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1. INTRODUCTION

In a regression discontinuity (RD) design, a unit is assigned to treatment if and only if the

value of an observed running variable exceeds a known cutoff. This structure makes it possible

to identify and estimate causal effects by comparing the outcomes of units on either side of

the cutoff as long as the distribution of units’ unobservable characteristics varies smoothly

with the running variable (e.g. Hahn, Todd, and Van der Klaauw, 2001). In many empirical

settings, however, units can influence their value of the running variable through strategic

behavior, or manipulation. Manipulation can break the comparability of units on different

sides of the cutoff, and the RD design no longer identifies the causal effect of the treatment

in this case. Manipulation of the running variable is thus an important practical issue, and it

is an issue that has been documented in many empirical contexts.1

In an influential paper, McCrary (2008) argues that a jump in the density of the running

variable at the cutoff is a strong indication that a RD design is impacted by manipulation. It

has therefore become standard practice in the applied literature to address concerns about

manipulation by testing the null hypothesis that the density of the running variable varies

smoothly around the cutoff. If this null hypothesis is not rejected, researchers typically

proceed with their empirical analysis under the assumption that no manipulation occurs.

In contrast, the cutoff is often no longer used for inference on treatment effects if this null

hypothesis is rejected.2 This practice is problematic for at least two reasons. First, a non-

rejection may not be due to the absence of manipulation but to a lack of statistical power, e.g.

1For instance, Urquiola and Verhoogen (2009) document that schools manipulate enrollment to avoid
having to add an additional classroom when faced with class-size caps in Chile. Other examples abound in
the education literature (e.g. Card and Giuliano, 2014; Dee, Dobbie, Jacob, and Rockoff, 2014; Scott-Clayton,
2011) as well as in other fields (e.g. Camacho and Conover, 2011). Manipulation of running variables around
discontinuities (or “notches”) in tax and transfer systems has even generated its own literature in public
finance (Kleven and Waseem, 2013).

2There is a small number of papers that develop solutions tailored to very specific empirical settings.
For examples, see Bajari, Hong, Park, and Town (2011) or Davis, Engberg, Epple, Sieg, and Zimmer
(2013). Another strategy to address manipulation that is sometimes put forward in the literature is the
so-called “doughnut hole” approach. This method excludes observations around the cutoff, and then relies
on extrapolation outside of the range of the remaining data to recover estimates of treatment effects at the
cutoff. Of course, ignoring all data close to the cutoff is very much against the nonparametric spirit of the
RD design.
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due to a small sample size. Units just to the left and right of the cutoff could still differ in

their unobservable characteristics in this case, and estimates ignoring this possibility may be

severely biased. Second, even if one correctly rejects the null hypothesis of no manipulation,

the extent of the problem could still be modest, and the data thus remain informative.

In this paper, we propose a partial identification approach (Manski, 2003, 2009) to dealing

with the issue of potentially manipulated running variables in RD designs. We avoid making

a binary decision based on a statistical test regarding whether manipulation occurs or not.

Instead, our approach involves working with a general model which allows for the possibility

of manipulation, and lets the data decide about its extent. This strategy leads to bounds on

causal effects instead of delivering point identification, but these bounds can be informative

and rule out non-trivial candidate values for the parameter of interest. It also leads to

confidence intervals that are valid irrespective of the extent to which manipulation occurs.

Since manipulation can come in various forms and shapes, we consider a general setup

in which there are two unobservable types of units: always-assigned units for which the

realization of the running variable is always on one particular side of the cutoff (which we

normalize to be the right side), and potentially-assigned units that behave as postulated by

the standard assumptions of a RD design. This setup imposes only weak restrictions on

individuals’ actions, and thus covers a wide range of patterns of strategic behavior. The most

immediate is one where always-assigned units have control over the value of the running

variable and can ensure a realization that is to the right of the cutoff. However, we also

discuss several other concrete examples of strategic behaviors that fit into our framework.

Our main identification analysis then focuses on the causal effect of the treatment on the

mean and the quantiles of the outcomes among potentially-assigned units. First, taking the

argument of McCrary (2008) one step further, we use the magnitude of the discontinuity in

the density of the running variable at the cutoff to identify the proportion of always-assigned

units among all units close to the cutoff. Second, we use this information to bound treatment

effects by finding those “worst case” scenarios in which the distribution of outcomes among
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always-assigned units takes its “highest” and “lowest” feasible value (in a stochastic dominance

sense). In the case of a sharp RD design, this leads to a simple bound based on trimming the

tails of the outcome distribution among units just to the right of the cutoff.3 For fuzzy RD

designs, we derive more elaborate bounds that exploit the various shape restrictions implied

by our model. To the best of our knowledge, these types of bounds are new to the literature.

Our main identification results are then extended in several ways. We show that the bounds

can be sharpened by using covariate information, or by imposing further assumptions about

the behavior of economic agents. We also show that one can identify the distribution of

covariates among always-assigned and potentially-assigned units at the cutoff. Finally, we

derive bounds for treatment effects among the subpopulation at the cutoff that includes both

potentially-assigned and always-assigned units.

To implement our approach in practice, we describe computationally convenient sample

analogue estimators of our bounds, and confidence intervals for the causal parameters of

interest based on recent methods from the literature on set inference (e.g. Imbens and Manski,

2004; Stoye, 2009; Andrews and Soares, 2010). We recommend the use of such confidence

intervals in applications irrespective of the outcome of McCrary’s (2008) test in order to

ensure that inference is robust against the possibility of manipulation.

Lastly, we illustrate the usage of our approach by applying it to estimate the effect of

unemployment insurance (UI) around an eligibility cutoff in Brazil. This application is also

of empirical relevance in itself. First, UI programs typically specify minimum requirements,

such as a minimum number of months of prior employment or since the last UI spell, for

displaced workers to be eligible. Yet, the welfare effects of changes in such requirements

have not been a focus of the optimal UI literature (Chetty and Finkelstein, 2013). Second,

3This result shares some similarities with that of Lee (2009) on bounding treatment effects in randomized
experiments under sample selection; and several applied papers have used heuristic arguments to arrive
at such a strategy (e.g. Card, Dobkin, and Maestas, 2009; Sallee, 2011; Anderson and Magruder, 2012;
Schmieder, von Wachter, and Bender, 2012). Our contribution with regard to the sharp design is thus mainly
to formalizing this approach. We also remark that Chen and Flores (2015) extend Lee (2009) to sample
selection in randomized experiments with imperfect compliance; and Kim (2012) and Dong (2016b) extend
Lee (2009) to sample selection in RD designs.
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UI programs have been adopted or considered in a growing number of developing countries,

but there is still limited evidence on their impacts (Gerard and Gonzaga, 2016). We find

strong evidence of manipulation around the eligibility cutoff. Yet, we are able to infer that

UI takeup increases the average paid UI duration and the average time it takes to return

to a formal job by at least 35.4 and 42.9 days, respectively. We also show that bounds for

quantile treatment effects are often more narrow than bounds on average treatment effects,

because they are less sensitive to the tails of the outcome distribution. Together, our results

imply that the efficiency cost of a policy that relaxes the eligibility condition by marginally

changing the location of the cutoff amounts to at least 30% of its mechanical cost (absent

behavioral responses). This figure implies a lower bound on the need for insurance among

newly eligible workers for the policy to increase welfare.

The remainder of the paper is organized as follows. Section 2 introduces a framework for

RD designs with manipulation. Section 3 contains our main partial identification results for

treatment effects in both Sharp and Fuzzy RD designs, and Section 4 discusses several useful

extensions. Sections 5 then describes our proposed methods for estimation and inference,

which are applied to our empirical setting in Section 6. Finally, Section 7 concludes. Proofs

and additional material can be found in the Appendix.

2. GENERAL FRAMEWORK FOR MANIPULATION IN RD DESIGNS

In this section, we first review the basic RD design, and then explain how we formally

introduce manipulation into the setup. We discuss a number of examples that fit into our

framework, and clarify the definition and interpretation of our parameters of interest.

2.1. The Basic RD Design

Suppose that we observe a random sample of n units, indexed by i = 1, . . . , n, from some

large population. Our interest is in the causal effect of a binary treatment on an outcome

variable. The treatment effect is potentially heterogeneous among observational units, which

could be individuals or firms for instance. Following Rubin (1974), each unit is therefore
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characterized by a pair of potential outcomes, Yi(1) and Yi(0), which denote the outcome

of unit i with and without receiving the treatment, respectively. Out of these two potential

outcomes, we only observe the one corresponding to the realized treatment status. Let

Di ∈ {0, 1} denote the treatment status of unit i, with Di = 1 if unit i receives the treatment,

and Di = 0 if unit i does not receive the treatment. The observed outcome can then be

written as Yi = DiYi(1) + (1 − Di)Yi(0).

In an RD design, the treatment assignment is a deterministic function of a so-called running

variable Xi that is measured prior to, or is not affected by, the treatment. Let Zi ∈ {0, 1}

denote the treatment assignment of unit i, with Zi = 1 if unit i is assigned to receive the

treatment, and Zi = 0 if unit i is not assigned to receive the treatment. Then Zi = I (Xi ≥ c)

for some fixed cutoff value c. Let the potential treatment status of unit i as a function of

the running variable be Di(x), so that the observed treatment status is Di = Di(Xi). Also

define the limits D+
i = Di(c

+) ≡ limx↓c Di(x) and D−
i = Di(c

−) ≡ limx↑c Di(x).4 The extent

to which units comply with their assignment distinguishes the two types of RD designs that

are commonly distinguished in the literature: the Sharp RD design and the Fuzzy RD design.

In a sharp design, compliance with the treatment assignment is perfect, and thus D+
i = 1

and D−
i = 0 for all units i. In a fuzzy design, on the other hand, values of D+

i and D−
i differ

across units, but the conditional treatment probability E(D|X = x) is discontinuous at x = c.

2.2. Manipulation

Identification in standard RD designs relies on the assumption that the conditional distribu-

tion of units’ unobservable characteristics given the running variable does not change in a

discontinuous manner at the cutoff. Units on different sides of the cutoff are thus comparable

except for their treatment assignments, and treatment effects can be identified by comparing

outcomes (and treatment probabilities) of units on different sides of the cutoff. This approach

4Throughout the paper, we use the notation that g(c+) = limx↓c g(x) and g(c−) = limx↑c g(x) for a generic
function g(·). We also follow the convention that whenever we take a limit we implicitly assume that this
limit exists and is finite. Similarly, whenever an expectation or some other moment of a random variable is
taken, it is implicitly assumed that the corresponding object exists and is finite.
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to identification may break down if at least some units behave strategically and thereby

influence the value of their running variable. Throughout the paper, we refer to any pattern

of behavior that fits this broad description as manipulation.

Manipulation by itself does not necessarily break the comparability of units on different

sides of the cutoff. For example, if students take a test, the presence of a pass/fail cutoff may

increase effort among those who expect that their score will be close to the cutoff relative

to those who are confident that they will pass. Despite such clear strategic behavior, the

distribution of exerted effort should be the same among students just to the left and right

of the cutoff in this case, and thus the causal effect of passing the test remains identified

for units at the cutoff.5 This result holds in fact more generally: an RD design identifies a

meaningful causal effect as long as there is no manipulation that leads to a discontinuous

change in the distribution of units’ unobservable characteristics at the cutoff.

In this paper, we study settings where manipulation creates two unobservable types

of units: always-assigned units whose value of the running variable only takes values on

one particular side of the cutoff, which we normalize to be the right side without loss of

generality; and potentially-assigned units who can potentially be observed on either side

of the cutoff. Such a structure can arise from several types of behavior and is generally a

problem from an identification point of view. The most immediate case is one where some

units have control over the value of the running variable to the extent that they can ensure a

realization to the right of the cutoff (and assignment to treatment is desirable for all units).

Such a structure applies more broadly, however, and we provide concrete examples below of

alternative mechanisms that also fit our framework.

More formally, let Mi ∈ {0, 1} denote an indicator for the unobserved type of unit i, with

Mi = 1 if unit i is always-assigned and Mi = 0 if unit i is potentially-assigned. We then

impose three assumptions for our analysis. The first one implies that the standard conditions

from the RD literature are satisfied among potentially-assigned units.

5Formally, this is the causal effect for a setup where units are aware of the existence of the cutoff. The
causal effect may well be different in a hypothetical setting where students are unaware of its existence.
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Assumption 1. (i) P(D = 1|X = c+, M = 0) > P(D = 1|X = c−, M = 0); (ii) P(D+ ≥

D−|X = c, M = 0) = 1; (iii) P(Y (d) ≤ y|D+ = d1, D− = d0, X = x, M = 0), E(Y (d)|D+ =

d1, D− = d0, X = x, M = 0), P(D+ = 1|X = x, M = 0) and P(D− = 1|X = x, M = 0) are

continuous in x at c for d, d0, d1 ∈ {0, 1} and all y; (iv) FX|M=0(x) is differentiable in x at c,

and the derivative is strictly positive.

This assumption is stated here for the general case of a Fuzzy RD design; many of its

conditions simplify considerably if the RD is sharp.6 Assumption 1(i) requires that the

treatment probability changes discontinuously at the cutoff value of the running variable,

with the direction of the change normalized to be positive. Assumption 1(ii) is a monotonicity

condition stating that the response of treatment selection to crossing the cutoff is monotone

for every unit. Assumption 1(iii) is a continuity condition which roughly speaking requires

the distributions of potential outcomes and potential treatment status to be the same on

both sides of the cutoff. Finally, Assumption 1(iv) implies that the running variable has

a positive density at the cutoff, and thus that there are potentially-assigned units close to

the cutoff on either side. Note that Assumptions 1(i)-(iii) simplify to the condition that

E(Y (d)|X = x, M = 0) is continuous in x at c for d ∈ {0, 1} for the special case of a Sharp

RD design.

Assumption 2. The derivative of FX|M=0(x) is continuous in x at c.

Assumption 2 is a weak regularity condition on the distribution of the running variable

among potentially-assigned units. Together with Assumption 1(iv), this assumption implies

that the density of Xi among potentially-assigned units is smooth and strictly positive over

some open neighborhood of c. Continuity of the running variable’s density around the cutoff

is a reasonable condition in applications, and is generally considered to be an indication for

the absence of manipulation in the applied literature (McCrary, 2008).

6We define the RD design in terms of continuity conditions on the distributions of potential outcomes and
treatment states as in Frandsen, Frölich, and Melly (2012), Dong (2016a) or Bertanha and Imbens (2016).
This leads to the same identification results as directly imposing the local independence condition that the
treatment effect is independent of the treatment status conditional on the running variable near the cutoff, as
in Hahn, Todd, and Van der Klaauw (2001).
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Assumption 3. (i) P(X ≥ c|M = 1) = 1, (ii) FX|M=1(x) is right-differentiable in x at c.

Assumption 3 is the only restriction we impose on the properties of always-assigned units

in our setup. Its first part, which is key to our analysis, is the defining property of this group.

Together with Assumption 1, it implies that the running variable only takes on values to the

right of the cutoff among those units that are problematic for the validity of the standard RD

design. This encompasses the setup discussed by McCrary (2008), but is more general since it

does not require that always-assigned units have perfect control over the value of the running

variable; see the discussion below for details. The second part rules out mass points in the

distribution of Xi around the cutoff. In particular, it rules out that the running variable is

exactly equal to the cutoff among always-assigned units. However, the distribution of Xi is

allowed to be arbitrarily highly concentrated close to c. In view of Assumption 1(iv), this

condition implies that a unit’s type cannot simply be inferred from the value of its running

variable (without such a condition the analysis would be trivial). It also implies that in

the full population, which contains both always-assigned and potentially-assigned units, the

observed running variable Xi is continuously distributed, with a density that is generally

discontinuous at c. Moreover, Assumption 1(iv) and 3 together imply that none of the units

observed to the left of the cutoff are of the always-assigned type, i.e. P (M = 1|X = c−) = 0,

whereas to the right of the cutoff we observe a mixture of types.

2.3. Discussion of Manipulation Setup

Many different types of strategic behavior can generate subgroups of always-assigned and

potentially-assigned units. To illustrate this point, consider the case of an income transfer

program for which eligibility is based on a cutoff value of a poverty score Xi, and the formula

used to calculate the score takes as inputs household characteristics recorded during home

visits by local administrators. Programs of this type are found in many developing countries,

and various types of manipulation have been documented in this context (Camacho and

Conover, 2011). The following examples of strategic behavior all fit into our setup.
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Example 1 (Usual RD setup). Suppose that the formula for the poverty score is not publicly

known. Then neither households nor local administrators can ensure program assignment

through misreporting of input variables within reasonable bounds. There may still be some

manipulation of the running variable, but there are no always-assigned households in this

case. Every household is potentially-assigned and a standard RD design is valid.

Example 2 (Perfect control). Suppose that some households know the formula for the

poverty score, and local administrators turn a blind eye when the households report inaccurate

information. Those households can report combinations of variables such that Xi is to the

right of the cutoff. They are thus always-assigned, while all other households are potentially-

assigned.7

Example 3 (Ex-post definition). Alternatively, suppose that some local administrators

refuse to collaborate such that only a fraction of households is able to carry out its intended

manipulation. Only those households that succeed in manipulating the running variable

would then be always-assigned. The subset of households whose manipulation efforts fail

would be counted as potentially-assigned along with those households that never made a

manipulation attempt.

Example 4 (Passive manipulation). Suppose that households report information truthfully,

but local administrators fill in combinations of variables such that Xi is to the right of

the cutoff if a household strongly supports local elected officials. Such households are

always-assigned, even though they are not engaging in any manipulation themselves.

Example 5 (Legitimate behavior). Suppose that households can request a second home visit

after learning the outcome of the first one, and that only the most recent score is relevant for

program eligibility. Let Xji be the poverty score based on the jth visit of household i, and

suppose that households request a second visit if and only if they were ineligible based on the

7Misreporting households should have an incentive not to report information in such a away that their
poverty score is exactly equal to the cutoff in order to avoid detection by e.g. central administrators. This
makes the assumption of a continuously distributed running variable among always-assigned units palatable.
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first visit. Then the observed running variable is Xi = X1i · I (X1i ≥ c) + X2i · I (X1i < c). All

households with X1i ≥ c are always-assigned, whereas all households that receive a second

visit are potentially-assigned. Here “manipulation” occurs even though nobody is doing

anything that is illegal or against the terms of the program.

One can easily construct further variants of these examples that also fit into our general

setup. For instance, misreporting household information or requesting a second home visit

may be costly, with the cost depending on the distance between the cutoff and the true or

initial poverty score, respectively. Moreover, these examples have natural analogues in other

contexts. Consider for instance an educational program for which students are eligible if their

score in a test falls to the right of some cutoff. Teachers could then directly manipulate test

scores, or students could retake the test if their score falls to the left of the cutoff. Our setup

thus applies to a wide range of empirical settings.

2.4. Parameters of Interest

The framework that we use in this paper is very general and covers a wide range of patterns

of strategic behavior. This is possible because we are rather agnostic about the exact

mechanism through which manipulation occurs. On the flip-side, this also means that our

model does not specify, for example, which value the running variable would take in the

absence of manipulation.8 Our identification analysis therefore focuses on causal parameters

in subgroups of the population defined by the realized value of the running variable, and not

by some hypothetical one that would have been observed in the absence of manipulation.

In RD designs without manipulation, the parameter of interest is commonly the difference

of some feature of the distribution of the two potential outcomes among compliers at the

cutoff. Such parameters can be written as

θ
(
FY (1)|X=c,D+>D−

)
− θ

(
FY (0)|X=c,D+>D−

)
,

8More generally, no notion of “absence of manipulation” is well-defined in our framework. In particular,
it follows from the discussion in the previous subsection that the absence of always-assigned units is not
equivalent to the absence of strategic behavior.
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where the notation θ(F ) describes a real-valued parameter of a generic c.d.f. F . Examples of

such parameters include the (local) average treatment effect, where θ(F ) =
∫

ydF (y), and

(local) quantile treatment effects, where θ(F ) = F −1(u) for some quantile level u ∈ (0, 1).

Under manipulation, however, some caution is needed since the function

x Ô→ θ
(
FY (d)|X=x,D+>D−

)

is generally not continuous at x = c due to the possible shift in the composition of units at

the cutoff. The value of this function at x = c is thus not necessarily a meaningful object.

We therefore consider parameters based on left and right limits of this function at the cutoff

as our parameters of interest. In particular, we consider the (local) average treatment effects

Γ− ≡ E(Y (1) − Y (0)|X = c−, D+ > D−) and

Γ+ ≡ E(Y (1) − Y (0)|X = c+, D+ > D−),

and the corresponding quantile treatment effects

Ψ−(u) ≡ QY (1)|X=c−,D+>D−(u) − QY (0)|X=c−,D+>D−(u) and

Ψ+(u) ≡ QY (1)|X=c+,D+>D−(u) − QY (0)|X=c+,D+>D−(u),

where u ∈ (0, 1) is the desired quantile level. Quantile treatment effects are interesting

parameters to consider as they allow one to study causal effects on different parts of the

outcome distribution. Quantile treatment effects are also less sensitive than average treatment

effects to variation in the outer tails of the outcome distribution.

The parameters Γ− and Ψ−(u) can be interpreted as causal RD parameters in the usual

sense for the subgroup of potentially-assigned compliers. To see this, consider the case of the

(local) average treatment effect, and note that by Assumption 1 the function

x Ô→ E(Y (1) − Y (0)|X = x, D+ > D−, M = 0)

is continuous at x = c. Since there are only potentially-assigned units to the left of the cutoff
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in our setup, it follows that

Γ− = E(Y (1) − Y (0)|X = c, D+ > D−, M = 0),

and thus Γ− can be interpreted as the “usual” RD parameter in the subgroup of potentially-

assigned units. An analogous statement applies to the (local) quantile treatment effect Ψ−(u).

These parameters are thus natural objects of interest, and, as we argue in the following

subsection, are also a policy relevant quantity in many settings. Our main identification

analysis below therefore focuses on Γ− and Ψ−(u). Identification of Γ+ and Ψ+(u) is

a conceptually more involved issue, as these are causal parameters corresponding to a

subpopulation that includes a group that is only observed on one side of the cutoff. We

consider these parameters in an extension in Section 4.3 of this paper.

2.5. Policy Relevance

A common criticism of identification strategies that recover a local average (or quantile)

treatment effect is that the corresponding subpopulation is not necessarily of particular

interest from a policy point of view (e.g. Heckman and Urzua, 2010). One reason for the

popularity of the RD design is that it mostly avoids this criticism in settings where every

unit is potentially-assigned. In this case, the usual RD parameters capture the causal effect

for the subpopulation of units whose treatment status would directly change following a

marginal change in the level of the cutoff, which is often a feasible policy option.9

Our parameter Γ− (and its quantile analogue) typically retains a similar sense of policy

relevance in the presence of always-assigned units. To see this, it is useful to consider the

various examples laid out in Section 2.3 above. It is clear that marginal changes in the level

9One may add the qualifier that, in settings where units can influence their value of the running variable
(but not to the extent that they can ensure being assigned to the treatment, and thus break the comparability
of units on different sides of the cutoff), a cutoff change may also affect the treatment status of units away
from the cutoff. To see this, consider the educational program example at the end of Section 2.3, but assume
that a test score is only the result of a student’s true effort. Low-ability students, who may otherwise be
discouraged, may think that they have a better chance to qualify if the cutoff value decreases, and exert more
effort in response. As a result, some of them may improve their test score above the new cutoff value, and be
assigned to the treatment. RD estimates of course do not provide any information regarding the causal effect
of the treatment for this subpopulation. This limitation also applies in the cases that we consider.
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of the cutoff affect program eligibility for potentially-assigned households in all examples,

as the standard RD framework holds for this subpopulation. The parameter Γ− therefore

always captures a policy-relevant effect. The degree of its policy relevance, however, depends

on the extent to which the treatment status of always-assigned units changes in response

to a small change in the cutoff value. In those examples involving active manipulation, it

may be reasonable to assume that always-assigned units have the ability to remain above

cutoff, and maintain their treatment status, when the cutoff changes. Γ− captures the full

policy relevant effect in that case. Yet, even with active manipulation, some always-assigned

units may fall below the cutoff in response to a small change in its value, and Γ− then only

captures part of the policy relevant effect. This would be the case for example under a model

where active manipulation is costly, and the cost is increasing in the difference between a

“true” (or “unmanipulated”) level of the running variable and the cutoff. Always-assigned

units may also change their treatment status in the example involving a second home visit.10

Our parameter Γ+ (and its quantile analogue), in contrast, is typically of minor policy

relevance. As is clear from the above discussion, it only captures the full policy relevant effect

when every always-assigned unit changes its treatment status in response to a cutoff change.

This appears to be an unrealistic prospect in all of the examples that we consider.

3. IDENTIFICATION UNDER MANIPULATION: MAIN RESULTS

Since we cannot infer whether any given unit is always-assigned or potentially-assigned, the

parameters of interest are generally not point identified. In this section, we therefore derive

bounds on both mean and quantile effects. We first obtain some preliminary results on the

proportion of always-assigned units at the cutoff. We then use these results to derive bounds

for the special case of a Sharp RD design, and finally extend the analysis to the general case

of a Fuzzy RD design.

10If the cutoff changes from c to c, households with X1i ∈ [c, c) and X2i < c, which used to be always-
assigned, no longer receive the treatment.
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3.1. Proportion of Always-Assigned Units

We begin by studying the identification of two important intermediate quantities: the

proportion of always-assigned units among all units just to the right of the cutoff, and the

proportion of always-assigned units among units with treatment status d ∈ {0, 1} just to the

right of the cutoff. We denote these quantities by

τ ≡ P(M = 1|X = c+) and τd ≡ P(M = 1|X = c+, D = d), d ∈ {0, 1}, (3.1)

respectively. While we cannot observe or infer the type of any given unit, under our

assumptions we can point identify τ from the size of the discontinuity in the density fX of

the observed running variable at the cutoff.

Lemma 1. If Assumptions 1–3 hold, then τ = 1 − fX(c−)/fX(c+) is point identified.

In contrast, the two probabilities τ1 and τ0 are not point identified but only partially

identified under our assumptions. To see this, note that there are two logical restrictions on

the range of their plausible values. By the law of total probability and our monotonicity

condition in Assumption 1(i), any pair of candidate values for (τ1, τ0) ∈ [0, 1]2 has to satisfy

the following two conditions:

τ = τ1 · E(D|X = c+) + τ0 · (1 − E(D|X = c+)) and

E(D|X = c+) · 1 − τ1

1 − τ
> E(D|X = c−).

With T denoting the set containing those (τ1, τ0) ∈ [0, 1]2 that satisfy these two restrictions,

we have the following result.

Lemma 2. If Assumptions 1–3 hold, the set T is the sharp identified set for (τ1, τ0).

Geometrically, the set T is a straight line in the unit square. For our following analysis,

it is notationally convenient to represent this set in terms of the location of the endpoints of
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the line. That is, we can write

T = {(η1(t), η0(t)) : t ∈ [0, 1]} with ηd(t) = τL
d + t · (τU

d − τL
d )

for d ∈ {0, 1}, where

τL
1 = max

{
0, 1 − 1 − τ

g+

}
,

τL
0 = min

{
1,

τ

1 − g+

}
,

τU
1 = min

{
1 − (1 − τ) · g−

g+
,

τ

g+

}
,

τU
0 = max

{
0, τ − (1 − τ) · (g+ − g−)

1 − g+

}
,

using the shorthand notation that g+ = E(D|X = c+) and g− = E(D|X = c−).

3.2. Treatment Effects Among Potentially-Assigned Units

Using the above results, we now derive sharp lower and upper bounds on the parameters Γ−

and Ψ−(u). To simplify the exposition, we define the following subpopulations for m ∈ {0, 1}:

• Cm = {D+ > D−, M = m}, the compliers;

• Am = {D+ = D− = 1, M = m}, the always-takers;

• Nm = {D+ = D− = 0, M = m}, the never-takers.

Our main parameters of interest can thus be written as

Γ− ≡ E(Y (1) − Y (0)|X = c, C0) and Ψ−(u) ≡ QY (1)|X=c,C0
(u) − QY (0)|X=c,C0

(u),

respectively. Our general strategy is to first obtain sharp lower and upper bounds, in a

first-order stochastic dominance sense, on the c.d.f. FY (d)|X=c,C0
, for d ∈ {0, 1}. That is, we

derive c.d.f.s F U
d and F L

d that are feasible candidates for FY (d)|X=c,C0
, i.e. they are compatible

with our assumptions and the population distribution of observable quantities, and that are

such that F U
d ² FY (d)|X=c,C0

² F L
d , where ² denotes first-order stochastic dominance.11 Once

such F U
d and F L

d have been obtained, it follows from Stoye (2010, Lemma 1) that sharp upper

11For two generic c.d.f.s A and B, we say that A ² B if and only if A(y) ≤ B(y) for all y.
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and lower bounds on Γ− are given, respectively, by

ΓU
− ≡

∫
ydF U

1 (y) −
∫

ydF L
0 (y) and ΓL

− ≡
∫

ydF L
1 (y) −

∫
ydF U

0 (y),

whereas sharp upper and lower bounds on Ψ−(u) are given, respectively, by

ΨU
−(u) ≡ QU

1 (u) − QL
0 (u) and ΨL

−(u) ≡ QL
1 (u) − QU

0 (u),

with Qj
d(u) = inf{y ∈ R : F j

d (y) ≥ u} denoting the inverse of F j
d for d ∈ {0, 1} and j ∈ {U, L}.

It is instructive to first consider a Sharp RD design before studying the more general case of

a Fuzzy RD design. For notational convenience, all results in this section are stated for the

special case of a continuously distributed outcome variable (see Appendix B for an extension

to outcomes whose distribution has mass points).

Sharp RD Designs. In a Sharp RD design every unit is a complier, and thus receives the

treatment if and only if its value of the running variable is to the right of the cutoff. Since

every unit just to the left of the cutoff is potentially-assigned in our setup, the distribution of

Y in this subpopulation coincides with the distribution of Y (0) among potentially-assigned

compliers (C0) at the cutoff:

FY (0)|X=c,C0
(y) = FY |X=c−(y).

We therefore only need to bound the distribution of Y (1) among potentially-assigned compliers

at the cutoff. Information about Y (1) is only contained in the subpopulation of treated units,

which contains potentially- and always-assigned compliers (C0 and C1). The share of the

latter type of unit is given by

P(C1|X = c+) = τ

in our setting. Since τ = 1 − fX(c−)/fX(c+) is point identified (see Lemma 1), we can obtain

bounds using a strategy similar to that in Lee (2009) for sample selection in randomized

experiments. In particular, a sharp upper bound on FY (1)|X=c,C0
(y), in a first-order stochastic
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dominance sense, is obtained by truncating the distribution FY |X=c+(y) below its τ -quantile,

and a sharp lower bound is obtained analogously by truncating FY |X=c+(y) above its (1 − τ)-

quantile. That is, the bounds on FY (1)|X=c,C0
(y) are given, respectively, by

F U
1,SRD(y) = FY |X=c+,Y ≥Q

Y |X=c+ (τ)(y) and F L
1,SRD(y) = FY |X=c+,Y ≤Q

Y |X=c+ (1−τ)(y).

These bounds correspond to the two “extreme” scenarios in which the proportion 1 − τ of

units just to the right of the cutoff with either the highest or the lowest outcomes are the

potentially-assigned units. These bounds are sharp because both of these “extreme” scenarios

are empirically feasible. The following theorem translates these findings into explicit bounds

on Γ− and Ψ−(u).

Theorem 1. Suppose Assumptions 1–3 hold, that P (D+ > D−) = 1, and that FY |X=c+(y) is

continuous in y. Then sharp lower and upper bounds on Γ− are given by

ΓL
−,SRD = E(Y |X = c+, Y ≤ QY |X=c+(1 − τ)) − E(Y |X = c−) and

ΓU
−,SRD = E(Y |X = c+, Y ≥ QY |X=c+(τ)) − E(Y |X = c−),

respectively; and sharp lower and upper bounds on Ψ−(u) are given by

ΨL
−,SRD(u) = QY |X=c+((1 − τ)u) − QY |X=c−(u) and

ΨU
−,SRD(u) = QY |X=c+(τ + (1 − τ)u) − QY |X=c−(u),

respectively, for every quantile level u ∈ (0, 1).

Fuzzy RD Designs. In a Fuzzy RD design, the population might contain always-takers

and never-takers in addition to compliers, and each unit is either potentially assigned or

always-assigned. Overall, there are thus six different types of units; and there are also four

possible combinations of treatment assignments and treatment decisions. The relationship

between these groups is given in Table 1. Recall that we want to derive bounds on the

distributions of the two potential outcomes among potentially-assigned compliers (C0) at the

cutoff. To do so, we first obtain bounds for the hypothetical case in which the true values of
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Table 1: Allocation of Units’ Types in the Fuzzy RD Design

Subset of population Types of units present
X = c+, D = 1 C0, C1, A0, A1

X = c−, D = 1 A0

X = c+, D = 0 N0, N1

X = c−, D = 0 C0, N0

Note: See the beginning of Section 3.2 for a definition of units’ types.

τ1 and τ0, defined in (3.1), are actually known, and not only partially identified. In a second

step, we then extend the result to our actual setting in which we only know that (τ1, τ0) ∈ T .

Step 1. We begin by considering bounds on FY (1)|X=c,C0
. Information about the distribution

of Y (1) is only contained in the data on treated units. From Table 1, we see that the

subpopulation of treated units just to the left of the cutoff consists exclusively of potentially-

assigned always-takers (A0). The c.d.f. FY (1)|X=c,A0
is therefore point identified:

FY (1)|X=c,A0
(y) = FY |X=c−,D=1(y).

Using simple algebra, we also find that the proportion of potentially-assigned always-takers

(A0) among treated units just to the right of the cutoff, which we denote by κ1, is point

identified in our setting as well:

κ1 ≡ P(A0|X = c+, D = 1) = (1 − τ) · E(D|X = c−)

E(D|X = c+)
. (3.2)

It then follows from the law of total probability that the c.d.f. FY (1)|X=c,C0∪C1∪A1
, which we

denote by G to simplify the notation, is also point identified:

G(y) ≡ FY (1)|X=c,C0∪C1∪A1
(y) =

1

1 − κ1

(
FY |X=c+,D=1(y) − κ1FY |X=c−,D=1(y)

)
.

The c.d.f. FY (1)|X=c,C0
can now be bounded sharply by considering the two “extreme” scenarios

in which potentially-assigned compliers (C0) are those units just to the right of the cutoff in

the subpopulation C0 ∪ C1 ∪ A1 with either the highest or the lowest outcomes. The share of
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C0 units in this subpopulation is

P(C0|X = c+, C0 ∪ A1 ∪ C1) = 1 − τ1

1 − κ1

.

Given knowledge of τ1, we therefore obtain a sharp upper bound on FY (1)|X=c,C0
, in a first-order

stochastic dominance sense, by truncating the distribution G below its τ1/(1 − κ1) quantile,

and we analogously obtain a sharp lower bound by truncating G above its 1 − τ1/(1 − κ1)

quantile. With some algebra, these bounds on FY (1)|X=c,C0
given knowledge of (τ1, τ0) can be

written, respectively, as

F U
1,F RD(y, τ1, τ0) =

(1 − κ1) · G(y) − τ1

1 − κ1 − τ1

· I
{

y ≥ G−1
(

τ1

1 − κ1

)}
and

F L
1,F RD(y, τ1, τ0) =

(1 − κ1) · G(y)

τ1

· I
{

y ≤ G−1
(

1 − τ1

1 − κ1

)}
,

Next, we consider bounds on FY (0)|X=c,C0
. Information about the distribution of Y (0)

is only contained in the data on untreated units. From Table 1, we see that untreated

potentially-assigned compliers (C0) cannot be observed in isolation, but only together with

potentially-assigned never-takers (N0) in the subpopulation of untreated units just to the left

of the cutoff. Given knowledge of τ0, the share of the latter type of units, which we denote

by κ0 · (1 − τ0), is point identified:

P(N0|X = c−, D = 0) = κ0 · (1 − τ0), κ0 =
1

1 − τ
· 1 − E(D|X = c+)

1 − E(D|X = c−)
. (3.3)

If we were to use only information from untreated units just to the left of the cutoff, we could

therefore obtain lower and upper bounds on FY (0)|X=c,C0
(y) by truncating the distribution

FY |X=c−,D=0(y) below its κ0 ·(1−τ0) quantile and above its 1−κ0 ·(1−τ0) quantile, respectively.

However, such bounds are generally not sharp. This is because they correspond to “extreme”

scenarios in which potentially-assigned never-takers (N0) have either the highest or the lowest

outcomes among untreated units just to the left of the cutoff. By Assumption 1, however, the

c.d.f. FY (0)|X=x,N0
(y) varies continuously in x around the cutoff, and thus these two “extreme”

scenarios might be at odds with the distribution of outcomes that we observe among untreated
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units just to the right of the cutoff.

From Table 1, we see that the subpopulation of untreated units just to the right of the

cutoff consists of potentially- and always-assigned never-takers (N0 and N1), and the share of

the former type of units is

P(N0|X = c+, D = 0) = 1 − τ0.

This means that we can write the density fY (0)|X=c,N0
(y) in two different ways (assuming

that κ0 > 0 and τ0 < 1):

fY (0)|X=c,N0
(y) =

fY |X=c−,D=0(y) − (1 − κ0 · (1 − τ0))fY (0)|X=c,C0
(y)

κ0 · (1 − τ0)
and (3.4)

fY (0)|X=c,N0
(y) =

fY |X=c+,D=0(y) − τ0fY (0)|X=c,N1
(y)

1 − τ0

. (3.5)

To be compatible with the distribution of Y among untreated units on either side of the

cutoff, any candidate for fY (0)|X=c,N0
(y) has to be bounded from above, for every value y, by

s(y) ≡
min

{
fY |X=c−,D=0(y)/κ0, fY |X=c+,D=0(y)

}

1 − τ0

.

This is because otherwise either fY (0)|X=c,C0
(y) or fY (0)|X=c,N1

(y) would have to take a negative

value in order for equations (3.4)–(3.5) to be satisfied, which is of course not possible since

they are density functions. The most “extreme” feasible candidates for FY (0)|X=c,N0
(y), which

put as much probability mass as possible to one of the tail regions of the support of the

outcome variable, are then given by

F U
Y (0)|X=c,N0

(y) =
∫ y

−∞
s(t)I {t ≥ qU} dt and F L

Y (0)|X=c,N0
(y) =

∫ y

−∞
s(t)I {t ≤ qL} dt,

respectively, where qU and qL are constants such that

∫ ∞

qU

s(t)dt =
∫ qL

−∞
s(t)dt = 1.

Figure 3.1 illustrates this construction. Note that we leave the dependence of s(y), qU and qL on

τ0 implicit in our notation. The “extreme” candidates for FY (0)|X=c,N0
(y) directly correspond
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Figure 3.1: Construction of upper and lower bounds for FY (0)|X=c,N0

The figure illustrates the construction of upper and lower bounds on FY (0)|X=c,N0
. The solid and dotted lines

represent the graph of the functions fY |X=c−,D=0(y)/((1 − τ0)κ0) and fY |X=c+,D=0(y)/(1 − τ0), respectively.
The function s(y) is the pointwise minimum of these to functions. The upper contours of the shaded areas
(1) and (2) then correspond to the densities of F L

Y (0)|X=c,N0
and F U

Y (0)|X=c,N0
, respectively, as the constants

qL and qU are chosen such that the surface of the shaded areas is equal to 1.

to “extreme” candidates for the density fY (0)|X=c,C0
(y) through the relationship (3.4), which in

turn yields the following sharp upper and lower bounds, in a first-order stochastic dominance

sense, on the c.d.f. FY (0)|X=c,C0
given knowledge of (τ1, τ0):

F U
0,F RD(y, τ1, τ0) =

FY |X=c−,D=0(y) − κ0 · (1 − τ0)F
L
Y (0)|X=c,N0

(y)

1 − κ0 · (1 − τ0)
and

F L
0,F RD(y, τ1, τ0) =

FY |X=c−,D=0(y) − κ0 · (1 − τ0)F
U
Y (0)|X=c,N0

(y)

1 − κ0 · (1 − τ0)
.

In the special case that s(·) is a proper density function these two bounds coincide, and

thus the c.d.f. FY (0)|X=c,C0
is point identified. The function s(·) is a density if τ0 = 0 or

E(D|X = c+) = 1, for example.
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Step 2. The above analysis shows that if we knew the values of τ1 and τ0, sharp upper and

lower bounds on the local average treatment effect Γ− would be given by

ΓU
−,F RD(τ1, τ0) ≡

∫
ydF U

1,F RD(y, τ1, τ0) −
∫

ydF L
0,F RD(y, τ1, τ0) and

ΓL
−,F RD(τ1, τ0) ≡

∫
ydF L

1,F RD(y, τ1, τ0) −
∫

ydF U
0,F RD(y, τ1, τ0),

(3.6)

respectively. Similarly, sharp upper and lower bounds on the local quantile treatment effect

Ψ−(u) would be given by

ΨU
−,F RD(u, τ1, τ0) ≡ QU

1,F RD(u, τ1, τ0) − QL
0,F RD(u, τ1, τ0) and

ΨL
−,F RD(u, τ1, τ0) ≡ QL

1,F RD(u, τ1, τ0) − QU
0,F RD(u, τ1, τ0).

(3.7)

These bounds are not practically useful by themselves since τ1 and τ0 are, following the result

in Lemma 2, only partially identified in our setup. However, we can find sharp bounds on

Γ− and Ψ−(u) by finding those values of (τ1, τ0) ∈ T that lead to the most extreme values

of the quantities defined in (3.6) and (3.7). These bounds are sharp because they are based

on assigning “worst case” distribution of the potential outcomes to each of the six groups

mentioned in Table 1 that satisfy our assumptions and are compatible with the distribution of

observables. The next theorem formally states the main finding of our identification analysis.

Theorem 2. Suppose that Assumptions 1–3 hold, and that FY |XD (y|c+, d) and FY |XD (y|c−, d)

are continuous in y for d ∈ {0, 1}. Then sharp lower and upper bounds on Γ− are given by

ΓL
−,F RD = inf

(t1,t0)∈T
ΓL

−,F RD(t1, t0) and ΓU
−,F RD = sup

(t1,t0)∈T
ΓU

−,F RD(t1, t0),

respectively; and sharp lower and upper bounds on Ψ−(u) are given by

ΨL
−,F RD(u) = inf

(t1,t0)∈T
ΨL

−,F RD(u, t1, t0) and ΨU
−,F RD(u) = sup

(t1,t0)∈T
ΨU

−,F RD(u, t1, t0),

respectively, for every quantile level u ∈ (0, 1).

If our model is incorrect, in the sense that some of the provisions in Assumption 1–3

do not hold, the quantities in (3.6) and (3.7) might not be well-defined. For example, the
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function G(y) might not be a proper c.d.f., or the function s(y) might not integrate to a

number greater than or equal to one. In this case the identified set for Γ− and Ψ−(u) is

simply the empty set, as there is no candidate value that is compatible with the assumptions

and the distribution of observables.

3.3. Adding Behavioral Assumptions in Fuzzy RD Designs

The bounds derived in Theorem 2 can be made more narrow by imposing stronger assumptions

on the units’ behavior. Such additional behavioral restrictions often arise naturally in certain

empirical contexts. Consider for instance a setting where always-assigned units obtain values

of the running variable to the right of the cutoff by misreporting some information. Since such

units actively choose to be eligible for the treatment, it seems plausible to assume that their

probability of actually receiving the treatment conditional on being eligible is relatively high

in some appropriate sense. One might be willing to assume, for example, that always-assigned

units are at least as likely to get treated as eligible potentially-assigned units. The following

theorem studies the implications of this assumption.

Theorem 3. Suppose that the conditions of Theorem 2 hold, and that E(D|X = c+, M =

1) ≥ E(D|X = c+, M = 0). Then Ta ≡ {(t1, t0) : (t1, t0) ∈ T and t1 ≥ τ} is the sharp

identified set for (τ1, τ0); sharp lower and upper bounds on Γ− are given by

ΓL
−,F RD(a) = inf

(t1,t0)∈Ta

ΓL
−,F RD(t1, t0) and ΓU

−,F RD(a) = sup
(t1,t0)∈Ta

ΓU
−,F RD(t1, t0),

respectively; and sharp lower and upper bounds on Ψ−(u) are given by

ΨL
−,F RD(a)(u) = inf

(t1,t0)∈Ta

ΨL
−,F RD(u, t1, t0) and ΨU

−,F RD(a)(u) = sup
(t1,t0)∈Ta

ΨU
−,F RD(u, t1, t0),

respectively, for every quantile level u ∈ (0, 1).

In some cases, it may be reasonable to drive this line of reasoning further and consider the

identifying power of the assumption that always-assigned units always receive the treatment,

which is equivalent to assuming that no always-assigned unit is a never-taker. The following
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theorem provides expressions for the bounds under this assumption.

Theorem 4. Suppose that the conditions of Theorem 2 hold, and that E(D|X = c+, M =

1) = 1. Then τ1 = τ/E(D|X = c+) and τ0 = 0 are point identified; sharp lower and upper

bounds on Γ− are given by

ΓL
−,F RD(b) = ΓL

−,F RD

(
τ

E(D|X = c+)
, 0

)
and ΓU

−,F RD(b) = ΓU
−,F RD

(
τ

E(D|X = c+)
, 0

)
,

respectively; and sharp lower and upper bounds on Ψ−(u) are given by

ΨL
−,F RD(b)(u) = ΨL

−,F RD

(
u,

τ

E(D|X = c+)
, 0

)
and

ΨU
−,F RD(b)(u) = ΨU

−,F RD

(
u,

τ

E(D|X = c+)
, 0

)
,

respectively, for every quantile level u ∈ (0, 1).

Comparing the first part of the Theorem 3 with the result in Lemma 2, we see that the

additional behavioral restriction increases the lowest possible value of τ1 from max{0, 1 + (τ −

1)/E(D|X = c+)} to τ , and correspondingly decreases the largest possible value for τ0 from

min{1, τ/(1 − E(D|X = c+))} to τ . This follows from a simple application of Bayes’ Rule,

and means that Ta ⊂ T . We then obtain bounds that are (weakly) more narrow, because

optimization is carried out over a smaller set. Under the conditions of Theorem 4, the set

of plausible values of (τ1, τ0) shrinks to a singleton, which means that sharp bounds on our

parameter of interest can be defined without invoking an optimization operator. Moreover,

due to the absence of always-assigned never-takers under the conditions of Theorem 4, the

distribution FY (0)|X=c,C0
is point identified in this case

4. IDENTIFICATION UNDER MANIPULATION: EXTENSIONS

The results in the previous section can be extended in various ways. In this section, we show

that the distribution of covariates among always-assigned and potentially-assigned units is

point identified in our setup, that covariates can be used to tighten the bounds on Γ− and

Ψ−(u), and how to obtain bounds of the alternative causal parameters Γ+ and Ψ+(u).
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4.1. Characteristics of Always- and Potentially-Assigned Units

It is not possible to determine whether any given unit belongs to the group of always-assigned

units or to the group of potentially-assigned units in our setup. This does not mean, however,

that it is impossible to give any further characterization of these two groups. In particular,

suppose the data include a vector W of covariates that are measured prior to treatment

assignment, and whose distribution (conditional on units’ type and the running variable)

does not change discontinuously at c. It is then possible to identify the distribution of these

covariates among always-assigned and potentially-assigned units. This information could be

useful, for instance, for targeting policies aimed at mitigating manipulation. The following

corollary formally states this result.

Corollary 1. Suppose that Assumptions 1–2 hold, and that P(W ≤ w|X = x, M = 0) is

continuous in x at c. Then

P(W ≤ w|X = c+, M = 1) =
1

τ
(P(W ≤ w|X = c+) − P(W ≤ w|X = c−))

+ P(W ≤ w|X = c−) and

P(W ≤ w|X = c+, M = 0) = P(W ≤ w|X = c−).

Of course, identification of the distribution of W immediately implies identification of

moments, quantiles and related summary statistics. For example, the corollary implies that

E(W |X = c+, M = 1) = (E(W |X = c+) − E(W |X = c−))/τ + E(W |X = c−); and that

E(W |X = c+, M = 0) = E(W |X = c−).

4.2. Using Covariates to Tighten the Bounds

Following arguments similar to those in Lee (2009), covariates that are measured prior to

treatment assignment can also be used to narrow the bounds on causal effects we derived

above. Let W be a vector of such covariates, and denote its support by W. The main idea

then is that if the outcome distribution or the proportion of always-assigned units varies

with the value of W , trimming units based on their position in the outcome distribution
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conditional on W leads to a smaller number of units with extreme outcomes being trimmed

overall, which narrows the bounds. For the Sharp RD design, this reasoning leads to the

following sharp upper and lower bounds on FY (1)|X=c,C0
:

F U
1,SRD(W )(y) =

∫
FY |X=c+,W =w,Y ≥Q

Y |X=c+,W =w
(τ(w))(y)dFW |X=c−(w) and

F L
1,SRD(W )(y) =

∫
FY |X=c+,W =w,Y ≤Q

Y |X=c+,W =w
(1−τ(w))(y)dFW |X=c−(w).

Note that the integral in the previous two equations is with respect to the covariate dis-

tribution among potentially-assigned units. Here τ(w) = P(M = 1|X = c+, W = w)

is a conditional version of τ defined as in (3.1), and this quantity is point identified as

τ(w) = 1 − fX|W (c−, w)/fX|W (c+, w) through arguments analogous to those used in the proof

of Lemma 1, conditioning on W = w throughout. The next corollary gives the resulting

sharp lower and upper bounds on the average treatment effect Γ− and quantile treatment

effect Ψ−(u).

Corollary 2. Suppose that the assumptions of Theorem 1 hold, mutatis mutandis, with

conditioning on the covariates W . Then sharp lower and upper bounds on Γ− are given by

ΓL
−,SRD(W ) =

∫
E(Y |X = c+, W = w, Y ≤ QY |X=c+,W =w(1 − τ(w)))dFW |X=c−(w)

− E(Y |X = c−) and

ΓU
−,SRD(W ) =

∫
E(Y |X = c+, W = w, Yi ≥ QY |X=c+,W =w(τ(w)))dFW |X=c−(w)

− E(Y |X = c−),

respectively; and sharp lower and upper bounds on Ψ−(u) are given by

ΨL
−,SRD(W )(u) = QL

1,SRD(W )(u) − QY |X=c−(u) and

ΨU
−,SRD(W )(u) = QU

1,SRD(W )(u) − QY |X=c−(u),

respectively, for every quantile level u ∈ (0, 1).

To state a similar result for the Fuzzy RD design, we need to define conditional versions of
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τ1, τ0, T , κ1 and κ0, which we denote by τ1(w), τ0(w), T (w), κ1(w) and κ0(w), respectively.

These objects are defined as in (3.1), (3.3) and (3.2) and Lemmas 1 and 2 by condition-

ing on W = w throughout. We then define conditional versions of F U
d,F RD(y, τ1, τ0) and

F U
d,F RD(y, τ1, τ0), denoted by F U

d,F RD|W =w(y, τ1(w), τ0(w)) and F U
d,F RD|W =w(y, τ1(w), τ0(w)), re-

spectively, for d ∈ {0, 1}. These objects are constructed following the steps in the previous

section by conditioning on W = w throughout. We also define the set TW = {(t1(·), t1(·)) :

(t1(w), t1(w)) ∈ T (w) for all w ∈ W}. Finally, we denote the proportion of potentially-

assigned compliers (C0) conditional on W = w just to the left of the cutoff by

P(C0|X = c−, W = w) =
1 − τ1(w)

1 − τ(w)
E(D|X = c+, W = w) − E(D|X = c−, W = w)

≡ Π−,W =w(τ1(w), τ0(w)).

With this notation, we can then construct sharp upper and lower bounds on FY (1)|X=c,C0
and

FY (0)|X=c,C0
given knowledge of the function w Ô→ (τ1(w), τ0(w)). These bounds are given by

F U
d,F RD(W )(y, τ1(·), τ0(·)) =

∫
F U

d,F RD|W =w(y, τ1(w), τ0(w))ω(w, τ1(w), τ0(w))dFW |X=c−(w)

F L
d,F RD(W )(y, τ1(·), τ0(·)) =

∫
F L

d,F RD|W =w(y, τ1(w), τ0(w))ω(w, τ1(w), τ0(w))dFW |X=c−(w),

for d ∈ {0, 1}, where

ω(w, τ1(w), τ0(w)) ≡ Π−,W =w(τ1(w), τ0(w))
∫

Π−,W =w(τ1(w), τ0(w))dFW |X=c−(w)
.

The resulting sharp upper and lower bounds on the local average treatment effect Γ− given

(hypothetical) knowledge of the function w Ô→ (τ1(w), τ0(w)) are given by

ΓU
−,F RD(W )(τ1(·), τ0(·))

≡
∫

ydF U
1,F RD(W )(y, τ1(·), τ0(·)) −

∫
ydF L

0,F RD(W )(y, τ1(·), τ0(·)) and

ΓL
−,F RD(W )(τ1(·), τ0(·))

≡
∫

ydF L
1,F RD(W )(y, τ1(·), τ0(·)) −

∫
ydF U

0,F RD(W )(y, τ1(·), τ0(·)),
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respectively. Similarly, the resulting sharp upper and lower bounds on the local quantile

treatment effect Ψ−(u) for known values of τ1(w) and τ0(w) are given by

ΨU
−,F RD(W )(u, τ1(·), τ0(·)) ≡ QU

1,F RD(W )(u, τ1(·), τ0(·))) − QL
0,F RD(W )(u, τ1(·), τ0(·)) and

ΨL
−,F RD(W )(u, τ1(·), τ0(·)) ≡ QL

1,F RD(W )(u, tτ1(·), τ0(·)) − QU
0,F RD(W )(u, τ1(·), τ0(·))

respectively. The following corollary gives the feasible sharp bounds on Γ− and Ψ−(u) given

that the function w Ô→ (τ1(w), τ0(w)) is only partially identified.

Corollary 3. Suppose that the assumptions of Theorem 2 hold, mutatis mutandis, with

conditioning on the covariates W . Then sharp lower and upper bounds on Γ− are given by

ΓL
−,F RD(W ) = inf

(t1(·),t0(·))∈TW

ΓL
−,F RD(t1(·), t0(·)) and

ΓU
−,F RD(W ) = sup

(t1(·),t0(·))∈TW

ΓU
−,F RD(t1(·), t0(·)),

respectively; and sharp lower and upper bounds on Ψ− are given by

ΨU
−,F RD(W ) = inf

(t1(·),t0(·))∈TW

ΨU
−,F RD(u, t1(·), t0(·)) and

ΨL
−,F RD(W ) = sup

(t1(·),t0(·))∈TW

ΨL
−,F RD(u, t1(·), t0(·)),

respectively, for every quantile level u ∈ (0, 1).

4.3. Causal Effects for Units Just to the Right of the Cutoff

The parameters Γ− and Ψ−(u) that we considered so far correspond to causal effects among

compliers whose realization of the running variable is just to the left of the cutoff. As pointed

out in Section 2.4, alternative parameters of interest are

Γ+ ≡ E(Y (1) − Y (0)|X = c+, D+ > D−), and

Ψ+(u) ≡ QY (1)|X=c+,D+>D−(u) − QY (0)|X=c+,D+>D−(u),
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which are causal effects among compliers whose realization of the running variable is just to

the right of the cutoff. For reasons outlined above, these parameters are often less important in

empirical applications than their “left side” counterparts, but they are nevertheless interesting

to study. The main conceptual difficulty for an identification analysis is that by definition

there is no always-assigned complier that does not receive the treatment. Any bounds

analysis therefore must rely on some additional assumption, at least for the average treatment

effect, that specifies a “worst case” scenario for the outcome variable in this counterfactual

scenario. To make progress, we impose the assumption that the outcome variable has bounded

support conditional on the running variable in some neighborhood of the cutoff. This type of

assumption is commonly used in the partial identification literature (cf. Manski, 1990) and is

natural for binary outcomes, for example. However, it is restrictive in general and difficult to

justify for some outcomes commonly studied in economics, like wages.

Assumption 4. There are constants Y L and Y U such that P(Y L ≤ Y (0) ≤ Y U |X = x) = 1

and P(Y L ≤ Y (1) ≤ Y U |X = x) = 1 for every x in some open neighborhood of the cutoff.

We now study identification of Γ+ and Ψ+(u) under this additional assumption. Paralleling

the discussion in Section 3, we begin with the Sharp RD design before turning to the

more general Fuzzy RD setup. Note that, using notation from Section 3, we have that

{D+ > D−} = C0 ∪ C1, and thus the parameters of interest can be written as Γ+ =

E(Y (1) − Y (0)|X = c+, C0 ∪ C1) and Ψ+(u) = QY (1)|X=c+,C0∪C1
(u) − QY (0)|X=c+,C0∪C1

(u).

Sharp RD Designs. In the Sharp RD design every unit just to the right of the cutoff is a

complier, and thus the distribution of Yi given Xi = c+ coincides with the distribution of

Yi(1) among compliers (C1 or C0) just to the right of the cutoff:

FY (1)|X=c+,C0∪C1
(y) = FY |X=c+(y).

On the other hand, we have that

FY (0)|X=c+,C0∪C1
(y) = τFY (0)|X=c+,C1

(y) + (1 − τ)FY (0)|X=c+,C0
(y).
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Since there exist no untreated always-assigned compliers, we can only deduce from Assumption

4 that the potential outcome Yi(0) of always-assigned compliers is bounded between Y L and

Y U . This, and the continuity conditions on potentially-assigned units in Assumption 1, then

lead to the following sharp bounds on FY (0)|X=c+,C0∪C1
(y):

F U
0,+,SRD(y) = (1 − τ)FY |X=c−(y) + τI

{
y ≥ Y U

}
and

F L
0,+,SRD(y) = (1 − τ)FY |X=c−(y) + τI

{
y ≥ Y L

}
.

The following corollary gives the resulting sharp lower and upper bounds on the average

treatment effect Γ+ and quantile treatment effect Ψ+(u).

Corollary 4. Suppose Assumptions 1–4 hold, that P (D+ > D−) = 1. Then sharp lower and

upper bounds on Γ+ are given by

ΓL
+,SRD = E(Y |X = c+) − (1 − τ)E(Y |X = c−) − τY U and

ΓU
+,SRD = E(Y |X = c+) − (1 − τ)E(Y |X = c−) − τY L,

respectively; and sharp lower and upper bounds on Ψ+(u) are given by

ΨL
+,SRD(u) = QY |X=c+(u) − I {u < 1 − τ} QY |X=c−

(
u

1 − τ

)
− I {u ≥ 1 − τ} Y U and

ΨU
+,SRD(u) = QY |X=c+(u) − I {u ≥ 1 − τ} QY |X=c−

(
u − τ

1 − τ

)
− I {u < τ} Y L,

respectively, for every quantile level u ∈ (0, 1).

The formulas in Corollary 4 highlight that our additional assumption of bounded support

always matters for Γ+, but only matters for Ψ+ if u < τ or u ≥ 1 − τ . The bounds on Γ+(u)

are thus finite even in the absence of support restrictions on the outcome distribution for

most quantile levels, as long as the degree of manipulation is moderate.

Fuzzy RD Designs. For the Fuzzy RD design, our strategy is to first derive bounds for the

hypothetical case in which the true values of (τ1, τ0) and λ ≡ P(A1|X = c+, D = 1, M = 1),

the proportion of always-takers among the treated always-assigned units just to the right of
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the cutoff, are known. In a second step, we then extend this result to our actual setting in

which we only know that (τ1, τ0) ∈ T and that λ ∈ [0, 1].

We begin by considering the c.d.f. FY (1)|X=c+,C0∪C1
(y). Recall from Section 3.2 that

we can point identify the c.d.f. G(y) ≡ FY (1)|X=c+,C0∪C1∪A1
(y) from the data on treated

units, and note that P(A1|X = c+, C0 ∪ C1 ∪ A1) = 1 − λτ1/(1 − κ1). By truncating the

distribution G(y) appropriately, we thus arrive on the following sharp upper and lower bounds

on FY (1)|X=c+,C0∪C1
(y):

F U
1,+,F RD(y, τ1, τ0, λ) =

(1 − κ1)G(y) − λτ1

1 − κ1 − λτ1

· I
{

y ≥ G−1

(
λτ1

1 − κ1

)}
and

F L
1,+,F RD(y, τ1, τ0, λ) =

(1 − κ1)G(y)

λτ1

· I
{

y ≤ G−1

(
1 − λτ1

1 − κ1

)}
.

Now consider the c.d.f. FY (0)|X=c+,C0∪C1
(y), which can be written as

FY (0)|X=c+,C0∪C1
(y) = s(τ1, λ)FY (0)|X=c+,C0

(y) + (1 − s(τ1, λ))FY (0)|X=c+,C1
(y)

where

s(τ1, λ) ≡ P(C0|X = c+, C0 ∪ C1) =
(1 − τ1)E(D|X = c+) − (1 − τ)E(D|X = c−)

(1 − λτ1)E(D|X = c+) − (1 − τ)E(D|X = c−)
.

is the proportion of potentially-assigned units among all compliers just to the right of the

cutoff. The term FY (0)|X=c+,C0
(y) = FY (0)|X=c−,C0

(y) can then be bounded as in Section 3.2,

and bounds on FY (0)|X=c+,C1
(y) follow from Assumption 4:

F U
0,+,F RD(y, τ1, τ0, λ) = s(τ1, λ)F U

0,F RD(y, τ1, τ0) + (1 − s(τ1, λ))I
{
y ≥ Y U

}
and

F L
0,+,F RD(y, τ1, τ0, λ) = s(τ1, λ)F L

0,F RD(y, τ1, τ0) + (1 − s(τ1, λ))I
{
y ≥ Y L

}
,

Taken together, the sharp bounds on the local average treatment effect Γ+ for known values

of τ1, τ0 and λ are

ΓU
+,F RD(τ1, τ0, λ) ≡

∫
ydF U

1,+,F RD(y, τ1, τ0, λ) −
∫

ydF L
0,+,F RD(y, τ1, τ0, λ),

ΓU
+,F RD(τ1, τ0, λ) ≡

∫
ydF L

1,+,F RD(y, τ1, τ0, λ) −
∫

ydF U
0,+,F RD(y, τ1, τ0, λ);

32



and analogous bounds for the local quantile treatment effect Ψ+(u) are

ΨU
+,F RD(u, τ1, τ0, λ) ≡ QU

1,+,F RD(u, τ1, τ0, λ) − QL
0,+,F RD(u, τ1, τ0, λ),

ΨL
+,F RD(u, τ1, τ0, λ) ≡ QL

1,+,F RD(u, τ1, τ0, λ) − QU
0,+,F RD(u, τ1, τ0, λ).

We can then give sharp bounds on Γ+ and Ψ+(u) by finding those values of (τ1, τ0) ∈ T and

λ ∈ [0, 1] that lead to the most extreme values of the just-defined quantities.

Corollary 5. Suppose Assumptions 1–4 hold, and that FY |XD (y|c+, d) and FY |XD (y|c−, d)

are continuous in y for d ∈ {0, 1}. Then sharp lower and upper bounds on Γ+ are given by

ΓL
+,F RD = inf

(t1,t0,l)∈T ×[0,1]
ΓL

+,F RD(t1, t0, l) and

ΓU
+,F RD = sup

(t1,t0,l)∈T ×[0,1]
ΓU

+,F RD(t1, t0, l),

respectively; and sharp lower and upper bounds on Ψ−(u) are given by

ΨL
+,F RD(u) = inf

(t1,t0,l)∈T ×[0,1]
ΨL

+,F RD(u, t1, t0, l) and

ΨU
+,F RD(u) = sup

(t1,t0,l)∈T ×[0,1]
ΨU

+,F RD(u, t1, t0, l),

respectively, for every quantile level u ∈ (0, 1).

Following the reasoning laid out in Section 3.3, these bounds can be tightened by imposing

additional behavioral assumptions. Consider, for example, the setup of Theorem 4, which

imposes that every always-assigned unit just to the right of the cutoff receives the treatment.

In many empirical contexts in which this assumptions is plausible, one might also be willing

to assume that none of the always-assigned unit just to the right of the cutoff would have

been able to receive the treatment had they not been assigned to the treatment group. Taken

together, these two conditions imply that every always-assigned unit just to the right of the

cutoff is a complier. The following corollary shows the implications of this assumption on the

bounds on causal parameters.

Corollary 6. Suppose that the conditions of Corollary 5 hold, and that Pr(D+ > D−|M =
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1) = 1. Then (τ1, τ0, λ) = (τ/E(D|X = c+), 0, 0) is point identified, and sharp upper and

lower bound on Γ+ are given by

ΓL
+,F RD = ΓL

+,F RD

(
τ

E(Di|Xi = c+)
, 0, 0

)
and

ΓU
+,F RD = ΓU

+,F RD

(
τ

E(Di|Xi = c+)
, 0, 0

)
,

respectively; and sharp upper and lower bound on Ψ+(u) are given by

ΨL
+,F RD(u) = ΨL

+,F RD

(
u,

τ

E(Di|Xi = c+)
, 0, 0

)
and

ΨU
+,F RD(u) = ΨU

+,F RD

(
u,

τ

E(Di|Xi = c+)
, 0, 0

)
,

respectively, for every quantile level u ∈ (0, 1).

4.4. Remarks on Exploiting Selection Assumptions

We conclude this section by noting that additional behavioral restrictions on the form of

selection taking place at the cutoff can further tighten our bounds on Γ−. Suppose for example

that one is willing to assume that always-assigned units have higher (average) potential

outcomes under the treatment than potentially-assigned units. A new upper bound on the

value of Γ− in the Sharp RD design is then a naive estimate that ignores selection concerns:

Γ− ≤ E(Y |X = c+) − E(Y |X = c−).

Instead, if one is willing to assume that always-assigned units have higher average treatment

effects than potentially-assigned units, this implies that Γ+ ≥ Γ−; which holds because

Γ+ = (1 − τ) · Γ− + τ · E(Y (1) − Y (0)|X = c+, M = 1).

Thus, an upper bound on Γ+ automatically becomes an upper bound on Γ−. Similar

arguments apply to the fuzzy RD design, and to quantile treatment effects.
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5. ESTIMATION AND INFERENCE

In this section, we explain how to conduct estimation and inference based on the identification

results derived above. Software to implement these methods is available from the authors’

websites.

5.1. Estimation of the Bounds

The bounds that we obtained in Sections 3–4 can be estimated through a “plug-in” approach

that replaces unknown population quantities with suitable sample counterparts. Following

the recent RD literature, we focus on flexible nonparametric methods, and in particular

local polynomial smoothing (Fan and Gijbels, 1996), for the construction of these sample

counterparts. To simplify the exposition, we use the same polynomial order p, bandwidth h

and kernel function K(·) in all intermediate estimation steps in this paper. We also use the

notation that πp(x) = (1/0!, x/1!, x2/2!, . . . , xp/p!)′ and Kh(x) = K(x/h)/h for any x ∈ R,

and define the (p + 1)-vector e1 = (1, 0, . . . , 0)′. The data available to the econometrician is

an independent and identically distributed sample {(Yi, Di, Xi), i = 1, . . . , n} of size n.

Proportion of Always-Assigned Units. Following the result in Lemma 1, estimating τ

requires estimates of the right and left limits of the density at the cutoff. There are a number

of nonparametric estimators that can be used to estimate densities at boundary points; see

for example Lejeune and Sarda (1992), Jones (1993), Cheng (1997) or Cattaneo, Jansson,

and Ma (2015). Here we use a minor variation of the procedure in Cheng (1997), which also

forms the basis for the McCrary (2008) test, and estimate fX(c+) and fX(c−) by

f̂+ = e
′
1 argmin

β∈Rp+1

n∑

i=1

(f̂(Xi) − πp(Xi − c)′β)Kh(Xi − c)I {Xi ≥ c} , and

f̂− = e
′
1 argmin

β∈Rp+1

n∑

i=1

(f̂(Xi) − πp(Xi − c)′β)Kh(Xi − c)I {Xi < c} ,

respectively, where f̂(Xi) = (1/n)
∑n

j=1 Kb(Xj − Xi) and b is another bandwidth. Since by

assumption the proportion of always-assigned units among units just to the right of the cutoff
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has to be non-negative, our estimate of τ is then given by

τ̂ = max{τ̃ , 0}, with τ̃ = 1 − f̂−/f̂+.

Conditional Expectation, Distribution, and Density Functions. Using standard nonpara-

metric regression techniques, and writing g+ = E(Di|Xi = c+) and g− = E(Di|Xi = c−), we

estimate the conditional treatment probabilities on either side of the cutoff by

ĝ+ = e
′
1 argmin

β∈Rp+1

n∑

i=1

(Di − πp(Xi − c)′β)2Kh(Xi − c)I {Xi ≥ c} , and

ĝ− = e
′
1 argmin

β∈Rp+1

n∑

i=1

(Di − πp(Xi − c)′β)2Kh(Xi − c)I {Xi < c} ,

respectively (Fan and Gijbels, 1996). Next, we estimate the conditional c.d.f.s FY |X=c+,D=d(y)

and FY |X=c−,D=d(y) by

F̂Y |X=c+,D=d(y) = e
′
1 argmin

β∈Rp+1

n∑

i=1

(I {Yi ≤ y} − πp(Xi − c)′β)Kh(Xi − c)I {Xi ≥ c} , and

F̂Y |X=c−,D=d(y) = e
′
1 argmin

β∈Rp+1

n∑

i=1

(I {Yi ≤ y} − πp(Xi − c)′β)Kh(Xi − c)I {Xi < c} ,

respectively, which for every y ∈ R corresponds to a local polynomial regression with

I {Yi ≤ y} as the dependent variable (Hall, Wolff, and Yao, 1999). Finally, we estimate the

conditional p.d.f.s fY |X=c+,D=d(y) and fY |X=c−,D=d(y) by

f̂Y |X=c+,D=d(y) = e
′
1 argmin

β∈Rp+1

n∑

i=1

(Kb(Yi − y) − πp(Xi − c)′β)Kh(Xi − c)I {Xi ≥ c} , and

f̂Y |X=c−,D=d(y) = e
′
1 argmin

β∈Rp+1

n∑

i=1

(Kb(Yi − y) − πp(Xi − c)′β)Kh(Xi − c)I {Xi < c}

respectively, which for every y ∈ R corresponds to a local polynomial regression with Kb(Yi−y)

as the dependent variable, where b is another bandwidth (Fan, Yao, and Tong, 1996).

Final Bounds Estimates. We illustrate the construction of our final bounds estimates for

the case of the local average treatment effect Γ− under the conditions of Theorem 2. The

construction is analogous for all other settings in Sections 3–4. Using the representation of

the set T given after Lemma 2, and dropping the “FRD” subscript to simplify the notation,
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the bounds on Γ− from Theorem 2 can be written as

ΓL
− = inf

t∈[0,1]
ΓL

−(η1(t), η0(t)) and ΓU
− = sup

t∈[0,1]

ΓU
−(η1(t), η0(t)).

This reparametrization is convenient because it ensures that the area over which optimization

takes place does not depend on nuisance parameters that have to be estimated. Next, we put

Γ̂j
−(t1, t0) =

∫
ydF̂ j

1 (y, t1, t0) −
∫

ydF̂ j
0 (y, t1, t0), j ∈ {U, L}, (5.1)

where for j ∈ {U, L} and d ∈ {0, 1} the function F̂ j
d (y, t1, t0) is a sample analogue estimator

of the function F j
d,F RD(y, t1, t0) defined in Section 3. Specifically, we put

F̂ U
1 (y, t1, t0) =

(1 − κ̂1)Ĝ(y) − t1

1 − κ̂1 − t1

· I
{

y ≥ Ĝ−1
(

t1

1 − κ̂1

)}
,

F̂ U
0 (y, τ1, τ0) =

F̂Y |X=c−,D=0(y) − κ̂0 · (1 − t0)F̂
L
Y (0)|X=c,N0

(y)

1 − κ0 · (1 − t0)
,

and similarly define F̂ L
1 and F̂ L

0 . These expressions use the notation that

Ĝ(y) =
F̂Y |X=c+,D=1(y) − κ̂1F̂Y |X=c−,D=1(y)

1 − κ̂1

, F̂ L
Y (0)|X=c,N0

(y) =
∫ y

−∞
ŝ(u)I {u ≥ q̂L} du

ŝ(y) =
min

{
f̂Y |X=c−,D=0(y)/κ̂0, f̂Y |X=c+,D=0(y)

}

1 − t0

, κ̂1 =
(1 − τ̂)ĝ−

ĝ+
, κ̂0 =

1 − ĝ+

(1 − τ̂)(1 − ĝ−)
,

with q̂L the value that satisfies
∫ q̂L

−∞ ŝ(y)dy = 1. Note that the integrals in (5.1) have to be

evaluated numerically. We then define the functions

η̂d(t) = τ̂L
d + t · (τ̂U

d − τ̂L
d ), d ∈ {0, 1},

where for j ∈ {U, L} and d ∈ {0, 1} the term τ̂ j
d is a sample analogue estimator of the point

τ j
d that describes the shape of the set T . Finally, our estimates of the lower and upper bounds

on Γ− are given, respectively, by

Γ̂L
− = inf

t∈[0,1]
Γ̂L

−(η̂1(t), η̂0(t)) and Γ̂U
− = sup

t∈[0,1]
Γ̂U

−(η̂1(t), η̂0(t)).
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We use grid search to solve the two optimization problems in the previous equation. While

a full analysis of the statistical properties of these estimators is beyond the scope of this

paper, we remark that they generally exhibit finite sample bias due to the use of smoothing

estimators and the presence of the sup and inf operators in the definition of the bounds (see

Hirano and Porter, 2012, for details on the latter issue).

5.2. Inference

In order to quantify sampling uncertainty about the various parameters of interest, we

construct “manipulation-robust” confidence intervals that are valid irrespective of the true

value of τ , under certain regularity conditions.12 To explain our approach, we focus again on

the case of Γ− under the conditions of Theorem 2, as the procedures work analogously in

other settings.

The first conceptual complication is due to the presence of an optimization operator in

the definition of the bounds, which we address using the intersection-union testing principle

of Berger (1982).13 The main idea is the following. Suppose that for every t ∈ [0, 1] we had a

1 − α confidence interval CF RD
1−α (t) for Γ− that was valid if the true value of (τ1, τ0) was equal

to (η1(t), η0(t)). Then the intersection-union principle implies that CF RD
1−α = ∪t∈[0,1]CF RD

1−α (t) is

a 1 − α confidence interval for Γ−. That is, a candidate value for Γ− is outside of CF RD
1−α if

and only if it is outside of CF RD
1−α (t) for all t ∈ [0, 1]. An important feature of this approach

is that both the “fixed t” and the overall confidence interval have level 1 − α: there is no

need for a multiplicity adjustment to account for the fact that we are implicitly testing a

continuum of hypotheses. Moreover, Berger (1982) also shows that this approach has strong

power properties.

12These conditions include standard smoothness assumptions commonly found in the literature on local
polynomial smoothing, as well as technical restrictions on the magnitudes on of the bandwidths involved.
We only sketch the main line of the arguments here in order to maintain this paper’s focus on identification
results. A full econometric analysis will be developed in a companion paper.

13Our problem differs from the one in Chernozhukov, Lee, and Rosen (2013), who study inference on
intersection bounds of the form [supv θ(v), infv θ(v)]. It is more accurately described as an example of union

bounds, as the role of the inf and the sup operator in the definition of the identified set is reversed. We are
not aware of any existing general results on inference for union bounds, but the intersection-union testing
principle provides a straightforward solution.
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The second conceptual complication involves the construction of a “fixed t” confidence

interval. If the estimates Γ̂L
−(η̂1(t), η̂0(t)) and Γ̂U

−(η̂1(t), η̂0(t)) were jointly asymptotically

normal irrespective of the true value of τ , one could use the approach proposed by Imbens

and Manski (2004) and Stoye (2009) for this purpose. However, our bound estimates are

only jointly asymptotically normal (under appropriate regularity conditions) if τ > 0. For

τ = 0, their limiting distribution is non-Gaussian, as the estimated level of manipulation

τ̂ = max{0, 1 − f̂−/f̂+} fails to be asymptotically normal in this case.14 A Gaussian

approximation to the distribution of the “fixed t” estimates is thus typically poor in finite

samples if τ is not well-separated from zero, and the standard bootstrap is unable to provide

a remedy in this case (Andrews, 2000).

We therefore propose an approach similar to moment selection in the moment inequality

literature (e.g. Andrews and Soares, 2010; Andrews and Barwick, 2012). We first test the

hypothesis that τ = 0, and if this is not rejected estimate the limiting distribution of the

bounds estimates for a level of manipulation that is slightly tilted away from zero, the

least favorable direction in this case (note that the distributions of Γ̂L
−(η̂1(t), η̂0(t)) and

Γ̂U
−(η̂1(t), η̂0(t)) are increasing in τ in a stochastic sense). If the hypothesis that τ = 0 is

rejected, no such tilting occurs. As in the moment inequality literature, the pre-test is

designed such that an incorrect rejection is “very unlikely” in large samples.

For convenience, we implement this approach via the bootstrap. Specifically, we construct

a bootstrap distribution under which the bootstrap analogue of τ̃ = 1 − f̂−/f̂+ is centered

around max{τ̂ , κnσ̂τ̃ }, where σ̂τ̃ is the standard error of τ̃ , and κn is a sequence of constants

that slowly tends to infinity. Following much of the moment inequality literature, we choose

κn = log(n)1/2 in this paper. The algorithm for our bootstrap is as follows.

1. Generate bootstrap samples {Yi,b, Di,b, Xi,b}n
i=1, b = 1, . . . , B by sampling with replace-

ment from the original data {Yi, Di, Xi}n
i=1; for some large integer B.

2. Calculate τ̃ ∗
b = 1 − f̂−

b /f̂+
b , and put σ̂τ̃ as the sample standard deviation of {τ̃ ∗

b }B
b=1.

14Under standard regularity conditions we have that
√

nh(τ̂ − τ)
d→ max{0, Z} if τ = 0, where Z is a

Gaussian random variable with mean zero.
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3. Calculate τ̃b = τ̃ ∗
b − τ̃ + max{τ̂ , κnσ̂τ̃ } and τ̂b = max{τ̃b, 0}.

4. For j ∈ {U, L}, calculate Γ̂j
−(η̂1(t), η̂0(t)) using the redefined estimate τ̂b from the

previous step, and put σ̂j(t) as the sample standard deviation of {Γ̂j
−(η̂1(t), η̂0(t)}B

b=1.

Now define Γ̂L∗
− (t) and Γ̂U∗

− (t) exactly as Γ̂L
−(η̂1(t), η̂0(t)) and Γ̂U

−(η̂1(t), η̂0(t)), with the excep-

tion that τ̂ ∗ = max{τ̃ , κnσ̂τ̃ } is used instead of τ̂ . Following Imbens and Manski (2004) and

Stoye (2009), our “fixed t” confidence interval for Γ− with level 1 − α is then given by

CF RD
1−α (t) =

[
Γ̂L∗

− (t) − rα(t) · σ̂L(t), Γ̂U∗
− (t) + rα(t) · σ̂U(t)

]
,

where rα(t) is the value that solves the equation

Φ

(
rα(t) +

Γ̂U∗
− (t) − Γ̂L∗

− (t)

max{σ̂L(t), σ̂U(t)}

)
− Φ(−rα(t)) = 1 − α,

and Φ(·) is the CDF of the standard normal distribution. The final intersection-union

confidence interval for Γ− is then given by

CF RD
1−α =

[
inf

t∈[0,1]

(
Γ̂L

−(t) − rα(t) · σ̂L(t)
)

, sup
t∈[0,1]

(
Γ̂U

−(t) + rα(t) · σ̂U(t)
)]

.

We remark that the construction of this confidence interval does not account for the fact that

the limiting distribution of the “fixed t” estimates is not only discontinuous at τ = 0, but also

at those values of τ under which one of the various max and min operators in the definition

of the function ηd(·) becomes binding.15 The construction also implicitly assumes that the

two functions involved in the definition of the term s(y) cross at a finite number of points.16

5.3. Illustrating the Potential Impact Of Manipulation

Suppose that a researcher obtains a point estimate of τ that is close to zero but has a large

standard error. In this case the confidence intervals proposed in the previous subsection

15In practice, our confidence interval should work well as long as either τ < 1 − E(D|X = c+) or
τ > 1 − E(D|X = c+), as this rules out the issue. Both conditions appear reasonable for many applications,
including the one we study below. To keep the exposition simply, we therefore do not include any “safeguards”
against such cases into our bootstrap procedure.

16If this assumption was considered to be too restrictive for the empirical context, a construction analogous
to that in Anderson, Linton, and Whang (2012) could be used to remove the resulting bias.
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are typically rather wide, reflecting the high level of uncertainty about the true level of

manipulation. If the institutional setting is such that the researcher strongly suspects that

manipulation is either absent or at least quite rare, these confidence intervals might seem

overly pessimistic. We therefore consider an alternative way to illustrate the potential impact

of manipulation in such settings. The basic idea is to compute a confidence interval for Γ−

under the assumption that the value of τ is known, and then to investigate how the confidence

interval changes with the value of τ .

To understand how to interpret the result of such an exercise, suppose that researcher’s

main goal is testing the hypothesis that Γ− = 0 against the alternative that Γ− Ó= 0. Let

C1−α(τ ∗) be a confidence interval for Γ− that is derived under the assumption that τ = τ ∗,

where τ ∗ is a constant chosen by the researcher (we explain in Appendix D how such a

confidence interval can be constructed). For τ ∗ = 0, this yields the usual “no manipulation”

confidence interval, and generally C1−α(τ ∗) becomes wider as τ ∗ increases. The researcher can

then plot the upper and lower boundary of C1−α(τ ∗) as a function of τ ∗, and check graphically

for which levels of manipulation the value of 0 is contained in the confidence interval. For

example, suppose that 0 /∈ C1−α(0), but that 0 ∈ C1−α(τ ∗) for τ ∗ ≥ 0.1. Then the researcher

can report that in his preferred “no manipulation” specification the null hypothesis Γ− = 0

is rejected at the critical level α, and that at least a 10% level of manipulation around the

cutoff would be needed to reverse this result. We believe that such an exercise is a useful

robustness check for every RD study, and a reasonable way to visualize the impact of potential

manipulation.

6. EMPIRICAL APPLICATION

In this section, we apply the methods developed above to bound treatment effects of unem-

ployment insurance (UI) on (formal) reemployment around an eligibility cutoff in Brazil.

This is a good example of a empirical question for which our approach is relevant and

useful. An extensive literature, dating back to at least Katz and Meyer (1990), has studied
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the effect of UI on the time it takes for displaced workers to find a new job. UI programs

typically feature discontinuities in potential UI benefits (level or duration) based on the

value of some running variable, such as the number of months of employment prior to layoff,

and thus RD designs are natural empirical strategies to estimate this effect. At the same

time, the possibility that manipulation of the running variable could invalidate the standard

assumption for a RD design is a serious concern in the UI context, which is discussed explicitly

in prominent papers in the literature (e.g. Card, Chetty, and Weber, 2007; Schmieder, von

Wachter, and Bender, 2012). Employers may put some workers on temporary layoff once

they are eligible for UI (Feldstein, 1976). Some workers may also provoke their layoff or ask

their employer to report their quit as a layoff once they are eligible for UI.17 This concern

may be particularly severe in developing countries with high labor market informality, such

as Brazil. The utility costs of being formally laid off when eligible for UI may be relatively

low for some workers if they can work informally while drawing UI benefits. Finally, our key

identifying assumption (“one-sided manipulation”) is likely to apply: all displaced workers

are likely to have at least a weak preference for being eligible for UI benefits (they always

have the choice to not take up UI).

Our empirical exercise is also relevant beyond illustrating the applicability of our approach.

The effect of UI on functions of the non-formal-employment duration (i.e., the time between

two formal jobs), for which we estimate bounds below, captures the usual moral hazard

problem with UI – that it distorts incentives to return to a formal job. As such, it is an

important input to the evaluation of the optimal design of UI programs (e.g. Chetty, 2008).18

Specifically, as we show below, the treatment effect at an eligibility cutoff is a key input for

the welfare effect of marginal changes in the location of the cutoff. Moreover, UI programs

have been adopted or considered in a number of developing countries with high informality.

17Alternatively, workers laid off with a value of the running variable to the left of the relevant cutoff may
lobby their employers to lay them off on a later date. This latter behavior could be modeled similarly to the
example of a second home visit in Section 2.3. The manipulation in our empirical application is likely the
result of a combination of these different types of behaviors (and possibly others).

18The optimal UI literature typically refers to the effect on non-employment duration because it considers
countries where all jobs are assumed to be formal.
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Yet, the existing evidence for such labor markets remains limited.

6.1. Institutional Details, Data, and Sample Selection

Our empirical exercise focuses on an eligibility cutoff in the Brazilian UI program. In the

interest of space, we present the institutional details and the data succinctly. For more details,

see Gerard and Gonzaga (2016), which study other aspects of the Brazilian UI program.

Institutional Details. In Brazil, a worker who is reported as involuntarily laid off from a

private-sector formal job is eligible for UI under two conditions. First, she must have at least

six months of continuous job tenure at layoff. Second, there must be at least 16 months

between the date of her layoff and the date of the last layoff after which she applied for

and drew UI benefits. We focus on the eligibility cutoff created by the second condition.

The 16-month cutoff is more arbitrary and thus less likely to coincide with other possible

discontinuities.19 It may also be more relevant for the moral hazard problem. Both conditions

end up restricting eligibility for workers with limited prior formal employment, but the second

condition also restricts eligibility for workers cycling in and out of formal employment, who

may be more responsive to UI incentives. For instance, Gerard and Gonzaga (2016) show that

the moral hazard problem is more severe in labor markets where displaced formal workers

return faster to a formal job.

Workers who satisfy the two conditions can withdraw monthly UI payments after a 30-day

waiting period and until they are formally reemployed or exhaust their potential UI duration.

The potential UI duration is equal to three, four, or five months of UI benefits if workers

accumulated more than 6, 12, or 24 months of formal employment in the 36 months prior to

layoff, respectively. The benefit level depends on workers’ average wage in the three months

prior to layoff. The replacement rate is 100% at the bottom of the wage distribution but is

already down to 60% for a worker who earned three times the minimum wage (the benefit

schedule is shown in the Appendix). Finally, UI benefits are not experience-rated in Brazil.

19For instance, six months of job tenure may be a salient milestone for evaluating employees’ performance.
Note that there is evidence of manipulation around the six-month cutoff as well (available upon request).
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Data. Our empirical analysis relies on two administrative datasets. The first one is a

longitudinal matched employee-employer dataset covering by law the universe of formal

employees. Every year, firms must report all workers formally employed at some point during

the previous calendar year. The data include information on wage, tenure, age, gender,

education, sector of activity, and establishment size. Importantly, the data also include

hiring and separation dates, as well as the reason for separation. The second dataset is

the registry of all UI payments. Individuals can be matched in both datasets as they are

identified through the same ID number. Combining the datasets, we know whether any

displaced formal employee is eligible for UI, how many UI payments she draws, and when she

is formally reemployed. We have both datasets from 2002 to 2010.

Sample selection. Our sample of analysis is constructed as follows. First, we consider all

workers, 18 to 55 years old, who lost a private-sector full-time formal job between 2004 and

2008. We start in 2004 because we are interested in workers who were displaced from another

formal job about 16 months earlier. We end in 2008 because we want to observe at least two

years after the layoff. Second, we keep workers who had more than six month of job tenure

at layoff, which is the other eligibility condition. Third, we restrict attention to workers who

were previously displaced from another formal job and for whom the difference between the

previous layoff date and the new layoff date fell within 50 days of the 16-month eligibility

cutoff. Fourth, we limit the sample to workers who took up UI and exhausted their UI

benefits after the previous layoff. This is to make sure that the change in eligibility at the

16-month cutoff is sharp. Indeed, workers who find a formal job before exhausting their

benefits are entitled to draw the remaining benefits after a new layoff, even if it occurred

before the 16-month cutoff. To implement this fourth step, we select workers who drew the

maximum number of UI benefits after the previous layoff (about 40% of cases). This is

because we can only measure the number of UI benefits a worker is eligible for imprecisely in

our data. Finally, we drop workers whose previous layoff date fell after the 28th of a month.

Policy rules create bunching in the layoff density at the 16-month cutoff even in the absence
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of manipulation among these workers.20

Our sample ultimately consists of 169,575 workers with a relatively high attachment to

the formal labor force, high turnover rate, and high ability to find a new formal job rapidly.21

These are not the characteristics of the average displaced formal employee or UI taker in

Brazil, but characteristics of workers for whom the 16-month cutoff may be binding.

6.2. Connecting our empirical application to the optimal UI literature

In this subsection, we further motivate our empirical application by relating the treatment

effects that we estimate to the optimal UI literature. In particular, we show that they

constitute important inputs for the evaluation of the welfare effect of a marginal decrease in

the location of the cutoff. Readers primarily interested in an empirical illustration of our

identification results can skip ahead to Section 6.3.

Context. The recent UI literature Chetty and Finkelstein (cf. 2013) has considered the

optimality of a series of policy parameters for UI programs, such as the benefit level, the

potential benefit duration, or the profile of the benefit level over the potential benefit duration.

These studies investigate the welfare effects of marginal changes in those policy parameters,

but they typically hold fixed the rules determining UI eligibility. In particular, they do not

investigate the welfare effects of marginal changes in the set of displaced formal workers

who are deemed eligible for UI to begin with. This is somewhat surprising because many

(if not all) UI programs restrict eligibility in some ways, indicating that eligibility rules are

important policy parameters to consider.

A common eligibility rule is to require that displaced formal workers have a minimum

number of months of formal employment prior to layoff or a minimum number of months

20For instance, all workers laid off between October 29th and 31st in 2007, became eligible on February
28th in 2009, because there are only 28 days in February.

21They were eligible for five months of UI after their previous layoff, so they had accumulated 24 months
of formal employment within a 36-month window. They were laid off again within 16 months and they had
accumulated at least six months of continuous tenure at layoff. Therefore, they found a job relatively quickly
after their previous layoff. Indeed, about 50% of workers eligible for five months of UI benefits remain without
a formal job one year after layoff.
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since the last UI spell. Let us define this “running” variable, X, and the cutoff value c.

In a Baily-Chetty-type framework, which is a canonical partial-equilibrium framework in

the optimal UI literature (Baily, 1978; Chetty, 2008), there are three main reasons why

a government may want to restrict eligibility to workers with X ≥ c. First, workers with

X < c may have a lower need for insurance. Insurance is typically most valuable for events

that are consequential and relatively rare. Workers who have been formally employed for

a shorter period of time may not have fully adjusted to their employment status and may

thus experience a smaller utility loss following layoff. Moreover, the hazard of layoff is often

decreasing over the formal employment spell, making layoff a more likely event for these

workers.22 Second, the usual moral hazard problem may be particularly severe for workers

with X < c. Workers who have fewer months of formal employment prior to layoff or since

the last UI spell may be disproportionally composed of workers who are cycling in and out

of relatively low-quality formal jobs. Their job-search and reemployment choices may be

particularly sensitive to UI eligibility if it is relatively easy for them to find a new formal job

and their utility gains from formal reemployment (absent UI benefits) are limited. Third, the

probability that a layoff occurs may be particularly sensitive to UI eligibility among workers

with fewer months of formal employment as they are less attached to their job. This is the

mechanism considered by Hopenhayn and Nicolini (2009), who argue that UI benefits should

increase with prior (formal) employment history for this reason. The optimal UI literature

often abstracts from this mechanism, however, because it is thought to be best tackled by

the experience-rating of UI benefits, and not by changing UI eligibility rules or benefits.

Welfare formula. We obtain a formula for the welfare effect of a marginal decrease in the

cutoff value c in a Baily-Chetty framework, by following the derivation in Gerard and Gonzaga

(2016), which adapts Chetty (2008) for the presence of informal job opportunities. In the

interest of space, we do not detail the standard assumptions in these papers, which are

22Of course, their need for insurance may instead be higher as they would not have had the time to
accumulate much savings to self-insure against such an event.
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necessary for such a welfare formula to hold. In a nutshell, workers are assumed to internalize

all consequences of their choices, except on the government budget, and the incidence of

taxes and benefits are assumed to fall on workers.

At time 0, a set of formal workers of mass 1 is laid off. Assume that the variable

X is continuously distributed among these workers, with c.d.f. FX when the cutoff is

located at some level c. The share 1 − FX(c) of these workers is eligible for UI benefits

and can draw a benefit level b in each period (e.g. each month) until they are formally

reemployed or until they reach the potential UI duration B. Upon formal reemployment,

they pay a UI tax in each period to fund the UI system (tax). The UI program must thus

(in expectations) satisfy the budget constraint (1 − FX(c))) · b · DB
X≥c = tax · DF , where

DB
X≥c =

∑B−1
0 P(NotFormali,t = 1|X ≥ c) is the average paid UI duration among eligible

workers, P(NotFormali,t = 1|X ≥ c) is their survival rate in non-formal-employment in each

period t after layoff, and DF is the average number of months spent formally employed after

layoff among all displaced workers.23

We derive the welfare effect of a marginal decrease in the cutoff value c through a

perturbation argument. Such a reform will first lead to a mechanical effect. Workers

with values of the running variable just to the left of the cutoff, with density fX(c−), will

become eligible mechanically, without changing their behavior. The associated cost will be:

fX(c−) · b · DB
X=c− , where DB

X=c− is the average paid UI duration among these mechanical

beneficiaries (the target of the reform), absent behavioral responses. This cost amounts

to a transfer between mechanical beneficiaries and formal employees. It constitutes the

possible source of welfare gain with UI programs when insurance markets are incomplete.

23A departure from our framework is that UI is financed by a .65% tax on firms’ sales in Brazil. We consider
instead the case of a tax on formal workers, which is the main source of funding for UI in other countries,
including developing countries (Velásquez, 2010). A tax on formal workers is the interesting case conceptually.
They are the beneficiaries of the program and UI aims at providing insurance, not at redistribution. The
incidence of a tax on formal workers is also likely to fall on those workers, and is certainly more likely to
do so than a sales tax. We thus use Brazil as an empirical setting to estimate and illustrate the efficiency
cost of changes in a UI eligibility cutoff as derived in a benchmark framework. The odd financing of the
Brazilian program is unlikely to invalidate this objective. A 2.5% payroll tax would be sufficient to fund UI
(UI expenditures/total eligible payroll ≃ .025) and it is unlikely that the composition of the formal labor
force would be very different substituting such a tax for the existing one.
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The associated welfare effect is thus: fX(c−) · b · DB
X=c− · (u′

M − u′
F ), where u′

M and u′
F are the

average marginal value of $1 for mechanical beneficiaries and formal employees, respectively.

A marginal decrease in the cutoff value c will also lead to behavioral effects. Workers

with values of the running variable just to the left of the cutoff may change their behaviors

in response to their new UI eligibility. In particular, they may delay formal reemployment

by remaining unemployed or working informally. As a result, their paid UI duration will

increase, increasing the cost of the UI program by: fX(c−) · b · dDB
X=c− , where dDB

X=c− is the

change in average paid UI duration due to behavioral effects among these workers. They may

also reduce their contribution to the funding of the UI system, by spending fewer periods

formally employed and paying the UI tax. This potential loss in UI revenues will amount to:

fX(c−) · tax · dDF
X=c− , where dDF

X=c− is the change in the average number of periods formally

employed after layoff among these workers. A standard envelope argument implies that there

is no first-order utility gain from these (and other) behavioral responses. However, there is a

first-order utility loss because the associated costs must be paid for. The welfare effect is

thus: −u′
F · fX(c−) ·

[
b · dDB

X=c− + tax · dDF
X=c−

]
.

Finally, changes in UI eligibility rules may also affect the layoff probability and the

distribution of X among displaced formal workers. An envelope argument would again imply

that there is no first-order utility gain from such behavioral responses. However, any impact

on the UI budget (costs or revenues) must be paid for. The welfare effect would thus be:

−u′
F · dBudget(dX), in which dBudget(dX) captures all such impacts. We use a coarse

notation for this last element because it is not the focus of our empirical analysis.

Putting everything together, we obtain a formula for the overall welfare effect of a marginal

decrease in the eligibility cutoff. It is common in public economics to measure welfare per

unit impact on affected agents, so we normalize the welfare effect (dW ) by the mechanical

effect. We also divide by the average marginal utility of $1 for formal employees to express
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welfare in a money metric (Chetty, 2008):

dW

fX(c−) · b · DB
X=c− · u′

F

=

(
u′

M − u′
F

u′
F

)
−

(
dDB

X=c−

DB
X=c−

+
tax · dDF

X=c−

b · DB
X=c−

+
dBudget(dX)

fX(c−) · b · DB
X=c−

) (6.1)

Equation (6.1) specifies the usual trade-off with UI between insurance and efficiency. The

first parenthesis captures the marginal value of insurance, the relative welfare gain from

transferring $1 from formal employees to mechanical beneficiaries. The second parenthesis,

the ratio of the behavioral effects to the mechanical effect, captures the efficiency cost, or the

resources lost per $1 reaching mechanical beneficiaries. It is common in public economics for

the efficiency cost of a policy to be captured by such a “leakage” ratio.

Equation (6.1) provides a local welfare test: the welfare effect of the reform is positive if

the marginal value of insurance exceeds the efficiency cost. Estimating the marginal value of

insurance is always challenging because marginal utilities are not easily measured. However,

an estimate of the efficiency cost already allows some welfare statements. Suppose we estimate

an efficiency cost of 30 cents per $1 reaching mechanical beneficiaries. The welfare effect

would then only be positive if the average marginal utility of $1 was at least 30% higher for

mechanical beneficiaries than for formal workers. Such a bound could be informative in some

settings, for instance when we have some priors about the need for insurance.

Connecting the theory back to the empirical application. The first two components of

the efficiency cost in equation (6.1) relate to treatment effects among potentially-assigned

workers. We investigate such effects for the 16-month cutoff in Brazil. The third component

relates to the possibility of manipulation in the running variable. We do not investigate it

below because it cannot be estimated without variation in the location of the cutoff (at least

without strong parametric assumptions). The presence of always-assigned units at the cutoff,

however, imply that we will only be able to recover bounds for the treatment effects among

potentially-assigned units. Lower bounds will be particularly relevant in our case given that

we are only able to estimate part of the efficiency cost. In particular, they will determine a
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minimum value for the marginal value of insurance in order for welfare effects to be positive.

6.3. Graphical Evidence

Figure 6.2 displays graphically some of the patterns in our data. Observations are aggregated

by day between the layoff date and the 16-month eligibility cutoff. Panels A and B provide

some evidence of manipulation of the running variable. The density jumps up by about

6.5% at the cutoff. Moreover, the average UI replacement rate (benefit/wage) increases

discontinuously at the cutoff, highlighting the possibility of sample selection at the cutoff.

Panel C suggests that workers were at least partially aware of the eligibility rule, a necessary

condition for manipulation to take place. The share of workers applying for UI benefits jumps

by about 40%-points at the cutoff. Panel D shows that the eligibility rule was enforced. The

share of workers drawing some UI benefits is close to zero to the left of the cutoff, but takeup

jumps to about 73% at the cutoff. Eligible workers drew on average 3.1 months of UI benefits

(panel E), implying that UI takers drew on average 4.25 months of UI benefits (= 3.1/.73).

Finally, Panel F shows that the non-formal-employment duration (censored at two years after

layoff) jumps from about 220 days to 280 days at the cutoff.24 This discontinuity could be

due to a treatment effect, but also to a selection bias. Workers on each side of the cutoff may

have different potential outcomes in the presence of manipulation. The estimators developed

above allow us to bound treatment effects, despite the possibility of selection effects.

Next, Figure 6.3 compares our RD sample to other displaced formal employees in Brazil.

Specifically, we drew a 5% random sample of formal employees laid off over the same period;

we restricted attention to workers with at least six months of tenure at layoff (the other

eligibility condition); but we did not impose any sample restriction related to the 16-month

eligibility cutoff. This random sample includes 1,098,745 workers.

Panels A and B display UI collection patterns for this random sample and for workers on

the right of the cutoff in the RD sample (those eligible for UI). They show the share taking

24The distribution of outcomes to the left and right of the cutoff is shown in the Appendix.
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Figure 6.2: Graphical evidence for our empirical application

The figure displays the mean of different variables on each side of the cutoff by day between the layoff and
eligibility dates, as well as local linear regressions on each side of the cutoff using an edge kernel and a
bandwidth of 30 days. The figure is based on a RD sample of 169,575 displaced formal workers.
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up UI (i.e. drawing a first UI payment) and drawing some UI payment in each month since

layoff. The 30-day waiting period appears strictly enforced and most UI takers draw their

first UI payment in the second and third month after layoff. As a result, most UI takers would

exhaust their potential duration by month 5 to 7 after layoff. Accordingly, the share drawing

some UI payment decreases sharply after month 5 since layoff. These patterns are similar in

the two samples. The overall takeup rate is smaller in the RD sample (.73 vs. .79), but the

average paid UI duration among UI takers is larger (3.09/.73 = 4.25 vs. 3.29/.79 = 4.16).

Panels C and D display formal reemployment patterns. Panel C displays survival rates in

non-formal-employment in each month since layoff for all workers on the left and on the right

of the cutoff, separately. It also displays survival rates for the subset of UI takers on the right

of the cutoff. Panel D displays survival rates for all workers and for UI takers in the random

sample. Survival rates remain higher for workers on the right than on the left of the cutoff in

the RD sample. This is consistent with the evidence on panel F in Figure 6.2. A year after

layoff, 21% and 29% of workers remain without a formal job among workers on the left and

on the right of the cutoff, respectively. Survival rates remain even higher among UI takers on

the right of the cutoff. This is particularly the case during the first few months after layoff,

before the end of the potential UI duration. Survival rates start decreasing faster after month

5 since layoff. Yet, the share without a formal job remains higher among UI takers even a

year after layoff (about 35%). These patterns are qualitatively similar in the random sample,

but displaced workers return even slower to a formal job in this sample. This is true even

among UI takers, despite the fact that the average paid UI duration is actually lower among

UI takers in the random sample. A year after layoff, 40 % of the displaced workers and 46%

of the UI takers remain without a formal job in this sample.

In sum, the RD sample includes workers who have a comparable paid UI duration, but

who return much faster to a formal job once they stop drawing UI benefits than typical

displaced workers in Brazil. This echoes a concern that the moral hazard problem may be

more severe for workers around the eligibility cutoff.

52



Share taking up UI in each month

Share drawing UI in each month

0
.1

.2
.3

.4
.5

.6
.7

.8
.9

1
S

h
a

re
 o

f 
d

is
p

la
c
e

d
 f

o
rm

a
l 
w

o
rk

e
rs

0 1 2 3 4 5 6 7 8 9 10
Months since layoff
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Overall, the takeup rate is 79.21% and the average paid UI duration is 3.29 months.

B. Patterns of UI collection (random sample)
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C. Patterns of formal reemployment (RD sample)
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D. Patterns of formal reemployment (random sample)

Figure 6.3: Comparing patterns of UI collection and formal reemployment in the RD sample and in
a random sample of displaced formal workers (not selected around 16-month cutoff)

The figure displays the share of displaced formal workers taking up UI (i.e. drawing a first UI payment)
and drawing some UI payment in each month after layoff. The figure also displays the share of displaced
formal workers who remain without a formal job in each month after layoff, separately for all displaced formal
workers and for those who took up UI. The figure compares those patterns for displaced formal workers in our
RD sample and in a 5% random sample of all displaced formal workers with at least 6 months of tenure at
layoff (the other eligibility condition for UI, next to the 16-month cutoff). The RD sample includes 169,575
displaced formal workers; the random sample includes 1,098,745 workers. UI outcomes are only displayed for
workers on the right of the 16-month cutoff for the RD sample. Formal reemployment patterns are displayed
separately for workers on the left and on the right of the 16-month cutoff.
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6.4. Estimates

We implement our estimation and inference procedures for treatment effects on the non-

formal-employment duration. We present three sets of results, in which the outcome is

censored at 6, 12, and 24 months after layoff, respectively. This allows us to illustrate how

our bounds for average treatment effects are affected by long tails in the distribution of

the outcome variable. It also allows us to illustrate the usefulness of looking at quantile

treatment effects, as these are rather insensitive to long tails. Furthermore, it allows us to

connect our empirical analysis to the first two components of the efficiency cost in equation

(6.1). The first component includes the behavioral effect on the average paid UI duration

among potentially-assigned units: dDB
X=c− . We estimate this behavioral effect by considering

treatment effects on the non-formal-employment duration censored at six months after

layoff.25 The second component includes the behavioral effect on the number of months

formally employed after layoff. We follow most of the optimal UI literature (e.g. Chetty, 2008;

Schmieder, von Wachter, and Bender, 2012) and approximate it by considering the overall

effect on the non-formal-employment duration. For sample size reasons, we only consider the

duration up to two years after layoff. We acknowledge that we may thus underestimate this

effect. In practice, however, this second component matters much less for the efficiency cost

than the first one. It is scaled by the ratio tax/b, which Gerard and Gonzaga (2016) argue

can be approximated by the number of UI beneficiaries per private formal employee.26 They

estimate it to be around .086 over a similar sample period in Brazil.

25If all UI takers were taking up UI immediately and the potential UI duration was the same for all workers,
say 5 months, we would look at changes in the non-formal-employment duration censored at four months
(DB

X=c−
=

∑B−1
0 P(NotFormali,t = 1|X = c−)). However, UI takeup typically takes place in the second or

third month after layoff in our case (see Figure 6.3). Moreover, displaced workers in our sample are eligible
for 4 to 5 months of UI. We thus chose to consider the duration censored at 6 months because most of
our UI takers have exhausted their benefits by month 6 after layoff (see Figure 6.3). We run the risk of
underestimating the behavioral effect on average paid UI duration by considering a shorter duration, as
many workers may still be eligible for UI beyond the censoring point. We run the risk of overestimating the
behavioral effect on paid UI duration by considering a longer UI duration, as many workers will no longer be
eligible for UI beyond the censoring point.

26This scaling factor is approximated by the unemployment rate in studies that consider labor markets
with limited informal employment (e.g. Chetty, 2008; Schmieder, von Wachter, and Bender, 2012).

54



We present results for an edge kernel (Cheng, Fan, and Marron, 1997) and a bandwidth of

30 days around the cutoff, which gives non-zero weights to 102,791 observations of displaced

formal workers.27 For bounds in the Fuzzy RD case that involve numerical optimization, we

use a grid search to look for the infimum and supremum using 51 values for t ∈ [0, 1] and for

λ ∈ [0, 1]. Confidence intervals are based on 500 bootstrap samples.28

Results. Results for average and quantile treatment effects are displayed in Tables 2 and 3.

We present quantile effects for the outcome censored at 24 months after layoff and we consider

lower percentiles of the distribution (10th, 30th, and 50th percentiles) because the treatment

is more likely to affect workers who would have returned rapidly to a formal job.

Panels A of Tables 2 and 3 report estimates of key inputs for our bounds. Always-assigned

units are estimated to account for 6.5% of observations just to the right of the cutoff and UI

takeup is estimated to increase by 71%-points at the cutoff. Note that the value of τ appears

well-separated from zero, so that the safeguards that ensure uniform validity of the confidence

intervals for our bounds in case of small values of τ are not of any practical importance here.

Panels B and C then report results from two types of exercises. First, we consider a

Sharp RD design in which UI eligibility is defined as the treatment of interest (panel B). The

causal effect on the outcome can be interpreted as an intention-to-treat (ITT) parameter in

this case. Second, we consider the usual Fuzzy RD design with UI takeup as the treatment

(panel C). Naive RD estimates that assume no manipulation yield an average increase in

non-formal-employment duration from being eligible for UI (ITT/SRD) of 29.4, 48.6, and

61.9 days for censoring points of 6, 12, and 24 months, respectively. The corresponding

figures are 41.6, 68.8, and 87.7 days for the effect of UI takeup (LATE/FRD). As expected,

naive treatment effects at the median are much larger, at 86 days (SRD) and 99 days (FRD;

27We do not have theoretical results on the optimal bandwidth for the estimation of our bounds. Our
estimates are similar if we use bandwidths of 10 or 50 days (available upon request).

28Due to the censoring of the outcome variable, we use identification results for non-continuously distributed
outcomes described in the appendix.
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outcome censored at 24 months). All those estimates, confound treatment effects and selection

bias. Tables 2 and 3 therefore also provide estimates of our bounds for the treatment effects,

using the Sharp RD formulas (resp. the Fuzzy RD formulas) for the ITT (resp. the LATE).

The following points are useful to note for the behavior of our bounds in this application.

First, the bounds for the average treatment effects among potentially-assigned units (Γ−) are

relatively tight for the non-formal-employment duration censored at 6 months after layoff.

The lower bounds, in particular, are close to the naive RD estimates, with point estimates of

26.4 days (ITT) and 35.4 days (LATE) for the standard lower bounds. Second, the bounds

for the average treatment effects become wider on both sides of the naive estimates when we

consider higher censoring points. This difference comes from the fact that when increasing

the censoring threshold the distribution of the outcome becomes more dispersed and has less

probability mass at the censoring point. Third, comparing estimates in Table 3 and in the

last two columns of Table 2 shows that bounds for quantile treatment effects can be tighter

than bounds on average treatment effects in these cases. This is because bounds for quantile

treatment effects are less sensitive to tails of the outcome distribution. For instance, when we

censor the outcome at 24 months, we obtain bounds for the average treatment effect between

42.9 and 110 days, but between 67 and 120 days for the treatment effect at the median

(FRD). Bounds are even tighter at other percentiles of the distribution; for instance they

are between 87 and 114 days at the 30th percentile. Fourth, estimates that use behavioral

assumptions to tighten our Fuzzy RD bounds are often similar to estimates for the standard

bounds in our application. Yet, assuming that all always-assigned units take up the treatment

(refinement B) closes half of the gap between our lower bound and the naive RD estimate

when we censor the outcome at 6 months after layoff. Fifth, estimates that use covariates

(here, a dummy for a replacement rate above/below the median) to tighten our Fuzzy RD

bounds have no meaningful identifying power.29 Sixth, and lastly, bounds for the average

29Bounds that use covariates are sometimes even wider than standard bounds. Despite our identification
results, nothing guarantees that the bounds will actually be tighter in finite samples. In particular, we split
the sample in two when estimating effects for the two categories, leading to less precise estimates.
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treatment effect among units just to the right of the cutoff (Γ+) are very similar to bounds

for the potentially-assigned units. This is partly because the distributions of our outcome

variables have a lot of probability mass at the extreme values of their support.

The estimates in Table 2 also allow us to provide a lower bound for the efficiency cost in

equation (6.1). We estimate a lower bound for the behavioral effect on paid UI duration among

UI takers to be around 35.4 days. This figure is only the numerator of the statistic of interest:

dDB
X=c−/DB

X=c− . An estimate of the denominator will also be affected by manipulation. We

thus estimated bounds for this ratio as well, yielding point estimates of .266 and .376 for

the lower and upper bounds, respectively (95% CI: [.24;.49]). The point estimate for the

lower bound increases to .29 (resp. .30) with our refinement in Theorem 3 (resp. Theorem 4)

and the plausible assumption that always-assigned workers are at least as likely to take up

the treatment (resp. are all taking up the treatment) as potentially-assigned workers. For

completeness, we also estimated bounds for the second component of the efficiency cost in

equation (6.1), approximating the change in subsequent formal employment by the change in

the non-formal-employment duration censored at 24 months. We again estimated bounds

taking into account that the denominator DB
X=c− will also be affected by manipulation. We

obtained a lower bound of .028 using the scaling factor tax/b = .086 (refinements in Theorems

3 and 4 have no meaningful influence on these figures). This second component thus only

marginally affects our lower bound for the efficiency cost. Overall, these estimates indicate

that at least 29.4 to 32.8 cents are lost to behavioral responses for each $1 reaching mechanical

beneficiaries. To provide some perspective, the comparable figure in Gerard and Gonzaga

(2016) is only around 20 cents for increases in the potential UI duration among workers

with two years of continuous tenure at layoff. The marginal value of insurance must thus

be significantly higher to justify lowering the 16-month eligibility cutoff in our case than to

justify increasing the potential UI duration in their case.

Finally, we present the results of two additional exercises. First, we illustrate the alternative

strategy for inference that we recommend when researchers have strong prior beliefs that
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Figure 6.4: Fixed-manipulation inference for our empirical application

The figure displays point estimates and confidence intervals for our bounds for fixed levels of the degree of
manipulation. We consider LATE/FRD estimates (standard bounds) for the average treatment effect and the
quantile treatment effect at the 30th percentile for the outcome censored at 24 months. The solid vertical
line (resp. dashed vertical lines) corresponds to our point estimate (resp. confidence interval) for the extent
of manipulation (see Table 2).

manipulation is either absent or very rare in their setting. Figure 6.4 displays point estimates

and confidence intervals for our bounds in the Fuzzy RD cases for various fixed levels of

the extent of manipulation (hypothetical share of always-assigned units). Panel A shows

that inference on the average treatment effect (censoring the outcome at 24 months) can

be quite sensitive to the extent of manipulation. For instance, the width of the confidence

intervals more than doubles when we assume a small degree of manipulation (a share of

always-assigned units of 2.5%) rather than no manipulation. This illustrates the importance

of taking into account the possibility of manipulation even when the McCrary (2008) test

fails to reject the null hypothesis of no manipulation. The width of the confidence intervals

grows quickly with larger degrees of manipulation. Panel B shows that inference on quantile

treatment effects are also sensitive to the extent of manipulation. However, inference may

remain meaningful in this case, even for rather large degrees of manipulation.

Second, we estimate the characteristics of potentially-assigned and always-assigned workers.

This could in theory be useful to target policies aimed at mitigating manipulation in the timing

of layoff. Table 4 displays the estimated difference in the mean of workers’ characteristics
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at the cutoff (column 1), as would be typically presented in a RD analysis. The associated

graphs are presented in the Appendix. We find significant evidence of selection in terms of

wage and thus replacement rate, and sector of activity. Columns (2) and (3) then display

the estimated means for potentially-assigned and always-assigned workers. Always-assigned

workers earned on average .24 log point less, and were 30%-points less likely to come from the

service sector than the potentially-assigned workers. The large difference in wages and thus

replacement rates motivated the choice of using a dummy for replacement rates above/below

the median to construct bounds in Tables 2 and 3.
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Table 4: Characteristics of always- and potentially-assigned workers

Difference at Potentially- Always-
the cutoff assigned assigned

Share male -0.0031 0.714 0.665
[-0.0168;0.0105] [0.704;0.724] [0.439;0.892]

Average age -0.0729 32.475 31.345
[-0.3091;0.1633] [32.304;32.645] [27.627;35.063]

Average years of education 0.0011 9.104 9.121
[-0.0803;0.0825] [9.049;9.160] [7.836;10.406]

Average tenure 0.0103 8.802 8.961
[-0.0418;0.0623] [8.771;8.833] [8.100;9.821]

Average log wage -0.016 6.704 6.456
[-0.0308;-0.0012] [6.693;6.716] [6.208;6.704]

Average replacement rate 0.0051 0.720 0.800
[0.0005;0.0098] [0.717;0.724] [0.722;0.878]

Share from commercial sector 0.0071 0.355 0.465
[-0.0059;0.02] [0.346;0.365] [0.264;0.665]

Share from construction sector 0.0073 0.106 0.218
[-0.0015;0.0161] [0.099;0.112] [0.079;0.358]

Share from industrial sector 0.0061 0.225 0.319
[-0.006;0.0182] [0.216;0.234] [0.131;0.507]

Share from service sector -0.0204 0.314 -0.002
[-0.0332;-0.0077] [0.305;0.324] [-0.201;0.197]

Share from small firm 0.0083 0.367 0.496
(<10 employees) [-0.0057;0.0224] [0.357;0.377] [0.268;0.730]

Notes: Total number of observations within our bandwidth of 30 days around the cutoff: 102,791
displaced formal workers. Numbers in square brackets are 95% confidence intervals calculated by
adding ±1.96×standard error to the respective point estimate,where standard errors are calculated
via the bootstrap with 500 replications.

In sum, we find significant evidence of manipulation and selection at the cutoff. Our

bounds imply that the magnitude of naive RD estimates may be heavily affected by selection,

but that we can still draw useful conclusions from this empirical exercise.

7. CONCLUSIONS

In this paper, we propose a partial identification approach to deal with the issue of potentially

manipulated running variables in RD designs. We show that while the data are unable to

uniquely pin down treatment effects if manipulation occurs, they are generally still informative
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in the sense that they imply bounds on the value of interesting causal parameters in both

sharp and fuzzy RD designs. Our main contribution is to derive and explicitly characterize

these bounds. We also propose methods to estimate our bounds in practice, and discuss how

to construct confidence intervals for treatment effects that have good coverage properties.

The approach is illustrated with an application to the Brazilian unemployment insurance (UI)

system. We recommend the use of our approach in applications irrespective of the outcome

of McCrary’s (2008) test for manipulation.

Our approach can also be useful for RD designs where running variables are not ma-

nipulated per se. Suppose for example that the probability of missing outcomes changes

discontinuously at the cutoff. This could be the case if outcomes are based on surveys, and

units are easier to locate and survey if they were assigned to the program. Our approach

could be used to partially identify causal effects of the program at the cutoff for units whose

outcomes would not be missing in the absence of program assignment. Suppose instead

that one is interested in the causal effect of a treatment at some cutoff in a self-selected

subpopulation. For instance, suppose that every displaced worker is eligible for some UI

benefits but that the level of UI benefits changes discontinuously at some cutoff. One may

be interested in the causal effect of a higher benefit level among UI takers. The density of

the running variable in this subpopulation will be discontinuous at the cutoff, however, if

displaced workers are more likely to take up UI when the benefit level is higher. Our approach

could be used to partially identify causal effects of the program at the cutoff for units who

would take up UI even when they are not eligible for the higher benefit level.30

30Card, Dobkin, and Maestas (2009) faced essentially the same problem by studying the effect of Medicare
on mortality in the subpopulation admitted to a hospital around the 65 years old eligibility cutoff.
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A. ADDITIONAL TECHNICAL RESULTS FOR IDENTIFICATION ANALYSIS

A.1. Proof of Lemma 1

Since the density of the running variable is continuous around the cutoff c among potentially-

assigned units by Assumption 2, we have that fX|M=0 (c−) = fX|M=0 (c+), and therefore

fX (c+) = (1 − P (M = 1)) fX|M=0 (c−) + P (M = 1) fX|M=1 (c+) . Since fX|M=1(x) = 0 for

x < c by Assumption 3, we also have that fX (c−) = (1 − P (M = 1)) fX|M=0 (c−). Hence

(fX (c+) − fX (c−))/fX (c+) = fX|M=1(c
+)P(M = 1)/fX(c+) = τ , where the last equality

follows from Bayes’ Theorem.

A.2. Proof of Lemma 2

By Assumption 1(i) and the law of total probability, our model implies that E(Di|Xi =

c+)·(1−τ1)/(1−τ) > E(Di|Xi = c−) and τ = τ1 ·E(Di|Xi = c+)+τ0 ·(1−E(Di|Xi = c+)). By

construction, any point (τ1, τ0) /∈ T is incompatible with at least one of these two restrictions.

It thus remains to be shown that any point (τ1, τ0) ∈ T is compatible with our model and

the observed joint distribution of (Y, D, X). Note that it suffices to consider the latter

distribution for X ∈ (c − ǫ, c + ǫ) for some small ǫ > 0, as our model has no implications

for the distribution of observables outside that range. Let (Ỹ (1), Ỹ (0), D̃+, D̃−, M̃ , X̃) be a

random vector taking values on the support of (Y (1), Y (0), D+, D−, M, X), and define D̃ and

Ỹ analogous to D and Y in our Section 2.1. We now construct a particular joint distribution

of (Ỹ (1), Ỹ (0), D̃+, D̃−, M̃ , X̃). For x ∈ (c − ǫ, c + ǫ), let

fX̃(x) = fX(x) and P(M̃ = 1|X̃ = x) =





1 − fX(c−)/fX(x) if x ≥ c

0 if x < c.
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Moreover, let

P(D̃− = 0, D̃+ = 1|X̃ = x, M̃ = 0) =





P(D = 1|X = x) · 1−τ1

1−τ
− P(D = 1|X = c−) if x ≥ c,

P(D = 1|X = c+) · 1−τ1

1−τ
− P(D = 1|X = x) if x < c,

P(D̃− = 1, D̃+ = 1|X̃ = x, M̃ = 0) =





P(D = 1|X = c−) if x ≥ c,

P(D = 1|X = x) if x < c,

P(D̃− = 0, D̃+ = 0|X̃ = x, M̃ = 0) = 1 − P(D̃− = 0, D̃+ = 1|X̃ = x, M̃ = 0)

− P(D̃− = 1, D̃+ = 1|X̃ = x, M̃ = 0),

P(D̃− = 1, D̃+ = 0|X̃ = x, M̃ = 0) = 0,

and

P(D̃− = 0, D̃+ = 1|X̃ = x, M̃ = 1) =





P(D = 1|X = x) · τ1

τ
− h(x) if x ≥ c,

P(D = 1|X = c+) · τ1

τ
− h(c+) if x < c,

P(D̃− = 1, D̃+ = 1|X̃ = x, M̃ = 1) =





h(x) if x ≥ c,

h(c+) if x < c,

P(D̃− = 0, D̃+ = 0|X̃ = x, M̃ = 1) = 1 − P(D̃− = 0, D̃+ = 1|X̃ = x, M̃ = 1),

− P(D̃− = 1, D̃+ = 1|X̃ = x, M̃ = 1),

P(D̃− = 1, D̃+ = 0|X̃ = x, M̃ = 1) = 0,

where h(·) is an arbitrary continuous function satisfying that 0 ≤ h(x) ≤ P(D = 1|X =

x) · τ1/τ . With these choices, the implied distribution of (D̃, X̃)|X̃ ∈ (c − ǫ, c + ǫ) is the same

as that of (D, X)|X ∈ (c − ǫ, c + ǫ) for every (τ1, τ0) ∈ T . It thus remains to be shown that

one can construct a distribution of (Ỹ (1), Ỹ (0)) given (D̃+, D̃−, X̃, M̃) that is compatible

with our assumptions and such that the distribution of Ỹ given (D̃, X̃) for X̃ ∈ (c − ǫ, c + ǫ)

is the same as the distribution of Y given (D, X) for X ∈ (c − ǫ, c + ǫ) for every (τ1, τ0) ∈ T .

But this is always possible because our model encompasses the setting in which the label
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“always-assigned unit” is randomly assigned with probability τd to units with treatment

status d and running variable to the right of the cutoff. Put differently, the distribution of

(Y (1), Y (0)) given (D+, D−, X, M) implies no restrictions on the values of τ1 and τ0.

B. BOUNDS FOR NON-CONTINUOUSLY DISTRIBUTED OUTCOMES

Theorem 1 and 2 are stated for the case in which the outcome variable is continuously

distributed. This is for notational convenience only, and our results immediately generalize

to the case of a discrete outcome variable, which occur frequently in empirical applications.

Suppose that supp(Y ) is a finite set. Then in the case of a Sharp RD design our sharp upper

and lower bounds on FY (1)|X=c,C0
are

F U
1,SRD(y) = (1 − θU)FY |X=c+,Y >Q

Y |X=c+ (τ)(y) + θU
I

{
y ≥ QY |X=c+(τ)

}
and

F L
1,SRD(y) = (1 − θL)FY |X=c+,Y <Q

Y |X=c+ (1−τ)(y) + θL
I

{
y ≥ QY |X=c+(1 − τ)

}
,

where

θL =
P(Y ≥ QY |X=c+(1 − τ)|X = c+) − τ

1 − τ
and θU =

P(Y ≤ QY |X=c+(τ)|X = c+) − τ

1 − τ
.

The following Corollary uses these bounds to obtain explicit sharp bounds on the average

treatment effect Γ− and the quantile treatment effect Ψ−(u).

Corollary 7. Suppose that the assumptions of Theorem 1 hold, and that supp(Y ) is a finite

set. Then sharp lower and upper bounds on Γ− are given by

ΓL
−,SRD = (1 − θL)E(Y |X = c+, Y < QY |X(1 − τ |c+)) + θLQY |X(1 − τ |c+)

− E(Y |X = c−) and

ΓU
−,SRD = (1 − θU)E(Y |X = c+, Y > QY |X(τ |c+)) + θUQY |X(τ |c+)

− E(Y |X = c−),
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respectively; and sharp lower and upper bounds on Ψ−(u) are given by

ΨL
−,SRD(u) = QY |X=c+((1 − τ)u) − QY |X=c−(u) and

ΨU
−,SRD(u) = QY |X=c+(τ + (1 − τ)u) − QY |X=c−(u),

respectively, for every quantile level u ∈ (0, 1).

In a Fuzzy RD design, we modify the expressions for the sharp upper and lower bounds

on FY (1)|X=c,C0
and FY (0)|X=c,N0

for known values of τ1 and τ0 as follows:

F U
1,F RD(y, τ1, τ0) = (1 − θU

1 )G
Y |Y >QG

(
τ1

1−κ1

)(y) + θU
1 I

{
y ≥ QG

(
τ1

1 − κ1

)}
and

F L
1,F RD(y, τ1, τ0) = (1 − θL

1 )G
Y |Y <QG

(
1−

τ1
1−κ1

)(y) + θL
1 I

{
y ≥ QG

(
1 − τ1

1 − κ1

)}
,

where

θU
1 =

PG

(
Y ≤ QG

(
τ1

1−κ1

))
− τ1

1−κ1

1 − τ1

1−κ1

θL
1 =

PG

(
Y ≥ QG

(
1 − τ1

1−κ1

))
− τ1

1−κ1

1 − τ1

1−κ1

.

The modified expressions for bounds on FY (0)|X=c,N0
are given by

F U
Y (0)|X=c,N0

(y) =
∫ y

−∞
s(t)I {t ≤ qU} dt + θU

0 I {y > qU} and

F L
Y (0)|X=c,N0

(y) =
∫ y

−∞
s(t)I {t ≥ qL} dt + θL

0 I {y > qL} .

where

θU
0 = 1 −

∫ qU

−∞
s(t)I {t ≤ qU} dt and θL

0 = 1 −
∫ ∞

qL

s(t)I {t ≥ qL} dt,

and

qL = inf{y ∈ supp(Y ) :
∫ ∞

qL

s(t)dt ≤ 1} and qU = sup{y ∈ supp(Y ) :
∫ qU

−∞
s(t)dt ≤ 1}.

We then obtain the following expressions for sharp bounds on the average treatment effect
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Γ− and the quantile treatment effect Ψ−(u) given knowledge of τ1 and τ0:

ΓU
−,F RD(τ1, τ0) ≡

∫
ydF U

1,F RD(y, τ1, τ0) −
∫

ydF L
0,F RD(y, τ1, τ0),

ΓU
−,F RD(τ1, τ0) ≡

∫
ydF L

1,F RD(y, τ1, τ0) −
∫

ydF U
0,F RD(y, τ1, τ0),

ΨU
−,F RD(u, τ1, τ0) ≡ QU

1,F RD(u, τ1, τ0) − QL
0,F RD(u, τ1, τ0),

ΨL
−,F RD(u, τ1, τ0) ≡ QL

1,F RD(u, τ1, τ0) − QU
0,F RD(u, τ1, τ0).

The following Corollary finally states the sharp bounds on Γ− and Ψ−(u) given that the

values of τ1 and τ0 are only partially identified.

Corollary 8. Suppose that the assumptions of Theorem 2 hold, and that supp(Y ) is a finite

set. Then sharp lower and upper bounds on Γ− are given by

ΓL
−,F RD = inf

(t1,t0)∈T
ΓL

−,F RD(t1, t0) and ΓU
−,F RD = sup

(t1,t0)∈T
ΓU

−,F RD(t1, t0),

respectively; and sharp lower and upper bounds on Ψ−(u) are given by

ΨL
−,F RD(u) = inf

(t1,t0)∈T
ΨL

−,F RD(u, t1, t0) and ΨU
−,F RD(u) = sup

(t1,t0)∈T
ΨU

−,F RD(u, t1, t0),

respectively, for every quantile level u ∈ (0, 1).

C. ADDITIONAL TABLES AND GRAPHS

We present here some supporting graphs. Figure C.5 displays the distribution of our outcome

variable (duration without a formal job, censored at two years after layoff) on the left and on

the right of the cutoff (30-day window around the cutoff). Figure C.6 displays the distribution

of our outcome variable on the right of the cutoff for workers with wages at layoff above/below

the median (and thus replacement rates below/above the median). Figure C.7 displays the

full schedule of the UI benefit level, which is a function of a beneficiary’s average monthly

wage in the three years prior to her layoff. Figure C.8 displays the mean of different covariates

on each side of the cutoff by day between the layoff and eligibility dates.
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Figure C.5: Distribution of our outcome variable on each side of the cutoff

The figure displays the distribution of our outcome variable (duration without a formal job, censored at two
years after layoff) on the left and on the right of the cutoff (30-day window on each side of the cutoff). The
figure is based on a sample of 102,791 displaced formal workers.
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Figure C.6: Distribution of our outcome variable on the right side of the cutoff by wage at layoff

The figure displays the distribution of our outcome variable (duration without a formal job, censored at two
years after layoff) on the right of the cutoff (30-day window on each side of the cutoff) for workers with wages
at layoff above/below the median (and thus replacement rates below/above the median). The figure is based
on a sample of 102,791 displaced formal workers.
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Figure C.7: Monthly UI benefit amount

The figure displays the relationship between a UI beneficiary’s average monthly wage in the three months
prior to her layoff and her monthly UI benefit level. All monetary values are indexed to the federal minimum
wage, which changes every year. The replacement rate is 100% at the bottom of the wage distribution as the
minimum benefit level is equal to one minimum wage. The graph displays a slope of 0% until 125% of the
minimum wage, then of 80% until 165% of the minimum wage, and finally of 50% until 275% of the minimum
wage. The maximum benefit level is equal to 187% of the minimum wage.
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Figure C.8: Graphical evidence for the characteristics of always-assigned units in our empirical
application

The figure displays the mean of different covariates on each side of the cutoff by day between the layoff
and eligibility dates, as well as local linear regressions on each side of the cutoff using an edge kernel and a
bandwidth of 30 days. The figure is based on a RD sample of 169,575 displaced formal workers.
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D. ILLUSTRATING THE POTENTIAL IMPACT OF MANIPULATION

In this Appendix, we describe how to construct confidence intervals for Γ− under the

assumption that the level of manipulation τ is assumed to be equal to some known constant

τ ∗. The following modified bootstrap algorithm delivers the desired confidence interval.

1. For τ ∗ ∈ [0, 1] and t ∈ [0, 1], define Γ̂L
−(τ ∗, t) and Γ̂U

−(τ ∗, t) exactly as Γ̂L
−(η̂1(t), η̂0(t))

and Γ̂U
−(η̂1(t), η̂0(t)), with the exception that τ ∗ is used instead of τ̂ .

2. Generate bootstrap samples {Yi,b, Di,b, Xi,b}n
i=1, b = 1, . . . , B by sampling with replace-

ment from the original data {Yi, Di, Xi}n
i=1; for some large integer B.

3. For j ∈ {U, L}, calculate Γ̂j
−,b(τ

∗, t), and put σ̂j(τ ∗, t) as the sample standard deviation

of {Γ̂j
−,b(τ

∗, t)}B
b=1.

4. Compute the 1 − α confidence interval

CF RD
1−α (τ ∗) =

[
inf

t∈[0,1]

(
Γ̂L

−(τ ∗, t) − rα(τ ∗, t) · σ̂L(τ ∗, t)
)

, sup
t∈[0,1]

(
Γ̂U

−(τ ∗, t) + rα(τ ∗, t) · σ̂U(τ ∗, t)
)]

,

where rα(τ ∗, t) is the value that solves the equation

Φ

(
rα(τ ∗, t) +

Γ̂U
−(τ ∗, t) − Γ̂L

−(τ ∗, t)

max{σ̂L(τ ∗, t), σ̂U(τ ∗, t)}

)
− Φ(−rα(τ ∗, t)) = 1 − α.
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