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1 Introduction

We develop a model of the time series and cross section of treasury-hedged returns

to Mortgage-Backed Securities (MBS), and find robust empirical support for our

model’s main implications. Our model is a simple and transparent linear asset pricing

model. Its key feature is that prepayment risk which is not readily hedgeable using

US treasuries is priced by specialized MBS investors, as in Gabaix, Krishnamurthy,

and Vigneron (2007). These specialized investors require prepayment risk premia

which vary over time and across securities depending on the share of MBS which is

trading above par value. We find that a tradable strategy optimized according to our

theory across securities and over time has a Sharpe ratio which is 2.7 times that of a

passive, value-weighted MBS index.

While prepayments due to interest rate movements of government securities can

be hedged, the requirement of a hedging model leads to model risk. Moreover, it is

even more challenging, if not impossible, to hedge against prepayment risk driven by

shocks to spreads between government and mortgage rates, changing credit condi-

tions, house price appreciation, and regulatory changes. As result, MBS which load

on the unhedgeable component of prepayment risk can exhibit risk premia even if

returns are effectively duration hedged to US treasuries. We show that this is indeed

the case by measuring MBS securities’ loadings on prepayment risk shocks measured

using actual forecast and realized prepayment data and showing that these risk load-

ings are priced. However, we also show that the factor risk prices change sign over

time. Such time varying risk premia have important implications for the time series

and cross section variation in MBS average returns. Indeed, failing to account for

time varying risk premia leads to estimates for expected returns which are misleading

because positive expected returns are biased towards zero.

We show that the composition of the market between discount and premium

securities drives the sign of prepayment risk premia. This idea, first proposed by

Gabaix et al. (2007), makes sense in the context of segmented markets and specialized

MBS investors. Discount securities trade below face value and are prepaid at face

value. Thus, for discount securities, or securities with prices below par, prepayment

is value increasing. The opposite is true for premium securities, whose value declines
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with early prepayment at a face value which is lower than their market value. As

interest rates move, the moneyness of borrowers’ options to prepay, and the prices of

outstanding securities relative to the par security, vary considerably. As a result, the

composition of the MBS universe changes substantially over time, and the market

moves between being mainly comprised by discount securities to primarily premium.

Thus, prepayments can be value increasing for the market overall when the majority of

MBS, weighted by their remaining principal balance, are trading at a discount to their

face value, and value decreasing when the market features more premium securities.

We provide evidence that MBS markets are indeed segmented. In particular, when

prepayment is wealth decreasing for a representative MBS investor who holds the

MBS market, we find negative prepayment risk prices. On the other hand, when

early prepayment increases the wealth of such an investor, we find a positive price of

prepayment risk.

We provide a simple, linear asset pricing model for the cross section of hedged

MBS returns which features two prepayment risk factors, and prices of risk for these

two factors which vary with market composition. The first risk factor is a level factor,

which shifts prepayments across all coupon levels up or down. The second factor is a

rate-sensitivity factor. This factor determines how sensitive borrowers are to prepay-

ment options, conditional on their option moneyness. Although active MBS investors

duration hedge, they cannot hedge shocks to the level of prepayments, or shocks to

borrowers’ sensitivity to their rate incentive. These “level” and ”rate-sensitivity” fac-

tors were termed “turnover” and “refi” risk by Levin and Davidson (2005). Chernov

et al. (2015) greatly extend this idea and, using a structural estimation, derive implied

time series for these two factors from their model and data on MBS prices.

Our study makes several contributions. First, we provide the first comprehensive

study explaining a long time series and broad cross section of MBS expected returns.

We study the pattern of expected returns in this important fixed income market using

a linear factor model which is straightforward to estimate and easy to interpret.

Second, we are the first to show that risk premia are earned on MBS investments

which load on prepayment risk in a study which uses actual prepayment data to

measure innovations to prepayment risk factors. We find substantial evidence that

non-interest rate driven prepayment shocks drive MBS returns, and this has important
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implications for prepayment modeling. Third, our study helps to explain why option

adjusted spreads (OAS), which should be zero if MBS are only exposed to interest

rate risk, are non-zero on average and exhibit a U-shaped pattern in pooled time

series cross section data. This pattern is emphasized by Boyarchenko, Fuster, and

Lucca (2014) in their closely related study of the OAS smile using data on interest

only and principal only strips. Our findings suggest that OAS on MBS reflect premia

for prepayment risk which change sign so that the pattern of expected returns in the

cross section is downward sloping in discount markets, and upward sloping in premium

markets, leading to a U-shape in the pooled time series cross section. Importantly,

since OAS are model-specific, we use data on MBS returns to measure risk premia.

We show that average monthly returns display precisely this time varying pattern

in the cross section conditional on market type. Our analysis also explains why

studies using different time samples find different rankings amongst MBS strategies

which are long either discount, par, or premium securities. Duarte, Longstaff, and

Yu (2006) finds a ranking of discount, par, premium for average strategy level returns

using data up from 1996 to 2004. Using our sample from 1994 to the present, we

find the opposite ranking, consistent with the findings of positive prepayment risk

premia in Gabaix, Krishnamurthy, and Vigneron (2007). The difference is due to

variation in the composition of the MBS market over time. Discount securities were

more prevalent in the period studied by Duarte, Longstaff, and Yu (2006), implying

a negative prepayment risk premium. Finally, our study contributes to the mounting

evidence that markets are segmented, and that risks may be priced by specialized

investors. Our findings present evidence that MBS risk prices actually change sign

over time with whether prepayment is wealth increasing or wealth decreasing for a

representative MBS investor who is specialized in MBS and holds the MBS market.1

An accurate understanding and measurement of risk premia in MBS markets is

important of its own accord. The market for agency MBS pass-through securities

represents over $6.3 Trillion in market value.2 MBS are a very important part of the

fixed income portfolios of most banks, asset managers, pension funds, and insurance

1That risk prices can change sign over time may be a more pervasive phenomenon. For example,
see Campbell, Pflueger, and Viceira (2016) for evidence of changing stock bond correlations.

2See the Table describing US Mortgage-Related Issuance and Outstanding at www.sifma.org/
research/statistics.aspx.
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company portfolios. Such securities constitute about 23% of the Barclays Capital

US Aggregate Bond Index, a key benchmark for fixed income portfolio allocations.

Moreover, the risk premia on MBS are key inputs into the pass-through from monetary

policy, which primarily operates through treasury pricing, and the mortgage rates

faced by borrowers. If MBS investors require substantial prepayment risk premia over

US treasuries, traditional monetary policy may be less effective in easing mortgage

market conditions.

2 Literature Review

We build on several recent contributions. Our study is most closely related to Gabaix,

Krishnamurthy, and Vigneron (2007). Their study provides convincing evidence that

MBS returns are driven in large part by limits to arbitrage. Importantly, they show

that although prepayment risk is partly common within a class of MBS securities,

the risk in MBS investing is negatively correlated with the aggregate risks born by a

representative consumer. The main differences between our study and theirs are that

they use a shorter time period, in which prepayment risk carries a consistently positive

risk premium, and they study Collateralized Mortgage Obligations (CMO’s), rather

than pass-through securities. We greatly extend their results on the cross section and

time series of MBS returns by using a long time series and broad cross section on MBS

pass-through returns. Pass-through securities constitute 90% of MBS outstanding,

while CMO’s comprise the remaining 10%. Finally, Gabaix, Krishnamurthy, and

Vigneron (2007) measure prepayment risk as errors from a stylized prepayment model,

rather than using actual data on prepayment forecasts and realizations as our study

does.

We also build on work by Levin and Davidson (2005), and, more recently, by

Chernov, Dunn, and Longstaff (2015). Levin and Davidson (2005) use principal

components analysis to decompose the shocks which drive prices. Chernov, Dunn,

and Longstaff (2015) use a structural model to derive more accurate MBS prices, and

back out the model implied shocks. Both studies provide convincing evidence that

there are systematic shocks to the level and rate-sensitivity of prepayments, and that

these shocks drive the level of MBS prices. By contrast, we focus on understanding
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the cross section of returns, rather than the levels of prices. Another difference is

that both Levin and Davidson (2005) and Chernov, Dunn, and Longstaff (2015) use

their model, along with MBS pricing data, to back out the properties of the priced

turnover and rate-sensitivity risk factors. Implied risk factors can be sensitive to

model specification. By contrast, we use real variables as factors, and we measure

prepayment risk factors directly using prepayment data. Our factor measurement

is thus in the spirit of the macroeconomic factors constructed in Chen, Roll, and

Ross (1986). Chernov, Dunn, and Longstaff (2015) argue convincingly that MBS

pricing is driven by exposure to turnover and rate-sensitivity risks, and our finding

that exposures to these risks measured using actual prepayment data explain the

cross section and time series of MBS returns builds heavily on, and supports, their

findings.

Another closely related recent study is Boyarchenko, Fuster, and Lucca (2014),

who also argue that unhedgeable prepayment risk is priced in their study of the OAS

smile. They use interest only and principal only strips to show that more extreme

coupons seem to have higher prepayment risk exposure, and thus have higher OAS.

Again, our study focuses on actual MBS returns, and on risk loadings which we derive

independently from our pricing model.

Finally, our study follows many papers which study prepayment behavior and the

effect of prepayment on MBS pricing. Important examples include Dunn and Mc-

Connell (1981a), Dunn and McConnell (1981b), Schwartz and Torous (1992), Stan-

ton (1995), Boudoukh, Richardson, Stanton, and Whitelaw (1997), Longstaff (2005),

Downing, Stanton, and Wallace (2005), and Agarwal, Driscoll, and Laibson (2013).

3 Model

We develop a linear pricing model in which risk premia are earned for loading (β)

on priced risks (λ). In particular, following Levin and Davidson (2005) and Chernov,

Dunn, and Longstaff (2015), we posit a two-factor model, in which prepayment shocks

arise from innovations to the level of prepayments, x, and innovations to the sensitivity

of prepayments to interest rate incentives, y. MBS investors price and hedge their

portfolios using pricing models in which interest rates are the main stochastic state
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variable. Moreover, other variables which drive MBS cash flows, such as house price

appreciation and credit conditions, do not have traded derivatives, making hedging

changes in these state variables costly, imperfect, or infeasible. Thus, although MBS

investors duration hedge, the level and sensitivity of prepayments to rate incentives

varies, conditional on rate realizations. Our model is aimed at pricing prepayment

risk in treasury hedged MBS.

Further, we assume a segmented market in which the stochastic discount factor

(SDF) arises from a representative MBS investor who is undiversified and holds the

universe of MBS. Such a stochastic discount factor can be motivated by specialized

investors as in Gabaix, Krishnamurthy, and Vigneron (2007) and He and Krishna-

murthy (2013). In particular, we assume the following SDF:

dπt

πt

= −rfdt− λxdZx
t − λydZy

t (1)

where λx is the price of risk for “turnover” risk, xt, and λy is the price of risk for

“rate-sensitivity” risk, yt. We then derive our linear asset pricing model by computing

the difference in drifts in expected MBS returns under the physical and risk-neutral

measure as follows:

E[Rei]
︷ ︸︸ ︷

(µiPi − rfPi) dt = λx

βi
x

︷ ︸︸ ︷

σx

∂Pi

∂x

1

P
dt+ λy

βi
y

︷ ︸︸ ︷

σy

∂Pi

∂y

1

P
dt, (2)

using the notation E[Rei] to denote expected returns, where e denotes the excess

return after treasury hedging, and i denotes the security. We define securities by

the coupon of the MBS security relative to the par coupon, and note that discount

securities have coupons lower than the par coupon, while premium securities have

coupons higher than the par coupon. Simplifying notation, this leads to the follow-

ing linear model, familiar from linear equity pricing models, for the cross section of

treasury-hedged MBS returns:3

E[Rei] = λxβ
i
x + λyβ

i
y.

3See Cochrane (2005) for a textbook description of the theory and econometrics of linear asset
pricing models.
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Following, Gabaix, Krishnamurthy, and Vigneron (2007) and Boyarchenko, Fuster,

and Lucca (2014), we develop the intuition for our model using a first order ap-

proximation of MBS prices around the no prepayment uncertainty case. There is a

constant par coupon rate, r, which represents the opportunity cost of capital for the

representative, specialized, MBS investor can reinvest portfolio proceeds in par MBS

securities, as in Fabozzi (2006). There is a securitized mortgage pool (MBS) with

prepayment rate φi and coupon ci. We normalize the initial mortgage pool balance

b0 to one and denote the remaining principal balance bt, with

dbit
dt

= −φibit. (3)

The first order linear approximation of the value of the MBS pass-through around

the no prepayment uncertainty case is then given by:

P i
0 =

∫
∞

0

e−rt
(
bitc

i − dbit
)
dt = bi0 + (ci − r)

∫
∞

0

e−(r+φi)t dt = 1 +
ci − r

r + φi
(4)

Thus, the value of the MBS is approximately its par value plus the value of the

coupon strip. The value of the coupon strip increases in the difference between the

coupon and current rates. The value of the coupon strip decreases with the speed

of prepayment if ci − r is positive, and increases with the speed of prepayment if

ci − r is negative. Using this first-order approximation, we can derive expressions for

the approximate factor loadings on turnover and rate-sensitivity shocks, βx and βy as

follows:

βx = σx

∂P i

∂x

1

P i
= σx

∂P i

∂φi

∂φi

∂x

1

P i
= σx

r − ci

(r + φi) (φi + ci)

∂φi

∂x
, (5)

and,

βy = σy

∂P i

∂y

1

P i
= σy

∂P i

∂φi

∂φi

∂y

1

P i
= σy

r − ci

(r + φi) (φi + ci)

∂φi

∂y
. (6)

These expressions give us the first testable hypothesis of our model, which we state

in Lemma 1:

Lemma 1. If ci − r > 0, then βi
x < 0 and βi

y < 0. If ci − r < 0, then βi
x > 0 and

βi
y > 0.
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In other words, premium securities, for which ci − r > 0, will have negative loadings

on turnover and rate-sensitivity risk. Intuitively, these securities have coupons that

are above current mortgage rates, and so their value deteriorates with faster prepay-

ment. On the other hand, discount securities, for which ci − r < 0, load positively on

prepayment risk. Discount securities have coupon rates that are below the opportu-

nity cost of re-invested capital, and hence their value increases if prepayment speeds

increase. This intuition is readily apparent from the right hand side of Equation

(4). The prepayment rate φi acts like an additional discount rate of the cash flows

in the numerator. When ci < r, the numerator is negative and an increase in the

prepayment rate essentially discounts that negative cash flow more, increasing the

value of the discount MBS. When ci > r, the numerator is positive and an increase

in discounting in the denominator, reduces the value of the premium MBS.

We further specify the following stylized model for prepayment, where our notation

now allows prepayment to vary over time in order make the connection with our

empirical work clear:

φi
t = xt + yt max

(
0,mi −mt

)
, (7)

where we use mi to denote the borrowers’ loan rates for the loans underlying the

MBS (the MBS “Weighted Average Coupon” or WAC), and mt to denote the current

mortgage rate (measured by the Freddie Mac Primary Mortgage Market Survey rate,

for example). We assume that ci − r = mi −mt, so that the moneyness of the bor-

rowers’ long prepayment options matches that of the MBS investors short options.

This assumption is not crucial but it helps facilitate exposition. Although we ab-

stract from variation in the spread between the MBS coupons, ci, and the underlying

borrowers’ loan rates, mi, we will use separate data on each of these rates in our

empirical work and so we include use separate notation for clarity. The moneyness

of borrowers’ prepayment options (“borrower moneyness”) is measured by mi −mt.

The moneyness from investors’ perspective (“investor monenyess”), ci − r captures

how the security’s value changes with prepayment at par. We use borrwer moneyness

to estimate the prepayment risk factor, since the borrowers themselves make the pre-

payment decisions. Then, to define securities, and to study financial returns to these

securities, we use investor moneyness.

Figure 3 plots prepayment as a function of borrower moneyness and the realization

8



of the x and y prepayment factors. Using this model, we have for discount securities:

φi,disc
t = xt, (8)

and for premium securities

φi,prem
t = xt + yt max

(
0,mi −mt

)
. (9)

Further, we have that for discount securities,

∂φi

∂x
= 1 and

∂φi

∂y
= 0. (10)

For premium securities, we have

∂φi

∂x
= 1 and

∂φi

∂y
=

(
mi −mt

)
. (11)

Using these expressions in Equations (5) and (6) for βx and βy, we have the

following additional testable implications for the two prepayment risk factor loadings:

Lemma 2. For discount securities, using i to denote the security defined by ci − r

where for discounts ci − r < 0 we have:

(i) βi,disc,
y = 0.

(ii) βi,disc
x is monotonically decreasing in ci. That is, we expect securities which

trade at a larger discount to par have larger positive loadings on the turnover

prepayment risk factor.

For premium securities, using i to denote the security defined by ci − r where for

premiums ci − r > 0 we have:

(i) |βi,prem
x | is monotonically increasing in ci. That is, we expect securities which

trade at a larger premium relative to par have more negative loadings on the

turnover prepayment risk factor.
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(ii) |βi,prem
y | is monotonically increasing in ci. That is, we expect securities which

trade at a larger premium relative to par to have more negative loadings on the

rate-sensitivity prepayment risk factor.

See Table 1 for a tabular summary the model’s main predictions for factor loadings

from Lemmas 1 and 2 describing the signs and relative absolute magnitudes of the

prepayment risk factor loadings across discount and premium securities defined by

their coupon relative to the par coupon.

With these results in hand, we now turn to our model’s predictions for the signs of

the prices of risk λx and λy. Because markets are segmented, and our representative

MBS investor must hold the market, the pricing of prepayment risk depends on the

composition of outstanding MBS. That is, we expect the prepayment risk prices

to vary over time, and to change sign as the market moves from discount heavy

to premium heavy. This is because, if the market is comprised mostly of discount

securities, then the representative investor is averse to states of the world in which

discount securities deteriorate in value, namely low prepayment states. On the other

hand, if the market is comprised mostly of premium securities, then the representative

investor demands compensation for securities which increase their downside exposure

in states of the world in which prepayment is high, causing premium securities to lose

value. In other words, the prices of risk are determined by the sign of the change in

wealth for a representative, specialized MBS investor who invests in the universe of

MBS securities.

Thus, in a premium heavy market, we expect that

EPM[R
e,prem] = λxβ

i,prem
x + λyβ

i,prem
y > 0, (12)

where we use PM to denote the expectation conditional on “premium market” dates,

namely dates at which more than 50% of total MBS remaining principal balance

trades at a premium. Superscripts denote securities by relative coupon, i = ci − cpar

and prem indicates that the MBS is a premium security, i.e. ci − cpar > 0. Since βi,prem
x

and βi,prem
y are both negative, we expect that both λx and λy are negative in premium

markets.
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By contrast, in a discount market, we expect that:

EDM[R
e,disc] = λxβ

i,disc
x > 0 (13)

where we use DM to denote the expectation conditional on “discount market” dates,

namely dates at which 50% or more of total MBS remaining principal balance trades

at a discount. Superscripts denote securities by relative coupon, i = ci − cpar and disc

indicates that the MBS is a discount security, i.e. ci−cpar < 0. Since βi,disc
x > 0, implies

that λx > 0 in discount markets. The sign on λy, however, is less straightforward

in discount heavy markets. The loading on y for discount securities is zero. If the

realized rate-sensitivity shock is high, our model predicts that there is no effect on the

valuation of discount securities. However, MBS investors should require compensation

from premium securities from their exposure to the y shock, despite the fact that

premium securities are a less important part of their portfolio in discount markets.

That is, λy should be negative in both premium and discount markets. This is because

discount securities, which drive risk pricing of level risk in a discount market, do not

load on the y shock and so these shocks should be priced by their (always negative)

effect on the cash flows from premium securities. This implies that, in principal, in a

discount market, expected returns on premium securities may be positive or negative:

EDM[R
e,prem] = λxβ

i,prem
x + λyβ

i,prem
y <> 0. (14)

Then, we have the following hypothesis regarding the signs of the prices of prepayment

risk:

Hypothesis 1. In a segmented market, in which a representative MBS investor holds

the aggregate MBS portfolio, we have the following signs for the prices of level and

rate-sensitivity risk, depending on market type:

(i) Premium Market: When the market is comprised mainly by premium secu-

rities, the representative investor requires compensation for bearing the risk that

prepayment is higher than expected due to either factor. That is, we expect that

λy and λx are both negative. Given the predictions for the signs of the risk load-
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ings (β’s) from Lemma 1, this implies that EPM[R
e,prem] > 0 and EPM[R

e,disc] < 0.

(ii) Discount Market: When the market is comprised mainly by discount se-

curities, the representative investor requires compensation for bearing the risk

that prepayment is lower than expected. That is, we expect that λx > 0. Be-

cause discount securities should not load on rate-sensitivity risk (βi,disc
y = 0), we

expect that λy < 0, the same as in premium heavy markets. Given the predic-

tions for the signs of the risk loadings (β’s) from Lemma 1, this implies that

EPM[R
e,prem] <> 0 and EPM[R

e,disc] > 0.

Table 2 summarizes these predictions for the prices of risk by market type. Figure

2 graphs the model’s predictions for relative coupon expected returns by market type.

4 Data

The Appendix contains a detailed description of the data and its construction. The

following is a brief introduction to our data sources and methodology.

Our return data come from Bloomberg Barclays Hedged MBS Return indices. In-

dex returns are available at a monthly frequency back to 1994. The indices are con-

structed using prices of liquid cash MBS that are deliverable in the to-be-announced

(TBA) forward market. The TBA market constitutes the vast majority of MBS

trading volume.4 We use hedged returns of coupon-level aggregates of Fannie Mae

30-year fixed-rate MBS pools. Hedged returns are computed by Barclays using a term

structure-matched position in Treasuries based on a key-rate duration approach. To

define securities, we compute the difference between the coupon of each liquid MBS

at each date, and the par coupon on that date. We compute the par coupon using

the TBA prices of securities trading near par.

We utilize two sources for prepayment data. The first is Bloomberg’s monthly

report of the median dealer prepayment forecast by coupon. Bloomberg collects

4See Vickery and Wright (2013) for a detailed description of the TBA market. Gao et al. (forth-
coming) study the relation between the TBA and cash MBS market. Finally, Song and Zhu (2016)
studies MBS financing rates implied by TBA market prices.
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these data via survey. We use forecasts for Fannie Mae 30-year fixed securities for the

base rate scenario, since current rates should approximately reflect rate expectations

over the month. Indeed, because rates rarely move over 50bps within the month, our

results are robust to using the forecast for the realized rate scenario (although this

requires conditioning on future rate realizations). We collect realized prepayment data

for Fannie Mae 30-year fixed securities by coupon monthly from eMBS. To compute

prepayment shocks, we also measure the moneyness of borrower’s prepayment options

for each MBS coupon. To do this, we collect data on weighted average coupons (WAC)

for each MBS coupon. These WAC’s measure the underlying borrower loan rates.

Then, we compare these rates to the current mortgage rate as reported weekly by

Freddie Mac in their Primary Mortgage Market Survey (PMMS). We use a monthly

average of the weekly primary mortgage rates as the current mortgage rate.

5 Empirical Analysis

5.1 Prepayment Risk Factors

Our model is

E[Rei] = λxβ
i
x + λyβ

i
y.

We estimate our linear factor model using standard Fama and MacBeth (1973) tech-

niques, while providing additional pooled time series, cross section OLS results for

robustness. In order to measure βi
x and βi

y using the time series regression for the first

stage Fama McBeth regression, we need time series for shocks to xt and yt. We use

shocks to the level and rate-sensitivity factors, since expected prepayments should

not affect returns. To extract the prepayment shocks, we use the difference between

forecasted and realized prepayments. Each month, dealers provide Bloomberg with

their forecast for prepayments for each MBS coupon, and for several possible fu-

ture interest rate scenarios. For our estimate of forecasted prepayments, we use the

Bloomberg median forecast for the base interest rate scenario for each coupon.5 We

5Results using the ex-post rate realization forecast are similar, since few rate realizations are more
than 50bps different from the base interest rate. See also Carlin, Longstaff, and Matoba (2014), who
forecast TBA returns using a measure of disagreement regarding prepayment rates across dealers.
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obtain realized prepayments for each MBS coupon from eMBS. Realized prepayments

are reported on the eMBS website on the 4th business day of the month for the prior

month. The Appendix contains further details on the data and our methodology.

We estimate innovations to the level and turnover prepayment risk factors as follows.

First, we estimate the following regression across available underlying borrower loan

rates using the forecast data in each month:

ppmtforecastt = xforecast

t + yforecast

t max
(
0,mi −mPMMS

)
. (15)

We use the Weighted Average Coupon (WAC) of the loans underlying MBS with a

particular coupon i to measure borrower loan rates mi. The prevailing mortgage rate

mPMMS is obtained from the Freddie Mac Primary Mortgage Market Survey (PMMS).

The second term is positive for MBS with underlying borrower loan rates which are

above prevailing rates, and zero otherwise. In this regression, the estimated intercept,

x̂t measures the forecasted level of prepayments, while the forecasted slope on the

rate incentive for borrowers’ with in-the-money prepayment options is estimated by

ŷt. Next, we run the same regression in realized prepayment data for each month:

ppmtrealizedt = xrealized

t + yrealized

t max
(
0,mi −mPMMS

)
. (16)

For parsimony, we use the notation xt and yt to denote these innovations. Unexpected

innovations in the level of prepayments xt are measured as

xt = x̂realized

t − x̂forecast

t . (17)

Similarly, unexpected innovations in the rate-sensitivity of prepayments yt are mea-

sured as:

yt = ŷrealized

t − ŷforecast

t . (18)

Figure 5 plots the time series for the two prepayment risk factors. We note that

our time series estimates of the turnover and rate-sensitivity prepayment risk fac-

tors are an additional contribution of our work, since prior studies use model implied

estimates, or principal components from pricing data to measure prepayment risk,

whereas our series are estimated from actual prepayment data. The correlation be-
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tween the innovations in x and y is low, at 0.13. The series are, however, autocorre-

lated (0.78 for x and 0.66 for y). We argue that despite this measured autocorrelation,

these innovations should be considered “surprises” in the context of MBS price set-

ting behavior. It is standard for dealers and investors to use statistical models to

forecast prepayment. When data which is inconsistent with the model arrives, they

face a tradeoff for updating their model. If they update the model too often, then

it is not a model, but instead just a statistical description of current data. On the

other hand, if the data consistently contradicts the model over a longer time period,

parameters are updated. This behavior leads to slowly changing prepayment models,

and persistent prepayment model errors. For example, the autocorrelation of Bar-

clays’ prepayment model implied Option Adjusted Spreads across coupons is 0.83.

This high autocorrelation is consistent with persistent prepayment model errors. Ele-

vated OAS may reflect persistent poor performance of prepayment models which only

feature stochastic interest rates when prepayment is being driven by other state vari-

ables. Despite being persistent, then, prepayment errors are correlated with returns

because investors’ prepayment model output feeds directly into MBS pricing on both

the buy and sell side. Indeed, the fact that first stage Fama MacBeth regressions of

returns on the estimated factors yield significant loadings supports the interpretation

of the xt and yt series as shocks.

5.2 Factor Loadings

With the level and rate-sensitivity factors in hand, we can estimate the following

regression for each relative coupon i.

E[Rei
t ] = ai + βi

xxt + βi
yyt + ǫit. (19)

We use the Barclays MBS Index Excess Returns, available at the coupon level. Bar-

clays uses a proprietary prepayment model to compute key rate durations, and con-

structs hedged MBS returns using these key rate durations and US treasury returns.

Details regarding the index returns construction can be found in Phelps (2015). We

also provide further detail in the Appendix. We define securities by their coupon

relative to the par coupon, rather than by their absolute coupon. This is because
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the sensitivities of securities’ values with respect to prepayment (the risk factor load-

ings) vary less over time for securities defined by their relative coupon than by their

absolute coupon, as can be seen in Lemma 2. On the other hand, an MBS with a

5% coupon has varied from being discount to par to being premium relative to par

over our sample. When the 5% coupon was discount, its value increased with prepay-

ment speeds, and vice versa when it became premium. In fact, we will show that the

characteristic we use to define securities, relative moneyness, will have a monotonic

relationship with factor loadings. This supports our model as well as using relative

moneyness to define a “security”.

Table 3 displays summary statistics for each coupon relative to par, from -2% to

3.5%. Due to data limitations, we use full sample estimates for the factor loadings,

however we provide evidence below for stable loadings for securities defined by their

relative coupon. Table 4 presents our estimated loadings when we restrict βdisc

y = 0, as

in a strict interpretation of our model.6 The restricted estimates are exactly consistent

with the results of Lemma 1, which predicts positive loadings for discount securities,

and negative loadings for premium securities. Turning to the predictions of Lemma 2,

which uses the prepayment model in Equation (9), we see that the results also closely

match each of the more detailed predictions of the model stated in Lemma 2. Not

only do the signs match the model’s predictions, but also the loadings for both x and

y are monotonically decreasing in the absolute value of the relative coupon. Finally,

we note that the loadings tend to be more significant in the tails of the relative coupon

space, i.e. the pattern of significance follows the pattern of the absolute magnitude

of the coefficients. Figure 6 plots the coefficients for a visual description of the fit

between the model’s predictions and our empirical findings.

We present unrestricted results in Table 5. As can be seen, the results are very

similar, and the R2 do not change much between the unconstrained and constrained

specifications. The signs for the loadings in Table 5 also match the predictions of

Lemma 1. Lemma 1 uses only the pricing model, without a specific model for how x

and y affect prepayments across the coupon stack.

6The intercepts in all our factor loadings are less than 0.1%, and insignificant, for all securities,
and so we do not report them.
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5.3 Prices of Risk

With our estimated loadings in hand, we turn to estimating the two prices of risk, λx

and λy, using the cross section regressions

E[Rei
t ] = at + λxβ̂

i
x + λyβ̂

i
y + ǫit. (20)

As described in Hypothesis 1, we expect that the signs of the prices of risk depend

on the market composition. We measure market composition using the percent of

remaining principal balance (RPB) that is discount. We discuss alternative measures

in the Appendix. Figure 7 plots the market composition over time. We classify a

month as discount if greater than 50% of the outstanding MBS balance trades at a

discount, and premium otherwise. Table 6 presents summary statistics by relative

coupons and for the subsamples defined by whether the market type is premium or

discount. Figure 8 plots the average returns by relative coupon for all months, and

then by averaging within discount, and within premium months only. We note the

similarity between Figure 8 from the data, and Figure 2.

Note also that ignoring market type biases conditional return estimates towards

zero for months in which conditional average returns are positive. This can be seen by

the fact that, conditional on the market type leading to positive average returns for a

particular security, the green solid line plotting unconditional returns is closer to zero

than the line plotting returns conditional on market type. Thus, in discount mar-

kets, when discount securities earn higher average returns, the unconditional average

return estimate is lower than the estimate conditional on months in which 50% or

more of total remaining principal balance trades at a discount. Similarly, in premium

markets, when premium securities earn higher average returns, the unconditional av-

erage return estimate is lower than the estimate conditional on months in which more

than 50% of total remaining principal balance trades at a premium. This can also be

seen by comparing the unconditional summary statistics in Table 3 to the summary

statistics conditional on market type in Table 6. Using unconditional average returns

biases discount security average returns downward in discount months, and biases

premium security average returns downward in premium months.

One challenge with estimating λx and λy is that the loadings across factors are
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highly correlated for each security, leading to a multicollinearity problem. This can

be seen in Table 4 and in Figure 6. To alleviate the multicollinearity somewhat, when

running the second stage regressions, we drop months in which the cross section

correlation amongst factor loadings is greater than 0.90. The results from the second

stage regression appear in Table 7. The signs are as predicted by Hypothesis 1.

In terms of statistical significance, two of the risk prices are significant at the 85%

significance level, and one is significant at the 90% level. This may seem relatively

low in the context of cross section tests in equity markets, but it is important to note

that we are restricted to a much smaller cross section. On average, we have seven

securities per month. We have at least five coupons 97% of all months. Figure 9

plots the predicted returns from the model using Fama MacBeth estimates for the

risk prices in the top panel, and realized average returns in the bottom panel. That

is, we plot:

Ê[Rei]
M∈{DM,PM}

= â+ λ̂x,m∈{DM,PM}β̂
i
x + λ̂y,m∈{DM,PM}β̂

i
y. (21)

All intercepts are very close to zero. We useM ∈ {DM,PM} to emphasize that we use risk

prices which are estimated conditional on market type, as defined by the composition

of total remaining principal balance between discount and premium securities. To

compute unconditional averages, we weight by the empirical distribution over market

types, i.e. we use the actual relative frequency of discount and premium market

months that is observed in our sample, and used in Figure 8. Comparing Figure 9 to

Figure 8 shows the relatively good fit of the model.

To confront the challenge presented by the multicollinearity of the factor loadings,

we perform two additional tests. First, the fact that the loadings on both turnover

risk and rate-sensitivity risk are monotonic in relative coupon suggests using the

characteristic, relative moneyness, as a single “factor”. Note that this monotonicity

is a prediction of Lemma 2, and thus this test also supports our model of priced

risk factor loadings, despite using a characteristic as a factor. In Table 8 we present

the results from a second stage Fama MacBeth regression in which we use relative

moneyness as the single risk factor. That is, we estimate λc using:

E[Rei
t ] = at + λc

(
ci − r

)
+ ǫit, (22)
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where, consistent with the notation in Section 3, r denotes the par coupon rate. Con-

sistent with our theory, the price of risk for discount securities is positive in discount

months and negative in premium months, and vice versa for premium securities. The

bottom panel of Figure 9 plots the predicted returns from the model using relative

moneyness as a single characteristic/factor. That is, we plot

Ê[Rei]
M∈{DM,PM}

= â+ λ̂c,m∈{DM,PM}

(
ci − r

)
. (23)

All intercepts are again very close to zero, and again we use the empirical distribution

over market types to compute unconditional average returns. As can be seen, the

predictions of our model are very robust across the two specifications for prepayment

risk exposure. Moreover, these results indicate that factor loadings are stable over

time, which supports our estimates of βx and βy using the full sample of data.

As a second alternative estimation strategy for λx and λy, we run a pooled time

series cross section regression, with interaction terms to capture the effect of market

type on the risk prices. Specifically, we run the following regression over all coupons

and across all months:

E[Rei
t ] = a+κxβ

i
x+κyβ

i
y + δxβ

i
x (%RPBdisc

BoM − 50%)+ δyβ
i
y (%RPBdisc

BoM − 50%)+ ǫit.

(24)

We use BoM to denote observation at the beginning of the month, emphasizing that this

is a predictive regression. When the market is perfectly balanced, %RPBdisc−50% =

0, and κx and κy should thus be zero. Investors are naturally prepayment-risk-hedged

from their balanced portfolio of discount and premium securities, and thus should not

require prepayment risk premium. On the other hand, we expect that δx and δy should

both be positive. In discount heavy months, %RPBdisc−50% > 0, and since discount

securities have positive loadings βi
x, and zero βi

y, a positive δx leads to the model-

implied higher expected returns for discount securities in discount months. Similarly,

in premium heavy months, %RPBdisc − 50% < 0, and since premium securities have

negative loadings βi
x and βi

y, positive δx and δy lead to the model-implied higher

expected returns for premium securities in premium months. Table 9 presents the

results. As predicted, the κ’s are zero, and the δ’s are positive. The δ′s are jointly
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significant at the 87% level. Thus, the pooled time series cross section results provide

additional support for the model’s implications. We present standard errors clustered

by time.7 Note that we predict monthly returns with an R2 of 1% without time

fixed effects. However, in acknowledgment of the fact that, in addition to the risk

factors which change the shape of expected returns in the cross section, there are

likely to be shocks or risk factors that move the entire coupon stack of returns.

Thus, we also report results including a time fixed effect. Table 9 shows that the

results with time fixed effects are qualitatively similar. The raw loadings remain

very small and statistically insignificantly different from zero. Both of the interaction

coefficients increase in magnitude, and the interaction between βx and relative coupon

is statistically significant at the 10% level. Including time fixed effects, the δ′s are

jointly significant at the 97% level. Overall, these results are very consistent with our

pricing model, and with the Fama MacBeth results.

Another way of assessing our pricing model is to compare it to MBS market models

using constant risk prices. We consider two benchmark models. The first uses the

return on the RPB weighted market-level return to MBS as the single factor. That

is, we estimate:

E[Rei
t ] = ai + βVWallRVWall

t + ǫit, (25)

where VWall uses the hedged coupon return series, along with RPB by coupon, to

construct a value weighted index. Predicted returns from this model are:

Ê[Rei
t ] = ai + β̂VWallRVWall

t . (26)

The second uses the return on a spread asset constructed by going long the maximum

coupon in each month, and short the minimum coupon in each month. We scale this

spread asset so that its return has equal leg volatility and constant volatility over time.

The intuition for this benchmark model is that it makes use of the monotonicity of

the factor loadings, but not the time varying risk prices. Thus, by comparing our

model to these two benchmark models we see that, (1) it is important to construct

7In an asset pricing context, we expect it to be most important to cluster errors in the time
dimension, see Petersen (2011). Standard errors are smaller using coupon and time clusters, however
the size of the clusters becomes small.
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loadings on prepayment risk factors, rather than on MBS market returns, and (2) it is

important to condition risk price estimation on market type. The second benchmark

model is estimated using:

E[Rei
t ] = ai + βMax-MinRMax-Min

t + ǫit. (27)

Predicted returns from this model are:

Ê[Rei
t ] = ai + β̂Max-MinRMax-Min

t . (28)

Figure 10 presents scatter plots of the results for these models conditional on market

type, and over the full sample. Each column is one model, and rows plot different

market types. We compare these results to the results for the models implied by our

theory. Figure 11 plots the results for the models described in Equations (21) and (23)

conditional on market type, and over the full sample. The superior performance of

the models implied by our theory is clear in the figures. The left column of Figure 10,

plots the benchmark model using the return on the RPB weighted market-level return

to MBS as the single factor. The estimated β’s from this model are approximately

equal to one for all relative coupons, thus, the predicted returns are nearly equal

whereas the actual realized returns display substantial variation. The right column of

Figure 10 plots the benchmark model using the return on a spread asset constructed

by going long the maximum coupon in each month, and short the minimum coupon

in each month. This factor creates more spread in β’s, and it performs slightly better.

The improvement in performance is primarily in premium market months. This is

because the loadings (not reported) are monotonically increasing in relative coupon,

negative for discount securities and positive for premium securities. The estimated

price of risk is positive. Then, in premium markets this model correctly predicts

that premium securities should have higher expected returns. In discount markets,

predicted returns are the same, however realized returns have the opposite pattern

and this model gets the wrong sign for the slope of returns across relative coupons. As

a result, the overall performance is poor, as can be seen in the plot for the full sample,

in the bottom row of the figure. The left column of Figure 11 plots the results for the

model described in Equation (21), with level and rate-sensitivity risk factors. Two
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things improve the fit of this model. First, this model produces a larger spread in β’s

than either benchmark model. Second, allowing the price of risk to vary by market

type allows the model to match the slope of average returns in the cross section of

relative coupons in both market types, and hence in the full sample. The right column

of Figure 11 plots the results for the model described in Equation (23), with relative

coupon as the single factor/characteristic. This model is also implied by our theory,

and has a good fit. Thus, the two models which are consistent with our theory appear

to offer a substantial improvement over the benchmark models using passive indices.

The better performance of the two models we propose can also be measured by the

root mean squared errors for each model for the full sample, corresponding to the

bottom row of Figures 10 and 11. These are 0.68% for the value weighted market

model, 0.67% for the Max-Min model, 0.46% for the two factor model, and 0.21% for

the relative moneyness model.

5.4 Time Series Results: Timed Spread Asset

The results of our estimated model

E[Rei] = λxβ
i
x + λyβ

i
y

suggest implementing an active strategy consisting of a long-short spread asset which

changes direction with market type. Since loadings are monotonic in coupon, and

given our estimated time varying risk prices, the results suggest going long the deepest

discount security and short the most premium security in discount heavy markets, and

vice versa in premium markets. Intuitively, this spread asset is designed to harvest

the risk premium earned for bearing prepayment risk that is hard to hedge with US

treasuries. To construct our active spread asset strategy, we restrict the asset to have

a constant volatility over time, and to have equal volatility in the long and short legs,

which is standard. The Sharpe ratio8 of this optimal spread asset is 0.76. This is

2.62 times the Sharpe ratio of a passive value weighted MBS index. Table 10 presents

results for the Sharpe ratios of passive spread assets, the optimally timed spread

asset, and passive indices over the full sample, and within discount and premium

8Sharpe (1966).
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months. The final row, using the full sample, shows the superior performance of

the optimally timed spread asset over all other strategies. The conditional Sharpe

ratios are also informative, since the Sharpe ratio for any strategy that is always

long discount securities has a Sharpe ratio that is positive in discount months, and

negative in discount months. The converse is true for any strategy that is always long

premium securities.

We also present Information ratios, a version of the active Sharpe ratio which

controls for the correlation between the actively managed portfolio and the passive

benchmark since it is the excess return relative to the standard deviation of the active

return less the benchmark return:

E [RActive −RBenchmark]

σ (RActive −RBenchmark)

where RBenchmark is the benchmark return. Table 12 displays the excess return, tracking

error, and information ratio for our model-implied optimally timed portfolio relative

to three passive benchmarks, namely, a passive long maximum premium coupon short

minimum discount coupon portfolio with constant volatility and equal-leg volatility,

a passive long maximum premium coupon short par portfolio with constant volatility

and equal-leg volatility, and the remaining principal balance weighted MBS index. In

all cases, the information ratio is about 0.3, which seems high for our simple strategy.

To study the magnitude of risk loadings and α’s with respect to passive bench-

marks, we regress the optimally timed spread asset returns on four passive bench-

marks. That is, we estimate:

Rmodel implied spread asset

t = α + βBenchmarkRBenchmark

t + ǫt (29)

where RBenchmark

t is one of four benchmark returns, namely, the remaining principal

balance weighted MBS index, VWall , the remaining principal balance weighted MBS

index amongst premium securities only, VWprem, an untimed long maximum premium

coupon short minimum discount coupon portfolio with constant volatility and equal-

leg volatility, Max - Min, and an untimed long maximum premium coupon short par

coupon portfolio with constant volatility and equal leg volatility, Max - Par. The
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monthly α’s are all highly statistically significant. We note that, importantly, the re-

turns to the active strategy are largely independent of the passive benchmark returns.

In particular, the loading on the remaining principal balance weighted MBS market

portfolio is -0.08 and the R2 of this regression is only 1%. The highest loading of the

optimally timed strategy, 0.45, is on the Max-Par benchmark, and this regression has

an R2 of 22%. The fact that the R2 is higher for this benchmark relative to the Max

- Min portfolio (9%) is reflective of the fact that despite the fact that it is always

optimal to hold the Max - Min portfolio, the long and short legs switch position over

time. All of these results are consistent with our finding that neglecting to control

for the time varying prices of prepayment risks biases estimates of positive average

returns towards zero.

Finally, we compute the cumulative returns from investing in the model-implied,

optimally timed spread asset vs. the alternative cumulative returns from the three

passive benchmark strategies with the next highest Sharpe ratios, namely, a passive

long maximum premium coupon short minimum discount coupon portfolio with con-

stant volatility and equal-leg volatility, a passive long maximum premium coupon

short par portfolio with constant volatility and equal-leg volatility, and the remaining

principal balance weighted MBS index. Figure 12 plots the results, and shows that

cumulative returns over the last twenty years have been almost double that of the

next best strategy. Note that the difference in cumulative returns between the Max-

Min strategy (blue line), and the optimal strategy (black line( is entirely driven by

optimally switching the long and short legs, conditional on market type. The market

has been dominated by premium securities since 2009, so the difference in cumulative

returns over this time between these two strategies is constant. The market type will

change to discount if rates increase in the future, and at that point the cumulative re-

turns will again diverge. Recall also that these cumulative returns are net of treasury

returns, and so are compensation for prepayment risk only.

6 Conclusion

We present a simple, linear asset pricing model for the cross section of MBS returns.

We show that loadings on a turnover and rate-sensitivity risk factor are priced in the
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time series and cross section. We measure the turnover and rate-sensitivity factors

using surprises in prepayment realizations relative to prepayment forecasts. Discount

securities load positively on turnover prepayment risk, while premium securities load

negatively on turnover and rate-sensitivity risk. The measured loadings are monotonic

in securities’ coupons relative to the par coupon. These predictions for risk loadings

are precisely as predicted by the simple pricing model. Using the relative fraction of

discount vs. premium securities in the overall MBS market, we show that the price of

prepayment risk is positive in discount markets, and negative in premium markets.

This leads to a downward sloping pattern of expected returns in the cross section

in discount markets, and an upward sloping pattern in premium markets. Overall,

in the pooled time series cross section, the resulting pattern for the cross section of

returns is U-shaped in relative moneyness. As a result, failing to account for the

market composition, and the associated prices of prepayment risk, leads to estimates

of average returns, and risk premia, which are biased. In particular, estimates are

biased downwards when they are positive conditional on market type; discount securi-

ties’ average returns are underestimated in discount markets and premium securities’

average returns are underestimated in premium markets.

Our study provides new evidence of segmented markets for mortgage-backed secu-

rities, populated by specialized investors who price market-specific risks. In particu-

lar, we show that the price of prepayment risk is determined by whether prepayment

is wealth increasing or wealth decreasing for a representative MBS investor who holds

the MBS market.
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Appendix

Constructing Prepayment Risk Factors

Prepayment Forecasts For our study, we use historical prepayment forecasts ob-
tained from Bloomberg. Specifically, we use a Bloomberg-computed median of pre-
payment projections submitted by contributing dealers. Projections are available for
generic TBA securities defined by agency/program/coupon. In this paper, we focus
on prepayment projections for Fannie Mae 30-year TBA securities.

Dealers have the option of updating their prepayment projections on Bloomberg
on a daily basis and do so at their own discretion. Bloomberg computes a daily
median prepayment forecast based on whatever dealer projections are available at
the time. On average, there are about 8-10 contributing dealers. Bloomberg median
prepayment forecasts can be downloaded historically with a monthly frequency (i.e.
a monthly snapshot on the 15th).

Dealer prepayment forecasts are available for a range of interest rate scenarios. In
addition to the base case that assumes rates remain unchanged from current levels,
forecasts are also made assuming parallel shifts in the yield curve of +/− 50, 100, 200,
300 basis points. We utilize the base case projection for the purpose of our analysis.
The following is an example screen shot of this data:

 

 

 

The dealer prepayment forecasts on Bloomberg are quoted according to the PSA
convention. We convert that to an annualized constant prepayment rate (CPR) using
the standard conversion formula:

CPR = PSA ∗min(6%, 0.2% ∗ weighted-average loan age).
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For reference, we provide a more detailed description of PSA and CPR:9

• Constant Prepayment Rate (CPR) and the Securities Industry and Financial
Markets Association’s Standard Prepayment Model (PSA curve) are the most
popular models used to measure prepayments.

• CPR represents the annualized constant rate of principal repayment in excess
of scheduled principal amortization.

• The PSA curve is a schedule of prepayments that assumes that prepayments
will occur at a rate of 0.2 percent CPR in the first month and will increase an
additional 0.2 percent CPR each month until the 30th month and will prepay
at a rate of 6 percent CPR thereafter (“100 percent PSA”).

• PSA prepayment speeds are expressed as a multiple of this base scenario. For
example, 200 percent PSA assumes annual prepayment rates will be twice as
fast in each of these periods; 0.4 percent in the first month, 0.8 percent in the
second month, reaching 12 percent in month 30 and remaining at 12 percent
after that.

Realized Prepayments Historical realized prepayment rates are obtained via eMBS.
The realized prepayment rate is computed based on the pool factors that are reported
by the agencies on the fourth business day of each month. The pool factor is the ratio
of the amount of remaining principal balance relative to the original principal bal-
ance of the pool. Using the pool factors and the scheduled balance of principal for a
pool, one can calculate the fraction of the pool balance that was prepaid, that is the
unscheduled fraction of the balance that was paid off by borrowers. The prepayment
rates reported on eMBS are a 1-month CPR measure. In other words, prepayments
are measured as the fraction of the pool at the beginning of the month that was pre-
paid during that month, yielding a single monthly mortality (SMM) rate. The SMM
is then annualized to get the constant prepayment rate (CPR).

Borrower Moneyness We define borrower moneyness or incentive to be the rolling
3-month average of the difference between the weighted-average coupon (WAC) of a
Fannie Mae 30-year coupon aggregate and the Freddie Mac Primary Mortgage Market
Survey (PMMS) rate for 30-year fixed-rate mortgages.

The Fannie Mae 30-year coupon aggregate is formed by grouping Fannie Mae
30-year MBS pools that have the same specified coupon. The WAC of a MBS pool
is defined to be the weighted-average of the gross interest rates of the underlying

9See http://www.fanniemae.com/resources/file/mbs/pdf/basics-sf-mbs.pdf.
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mortgages in the pool, weighted by the remaining principal balance of each mortgage.
Similarly, the WAC of the coupon aggregate is defined to be the weighted-average of
the WAC of the underlying MBS pools, weighted by the remaining principal balance
of each MBS pool. We obtain historical WAC data for Fannie Mae 30-year coupon
aggregates from eMBS. The data is available with monthly frequency and represents
an end-of-month snapshot.

The Freddie Mac Primary Mortgage Market Survey (PMMS) is used as an indi-
cator of current mortgage rates. Since April 1971, Freddie Mac has surveyed lenders
across the nation weekly to determine the average rates for conventional mortgage
products. The survey obtains indicative lender quotes on first-lien prime conventional
conforming home purchase mortgages with a loan-to-value of 80 percent. The sur-
vey is collected from Monday through Wednesday and the national average rates for
each product are published on Thursday morning. Currently, about 125 lenders are
surveyed each week; lender types consist of thrifts, credit unions, commercial banks
and mortgage lending companies. The mix of lender types surveyed is approximately
proportional to the volume of mortgage loans that each lender type originates na-
tionwide. In our study, we use the historical monthly average PMMS rate for 30-year
fixed-rate mortgages, available from Freddie Mac’s website.10

We use a 3-month average to measure the borrower incentive because we recognize
that there is a lag between a refinance application and the resulting closing and actual
mortgage prepayment. Refinancing a mortgage can take a considerable amount of
time due to the various steps involved, such as credit checks, income verification,
and title search.11 Borrowers can choose to lock in their rate during this time by
requesting a rate lock from their lender. The rate locks usually range from 30 to
90 days. In our regression in Equations (15) and (16), the borrower moneyness of a
security is determined at the beginning at the month and we only include securities
with at least USD 1bn outstanding in RPB as a liquidity filter.

Estimating Factor Loadings

We obtain monthly MBS returns from indices created by Bloomberg Barclays. The
indices are constructed by grouping individual TBA-deliverable MBS pools into ag-
gregates or generics based on their characteristics. For our study, we use Treasury-
hedged returns of coupon-level aggregates of Fannie Mae 30-year fixed-rate MBS
pools. Hedged returns are computed by Barclays using a term structure-matched
position in Treasuries based on a key-rate duration approach. As a liquidity filter, we
also exclude monthly returns from coupons that have less than USD 1bn outstanding

10See http://www.freddiemac.com/pmms/pmms30.htm.
11See Hayre and Young (2004).
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in RPB at the beginning of the month. The following is a brief description of the
restriction that securities in the index are TBA-deliverable. More than 90 percent
of agency MBS trading occurs in the to-be-announced (TBA) forward market. In a
TBA trade, the buyer and seller agree upon a price for delivering a given volume of
agency MBS at a specified future date. The characteristic feature of a TBA trade is
that the actual identity of the securities to be delivered at settlement is not speci-
fied on the trade date. Instead, participants agree upon only six general parameters
of the securities to be delivered: issuer, maturity, coupon, price, par amount, and
settlement date. The exact pools to be delivered are “announced” to the buyer two
days before settlement. The pools delivered are at the discretion of the seller, but
must satisfy SIFMA good delivery guidelines, which specify the allowable variance
in the current face amount of the pools from the nominal agreed-upon amount, the
maximum number of pools per $1 million of face value, and so on. Because of these
eligibility requirements, “TBA-deliverable” pools can be considered fungible because
a significant degree of actual homogeneity is enforced among the securities deliverable
into any particular TBA contract.12

Absolute coupon return series are converted into a relative coupon return series
based on investor moneyness. We define investor moneyness to be the difference
between the TBA coupon and the par coupon at the beginning of the month. The
implied par coupon is determined from TBA prices by finding the TBA coupon that
corresponds to a price of 100, linearly interpolating when needed. For example, if the
4.0 coupon has a price of 95 and the 4.5 coupon has a price of 105, the implied par
coupon would be equal to 4.25. After computing the investor moneyness (x) for each
absolute coupon, we map it to a relative coupon in increments of 0.5 centered around
zero. For example:

• −0.75 <= x < −0.25 maps to relative coupon -0.5 %.

• −0.25 <= x < 0.25 maps to relative coupon 0.0% (par is centered around zero)

• 0.25 <= x < 0.75 maps to relative coupon 0.5%

It is important to note that in Step 1 of our Fama-MacBeth regression, we regress
returns against 1-month lagged prepayment risk factors. For example, if the LHS is
the 1-month return for the month of January, we regress that against the prepayment
shocks measured for the month of December. The reason for the lag is to account for
the fact that the Bloomberg Barclays MBS Index convention uses same day settlement
prices with paydowns estimated throughout the month, as opposed to the market’s
convention of PSA settlement. Because prepayment data for a given month is reported

12See Hayre et al. (2010), or http://www.sifma.org/uploadedfiles/services/standard_

forms_and_documentation/ch08.pdf?n=42389.
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after index results have been calculated, paydown returns in the MBS Index are
reported with a one-month delay. As an example, the paydown return for January
will reflect December prepayment data (which were made available by the agencies
during January) since complete factor (or prepayment) data for January will be not
available until the middle of February (due to PSA settlement). The MBS Index
reflects an estimate of paydowns in the universe on the first business day of the
month and the actual paydowns after the 16th business day of a month. See Phelps
(2015) for a detailed discussion of the index construction and timing conventions.

Determining Market Type

We define market type based on the market composition between discount and pre-
mium Fannie Mae 30-year MBS securities. At the beginning of each month, we mea-
sure the remaining principal balance (RPB) for each these two types of securities. If
the total RPB for discount securities is greater than the total RPB for premium se-
curities, we classify that month as a discount market; otherwise the month is deemed
to be a premium market. By this measure of market type, the market has been in a
premium market state about 70% of the time during our sample period (Jan 1994 to
June 2016).

We note that, although there are several ways one could classify market type,
they are all highly correlated. We analyzed the following alternative measures of
market type: (1) RPB weighted WAC relative to current mortgage rates, or “borrower
moneyness”, (2) RPB weighted relative coupon, or “investor moneyness”, (3) RPB
weighted relative coupon minus the ten year US treasury yield, as in Gabaix et al.
(2007), and (4) innovations to the percentage of RPB that trades at a discount,
measured by errors in an AR(1) regression. The correlation of these measures with the
percentage of RPB that trades at a discount are 0.84, 0.89, 0.77 and 0.49, respectively.
Thus, the correlation of measure of market type defined by percentage of RPB that
trades at a discount with all other measures is very high.

Spread Assets

We scale all long short portfolios to have, in expectation, constant volatility and
equal leg volatility. We predict monthly volatility for each leg, for each month using
a six month equally weighted moving average of past realized monthly volatility. We
predict correlations using a twelve month equally weighted moving average of past
realized correlations. Correlations tend to be more stable than volatilities, hence we
use the longer window. If any volatility or correlation is missing for a leg/month
observation, we use the estimate of the closest coupon or coupon pair in that month
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to replace the missing value. Each leg in the spread assets are scaled to target 1%
volatility, and each spread asset is scaled to target 1% volatility in each month.
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Figures

Figure 1: This figure plots prepayment as a function of borrower moneyness and a
realization of the turnover (x), and rate-sensitivity (y) prepayment factors.
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Figure 2: This figure summarizes the implications of Hypothesis 1 regarding the
signs of λx and λy in the two market types, discount and premium. Expected returns
are increasing in relative moneyness in premium markets. In discount markets, ex-
pected returns may be decreasing in relative moneyness, or U-shaped, depending on
the magnitudes of the x and y loadings and risk prices.
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Figure 3: This figure plots forecast and realized prepayment as a function of borrower
moneyness and a realization of the turnover (x), and rate-sensitivity (y) prepayment
factors. Prepayment shocks are measured as the difference between realized and fore-
casted factors, xshock

t = xrealized
t − xforecast

t , and yshock
t = yrealized

t − yforecast
t .
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Figure 4: This figure plots four examples of the forecast and realized prepayment
data used to estimate the innovations to the level and rate-sensitivity prepayment
risk. The y-axis is prepayment rates in percent, and the x-axis is mi − mPMMS, or
borrower moneyness. Note that borrower moneyness is typically 50-100bps above
investor moneyness defined as ci − r.
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Figure 5: This figure plots the innovations in the two prepayment risk factors,
turnover (x), and rate-sensitivity (y).
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Figure 6: This figure plots the results for the loadings on the two prepayment risk
factors, turnover (x), and rate-sensitivity (y), by relative coupon.
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Figure 7: This figure plots the Fannie Mae 30 year MBS market composition between
discount and premium securities. We define market type by classifying any month in
which more than 50% of total remaining principal balance is discount as a discount
market. The remaining months are classified as premium markets.
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Figure 8: This figure plots annualized average monthly returns for the full sample,
and within discount months and premium months only. The pattern of average returns
is U-shaped overall, declining in discount markets, and increasing in premium markets.
We exclude coupons which would require averaging over less than five observations in
a particular market type.

38
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Figure 9: This figure plots predicted monthly returns for our model using the Fama
MacBeth estimates for λ’s (top), the estimates for λ’s from a single relative moneyness
characteristic/factor model (middle), and empirical average monthly returns within
discount months and premium months only (bottom). In the bottom panel, we exclude
coupons which would require averaging over less than five observations in a particular
market type..
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Figure 10: This figure plots annualized realized returns vs. predicted returns for two
passive benchmark models, by market type, and for the full sample.
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Figure 11: This figure plots annualized realized returns vs. predicted returns for the
two and one factor models implied by our theory, by market type, and for the full
sample.
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Figure 12: This figure plots cumulative returns for our model-implied optimally timed
portfolio (black) relative to three passive benchmarks. Max - Min (blue) is a passive
long maximum premium coupon short minimum discount coupon portfolio, Max - Par
(green) is a passive long maximum premium coupon short par portfolio, VWall (red)
is the RPB weighted MBS index.
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Tables

Table 1: This figure summarizes the results in Lemmas 1 and 2 regarding the signs
and magnitudes of the prepayment risk factor loadings.

xt yt
Discount Securities βdisc

x > 0 βdisc
y = 0

Premium Securities βprem
x < 0 βprem

y < 0

Table 2: This figure summarizes the predictions in Hypothesis 1 regarding the signs
of the prices of turnover and rate-sensitivity risk across market types.

λx λy

Discount Market + −

Premium Market − −

Table 3: Annualized returns, volatility, and Sharpe ratios, as well as number of
observations for MBS by Relative Moneyness, defined as own coupon relative to par
coupon.

-2.0% -1.5% -1.0% -0.5% 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

ann. ret 0.56% 0.97% 0.34% -0.02% -0.38% 0.17% 0.21% 0.50% 0.86% 1.43% 1.55% 1.82%
ann. vol 1.70% 1.82% 1.87% 1.67% 1.78% 1.71% 1.63% 1.59% 1.97% 2.45% 2.10% 2.21%
SR 0.33 0.53 0.18 -0.01 -0.21 0.10 0.13 0.32 0.44 0.58 0.74 0.82
n 41 87 153 217 248 238 217 199 172 139 112 92
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Table 4: Factor loadings by relative coupon. βdisc
y is restricted to equal zero. Standard

errors are reported using adjusted degrees of freedom to account for the estimated
regressors.

E[Rei
t ] = ai + βi

xxt + βi
y max (0, ci − r) yt + ǫit

Relative Coupon βx t-statx βy tstaty n r2

-2.0% 4.90% 1.10 0 0 41 3.00%
-1.5% 1.54% 0.94 0 0 87 1.02%
-1.0% 2.60% 3.20 0 0 153 6.34%
-0.5% 2.07% 3.83 0 0 216 6.42%
0.0% 0.86% 1.52 -0.57% -0.54 247 1.00%
0.5% -0.04% -0.07 -0.84% -0.8 237 0.30%
1.0% -0.32% -0.67 -1.05% -0.98 216 0.70%
1.5% -0.74% -1.57 -0.07% -0.07 198 1.30%
2.0% -0.83% -1.41 -4.07% -2.65 172 5.20%
2.5% -0.96% -1.29 -7.07% -3.69 139 10.10%
3.0% -1.99% -2.76 -7.07% -4.27 112 18.00%
3.5% -3.60% -4.23 -4.72% -2.63 92 19.60%

Table 5: Factor loadings by relative coupon. βdisc
y is unrestricted. Standard errors are

reported using adjusted degrees of freedom to account for the estimated regressors.

E[Rei
t ] = ai + βi

xxt + βi
yyt + ǫit

Relative Coupon βx t-statx βy tstaty n r2

-2.0% 2.73% 0.49 2.52% 0.66 41 4.10%
-1.5% 1.53% 0.86 0.04% 0.02 87 1.00%
-1.0% 2.42% 2.89 1.22% 0.95 153 6.90%
-0.5% 2.08% 3.79 -0.01% -0.01 216 6.40%
0.0% 0.86% 1.52 -0.57% -0.54 247 1.00%
0.5% -0.04% -0.07 -0.84% -0.8 237 0.30%
1.0% -0.32% -0.67 -1.05% -0.98 216 0.70%
1.5% -0.74% -1.57 -0.07% -0.07 198 1.30%
2.0% -0.83% -1.41 -4.07% -2.65 172 5.20%
2.5% -0.96% -1.29 -7.07% -3.69 139 10.10%
3.0% -1.99% -2.76 -7.07% -4.27 112 18.00%
3.5% -3.60% -4.23 -4.72% -2.63 92 19.60%
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Table 6: Annualized returns, volatility, and Sharpe ratios, as well as number of
observations for MBS by Relative Moneyness, defined as own coupon relative to par
coupon, conditional on the market type. The market is defined as Premium if > 50%
of RPB is premium, and discount otherwise.

premium -2.0% -1.5% -1.0% -0.5% 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

ann. ret -0.26% -0.07% -0.12% -0.50% 0.33% 0.58% 0.88% 1.35% 1.44% 1.55% 1.82%
ann. vol 0.84% 2.20% 1.87% 1.98% 1.80% 1.63% 1.52% 1.94% 2.48% 2.10% 2.21%
SR -0.31 -0.03 -0.06 -0.25 0.18 0.36 0.58 0.70 0.58 0.74 0.82
n 5 68 134 170 182 180 168 144 136 112 92

discount -2.0% -1.5% -1.0% -0.5% 0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5%

ann. ret 0.56% 1.05% 0.66% 0.13% -0.11% -0.35% -1.61% -1.54% -1.67% 1.14%
ann. vol 1.70% 1.87% 1.56% 1.29% 1.25% 1.36% 1.57% 1.85% 1.99% 0.47%
SR 0.33 0.56 0.42 0.10 -0.09 -0.25 -1.03 -0.83 -0.84 2 0.42
n 41 82 85 83 78 56 37 31 28 3

Table 7: Prices of Risk, Fama MacBeth Estimation.

E[Rei
t ] = at + λxβ̂

i
x + λyβ̂

i
y + ǫit

Market Type λx t-statx λy t-staty n

Discount 3.17% 1.41 -1.22% -0.44 62
Premium -2.95% -2.19 -1.26% -1.57 168

Table 8: Prices of Risk, Relative Moneyness Characteristic.

E[Rei
t ] = at + λc (c

i − r) + ǫit

Market Type λc t-stat

Discount 3.30% 1.38
Premium -4.77% -2.66
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Table 9: Prices of Risk, Pooled Time Series Cross Section Regression. Joint statistical
significance of δx and δy, computed using the Wald statistic, is reported under F-test.

E[Rei
t ] = a+ κxβ

i
x + κyβ

i
y + δxβ

i
x (%RPBdisc − 50%) + δyβ

i
y (%RPBdisc − 50%) + ǫit.

t-statistic clustering t-statistic clustering
Coefficient none time Coefficient none time

κx -0.3% -0.31 -0.27 -0.15% -0.18 -0.14
κy 0.3% 0.27 0.20 0.73% 0.79 0.65
δx 4.9% 2.11 1.49 6.88% 3.18 2.40
δy 3.3% 1.45 0.92 3.81% 1.79 1.45
a 0.00% 0.68 0.45
time f.e. no yes
n 1915 1915
R2 1% 60%
F-stat δx and δy 87% 97%

Table 10: Sharpe Ratios for Spread Assets and Indices. Max - Min is a passive long
maximum premium coupon short minimum discount coupon portfolio, Max - Par is a
passive long maximum premium coupon short par portfolio, Min - Par is a passive long
minimum premium coupon short par portfolio, Optimally Timed is an active portfolio
which is long maximum premium coupon short minimum discount coupon when > 50%
of outstanding RPB is premium and long minimum discount coupon short maximum
premium coupon otherwise. VWall is the RPB weighted MBS index, VWex−par is the
RPB weighted MBS index excluding par coupon, VWdisc is the RPB weighted MBS
index of discount securities only, VWprem is the RPB weighted MBS index of premium
securities only. All long short portfolios are scaled to have constant volatility and equal
leg volatility.

Max - Min Max - Par Min - Par Optimally VWall VWex−par VWdisc VWprem

Timed

Discount -0.47 0.28 0.49 0.47 0.12 0.18 0.27 -0.50
Premium 0.91 0.73 -0.42 0.91 0.36 0.41 -0.08 0.47
Full Sample 0.44 0.48 -0.02 0.76 0.29 0.35 0.03 0.26
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Table 11: Excess returns, tracking errors, and information ratios for our model-
implied optimally timed portfolio relative to three passive benchmarks. Max - Min is
a passive long maximum premium coupon short minimum discount coupon portfolio,
Max - Par is a passive long maximum premium coupon short par portfolio, VWall is
the RPB weighted MBS index.

Benchmark Max - Min Max - Par VWall

Active excess return: Optimally Timed 0.36% 0.41% 0.48%
Tracking Error 1.35% 1.22% 1.82%
Information Ratio 0.27 0.33 0.26

Table 12: Loadings of the model implied, optimally timed portfolio returns on, and
α’s with respect to, four passive benchmarks, namely, the remaining principal bal-
ance weighted MBS index, VWall, the remaining principal balance weighted MBS
index amongst premium securities only, VWprem, an untimed long maximum premium
coupon short minimum discount premium portfolio with constant volatility and equal-
leg volatility, Max - Min, and an untimed long maximum premium coupon short par
portfolio with constant volatility and equal leg volatility, Max - Par.

Benchmark α t-statα βBenchmark t-statβ n R2

Max - Min 0.06% 3.11 0.30 5.16 270 9%
Max - Par 0.06% 3.12 0.45 8.14 238 22%
VWall 0.07% 3.75 -0.08 -1.48 270 1%
VWprem 0.08% 3.90 -0.15 -2.59 241 3%
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