effort and its cost, while the R&D investment

wedge is defined as the gap between the marginal cost of R&D and its marginal private benefit.

Thus, a higher effort wedge means a lower incentive for R&D effort, while a higher R&D investment

wedge means a higher incentive for R&D investments. Formally:

s(θi) = M ′(r(θi))−
∂π(q(θi), q̄)

∂q(θi)

∂λ(r(θi), l(θi), θi)

∂r(θi)

(1− τ(θi))
∂π(q(θi), q̄)

∂q(θi)

∂λ(r(θi), l(θi), θi)

∂l(θi)
= φ′(l(θi))

In the implementation below, it will be clear that there is a very natural map between the wedges

(i.e., implicit taxes and subsidies) and the explicit marginal tax rates of the implementing tax

function.

Note that, while we need to take a stand on what the IPR in the laissez-faire is in order to define

the wedges (although when quantity can be controlled, the IPR will itself be a choice parameter

for the planner), this is just a matter of definition: the optimal allocations are unique and do not

depend at all on how the wedges are defined since the latter are only used to intuitively characterize

the allocations – it is only the benchmark relative to which the wedges can be interpreted as implicit

taxes and subsidies that changes. It seems natural to define the implicit taxes and subsidies relative

to a case in which profits are not zero, such as with patent protection, although this is not necessary:

they measure the gap between marginal benefit and marginal cost, and the marginal benefit net of

wedge could be zero, as long as the wedge is defined in absolute terms and not as a fraction of the

marginal benefit. We could alternatively also define the wedges relative to the laissez-faire with a

prize system. We explain below that this merely causes one term in the formula to drop out.

Taking the first-order conditions of the social objective with respect to r(θi) and l(θi) for i = 1, 2

and using the definitions of the wedges, we obtain that for the low productivity type, the allocations

are distorted just enough to balance the informational rent forfeited to the high type and the loss

in allocative efficiency.
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Proposition 1. Optimal Allocations for Low Productivity Firms.

i) The optimal R&D investment wedge on the low productivity type is given by:

s(θ1) =

(
f1
∂Ỹ ∗(q(θ1), q̄)

∂q̄
+ f2

∂Ỹ ∗(q(θ2), q̄)

∂q̄

)
∂w(r(θ1), θ1)

∂r
l(θ1)

︸ ︷︷ ︸
Pigouvian corection

+

(
∂Ỹ ∗(q(θ1), q̄)

∂q
− ∂π(q(θ1), q̄)

∂q1

)
∂w(r(θ1), θ1)

∂r
l(θ1)

︸ ︷︷ ︸
Monopoly quality valuation correction

+
f2
f1


1−

∂ log(w(r(θ1),θ2))
∂ log(r)

∂ log(w(r(θ1),θ1))
∂ log(r)




︸ ︷︷ ︸
Complementarity

∂w(r(θ1),θ1)
∂r l(θ1)

w(r(θ1), θ2)
φ′
(
w(r(θ1), θ1)l(θ1)

w(r(θ1), θ2)

)

︸ ︷︷ ︸
Screening term

(8)

ii) The optimal R&D effort wedge on the low productivity firm is given by:

τ(θ1)
∂π(q(θ1), q̄)

∂q(θ1)
= −

(
∂Ỹ ∗(q(θ1), q̄)

∂q(θ1)
− ∂π(q(θ1), q̄)

∂q(θ1)

)
−
(
f1
∂Ỹ ∗(q(θ1), q̄)

∂q̄
+ f2

∂Ỹ ∗(q(θ2), q̄)

∂q̄

)

+
f2

f1

(
1

w(r(θ1), θ1)
φ′(l(θ1))− 1

w(r(θ1), θ2)
φ′
(
w(r(θ1), θ1)l(θ1)

w(r(θ1), θ2)

))

︸ ︷︷ ︸
Screening term: Cost differential between high and low productivity firms

(9)

Proof. See Appendix A.2.

The optimal implicit subsidy on R&D investment in (8) and the R&D effort wedge in (9) balance

three considerations.

1) Pigouvian correction for technology spillovers: Incentives are increasing in the Pigouvian

correction that aligns private incentives with the social benefit from R&D technology spillovers,

which are the key reason for the government to intervene. This correction is larger when the

marginal return to R&D investments (∂w(r(θ1),θ1)
∂r ) is larger.

2) Monopoly quality valuation correction: Recall that the wedge is defined as the implicit

subsidy that would make the monopolist choose the planner’s optimal allocation (starting from the

laissez-faire with patent protection). The monopolist values each marginal increase in quality less

than its marginal social value: this difference in quality valuation must also be corrected for (the

second term in each of the wedge formulas). If we had defined the wedge relative to a laissez-faire

with a prize system, this term would drop out, as the monopoly distortion would be corrected

directly through the prize system (or the equivalent price subsidy). The optimal R&D policies

hence depend on the IPR policies, and several combinations of R&D policies and IPR policies

could achieve the same outcome.17

3) Screening term: The screening term (the third term in each formula) captures the modifi-

cation to the first-best incentive that is induced by the asymmetric information. It is decreasing

17Accordingly, as we will see in the implementation below, when this monopoly valuation distortion is fixed with
a price subsidy in the market for intermediate goods, this term disappears from the formula of the optimal marginal
subsidy on R&D.
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in the fraction of high productivity firms over low productivity firms: the lower the fraction of low

productivity firms, and the less costly it is to distort their effort or investments for the sake of

reducing the informational rent of the (more frequently encountered) high productivity firms.

The screening term depends on the relative complementarity of R&D investments with R&D

effort versus with firm productivity. Since the step size is assumed here to be multiplicatively

separable, the elasticity of the step size to R&D effort for both types is just 1, the first term in the

“complementarity” term. The relative elasticity of the return to effort w(r, θ) with respect to R&D

for the high and the low type, ∂ log(w(r(θ1),θ2))
∂ log(r) /∂ log(w(r(θ1),θ1))

∂ log(r) measures how complementary R&D

investments are to firm productivity: if the elasticity is increasing in type, then R&D investments

benefit disproportionately high productivity firms. The more elastic the high type’s return is to

R&D, the less the R&D investment of the low type can be subsidized, as this makes it more tempting

for the high type to pretend to be low type. Put differently, increasing R&D investments of the low

type when the relative elasticity is high means tightening the high type’s incentive constraint and

giving that firm more informational rent. As a special case, if the elasticities of the high and low

types are the same, then R&D investments of the low type do not affect the high type’s incentive

constraint. As a result, the screening term drops out and the optimal marginal R&D subsidy is set

solely to correct for the technology spillover and the monopoly distortion.

Stimulating R&D investments is beneficial when there is a high complementarity of R&D in-

vestments with unobservable R&D effort, because it stimulates the unobservable input, but is

detrimental when there is a high complementarity with firm productivity, as it then tightens the

incentive constraint of the high productivity firm. The basic logic is that investments in R&D are

distorted only in so far as they (beneficially) affect the incentive constraint of the high productivity

firm, i.e., as long as they can indirectly stimulate the unobservable R&D effort choice.

For the R&D effort wedge, the efficiency cost of distorting the low productivity firm’s R&D

efforts depends on the difference in the marginal cost of producing the step size assigned to the low

productivity firm between the low and the high productivity firm. The smaller this term the more

tempting it is for the high productivity firm to imitate the low productivity one – this increases

the optimal distortion on the low productivity firm’s R&D effort.

On the other hand, the high productivity firms’ allocations are set to their first-best levels since

the low type’s incentive constraint is not binding, as shown in the following proposition:

Proposition 2. Optimal Allocations for High Productivity Firms.

s(θ2) =

(
∂Ỹ ∗(q(θ2), q̄)

∂q(θ2)
− ∂π(q(θ2), q̄)

∂q(θ2)

)
∂w(r(θ2), θ2)

∂r
l(θ2)

︸ ︷︷ ︸
Monopoly quality valuation correction

+

(
f1
∂Ỹ ∗(q(θ1), q̄)

∂q̄
+ f2

∂Ỹ ∗(q(θ2), q̄)

∂q̄

)
∂w(r(θ2), θ2)

∂r(θ2)
l(θ2)

︸ ︷︷ ︸
Pigouvian corection

τ(θ2)
∂π(q(θ2), q̄)

∂q(θ2)
= −

(
∂Ỹ ∗(q(θ2), q̄)

∂q(θ2)
− ∂π(q(θ2), q̄)

∂q(θ2)

)
−
(
f1
∂Ỹ ∗(q(θ1), q̄)

∂q̄
+ f2

∂Ỹ ∗(q(θ2), q̄)

∂q̄

)
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Implementation. The constrained efficient allocations arising at the optimum of this direct

revelation mechanism can be implemented in two ways.

First, the government can subsidize the price of production at a nonlinear rate sp(k, q) as a

function of the quantity and quality of the good sold to the final good producer, such that the

post subsidy price is (1 + sp(k, q))p(k, q) = Y (k,q)
k , and in addition levy a profit tax (which could be

negative) T (π, r) that depends nonlinearly on profits and R&D investments. Firms choose quantity

to maximize profits conditional on quality, which, thanks to the price subsidy, becomes equivalent to

maximizing household consumption net of production costs. Note that under a constant monopoly

price markup (as arises for instance under the functional form assumptions in Section 6 where

Y (q, k) = 1
1−β q

βk1−β), the price subsidy needed to align the monopolist’s post-tax price with social

marginal valuation of quantity is constant and equal to β
1−β . With this price subsidy, profits will

be equal to Ỹ ∗(q0 + λ(r, l, θi), q̄). The maximization problem of a firm of type θi with respect to

the remaining choices of l and r is then:

max
l,r
{Ỹ ∗(q0 + λ(r, l, θi), q̄)− T (Ỹ ∗(q0 + λ(r, l, θi), q̄), r)− φ(l)−M(r)}

Appendix A.1 provides expressions for the marginal tax rates and the marginal subsidy rate in the

case in which this implementing tax system can be made differentiable.

Second, the government can simply purchase the innovation directly from the firm in exchange

for a prize G(λ, r) that depends on the step size (or, interchangeably, on the realized quality q) and

on R&D investment. If the prize function is differentiable in its two arguments, the formulas for

the marginal change in prize with respect to the step size or R&D investments can immediately

be obtained by substituting for the wedges in the planner’s first-order conditions, using the link

between the wedges and the marginal prize with respect to innovation quality and R&D expenses

(see Appendix A.1). Given the straightforward map between the marginal grant and the wedges, all

effects explained previously, such as the role of the relative return elasticities between the high and

the low productivity firms or the difference in marginal effort costs apply directly to the marginal

grant.

Planning problem when quantity can not be controlled: Next, suppose that the planner can

no longer directly control quantity. This means that there is a monopoly distortion induced by the

patent protection (that, by assumption, cannot be resolved with a price subsidy since we constrain

the planner to not intervene in the market for intermediate goods). For any quality, the firm will

choose the privately optimal quantity, leading to output net of production costs Ỹ (q(θi), q̄) for

type θi. The planning problem, and hence the optimal wedges, are the same, but with Ỹ (q(θi), q̄)

replacing Ỹ ∗(q(θi), q̄) in (8) and (9).

Proposition 3. Optimal Allocations when Quantity Cannot be Controlled.

When quantity cannot be controlled, the optimal wedges in Propositions 1 and 2 apply with

Ỹ (q(θi), q̄) replacing Ỹ ∗(q(θi), q̄) for i = 1, 2.
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When quantity cannot be directly controlled, the distortions in the R&D investment and effort

are modified so as to indirectly compensate for the underprovision of quantity of the monopolist.

The effect of a change in quantity (induced by extra investment in R&D investment or R&D effort)

on social welfare, implicit in ∂Ỹ (q(θi),q̄)
∂q(θ) , is first-order and is proportional to the monopoly distortion,

i.e., the gap between price and marginal cost.18 Hence, both the direct impact of R&D effort and

investment on output and the indirect impact through the technology spillover will be amplified,

making the R&D effort wedge smaller and the R&D investment wedge larger.19 In the numerical

analysis in Section 6, it will be clear that the planner is able to induce less investment when the

quantity is not controlled because this additional constraint makes incentive provision more costly.

4 A Direct Revelation Mechanism with Spillovers

We now return to the general model from Section 2. Recall that the history θt and research effort lt

are private information of each firm. The government observes the step size λt, the realized quality

qt, the R&D investment rt, and, depending on the case, the production kt.

To solve for the constrained efficient allocations, we imagine that the government designs a direct

revelation mechanism in which, every period, each firm reports a type θ′t(θ
t) as a function of their

history θt. Denote a reporting strategy by σ = {θ′t(θt)}Tt=1. A reporting strategy generates a history

of reports θ′t(θt). The government then assigns allocations as a function of the history of reports:

{λ(θ′t), r(θ′t), k(θ′t)} and provides a transfer Tt(θ
′t). Without loss of generality, we normalize the

starting R&D investment for all agents to be r(θ0) = r0.20 Let lt(λt(θ
′t(θt)), r(θ′t−1(θt−1), θt) denote

the R&D effort that would have to be provided for true type θt who reports θ′t (and, hence, had

to invest r(θ′t−1(θt−1) in the previous period and has to produce a step size of λt(θ
′t(θt))).

Suppose that the vector of aggregate qualities {q̄t}Tt=1 is given. The continuation value after

history θt under reporting strategy σ, denoted by V σ(θt), is:21

V σ(θt) = Tt(θ
′t(θt))− φt(lt(λt(θ′t(θt)), r(θ′t−1(θt−1), θt)) +

1

R

∫

Θ
V σ(θt+1)f t+1(θt+1|θt)dθt+1

V σ(θt) depends on the report-contingent allocations specified by the government, {λ(θs), r(θs), k(θs), Ts(θ
s)}Ts=1,

although this dependence is implicit to lighten the notation.

18Formally, ∂Ỹ (q(θi),q̄)
∂q(θi)

= ∂Y (q(θi),k(q(θi),q̄))
∂q(θi)

+
(
p(q(θi), k(q(θi), q̄))− ∂C(k(q(θi),q̄),q̄)

∂k

)
∂k(q(θi),q̄)
∂q(θi)

where k(q(θi), q̄) is

the quantity chosen to maximize profits by a monopolist with quality q(θi).
19Naturally, larger wedges (i.e., distortions relative to the laissez-faire) do not imply in any sense that there is more

investment in effort or R&D when quantity cannot be controlled.
20Since R&D investment r0 is observable, we could always condition on it in the mechanism if it were heterogenous

across firms.
21In sequential form the continuation utility as of the first period is:

V1({λ(θs), r(θs), k(θs), Ts(θ
s)}Ts=1 , θ1) =

T∑
t=1

(
1

R
)t−1 ·

{∫
Θt

{
Tt(θ

t)− φt(lt(θt))}
}
P (θt|θ1)dθt

}
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Let the continuation value under truthful reporting be V (θt). Incentive compatibility requires

that, after every history, and for all reporting strategies σ:

V (θt) ≥ V σ(θt) ∀σ, θt

In addition, limited liability or participation constraints require that, for all firms, V (θt) ≥ 0.

Denote by Ũ the realized lifetime utility given a sequence of realizations of the types, θT :22

Ũ(θT ) =
T∑

t=1

(
1

R

)t−1 {
Tt(θ

t)− φt(lt(θt))
}

(10)

4.1 A first-order approach

We use a first-order approach adapted from Pavan et al. (2014), which replaces all the incentive

constraints of agents by their envelope conditions. If the agent’s report after history θt is optimally

chosen, the envelope theorem tells us that the change in continuation utility from a change in the

type is only equal to the direct effect of the type on utility (the indirect effect of the type on the

allocation through the report is zero by optimality of the report). The integral form of this envelope

condition at history θt is:

V (θt−1, θt) =

∫ θt

θ

∂V (θt−1,m)

∂m
dm+ Vt(θ

t−1, θ) (11)

This gives an expression for the informational rent forfeited to agent θt in period t to entice him to

report his true type. Let I1,t(θ
t) be the impulse response function of the type realization in period

t to a shock in the type realization at time 1, defined as (for a Markov process):

I1,t(θ
t) =

t∏

s=1


−

∂F s(θs|θs−1)
∂θs−1

f s(θs|θs−1)


 (12)

The impulse response function captures the persistence of the stochastic type process. For an

AR(1) process such as θt = pθt−1 + εt, the impulse response is simply:

I1,t(θ
t) = pt−1 (13)

The envelope condition in its derivative form is given by:

∂V (θt−1, θt)

∂θt
= E

(
T∑

s=t

It,s(θ
s)
∂Ũ(θT )

∂θs

)
(14)

22Implicitly, again this depends on the government’s chosen allocation mechanism, i.e., Ũ(θT ) =
Ũ({λ(θs), r(θs), k(θs), Ts(θ

s)}Ts=1 , θ
T ).
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4.2 Planner’s problem

The planner’s objective is to maximize households’ total consumption. Households own the firms

and their consumption is equal to total output, minus production and R&D costs, and minus the

transfers to the firms. We assume that the planner puts zero weight on the manager or the firm.

This is easily relaxed: if the manager receives a weight of (1 − k), all the wedge formulas below

would be the same, but the screening term will be scaled by a factor k < 1. Intuitively, when there

is a positive weight on the manager, the informational rent is not a pure loss from the planner’s

perspective, so it is optimal to not reduce it as much.23 Suppose first that the sequence of aggregate

qualities, q̄ = {q̄1, ...q̄T } is fixed. We distinguish two cases.

Case 1: Quantity of production can be controlled. If the government can directly set the

quantity to be produced, then for any qt(θ
t) realized, the quantity of intermediate producer θt will

then be chosen to maximize Y (kt(θ
t), qt(θ

t))−C(kt(θ
t), q̄t) which will yield Ỹ ∗(qt(θ

t), q̄t), the socially

optimal consumption minus production costs. We can hence directly substitute consumption net

of production costs into the planner’s objective and omit kt(θ
t) as a control variable. The objective

is:

W (q̄) = E

{
T∑

t=1

(
1

R

)t−1 {
Ỹ ∗(qt(θ

t), q̄t)−Mt(r(θ
t))− Tt(θt)

}}

Using the expression for Ũ from (10), we can replace the sum of transfers Tt(θ
t) with Ũ and the

sequence of disutilities to obtain:

−E
(

T∑

t=1

(
1

R

)t−1

Tt(θ
t)

)
= −V1(θ1)− E

(
T∑

t=1

(
1

R

)t−1

φt(lt(θ
t))

)

Using the expression for the informational rent that needs to be forfeited to each agent from (11),

the expected discounted payoff to the planner is the “virtual surplus,” i.e., the social surplus minus

informational rents.

W (q̄) = E

{
T∑

t=1

(
1

R

)t−1
{
Ỹ ∗(qt(θ

t), q̄t)−Mt(r(θ
t))− φt(lt(θt))− V1(θ1)− 1− F 1(θ1)

f1(θ1)
I1,t

∂Ũt
∂θt

}}

Note that to satisfy the participation constraints, given the expression of the informational rents

under the assumption that the first-order approach is valid, all that is needed is to set V1(θ1) = 0.

The planner’s problem can be split into two steps. In the first step, called the “partial” problem, the

sequence of aggregate qualities q̄ = {q̄1, ...q̄T } is taken as given. The optimal allocations subject

23As explained in Section 2, a knife-edge case is if the planner puts exactly the same weight on households and
on the manager/firm, in which case k = 0 and there is no need for screening: the screening term drops out, the
first-best corrective taxes and subsidies apply, all the surplus goes to managers/firms, and there is no attempt to
transfer any of the surplus to the households. This can also be interpreted as a case in which the planner has no
revenue requirement.
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to resource and incentives constraints are solved for as functions of this conjectured sequence.

To ensure that the sum of aggregate qualities that arises is consistent with the conjectured q̄, a

consistency constraint needs to be imposed for every period t:

∫

Θt
qt(θ

t)P (θt)dθt = q̄t (15)

Let ηt be the multiplier on the consistency constraint in period t. The maximum of this problem

is denoted by P (q̄).

Partial problem: The program for a given sequence q̄ is to choose {qt(θt), lt(θt), rt(θt)}Θt so as to

solve:

P (q̄) = maxW (q̄) s.t.:

∫

Θt
qt(θ

t)P (θt)dθt = q̄t and qt(θ
t) = qt−1(θt−1)(1−δ)+λ(lt(θ

t), rt−1(θt−1), θt)

(16)

Using the expression for ∂Ũt
∂θt

, we have that:

W (q̄) =
T∑

t=1

(
1

R

)t−1

{
∫

Θt
{Ỹ ∗(qt(θt), q̄t)−Mt(r(θ

t))− φt(lt(θt))−

1− F 1(θ1)

f1(θ1)
I1,t

[
φ′(lt(θ

t))
∂λ(lt(θ

t), rt−1(θt−1), θt)/∂θt
∂λ(lt(θt), rt−1(θt−1), θt)/∂lt

]
− V1(θ1)}P (θt)dθt}

Full problem: The full program consists in optimally choosing the sequence q̄, given the values P (q̄)

solved for in the first step.

P : max
q̄
P (q̄) (17)

If quantity cannot be controlled: If the planner cannot directly choose the quantity, the in-

termediate good producer will choose its quantity k(qt(θ
t), q̄t) to maximize profits p(qt(θ

t), k)k −
C(k, q̄t). This yields consumption net of production costs equal to Ỹ (qt(θ

t), q̄t) = Y (qt(θ
t), k(qt(θ

t), q̄t))−
C(k(qt(θ

t), q̄t), q̄t). The planner’s problem, denoted by Pn(q̄), is the same as P (q̄) above, replacing

Ỹ ∗ by Ỹ , i.e., replacing W (q̄) by:

Wn(q̄) =

T∑

t=1

(
1

R

)t−1 ∫

Θt
{Ỹ (qt(θ

t), q̄t)−Mt(r(θ
t))− φt(lt(θt))

−1− F 1(θ1)

f1(θ1)
I1,t

[
φ′(lt(θ

t))
∂λ(lt(θ

t), rt−1(θt−1), θt)/∂θt
∂λ(lt(θt), rt−1(θt−1), θt)/∂lt

]
− V1(θ1)}P (θt)dθt} (18)

Since the first-order approach is built on only necessary (but not necessary and sufficient)

conditions, we perform a numerical ex post verification as in Farhi and Werning (2013) or Stantcheva

(2016) to check that the candidate allocations are indeed incentive compatible.
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4.3 Characterizing the Constrained Efficient Allocation Using Wedges

To characterize the constrained efficient allocations it is very helpful, as in the simple illustration

of Section 3, to define the so-called wedges or implicit taxes and subsidies that apply at these

allocations. The wedges measure the distortions at the optimum relative to the laissez-faire economy

with a patent system, i.e., the hypothetical incentives expressed as implicit taxes or subsidies that

would have to be provided to firms starting from the laissez-faire in order to reach the allocation

under consideration. The R&D effort wedge τ(θt) measures the distortion on the firm’s R&D effort

margin at history θt. It is equal to the gap between the expected stream of marginal benefits from

effort and its marginal cost, where the expectation is conditional on the history θt. A positive

wedge means that the firm’s effort is distorted downwards. This wedge will interchangeably be

called the corporate tax or the profit wedge, since it will mimic a tax on firms’ profits, gross of

R&D investments. The R&D investment wedge, or R&D wedge for short, s(θt) is defined as the

gap between the marginal cost of R&D and the expected stream of benefits. It is akin to an implicit

subsidy: a positive R&D wedge will mean that, conditional on the effort, the firm is encouraged

to invest more in R&D than in the laissez-faire with patent protection. We refer the reader to the

detailed discussion in Section 3 about how the wedges are defined.24

Definition 1. The corporate wedge and the R&D wedge. The corporate (or profit) wedge is

defined as:

τ(θt) := E

(
T∑

s=t

(
1− δ
R

)s−t ∂πs(qs(θs), q̄s)
∂qs(θs)

∂λt(θ
t)

∂lt(θt)

)
− φ′(lt(θt)) (19)

The R&D spending (or R&D) wedge is defined as:

s(θt) := M ′t(rt(θ
t))− 1

R
E

(
T∑

s=t+1

(
1− δ
R

)s−t−1 ∂πs(qs(θ
s), q̄s)

∂qs(θs)

∂λt+1(θt+1)

∂rt(θt)

)
(20)

To simplify the notation, we use the following definitions.

Πt(θ
t) :=

1

R

(
T∑

s=t

(
1− δ
R

)s−t ∂π(q(θs), q̄s)

∂qs(θs)

)

is the marginal impact on future expected profit flows from an increase in quality qt.

Q∗t (θ
t) :=

1

R

(
T∑

s=t

(
1− δ
R

)s−t ∂Ỹ ∗(q(θs), q̄s)
∂qs(θs)

)

24As explained in Section 3, it makes sense – but is not necessary – to define the wedges relative to the laissez-faire
economy in which firms receive profits from their innovations (i.e., there is a patent system or a prize system). We
define them relative to the laissez-faire economy with a patent system, but could equally well define them relative to
a prize system. The only difference, as in Section 3, is that the monopoly quality valuation correction term will then
drop out of the optimal wedge formulas.
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is the marginal impact on future expected output net of production costs from an increase in quality

qt, when quantity is set by the Planner.25

5 Optimal Policies

In this section, we characterize the optimal constrained efficient allocations that are the solutions

to the planning problem in Section 4. We then show how these allocations can be implemented

with a parsimonious tax function. The simple model in Section 3 already highlighted all the main

intuitions which are here generalized.

5.1 Optimal Corporate and R&D Wedges

Denote by εxy,t the elasticity of variable x to variable y at time t, i.e.,:

εxy,t :=
∂xt
∂yt

yt
xt

For instance, εl(1−τ),t is the elasticity of R&D effort to the net-of-tax rate 1 − τ .26 Taking the

first-order conditions of program P (q̄), and rearranging yields the optimal wedge formulas at given

q̄ in parts (i) and (ii) in the next proposition. Solving the full program yields an expression for the

multipliers on the consistency constraints in part (iii), and hence a solution for q̄t.

Proposition 4. Optimal corporate wedge and R&D wedge when quantity is controlled.

(i) The optimal profit wedge satisfies:

τ(θt) = −E
(

T∑

s=t

(1− δ)s−tηs
)
∂λt
∂lt

︸ ︷︷ ︸
Pigouvian
correction

−E(Q∗t (θ
t)−Πt(θ

t))
∂λt
∂lt︸ ︷︷ ︸

Monopoly quality
valuation correction

+

Screening and incentive term︷ ︸︸ ︷
1− F 1(θ1)

f1(θ1)
I1,t(θ

t)

︸ ︷︷ ︸
Type distribution
and persistence

φ′tλθt
λt

[
1

εl,1−τ

1

ελl,t
+ ρθl,t

]

︸ ︷︷ ︸
Elasticity

(21)

25Note that since the quantity maximizes consumption net of production costs per producer, i.e., reaches
Ỹ ∗(q(θs), q̄s), the derivative is just the direct impact of quality (the indirect effect through a change in the quantity
is zero).

26Since there are no income effects for firms, the compensated and uncompensated elasticities are the same and

equal to εl(1−τ),t = dlt(θ
t)

d(1−τ(θt))
(1−τ(θt))
lt(θt)

= φlt

(φll,t−
λll,tφlt
λlt

)l
.
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(ii) The optimal R&D subsidy is given by:

s(θt) = E

(
T∑

s=t+1

(1− δ)s−t−1ηs
∂λ(θt+1)

∂rt

)

︸ ︷︷ ︸
Pigouvian
cocrrection

+E
((
Q∗t+1(θt+1)−Πt+1(θt+1)

) ∂λ(θt+1)

∂rt

)

︸ ︷︷ ︸
Monopoly quality

valuation correction

(22)

+

Screening and incentive term︷ ︸︸ ︷

1

R
E




1− F 1(θ1)

f1(θ1)
I1,t+1(θt+1)

︸ ︷︷ ︸
Type distribution
and persistence

φ′t+1(l(θt+1))
λθλr
λλl

(ρlr − ρθr)︸ ︷︷ ︸
Relative

complementarity




(iii) The multipliers ηt capturing the spillovers between firms are given by:

∫

Θt

∂Ỹ ∗(qt(θ
t), q̄t)

∂q̄t
P (θt)dθt = ηt (23)

Proof. See Appendix A.2.

The optimal wedges in (21) and (22) are determined by the trade-off between maximizing

allocative efficiency and minimizing informational rents. They balance three main effects.

1) Monopoly quality valuation correction. The intermediate good monopolist takes into

account the effect of a quality increase on profits, while the planner values the effect on household

consumption. Recall that the wedge is defined as the implicit subsidy (or implicit tax) starting

from the laissez-faire allocation with patent protection. To induce the monopolist to invest more

in quality than he would if he were maximizing profits, this term decreases the profit wedge and

increases the R&D wedge. If we had defined the wedge relative to the laissez-faire with a prize

system (or, equivalently, with a patent system and a subsidy on intermediate goods prices), this

term would drop out. When the government can freely optimize IPR policy, he can decide how

much to do through the intellectual property design and how much to do through the taxes and

subsidies.27

2) Pigouvian correction for the technology spillover. As long as the technological spillover

is positive, the Pigouvian correction term unambiguously pushes towards increasing firms’ R&D

effort and investment relative to the laissez-faire. The Pigouvian correction for R&D effort in (21)

is increasing in the effect of effort on the step size (∂λt∂lt
). The correction for R&D spending in (22)

is increasing in the expected effect of R&D investments on the next period’s step size ∂λt+1

∂rt
.

Screening considerations may, however, go in the opposite direction.

27As we will also see in the implementation, when the monopoly distortion can be resolved through a price subsidy
that, at given aggregate quality, aligns the social and private valuation of quantity and makes the monopolist produce
the socially optimal quantity, the marginal profit tax or R&D subsidy no longer depend on the monopoly distortion.
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3) Screening and incentives: The screening term arises because of the asymmetric information.

We discuss three effects at play here.

The stochastic process for firm type. The initial type distribution times the persistence in types

(captured by the impulse response function I1,t) increases the magnitude of the profit wedge and the

R&D investment wedge. More persistent types effectively confer more private information to firms

and, hence, higher potential informational rents. To reduce these informational rents, allocations

have to be distorted more (the typical trade-off between informational rents and efficiency). If

shocks were iid, we would have I1,t = 0 for all t > 1, and, hence, the optimal corporate and R&D

wedges would only be equal to only the Pigouvian correction term plus the monopoly valuation

correction term for all t > 1. With AR(1) shocks with persistence parameter p, I1,t = pt−1 so that

the impulse response is fully determined by the persistence parameter.

The higher the inverse hazard ratio 1−F 1(θ1)
f1(θ1)θ1

and the larger the mass of firms with productivity

larger than θ1 relative to the mass of firms with type θ1 (f1(θ1)). This makes the cost of inducing a

marginal distortion in effort or R&D investments at point θ1 small relative to the benefit of saving

on the informational rent over a mass of 1− F 1(θ1) of all firms more productive than θ1.

The efficiency cost of distorting R&D effort. A higher efficiency cost decreases the optimal effort

wedge.28 The efficiency cost can be decomposed in allocative inefficiency and information rents.

The allocative inefficiency induced by the effort wedge is increasing in the elasticity of the step

size to effort (εl,1−τ,tελl,t). The informational rent inefficiency increases in the complementarity

of effort to firm productivity ρθl,t. Recall from the simple illustration in Section 3 that the effort

wedge on the low productivity firm was higher when the high productivity firm was able to mimic

its step size production at a much lower effort cost. This is the effect embodied in ρθl. A high

complementarity between effort and firm type means that it is easy for higher productivity firms to

mimic lower productivity ones, which increases their potential informational rent and thus leads to

an optimally higher distortion in the allocation to reduce those rents. Since the disutility of R&D

effort is indexed by t, the strength of this incentive effect could be varying over the life cycle of a

firm.

The complementarity between R&D, firm effort, and firm type. Recall from Section 3 that for the

purposes of screening, the (observable) R&D investments are distorted only in so far as they can

indirectly affect the unobservable R&D effort choice, i.e., can affect the incentive constraint of the

high productivity firm.

How effective R&D investment subsidies are to stimulate unobserved effort depends on the

relative complementarity of R&D expenses with effort and type, (ρlr − ρθr), which determines the

sign of the screening term. Higher R&D expenses lead to more effort by the firm as long as they

increase the marginal return to effort, i.e., as long as ∂2λ(l,r,θ)
∂r∂l > 0 and thus ρlr > 0, as seems likely.

On the other hand, if ρθr > 0, then higher R&D expenses have a higher marginal effect on the step

sizes of high productivity firms (at any given effort level), which makes it easier for them to mimic

28This is naturally reminiscent of the inverse elasticity rule in Ramsey taxation.
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the step sizes allocated to lower productivity firms. This, in turn, increases the informational rent

that needs to be forfeited to these firms to induce them to reveal their true type. What matters is

whether, on balance, the net effect of increasing R&D is positive, i.e., whether the effect on effort

will outweigh the effect on the step size conditional on effort. If yes, then R&D expenses will relax

the firms’ incentive constraints and reduce their informational rents. This occurs if (ρlr − ρθr) > 0,

i.e., if R&D expenses are more complementary to effort than they are to firm type.

Another way of interpreting ρθr is as the riskiness of R&D, or as its exposure to the intrinsic

risk of the firm.29 The higher this complementarity, and the more R&D returns are subject to the

stochastic realizations of firm type. Hence, the sign of (ρlr − ρθr) measures the strength of R&D

contribution to firm effort, filtered out of the exposure to firm risk.

In general, there is no reason to think that the Hicksian coefficients of complementarity are

constant. It could vary with the level of effort, R&D, and ability, as well as with firm age.30 Hence,

the optimal R&D wedge may change sign over the distribution of types or over the life cycle of a

firm.

5.1.1 Some special cases

If there is no asymmetric information or if the planner weighs households with the exact same

weight as the manager, the screening terms drop out. The optimal profit wedge and the optimal

R&D subsidy are then equal to the Pigouvian and monopoly quality valuation corrections, as in

Section 2.1. Externalities are corrected under full information (and tailored to each productivity

history θt), and the surplus is extracted from firms in a lump-sum manner,

If types are fully persistent, so that there is only heterogeneity, but no uncertainty, the impulse

response I1,t = 1 for all t and the screening term does not decay over time. On the other hand, if

types are iid, then the screening term is zero after the first period: since agents are risk-neutral and

types exhibit no persistence, there is no gain in spreading the screening distortion over different

periods. As a result, in all periods after period 1, the optimal R&D subsidy and profit wedge are

equal to the Pigouvian and monopoly quality valuation corrections.

If the complementarity of R&D with both R&D effort and firm type is the same (ρlr = ρθr),

then the screening term of the optimal R&D subsidy is zero. In this special case, an increase

in R&D has exactly offsetting effects on effort and on the step size conditional on effort, leaving

the informational rents unchanged on balance (i.e., the incentive constraints are unaffected by

changes in R&D investments). Hence, R&D investment incentives are only provided to counter the

technological spillovers and the monopoly distortion.

29This interpretation was not possible in the simple one-period model in Section 3, where there was no uncertainty.
30Recall that, although we have dropped this notation for clarity, all elasticities, coefficients of complementarities,

and functions are evaluated at θt, so they can depend on investment size and on age t.

29



5.1.2 Age profile of optimal policies

The optimal policies will generically change over time. Since we consider a cohort of firms, time

patterns are equivalent to age patterns. Age patterns can come from three sources, which are

conceptually very different.

The first reason for time dependent policies is the finite horizon, which leads to life cycle

considerations such as the shorter horizon for any investments made later in firms’ lives. Here the

relevant issue is the distance of the period under consideration to the final period T . This age-

pattern can be dampened or fully eliminated by letting the horizon go to infinity or by stipulating

a terminal value for each firm as a function of the period T investments. Both the laissez-faire

and the socially optimal investments would naturally decline over a firm’s life-cycle, all else equal,

as earlier investments contribute to productivity for more periods. If the technology spillover is

positive, as seems natural, the Pigouvian correction term is always positive and, all else constant,

will decline over time as the horizon shortens.

The second, perhaps more fundamental, reason is that the state-contingent policy is set at time

1 under full commitment from the planner. As a result, it is the distance to period 1 that induces

age patterns. The optimal corporate wedge and R&D wedge decline with age, as long as the impulse

response is below 1 (as is the case for instance with an AR(1) process with persistence parameter

p < 1). This decay towards zero is faster the lower the persistence in types. From the perspective of

period 1, as types are stochastic, the informational rent to be received after any particular history

θt a longer time span away is worth less to the agent and is less costly to the planner. Hence, the

smaller effective informational rents warrant less distortion in the allocations. The age patterns

induced by the logic of the screening of firms will be less visible for a shorter horizon. As argued

above, it may be reasonable to view T as the horizon of the planning problem, after which policies

are no longer committed to.

Finally, there may be direct age effects if the technological fundamentals, such as the step size

λt, the cost of effort φt(l), and the cost of R&D Mt(rt) vary with age. One may imagine that as a

firm gains expertise, the cost of unobservable and observable R&D inputs may decrease (hence, φt

and Mt would be decreasing with t). More empirical work could shed light on the lifecycle patterns

of the production and innovation technologies.

The age patterns of optimal policies are thus theoretically ambiguous and will depend on the

parameters of the model. The quantitative analysis in Section 6 will shed light on them.

5.1.3 Cross-sectional profile of optimal policies

When thinking of the cross-sectional patterns of the optimal wedges, it is important to bear in

mind that a higher R&D wedge does not mean a higher investment in R&D; and, similarly, a lower

effort wedge does not mean more R&D effort. It merely means a higher incentive relative to the

laissez-faire. This is because firms have heterogeneous benefits and costs from investments and

effort in the laissez-faire, so that the same level of incentive will not translate into the same level of
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inputs across firms. For instance, in the laissez-faire, low productivity firms invest much less than

high productivity firms and this pattern is not overturned despite the incentive provision.

From the formulas, it is clear that higher productivity firms have a higher positive spillover on

other firms as long as ρlr > 0 and ρθl > 0, in which case their marginal investment in R&D or a

higher effort has a higher marginal impact on their step size, and hence on aggregate quality. The

optimal Pigouvian correction would then be increasing in firm type.

The comparative statics of the monopoly valuation correction term and the screening term with

respect to firm productivity are ambiguous. Among others, they depend on the shape of the hazard

rate, 1−F 1(θ1)
f1(θ1)

and the impulse response function. This ambiguity hence carries over to the optimal

wedges.

Quantitatively, in Section 6 we will see that the wedges will be declining with firm type. This

does fit with the screening logic of the simple two type illustration in Section 3 where it was the

low productivity firm’s allocation which was distorted in order to reduce the informational rents of

the high productivity type (whose allocation was set at the efficient level).

5.2 Optimal allocations conditional on the patent system

When quantity cannot be directly controlled, it is as if the government can no longer optimize

the IPR policy and has to take the patent system as given, without being able to directly fix the

monopoly distortion through a price subsidy or a prize mechanism. Each firm directly chooses

its quantity to maximize profits, and, at given quality and aggregate quality, the output net of

production costs for the producer of history θt is Ỹ (qt(θ
t), q̄t). Let

Qt(θ
t) =

T∑

s=t

(
1− δ
R

)s−t ∂Ỹ (qt(θ
s), q̄s)

∂qs

be the marginal impact of quality on Ỹ . Accordingly, the planner solves program Pn(q̄) above,

yielding the same optimal wedges as in Proposition 4, with Q∗t replaced by Qt and Ỹ ∗(qt(θ
t), q̄t)

replaced by Ỹ (qt(θ
t), q̄t).

There are two differences relative to the wedges in the case in which quantity can be controlled,

(21) and (22), which are driven by this term substitution.

When quantity is chosen by the intermediate goods producer in the private market, it is set to

maximize profits and not social surplus. In this case, the effect of a change in quantity (induced

by extra R&D investment or R&D effort) on social welfare (implicit in Qt(θ
t)) is first-order and is

proportional to the monopoly distortion, i.e., the gap between price and marginal cost, cumulated

over all future periods.31 This monopoly quantity correction term is positive and always makes

the profit wedge smaller and R&D subsidy larger. This is intuitive: the higher the monopoly

31Formally, ∂Ỹ (qt(θ
t),q̄t)

∂q
= ∂Y (qt(θ

t),kt(qt(θ
t),q̄t))

∂qt(θt)
+
(
p(qt(θ

t), kt(qt(θ
t), q̄t))− ∂C(kt(qt(θ

t),q̄t),q̄t)
∂k

)
∂kt(qt(θ

t),q̄t)
∂qt(θt)

where

kt(qt(θ
t), q̄t) is the quantity chosen to maximize profits by a monopolist with quality qt(θ

t).
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distortion, and the less the monopolist internalizes the social value from an increase in quality. The

same amplification will appear in the Pigouvian correction, as there is an additional effect on social

welfare through the adjustment in quantity: when aggregate quality increases, quantity produced

increases, which has a first-order positive effect on social welfare. The positive externality is in that

sense also amplified.

Naturally, not being able to control quantity directly represents an additional constraint, and,

hence, a cost on the planner. In Section 6 it will be clear that just being able to control quantity

(e.g., through the price subsidy described above) will lead to large welfare gains. When quantity

cannot be controlled the effort and R&D investments of the firms are much lower, despite higher

R&D wedges and lower (even negative) effort wedges.

5.3 Extensions: Different types of research and qualities

Different types of observable R&D investments: Suppose that there are in fact several

types of observable R&D investments that firms can make, denoted by r1, ...rj , ..., rJ . A natural

interpretation would be the investments in different technology classes.

The step size is determined as a function of the observable R&D investments, unobservable

R&D effort, and firm productivity:

λt = λt(r
1
t−1, ...r

j
t−1, ..., r

J
t−1, lt, θt)

We can define the Hicksian complementarity of each R&D type with firm effort and productivity

as:

ρjθr,t :=

∂2λt
∂rjt−1∂θt

λt

∂λt
∂θt

∂λt
∂rjt−1

and ρjlr,t :=

∂2λt
∂rjt−1∂lt

λt

∂λt
∂lt

∂λt
∂rjt−1

Different types of R&D investments can have very different complementarity profiles with R&D

effort and firm type (or, equivalently, their exposure to risk as embodied by the stochastic type).

Some investments may generate returns with high certainty, regardless of the type realization, while

others may only yield returns when firms are particularly good or in period of good realizations of

the stochastic type.

Let the subsidy on investment rjt be denoted by sj(θt). At the optimum, formula (22) holds

separately for each type of R&D investment wedge sj(θt). The wedge sj(θt) will be increasing in the

effect of investment j on the step size (in the Pigouvian correction term), as well as in the relative

complementarity of that investment to unobservable R&D effort relative to its complementarity

with respect to firm productivity, ρjθl − ρ
j
θr.

The lesson is that while it is optimal to subsidize investments with higher externalities at a higher

rate, it is not as beneficial if these investments are also highly sensitive to the firm productivity

and firm productivity is unobservable.
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Different externalities from different types of research: It is also possible to directly incor-

porate different externalities from each type of R&D investments by letting the cost function be

decreasing in each aggregate investment type:

C(k, q̄1, .., q̄J) with q̄j =

∫

Θt
qjt (θ

t)dθt and qjt (θ
t) = qjt (θ

t−1)(1− δ) + λjt (r
j
t−1, lt, θt)

This is important in order to be able to speak to the very different spillovers from different types of

research such as basic and applied research. Basic research may only add little to the total quality

of a firm, but if its effect on the costs of production of other firms is important, it will suffer from a

large under-investment in the laissez-faire, as highlighted in Akcigit et al. (2014), and will warrant

a large Pigouvian correction.

At the firm level, the (single) product quality is given by

qt = (1− δ)qt−1 +

J∑

j=1

λjt (r
j
t−1, lt, θt)

We have to impose j consistency constraints in the partial program in each period t, each with

multiplier ηjt . Formula (22) then tells us that R&D investments with the highest spillovers (highest

ηjt =
∫

Θt
∂Ỹ ∗(qt(θt),q̄1

t ,...,q̄
J
t )

∂q̄jt
P (θt)dθt) are the ones that should be subsidized most (bearing in mind

that their complementarities with effort and firm productivity may dampen the benefits from

subsidizing them).

5.4 Implementation through Taxes, Subsidies, and Prizes

Decentralizing the constrained efficient allocation. Until now, we have considered a direct

revelation mechanism, in which firms report their type to the planner every period and the planner

assigns allocations as a function of the history of reports received. We would now like to step

away from reporting of types and move into the realm of policy implementation. The question

of implementation is whether there is some general tax and transfer function T (qT , kT , rT ) that

depends on the full sequence of all observables, i.e., on the history of quality qT (or, interchangeably,

step size λT ), quantity kT (in the case when quantity is assumed observable), and R&D investment

rT , such that, if this tax and transfer rule is in place, optimizing firms will pick allocations equal

to the constrained efficient allocation from the direct revelation mechanism. The immediate next

question is what the most parsimonious such implementing tax function is.

Market Structure. The constrained efficient allocations solved for in Section 4 are independent

of the underlying market structure as long as the information set and toolbox of the planner is as

specified there.32 However, the shape and level of the tax function that implements the constrained

32For instance, if firms are credit constrained, the planner will simply increase the transfer in a lump-sum fashion
in earlier periods and make up for it with lower transfers in later periods without affecting the incentive constraints.
However, if the information set of the planner is altered, e.g., if firms could save in a hidden way, then the constrained
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efficient allocation depends on the market structure. For instance, the more credit constrained firms

are in the laissez-faire decentralized market, the more generous transfers they would have to receive

early on so as to be able to invest the amount required in the constrained efficient allocation.

We assume that in the laissez-faire market firms can borrow freely at a constant rate R, and

that they take the price of the final good (normalized to 1) as given. They face the demand function

for their differentiated intermediate goods under a patent system that grants full monopoly power,

as presented in Section 2.

Implementation Result. The tax implementation function can in fact be much more parsimo-

nious when the impulse response functions I1,t(θ
t) are independent of the history of types, except

through θ1 and θt for all t, as would be the case for any AR(1) process, or a geometric random walk

(or, for any monotonic transformation of an AR(1) process). This generalizes the implementation

explained in detail in the simplified model of Section 3.

The constrained efficient allocation from program P (q̄) (when quantity is observable) can then

be implemented in two ways, which from a theoretical point of view are equivalent. The first

implementation features a price subsidy sp(k, q) such that the post-subsidy price perceived by the

intermediate good producer is p(k, q)(1 + sp(k, q)) = Y (k,q)
k . In this case, the private producer will

maximize profits equal to Y (k, q) − C(k, q̄) conditional on q, which is exactly the social surplus

from production k. This price subsidy should be combined with a comprehensive, age-dependent

tax function that conditions on current quality qt, lagged quality, qt−1, current R&D, rt, lagged

R&D rt−1, and first-period quality q1.

Second, the government could set up a prize mechanism, through which he purchases the new

innovation flow (i.e., the step size) λt from the firm in each period, and produces the socially

optimal quantity of the good of quality qt = (1 − δ)qt−1 + λt. Here, the government becomes the

central owner of the intellectual property and keeps adding to his stock every period, in exchange

for a prize. The prize amount Gt(λt, rt, rt−1, q1) paid for an innovation λt depends on firm age,

current and lagged R&D investments, and the initial quality q1.

The constrained efficient allocation from program Pn(q̄) (when quantity cannot be controlled)

is implemented with a similar comprehensive tax function, but without the price subsidy, as there is

no intervention at all in the private market between final goods and intermediate goods producers.

Proposition 5. Implementation Results.

Assume that the impulse response functions I1,t(θ
t) only depend on θ1 and θt for all t.

(i) The constrained efficient allocation from program P (q̄) (when quantity can be controlled)

can be implemented with a price subsidy on the intermediate good, such that the post-subsidy price

perceived by the intermediate good producer is p(k, q)(1 + sp(k, q)) = Y (k,q)
k , and a comprehensive

age-dependent tax function Tt(qt, rt, qt−1, rt−1, q1) that depends on the first period quality q1, current

and lagged quality qt and qt−1, and current and lagged R&D, rt and rt−1.

efficient allocation would be different.
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(ii) It can also be implemented by a prize mechanism, in which the government purchases the

new innovation from firms in exchange of a prize Gt(λt, rt, rt−1, q1), and produces the socially

optimal quantity.

(ii) The constrained efficient allocation from program Pn(q̄) (when quantity can not be con-

trolled) can be implemented with a comprehensive age-dependent tax function Tnt (qt, rt, qt−1, rt−1, q1).

Proof. See Appendix.

6 Quantitative Investigation

The theory presented in Sections 2 to 5 is not dependent on functional form assumptions and we

were able to describe the comparative statics on the main primitives. In this section, we provide

empirical content to the theoretical model, by estimating it and numerically illustrating the optimal

policies.

6.1 Data and Summary Statistics

We use firm-level accounting data from COMPUSTAT data matched to the U.S. Patent and Trade-

mark Office (USPTO) patent data from the NBER data website (as described in detail in Hall et al.

(2001)), containing over three million patents with their forward citations (see also Jaffe and Tra-

jtenberg (2002)).

Among all firms that can be matched between the patent and COMPUSTAT datasets, we select

our sample so as to make it as close as possible to the one in Bloom, Schankerman, and Van Reenen

(2013). These authors do a very careful job in estimating precise technology spillovers, which we

will use for our estimation. In addition, our theory highlights some new important moments from

the data, related to firm productivity, heterogeneity, and uncertainty, which have not yet been

the focus of the earlier innovation literature and which we need to compute. For consistency, we

compute these moments on the same sample as the one from which the technology spillover has

been estimated in Bloom, Schankerman, and Van Reenen (2013).

The sample selection procedure that follows Bloom, Schankerman, and Van Reenen (2013) keeps

all firms who patent at least once since 1963, so that they can at least at some point be matched to

the patent data (this is natural also in light of our theory, which focuses on innovating firms). The

final unbalanced panel contains 715 firms that are observed at least four times in the period 1980

to 2001 and is essentially identical to the sample in Bloom, Schankerman, and Van Reenen (2013).

The results are robust to this sample selection. We repeated the analysis on a much broader

sample of 6,400 firms over the period 1976 to 2006 that could be matched to the patent data for

any year (without restricting to firms that are observed for at least four years). The results on this

alternative sample are similar and are available upon demand.

Table 1 provides some summary statistics from the data. The large heterogeneity of firms in

the data, as captured by the spread between mean and median is striking. The median firm has
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sales of 494 million USD, while the mean firm has sales of 3,133 million USD. The ratio of R&D

over sales is very skewed: while the median is at 1.4%, the mean is 4.3%. The same goes for the

innovation process: the number of patents a firm receives per year has a median of 1 and a mean

of 18.5.

Table 1: Summary Statistics in the Compustat and Patent Data

Variable Mean Median

Sales (in mil. USD) 3133 494
Citations per patent 7.7 6
Patents per year 18.5 1
R&D spending / sales 0.043 0.014
Number of employees (000’s) 18.4 3.8

Number of firms 736

Note: The sample is selected to match as closely as possible the one in Bloom, Schankerman, and Van Reenen (2013),
who keep firms that patent at least once since 1963 and which are observed for at least four years between 1980 and
2001.

Map between the model and the data: The great advantage of the patent data matched to

COMPUSTAT is that there is a natural map between the variables in the model and the data.

R&D spending M(r) can directly be measured as reported R&D expenses in the accounting data.

The step size λt, i.e., the flow of new quality of a firm in year t, can be measured by the forward

citations received on all innovations patented in year t. The quality qt is the depreciated stock of

citations per patent to date qt = (1− δ)qt−1 + λt. Profits and sales can be directly measured.

6.2 Estimation

To estimate the model presented in Section 2, we start by parameterizing it. The functional forms

used are described in Table 2. Some of the parameters are calibrated exogenously, following the

earlier innovation literature. This reduces the size of the parameter vector to be estimated. These

parameters are reported in the upper panel of Table 3. The lower panel of that table reports the

key and specific parameters of our model, which are estimated to best match important moments

in the data presented in Table 4. We describe our estimation procedure in more detail now.

The status quo economy: To be able to consistently estimate the parameters of the model by

matching moments in the data, we need to subject firms in our model to the same policies (R&D

subsidy and corporate tax) as in the U.S.. We call status quo economy the economy with the

primitives just presented, but in which policies are not optimally set, but rather set to mimic their

levels in the U.S.. We approximate real-world R&D subsidies with a linear R&D subsidy rate.

We estimate the effective subsidy rate on R&D investments by firms using the total spending of
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the government on firm R&D through all programs (R&D tax credits, direct grants, etc.) divided

by total private business spending on R&D. The details for this computation are in the Online

Appendix. We similarly estimate the effective average corporate tax rate. We find an average

effective subsidy rate of 19% and an average effective corporate tax rate of 23%. Reassuringly,

the estimation of the parameters is not very sensitive to the choice of these effective rates within

reasonable ranges.

Functional Forms: We parameterize our model as summarized in Table 2.

Table 2: Functional forms

Function Notation Functional form

Consumer valuation Y (qt, kt)
1

1−β q
β
t k

1−β
t

Cost function Ct(k, q̄t)
k

q̄ζt
Quality accumulation H(qt−1, λt) qt = (1− δ)qt−1 + λt

Step size λt(rt−1, lt, θt) (αr1−ρθr
t−1 + (1− α)θ1−ρθr

t )
1

1−ρθr lt

Disutility of effort φt(lt) κl
l1+γ
t
1+γ

Cost of R&D Mt(rt) κr
r1+η
t

1+η

Stochastic type process f t(θt|θt−1) log θt = p log θt−1 + (1− p)µθ + εt

Distribution of heterogeneity θ1 f1(θ1) f1(θ1) =
IΘ1 (θ1)

θ1[θ1−θ̄1]

Initial quality level q0 0

Notes: IΘ1(θ1) denotes the indicator function equal to 1 if θ1 is in the set Θ1 = [θ1, θ̄1].

The cost function decreases in aggregate quality q̄t, and the strength of the externality is

measured by ζ. The step size is multiplicatively separable in labor lt and takes a constant elasticity

of substitution (CES) form in type θt and R&D investment rt−1. In this case, ρθl = ρlr = 1. Given

that the sign of ρlr − ρθr determines the sign of the screening term in the optimal R&D subsidy

(as shown in Proposition 4), the key question for whether screening will lead to a higher or lower

subsidy on R&D will be whether in the data ρθr ≥ 1 or ρθr < 1. The costs of R&D effort and

R&D investments are iso-elastic, with elasticities of, respectively, 1
γ and 1

η . Finally, the stochastic

process for firm productivity type is a geometric random walk, with persistence p. The shock εt

follows a normal distribution with mean zero and variance σε. The parameters are either calibrated

externally or estimated internally to match the key features of the data. This is summarized in

Table 3. Appendix A.2 solves for the optimal quantities, prices, and profits of the model with this

parameterization.

Externally Calibrated Parameters: The effort elasticity is set to match a Frisch elasticity of

0.5 as in Chetty (2012), which implies γ = 1. The profit parameter β is set to 0.15, a typical value

as discussed in Guner et al. (2008). The exponent on the R&D cost function, η, is set as in Akcigit
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Table 3: Parameter values

Parameter Symbol Value

External Calibration
Effort cost elasticity γ 1
Interest rate R 1.05
Intangibles depreciation δ 0.1
Knowledge share β 0.15
R&D cost elasticity η 1.5
Level of types µθ 0.00
Initial R&D stock r0 1.0

Internal Calibration
R&D share α 0.390
R&D-type substitution ρθr 0.861
Type variance σε 0.253
Type persistence p 0.71
Scale of disutility κl 0.88
Scale of R&D cost κr 0.048
Support width for θ1 Θ1 1.98
Production externality ζ 0.022

Table 4: Moments

Moment Simulation Target

M1. Patent quality-R&D elasticity 0.50 0.57
M2. R&D/Sales median 0.014 0.013
M3. Sales growth (DHS) mean 0.08 0.074
M4. Within-firm patent quality coeff of var 0.67 0.77
Across-firm patent quality coeff of var:

M5. Young firms 1.17 1.10
M6. Older firms 0.71 0.63

M7. Patent quality young/old 2.00 1.88
M8. Spillover coefficient 0.191 0.188

and Kerr (2010). The depreciation δ and the (long-run) interest rate R are standard. The average

level of productivity is normalized to µθ = 0, while the initial R&D stock is normalized to r0 = 1.

Moments and Identification: Table 4 lists the data moments that we match. The second column

provides the value of the moment in the simulations, and the third column gives the target value

of each moment in the data. In this section, we discuss the identification of the parameters of the

model.

Let the vector of the eight endogenously estimated parameters be denoted by χ = (α, ρθr, σε, p, κl, κr, ζ,Θ
1).
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We chose the parameters so as to minimize the loss function:

L(χ) =
8∑

k=1

(
momentmodel

k (χ)−momentdata
k

momentdata
k

)2

where momentmodel
k is the value of moment k in the model and momentdata

k is the value of the

moment in the data.

Since we are minimizing the weighted distance between the theoretical and empirical moments,

all parameters are identified jointly. Nevertheless, given the dynamics in our model, we can provide

a heuristic discussion of identification. In Appendix A.3 we provide a Jacobian matrix that reports

the sensitivity of each moment to each parameter. This way, we verify, at least locally, that the

moments that we use to identify certain parameters are indeed informative.

Elasticity of Patent Quality wrt. R&D, M1: The first moment is the elasticity of patent quality

with respect to R&D spending, where patent quality is measured as citations per patent. This

moment measures how effective R&D spending is in generating successful innovations. It has been

estimated widely in the literature since Griliches (1998). We use the value provided by Bloom,

Schankerman, and Van Reenen (2013) as a target. Not surprisingly, this moment informs the

complementarity (or elasticity of substitution) parameter ρθr in the innovation production function

(see Table 2).

R&D Intensity, M2: The second moment is the median ratio of R&D spending to firm sales,

which is a measure of the R&D intensity of a firm. It is computed directly in our sample and

matches the values in earlier papers based on U.S. firm data very closely. The level of the R&D

share in the step size, α, affects the marginal return to R&D investment rt and therefore has a

direct impact on firms’ R&D/Sales ratio.

Sales Growth, M3: The third moment we include is firms’ sales growth. Firm growth is de-

termined by R&D investments. These are in turn driven by the firms’ first order condition that

sets the marginal return from R&D investment equal to its marginal cost. Therefore, the scale

parameter of the cost function, κr has a first-order impact on the average growth rate of the firm.

This intuition is verified in the Jacobian matrix in Appendix A.3.

Within-firm Patent Quality Variation, M4: The fourth to sixth moments are specific to our

model, which highlighted the role of firm heterogeneity and the role of uncertainty over time.

Moment four hence considers the variation in a firm’s quality (again, as measured by its citations

per patent) over time. This within-firm measure helps assess the uncertainty facing a firm, which

is captured by the persistence parameter p in our model.

Across-firm Patent Quality Variation by Age, M5-M6: The fifth and sixth moments capture

the variation in quality across firms. This cross-sectional variability measure gauges the degree of

heterogeneity across firms and is computed separately for young firms and older firms. Young firms

are defined as those who just enter the COMPUSTAT sample (i.e., just become publicly traded).
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They do typically appear before that for some time in the patent data, where we can track them.33

As is intuitive, these moments are mainly determined by the dispersion of the type distribution σε

and the width of the support of the type distribution Θ1.

Patent Quality Ratio (young/old), M7: The seventh moment is the ratio of patent quality

between young and old firms and measures the decline in invention quality that occurs with firm

age. Again, young firms are taken at their entry point in the COMPUSTAT sample and the stock

of their patents and citations at that point is taken from their years to date in the patent data. As

the horizon gets shorter and the benefits from R&D effort are reduced, firms attempt to save on

the cost of R&D effort. The extent to which they reduce their R&D effort depends on the marginal

cost of effort. Therefore this particular moment mainly informs the estimation about the scale

parameter of the cost of R&D effort κl.

Spillover Coefficient, M8: Finally, one of the key moments, moment 8, targets the estimate of

technological spillovers in Bloom, Schankerman, and Van Reenen (2013). These authors estimate

spillovers by regressing the patent quality of a firm on the depreciated R&D stock weighted by the

extent of technological proximity of other firms in the economy. They instrument for this R&D

stock using exogenous variation in effective R&D tax credit rates at the firm level. We estimate the

spillover parameter ζ in our model through indirect inference. More precisely, we replicate their

instrumental variable regression by exogenously setting the net cost of R&D for each simulation

and generating simulated economies. As described in the Computational Appendix, this is achieved

by exogenously shocking the scale parameter κr. We then regress the patent quality in the model

on the R&D stock of other firms in the economy and match the regression coefficient to the one in

Bloom, Schankerman, and Van Reenen (2013). The fit we obtain is very close. This process helps

us identify the externality strength ζ.

6.3 Results

Having estimated the parameters of the model, we can simulate the optimal allocations and wedges,

presented in analytical form in Section 5.

To facilitate an interpretation of the wedges as tax and subsidy rates, we slightly redefine the

profit and R&D wedges, respectively, as fractions of profits and R&D costs. The R&D subsidy rate

s̃(θt) is now the fraction of the cost M(r) that the firm does not have to pay, while the profit wedge

τ̃(θt) is the fraction of profits that the firm pays. In addition, to mimic more closely the linear

taxes and subsidies explored in Section 7, we define the R&D wedge as the gap between marginal

costs and marginal benefits of R&D, taking into account the R&D effort wedge, i.e., s̃(θt) measures

the gap relative to a laissez-faire with patent protection, but taking into account that there is

simultaneously a tax τ̃(θt) on profits. More precisely, several graphs below depict in addition to

33We tried a similar estimation using firms less than 3 years old and less than 5 years old in the COMPUSTAT
sample, with extremely similar results.
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s(θt):34
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For the case in which quantity can be controlled, we show the wedges that apply once the optimal

price subsidy is in place: hence, the wedges measure the additional distortion that needs to be

imposed at the optimum in addition to the price subsidy. Thus, the monopoly quality valuation

correction term does not enter the wedge formula (recall the discussion in Section 5 about this term

dropping out when the wedges were defined relative to a laissez-faire with a prize system, i.e., when

quantity is chosen optimally conditional on quality).

Gross incentives and net incentives: A brief discussion of gross and net incentives for R&D is

useful here. If the profit tax applies to profits gross of R&D spending, i.e., if R&D expenses are not

deductible from the corporate tax base, the gross subsidy rate s̃ is such that the firm’s per-period

payoff is:

π(1− τ)− (1− s̃)M(r)

The net incentive on R&D – the rate that would apply to R&D expenses if they were deductible

from the profit tax base– is denoted by s and is defined such that the payoff of the firm is:

(π −M(r))(1− τ)− (1− s)M(r)

With a subsidy s̃, the net incentive is not captured by the subsidy rate itself, since the profit tax

captures part of the return to R&D investments. The net incentive is driven by the difference

between the gross linear subsidy s̃ and the tax τ : s = s̃− τ . s is directly comparable to the average

wedge s(θt) from Section 5, while s̃ is comparable to s̃(θt).

6.3.1 Age Patterns of the Optimal Allocations

As explained in Section 5, age patterns can arise for three reasons, the finite horizon, the logic of the

screening problem in which policies are set at time 1 with full commitment, and the age-dependency

34They are related to the wedges from Proposition 4 through

s̃(θt) = s(θt) + τ(θt)
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of the primitives of the model. Recall also that a higher profit wedge represents a larger implicit tax

on firm profits, while a higher R&D wedge represents a larger implicit subsidy on R&D expenses.

Figure 2 plots the optimal profit wedge τ(θt), the gross R&D wedge s̃(θt), and the corresponding

net R&D wedge s(θt) for different ages, averaged over firm type at a given age.

Younger firms simultaneously have their profits taxed at a higher rate and their R&D investment

expenses subsidized at a higher rate. The profit wedge falls from around 50% to -10%. The R&D

gross wedge falls from around 50% to 0%, while the net R&D subsidy falls from 14% to 11.3%.

Thus, the net incentive for R&D does not decline as dramatically.

The logic of the screening, explained in Section 5, is at play here. Types are less than fully

persistent (the estimated persistence parameter is 0.71) so the screening terms in Proposition 4 are

largest early in life when the firm has the most potential informational rent and decay with time,

at a rate that is decreasing in the persistence. Hence, it is optimal to distort the allocations more

among young firms in order to reduce overall informational rents. Over time, as the screening term

decays, the wedges for firms of different productivities converge to the Pigouvian correction term.35

Figure 3 plots the optimal allocations as a function of firm age. The left panel depicts the

optimal inputs, R&D expenses r, and R&D effort l, while the right panel depicts the step size λ

and the profits π. The paths of inputs are hump-shaped, driven by the balance of the screening

considerations and the life cycle considerations. In the first part of the life cycle, it is the screening

considerations which dominate, while in the latter part, it is the finite life cycle. Young firms, up to

mid-life, should optimally provide an increasing amount of effort and investments for R&D. After

mid-life, the effort and investment are declining. Focusing on R&D effort first, this is because the

R&D effort wedge decays over time and hence R&D effort increases more. After the mid-point of

the life cycle, it is the finite horizon considerations that dominate, making it less worthwhile to

put in effort and investment given the shortening horizon left to reap the benefits. As explained in

Section 5, this life cycle consideration could be eliminated by making the horizon much longer or

infinite or specifying a non-zero terminal value, increasing in the terminal quality qT .

The pattern of R&D expenses is driven by the path of R&D effort. Although the R&D subsidy

declines over time, R&D investments are initially increasing because their return is increasing in

the amount of effort provided. Given the hump-shaped path of inputs, profits and step size follow

the same pattern.36 Profits are increasing initially as the quality stock is built over time.

6.3.2 Cross-sectional Patterns of the Optimal Allocations

Figure 4 plots the optimal profit wedge τ(θt), the gross R&D wedge s̃(θt), and the corresponding

net R&D wedge s(θt) for firms of different productivities for ages t = 2, 5, 10, and 20. Lower

35The Pigouvian correction term itself is also declining due to the life cycle consideration, but that effect would
disappear with an infinite horizon, unlike the decay of the screening term, which would still occur.

36The initial dip in the step size happens because we calibrate the period 1 productivity distribution to match the
heterogeneity in the data, while in the other periods the type distribution is obtained from the persistence implied
by the data.
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productivity firms face higher profit wedges and higher R&D wedges, and the wedges decline

monotonically in firm type. The trade-off between reducing informational rents and distorting

allocations is again at play: a larger distortion in the allocation of a given type can reduce the

informational rent given to other types. Higher wedges for lower productivity firms means that

lower productivity firms’ allocations are more distorted relative to those of high productivity firms,

which helps reduce the informational rent for higher productivity firms.

Figure 5 shows the optimal inputs for firms of different qualities for these same ages. Higher

productivity firms should optimally provide more effort and invest more in R&D. Given that ρlθ > 0

and ρrθ > 0, effort and R&D expenses of higher productivity firms have higher marginal benefits

in terms of innovation, and, in turn, their investments of R&D and effort generate more spillovers

for other firms.37

6.3.3 Optimal Allocations and Wedges When Quantity Cannot be Controlled

When quantity cannot be controlled, there is no price subsidy that can align the monopolist’s

quantity choice with the socially optimal one. As a result, the R&D effort and investment wedges

pick up the monopoly quality valuation term correction and are, respectively, smaller and larger to

provide more incentives for the firm to provide innovation inputs.

Figure 6 depicts the optimal profit and R&D wedges averaged across firms at each age. Figure

8 shows the wedges as a function of firm productivity at different ages. For both figures, the

decreasing pattern is driven by the same screening considerations explained in Section 6.3.1 for the

case in which quantity could be controlled by a price subsidy. The levels are however different:

the profit or effort wedge is lower and consistently negative, providing a net production subsidy at

the margin. The R&D wedge is consistently higher. Both are due to the need to stimulate firms’

investment in quality to make up for their lower valuation of it because of the (here, irremovable)

monopoly distortion.

Figure 7 depicts the average inputs and outputs at each age, while Figure 9 depicts the inputs

and outputs as a function of firm type for different periods. It is clear that, despite the more

generous incentives provided, the fact that quantity cannot be controlled represents an additional

costly constraint on the planner. The inputs and outputs that can be requested from firms are

much lower than in the case where quantity can be controlled. Since there is underinvestment to

start with, this is not a desirable outcome.

The welfare gains from just offsetting the monopoly power through a price subsidy explored

numerically in Section 7 are large, emphasizing that the monopoly distortion creates a big loss

in efficiency. Indeed, the welfare loss from the unrestricted mechanism when quantity cannot

be controlled relative to the one where quantity can be controlled is 73.6%. In this framework,

leaving the patent system unaffected while subsidizing research inputs generates substantially lower

37Recall that a higher R&D wedge does not mean a higher investment in R&D; it just means a higher incentive
relative to the laissez-faire. In the laissez-faire, low productivity firms already invest much less than high productivity
firms and this pattern is not overturned despite the incentive provision.
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benefits than when the patent system can be replaced by a prize system as described in one of the

implementations in Section 5.4.

6.4 Comparative Statics: The Role of Persistence, Complementarity and the

Strength of the Spillover

We now numerically illustrate the comparative statics that were described already for the theoretical

formulas in Proposition 4.

The persistence of the firm’s productivity process affects the optimal policies very significantly.

Figures 10 and 11 depict, respectively, the optimal wedges and the optimal allocations for a higher

value of the persistence (p = 0.9) and a lower value of the persistence (p = 0.5). Recall that the

persistence estimated in the data falls in between these two values, at 0.71. With a low persistence,

both wedges are smaller after period t ≥ 2 because the screening term is dampened, and quickly

decays to zero (the wedges for age 10 and age 20 become identical as the screening term has

completely faded and only the Pigouvian correction remains).

With a high persistence, the allocations are tilted so that in all periods, higher productivity

firms provide more R&D effort and R&D investment, while lower productivity ones provide less.

With lower persistence, wedges and allocations are much flatter, especially in later periods.

Figures 12 and 13 depict the optimal wedges and the allocations for the special case ρθr = ρlr

and the case in which the complementarity between R&D and type is higher (ρθr = 1.2 > ρlr).

In the former case, recall that R&D investment does not affect the firms’ incentive constraints

and, hence, the optimal wedge is only equal to the Pigouvian correction. When ρθr is larger, R&D

mostly benefits higher productivity firms and tightens their incentive constraints: the optimal R&D

wedge is then smaller. This is especially true for earlier periods when the screening term – which is

driven by the complementarity coefficient– has not yet decayed. As expected, when ρθr is larger, it

is costlier to provide incentives for R&D so the inputs of R&D effort and R&D investment, the step

sizes, and profits are smaller, especially for high productivity firms (the informational rent gains

from larger R&D investments of whom would be prohibitively costly).

Finally, Figures 14 and 15 depict the wedges and allocations for a weaker (ζ = 0.01) and a

stronger technology spillover (ζ = 0.03). Unsurprisingly, a larger spillover leads to lower R&D effort

wedges, higher R&D investment wedges, much higher inputs in R&D effort and R&D investment,

and, accordingly, higher profits and step sizes.

7 Simpler Innovation Policies

Until now we have considered a fully unrestricted mechanism that does not place constraints on the

policy tools available to the government, except to subject allocations to incentive compatibility

due to the asymmetric information.

In this section, we consider restricted, simpler policies, and ask two questions: First, what is
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the optimal simpler policy in each restricted class of policies considered? Second, how large are the

revenue losses from these restricted simpler policies relative to the full mechanism? The policies

considered in this section do not require the government to be able to observe innovation quality.38

7.1 Optimal Simpler Policies and Revenue Losses

We solve for the optimal policies within each restricted class numerically, using the same estimated

parameters as for the unrestricted mechanism from Section 5. We then compute the revenue

shortfall relative to the revenue obtained in the unrestricted mechanism.

In line with the discussion in Section 6, there are two ways to specify the R&D subsidy rate,

depending on whether or not R&D expenses are deductible from corporate income subject to the

profit tax. In this section, we report both the gross subsidy rate s̃ (the subsidy rate if R&D expenses

are not tax deductible) and the net subsidy rate s.

Linear age-independent policies. We start with the simplest possible specification, which is

a linear R&D subsidy s and a linear tax on profits, τ . Finding the optimal linear policies in this

restricted class yields a profit tax of 31.4% and a R&D subsidy of 40.5%. The effective subsidy on

R&D, as explained right above, is much smaller at 9.1% = 40% − 31%. The revenue loss relative

to the full mechanism is very large, namely 65%. These policies are depicted in Panel A of Table

5. Both the profit tax and the (gross) R&D subsidy are larger than their current effective tax rates

and subsidies in the U.S..

Linear age-dependent policies. We then consider age-dependent, but still linear, policies, for

which firms pay different linear profit taxes and receive different subsidies based on their age group.

The first policy, in panel B, allows for two age brackets: 1-15 years old firms and 16-30 years old

firms. The younger age group pays higher profit taxes and receives a larger R&D subsidy, in line

with the optimal wedges from the full optimal mechanism depicted in Figure 2. Panel C extends

the age-dependent policy to four age groups. The pattern persists on average, but not exactly

monotonically. Adding more detailed age brackets does not seem to improve the gain from the

policy at all. The revenue loss is still the same and very large at 63-64%.

Overall, it appears that the strong nonlinearities highlighted in Section 5 are important com-

ponents of the optimal mechanism and that shortcutting them costs a lot in terms of lost revenue.

Price subsidies on intermediate goods. We also consider the case of a pure price subsidy on

monopolists’ sales that aligns their private benefit from producing more quantity with the social

one. The loss here relative to the full optimum is 66.4%, which is not much more than with the

linear subsidy and tax added. Hence, the correction of the monopoly distortion is first order.

38With linear instruments, all that is required is that the government can see some measure of aggregate quality
or profits and keeps a constant share of it (equal to the linear tax rate). There is no need to observe the identity of
individual firms and individual quantities.
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Table 5: Optimal Linear policies

Age Optimal τ Optimal s̃ Optimal s Revenue Loss

A. Age-Independent Policies

1-15 31.4% 40.5 % 9.1% 65%

B. Age-Dependent, 2 age brackets

1-15 31.6% 40.6% 9% 64%
16-30 31.0% 39.7% 8.7%

C. Age-Dependent, 4 age brackets

1-7 32.7% 40.8% 8.1% 63%
8-15 30.8% 39.8% 9%
16-22 30.9% 40.1% 9.2%
23-30 31.5% 40.15% 8.3 %

Note: All optimal linear policies are computed assuming that the optimal price subsidy is in place, i.e., the linear
profit tax is on profits post-price subsidy. Profits are taxed at rate τ gross of R&D expenses, i.e., R&D expenses are
not deducted. Hence a firm’s payoff is π(1 − τ) − (1 − s̃)M(r). The equivalent net subsidy if R&D expenses were
deductible from taxable corporate income is s = s̃− τ .

Nonlinear, size-dependent R&D subsidy. Finally, we turn to a nonlinear subsidy rate, such

that the subsidy received as a fraction of costs M = Mt(rt) is equal to s(M) where

s(M) = c0 + (c1 − c0) · (1− e−c2M )

At the optimum we find that the parameters should be set to c0 = 0, c1 = 43% and c2 = 46%.

The optimal linear tax is set at τ = 31.56%. The welfare loss is now somewhat improved to 62%

relative to the full unrestricted optimum. The optimal nonlinear subsidy is depicted in Figure 16

and is increasing and concave in R&D investment. Firms that spend more on R&D investments

face a lower unit price for R&D investments, i.e., a higher marginal subsidy on their R&D.39

39This is in line with the idea of a “quantity discount” for high valuation consumers in the nonlinear monopolist
pricing literature.
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7.2 Comparative Statics

Table 6 recomputes the optimal linear tax and subsidy rates for different parameter values. As for

the unrestricted policies in Section 6.4, we consider the three key parameters: the persistence p, the

complementarity ρθr and the strength of the technology spillover ζ. It is also clear that the gain

from being able to use only restricted (here, linear) instruments strongly depends on parameters

that affect the screening term.

A higher persistence slightly decreases the optimal linear tax and subsidy rates, but strongly

reduces the (still large) revenue loss relative to the full optimum from using linear instruments. This

is intuitive: the nonlinear, history-dependent full mechanism allows the planner to tailor the policies

to firms’ heterogeneous histories of productivity types. When productivity is more persistent, a

firm of one type is more likely to remain that same type throughout time. The fine-tuning of the

policies for different sized-firms is then much less valuable and linear tools are better at reaping

the same benefits.

A higher complementarity of R&D investments with firm productivity increases the tax on

profits and hence also decreases the net incentive on R&D investments, i.e., the effective subsidy rate

post-deduction of R&D expenses equal to approximately s− τ = 5.7%. As explained theoretically

in Section 5, a higher complementarity of R&D expenses with firm type means that firms’ incentive

constraints are tightened when R&D expenses are increased, which is costly. Here, with linear tax

tools, there are no explicit incentive constraints, but the behavioral response of the firm to the

taxes and subsidies follow the same logic.

Finally, a higher spillover strength decreases the optimal linear profit tax and increases the net

subsidy on R&D from 4.9% = 41.4% − 36.5% to 11.7% = 39.7% − 28% so as to provide a higher

Pigouvian correction.

Note an interesting pattern here related to the revenue losses from restricted instruments. The

loss from linear policies is barely different when spillovers are large or small. This is because it is

the screening term that one needs to tailor to the firm type – as in the unrestricted mechanism.

As long as the Pigouvian correction – unrelated to the screening term– is on average at the right

level given on the strength of the spillover, the revenue loss is the same. On the other hand, the

other two parameters (persistence and complementarity) directly affect the screening term and,

depending on their values, the revenue losses from the linear mechanism are very different.

8 Conclusion

In this project, we study how to most efficiently use tax policy to foster innovation. R&D tax policies

in their current form are widely used, disparate, and costly, and have sometimes been criticized for a

lack of effectiveness (Goolsbee, 2003). The market failures that warrant some policy intervention in

the innovation process are the lack of appropriability of innovations and non-internalized technology

spillovers between firms. Our core contribution is to consider asymmetric information. Firms’
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Table 6: Comparative statics for the Optimal Linear policies

Parameter Optimal τ Optimal s̃ Optimal s Revenue Loss

A. Role of Persistence p

p = 0.5 31.4% 40.5 % 9.1% 70.5%
p = 0.9 31.3% 40.3 % 9% 45.8%

B. Role of Complementarity ρθr

ρθr = ρlr = 1 33.6% 41.3% 7.7% 61.7%
ρθr = 1.2 > ρlr 35.6% 41.3% 5.7% 58.9

C. Role of the Technology Spillover

ζ = 0.01 36.5% 41.4% 4.9% 73.8%
ζ = 0.03 28% 39.7% 11.7% 73%

Note: All optimal linear policies are computed assuming that the optimal price subsidy is in place, i.e., the linear
profit tax is on profits post-price subsidy. Profits are taxed at rate τ gross of R&D expenses, i.e., R&D expenses are
not deducted. Hence a firm’s payoff is π(1 − τ) − (1 − s̃)M(r). The equivalent net subsidy if R&D expenses were
deductible from taxable corporate income is s = s̃− τ .

efficiency in converting research inputs into research outputs, as well as an important input into

the innovation process (called “R&D effort”) are unobservable to the government. Policies should

ideally be targeted towards the most efficient firms, but asymmetric information makes this more

challenging.

We overcome this challenge by using new mechanism design techniques developed in the recent

contract theory and new dynamic public finance literatures that we augment with spillovers. We

combine elements from three literatures: a macro innovation model, the theoretical tools of mech-

anism design, and micro-level firm data from COMPUSTAT matched to patent data to discipline

and quantify our model.

Our main results are, first, to characterize the constrained efficient allocations that arise in a

direct revelation mechanism with spillovers, which does not impose any ex ante restriction on the

policy tools the government can use. The optimal incentives for R&D trade-off a Pigouvian cor-

rection for the technology spillover and a correction for the monopoly distortion against the need

to screen good firms from bad ones. We highlight that a crucial statistic is the complementarity

of R&D investments to R&D effort (i.e., the complementarity between observable and unobserv-

able innovation inputs) relative to the complementarity of R&D investments to unobservable firm
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productivity: the more complementary R&D investment is to firm productivity, the more rents a

firm can extract if R&D investments are subsidized. Screening considerations can hence dampen

the first-best corrective policies. The persistence of firm productivity shocks and the strength of

spillovers are other key determinants of the optimal policies. Second, we show that these constrained

efficient allocations can be implemented with a parsimonious corporate income tax function and a

price subsidy, or, equivalently, by a prize mechanism which depends on the observable innovation

inputs and the innovation quality. Third, the estimation of our model based on key moments in

the data allows us to quantify the optimal policies, as well as to show that the revenue losses from

simpler policies, such as linear R&D and profit taxes, are very large, even if they are made condi-

tional on firm age. This suggests that current policies could be much improved. Possible margins

of improvement would be to condition R&D policies on some measure of innovation performance

and by allowing for nonlinear policies.

We hope that future research could build on this fruitful combination of macro-level policy

questions, with newly developed mechanism design techniques, which are guided by firm-level micro

data, to study the following and many other important issues: First, the competition structure in

the intermediate goods market could be made endogenous to tax policy: firms would then enter,

exit, and steal products from their competitors in response to the tax incentives. Second, it would

be very interesting to study optimal R&D policies when there is a noisy signal about innovation

quality which may be manipulable by firms. Third, a more extended structural estimation focusing

on the identification of the key parameters we emphasized (complementarities, persistence, and

strength of spillovers) for different sectors and types of products could shed further light on optimal

sector-specific policies.
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Figure 2: Optimal profit and R&D wedges for different firm ages

(a) Profit wedge (b) R&D wedge

(c) Net R&D wedge

Notes: Panel (a) plots the average profit wedge τ̃(θt) at different ages of the firms. Panel (b) plots the average
marginal R&D wedge s̃(θt) at different ages. Panel (c) plots the average net marginal R&D wedge s(θt) at different
ages.
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Figure 3: Optimal allocations at different firm ages

(a) R&D effort and investment (b) Step size and profits

Notes: The left panel depicts the inputs, R&D expenses rt and effort lt, while the right panel depicts the outputs,
the step size λt and the profits πt, as a function of firm age on the horizontal axis.
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Figure 4: Optimal profit and R&D wedges for different firm types

(a) Profit wedge (b) R&D wedge

(c) Net R&D wedge

Notes: Panel (a) plots the optimal profit wedge τ̃(θt) for t = 2, 5, 10, 20 for firms of different types. Panel (b) plots
the optimal R&D wedge s̃(θt). Panel (c) plots the optimal net R&D wedge s(θt).
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Figure 5: Optimal allocations at different firm qualities

(a) R&D effort and investment (b) Step size and profits

Notes: The left panel plots the optimal effort lt for t = 2, 3, 5, 10 for firms of different types. The right panel plots
the optimal R&D investment rt.

Figure 6: Optimal corporate and R&D wedges for different ages when
quantity cannot be controlled

(a) Profit wedge (b) R&D wedge

Notes: This figure illustrates the average profit wedge τ̃(θt) (left panel) and the averageR&D wedge s̃(θt) (right panel)
at different ages when quantity cannot be controlled (i.e., intellectual property rights policy cannot be optimized on,
patent protection is taken as given, and there is no price subsidy on the intermediate good).
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Figure 7: Optimal allocations at different firm ages when quantity cannot
be controlled

(a) R&D effort and investment (b) Step size and profits

Notes: The left panel depicts the inputs, R&D expenses rt and effort lt, while the right panel depicts the outputs, the
step size λt and the profits πt, as a function of firm age on the horizontal axis when quantity cannot be controlled.

Figure 8: Optimal corporate and R&D wedges for different firm qualities
when quantity cannot be controlled

(a) Profit wedge (b) R&D wedge

Notes: The left panel plots the optimal profit wedge τ̃(θt) for ages t = 2, 5, 10, 20 for firms of different types. The
right panel plots the optimal R&D wedge s̃(θt) when quantity cannot be controlled.
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Figure 9: Optimal allocations at different firm qualities when quantity
cannot be controlled

(a) R&D effort lt (b) R&D investment rt

Notes: The left panel plots the optimal effort lt for t = 2, 5, 10, 20 for firms of different types. The right panel plots
the optimal R&D investment rt when quantity cannot be controlled.
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Figure 10: The Role of Persistence: Wedges

(a) Low persistence, p = 0.5
(a.1) Profit wedge (a.2) R&D wedge

(b) High persistence, p = 0.9
(b.1) Profit wedge (b.2) R&D wedge

Notes: The left panels plot the optimal profit wedge τ̃(θt) for t = 2, 5, 10, 20 for firms of different types. The right

panels plot the optimal R&D wedge s̃(θt). Panel (a) is for the case with low persistence p = 0.5, while panel (b) is

for the case with high persistence p = 0.9.
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Figure 11: The Role of Persistence: Allocations

(a) Low persistence, p = 0.5
(a.1) R&D effort lt (a.2) R&D investment rt

(b) High persistence, p = 0.9
(b.1) R&D effort lt (b.2) R&D investment rt

Notes: The left panels depict the R&D effort lt for t = 2, 5, 10, 20 for firms of different types. The right panels depict

the R&D investment rt. Panel (a) is for the case with low persistence p = 0.5, while panel (b) is for the case with

high persistence p = 0.9.
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Figure 12: The Role of Complementarity: Wedges

(a) Case with ρθr = ρrl = 1
(a.1) Profit wedge (a.2) R&D wedge

(b) Case with ρθr = 1.2 > ρrl = 1
(b.1) Profit wedge (b.2) R&D wedge

Notes: The left panels plot the optimal profit wedge τ̃(θt) for t = 2, 5, 10, 20 for firms of different types. The right

panels plot the optimal R&D wedge s̃(θt). Panel (a) is for the case ρθr = ρrl = 1, while panel (b) is for the case

ρθr = 1.2 > ρrl = 1.

61



Figure 13: The Role of Complementarity: Allocations

(a) Case with ρθr = ρrl = 1
(a.1) R&D effort lt (a.2) R&D investment rt

(b) Case with ρθr = 1.2 > ρrl = 1
(b.1) R&D effort lt (b.2) R&D investment rt

Notes: The left panels depict the R&D effort lt for t = 2, 5, 10, 20 for firms of different types. The right panels depict

the R&D investment rt. Panel (a) is for the case ρθr = ρrl = 1, while panel (b) is for the case ρθr = 1.2 > ρrl = 1.
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Figure 14: The Role of Spillovers: Wedges

(a) Small spillover ζ = 0.01
(a.1) Profit wedge (a.2) R&D wedge

(b) Large spillover ζ = 0.03
(b.1) Profit wedge (b.2) R&D wedge

Notes: The left panels plot the optimal profit wedge τ̃(θt) for t = 2, 5, 10, 20 for firms of different types. The right

panels plot the optimal R&D wedge s̃(θt). Panel (a) is for the case of a small spillover ζ = 0.01, while panel (b) is

for the case of a larger spillover ζ = 0.03.
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Figure 15: The Role of Spillovers: Allocations

(a) Small spillover ζ = 0.01
(a.1) R&D effort lt (a.2) R&D investment rt

(b) Large spillover ζ = 0.03
(b.1) R&D effort lt (b.2) R&D investment rt

Notes: The left panels depict the R&D effort lt for t = 2, 5, 10, 20 for firms of different types. The right panels depict

the R&D investment rt. Panel (a) is for the case of a small spillover ζ = 0.01, while panel (b) is for the case of a

larger spillover ζ = 0.03.
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Figure 16: Optimal nonlinear R&D subsidy

Notes: The figure depicts the optimal nonlinear subsidy rate of the form s(M) = c0 + (c1− c0) · (1− e−c2M ) such that
the agent only pays cost (1− s(M(r))) ·M(r) for an investment M(r). At the optimum we find that the parameters
should be set so: c0 = 0, c1 = 43% and c2 = 46%.
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Appendix

A.1 Additional Results

A.1 Simple Model

Tax implementation: The first-order conditions of the firm with the tax implementation are:

−∂T (Ỹ ∗(q(θi), q̄), r(θi))

∂r(θi)
+
∂Ỹ ∗(q(θi), q̄)

∂q

∂λ(r(θi), l(θi), θi)
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∂π

)
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∂q

∂λ(r(θi), l(θi), θi)

∂l(θi)
= φ′(l(θi))

We can use the first-order conditions of the firms into the optimal wedge formulas to obtain a

characterization of the optimal (explicit) marginal tax and subsidy:
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Note that the monopoly quality valuation correction term does not enter the optimal tax and

subsidy because the monopoly quantity distortion is taken care of by the price subsidy in this

implementation. The profits that the firm maximizes are exactly equivalent to Ỹ ∗, the socially

valued output net of production costs.

Implementation with a prize mechanism: We can similarly derive the relation between the

marginal grant and the wedges, under the assumption that the grant function is differentiable in

its two arguments.

s(θi) =
∂G(λ(r(θi), l(θi), θi), r(θi))

∂r(θi)
+
∂G(λ(r(θi), l(θi), θi, r(θi))
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∂r(θi)
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=
∂G(λ(r(θi), l(θi), θi, r(θi))

∂λ

∂λ(r(θi), l(θi), θi)

∂l(θi)
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A.2 Functional form example with constant markups

We can specialize the functional form to one that delivers constant markups. Let the cost of produc-

tion be C(k, q̄) = k
q̄ζ

, and the output as valued by consumers be Y (qt(θ
t), kt(θ

t)) = 1
1−β qt(θ

t)βkt(θ
t)1−β.

The demand function under a patent system that grants monopoly rights is then:

p(qt(θ
t), kt(θ

t)) = qt(θ
t)βkt(θ

t)−β

and the quantity chosen by the monopolist is:

k(qt(θ
t), q̄t) = [(1− β)q̄t

ζ ]
1
β qt(θ

t)

At the optimum, the price is a constant markup over marginal cost equal to:

p(q̄t) =
1

(1− β)q̄tζ

Profits are then given by

π(qt(θ
t), q̄t) = qt(θ

t)(1-β)
1−β
β · β · q̄tζ

1−β
β

Y (qt(θ
t), q̄t), the output from the private producer in the laissez-faire with a monopoly right, is:

Y (qt(θ
t), q̄t) = Y (qt(θ

t), k(qt(θ
t), q̄t)) =

1

1− β qt(θ
t)((1− β)q̄ζt )

1−β
β

Hence, the final good in the private market equilibrium is given by:

Yt =

∫

Θt
Y (qt(θ

t), q̄t)P (θt) =

∫

Θt
qt(θ

t)[(1-β)q̄t
ζ ]

1−β
β P (θt)dθt

Conditional on a given quality qt(θ
t), the production choice of the planner would be such that:

k∗(qt(θ
t), q̄t) = q̄t

ζ
β qt(θ

t) > k(qt(θ
t), q̄t)

A.2 Proofs of the Propositions in the Main Text

Proof of Propositions 1 and 2:

Taking the first-order conditions of the planner’s problem in (7) with respect to l(θi) and r(θi)

for each i = 1, 2 and using the definitions of the wedges yields the formulas.

Proof of Proposition 4:

Taking the FOC of program P in (17) with respect to rt(θ
t) yields:

67



[r(θt)] :
1
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Using the definition of the R&D wedge as:

s(θt) = M ′t(r(θ
t))− 1
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E
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R
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∂qs

∂λt+1

∂rt

)

to substitute for the marginal cost M ′t(rt(θ
t)) in the FOC, we obtain formula (22).

Taking the FOC with respect to lt(θ
t) yields:

[lt(θ
t)] : E(

T∑

s=t
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1− δ
R
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∂qs

∂λ(θt)

∂lt
)
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(1− δ)s−tηs
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∂lt
) = 0

Transform the derivative of the envelope condition:

∂
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Using the definition of the wedge τ(θt) to substitute for φ′t(lt(θ
t)) yields the formula in the text.

Proof of Proposition 5:

For every period, define the following objects:

Ds(θ
s−1, θs) = E

(
T∑

t=s

I(s),t
∂Ũ

∂θt
|θt
)

Qs(θ
s−1, θs) =

∫ θs

θ
Ds(θ

s−1, q)dq

where the expectation is explicitly conditioned on history θt.

With a stochastic process such that the impulse response is independent of θt except through
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θ1 and θt, we have that I(s),t = i(θ1, θt, t) for some function i(). In addition, ∂Ũ
∂θt

= φ′t(lt(θ
t))

∂λ(θt)
∂θt

∂λ(θt)
∂lt

,

so that:

Ds(θ
s−1, θs) = E

(
T∑

t=s

i(θ1, θt, t)φ
′
t(lt(θ

t))
∂λ(θt)/∂θt
∂λ(θt)/∂lt

|θt
)

In the unrestricted mechanism, the transfers provided every period are:

Tt(θ
t) = Rt−1Qt(θ

t−1, θt)−Rt−1Et(Qt+1(θt, θt+1)) + φ(lt(θ
t)))

Given the time separable utility and the assumption on the impulse response functions, the

transfer hence depends on λt, rt−1, θt, and θ1 (and, naturally, on age t). Denote it by T ∗t (λt, rt−1, θt, θ1).

With the price subsidy in place, the total price faced by the monopolist is Y (q,k)
k . Hence,

conditional on qt, the monopolist maximizes social surplus from production and the choice will be

a deterministic function of quality, denoted by kt(qt). As a result, profits earned are a deterministic

function of quality, denoted by πt(qt).

Note that in period 1, since r0 and q0 are given and observed, the realization

q1 = H(q0, λ1(l(θ1), r(θ0), θ1)

can be inverted to obtain θ1 (at the optimal allocation, under incentive compatibility) as long as

for every θ1 there is an uniquely optimal l(θ1). Hence, we will use conditioning on q1 instead of θ1.

Let Θt(q1, rt−1, qt−1) be the set of all histories (including θt) that are consistent with q1 in period

1, and rt−1 and qt−1. For each θt in this set, the optimal allocations and transfer are the same

(independent of what exactly happened in the full past). Let r∗t (θ), l
∗
t (θ) be the optimal allocations

given to each θ in this set (they are equal for each such θ by inspection of the wedge formulas at

the optimum). The implied optimal quality is then q∗t (θ) = qt−1 + λt(rt−1, l
∗
t (θ), θ).

We now have to make the tax system such that allocations which do not arise in the Planner’s

solution are very unattractive to the agent. First, we can rule out allocations that never occur

for any θ in Θt(q1, rt−1, qt−1) by making the transfer at points q∗t (θ), r
∗
t (θ) following qt−1, rt−1, q1

highly negative. We can also directly rule out histories qt−1 and rt−1 which should never occur in

the Planner’s problem in the same way.

For all remaining consistent histories and for each θ in Θt(q1, rt−1, qt−1), the tax or transfer

given as a function of the observables needs to be such that:

Tt(q
∗
t (θ), r

∗
t (θ), qt−1, rt−1, q1) + πt(q

∗
t (θ) = T ∗t (λt(rt−1, l

∗
t (θ), θ), rt−1, θ)

Consider the firm’s choice. First, for given rt−1, qt−1, and θ1, the firm should rationally only

select a pair q∗t , r
∗
t that is consistent with some θ ∈ Θt(q1, rt−1, qt−1) or else the transfer it receives

would be very negative. For each rt−1, qt−1, and θ1, if the firm chooses q∗t (θ) and r∗t (θ) meant for

69



type θ in the planner’s problem, it receives the utility it would get from reporting to be type θ in

the planner problem. By incentive compatibility, the firm will choose the allocation meant for its

true type realization.

A.3 Computational Appendix

A.1 Computational Procedure

All code is written is standard Python 3, and depends only on common numerical and scientific

modules such as numpy, scipy, pandas, statsmodels, patsy, and matplotlib. The parameter estima-

tion and optimal policy calculations are done using either the Nelder-Mead algorithm or simulated

annealing.

Because of the staggered nature of research spending and manager effort decisions, we find the

optimal decisions for a log-uniform grid of possible (θt, θt+1) values. In addition, in the case of the

optimal mechanism, one also tracks the initial type θ1, as this bears on the constraints imposed by

informational limitations.

When solving for both the optimal mechanism and the equilibrium outcome (in the status quo

case or for various policy experiments), the solution method is constructed as a fixed point problem

on the path of q̄. Because q̄ evolves according to a firm’s research decisions and these decisions are

made based on expectations that condition on the future path of q̄, one must employ both forward

and backward iteration.

Given a certain candidate path for q̄, we can find the optimal choices for research spending

and manager effort (for either the firm or the planner), which itself amounts to solving a one-

dimensional equation for each point in the type space in each time period. Using these decisions,

one can construct an updated path for q̄. When this process reaches a fixed point, we have found

the equilibrium path for q̄. In practice, it is useful to dampen the updating process to avoid any

instabilities.

To generate simulated moments for parameter estimation, we simulate a large number of firms

for the entirety of their life cycle and compute various statistics on this panel of simulated data.

All of the moments are relatively straightforward to calculate, with the notable exception of the

spillover regression coefficient, which is used to identify the externality parameter.

For that moment, we actually re-solve and re-simulate the model for a variety of different

values for κr (the research cost scale parameter) clustered around the true κr value. We interpret

each simulated economy as representing a particular industry with a particular value for κr, or,

alternatively, with a different R&D subsidy or tax credits. This mimics the exogenous variation

used to identify the spillovers in the Bloom et al. (2013b) paper. Using this variation in cost, we

then run a regression of firm sales on the cumulative amount of research spending the firm has done

(a knowledge stock of sorts) as well as the average research spending by all firms in that period

and industry. We then match this to an analogous run by Bloom et al. (2013b).
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A.2 Identification and the Jacobian Matrix

Table A1: Jacobian Matrix for Parameter Estimation

ρ α κr κl p σε Θ1 range ζ

M1. Patent quality-R&D elasticity 0.01 0.00 0.00 0.00 0.02 0.01 0.01 0.00
M2. R&D/Sales median 0.00 0.05 0.00 0.00 0.00 0.00 -0.02 0.00
M3. Sales growth 0.01 0.01 -0.01 -0.02 0.01 0.01 -0.01 0.01
M4. Within-firm patent quality coeff of var 0.00 -0.01 0.00 0.00 0.02 0.02 0.02 0.00
M5. Across-firm (young) coeff of var 0.00 -0.02 0.00 0.00 0.06 0.01 0.04 0.00
M6. Across-firm (old) coeff of var 0.00 -0.02 0.00 0.00 0.09 0.05 0.01 0.00
M7. Patent quality young/old -0.02 -0.08 0.03 0.04 -0.05 -0.02 0.07 -0.01
M8. Spillover coefficient 0.13 0.08 -0.01 -0.02 -0.06 -0.03 0.01 0.01

Note: This table reports the percentage change in the moment (row) for a 5% change in the parameter (column)
from its baseline value, while keeping the rest of the parameters at their benchmark values. We report the average
of the +5% and -5% changes. Therefore, these values can be interpreted as a double-sided discrete approximation.
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