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1. Introduction

The financial crisis has elicited much research into the understanding of the dynamics of

aggregate leverage and its impact on asset prices and economic growth. Recent empirical and

theoretical research has produced a variety of results that, as argued by many, should inform

a reconsideration of existing frictionless models. Amongst these we have (i) the evidence

that excessive credit supply may lead to financial crises;1 (ii) the growth in household debt

and the causal relation between the deleveraging of levered households and their low future

consumption growth;2 (iii) the idea that active leveraging and deleveraging of households and

financial institutions directly contributes to the rise and fall of asset prices;3 (iv) the evidence

that the aggregate leverage ratio of financial institutions is a risk factor in asset pricing;4 (v)

the view that balance sheet recessions are critical components of business cycle fluctuations;5

and many others. Most of these explanations rely on some form of market friction, behavioral

bias or both, and propose a causal effect for the effects of leverage on aggregate economic and

financial phenomena. In this paper we put forward a simple frictionless general equilibrium

model with endogenous leverage that offers a coherent explanation of most of these relations

between agents’ leverage, their consumption, and asset prices.

We posit an economy populated with agents whose preferences feature external habits.

Specifically, we introduce a novel and analytically tractable “habit in utility” specification.

Under these preferences, each agent’s utility increases in his own consumption but decreases

in the happiness of his neighbors, rather than their consumption as in traditional habit

models. The weight on the external habit, moreover, differs across agents and it increases

during economic downturns. That is, habits matter more in bad times than in good times.

These assumptions make agents differentially more risk averse in recessions, which in turn

introduces motives for risk sharing and asset trading. In addition to tractability, our pref-

erences’ specification has numerous predictions on agents’ behavior that are consistent with

the existing empirical literature, as further discussed below. Agents also differ in their level

of endowment, which is also an important determinant of their risk bearing capacity. The

model aggregates nicely to standard external habit models such as Campbell and Cochrane

(1999) and Menzly, Santos and Veronesi (2004) and thus inherits the asset pricing properties

of these models and in particular the dynamics of risk and return that were their original

motivation.

1See for instance Jordà, Schularick and Taylor (2011).
2See Justiniano, Primiceri and Tambalotti (2013) and Mian and Sufi (2015).
3See e.g. Shleifer and Vishny (2011), Geanakoplos (2010).
4See He and Krishnamurthy (2013) and Adrian, Etula and Muir (2014).
5See Huo and Rı́os-Rull (2013) and Mian, Rao and Sufi (2013).
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External habit models feature strong discount effects, which, as shown by Hansen and

Jagannathan (1991), are required to explain the Sharpe ratios observed in financial markets.

We argue that these strong discount effects are also important to understand the dynamics

of risk sharing. Standard risk sharing arguments require that agents with large risk bearing

capacity insure those with low risk bearing capacity. In models where, for instance, agents

have CRRA preferences, such as Dumas (1989) and Longstaff and Wang (2012), this means

the agents who provide the insurance consume a large share of aggregate consumption when

this is large and a low share when instead aggregate consumption is low. This is obviously

also the case in our framework, but in addition the share of consumption also depends on

whatever state variable drives discount effects, which introduces additional sources of non-

linearities in the efficient risk sharing arrangement. The reason is that in our model risk

aversion changes depending on the actual realization of the aggregate endowment and thus

so do the efficiency gains associated with risk sharing.

We decentralize the efficient allocation by allowing agents to trade in a claim to the

aggregate endowment process and debt that is in zero net supply and provide a full charac-

terization of the corresponding competitive equilibrium. We show that agents with higher

initial endowment and/or weaker habit preferences have higher risk tolerance and thus pro-

vide insurance by issuing risk-free debt to agents with lower endowment and/or stronger

habit preferences. The latter agents are more risk averse and hence want to hold risk-free

debt to insure against fluctuations in their marginal utility of consumption.

A striking property of the competitive equilibrium is that the aggregate debt in the

economy, scaled by output, is procyclical, an intuitive result but one that does not obtain

in standard models.6 The reason hinges on the decrease in aggregate risk aversion in good

times, which makes agents with high risk tolerance willing to take on a larger fraction of

the aggregate risk by issuing more risk-free debt to agents with lower risk tolerance. Thus,

procyclical aggregate debt emerges naturally as the result of the optimal trading of utility

maximizing agents in an equilibrium that implements an optimal risk sharing allocation.

Besides a procyclical debt-to-output ratio, our model has several additional predictions

that are consistent with numerous stylized facts. First, habit heterogeneity induces agents

with low endowment to leverage in equilibrium. That is, unlike most of the previous lit-

erature, our model is consistent with the empirical evidence in that poorer agents borrow

more than richer agents to increase consumption. Intuitively, habit heterogeneity allows for

6Most models with heterogeneous agents feature only two types of agents. Thus, leverage is necessarily
inverse-U shaped in the wealth share, as it must be zero when wealth is mostly in the hands of one or the
other agent. Moreover, in such models, lower aggregate risk – typical in good times – tend to reduce leverage
due to lower risk-sharing needs.

2



a large number of low risk averse agents among those with low endowments.

Second, higher aggregate debt, scaled by aggregate output, should correlate with (i)

higher valuation ratios, (ii) lower return volatility, (iii) lower future excess returns, and

(iv) a “consumption boom” of those agents who lever up, who then should experience a

consumption slump relative to others, on average. The reason is that as explained above,

in good times aggregate debt increases as aggregate risk aversion declines. Lower risk aver-

sion implies high valuation ratios and lower stock return volatility, as well as lower future

excess returns, explaining (i) through (iii). In addition, levered agents who took up levered

positions do especially well when stock market increases, implying higher consumption in

good times. Mean reversion, however, implies that these same agents should also expect a

relatively lower future consumption growth after their consumption binge, explaining (iv).

Our model also implies active trading. For instance, a series of negative aggregate shocks

induces deleveraging of levered agents through the active sales of their positions in risky

stocks. It follows that stock price declines occur exactly at the time when levered agents

actively sell their risky positions to reduce leverage. This commonality of asset sales and

stock price declines give the impression of a “selling pressure” affecting asset prices, when in

fact equilibrium prices and quantities comove due to the variation in aggregate risk aversion,

but there is no causal relation between trading and price movements. Indeed, in our model

the representative agent is independent of agents’ heterogeneity and thus the same asset

pricing implications result even with identical agents and hence no trading.

While our model implies that during bad times aggregate debt declines relative to output,

levered agents’ debt-to-wealth ratios increase, as wealth declines faster than debt due to se-

vere discount-rate effects. Hence, while the aggregate debt is pro-cyclical, the debt-to-wealth

ratio of levered agents is countercyclical, which is broadly consistent with the empirical evi-

dence. For instance, during 2007 - 2009 crisis the debt-to-wealth ratio of levered households

increased considerably due to the decline in the value of their assets, especially housing.

Our model’s predictions about leverage dynamics also sheds some light on recent empirical

results in the intermediary asset pricing literature. High net-worth agents lever up to invest

in risky securities, as intermediaries do in much of this literature. Because the leverage of

these agents correlates with the aggregate economy risk aversion, our model implies that

leverage is a priced risk factor in cross-sectional regressions. However, the sign of the price

of risk depends on whether we measure leverage using market prices (e.g. debt-to-wealth

ratios) or not (e.g. debt-to-output ratio), which is consistent with recent empirical evidence

(Adrian, Etula, and Muir (2014) and Kelly, He, and Manela (2016)).
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Finally, our model has predictions about the source of the variation in wealth inequality.

Heterogeneity in endowments makes wealth inequality increase in good times, as agents with

large endowment borrow and thus enjoy capital gains in those times. In contrast, hetero-

geneity in habits make poor agents borrow, who then enjoy an increase in their wealth in

good times and lead to a lower dispersion in wealth shares. These two different sources of

heterogeneity thus imply a complex dynamics of wealth dispersion over the business cycle.

Once again, the model emphasizes that while asset prices affect wealth inequality, the con-

verse does not hold, as asset prices are identical with homogeneous agents, and hence in the

same model without wealth dispersion.

Our model has the considerable advantage of simplicity: All formulas for asset prices,

portfolio allocation, and leverage are in closed form, no numerical solutions are required, and

intuition follows from basic economic principles. Moreover, because our model aggregates

to the representative agent of Menzly, Santos, and Veronesi (2004), except that we allow for

time varying aggregate uncertainty, we can calibrate its parameters to match the properties

of aggregate return dynamics. Our model thus, unlike most of the literature, has clears

quantitative implications, not just qualitative ones.

Clearly many explanations have been put forth to explain the growth of leverage and of

household debt in particular during the run up to the crisis. For instance, Bernanke (2005)

argues that the global savings glut, the excess savings of East Asian nations in particular,

is to blame for the ample liquidity in the years leading up to the Great Recession, which

reduced rates and facilitated the remarkable rise in household leverage; Shin (2012) shows

how regulatory changes, the adoption of Basel II, led European banks to increase lending

in the US; Pinto (2010), Wallison (2011) and Calomiris and Haber (2014) argue that the

Community Reinvestment Act played a pivotal role in the expansion of mortgage lending

to risky households (but see Bhutta and Ringo (2015)); Mendoza and Quadrini (2009) show

how world financial integration leads to an increase in net credit. The list goes on.

When the crisis came, the crash in prices and the rapid deleveraging of households and

financial intermediaries was interpreted appealing to classic inefficient runs arguments a la

Diamond and Dybvig (1983) as in Gorton and Metrick (2010) or contagion. He and Krishna-

murthy (2008) connect the fall in asset prices to the shortage of capital in the intermediation

sector. Finally, much research has focused on the impact that the crisis had on the con-

sumption of households. For instance Mian and Sufi (2014) argue that debt overhang is to

blame for the drop in consumption in counties where households were greatly levered.

Our point here is not to claim that these frictions are not important but simply to offer
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an alternative explanation that is consistent with complete markets and that matches what

we know from the asset pricing literature. We highlight that leverage is an endogenous

quantity and thus cannot be used as an independent variable to explain other facts. For

instance, when debt overhang is put forth as an explanation for low consumption patterns

amongst levered households the alternative hypothesis of efficient risk sharing cannot be

dismissed outright. Both explanations operate in the same direction and thus assessing the

quantitative plausibility of one requires controlling for the other.

This paper is obviously connected to the literature on optimal risk sharing, starting

with Borch (1962). Much of this literature is concerned with assessing to what extent

consumers are effectively insured against idiosyncratic shocks to income and wealth.7 Our

model does not feature idiosyncratic income shocks but there is still a motive for risk sharing

that is linked to different sensitivities of habits to aggregate shocks. Our paper is more

closely related to Dumas (1989), Wang (1996), Bolton and Harris (2013), Longstaff and

Wang (2012), and Bhamra and Uppal (2014). These papers consider two groups of agents

with constant risk aversion, and trading and asset prices are generated by aggregate shocks

through the variation in the wealth distribution. While similar in spirit, our model generates

several novel results that do not follow from this previous work, such as procyclical debt-to-

output ratio, countercyclical debt-to-wealth ratios, higher leverage amongst poorer agents,

procyclical wealth dispersion, consistency with asset pricing facts, and so on. Our model is

more closely related to Chan and Kogan (2002), who also consider a continuum of agents

with habit preferences and heterogeneous risk aversion. In their setting, however, the risk

aversions of individual agents are constant, while in our setting they are time varying in

response to business cycle variation, a crucial ingredient in our model. Moreover, Chan and

Kogan (2002) do not investigate the leverage dynamics implied by their model, which is

instead our focus.

Our model is related to Campbell, Grossman and Wang (1993), which explores the im-

plications for trading volume and asset prices in a model where the motivation for trade is

driven by shocks to agents’ risk tolerance. More recently Alvarez and Atkenson (2017) con-

sider a model where agents’ risk tolerance is subject to uninsurable idiosyncratic shocks. In

our paper instead variation in risk tolerance is driven by exposure to a business cycle factor,

and the source of heterogeneity, in addition to initial endowment, is the degree of exposure

to that factor. Neither Campbell, Grossman and Wang (1993) or Alvarez and Atkenson

(2017) analyzes the dynamics of leverage and the distribution of leverage in the population.

Finally, a recent literature (Barro and Mollerus (2014) and Caballero and Fahri (2014))

7See for instance Dynarski and Sheffrin (1987), Cochrane (1991), Mace (1991) and Townsend (1994).
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studies the determinants of the supply of safe assets and its connection to aggregate activity.

In our model all debt is indeed risk free and the supply of safe securities is determined by the

risk bearing capacity of the wealthiest and/or least risk averse agents in the population. Im-

portantly we are interested in the dynamics of the supply of safe assets and how it fluctuates

with aggregate economic conditions.

The paper is structured as follows. The next section presents the model. Section 3

characterizes the optimal risk sharing arrangement. Decentralization of the efficient alloca-

tion and characterization of the competitive equilibrium are covered in Section 4. Section 5

evaluates the model quantitatively and Section 6 concludes. All proofs are in the Appendix.

2. The model

Preferences. There is a continuum of agents endowed with log utility preferences defined

over consumption Cit in excess of agent-specific external habit indices Xit:

u (Ci,t, Xi,t, t) = e−ρt log (Cit −Xit)

Agents are heterogeneous in the habit indices Xit, which are given by:8

Xit = git

(
Dt −

∫
Xjtdj

)
(1)

That is, the habit level Xit of agent i is proportional to the difference between aggregate

output Dt and the average habit
∫
Xjtdj, which we call the excess output henceforth. A

higher excess output decreases agent i’s utility, an effect that captures a notion of “Envy

the Joneses.” As we shall show, the excess output
(
Dt −

∫
Xjtdj

)
is in fact increasing in the

utility of the representative agent and thus is an index of the “happiness” of the Joneses,

a fact that makes agent i less happy as it pushes up his habit level Xit and thus reduces

his utility. Our model is thus an external habit model defined on utility – as opposed to

consumption – in that other people happiness impacts agent i’s utility negatively.

The sensitivity of agent i’s habit Xit to aggregate excess output (Dt −
∫
Xjtdj) depends

on the agent-specific proportionality factor git, which is heterogeneous across agents and

depends linearly on a state variable, to be described shortly, Yt:

git = aiYt + bi (2)

8Throughout, the notation
∫

xjdj denotes the integral of xj over its density fx(xj), which we do not
specify for now to avoid notational clutter.
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where ai > 0 and bi are heterogeneous across agents and such that
∫
aidi = 1.

Endowment. Aggregate endowment – which we also refer to as dividends or output –

follows the process
dDt

Dt
= µD dt + σD(Yt) dZt (3)

where the drift rate µD is constant.9 The volatility σD(Yt) of aggregate endowment – which

we refer to as economic uncertainty – depends on the state variable Yt, which follows

dYt = k (Y − Yt) dt− v Yt

[
dDt

Dt

− µDdt

]
(4)

That is, Yt increases after bad aggregate shocks, dDt

Dt
< µDdt, and it hovers around its central

tendency Y . It is useful to interpret Yt as a recession indicator : During good times Yt is

low and during bad times Yt is high. We assume throughout that Yt is bounded below by

a constant λ ≥ 1. This technical restriction is motivated by our preference specification

above and it can be achieved by assuming that σD(Yt) → 0 as Yt → λ (under some technical

conditions). We otherwise leave the diffusion terms σD(Yt) in (3) unspecified for now.

At time 0 each agent is endowed with a fraction wi of the aggregate endowment process

Dt. The fractions wi satisfy
∫
widi = 1, and the technical condition

wi >
ai(Y − λ) + λ− 1

Y
(A1)

which ensures that each agent has sufficient wealth to ensure positive consumption over habit

in equilibrium, and hence well defined preferences. A1 is assumed throughout.

Finally, we set bi = λ(1 − ai) − 1 in (2), which ensures git > 0 for every i and for every

t, and allows for a simple aggregation below. This assumption does not affect the results.

Discussion. Our preference specification differs from the standard external habit model of

Campbell and Cochrane (1999) and Menzly, Santos and Veronesi (2004, MSV henceforth).

In particular, our model is one without consumption externalities as habit levels depend only

on exogenous processes and not on consumption choices. This modeling choice allows the

application of standard aggregation results which considerably simplifies the analysis.

Second, our model features two relevant sources of variation across agents: Initial endow-

ments, as summarized by the distribution of ωi, and the sensitivity of individual habits Xit

to excess output, as summarized by git, which results in differences in attitudes towards risk.

These two dimensions seem a natural starting point to investigate optimal risk sharing as

9The main results of the paper carry through with a richer specification of the drift µD.
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well as portfolio decisions.10 The case of homogeneous preferences (ai = 1 for all i) and/or

homogeneous endowments (wi = 1 for all i) are of course special cases, as is the case in which

habits are constant (v = 0 in (4)). We investigate these special cases as well below.

Notice though that our model features no idiosyncratic shocks to individual endowment

as agents simply receive a constant fraction wi of the aggregate endowment process. In our

model risk sharing motives arise exclusively because agents are exposed differently to busi-

ness cycle fluctuations through their sensitivity to habits, which affects their risk tolerance.

Indeed how sensitive agents are to shocks in excess output depend on the state variable Yt.

Economically, assumption (2) implies that in bad times (after negative output shocks) the

habit loadings git increase, making habit preferences become more important on average.

However, different sensitivities ai imply that changes in Yt differentially impact the external

habit index as git increase more for agents with high ai than for those with low ai.

We highlight that our preference specification has several intuitive features that conform

well with the existing evidence on household behavior. First, households’ preferences are

nonhomothetic in endowment. As we shall see, agents with larger endowments are less risk

averse, and as a result increase the share of wealth invested in the risky asset, an empirical

pattern documented in surveys of household finances even when restricted to those who

participate in the stock market (Wachter and Yogo, 2010).

Second, as habit Xit fluctuates so do agents’ attitudes towards risk. In particular the risk

tolerance of all agents decreases in bad times and it does so more for some agents than for

others (see expression (13) below). This behavior is consistent with the evidence in Guiso,

Sapienza and Zingales (forthcoming). Using a large sample of clients of an Italian bank

they show that a measure of risk aversion increased after the 2008 financial crisis even when

their wealth or consumption did not decline. While in our one-factor model all variables are

perfectly correlated, independent variation in Xit would generate such behavior. Differences

in attitudes towards risk is a critical channel in our model as it is the reason why agents

trade to share aggregate risk. If during bad times the risk aversion of agent i increases more

than the one of agent j, for instance, then agent i wants to sell the risky asset to agent j.11

Finally, as discussed below in more detail, the portfolio allocation predictions of our model

are consistent with the empirical evidence of Calvet and Sodini (2014), who document the

importance of habit formation to explain the allocation strategies of Swedish households.

10For instance, two recent theoretical contributions that consider these two sources of cross sectional
variation are Longstaff and Wang (2012) and Bolton and Harris (2013). Empirically these sources of variation
have been investigated by, for example, Chiappori and Paeilla (2011) and Calvet and Sodini (2014).

11There is substantial evidence of cross sectional dispersion in attitudes towards risk in the population.
See, for instance, Barsky, Juster, Kimball and Shapiro (1997).
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3. Optimal risk sharing

As already mentioned, markets are complete and therefore standard aggregation results

imply that a representative agent exists, a planner, that solves the program

U (Dt, {Xit}, t) = max
Cit

∫
φiu (Cit, Xit, t) di subject to

∫
Citdi = Dt (5)

where all Pareto weights φi > 0 are set at time zero, renormalized such that
∫
φidi = 1 and

are consistent with the initial distribution of endowments in a way to be described shortly.

The first order condition implies that

uC(Cit, Xit, t) =
φie

−ρt

Cit −Xit
= Mt for all i, (6)

whereMt is the Lagrange multiplier associated with the resource constraint in (5).12 Straight-

forward calculations13 show that

Mt =
e−ρt

Dt −
∫
Xjtdj

and Cit = (git + φi)

(
Dt −

∫
Xjtdj

)
. (7)

The optimal consumption of agent i increases if the excess output, Dt−
∫
Xjtdj, increases

or if the habit loading git increases. This is intuitive, as such agents place relatively more

weight on excess output and thus want to consume relatively more. In addition, agents with

a higher Pareto weight φi also consume more as they are favored by the social planner.

We finally aggregate total optimal consumption and impose market clearing to obtain

Dt =

∫
Citdi =

[∫
(git + φi) di

](
Dt −

∫
Xitdi

)
. (8)

Using
∫
φidi = 1, we can solve for the equilibrium excess output as

Dt −

∫
Xitdi =

Dt∫
gitdi + 1

> 0. (9)

This intermediate result also shows that individual excess consumption Cit−Xit is positive for

all i, which ensures all agents’ utility functions are well defined.14 Notice also an important

implication of (9) and that is that preferences can be expressed as

u (Ci,t, Xi,t, t) = e−ρt log (Cit − ψitDt) with ψit ≡
git∫

gitdi + 1
. (10)

12This result was first derived by Borch (1962, equation (1) p. 427).
13It is enough to solve for Cit in (6), integrate across agents (recall

∫
φidi = 1), and use the resource

constraint to yield Mt. Plugging this expression in (6) yields Cit.
14To see this, substitute the excess output into (7) and use (1). Given git in (2), we have

∫
gitdi + 1 = Yt.
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Individual agents compare their own consumption to aggregate endowment properly scaled

by ψit, which is agent specific and dependent on Yt. Roughly agents care about their relative

standing in society, which is subject to fluctuations. It is these fluctuations what introduces

motives for risk sharing. The next proposition solves for the Pareto weights and the share

of the aggregate endowment that each agent commands.

Proposition 1 (Efficient allocation). Let the economy be at its stochastic steady state at

time 0, Y0 = Y , and normalize D0 = ρ. Then (a) the Pareto weights are

φi = aiλ+ (wi − ai)Y + 1 − λ (11)

(b) The share of the aggregate endowment accruing to agent i is given by

Cit =

[
ai + (wi − ai)

Y

Yt

]
Dt or sit ≡

Cit

Dt
= ai + (wi − ai)

Y

Yt
(12)

Pareto weights (11) are increasing in the fraction of the initial aggregate endowment wi

and decreasing in habit sensitivity ai. The first result is standard. To understand the second,

given optimal consumption (7), agents with higher sensitivity ai have a higher habit loading

git = ai(Yt − λ) + λ − 1 and thus would like to consume more. Given (7), for given initial

endowment wi, the Pareto weight φi must then decline to ensure that such consumption can

be financed by the optimal trading strategy.

Equation (12) captures the essential properties of the optimal risk sharing rule, that

is, agents with high endowment wi or low habit sensitivity ai enjoy a high consumption

share sit = Cit/Dt during good times, that is, when the recession indicator Yt is low, and

vice versa. To grasp the intuition consider first the curvature of the utility function of an

individual agent, which we refer to as “risk aversion” for simplicity:

Curvit = −
Citucc(Cit, Xit, t)

uc(Cit, Xit, t)
= 1 +

ai(Yt − λ) + λ− 1

wiY − ai(Y − λ) − λ + 1
. (13)

Expression (13) shows that agents with higher endowment wi or lower habit sensitivity

ai have lower risk aversion. Moreover, an increase in recession indicator Yt increases the

curvature of every agent, but more so for agents with a high habit sensitivity ai or low

endowment wi. These variations in curvature generates the need for risk sharing as embedded

in the sharing rule (12).

Preference heterogeneity and business cycle variation combine to determine the planner’s

transfer scheme needed to support the optimal allocation. Let τ it > 0 be the transfer received
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by agent i at time t above her endowment wiDt; if instead the agent consumes below her

endowment then τ it < 0. Trivial computations prove the next corollary.15

Corollary 2 The transfers that implement the efficient allocation are given by

τ it = − (wi − ai)

(
1 −

Y

Yt

)
Dt. (14)

Notice that agents for whom wi − ai > 0 receive transfers, τ it > 0, when Yt < Y , that is in

good times, and pay τ it < 0 in bad times, when Yt > Y . The opposite is the case for the

agents for whom wi − ai < 0. In effect, optimal risk sharing requires agents with wi − ai > 0

to insure agents with wi − ai < 0.

We emphasize an important attribute of our model and that is that habits are key to

deliver all the results in our paper. Indeed, assume that Yt = Y for all t (i.e. v = 0 in (4)).

In this case our model collapses to an economy populated with agents with log preferences,

the share of consumption of each agent is simply sit = wi and, as it will be shown below,

no trading occurs amongst agents. Thus, our model does not deliver risk sharing motives

beyond what is induced by the habit features of our preference specification.

4. Competitive equilibrium

4.1. Decentralization

Financial markets. Having characterized the optimal allocation of risk across agents in

different states of nature we turn next to the competitive equilibrium that supports it.

Clearly we can introduce a complete set of Arrow-Debreu markets at the initial date, let

agents trade and after that simply accept delivery and make payments. It was Arrow’s

(1964) original insight to show that decentralization can be achieved with a sparser financial

market structure. There are obviously many ways of introducing this sparser financial market

structure but here we follow many others and simply introduce a stock market and a market

for borrowing and lending. Specifically we assume that each of the agents i is endowed with

an initial fraction wi of a claim to the aggregate endowment Dt. We normalize the aggregate

number of shares to one and denote by Pt the price of the share to the aggregate endowment

process, which is competitively traded. Second, we introduce a market for borrowing and

lending between agents. Specifically we assume that there is an asset in zero net supply, a

15Simply subtract from the optimal consumption allocation (12) the consumption under autarchy, wiDt.
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bond, with a price Bt, yielding an instantaneous rate of return of rt, so that Bt = e
R t
0

rudu.

Both Pt and rt are determined in equilibrium. Because all quantities depend on one Brownian

motion (dZt), markets are dynamically complete.

The portfolio problem. Armed with this we can introduce the agents’ problem. Indeed,

given prices {Pt, rt} agents choose consumption Cit and portfolio allocations in stocks Nit

and bonds N0
it to maximize their expected utilities

max
{Cit,Nit,N

0

it}
E0

[∫
∞

0

e−ρt log (Cit −Xit) dt

]

subject to the budget constraint equation

dWit = Nit(dPt +Dtdt) +N0
itBtrtdt− Citdt

with initial condition Wi,0 = wiP0.

Definition of a competitive equilibrium. A competitive equilibrium is a series of

stochastic processes for prices {Pt, rt} and allocations {Cit, Nit, N
0
it}i∈I such that agents

maximize their intertemporal utilities and markets clear
∫
Citdi = Dt,

∫
Nitdi = 1, and

∫
N0

itdi = 0. The economy starts at time 0 in its stochastic steady state Y0 = Y . Without

loss of generality, we normalize the initial output D0 = ρ for notational convenience.

The competitive and the decentralization of the efficient allocation. We are now

ready to describe the competitive equilibrium and show that it indeed supports the efficient

allocation. We leave the characterization of the equilibrium for the next section.

Proposition 3 (Competitive equilibrium). Define the surplus consumption ratio as in Camp-

bell and Cochrane (1999) and Menzly, Santos, and Veronesi (2004) as

St =
Dt −

∫
Xitdi

Dt
=

1

Yt
, (15)

where the last equality stems from (9). Denote with some mild abuse of notation σD(Yt) =

σD(St). Then the following price processes and allocations support the efficient allocation

(12) as a competitive equilibrium outcome:

1. Stock prices and interest rates

Pt =

(
ρ + kY St

ρ (ρ+ k)

)
Dt (16)

rt = ρ+ µD − (1 + v)σ2
D(St) + k

(
1 − Y St

)
(17)
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2. The position in bonds N0
itBt and stocks Nit of agent i at time t are, respectively,

N0
itBt = −v (wi − ai)H (St)Dt (18)

Nit = ai + (ρ+ k)(1 + v) (wi − ai)H (St) (19)

where

H (St) =
Y St

ρ+ k(1 + v)Y St

> 0 (20)

4.2. Asset prices

The stock price in Proposition 3 is identical to the one found in MSV, which obtained in

a representative consumer model. The reason is that our model does indeed aggregate to

yield a representative consumer similar to the one in that paper. Indeed, having solved for

the Pareto weights (11) and the individual consumption allocations we can substitute back

in the objective function in (5) and obtain the equilibrium state price density.

Proposition 4 (Representative agent and stochastic discount factor). The representative

agent has utility function (up to a constant):

U (Dt, {Xit}, t) = e−ρt log

(
Dt −

∫
Xjtdj

)
(21)

The equilibrium state price density is

Mt = e−ρtD−1
t S−1

t . (22)

Given the risk-free rate rt in (17), the stochastic discount factor follows

dMt

Mt
= −rtdt− σM,tdZt with σM,t = (1 + v)σD(St), (23)

The representative agent utility function (21) is increasing in excess output
(
Dt −

∫
Xjtdj

)
.

This result provides the theoretical foundation to the “habit in utility” interpretation of

agents’ preference specification in equation (1). Each agent i’s habit Xit increases in the

representative agent’s utility, which becomes the meter of comparison of his well being.

The state price density in (22) is similar to the one in Campbell and Cochrane (1999) and

MSV. Equation (15) shows that the recession indicator Yt is the inverse surplus consumption

ratio of MSV. Indeed, as in this earlier work, Yt can be shown to be linearly related to the

aggregate risk aversion of the representative agent (see footnote 4 in MSV).
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We are now ready to discuss the asset prices in Proposition 3. Start, briefly, with the risk

free rate rt. The terms ρ+ µD − σ2
D(St) in (17) are the standard log-utility terms, namely,

time discount, expected aggregate consumption growth, and precautionary savings. The

additional two terms, k(1 − Y St) and v σD(St), are additional intertemporal substitution

and precautionary savings terms, respectively, associated with the external habit features of

the model (see MSV for details).

As for the stock price (16), the intuition for this expression is by now standard (Campbell

and Cochrane (1999) and MSV). A negative aggregate shock dZt < 0 decreases the price

directly through its impact on Dt, but it also increases the risk aversion Yt and hence reduces

St = 1/Yt, which pushes down the stock price Pt further. External habit persistence models

thus generate variation in prices that are driven not only by cash-flow shocks but also discount

effects. Indeed, we show in the Appendix the volatility of stock returns is

σP (St) = σD(St)

(
1 +

vkY St

ρ+ kY St

)
. (24)

In addition, as shown in (23), the market price of risk also is time varying, not only

because of the variation in aggregate consumption volatility (σD(St)) but also because of

the variation in the volatility of aggregate risk aversion, given by vσD(St). In MSV, a lower

surplus consumption ratio St increases the average market price of risk and makes it time

varying. This generates the predictability of stock returns. Indeed, denoting the total stock

return as dRP = (dPt +Dtdt)/dt, the risk premium

Et [dRP − rtdt] = σM(St)σP (St)dt (25)

increases compared to the case with log utility both because the aggregate amount of risk

σP (St) increases and because the market price of risk σM (St) increases.

An important property of asset prices (Pt and rt) in our model is the following:

Corollary 5 Asset prices are independent of the endowment distribution across agents as

well as the distribution of preferences. In particular the model has identical asset pricing

implications even if all agents are identical, i.e. ai = 1 and wi = 1 for all i.

The asset pricing implications of our model are thus “orthogonal” to its cross sectional

implications: Pt in equation (16) and rt in (17) are independent of the distribution of either

current consumption or wealth in the population. This property distinguishes our model

from the existing literature such as Longstaff and Wang (2012) or Chan and Kogan (2002).
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Importantly, in this earlier literature the variation in risk premia is driven by endogenous

changes in the cross-sectional distribution of wealth. Roughly more risk-tolerant agents hold

a higher proportion of their wealth in stocks. A drop in stock prices reduces the fraction

of aggregate wealth controlled by such agents and hence their contribution to the aggregate

risk aversion. The conditional properties of returns thus rely on strong fluctuations in the

cross sectional distribution of wealth.

In contrast, in the present paper agents’ risk aversions change, which in turn induces

additional variation in premia and puts less pressure on the changes in the distribution

of wealth to produce quantitatively plausible conditional properties for returns. Indeed,

Corollary 5 asserts exactly that the asset pricing implications are identical even when agents

are homogeneous and thus there is no variation in cross-sectional distribution of wealth.

Corollary 5 thus allows us to separate cleanly the asset pricing implications of our model

from its implications for trading, leverage and risk sharing, which we further discuss below.

In particular, the corollary clarifies that equilibrium prices and quantities do not need to be

causally related to each other, but rather comove with each other because of fundamental

state variables, such as St in our model.

4.3. Leverage and risk sharing

We turn next to the characterization of the portfolio strategies in Proposition 3.

Corollary 6 (Individual leverage). (a) The position in bonds is N0
itBt < 0 if and only if

wi − ai > 0. That is, agents with wi > ai take on leverage.

(b) The investment in stock of agent i in proportion to wealth is

NitPt

Wit
=

1 + v
(
1 − ρ

ρ+Y [k+(ρ+k)(wi−ai)/ai]St

)

1 + v
(
1 − ρ

ρ+Y kSt

) > 1 if and only if wi − ai > 0. (26)

Recall that, as shown in equation (14), optimal risk sharing requires transfers from agents

with wi − ai > 0 to those with wi − ai < 0 when Yt is high (or St is low) and the opposite

when Yt is low (or St is high). Equations (18) and (19) show the portfolios of stocks and

bonds needed to implement the efficient allocation. This is achieved by having the agents

with large risk bearing capacity, agents with wi − ai > 0, issue debt in order to insure those

agents with lower risk bearing capacity, wi − ai < 0. Part (b) of Corollary 6 shows that
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indeed agents with wi − ai > 0 lever up to achieve a position in stocks that is higher than

100% of their wealth.

Expression (26) shows that for given level of habit sensitivity ai, agents with higher

wealth wi invest comparatively more in stocks. Indeed, habits render the agents’ utilities

nonhomothetic in wealth which results in a positive relation between wealth and the portfolio

share in the risky asset. As shown, for instance, by Wachter and Yogo (2010, section 2.2)

this is a result with strong empirical support.

Obviously, nonhomotheticity can obtain in a variety of settings.16 But expression (26)

has some specific implications that have been taken to the data by Calvet and Sodini (2014).

Indeed we show in the appendix that expression (26) can be written as

Ni,tPt

Wi,t
=

SR (St)

σP (St)

(
1 −

θiDt

Wi,t

)
, (27)

where SR (St) = (1 + v)σP (St) is the Sharpe ratio of the risky asset and θi is a household

specific constant. Equation (27) is a version of equation (2) in Calvet and Sodini (2014, page

876).17 These authors test a variety of implications of (27) in a large panel of Swedish twins

(which serves to control for differences in risk preferences) and find strong support for them.

Expressions (18) and (19) show that the amount of leverage and asset allocation depend

on the function H(St), which is time varying as the recession indicator Yt = S−1
t moves over

time. We discuss the dynamics of leverage in the next section.

4.4. The supply of safe assets: Leverage dynamics

A particular feature of our model is that that the risk attitudes of the agents in the economy

fluctuate with the recession indicator Yt (see equation (13)). As Yt increases, for instance,

the risk bearing capacity of the agents for whom wi − ai > 0 decreases precisely when the

demand for insurance by the agents with wi − ai < 0 increases. The supply of safe assets, to

use the term that has become standard in the recent literature, may decrease precisely when

16Wachter and Yogo (2010) for instance write a model in which nonhomotheticity obtains because the
agents have non-separable preferences over two kinds of goods, a basic good and a luxury one.

17Equation (2) in Calvet and Sodini (2014) is φit = SR

γσP
(1− θiXit/Wit), where Xi,t is a subsistence or

habit level in consumption. This equation obtains in a variety of habit setups (see Section II of the internet
appendix of Calvet and Sodini (2014)). When we map our habit formulation to the standard one, as in
expression (10), aggregate output, Dt, takes the place of “habit” in traditional models.
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it is most needed,18 an issue explored by some recent papers.19 In this section we focus on

the dynamics of the aggregate debt-to-output ratio:

L(St) ≡
−
∫

i:N0

it<0
N0

itBtdi

Dt

where the negative sign is to make this number positive. Given (18) it is easy to see that

L(St) = vK1H (St) where K1 ≡

∫

i:(wi−ai)>0

(wi − ai) di > 0, (28)

where H (St) was given in (20). Given that H(St) is strictly increasing in St, the following

corollary obtains:

Corollary 7 (Procyclical aggregate debt). The aggregate debt-to-output ratio L(St) is pro-

cyclical, increasing in good times (high St) and decreasing in bad times (low St).

Risk sharing and leverage are in our model two related but distinct concepts. Efficient

risk sharing requires marginal utilities scaled by the Pareto weights to be equated across

households (see equation (6)). How the competitive equilibrium implements the efficient

allocation described in Proposition 1 depends on the specific financial market structure

assumed and thus so do the leverage implications of our model. With this in mind, it

is useful to consider how the portfolio allocations in Proposition 3 implement the efficient

allocation described in Proposition 1 through a standard replication argument. Let Pi,t be

the value of the contingent claim that at each point in time and state delivers as a dividend

the consumption of agent i, Ci,t, associated with the efficient allocation (see equation (12)).

The value of such contingent claim, if it existed, would be (see Appendix, expression (62)):

Pit = Et

[∫
∞

t

Mτ

Mt
Ciτdτ

]
=
ρai + (ρ(wi − ai) + kwi)Y St

ρ(ρ+ k)
Dt. (29)

Clearly a financial structure that features these contingent claims can equally implement

the efficient allocation: Each agent would buy his corresponding contingent claim at date 0

and consume the dividends Ci,t throughout. Following Cox and Huang (1989) the portfolio

policy in Proposition 3 simply replicates the cash-flows of this contingent claim

NitPt +N0
itBt = Pit. (30)

18In our model the debt issued by the agents with the largest risk bearing capacity is safe because they
delever as negative shocks accumulate in order to maintain their marginal utility bounded away from infinity.

19See for instance Barro and Mollerus (2014), who propose a model based on Epstein-Zin preferences to
offer predictions about the ratio of safe assets to output in the economy. Gorton, Lewellen and Mettrick
(2012) and Krishnamurthy and Vissing-Jorgensen (2012) provide empirical evidence regarding the demand
for safe assets. In all these papers the presence of “outside debt” in the form of government debt plays a
critical role in driving the variation of the supply of safe assets by the private sector, a mechanism that is
absent in this paper.
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For this to be satisfied for every t (and pay Cit as dividend), it must be the case that the

portfolio and the security have the same sensitivity to shocks dZt. Denoting by σPi(St) the

volatility of Pit, the portfolio allocation Nit and N0
it must then satisfy

Nit =
Pit σPi(St)

Pt σP (St)
and N0

itBt = Pit −NitPt = Pit

(
1 −

σPi(St)

σP (St)

)
. (31)

The bond position, N0
itBt, depends on the ratio of volatilities σPi(St)

σP (St)
: If this ratio is

greater than one, the agent is leveraging his investment in the stock market. The volatility

of the contingent claim is

σPi(St) = σD(St)

(
1 +

v (k + (ρ+ k)(wi − ai)/ai) Y St

ρ+ (k + (ρ + k)(wi − ai)/ai)Y St

)
. (32)

Comparing this expression with σP (St) in (24), we see that σPi(St) > σP (St) if and only

if wi − ai > 0. That is, agents with wi − ai > 0 leverage their portfolio. Intuitively, from

the optimal risk sharing rule (12), agents with a high wi − ai > 0 have a high consumption

share in good times, when St is high, and a low consumption share in bad times, when St is

low. This particular consumption profile implies that the value of the contingent claim Pit is

more sensitive to discount rate shocks than the stock price Pt. As a result the “replicating”

portfolio requires some leverage to match such sensitivity.

Equation (31) also highlights the reason why the aggregate debt-to-output ratio, L (St),

increases in good times (high St). This is due to a “level effect”: from (32) and (24) the

ratio of volatilities actually declines as St increases. This is intuitive as the hypothetical

contingent claim pays out more in good times and hence becomes less sensitive to discount

rate shocks then. However, from (29) the value of the hypothetical contingent claim Pit

increases in good times because the discount rate declines and more than overcomes the

decline in the ratio of volatilities. As a result, aggregate debt increases in good times.

While a procyclical aggregate debt-to-output ratio may seem intuitive, it is not normally

implied by, for instance, standard CRRA models with differences in risk aversion. In such

models, less risk averse agents borrow from more risk averse agents, who want to hold riskless

bonds rather than risky assets. As aggregate wealth becomes more concentrated in the hands

of less risk-averse agents, the need of borrowing and lending declines, which in turn decreases

aggregate debt. Moreover, a decline in aggregate uncertainty – which normally occur in good

times – actually decreases leverage in such models, as it reduces the risk-sharing motives of

trade. In our model, in contrast, the decrease in aggregate risk aversion in good times make

agents with high-risk bearing capacity even more willing to take on risk and hence increase

their supply of risk-free assets to those who have a lower risk bearing capacity.

18



Finally notice that good times, periods when St is high, also periods when expected excess

returns are low as the market price of risk σM(St) and so is typically aggregate uncertainty

σD(St).
20 Thus high the aggregate debt-to-output ratio L(St) should predict low future

excess returns.

4.5. Individual leverage and consumption

The following corollary follows immediately from Proposition 1 and Corollary 6.

Corollary 8 Agents with higher debt enjoy higher consumption share during good times.

After a sequence of good economic shocks aggregate risk aversion declines. Thus, agents

with positive (wi − ai) increase their debt and experience a consumption “boom”. The

two effects are not directly related, however. The increase in consumption is due to the

higher investment in stocks that have higher payoffs in good times. Good times mean lower

aggregate risk aversion and thus these same agents take on more leverage. Hence, our model

predicts a positive comovement of leverage and consumption at the household level. An

implication of this result is that agents who took on higher leverage during good times are

also those that suffer a bigger drop in consumption growth as St mean reverts. In particular,

we have the following corollary:

Corollary 9 Agent i’s consumption growth satisfies

dCit

Cit

= µC,i,tdt+ σC,i,tdZt (33)

where

µC,i,t = µD +
(wi − ai)Y St

ai + (wi − ai)Y St

F (St) (34)

σC,i,t =

(
1 +

v(wi − ai)Y St

ai + (wi − ai)Y St

)
σD(St) (35)

with

F (St) = k(1 − Y St) + (1 + v)v σ2
D(St) (36)

If σD(St) is decreasing in St with σD(λ−1) = 0, then the function F (S) has F ′(S) < 0

and F (0) > 0 and F (λ−1) = k(1 − λ−1Y ) < 0. Thus, there exists a unique solution S∗ to

20Note that we have not made any assumptions yet on σD(St), except that it vanishes for St → λ−1.
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F (S∗) = 0 such that for all i and j with wi − ai > 0 and wj − aj < 0 we have

E

[
dCit

Cit

]
< µD < E

[
dCjt

Cjt

]
for St > S∗ (37)

E

[
dCit

Cit

]
> µD > E

[
dCjt

Cjt

]
for St < S∗ (38)

This corollary shows that cross-sectionally agents with high wi − ai > 0 have a lower

expected growth rate of consumption when St is high. We know that these are also times

when such agents are heavily in debt. It follows then that agents who are heavily leveraged

enjoy both a high consumption boom in good times, but a lower future expected consumption

growth.21 These agents also expect a higher consumption growth when St is low. Therefore,

Corollaries 7 and 9 imply the following:

Corollary 10 Periods with high aggregate debt-to-output ratio L(St) forecast lower con-

sumption growth for highly levered agents compared to those with lower leverage.

That is, according to Corollary 10, periods of very high aggregate debt should follow on

average by periods in which levered agents “retrench” and experience consumption growth

that is comparatively lower than those agents who did not take on leverage. Essentially,

agents with high wi − ai are less risk averse and do not mind consumption fluctuations:

they borrow and consume more in good times knowing that they will do the opposite in bad

times. The opposite for agents with low wi−ai, who prefer a more stable consumption path.

This implication of our model speaks to some of the recent debates regarding the low

consumption growth experienced by levered households following the Great Recession. Some

have argued that the observed drop in consumption growth was purely due to a wealth effect,

as levered households tend to live in counties that experienced big drops in housing values,

whereas others have emphasized the critical role of debt in explaining this drop.22 Clearly

these effects are important but our contribution is to show that high leverage followed by

low consumption growth is precisely what arises from standard risk sharing arguments in

models that can address the observed conditional properties of asset returns, as external

habit models do.

21Parker and Vissing-Jørgensen (2009) use the Consumer Expenditure (CEX) Survey to show that the
consumption growth of high-consumption households is significantly more exposed to aggregate fluctuations
than that of the typical household.

22See for instance Mian and Sufi (2014, in particular pages 39-45) for a clear exposition of this debate.
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4.6. Active trading in stocks and bonds

Corollary 11 (Active trading) (a) Agents with positive leverage (i.e. with wi − ai > 0)

increase their stock position in good times (St high) and decrease it in bad times (St low.)

Agents with negative leverage (i.e. with wi − ai < 0) do the opposite.

(b) Agents with higher absolute difference |wi − ai| trade more in response to changes to

the aggregate surplus consumption ratio St.

Corollary 11-a says that agents with positive leverage increase the number of units of

stocks purchased in good times, and decrease them in bad times. That is, these agents

actively trade in stocks. In a model with passive investors, an agent who is long stocks may

mechanically find himself with a higher allocation in stocks during good times because the

stock yields good returns in good times. Corollary 11-a instead says that an agent who

is leveraged (wi − ai > 0) actively increases leverage in good times to buy more shares of

stocks in such times. Such agent acts as a trend chaser, as he increases his stock positions

after good market news. Conversely, agents with wi − ai < 0 do the opposite and hence act

as contrarian investors. Corollary 11-b in addition predicts that there is heterogeneity in

trading in that some agents react more to shocks in discount rates as proxied by St.

Corollary 11-a also implies that levered traders actively deleverage as times are getting

worse (St declines) by actively selling the risky assets. In fact, deleveraging is specially

pronounced during “crisis” times, as shown next:

Corollary 12 (“Panic deleveraging”) The function H(St) in (20) is increasing and concave

in St. Therefore, both leverage and asset holdings of levered agents decrease by an increasing

larger amount as time get worse, i.e. as St declines.

The concavity of H (St) has an important economic implication: during good times (St

high) we should observe higher aggregate debt and higher asset holdings of levered agents,

but less variation of both compared to bad times (St low). This implies that as St declines,

levered agents decrease their amount of debt by an increasingly larger amount, giving the

impression of a “panic deleveraging” during bad times.

Because deleveraging occurs as both the stock price plunges and the wealth of levered

investors drops, an observer may be tempted to conclude that the “selling pressure” of

deleveraging agents is the cause of the drop in the stock price. While in reality such effects

may occur, in our model the joint dynamics of deleveraging and price drop happens for the
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simple reason that during bad times aggregate risk aversion increases. Indeed, as shown

in Corollary 5, the same asset pricing implications obtain even without heterogeneity and

hence no trade. Our model then should caution against the excessive reliance on the simple

intuition of price declines due to the “price pressure” of some agents in the economy.

4.7. Intermediary asset pricing and the leverage risk price

Our model also sheds light on recent empirical findings in the “intermediary asset pricing”

literature (Adrian, Etula and Muir (2014) and He, Kelly and Manela (2016)), which is in

turn inspired by some recent theoretical advances (He and Krishnamurthy, 2013). This

literature emphasizes that households access markets for risky securities largely through

financial intermediaries. Intermediary capital is needed to facilitate this access and capital

ratios are priced risk factors. Importantly, intermediaries lever up, issuing the safe securities

that households (and other agents) use to substitute intertemporally as well as manage

their risk exposures. Because households are not allowed to directly invest in the risky

asset, intermediaries therefore effectively transform the safe assets held by households into

investments in the risky asset and effectively price the risky asset.

This is also the case here. Indeed in our model, agents who take on leverage to purchase

the risky assets also supply risk-free assets to those agents who want to limit their risk

exposure (see the discussion in Section 4.4.) and thus they are akin to financial intermediaries.

The only difference with the intermediary asset pricing literature is that all agents can invest

in the risky asset themselves and therefore the marginal valuation of the risky asset is the

same for both leveraged and unleveraged agents.

The intermediary asset pricing literature finds that the capital equity ratio of financial

intermediaries predicts returns in the cross section. A debate in this literature is whether

there is a negative or positive price of risk associated with shocks to the capital ratio of the

financial intermediaries (see Adrian, Etula and Muir (2014) and He, Kelly and Manela (2016),

respectively). Our model sheds light on this debate by showing first that agents’ leverage

is a priced factor and, second, that the leverage risk price has a different sign depending on

whether we measure intermediaries’ leverage using market prices or not.

Formally, in our one-factor model the conditional CAPM holds. If we could easily measure

St in the data, we could compute expected returns off the conditional CAPM. However,

suppose, reasonably, that the surplus St is not observable, but a monotonic transformation

is, `t = Q(St). Let d`t = µ`,tdt+σ`,tdZt where µ`,t and σ`,t can be derived from Ito’s lemma.
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In this case, the state price density can be expressed as

Mt = e−ρtD−1
t S−1

t = e−ρtD−1
t q(`t)

−1

where St = q(`t) = Q−1(`t). The volatility of the SDF is thus σM,t = σD,t + q′(`t)
q(`t)

σ`,t and

therefore the risk premium for any asset with return dRi,t can be written as

Et[dRit − rtdt] = Covt

(
dDt

Dt
, dRit

)
+
q′(`t)

q(`t)
Covt (d`t, dRit) (39)

The first term corresponds to the usual log-utility, consumption-CAPM term, while the

second term corresponds to the additional risk premium due to shocks to `t.
23

Consider now a highly leveraged agent i in our economy, i.e. one with wi > ai. These

agent issues risk-free bonds to other agents and use the proceeds to purchase risky securities.

We can consider such agent an intermediary. Consider now the leverage of such agent. We

have two potential measures, namely, its debt-to-output ratio,

`it = Q
D/O
it (St) = −

N0
itBt

Dt
= v (wi − ai)H (St) ;

or its debt-to-wealth ratio

`it = Q
D/W
it (St) = −

N0
itBt

Wit

=
σWi(St)

σP (S)
− 1.

These two measures of leverage have different properties. In particular, Q
D/O
it (St) is

monotonically increasing in St while Q
D/W
it (St) is monotonically decreasing in St. We then

obtain the following corollary:

Corollary 13 (price of leverage risk) (a) The price of leverage risk is positive, λ
D/O
t =

qD/O ′

(`it)

qD/O(`it)
> 0, when leverage is measured as the debt-to-output ratio (“book leverage”).

(b) The price of leverage risk is negative, λ
D/W
t = qD/W ′

(`it)

qD/W (`it)
< 0, when leverage is

measured as the debt-to-wealth ratio (“market leverage”).

The economics behind this corollary are important: Our model generates strong discount

effects that affect the valuation of securities. While intuitively in our model deleveraging oc-

curs in bad times – which coincide with high marginal utility – the strong increase in discount

rates pushes market prices even lower, which in turn increase leverage ratios computed off

23This decomposition is for illustrative purposes only. All shocks are perfectly correlated in our model and
so there is only one priced of risk factor.
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market prices. The sign of leverage risk prices therefore depends on the definition of leverage

employed, and specially on whether market prices are used or not in the computation.24

To link these results to the empirical evidence in Adrian, Etula and Muir (2014) and

He, Kelly and Manela (2016), one could equate the levered agent’s debt-to-output ratio to

the “book leverage” of financial intermediaries, as it measures the agent’s amount of debt;

this leverage measure does not use market prices, and it is in fact procyclical. In contrast, a

levered agent’s debt-to-wealth ratio is akin to a measure of “market leverage” for financial

intermediaries, as wealth is computed from market prices, which are affected by discount

effects and is in fact countercyclical. These two different measures imply prices of “leverage

risk” of opposite signs. Finally, we also note that qD/O(`t) and qD/W (`t) are non-linearly

related with each other, and therefore the results of cross-sectional tests would not be the

exact opposite, as found in the literature (see He, Kelly, and Manela (2016) and Section 5.3.)

4.8. The dynamics of wealth dispersion

Our model has implications for the dynamics of the cross sectional distribution of wealth.25

Many factors of course matter for the distribution of wealth. For starters in our framework

all wealth is financial and other forms of wealth, such as human capital, are not considered.

Our model though is to our knowledge the first to explicitly consider the effect of discount

rate shocks on the dynamics of the wealth distribution.

The next proposition characterizes the cross sectional dispersion of wealth, whether scaled

by output or aggregate wealth, and its dependence on the surplus-consumption ratio St.

Proposition 14 Let V arCS (ai), V ar
CS (wi), and CovCS (ai, wi) denote the cross-sectional

variance of preference characteristics ai and in share wi of aggregate endowment, and their

covariance, respectively. Then, the cross-sectional variance of wealth-to-output ratio is

V arCS
t

(
Wit

Dt

)
= V arCS (ai)

(
1 − Y St

ρ+ k

)2

+ V arCS (wi)

(
Y St

ρ

)2

+2CovCS (ai, wi)

(
1 − Y St

) (
Y St

)

(ρ+ k) ρ
(40)

24Clearly, the loadings also have opposite signs for the two cases. Because σ`,t = Q′(St)StvσD(St), then
σ`,t > 0 if leverage is the debt-to-output ratio and σ`,t < 0 when it is the debt-to-wealth ratio. Thus,
Covt (d`t, dRit) > 0 in the former case and Covt (d`t, dRit) < 0 in the latter case.

25For a recent piece on the dynamics of the wealth distribution in the USA, see Saez and Zuckman (2016).
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and the cross-sectional variance of wealth shares Wit/
∫

j
Wjdj is

V arCS
t

(
Wit∫

j
Wjdj

)
= V arCS

t

(
Wit

Dt

)(
ρ(ρ+ κ)

ρ+ kY St

)2

(41)

To understand the intuition behind (40), recall first that when Y St = 1, the economy is

at its stochastic steady state, which is the initial condition at time 0 when agents’ wealth is

Wi0 = wi, their initial endowment. Thus, (40) shows that when the system is at its stochastic

steady state, the wealth dispersion is given by the dispersion in endowments wi.

Consider now the case in which the cross-sectional covariance between endowment and

preferences is zero, CovCS(ai, wi) = 0. During good times the surplus consumption ratio St

increases. Whether this variation brings about an increase or decrease in wealth distribution,

however, depends on the importance of the heterogeneity in preferences V arCS (ai) relative

to the dispersion in shares of aggregate endowment across the population. For instance, if

V arCS (ai) = 0, then during good times (high St) the dispersion in wealth increases, while

it decreases during bad times. Intuitively, when V arCS (ai) = 0, all agents differ from each

other only in shares of aggregate endowment. Thus, agents with higher endowments, who

are less risk averse, take on a more leveraged position and their wealth increase during good

times, and so does the dispersion of wealth.

However, if V arCS (wi) = 0, then there is no dispersion in wealth at the aggregate

stochastic steady state Y St = 1, but it otherwise increases, both in good or in bad times,

due to heterogeneous preferences. Agents with low ai are less risk averse and thus take on

leverage. As a consequence, they fare better than more risk averse agents in good times

(St high) but worse in bad times (St low). The dispersion in wealth is thus U-shaped when

heterogeneity is in only in preferences, and not in endowments.

The dispersion of wealth share in (41) is proportional to the dispersion of wealth-to-

output ratio in (40), except that the proportionality factor decreases in good times. This

is due to the increase in aggregate wealth
∫
Wjtdj = Pt in good times. Thus, even if the

dispersion of wealth-to-output ratios increases as St increase, the wealth share may still

decline if discount rate effects are strong enough.

5. Quantitative implications

We now provide a quantitative assessment of the effects discussed in previous sections. The

results in previous sections do not depend on the functional form of σD(Yt) but obviously to
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simulate the model we need to specify one. We opt for a simple expression that bounds how

high the volatility can get:

σD(Yt) = σmax
(
1 − λY −1

t

)
(42)

This assumption implies that dividend volatility increases when the recession index increases,

but it is also bounded between [0, σmax].26 This assumption about output volatility is consis-

tent with existing evidence that aggregate uncertainty increases in bad times (see e.g. Jurado,

Ludvigson, and Ng (2015)), it satisfies the technical condition σD(Y ) → 0 as Yt → λ, and it

also allows us to compare our results with previous literature, as we obtain

dYt = k(Y − Yt)dt− (Yt − λ)vdZt

with v = vσmax which is similar to the one in MSV.27

For the calibration we use the same parameters as in MSV Table 1 to model the dynamics

of Yt. These are are reported in Panel A of Table 1. The only additional parameter is σmax,

which we choose to match the average consumption volatility E[σD(St)] = std[∆ log(Cdata
t )],

where the expectation can be computed from the stationary density of Yt.
28

Figure 1 reports the conditional moments implied by the model as a function of the

surplus-consumption ratio St. As in MSV Figure 1, Panel A reports the stationary distri-

bution of the surplus-consumption ratio St and shows that most of the probability mass is

around S = 0.0294, although St drops considerably below occasionally. The price-dividend

ratio is increasing in St (panel B), while volatility, risk premium and interest rates decline

with St (panel C). Finally, the Sharpe ratio is also strongly time varying, and it is higher in

bad times (low St) and lower in good times (high St). This figure is virtually identical to

Figure 1 in MSV, which highlights that our mild calibration of consumption volatility (with

a maximum of only 6.4%) is such to have a minor on impact on the level of asset prices.

Given the parameters in Panel A of Table 1, we simulate 10,000 years of quarterly data

and report the aggregate moments in Panel B. As in MSV, Table 1, the model fits well

the asset pricing data, though both the volatilities of stock returns and of the risk free rate

are higher than their empirical counterparts.29 Still, the model yields a respectable Sharpe

26The alternative of assuming e.g. σD(Y ) as linear in Yt would result in σD(Y ) potentially diverging to
infinity as Yt increases.

27Technically, we also impose σD(St) converges to zero for St ≤ ε for some small but strictly positive ε > 0
to ensure integrability of stochastic integrals. This faster convergence to zero for a strictly positive number
can be achieved through a killing function, as in Cheriditto and Gabaix (2008). We do not specify such
functions explicitly here, for notational convenience.

28See the Appendix in MSV. In addition, note that in MSV, α = v/σ and therefore we compute v = ασ.
29The volatility of the risk free rate can be substantially reduced by making the natural assumption that

expected dividend growth µD decreases in bad times, i.e. when the recession indicator Yt is high. Indeed,
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Table 1: Parameters and Moments. Panel A reports the calibrated parameters of Menzly, Santos,
and Veronesi (2004), except for the new parameter σmax which is chosen to match the average volatility of
consumption. Panel B reports a set of moments for the aggregate stock market and interest rates, as well as
consumption growth, and compares with the same moments in artificial data obtained from a 10,000-year
Monte Carlo simulation of the model. Panel C similarly reports the R2 of predictability regressions in the
model and in the data, using the price-dividend ratio as predictor.

Panel A. Parameter Estimates

ρ k Y λ v µ σmax

0.0416 0.1567 34 20 1.1194 0.0218 0.0641

Panel B. Moments (1952 – 2014)

E[R] Std(R) E[rf ] Std(rf) E[P/D] Std[P/D] SR E[σt] Std(σt)

Data 7.13% 16.55% 1.00% 1.00% 38 15 43% 1.41% 0.52%
Model 8.19% 25.08% 0.54% 3.77 % 30.30 5.80 32.64% 1.43% 1.18%

Panel C. P/D Predictability R2

1 year 2 year 3 year 4 year 5 year

Data 5.12% 8.25% 9.22% 9.59% 12.45%
Model 14.18% 23.67% 30.01% 33.81% 35.92

ratio of 32.64%. Finally, the simulated model generates an average consumption volatility

of 1.43% with a standard deviation of 1.18%. This latter variation is a bit higher than

the variation of consumption volatility in the data (0.52%), where the latter is computed

fitting a GARCH(1,1) model to quarterly consumption data, and then taking the standard

deviation of the annualized GARCH volatility. Our calibrated number is however lower than

the standard deviation of dividend growth’ volatility, which is instead around 1.50%.

The calibrated model also generates a strong predictability of stock returns (Panel C),

with R2 ranging between 14.18% at one year to 35.92% at 5 year. This predictability is

stronger than the one generated in MSV and also the one in the data. This is due to the

combined effect of time varying economic uncertainty (i.e. the quantity of risk) and time

varying risk aversion (i.e. the market price of risk), which move in the same direction.

in the extreme, by assuming µD(Yt) = µD + (1 − v)σD(Y )2 − k(1 − Y Y −1
t ), which is decreasing in Yt, we

would obtain a constant interest rates r = ρ + µD. No other result in the paper depend on µD(Yt) and thus
all the other results would remain unaltered by the change.
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Figure 1: Conditional Moments. Panel A shows the stationary probability density function of the
surplus consumption ratio St. Panel B shows the P/D ratio as a function of St. Panel C plot the expected
excess return Et [dRP − rtdt], the return volatility σP (St) and the interest rate r(St) as functions of St.
Finally, Panel D shows the Sharpe ratio Et [dRP − rtdt] /σP (St) against St.

5.1. The cross-section of agents’ behavior: Who levers?

We now make some assumptions about the dispersion of initial endowments wi and of pref-

erences ai. A full micro-founded “calibration” is clearly problematic in our setting, given the

types of preference specification. We resort to illustrate the model’s predictions through a

reasonable numerical illustration which yields sensible quantities for some observables, such

as households consumption volatility and debt levels. We assume that the habit loading

parameters ai are uniformly distributed ai ∼ U [1 − a, 1 + a], so as
∫
aidi = 1. The uniform

distribution is a reasonable starting point, as it bounds above the parameter ai.

Endowments wi must meet assumption A1. While distributions can be found such that

ai and wi are independent, A1 severely restricts the dispersion of such distributions. We

instead assume that Pareto weights φi are distributed independently of preferences ai and

obtain the endowments by inverting (11):

wi =
φi + ai(Y − λ) + λ− 1

Y
. (43)

To ensure a skewed distribution of wealth, we assume

φi = e−σwεi−
1

2
σ2

w
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with εi ∼ N(0, 1). Thus,
∫

i
φidi = ECS [φi] = 1. This procedure ensures that the Pareto

weights are positive and hence all the constraints are satisfied. While all agents have random

Pareto weights, and therefore contribute to the representative agent in a random manner, the

procedure implies that agents with higher habit sensitivity ai also have a higher endowment,

a required condition to have well defined preferences in equilibrium.

To guide our choice of parameters a and σφ – the only two parameters that affect the

whole distribution of consumption – we look at moments of individual households’ consump-

tion growth, such as average household consumption growth (arithmetic or log), its mean

and median total and systematic volatility, and the cross-sectional dispersion of both. One

important stumbling block to estimate the total and systematic volatility of household con-

sumption growth is the lack of reliable panel data on households consumption, which has

limited the empirical work on the time-series properties of households’ consumption. How-

ever, Appendix C describes the novel methodology of Santos, Suarez, and Veronesi (2017) to

estimate households’ total and systematic consumption volatility from cross-sectional con-

sumption data, and its application to the Survey of Consumer Expenditure (CEX). For our

estimation, we use the cleaned dataset compiled by Kocherlakota and Pistaferri (2009) which

spans the period 1980–2005.

Panel A of Table 2 reports the results. The average quarterly (arithmetic) growth rate is

6%, a very large number, which is mostly driven by the large cross-sectional heterogeneity in

quarterly growth rates. Indeed, the median is slightly negative and the cross-sectional stan-

dard deviation is 40%, in line with estimates by e.g. Constantinides and Ghosh (2017). The

log-growth indeed shows a slightly negative mean, which is close to the median, highlighting

the positive skewness of the consumption data.

The total quarterly volatility is large, at 36%, and it displays a strong positive skewness, as

its median is much lower at 27%, and its dispersion (standard deviation) is at 42%. Clearly,

much of this quarterly consumption volatility is due to idiosyncratic shocks and residual

seasonalities, which we do not have in our paper.30 The quarterly systematic volatility is

in fact far lower than the total volatility, as we would expect: the average is 9%, and the

median is just 6%. The dispersion is still large, but reasonable, at 10.4%.

Panel B of Table 2 contains the same moments as Panel A but from the simulated

model. We consider various combinations of parameters a of the uniform U [1 − a, 1 + a]

and the dispersion σφ of the lognormal distribution of Pareto weights φ. We focus on the

first set of parameters here and discuss the other combinations in the Internet Appendix.

30As explained in the Appendix, for each household i we mitigate the influence of seasonality by computing
the average σ̂2

it over the three quarters of available variance observations.
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Table 2: Cross-Sectional Parameters and Household Consumption Moments. Panel A reports
the distribution of household consumption growth and their quarterly volatility and systematic volatility
estimated from the Survey of Consumption Expenditures. The estimation methodology is briefly discussed
in the Appendix and fully outlined in Santos, Suarez, and Veronesi (2017). The data are from Kocherlakota
and Pistaferri (2009) and span the period 1980 to 2005. Panel B reports the same quantities in artificial
data. We simulate the model with 5,000 households for a period of 1,000 years. As in the data, estimates
are performed on quarterly data. The parameters of the model are as in Table 1, except for the preference
and Pareto weight parameters ai and φi, which are reported in the first column. We assume ai ∼ U [a, a]
and φ ∼ Log Normal(−1

2σ2
φ, σ2

φ). Each row corresponds to a different parameter choice.

Panel A. Households Quarterly Consumption Moments. Data

Growth Rate (%) Volatility (%)
Mean Median Std. Dev. Mean Median Std. Dev.

Arithmetic 6.04 -0.63 40.13 Total 36.53 27.10 42.35
Logarithmic -0.59 -0.66 35.78 Systematic 8.94 6.61 10.42

Panel B. Households Quarterly Consumption Moments. Model

U [a, a], σφ Arithmetic Growth Rate (%) Volatility (%)
Mean Median Std. Dev. Mean Median Std. Dev.

U [0, 2], 3 0.73 0.52 4.31 6.58 4.08 8.37
U [1, 1], 3 0.52 0.52 0.67 1.41 0.91 3.38
U [0, 2], 0 0.73 0.52 4.23 6.58 3.91 8.48
U [1, 1], 0 0.52 0.52 0.00 1.19 1.19 0.00

As can be seen, assuming a uniform U [0, 2] with σφ = 3 provides a set of moments for

consumption growth and volatility that are reasonable and close to the data (i.e. systematic

volatility), with the important exception that our model is not able to generate the large

cross-sectional dispersion in quarterly consumption growth. This is to be expected, as the

cross-sectional dispersion in the data quarter by quarter is likely due to idiosyncratic shocks,

which are absent in our model. More specifically, with those parameters, the model generates

a mean growth rate of 0.7%, with the median at 0.5% and a cross-sectional dispersion of 4%.

There is positive skewness, but not at the levels observed in the data, as this is “systematic

skewness”. Indeed, the mean consumption volatility is at 6.6%, with the median at 4.1%

and dispersion at 8.4%. These values are lower than the corresponding values in Panel A

for systematic volatility, but in the same ballpark. Moreover, this calibration also generate

positive skewness in systematic volatility, as observed in the data.

Panel A and B of Figure 2 shows the resulting distribution of preferences and endow-

ment in a simulation of 200,000 agents. In particular, Panel B shows a markedly skewed

distribution of endowments (the extreme right tail of the distribution is omitted to provide

a better visual impression). Because of the restriction
∫
widi = 1, the distribution shows
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Figure 2: Preference and Endowment Distribution. Panel A plots the simulated distribution of
preference parameters ai from a uniform [0,2]. Panel B plots the simulated endowment distribution wi =
φi+ai(Y −λ)+λ−1

Y
where φi = e−σwεi−

1
2
σ2

w are lognormally distributed and σφ = 3. Panel C shows the relation
between endowments wi and preferences ai. Panel D shows the relation between endowments wi and wi−ai,
where we recall that agents with wi − ai > 0 take on debt.

a large mass of agents with wi < 1 to allow for some agents with a very large endowment.

Panel C shows the relation between endowments on the x-axis and preference on the y-axis.

The white area in the top-left corner is due to restriction A1: Agents with high habit loading

ai must have high initial endowment wi to ensure a feasible consumption plan.

Finally, Panel D shows the relation between endowment wi and leverage, namely, wi−ai.

Indeed, recall that only agents with wi − ai > 0 lever up (see Corollary 6). Leverage is

thus “U-shaped” in our calibration of the cross section in that two types of agents lever

up, those with very low endowment but with also very low sensitivity to habit and those

agents with very high endowment. The group with intermediate endowment, in contrast,

are heterogeneous in that some leverage and some purchase the risk-free asset.

5.1.1. Households leverage ratios in good and bad times

Our assumption on the joint distribution of preferences ai and endowments wi in the previous

section also yields a cross section of debt-to-assets that matches well its empirical counterpart.

Panel A of Figure 3 plots the distribution of debt-to-assets of agents who take on debt in
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simulations during three types of periods: Booms (St high), recessions (St low), and crisis

(St very low). First, in general, agents with lower net worth (Wt) take on more debt as a

fraction of assets (NitPt). The reason is that in the calibration above, these types of agents

are less risk averse, as their ai is on average lower. This is the effect of the constraint A1,

also shown in Panels C and D of Figure 2: Agents with low endowment may have low risk

aversion parameter ai.

The second important effect of Panel A, however, is that the debt-to-asset ratio substan-

tially increases during crises, that is, those rare times in which St is on the left-hand-side of

its distribution (see Panel A of Figure 1). This an important channel in our model: While

agents who borrow deleverage when St decline (Corollary 12), and hence reduce their amount

of debt, the debt-to-asset ratio actually increases, because the value of assets declines by even

more. That is, active deleveraging and increasing debt-to-asset ratios occur simultaneosuly

when assets are valued at market values.

Panel B of Figure 3 shows that similar effects occur at the household level in the data.

We use the Surveys of Consumer Finances conducted in 2007 and 2009. This last survey

was conducted on the same sample of households as the 2007 survey, and thus it reflects

a panel of agents. The debt-to-asset ratio of households is decreasing in their net worth.

Interestingly, the debt-to-asset ratio increased substantially between 2007 and 2009 for the

same agents that are ranked as of their 2009 net worth. We rank households on their net

worth in 2009 to highlight how the increase in debt-to-asset ratio for these agents between

2007 and 2009 was especially due to a decline in asset value, which decreases net worth.

Indeed, agents who suffered larger losses due to declining asset values will be moving to the

left of the net worth distribution, and for given debt, would have a higher debt-to-asset ratio.

The figure clearly indicates how the variation in assets generate an increase in debt-to-assets,

in line with our model. Notice though that the model is not able to match the observed level

of debt-to-assets amongst the poorest agents.31

In sum, our calibrated model is able to capture an important fact in the cross section,

namely that the less wealthy lever more. This feature of our model stands in contrast with

most models with heterogeneous agents, such as, for example, Dumas (1982) and Longstaff

and Wang (2012). In these models less risk averse agents lever up, invest in risky stocks, and

become richer as a result. These models thus imply counterfactually that leverage is more

pronounced amongst richer agents. In contrast, in our model the two different sources of

31The Internet Appendix documents that a similar plot obtains in the case of Spain which has a similar
household survey (the “Encuesta Financiera de las Familias” or EFF). We thank Olympia Bover of the Bank
of Spain for pointing out this to us.
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Figure 3: Debt-to-assets ratios across the wealth distribution. Model and data . Panel A plots
the distribution of debt-to-asset ratios of agents who take on debt in simulations during three types of
periods: Booms (St high), recessions (St low) and crisis (St very low). Panel B plots the distribution of
debt-to-asset ratios from the Survey of Consumer Finances in 2007 and in 2009, which were conducted on
the same sample of households.

heterogeneity, combined with the implicit assumption that agents with low endowment have

lower habit loading ai, imply that poor agents lever up more, consistently with the data.

5.1.2. Wealth dispersion in good and bad times

The parameter choices for the cross-section of agents also imply the wealth dispersion pat-

terns depicted in Figure 4. Panel A plots the cross-sectional standard deviation of wealth-to-

output ratios (see equation (40)). The plot shows a strongly increasing dispersion of wealth

as times get better. This is a level effect: as the aggregate wealth increase, the level difference

of wealth-to-output ratio increases due to the lower discount rate in good times.
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Figure 4: Wealth Dispersion. Panel A plots the cross-sectional dispersion – in standard deviation units
– of the wealth to output of individual agents, plotted against the surplus consumption ratio (St). Panel B
plots the cross-sectional dispersion – in standard deviation units – of the wealth shares, i.e. Wit/

∫
Wjtdj,

against St. The parameters used are those in Table 1 and Figure 2.

Panel B of Figure 4 shows the cross-sectional standard deviation of wealth shares, i.e.

wealth normalized by aggregate wealth (see equation (41)). For the calibrated parameters,

this dispersion measure also displays a mostly increasing pattern as St increases, except

for extremely low value of St. This general pattern of an increasing wealth dispersion in

good times is consistent with the data, although wealth dispersion is mostly dominated by

time-trends (see Saez and Zucman (2016)).

While our calibrated model implies an increasing wealth dispersion in good times, it is

not able to generate a size of wealth dispersion that is comparable to the data. For instance,

the top 1% of the population in our model only holds about 3.5% of aggregate wealth, against

over 35% in the data in recent times. The reason is that many factors that are absent from

our model, such as human wealth and returns to entrepreneurship, have first order effects on

the wealth distribution. Our model instead highlights the role of discount rate shocks on the

distribution of wealth and on wealth dispersion in particular. Moreover the model implies

that a large increase in the cross sectional dispersion in wealth forecasts low future returns,

an implication for which there is support in the data (Gomez, 2017).
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Figure 5: Aggregate Debt/Output and Stock Holdings of Levered Agents Panel A plots the
aggregate debt/output in the economy as a function of the surplus consumption ratio St. Panel B reports
the aggregate holdings of stocks from the agents who have leveraged positions (i.e. those in Panel A). The
parameters used are those in Table 1 and Figure 2.

5.2. Aggregate leverage and stock holdings in good and bad times

Equation (28) shows that the aggregate debt-to-output is L(St) = v K1 H(St) where K1 =
∫

i:wi−ai>0
(wi − ai)di. Similarly, from (19) the aggregate stock holding of levered agents can

be written as

NLev(St) = K0 + (ρ+ k) (1 + v)K1H(St) (44)

where K0 =
∫

i:wi−ai>0
aidi and recall H(St) is given by (20). The calibrated parameters

imply K0 = 0.2483 and K1 = 0.1526.

As discussed in Corollaries 7 and 12, H(St) is increasing and concave in St. That is,

leverage and the aggregate stock exposure of levered agents are not only procyclical, but

they also decline increasingly faster as times get worse, i.e. as St decline. Panels A and B of

Figure 5 shows the patterns of L(St) and the aggregate stock holdings of the levered agents,

NLev(St), under the parameter choices in Table 1. The concavity of H(St) is especially strong

for very low levels of St: Deleveraging accelerates as bad times morph into severe distress.

It is important to emphasize that these results do not depend on the specific assumptions

made on the functional form for σD(St) as the function H(St) does not depend on it.

As already mentioned, this non-linear behavior of debt and risky asset holdings of levered

agents with respect to the surplus consumption ratio suggests that levered agents “fire sell”
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risky assets to decrease leverage in bad times. This is shown in the simulated path illustrated

in Figure 6. Panel A shows 100 years of artificial quarterly data of the surplus consumption

ratio St, while panel B reports the corresponding economic uncertainty σD(St). Panel C

shows the variation in the price-dividend ratio due to variation in the surplus consumption

ratio, with a visible drop of the stock price from 30 to less than 10 in the middle of the

simulated sample. Panel D shows the stock return volatility, which increases dramatically

during bad times, as it increases to almost 60% during the “crisis”.

Panel E demonstrates the impact of the variation of the surplus consumption ratio on

the aggregate debt-to-output ratio and the aggregate stock holdings of levered agents. As

it is apparent, the variation of both quantities is rather limited most of the time, except

during extreme bad events. It is thus in these occasions, as the surplus consumption ratio

drops and economic uncertainty increases, that levered agents decrease their indebtness and

liquidate their positions in risky assets.

Finally, Panel F shows the debt-to-wealth ratio of the levered agents, and it highlights

that the model is consistent with the observation that the efforts of all levered agents to

delever simultaneously results in an increase in debt-to-wealth ratios. Indeed, while Panel

E shows that aggregate debt declines during bad times, Panel F shows that the aggregate

debt-to-wealth ratio actually increases, as levered agents’ wealth declines faster then the

decline in debt leverage.

In sum thus, as economic conditions deteriorate (a drop in St) prices fall but agents

only delever and liquidate stock positions slowly. As bad times turn into severely distressed

conditions, deleveraging and stock liquidation accelerates, creating the impression of a panic

selling episode. Leverage ratios, debt-to-wealth, increase sharply as prices drop faster than

the deleveraging. These results obtain in the absence of any contagion effects, liquidity dry

ups or debt overhang considerations. They are the result of the optimal trading of utility

maximizing agents in an equilibrium that implements an optimal risk sharing allocation.

Our claim, again, is not that these particular frictions do not matter but rather to argue

that the dynamics in quantities and prices observed in crises obtain naturally in risk sharing

models that feature the strong discount effects needed to obtain reasonable asset pricing

implications. Tests aimed at uncovering the aforementioned frictions have to control for the

component of these dynamics that are the result of optimal risk sharing.
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Figure 6: “Fire Sales” in a Simulation Run . This figure plots the time series of several quantities in
100 years of quarterly artificial data. Panel A reports the surplus consumption ratio St. Panel B reports the
consumption volatility σD(St). Panel C and D report the price-dividend ratio and the stock return volatility,
respectively. Panel E reports the aggregate leverage, defined as debt-to-output ratio (solid black line, left
axis), and the aggregate position in risky stock of levered agents (grey dashed line, right axis). Panel F
reports the aggregate debt-to-wealth ratio of levered agents. This simulated sample was selected to highlight
the effect of crises, that are quite visible in the panels.
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5.3. Intermediary Asset Pricing

We showed in subsection 4.7. that in our model agents’ leverage should show up as a risk

factor but with different signs in the market price of risk depending on whether leverage is

measured as total debt-to-output ratio (“book leverage”, as it does not depend on prices)

or as total debt-to-wealth ratio (“market leverage”, as it depends on the market value of

wealth). While this is just an interpretation of the forces that shape average returns, it is

informative nonetheless to see whether in simulations the standard Fama-MacBeth cross-

sectional regressions that are used in this literature would pick up our endogenous leverage

ratios as risk factors and with the different signs depending on definitions.

For concreteness, we take the leverage ratios of the most leveraged agent in our simulated

economy and use them as risk factors, both to predict aggregate returns in the time series

and in the cross-section. As discussed in subsection 4.7., book leverage is defined as NitBt/Dt

and market leverage as NitBt/Wit. For convenience, we consider as test assets the securities

Pit in expression (29) that pay the dividend Cit over time. To meaningfully compare the

coefficients to the data, we normalize both in simulations and in the empirical data the

leverage factors to have mean zero and variance one. In the data, we use the standard

Fama-French 25 portfolios sorted by size and book-to-market as test assets. The leverage

factors are obtained from the dataset made available by He, Kelly, and Manela (2017). In

particular, we transform their capital ratio factor into a market debt/equity factor.32 The

book leverage is the one in Adrien, Etula, and Muir (2014), also reported in the He, Kelly,

and Manela (2017) dataset. The sample is 1970 through 2012.

Table 3 shows the results of Fama-MacBeth cross-sectional regressions in the data (Panel

A) and in the simulations (Panel B). The first column reports the CAPM regression, in

which the aggregate market portfolio is the main risk factor. As is well known, the CAPM

fails to price these portfolios. The R2 is a puny 6.5%, the alpha is strongly positive, and the

average market return is negative. The second column shows that market leverage is able

to explain a large fraction of the variation of the portfolios. The market return becomes

positive (but not statistically significant), the alpha is zero, and the market price of risk is

negative, and significant. Finally, column III shows the same results for book leverage, and

obtains similar results, but now with a positive market price of risk. The different signs of

the market prices of risk is exactly the prediction of Corollary 13.

Panel B reports the result in the simulations. As mentioned, in our model the conditional

32In He, Kelly and Manela (2017), capital ratio = Equity/(Debt + Equity) which we transform into
Debt/Equity = 1/(capital ratio) − 1.
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Table 3: The Market Price of Leverage Risk. Panel A reports Fama-MacBeth regressions where the
set of test portfolios are the standard 25 Fama-French portfolios sorted on size and book to market. Column
I reports the standard CAPM regression. Column II adds to the market, the market leverage (NitBt/Wit

in the model). Market leverage is defined as Debt/Equity = 1/(capital ratio) − 1, which is transformation
of the measure introduced in He, Kelly and Manela (2017), which is capital ratio= Equity/(Debt + Equity).
Column III reports the same regression where instead of using market leverage we use book leverage, defined
as in Adrien, Etula, and Muir (2014). The sample period is 1970-2012. t-statistics are in parenthesis. Panel
B reports the same regressions but in a sample of simulated data from our model. The set of test portfolios
are the contingent claims that pay the efficient allocation Cit for each household i (see (12)) and returns are
calculated using prices Pit (see expression (29)).

Panel A - Data
I II III

α 3.19 0.76 1.07
(3.05) (0.62) (0.97)

Market Return -0.89 0.97 0.82
(-0.72) (0.69) (0.61)

Market Leverage -0.22
(-2.13)

Book Leverage 0.63
(3.07)

R2 (%) 6.54 50.77 53.35

Panel B - Model
α 0.02 0.10 0.08

Market Return 2.05 1.96 1.98
Market Leverage -0.04
Book Leverage 0.03

CAPM holds, and indeed the first column shows a strong quarterly coefficient of 2.05, which

corresponds to 8.2 risk premium, consistent with the time-series average return. We do not

report cross-sectional R2, as they are all 100% in simulations (recall that the model has

only one shock, and thus all returns are perfectly correlated). Similarly, we do not report

t-statistics, as they are all very large given the large number of artificial data (except for the

alpha’s, which are close to zero). Column II shows that the estimated market price of risk of

market leverage is negative, while column III shows that the estimated market price of risk

of book leverage is positive, consistently with Panel A and with the results in Corollary 13.

The magnitudes though are smaller which is unsurprising as the conditional CAPM holds

in our framework. Moreover, the model doesn’t offer a counterpart to value- and size-sorted

portfolios and hence the test asset average returns don’t display as large a spread as in the
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Table 4: The Predictability of Aggregate Stock Returns. Panels A and B show time series regressions
of market returns on book and market leverage (see notes to Table 3) lagged one to five years. The sample
period is 1970-2012. Panels C and D replicate the same regression in simulated data. t−statistics are in
parenthesis.

Panel A. Predictability with Book Leverage. Data
1 year 2 year 3 year 4 year 5 year

Coef (×100) -1.78 -1.79 -2.17 -3.13 -9.89
(-0.83) (-0.72) (-0.89) (-1.03) (-3.29)

R2 0.01 0.01 0.01 0.01 0.07

Panel B. Predictability with Market Leverage. Data
1 year 2 year 3 year 4 year 5 year

Coef (×100) 3.66 6.21 8.56 10.03 13.06
(1.57) (1.50) (2.18) (2.51) (3.84)

R2 0.04 0.07 0.10 0.12 0.19

Panel C. Predictability with Book Leverage. Model
1 year 2 year 3 year 4 year 5 year

Coef (×100 -3.57 -7.28 -10.49 -12.62 -14.13
(-3.45) (-3.09) (-3.18) (-3.34) (-3.52)

R2 0.02 0.05 0.08 0.10 0.12

Panel D. Predictability with Market Leverage. Model
1 year 2 year 3 year 4 year 5 year

Coef (×100) 5.86 10.91 14.69 17.35 19.36
(8.08) (7.69) (7.55) (7.54) (7.74)

R2 0.06 0.12 0.17 0.20 0.22

data.33 Still, the simulation results highlight that endogenous leverage ratios – which only

proxy for shocks to risk aversion – show up in cross-sectional regressions as risk factors and

with different signs depending on their definitions as found in empirical work.

Finally, Table 4 contains the results from predictability regressions, in the data (Panels

A and B) and in the model (Panels C and D). In the data, we see that market leverage

(Panel B) is a better predictor of future stock returns than book leverage. The R2 are

larger and coefficients are significant starting with the three-year horizon. Book leverage, in

contrast, is only significant at the 5-year horizon. Consistently with the results in Table 3,

the predictability coefficient are opposite to each other.

33The spread in annual average returns across portfolios is 12% in the data while only 4.7% in the model.

40



Panels C and D of Table 4 show similar results in simulations. In this case, book leverage

(Panel C) is always significant, but we note both a lower R2 and t−statistics compared to

market leverage (Panel D). That is, our model is in fact consistent with the empirical finding

that market leverage should be a better predictor of future stock returns. Indeed, while

book leverage and market leverage are clearly related to each other, they are not perfectly

correlated. In our simulated data, market leverage and book leverage have a correlation of

-83% in levels, and -75% in first differences. In the data, they have a correlation of -39% in

levels and -31% in first difference. The lack of perfect correlation in simulation is due to the

non-linearities implicit in the model.

In sum, under the interpretation that leveraged agents act like banks in that they provide

riskless assets to other more risk averse agents to invest in, the predictions of the model are

similar to those in the data. The relevant point here is that the leverage of such institutions

is endogenous, and the fact that one can find empirically that leverage is a risk factor it

does not necessarily mean that banks are the marginal investors. It may as well mean that

leverage is proxy for aggregate risk aversion, as in this model.

6. Conclusions

We propose a general equilibrium model with heterogeneous agents, habits, and countercycli-

cal uncertainty that is able to tie together several stylized facts related to leverage, consump-

tion, and asset prices. The model predicts that aggregate leverage should be procyclical, it

should correlate with high valuation ratios, low volatility, and with a “consumption boom”

of levered agents. Agents actively trade in risky assets and delever in bad times by “fire

selling” their risky positions as their wealth decline and debt-to-wealth ratios increase.

An important message of the paper is to emphasize that leverage is an endogenous quan-

tity and thus that some caution must be taken when making causal statements about the

impact of leverage on other economic quantities. For instance, in our model agents who

increased leverage during good times suffer low consumption growth in bad times. There is

nothing inefficient in this: Those agents who decide to take on higher leverage supply the

safe assets that other agents use to hedge. Similarly, the increase in leverage in good times

is the result of an optimal, efficient risk-sharing allocation, and should predict low future

asset pricing returns. To reiterate, it is not high leverage that implies that future return are

low (because it increases the chance of a financial crisis, for instance), but rather the fact

that lower risk premia due to subsided discount rate shocks induce agents with higher risk

bearing capacity to take higher leverage to achieve their optimal consumption profile.
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Similarly, the leverage, or other measures of capital ratios, of financial intermediaries is

also an endogenous quantity. Fluctuations in leverage may simply be driven by (unobserv-

able) shocks to aggregate discount rates, as in our model. Thus, the fact that intermediary

leverage is a powerful predictor of returns should be unsurprising: Fluctuations in leverage

simply proxy for the fluctuations in the attitudes towards risk of the agents in the economy.

Leverage is of course observed whereas the underlying shocks to risk aversion are not and

thus the pricing success of leverage in the cross section of stock returns.

Our model is simple in that it only has one state variable, all quantities move in lock-step

and thus there is an unrealistic perfect (positive or negative) correlation between leverage,

prices, volatility, expected return, consumption, and so on. It is this assumption which allows

for closed form solutions in quantities and prices and thus obtain a better understanding of

the various economic forces at work. Future research should focus on generalizing our simple

setting to obtain more realistic dynamics.
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Huo, Zhen and José-Vı́ctor Rı́os-Rull “Balance Sheet Recessions,” working paper, Federal
Reserve Bank of Minneapolis.
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APPENDIX

Appendix A: Proofs

Preliminary results in section 3. the Lagrangean

L (Ci) =

∫
φiu (Cit, Xit, t)di − Mt

(∫
Citdi − Dt

)

implies that agents’ marginal utilities satisfy

φiuc (Cit, Xit, t) = Mt. (45)

Thus, consumption satisfies
Cit − Xit = φie

−ρt M−1
t (46)

The individual excess consumption is inversely related to the Lagrange multiplier Mt. To obtain the
equilibrium value of Mt, we integrate across agents

∫
Citdi −

∫
Xitdi =

(∫
φidi

)
e−ρtM−1

t = e−ρtM−1
t

Using the market clearing condition Dt =
∫

Citdi we find that the Lagrangean multiplier is

Mt = e−ρt 1

Dt −
∫

Xitdi
(47)

Finally, plugging this expression into (46) we obtain that agent i’s consumption is given by

Cit − Xit = φi

(
Dt −

∫
Xjtdj

)
(48)

Each agent’s excess consumption over habit is proportional to aggregate excess output. This condition
also implies that in equilibrium, the ratio of any two agents’ marginal utilities is constant (and equal
to the ratio of Pareto weights), a standard result with complete markets. Substituting Xit from (1)
and using (2) we obtain the optimal consumption of agent i in (7). �

The proof of Propositions 1 and 3 follow after proof of Proposition 4, to which we first turn.

Proof of Proposition 4. From equation (48), we have (Cit − Xit) = φi

(
Dt −

∫
Xjtdj

)
. Substituting into

the representative agent utility (5) we obtain the utility function of the representative agent (up to a
constant) as in (21).

As for the state price density, the Lagrange multiplier at time t in equation (47) provides the marginal
utility of the representative agent. Using (9) we find:

Mt = e−ρtD−1
t Yt (49)

The interest rate and SDF can be found by applying Ito’s lemma to Mt. �

Proof of Proposition 1. From market completeness, the wealth of agent i is always equal to the discounted
value of his optimal consumption, which can be written as

Ci,t = (git + φi)

(
Dt −

∫
Xjtdj

)
(50)

= (ai(Yt − λ) + λ − 1 + φi)StDt (51)
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We then have

Wi,t = Et

[∫
∞

t

Mτ

Mt
Ci,τdτ

]

= DtStEt

[∫
∞

t

e−ρ(τ−t)D−1
τ S−1

τ Ci,τdτ

]

= DtStEt

[∫
∞

t

e−ρ(τ−t)(ai(Yτ − λ) + λ − 1 + φi)dτ

]

= DtStEt

[∫
∞

t

e−ρ(τ−t)(aiYτ − aiλ + +λ − 1 + φi)dτ

]

= DtSt

[
ai

(Yt − Y )

ρ + k
+

ai(Y − λ) + λ − 1 + φi

ρ

]
(52)

where we used the fact that Et[Yτ ] = Y + (Yt − Y )e−k(τ−t). At time 0, the economy starts at its
stochastic steady state, Y0 = Y , which implies S0 = S = 1/Y = 1/Y0. In addition, assume D0 = ρ.
Agent i’s endowment is wi. Therefore, we obtain that the budget constraint implies

wi = Wi,0 = D0S0

[
ai

(Y0 − Y )

ρ + k
+

ai(Y − λ) + λ − 1 + φi

ρ

]

= D0S0

[
ai(Y − λ) + λ − 1 + φi

ρ

]

= S
[
ai(Y − λ) + λ − 1 + φi

]

wi/S =
[
ai(Y − λ) + λ − 1 + φi

]

or
φi = wiY −

[
ai(Y − λ) + λ − 1

]
. (53)

proving part (a). The consumption/output ratio (51) can then be written as

Ci,t

Dt
= (ai(Yt − λ) + λ − 1 + φi)St

= (ai(Yt − λ) + wiY − ai(Y − λ))St

= (ai(Yt − Y ) + wiY )St

= ai(1 − Y St) + wiY St

proving part (b). �

The curvature of the utility function (13) can be obtained from the definition of curvature and by
substituting Cit and φi in the resulting expression.
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Proof of Proposition 3. Part 1. The pricing function for the consumption claim is

Pt = Et

[∫
∞

t

Mτ

Mt
Dτdτ

]
(54)

= DtY
−1

t Et

[∫
∞

t

e−ρ(τ−t)D−1
τ YτDτ dτ

]
(55)

= DtStEt

[∫
∞

t

e−ρ(τ−t)Yτdτ

]
(56)

= DtSt

∫
∞

t

e−ρ(τ−t)Et [Yτ ] dτ (57)

= DtSt

∫
∞

t

e−ρ(τ−t)(Y + (Yt − Y )e−k(τ−t))dτ (58)

= DtSt

(
Y

ρ
+

(Yt − Y )

ρ + k

)
(59)

= DtSt

(
ρYt + kY

ρ(ρ + k)

)
(60)

The interest rate follows from Ito’s lemma as the drift rate of the state price density (49).

Part 2. Given the results of Propositions 1 and 4, and the standard result that the efficient allocation
maximize agents’ utility, the only part left to show is the optimal allocation to stocks and bonds.
From Cox and Huang (1989), the dynamic budget equation can be written as the present value of
future consumption discounted using the stochastic discount factor. The optimal allocation can be
found by finding the “replicating” portfolio, that is, the position in stocks and bonds that satisfies
the static budget equation.

We denote for simplicity
σY (Y ) = vσD(Y ) (61)

First, note that the process for surplus consumption ratio is

dSt = −Y −2
t dYt + Y −3

t dY 2
t

= −Y −2
t k(Y − Yt)dt + Y −1

t σY (Y )dZt + Y −1
t σY (Y )2dt

= Y −1
t k(1 − Y /Yt)dt + Y −1

t σY (Y )dZt + Y −1
t σY (Y )2dt

= Y −1
t

(
k(1 − Y /Yt) + σY (Y )2dt

)
dt + Y −1

t σY (Y )dZt

Consider now agents’ wealth obtained in (52). Substituting φi from (53) which we can write it as

Wi,t = Dt
1

ρ

[
ai

ρ

ρ + k
(1 − Y St) + wiY St

]
(62)

= Dt
1

ρ(ρ + k)

[
aiρ + (wi(ρ + k) − aiρ)Y St

]
(63)

By definition, Wi,t = Et

[∫
∞

t
Mτ

Mt
Ci,τdτ

]
= Pi,t, and thus this expression also verifies formula (29).

From Ito’s lemma, the diffusion of wealth process dWi,t/Wi,t is

σW,i(St) = σD(St) +
(wi(ρ + k) − aiρ)Y Y −1

t σY (Yt)

aiρ + (wi(ρ + k) − aiρ)Y Y −1
t

(64)

By market completeness (Cox and Huang (1989)), agent i’s wealth is always equal to his allocation
to stocks and bonds

Wit = Ni,tPt + N0
i,tBt

From this latter expression, Nit must be chosen to equate the diffusion of the portfolio to the diffusion
of wealth. That is, such that

NitPtσP (St) = Wi,tσW,i(St)
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Solving for Nit gives

Nit =
WitσWi (Y )

PtσP (Y )

=

(
ρai + (wi (ρ + k) − ρai)Y /Yt

)
(
ρ + kY /Yt

)




σD (Y ) +

(wi(ρ+k)−ρai)Y Y −1

t σY (Y )

(ρai+(wi(ρ+k)−ρai)Y /Yt)

σD (Y ) +
kY Y −1

t σY (Y )

(ρ+kY /Yt)





=

(
ρai + (wi (ρ + k) − ρai)Y /Yt

)
(
ρ + kY /Yt

)





σD(Y )(ρai+(wi(ρ+k)−ρai)Y /Yt)+(wi(ρ+k)−ρai)Y Y −1
t σY (Y )

(ρai+(wi(ρ+k)−ρai)Y /Yt)
σD(Y )(ρ+kY /Yt)+kY Y −1

t σY (Y )

(ρ+kY /Yt)





=

(
σD (Y )

(
ρai + (wi (ρ + k) − ρai)Y /Yt

)
+ (wi (ρ + k) − ρai)Y Y −1

t σY (Y )

σD (Y )
(
ρ + kY /Yt

)
+ kY Y −1

t σY (Y )

)

=
σD (Y ) ρai + σD (Y )Y /Yt (wi (ρ + k) − ρai) + wi (ρ + k)Y Y −1

t σY (Y ) − ρaiY Y −1
t σY (Y )

σD (Y )
(
ρ + kY /Yt

)
+ kY Y −1

t σY (Y )

= ai + (ρ + k)
σD (Y )Y /Yt + Y Y −1

t σY (Y )

σD (Y )
(
ρ + kY /Yt

)
+ kY Y −1

t σY (Y )
(wi − ai)

= ai + (ρ + k)
σD (Y )Y /Yt + Y Y −1

t σY (Y )

σD (Y ) ρ + k
(
σD (Y )Y /Yt + Y Y −1

t σY (Y )
) (wi − ai)

= ai + (ρ + k)
Y /Yt [σD (Y ) + σY (Y )]

σD (Y ) ρ + kY /Yt [σD (Y ) + σY (Y )]
(wi − ai)

= ai + (ρ + k)
Y /YtσM (Y )

σD (Y ) ρ + kY /YtσM (Y )
(wi − ai)

where
σM (Y ) = σD(Y ) + σY (D)

Finally, substituting σY (Y ) = vσD(Y ) from definition (61) and deleting σD(Y ) throughout, the result
follows.

Similarly, we have that the amount in bonds is

N0
itBt = Wit − NitPt

= Dt
1

ρ

(
ρ

ρ + k
ai +

(
wi −

ρ

ρ + k
ai

)
Y /Yt

)
− NitDt

(
ρ + kY /Yt

)

ρ (ρ + k)

= Dt
1

ρ (ρ + k)

[(
ρai + (wi (ρ + k) − ρai)Y /Yt

)
− Nit

(
ρ + kY /Yt

)]

= Dt
1

ρ (ρ + k)

[
ai

(
ρ + kY /Yt

)
+ wi (ρ + k)Y /Yt − ai (ρ + k)Y /Yt − Nit

(
ρ + kY /Yt

)]

= Dt
1

ρ (ρ + k)

[
ai

(
ρ + kY /Yt

)
+ (wi − ai) (ρ + k)Y /Yt − Nit

(
ρ + kY /Yt

)]

= Dt
1

ρ

[
Y /Yt −

Y /YtσM (Y )

σD (Y ) ρ + kY /YtσM (Y )

(
ρ + kY /Yt

)]
(wi − ai)

= Dt
1

ρ

[
Y /Yt

[
σD (Y ) ρ + kY /YtσM (Y )

]
− Y /YtσM (Y )

(
ρ + kY /Yt

)

σD (Y ) ρ + kY /YtσM (Y )

]
(wi − ai)

= −Dt

[
Y /Yt (σM (Y ) − σD (Y ))

σD (Y ) ρ + kY /YtσM (Y )

]
(wi − ai)

= −Dt

[
Y /Yt (σM (Y ) /σD (Y ) − 1)

ρ + kY /YtσM (Y ) /σD (Y )

]
(wi − ai)
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Finally, substituting σY (Y ) = vσD(Y ) from definition (61) and deleting σD(Y ) throughout, the result
follows. �

Proof of Corollary 5. Immediate from Proposition 3 and 4. The state price density and the price of stocks
are independent of cross-sectional quantities. �

Proof of Corollary 6. Part (a) is immediate from the expression for N0
it in Proposition 3. Part (b) can

be shown as follows:

NitPt

Wit
=

σWi (Y )

σP (Y )

=
σD (Y ) +

(wi−
ρ

ρ+k
ai)Y Y −1

t σY (Y )

( ρ

ρ+k
ai+(wi−

ρ

ρ+k
ai)Y /Yt)

σD (Y ) +
kY Y −1

t σY (Y )

(ρ+kY /Yt)

=
σD (Y ) +

(wi(ρ+k)−ρai)Y Y −1

t σY (Y )

(ρai+(wi(ρ+k)−ρai)Y /Yt)

σD (Y ) +
kY Y −1

t σY (Y )

(ρ+kY /Yt)

=

σD (Y ) + σY (Y )

(
(wi(ρ+k)−ρai)Y Y −1

t

(ρai+(wi(ρ+k)−ρai)Y /Yt)

)

σD (Y ) + σY (Y )

(
kY Y −1

t

(ρ+kY /Yt)

)

=
σD (Y ) + σY (Y )

(
1 − ρ

ρ+[k+(ρ+k)(wi−ai)/ai]Y /Yt

)

σD (Y ) + σY (Y )

(
1 − ρ

(ρ+kY /Yt)

)

Finally, substituting σY (Y ) = vσD(Y ) from definition (61) and deleting σD(Y ) throughout, the result
follows. �

Proof of Corollary 7. It is immediate from the expression of H(St) to verify it is increasing in St. �

Proof of Corollary 8. Immediate from the fact L(St) is increasing and the fact that agents with wi−ai > 0
are leveraged and have Cit/Dt that is increasing in St. �

Proof of Corollary 9. The expressions of the drift and diffusion of dCit/Cit stem from the application of
Ito’s lemma to the consumption Cit = Dt[ai +(wi−ai)Y St]. The remaining part follows from the statement
in the corollary. �

Proof of Corollary 10. Immediate from Corollary 9. �

Proof of Corollary 11. Immediate from Corollary 6 and H(St) being increasing. �

Proof of Corollary 12. Immediate from Corollary 6 and H(St) being concave. �

Proof of Corollary 13. Part (a) follows from the fact that H(St) is increasing in St, which implies that

qD/O(`t) – the inverse function of Q
D/O
it (St) – is also increasing in `t. Similarly, part (b) follows from the fact
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that the ratio σW,i(St)/σP (St) is decreasing in St and thus so is qD/W (`t), the inverse function of Q
D/W
it (St).

�

Proof of Proposition 14 . From (62) we can rewrite

Wi,t

Dt
= ai

(
1 − Y St

ρ + k

)
+ wi

(
Y St

ρ

)
(65)

and
Wi,t∫
Wj,tdj

=
Wi,t

Dt
×

Dt

Pt

where Dt/Pt is in (16). The results then immediately follow from the definition of cross-sectional variance.
�

Appendix B: Derivation of expression (27)

Let

SR (St) ≡
Et [dRt − rtdt]

σP (St)
= (1 + v) σD (St) and θi ≡

vai

(1 + v) (ρ + k)
. (66)

Finally define

Ωi (St) ≡
ρ

ρ +
[
k + (ρ+k)(ωi−ai)

ai

]
Y St

The share of wealth invested in the risky security is

Ni,tPt

Wi,t
=

(
σD (St)

σP (St)

)
[1 + v (1 − Ωi (St))] (67)

=

(
σD (St)

σP (St)

)
[1 + v (1 − Ωi (St))] (68)

=

(
(1 + v)σD (St)

σP (St)

)[
1 −

v

1 + v
Ωi (St)

]
(69)

=
SR (St)

σP (St)

[
1 −

v

1 + v
Ωi (St)

]
, (70)

where we have made use of (66).

The key is to show that

Ωi (St) ≡
ρ

ρ +
[
k +

(ρ+k)(ωi−ai)
ai

]
Y St

(71)

=
ρai

ρai + [ρ (ωi − ai) + kωi]Y St

(72)

=

(
Dt

ρ (ρ + k)

)
ρai

[ρai+[ρ(ωi−ai)+kωi]Y St]Dt

ρ(ρ+k)

(73)

=

(
ai

ρ + k

)
Dt

Wi,t
(74)

in the text we use both Pi,t and Wi,t interchangeably. Define θi as in (66) and substitute in (70) to obtain
(27). �

52



Appendix C: Estimating household total and systematic consumption volatility

A challenge in the literature regarding the estimation of consumption volatility – the systematic and
idiosyncratic components – is the lack of reliable high frequency panel data. In this Appendix we illustrate
how we can use only cross-sectional information across households and then the time series across cohorts to
estimate both components. This section contains the main methodology, and we refer the reader to Santos,
Suarez and Veronesi (2017) for the full methodology.

Consider the simple continuous time model, which generalizes the one derived in the model as we allow
consumption to have cross-sectionally independent shocks:

dCit

Cit
= µitdt + σitdZit (75)

In this process, both µit and σit are cross-sectionally different from each other and time varying. We are
interested in estimating σit. From Ito’s lemma we have

d log (Cit) =

(
µit −

1

2
σ2

it

)
dt + σitdZit (76)

Therefore, for every i and t, we have

σ̂2
it =

2

dt

[
dCit

Cit
− d log (Cit)

]
(77)

This quantity is independent of dZit (it is a dt term) and on whether shocks are correlated with each other
or not. Therefore, the (rescaled) difference between arithmetic and log consumption growth isolates the
consumption variance of agent i at time t. This is a (noisy) observation of variance itself, and we are going
to treat it as such.

In our model all consumption processes are perfectly correlated, and there are no idiosyncratic shocks.
To calibrate the model we thus assume a common shock to dZit, that is

dZit = ρdZt +
√

1 − ρ2dZ∗

it

where dZ∗

it are uncorrelated across i. This assumption implies that all consumption process across every two
agents have correlation ρ2:

Corr

(
dCit

Cit

dCjt

Cjt

)
= ρ2dt

Santos, Suarez, and Veronesi (2017) relax this assumption but given the scope of the current calibration,
this assumption simplifies the methodology.

Consider now the cross-sectional average of consumption growth ECS
t

[
dCit

Cit

]
. This quantity follows the

dynamic process

ECS
t

[
dCit

Cit

]
= ECS

t [git] dt + ECS
t [σitdZit]

= ECS
t [git] dt + ρECS

t [σit]dZt +
√

(1 − ρ2)ECS
t [σitdZ

∗

it]

From the law of large numbers the idiosyncratic shocks average to zero

ECS
t [σitdZ

∗

it] = ECS
t [σit]E

CS [dZ∗

it] = 0

Therefore the average arithmetic consumption growth follows

ECS
t

[
dCit

Cit

]
= ECS

t [git]dt + ECS
t [σit] ρdZt
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Hence, the squared variation of average consumption growth in continuous time has

(
ECS

t

[
dCit

Cit

])2

= ECS
t [σit]

2 ρ2dt + o (dt)

That is, we can identify the average systematic volatility of consumption growth from the squared variation
of the cross-sectional average of consumption growth, a result that is not surprising.

We are interested however to also identify the whole distribution of systematic volatility {σ2
itρ

2}i. Given
our estimates of σ2

it obtained earlier we just need to estimate ρ2, which can be done from the following
estimator:

ρ̂2 =
ECS

t

[
dCit

Cit

]2

ECS
t [σit]

2 /dt (78)

The systematic variance of agent i at time t is then

V 2
it = σ̂2

itρ̂
2 (79)

To conclude this section, we note that to estimate time t quantities – idiosyncratic and total volatility
components – we only need cross-sectional information. We then use time series information across cohorts
of households to compute averages.

CEX Data

We exploit the dataset of Kocherlakota and Pistaferri (2009) and Toda and Welsh (2015). We refer the
reader to those papers for a more detailed description of the data. In a nutshell, the data are from the
survey of consumer expenditure (CEX). Households are surveyed for four consecutive quarters, in January,
February, and March cycles. Thus, the growth rate can be observed at most at quarterly frequency, i.e.
dt = 0.25. While this is a large time difference, Monte Carlo simulations indicate that the methodology
above provides reliable estimates for the distribution of consumption volatility.

For each agent i, we have 3 observations of its variance as in (77). To minimize the impact of seasonalities,
we then take the average of the three observations of σ̂2

it across the three quarters

V̂ i
t =

1

3
σ̂2

it +
1

3
σ̂2

it+.25 +
1

3
σ̂2

it+.5

For every year t in a given cycle (Jan, Feb, and Mar), we can then compute the distribution of consumption
volatility across households. For instance, we can compute the mean, the median, and various percentiles α

V̂ Ave
t = Average

[
V̂ i

t

]
; V̂ Med

t = Median
[
V i

t

]
; V̂ α

t = Percentile
[
V i

t , α
]

Similarly, for every t we can compute an observation for ρ̂t from estimator (78). We can thus obtain the
systematic component of volatilities as above:

V̂ Sys,Ave
t = Average

[
V̂ i

t ρ̂2
t

]
; V̂ Sys,Med

t = Median
[
V i

t ρ̂2
t

]
; V̂ Sys,α

t = Percentile
[
V i

t ρ̂2
t , α
]

We finally take average across cohorts (Jan, Feb, and March), and finally across time. Panel A of Table
2 contains the results.
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