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ABSTRACT

Pricing greenhouse gas emissions is a risk management problem. It involves making trade-offs 
between consumption today and unknown and potentially catastrophic damages in the (distant) 
future. The optimal carbon price is based on society’s willingness to substitute consumption 
across time and across uncertain states of nature. A large body of work in macroeconomics and 
finance has attempted to infer societal preferences using the observed behavior of asset prices, 
and has concluded that the standard preference specifications are inconsistent with observed asset 
valuations. This literature has developed a richer set of preferences that are more consistent with 
asset price behavior.

In this paper, we explore the implications of these richer preference specifications for the Social 
Cost of Carbon (SCC), the expected discounted damage of each marginal ton of carbon emissions 
at an optimal emissions reductions pathway. We develop a simple discrete-time model in which 
the representative agent has an Epstein-Zin preference specification, and in which uncertainty 
about the effect of carbon emissions on global temperature and on eventual damages is gradually 
resolved over time. In our model the SCC is equal to the value of the carbon emissions price at 
any given point in time that maximizes the utility of the representative agent at that time. We 
embed a number of features including tail risk, the potential for technological change, and 
backstop technologies. When coupled with the potential for low-probability, high-impact 
outcomes, our calibration allows us to decompose the SCC into the expected damages and the 
risk-premium. In contrast to most modeled carbon price paths, our calibration suggests a high 
SCC today that is expected to decline over time. It also points to the importance of backstop 
technologies and, in contrast to standard specifications, to potentially very large deadweight costs 
of delay. We find, for example, that with damage distributions calibrated to an SCC of $40, a 
value associated with only a small risk premium, the deadweight loss in utility associated with 
delaying the implementation of optimal pricing by 15 years is equivalent to a 6% loss of 
consumption.
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1. Introduction 
 
Evidence continues to mount that the atmosphere’s capacity to absorb greenhouse gases 
(GHGs) is limited, and that additional GHG emissions lead to global warming and 
societal damages. The relationship between these damages and GHG emissions is 
uncertain. Following Coase (1960), because property rights to the atmosphere are poorly 
defined, self-interested individuals have too little incentive to curtail emissions of 
GHGs. However, optimal usage of the atmosphere’s capacity to absorb GHGs can be 
obtained when individuals are charged the full social cost of each ton of carbon dioxide 
(CO2) they emit into the atmosphere, or conversely the benefits that accrue to society 
with the reduction of CO2 emissions by one ton. That cost of putting an additional ton of 
CO2 into the atmosphere at any given time 𝑡𝑡, assuming an optimal emissions reductions 
pathway throughout, is commonly known as the Social Cost of Carbon (SCC).1 This 
paper addresses the determination of the SCC. 
 
The modern approach to asset pricing recognizes that the SCC is determined by 
appropriate discounting of the marginal benefits of reducing emissions by one ton at all 
future times and across all states of nature (Duffie, 2010; Hansen and Richard, 1987). In 
practice this can be done by discounting those future benefits not by a discount factor 
which is invariant across states of nature, but rather by a stochastic discount factor 
which is appropriate to each possible outcome. 
 
Until recently, the climate-economic literature has largely ignored the pricing of the risk 
in the payoffs resulting from the mitigation of climate emissions, and where it has done 
so it has used a constant relative risk aversion (CRRA)/constant-elasticity of 
substitution (CES)/power utility preference specification inconsistent with the evidence 
from financial economics.2 We show here that the risk premium embedded in the SCC is 
likely to be large and an important component when calculated with a preference 
specification consistent with the historical asset returns. 
 
The valuation assigned to different traded assets suggests that society is willing to pay 
only a small premium to substitute consumption across time, but a large premium to 
substitute across different states of nature. For example, between 1871 and 2012, a 

                                                   
1 The assumption of an optimal emissions reductions pathway beginning at time 0 is an important, albeit 
often implicit, assumption in defining the 𝑆𝑆𝑆𝑆𝐶𝐶𝑡𝑡 path across time. Note, however, that the U.S. SCC 
explicitly assumes no such path. Instead, it focuses on pricing the marginal ton of emissions given the 
current trajectory (U.S. Government Interagency Working Group on Social Cost of Carbon, 2015). 
2 Notable recent exceptions include Ackerman, Stanton, and Bueno (2013) and especially work by 
Christian Traeger and also Derek Lemoine; e.g. Crost and Traeger (2014), Jensen and Traeger (2014), 
Lemoine and Traeger (2014), Lemoine and Traeger (2016), Lemoine (2015) and especially also Traeger 
(2015). Others have considered climate risk in a different context; e.g. Nordhaus and Boyer (2000) 
incorporating risk based on an expert survey (Nordhaus, 1994). See Kopp et al. (2016) for a discussion of 
the latter. Nordhaus (2014, 2013) presents the latest results, based on the well-known DICE model going 
back to Nordhaus (Nordhaus, 1992, 1991). See e.g. Convery and Wagner (2015), Pindyck (2013), Stern 
(2013), and Wagner and Weitzman (2015) for extensive critiques of prior treatments of risk in SCC 
calculations. Golosov et al. (2014), among others, pursues another extension of standard climate-economy 
models, employing a dynamic stochastic general-equilibrium (DSGE) model, while still relying on a CRRA 
utility function. 
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portfolio of U.S. bonds earned an average annual real return of 1.6 percent, and a 
diversified portfolio in U.S. stocks earned an average annual real return of 6.4 percent. 
Society presumably discounts equity payoffs at a far higher discount rate because 
equities earn large returns in good economic times (when marginal utility is low) but 
often perform poorly precisely when economic growth is low (and marginal utility is 
high).  
 
Conversely, society is willing to pay handsomely for the right pattern of cash flows 
across states: these numbers imply that a portfolio which was short US equities, 
providing insurance against bad economic outcomes, earned an annual return of -
4.8%/year over this long period. Society is clearly willing to pay a large premium for 
insurance against risky outcomes, and discounts payoffs that are “risky” at a high rate.3 
 
The high historical equity premium, combined with the low historical volatility of 
consumption growth, suggests that society is unwilling to substitute consumption across 
states of nature at some future point in time. In contrast, the low risk-free rate in 
combination with the high average consumption growth rate over the past 150 years 
suggests that agents are far more willing to substitute consumption across time. These 
two empirical regularities are not consistent with a CRRA model of preferences. 
 
We approach climate change as a standard asset pricing problem. Carbon in the 
atmosphere is an ‘asset’—albeit one with negative payoffs—and ought to be treated as 
such. Our model uses a state-contingent discount rate, calibrated to the returns over 
time of financial assets. In contrast to the standard CRRA utility function used in most 
climate studies, we use here a utility function proposed by Epstein and Zin and used 
throughout the asset pricing literature (Epstein and Zin, 1991, 1989). It has CRRA utility 
as a special case and also allows for differences between the intertemporal marginal rate 
of substitution (IMRS)/intertemporal elasticity of substitution (IES) and risk aversion, 
which allows us to calibrate to standard financial returns, in particular the equity risk 
premium and risk-free interest rates. 
 
An important property of non-time separable models such as the Epstein-Zin model is 
that agents’ utility depends on not just levels of consumption in each state, but also on 
the way in which uncertainty is resolved over time. To capture the resolution of 
uncertainty over time, we employ a discrete time binomial tree model like that employed 
in many pricing financial-economic modeling applications (see Cox, Ross and 
Rubinstein (1979) for an early example), building on a related approach in Summers 
and Zeckhauser (2008). Different states in the tree represent different degrees of 
fragility of the environment which, when combined with the level of greenhouse gases in 
the atmosphere, imply different damages, different consequences for the utility of the 
representative agent. Information about the state is revealed over time, and in each 
period the agent chooses a level of emissions mitigation that maximizes his expected 
discounted utility, based on the information available at that time. The optimal level of 
emissions mitigation is obtained when the reduction in utility from additional 

                                                   
3 Based on data collected by Shiller (2000) and since continuously updated: 
http://www.econ.yale.edu/~shiller/data.htm 

http://www.econ.yale.edu/%7Eshiller/data.htm
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expenditure on mitigation at each point in time is exactly offset by the probability-
weighted increase in utility from reductions in damages in future states.  
 
Figure 1 shows the profound implications. We choose damage parameters such that 
under a standard constant relative risk-aversion utility function with the IMRS 
calibrated to 0.9 in order to reflect a 2.74% yield on a zero-coupon bond that matures at 
the end of the last period, the optimal carbon price today is around $38 per ton.4 
 

 
Figure 1—Using Epstein-Zin utility functions results in increasing carbon prices with 

increasing risk aversion translated into the implied equity risk premium using 
Weil (1989)’s conversion, while holding the implied market interest rate stable 
at 2.74% 

 
The problem with the CRRA specification used here is that this specification embeds the 
assumption that agents’ willingness to substitute consumption across states of nature is 
the same as their willingness substitute consumption over time. Thus, an increase in the 
coefficient of risk aversion (or stated differently, a decreased elasticity of substitution 
across states), is necessarily linked to a decreased IMRS. Given the fact that 
consumption grows at a rate of about 2%/year, an unwillingness to substitute across 
time leads to a (counterfactually) high risk-free discount rate. Since consumption 
damages occur far into the future, a CRRA utility function with a high level of risk-
aversion (and a reasonable rate of time preference) necessarily implies a high discount 
rate for these damages, and a low SCC. 
 
In contrast, Epstein-Zin utility allows for separation of the coefficient of risk-aversion 
and the IMRS, consistent with equity-premium/risk-free rate puzzle. With an Epstein-
Zin specification, holding the IMRS fixed at 0.9 and increasing the degree of risk 
aversion, the SCC increases, while the real interest rate remains at around 2.74%/year.5 

                                                   
4 This is close to the official SCC of $40 for a ton of CO2 released in 2015, in 2015 US$ (U.S. Government 
Interagency Working Group on Social Cost of Carbon, 2015). 
5 The exact interest rate in our Epstein-Zin calibration is almost independent of the risk aversion 
coefficient. It is 2.742%/year with a coefficient of relative risk aversion of 1.11 (=1/0.9) (equivalent to 
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As the level of risk aversion is raised from a very low level to a level consistent with the 
historically observed equity-risk premium, the optimal carbon price increases from $38 
to over $55 per ton. 
 

 
Figure 2—Decomposition of the Social Cost of Carbon (SCC) into risk aversion and 

expected damage portions with Epstein-Zin (top panel) and constant relative 
risk aversion (CRRA, bottom panel) preferences 

 

                                                                                                                                                                    
CRRA), and reaches 2.744%/year with a coefficient of relative risk aversion of 50. Bansal and Yaron 
(2004) are able to match the equity premium with a far lower coefficient of risk-aversion, owing to the 
presence of shocks to the long-term growth rate of consumption in their model, which are correlated with 
equity returns. Similarly, in the model we present here, a link between higher climate fragility and lower 
consumption growth rates would lead to a higher SCC with a lower coefficient of risk-aversion. In general, 
climate damages hitting growth rates rather than levels of GDP can have a significant effect on the SCC 
(Convery and Wagner, 2015; Heal and Park, 2016; Wagner and Weitzman, 2015). 
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We further decompose the optimal SCC into a risk aversion and an expected damages 
component (Figure 2).6 This decomposition similarly varies widely with the assumed 
equity risk premium—and it crucially depends on the distinction between using Epstein-
Zin versus CRRA preferences (top and bottom panel, respectively). 
 

2. The model 
 
We now proceed to solve for the optimal carbon price as a function of time and of 
information about the earth’s fragility. We begin with a ‘business as usual’ (BAU) 
scenario as our baseline, assuming constant consumption growth and GHG emissions 
that grow over time without mitigation. Mitigating emissions is costly. Hence, assuming 
no government action to price carbon, atomistic agents do zero mitigation. However, as 
GHGs build up in the atmosphere, temperatures rise. As a result, a fraction of the 
baseline consumption is lost to damages. The damages as a function of mitigation are 
not known ex-ante, but are rather a function of the earth’s fragility at that time, 𝜃𝜃𝑡𝑡. Each 
period of the model, agents learn more about the level of fragility, but they only know 
the actual fragility in the final two periods of the model. 
 
These assumptions simplify reality in two important ways: As the only unknown in our 
model is the earth’s fragility, 𝜃𝜃𝑡𝑡, we do not allow for interactions of shocks to fragility 
with those to other state variables (e.g., productivity). The second simplification is the 
assumption of full knowledge of 𝜃𝜃 in period 𝑇𝑇 − 1 (in 2300 in our base case). Important 
aspects of climate science are deeply and persistently uncertain, and science may not 
learn the true 𝜃𝜃𝑡𝑡 at a time scale relevant to policy (Wagner and Zeckhauser, 2016; 
Zeckhauser, 2006). We attempt to solve the second problem by delaying the complete 
resolution of uncertainty until 2300. 
 
To determine the optimal level of mitigation, we next ask what level of mitigation a 
single, optimizing, representative agent would choose at each point in the tree (i.e., at 
each time and state). Note that, in a representative agent framework, there are no 
externalities; the agent internalizes any damage done to the atmosphere by failing to 
mitigate. Thus, solving for the level of mitigation the optimizing representative agent 
selects gives us the socially optimal level of mitigation at each point in time and for each 
level of fragility. 
 
Once we know the optimal level of mitigation by time and state, we move back to the 
atomistic agent setting by calculating the SCC for that time and state. To do this, we 
determine the price on carbon that has to be imposed in the atomistic agent setting that 
will implement the optimal level of mitigation (as determined in the representative 
agent setting). Intuitively, the optimal price is the marginal benefit to society of reducing 
carbon emissions, where the marginal benefit is evaluated at the social optimum. We 
determine this optimal price by inverting the function that gives the level of mitigation 
as a function of the price of carbon. 
 

                                                   
6 Section 2.4 provides details of the risk decomposition presented in Figure 2. 
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The setting of our model is a discrete time, endowment economy with a single 
representative agent. In each period 𝑡𝑡𝑡𝑡{0,1,2, … ,𝑇𝑇}, the agent is endowed with a certain 
amount of the consumption good, 𝑐𝑐𝑡̅𝑡. However, the agent is not able to consume the full 
endowed consumption for two reasons: climate change and climate policy. First, in 
periods 𝑡𝑡𝑡𝑡{1,2, … ,𝑇𝑇}, some of the endowed consumption may be lost due to climate 
change damages. Second, in periods 𝑡𝑡𝑡𝑡{0,1,2, … ,𝑇𝑇 − 1}, the agent may elect to spend 
some of the endowed consumption to reduce his impact on the climate. The resulting 
consumption 𝑐𝑐𝑡𝑡, after damages and mitigation costs are taken into account, is given by: 
 
(1) 𝑐𝑐0 = 𝑐𝑐0̅ ∙ �1 − 𝜅𝜅0(𝑥𝑥0)� 
(2) 𝑐𝑐𝑡𝑡 = 𝑐𝑐𝑡̅𝑡 ∙ �1 −𝐷𝐷𝑡𝑡(𝑋𝑋𝑡𝑡,𝜃𝜃𝑡𝑡) − 𝜅𝜅𝑡𝑡(𝑥𝑥𝑡𝑡)�,𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡{1,2, … ,𝑇𝑇 − 1}  
(3) 𝑐𝑐𝑇𝑇 = 𝑐𝑐𝑇̅𝑇 ∙ (1 − 𝐷𝐷𝑇𝑇(𝑋𝑋𝑇𝑇,𝜃𝜃𝑇𝑇)) 
 
In equations (2) and (3), the climate damage function 𝐷𝐷𝑡𝑡(𝑋𝑋𝑡𝑡,𝜃𝜃𝑡𝑡) captures the fraction of 
endowed consumption that is lost due to damages from climate change. If 𝐷𝐷𝑡𝑡(𝑋𝑋𝑡𝑡,𝜃𝜃𝑡𝑡) = 0, 
the agent would receive the full consumption endowment. However, damages from 
climate change can push 𝐷𝐷𝑡𝑡 above zero. 𝐷𝐷𝑡𝑡 depends on two variables: 𝑋𝑋𝑡𝑡, which we define 
as the cumulative GHG mitigation up to time t, and 𝜃𝜃𝑡𝑡, a parameter that characterizes 
the uncertain relation between the level of GHGs in the atmosphere and consumption 
damages. 𝜃𝜃𝑡𝑡 evolves stochastically as described in section 2.3. 
 
Cumulative mitigation 𝑋𝑋𝑡𝑡, in turn, depends on the level of mitigation in each period 
from 0 to t, which is given by: 
 

(4) Xt = ∑ 𝑔𝑔𝑠𝑠∙𝑡𝑡
𝑠𝑠=0 𝑥𝑥𝑠𝑠
∑ 𝑔𝑔𝑠𝑠𝑡𝑡
𝑠𝑠=0

, 

 
where 𝑔𝑔𝑠𝑠 is the flow of GHG emissions into the atmosphere in period 𝑠𝑠, for each period 
up to t, absent any mitigation.7 The level of mitigation at any time s is given by 𝑥𝑥𝑠𝑠, where 
𝑥𝑥𝑠𝑠 = 0 denotes no climate action at time s, and 𝑥𝑥𝑠𝑠 = 1 denotes full mitigation, or 
equivalently that there zero net flow of new GHG emissions into the atmosphere in 
period s. One might imagine that mitigation 𝑥𝑥𝑠𝑠 should be restricted to be below 1. 
However, in our baseline analysis we allow for the use of a backstop technology, a 
technology for pulling CO2 directly out of the atmosphere, typically called carbon 
dioxide removal (CDR) or, confusingly, direct carbon removal (DCR). In our baseline 
simulation the backstop technology is employed in large scale, which results in 
mitigation above 100% in those future states in which the climate turns out to be fragile 
(see the discussion in Sections 2.2.1 and 3.1). 
 
Mitigation reduces the stock of GHGs in the atmosphere and leads to lower climate 
damages, and hence to higher future consumption. However, mitigating GHG emissions 
is costly. Mitigating a fraction 𝑥𝑥𝑡𝑡 of emissions costs a fraction 𝜅𝜅𝑡𝑡(𝑥𝑥𝑡𝑡) of the endowed 
consumption. We describe the details of the cost function, and our calibration, in 
Section 2.2. 
                                                   
7 This means that the cumulative GHG emissions that must be absorbed into the atmosphere or oceans is 
Gt*(1-Xt), where 𝐺𝐺𝑡𝑡 = ∑ 𝑔𝑔𝑠𝑠𝑡𝑡

𝑠𝑠=0  denotes the cumulative emissions under the BAU scenario. 
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In the framework we propose, the representative agent’s optimization problem involves 
trading off the (known) costs of climate mitigation against the uncertain future benefits 
associated with mitigation. The agent does this by solving the dynamic optimization 
problem to determine the optimal path of mitigation, 𝑥𝑥𝑡𝑡∗(𝜃𝜃𝑡𝑡), so as to maximize lifetime 
utility at each time and for each state of nature.  
 
To make the solution tractable, we model the resolution of uncertainty about climate 
damage with a binomial tree, discussed in detail in Section 3.1 (see also Figure 10). Our 
baseline analysis uses a 7-period tree, beginning in 2015. An initial mitigation decision 
is made in 2015, and subsequent mitigation decisions are made after information is 
revealed about climate fragility and the resulting damages in years 2030, 2060, 2100, 
2200, and 2300. The final period, in which consumption simply grows at a constant 
rate, begins in 2400 and lasts forever. At each node of the tree, more information about 
the consumption damage function is revealed (as reflected in the parameter 𝜃𝜃𝑡𝑡), but 
uncertainty is not fully resolved until the beginning of the next-to-last period in 2300. 
The agent’s utility in each state is calculated based on interpolated consumption flows at 
five-year sub-periods, as discussed in Section 3.1. We solve for mitigation levels over 
time that maximize expected utility, looking forward, at the start of each period (except 
the final period), and in each fragility state. The resulting SCC in each period and state is 
the carbon price that implements this level of mitigation. 
 
In the next section, we describe the agent’s preferences, and provide some motivation 
for the preferences specification we employ. In Sections 2.2 and 2.3, we lay out the cost 
and damage functions and describe their calibration. Section 3 presents the results of a 
set of simulations designed to illustrate the effects that various parameters have on 
optimal climate policies. Section 4 concludes. 
 
 

2.1 Preferences 
 
As noted earlier, the CRRA specification typically used in climate studies embeds the 
assumption that agents’ willingness to substitute consumption across states of nature is 
the same as their willingness to substitute consumption over time. However, this is 
inconsistent with the observed low risk-free rate and high equity premium (Mehra and 
Prescott, 1985; Weil, 1989). To resolve this puzzle, financial economists have begun to 
employ the preference specification suggested by Epstein and Zin that allows for 
different rates of substitution across time and states.8 This is the specification we use 
here. 
 

                                                   
8 See Bansal and Yaron (2004) and Hansen, Heaton, and Li (2008) for more detailed discussions. Bansal 
and Ochoa (2009) and Bansal and Ochoa (2011) use this preference specification in combination with a 
framework in which temperature shocks affect future consumption growth. Ackerman, Stanton, and 
Bueno (2013) and Crost and Traeger (2014) use this utility function in DICE. 
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In an Epstein-Zin utility framework, the agent maximizes at each time 𝑡𝑡: 
 

(5) 𝑈𝑈𝑡𝑡 = �(1 − 𝛽𝛽)c𝑡𝑡
𝜌𝜌 +  𝛽𝛽�𝜇𝜇𝑡𝑡�𝑈𝑈�𝑡𝑡+1��

𝜌𝜌
�
1 𝜌𝜌⁄

, 
 
where 𝜇𝜇𝑡𝑡�𝑈𝑈�𝑡𝑡+1� is the certainty-equivalent of future lifetime utility, based on the agent’s 
information at time 𝑡𝑡, and is given by: 
 
(6) µt�U�t+1� =  (𝐸𝐸𝑡𝑡[𝑈𝑈𝑡𝑡+1𝛼𝛼 ])1 𝛼𝛼⁄ . 
 
In this specification, (1 − 𝛽𝛽) 𝛽𝛽⁄  is the pure rate of time preference. The parameter 𝜌𝜌 
measures the agent’s willingness to substitute consumption across time. The higher is 𝜌𝜌, 
the more willing the agent is to substitute consumption across time. The elasticity of 
intertemporal substitution is given by 𝜎𝜎 = 1 (1 − 𝜌𝜌)⁄ . Finally, 𝛼𝛼 captures the agent’s 
willingness to substitute consumption across (uncertain) future consumption streams. 
The higher is 𝛼𝛼, the more willing the agent is to substitute consumption across states of 
nature at a given point in time. The coefficient of relative risk aversion at a given point 
in time is 𝛾𝛾 = (1 − 𝛼𝛼). This added flexibility allows for calibration across states of nature 
and time. 
 
Note that with 𝜌𝜌 = 𝛼𝛼, equations (5) and (6) are equivalent to the standard CRRA utility 
specification. Plugging (6) into (5) for our model generates:  
 

(7) 𝑈𝑈0 =  �(1 − 𝛽𝛽)𝑐𝑐0
𝜌𝜌 + 𝛽𝛽�𝐸𝐸0�𝑈𝑈�1𝛼𝛼��

𝜌𝜌 𝛼𝛼⁄
�
1 𝜌𝜌⁄

 

(8) 𝑈𝑈𝑡𝑡 =  �(1 − 𝛽𝛽)𝑐𝑐𝑡𝑡
𝜌𝜌 + 𝛽𝛽(𝐸𝐸𝑡𝑡[U𝑡𝑡+1

𝛼𝛼 ])𝜌𝜌 𝛼𝛼⁄ �
1 𝜌𝜌⁄

, for 𝑡𝑡𝑡𝑡{1,2, … ,𝑇𝑇 − 1}. 
 
with 𝑐𝑐0 and 𝑐𝑐𝑡𝑡, respectively, given by equations (1) and (2). 
 
In the final period, which in our base case is the period starting in 2400, the agent 
receives the utility from all consumption from time 𝑇𝑇 forward. Given our assumption 
that all uncertainty has already been resolved at this point, consumption grows at a 
constant rate 𝑔𝑔 from 𝑇𝑇 through infinity (i.e., 𝑐𝑐𝑡𝑡 =  𝑐𝑐𝑇𝑇(1 + 𝑔𝑔)𝑡𝑡−𝑇𝑇 for 𝑡𝑡 ≥ 𝑇𝑇), and produces 
a utility to the agent of: 
 

(9) 𝑈𝑈𝑇𝑇 =  � 1−𝛽𝛽
1−𝛽𝛽(1+𝑔𝑔)𝜌𝜌

�
1 𝜌𝜌⁄

𝑐𝑐𝑇𝑇, 

 
and with 𝑐𝑐𝑇𝑇 given by equation (3)  
 
 

2.2 Mitigation Cost Function Specification and Calibration 
 
In this section we discuss the specification and the calibration of the mitigation cost 
function. 
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To calibrate the model, we need to find a relationship between 𝜏𝜏, 𝑔𝑔, and 𝑥𝑥 (where 𝜏𝜏 is the 
tax rate per ton of emissions, 𝑔𝑔 is the resulting flow of emissions in gigatonnes of CO2-
equivalent emissions per year, Gt CO2e, and 𝑥𝑥 is the fraction of emissions reduced). To 
do so, we follow Pindyck (2012), which calibrates gamma distributions for temperature 
levels given greenhouse gas concentrations, and for economic damages given 
temperature levels. 
 
McKinsey (2009) constructs a marginal abatement cost curve for GHGs that allows us to 
deduce 𝜏𝜏, 𝑔𝑔, and 𝑥𝑥 for the year 2030. We take McKinsey’s estimates but assume no 
mitigation (𝑥𝑥(𝜏𝜏) = 0) at 𝜏𝜏 = 0; i.e. no net-negative or zero-cost mitigation. Table 1 shows 
the resulting calibration.9 
 

Table 1—Marginal abatement cost curve for 2030, from McKinsey (2009) 
GHG taxation rate 

𝝉𝝉 
GHG emissions flow 

𝒈𝒈(𝝉𝝉) 
Fractional GHG 

reduction 
𝒙𝒙(𝝉𝝉) 

€0/ton 70 Gt CO2e/year 0 
€60/ton 32 Gt CO2e/year 0.543 

€100/ton 23 Gt CO2e/year 0.671 
 
Fitting McKinsey’s point estimates (in $US) from Table 1 to a power function for 𝑥𝑥(𝜏𝜏) 
yields: 
 
(10) 𝑥𝑥(𝜏𝜏) = 0.0923 ∙ 𝜏𝜏0.414. 
 
The corresponding inverse function, solving for the appropriate tax rate to achieve 𝑥𝑥 is: 
 
(11) 𝜏𝜏(𝑥𝑥) = 314.32 ∙ 𝑥𝑥2.413. 
 
We are interested in 𝜅𝜅(𝜏𝜏), the cost to the society when a GHG tax rate of 𝜏𝜏 is imposed. 
We can calculate 𝜅𝜅(𝜏𝜏) using the envelope theorem. Intuitively, GHG emissions are an 
input to the production process that generates consumption goods. At any tax rate 𝜏𝜏, 
assuming agents choose the level of GHG emissions 𝑔𝑔(𝜏𝜏) so as to maximize 
consumption given 𝜏𝜏, then the marginal cost of increasing the tax rate must be the 
quantity of emissions at that tax rate, that is: 
 
(12) 𝑑𝑑𝑑𝑑(𝜏𝜏)

𝑑𝑑𝑑𝑑
= −𝑔𝑔(𝜏𝜏), 

 
Thus, to calculate the consumption associated with a GHG tax rate of 𝜏𝜏 we integrate this 
expression, giving: 
 
(13) 𝑐𝑐(𝜏𝜏) = 𝑐𝑐̅ − ∫ 𝑔𝑔(𝑠𝑠)𝜏𝜏

0 𝑑𝑑𝑑𝑑, 
 
                                                   
9 We have emissions stabilize at 57% above current levels. In our unmitigated baseline scenario, GHG 
concentrations reach approximately 1,000 ppm by 2200. 
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where 𝑐𝑐̅ is the endowed level of consumption (assuming zero damages). However, this 
equation is correct only if the GHG tax is purely dissipative—that is, if the government 
were to collect the tax and then waste 100% of the proceeds. In our analysis, we instead 
assume that the tax is non-dissipative, meaning that the proceeds of the tax (𝑔𝑔(𝜏𝜏)  ·  𝜏𝜏) 
would be refunded lump-sum, making the decrease in consumption just equal to the 
distortionary effect of the tax (in dollars) which is:10 
 
(14) 𝐾𝐾(𝜏𝜏) = ∫ 𝑔𝑔(𝑠𝑠)𝜏𝜏

0 𝑑𝑑𝑑𝑑 −  𝑔𝑔(𝜏𝜏) ∙ 𝜏𝜏. 
 
Writing 𝑔𝑔(𝜏𝜏) = 𝑔𝑔0�1 − 𝑥𝑥(𝜏𝜏)�, where 𝑔𝑔0 is the baseline level of GHG emissions, we can 
rewrite 𝐾𝐾(𝜏𝜏) as: 
 

𝐾𝐾(𝜏𝜏) = 𝑔𝑔0 � �1 − 𝑥𝑥(𝑠𝑠)�𝑑𝑑𝑑𝑑 − 𝜏𝜏𝑔𝑔0�1 − 𝑥𝑥(𝜏𝜏)�
𝜏𝜏

0
 

= 𝑔𝑔0 �𝜏𝜏 − � 𝑥𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑
𝜏𝜏

0
� − 𝜏𝜏𝑔𝑔0 + 𝜏𝜏𝑔𝑔0𝑥𝑥(𝜏𝜏) 

(15) = 𝑔𝑔0�𝜏𝜏𝜏𝜏(𝜏𝜏) − ∫ 𝑥𝑥(𝑠𝑠)𝑑𝑑𝑑𝑑𝜏𝜏
0 � 

 
Substituting (10) into (15) and simplifying gives the total cost 𝛫𝛫 as a function of the tax 
rate 𝜏𝜏: 
 
(16) 𝛫𝛫(𝜏𝜏) = 𝑔𝑔0[0.09230 ∙ 𝜏𝜏1.414 − 0.06526 ∙ 𝜏𝜏1.414] 
(17) = 𝑔𝑔0 ∙ 0.02704 ∙ 𝜏𝜏1.414, 
 
Substituting (11) into (17) gives 𝛫𝛫 as a function of fractional-mitigation x: 
 
(18) 𝛫𝛫(𝑥𝑥) = 𝑔𝑔092.08 ∙ 𝑥𝑥3.413, 
 
where total cost 𝛫𝛫(𝑥𝑥) is expressed in dollars. Finally, we divide by current (2015) 
aggregate consumption to determine the cost as a fraction of baseline consumption: 
 
(19) 𝜅𝜅(𝑥𝑥) = �𝑔𝑔0∙92.08

𝐶𝐶0
� ∙ 𝑥𝑥3.413, 

 
where 𝑔𝑔0 = 52 Gt CO2e/year represents the current level of global emissions, and 𝑐𝑐0 = 
$31 trillion/year is current global consumption. This function expresses the total cost of 
a given level of mitigation as a percentage of consumption, and we hold that fixed in all 
periods except for the impact of technological change. We further assume that, absent 
technological change, the function 𝜅𝜅(𝑥𝑥) is time invariant. 
 
 

                                                   
10 Note that were the proceeds from the (Pigouvian) GHG tax used to reduce other distortionary taxes, the 
effective cost of the carbon tax would be still lower than what we calculate here, and thus would justify a 
higher optimal 𝜏𝜏. For a summary of this “double-dividend” argument, see Goulder (1995). 
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2.2.1 Backstop Technology Specification 
 
The McKinsey estimates on which our cost function 𝜅𝜅(𝑥𝑥) are based reflect the cost of 
traditional mitigation only. However, in addition to standard mitigation, technologies 
are available for pulling CO2 directly out of the atmosphere, such as carbon dioxide 
removal (CDR) or direct carbon removal (DCR) (National Research Council, 2015). We 
label these as backstop technologies.  
 
We assume our backstop technology is available at a marginal cost of 𝜏𝜏∗, for the first ton 
of carbon that is removed from the atmosphere. The marginal cost increases as 
extraction increases. We assume that unlimited amounts of CO2 can be removed as the 
marginal cost approaches 𝜏̃𝜏 ≥ 𝜏𝜏∗. Under the most aggressive backstop scenario 
presented in the results section, we assume a price of $350 per ton today for 𝜏𝜏∗ and a 
price of $400 per ton for 𝜏̃𝜏. Given our underlying cost curve for emissions mitigation, 
these values imply that the backstop technology kicks in at mitigation levels above 
104%.  
 
In fitting the marginal cost curve to these lower and upper bounds for the backstop 
technology we build a marginal cost function for the backstop technology of the form: 
 

(20) 𝐵𝐵(𝑥𝑥) = 𝜏̃𝜏 − �𝑘𝑘 𝑥𝑥� �
1
𝑏𝑏� . 

 
The upper bound of the cost function is, thus, 𝜏̃𝜏. Moreover, we calibrate (18) for the 
backstop technology to be used once the mitigation level, 𝑥𝑥0, is such that: 
 

(21) 𝐵𝐵(𝑥𝑥0) = 𝜏̃𝜏 − �𝑘𝑘 𝑥𝑥0� �
1
𝑏𝑏� = 𝜏𝜏∗, 

 
which allows us to express: 
 
(22) 𝑘𝑘 = 𝑥𝑥0(𝜏̃𝜏 − 𝜏𝜏∗)𝑏𝑏. 
 
Second, we impose a smooth-pasting condition; i.e. the derivative of the marginal cost 
curve is continuous at 𝑥𝑥0. This allows us to solve for parameter 𝑏𝑏: 
 
(23) 𝑏𝑏 = 𝜏𝜏�−𝜏𝜏∗

(𝛼𝛼−1)𝜏𝜏∗
. 

 
Figure 3 and Figure 4 show, respectively, the total cost of mitigation as a fraction of 
consumption, 𝜅𝜅(𝑥𝑥), and the marginal cost, 𝜏𝜏(𝑥𝑥), assuming a backstop technology at 
$400 per ton. 
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Figure 3—Total cost of abatement as a fraction of consumption, 𝜿𝜿(𝒙𝒙) 

 
Figure 4—Marginal cost of abatement (in $/ton), 𝝉𝝉(𝒙𝒙) 
 
 

2.2.2 Technological Change Specification 
 
These cost curves are calibrated to 𝑡𝑡 = 0. In subsequent periods, we allow the marginal 
cost curve to decrease at a rate determined by a set of technological change parameters: 
a constant component, 𝜑𝜑0, and a component linked to mitigation efforts to date, 𝜑𝜑1𝑋𝑋𝑡𝑡, 
where 𝑋𝑋𝑡𝑡 is the average mitigation up to time 𝑡𝑡 (equation (4)). Thus, at time 𝑡𝑡, the total 
cost curve is given by: 
 
(24) 𝜅𝜅(𝑥𝑥, 𝑡𝑡) = 𝜅𝜅(𝑥𝑥)[1 − 𝜑𝜑0 − 𝜑𝜑1𝑋𝑋𝑡𝑡]𝑡𝑡. 
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This functional form allows for easy calibration. For example, if 𝜑𝜑0 = 0.005 and 𝜑𝜑1 =
0.01, then with average mitigation of 50%, marginal costs decrease as a percentage of 
consumption at a rate of 1% per year. 
 
 

2.3 Damage Function Specification 
 
We next specify the climate damage function 𝐷𝐷𝑡𝑡(𝑋𝑋𝑡𝑡,𝜃𝜃𝑡𝑡). Damages are a function of 
temperature change, which is in turn a function of greenhouse gas concentrations 
which, in our setting, is defined by average level of mitigation up to that point in time, 
𝑋𝑋𝑡𝑡. The only way to affect the level of damages, then, is to change mitigation 𝑋𝑋𝑡𝑡, 
including both decreased carbon emissions and direct carbon dioxide removal from the 
air. 
 
The specification of damages has two components: a non-catastrophic component and 
an additional catastrophic component triggered by crossing a particular threshold. The 
hazard rate associated with hitting that threshold increases with temperature. If the 
threshold is crossed at any time, additional damages decrease consumption in all future 
periods. 
 
The overall damage function 𝐷𝐷𝑡𝑡(𝑋𝑋𝑡𝑡,𝜃𝜃𝑡𝑡) is calculated via Monte-Carlo simulation. As we 
describe in detail below, we run a set of simulations for each of three mitigation levels 
𝑋𝑋𝑡𝑡. In each run of the simulation, we draw a set of random variables: (1) the temperature 
change; (2) the parameter characterizing damages as a function of temperature, and (3) 
for each period on each path an indicator variable which determines whether or not the 
atmosphere hits a tipping point at that time, and (4) the tipping point damage 
parameter. The state variable 𝜃𝜃𝑡𝑡 indexes the distribution resulting from these sets of 
simulations, and interpolation across these three mitigation levels gives us a continuous 
function of 𝑋𝑋𝑡𝑡. 
 
 

2.3.1 The Specification of Temperature as a Function of GHG Levels 
 
The distribution of temperature outcomes as a function of mitigation strategies is 
calibrated to three carbon scenarios, indexed by a maximum level of CO2 in the 
atmosphere. For the original calibration, we follow Weitzman (2009) and Wagner and 
Weitzman (2015) in calibrating a log-normal distribution for equilibrium climate 
sensitivity—the eventual temperature rise as atmospheric concentrations of CO2 double. 
The calibration uses a conservative interpretation of the IPCC’s “likely” range, as well as 
statements around extreme outcomes. 
 
Specifically, Wagner and Weitzman (2015) calibrate a log-normal function assuming a 
78% probability of climate sensitivity being in the 1.5-4.5°C range. (The IPCC says that 
range is “likely,” which it defines as having at least a 66% probability. The IPCC’s “very 
likely” designation implies at least a 90% probability. Wagner and Weitzman (2015) 
split the difference to arrive at 78%.) Moreover, the Intergovernmental Panel on Climate 
Change (IPCC)’s Fifth Assessment Report (IPCC, 2013) judges climate sensitivity above 
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6°C to be “very unlikely,” giving it a 0-10% probability. Wagner and Weitzman’s (2015) 
calibration assigns it a roughly 5% chance. 
 
Wagner and Weitzman (2015) then use this calibration to translate the International 
Energy Agency's projections for concentrations of CO2-equivalent tons into final 
temperature outcomes. Under the assumptions of their “new policies scenario,” 
International Energy Agency (2013) projects that atmospheric concentrations will reach 
700 ppm CO2e by 2100. That concentration would result in a projected, eventual 
median temperature increase of 3.6°C. Wagner and Weitzman (2015) present eventual 
median temperature outcomes for concentrations of between 400 and 800 ppm. We 
take their calibration and extrapolate to 1000 ppm, which we assume to be the zero-
mitigation scenario, marking an upper bound of sorts. We similarly assume that 100% 
mitigation over time leads to a maximum GHG level of 400 ppm. Other levels of average 
mitigation are assumed to lead to damages associated with GHG levels linearly 
interpolated between those levels. Thus, an average mitigation of 50% through any point 
in time leads to the interpolated damages associated with a maximum GHG level of 700 
ppm at that time. We then use assumptions akin to Pindyck (2012) to fit a displaced 
gamma distribution around final GHG concentrations, while setting levels of GHG 100 
years in the future equal to equilibrium levels. 
 
Table 2 gives the probability of different levels of Δ𝑇𝑇100 – the temperature change over 
the next 100 years – for given maximum levels of GHGs in atmosphere. The 450 ppm, 
650 ppm, and 1000 ppm maximum levels of CO2 equivalents in the atmosphere reflect, 
respectively, a strict, a modest, and an ineffective mitigation scenario. 
 

Table 2—Probability of 𝚫𝚫𝑻𝑻𝟏𝟏𝟏𝟏𝟏𝟏 > 𝑻𝑻 

 Maximum GHG Level (ppm of CO2) 
T 450 650 1000 
2°C 0.400 0.850 0.990 
3°C 0.125 0.540 0.860 
4°C 0.040 0.300 0.655 
5°C 0.015 0.145 0.455 
6°C 0.002 0.072 0.303 
 
We then fit a displaced gamma distribution to each of these sets of probabilities. Table 3 
gives the parameters for these distributions, and the probabilities from the fitted 
displaced gamma distributions, which line up well with the numbers in Table 2. 
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Table 3—Fitted values of 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝚫𝚫𝑻𝑻𝟏𝟏𝟏𝟏𝟏𝟏 > 𝑻𝑻) for three specified gamma distributions 

 Maximum GHG Level (ppm of CO2) 
T 450 650 1000 
2°C 0.396 0.870 0.994 
3°C 0.139 0.566 0.910 
4°C 0.042 0.289 0.696 
5°C 0.011 0.124 0.443 
6°C 0.003 0.047 0.242 
Gamma distribution parameters 
Alpha 2.810 4.630 6.100 
Beta 0.600 0.630 0.670 
Displace -0.25 -0.5 -0.9 
 
To obtain the temperature distribution at other times, we follow Pindyck (2012), and 
specify that the time path for the temperature change at time 𝑡𝑡 (in years) is given by: 
 

(25) Δ𝑇𝑇(𝑡𝑡) = 2 Δ𝑇𝑇100  �1 − 0.5
𝑡𝑡

100�. 
 
The temperature paths are plotted for different levels of Δ𝑇𝑇100. As time increases, the 
temperature change asymptotes to double the value of Δ𝑇𝑇100. We would like to 
emphasize that both the distribution of Δ𝑇𝑇100 and the functional form for the path in 
equation (25) merit further scientific scrutiny. 
 

 
Figure 5—Calibrated time path for temperature increases given assumed temperature 

increases by 2100 
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2.3.2 The Specification of Damages as a Function of Temperature 

 
Our next step is to translate average global surface warming into global mean economic 
losses via our damage function. There are two components to our damage function: a 
non-catastrophic and catastrophic component. The functional form of each component 
is known to the agent. However, as with the GHG-Δ𝑇𝑇100 relationship discussed in the 
previous section, the functional form for each damage function component contains a 
parameter that characterizes the high uncertainty in our present understanding of this 
relationship. In our model, the agent knows the form of the distribution of this 
parameter at the initial date, and in each period learns more about the distribution of 
the parameter. However, the final realization of the parameter is not known until the 
next-to-last period. 
 
The non-catastrophic component of our damages is based on Pindyck (2012), who fits a 
functional form to data from the IPCC’s Fourth Assessment Report (IPCC, 2007), and 
obtains a loss function of the form: 
 
(26) L(Δ𝑇𝑇(𝑡𝑡)) = 𝑒𝑒−13.97∙𝛾𝛾∙Δ𝑇𝑇(𝑡𝑡)2, 
 
where 𝛾𝛾 is drawn from a displaced gamma distribution with parameters r = 4.5, λ= 
21341, and θ = −0.0000746. 
 
Based on non-catastrophic damages, consumption in any time 𝑡𝑡 is reduced as follows: 
 
(27) CD𝑡𝑡 = 𝑐𝑐𝑡̅𝑡 ∙ L(Δ𝑇𝑇(𝑡𝑡)). 
 
A major concern with the damage function above is that it effectively rules out 
catastrophic risks, even at high temperature changes. Take an 8°C temperature change, 
well outside the range typically assumed to be ‘safe’. If per capita consumption is 
assumed to grow in real terms by 2% annually, then such damage applied to 
consumption 50 years hence would reduce the average consumption from 2.7 times 
today’s value to 2.2 times, a significant reduction, but hardly a catastrophe of significant 
concern today. Even the 1% point in the outcome distribution conditional on an 8°C 
average temperature change is assumed here to be a reduction in consumption of only 
32% which implies people are still 1.8 times wealthier than today. We hence augment 
Pindyck’s (2012) damage function with the possibility of catastrophic events after 
reaching a particular temperature threshold, which itself creates the potential for a 
much larger impact on consumption. 
 
While the possibility of climate tipping elements is receiving considerable attention in 
the scientific community, there is no single right specification (Kopp et al., 2016). We 
employ an ad-hoc specification as part of our broader calibration effort to approximate 
the US government estimate of $40 for the SCC (U.S. Government Interagency Working 
Group on Social Cost of Carbon, 2015). Our results, hence, ought to be considered what 
they are: sensitivity analyses probing which factors contribute the most to the structure 
of the SCC. In our specification, Prob(TP) denotes the probability of hitting a ‘Tipping 



– 18 – 

Point’ over a given interval of length “period” as a function of the global temperature 
change as of that time (Δ𝑇𝑇(𝑡𝑡)), and of a parameter, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝: 
 

(28) Prob(TP) = �1 − �1 − � Δ𝑇𝑇(𝑡𝑡)
max[Δ𝑇𝑇(𝑡𝑡),𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝]�

2
�

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/30)
� 

 
Figure 6 plots Prob(TP) as a function of Δ𝑇𝑇(𝑡𝑡) for a 30-year period and a set of values of 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝. As 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 increases, the probability of reaching a climatic tipping point decreases 
for a given Δ𝑇𝑇(𝑡𝑡). Our subsequent base case specification, calibrated to an SCC of 
around $40 in 2015 employs 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 11. 
 

 
Figure 6—Probability of reaching a climatic tipping point as a function of 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑 
 
In our simulations, in each period p and for each state, there is a probability Prob(TP) 
that a tipping point will be hit (given Δ𝑇𝑇(𝑡𝑡) and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝). Conditional on hitting a tipping 
point at time 𝑡𝑡∗ in a given run of the simulation, the level of consumption for each 
period 𝑡𝑡 ≥ 𝑡𝑡∗ is then at a level of: 
 
(29) CDTP𝑡𝑡 = CD𝑡𝑡 ∙ e−TP_damage = 𝑐𝑐𝑡̅𝑡 ∙ L(Δ𝑇𝑇(𝑡𝑡)) ∙ e−TP_damage for 𝑡𝑡 ≥ 𝑡𝑡∗, 
 
where TP_damage is a random variable drawn from a gamma distribution with 
parameters 𝛼𝛼 = 1 and 𝛽𝛽 = disaster_tail. The cumulative distribution for tipping point 
damage (i.e., �1 − e−TP_damage�) for values of disaster_tail ranging from 2 to 10 is 
plotted below: 
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Figure 7—Probability of damage greater than a particular percentage of output, given 
different disaster_tail assumptions 
 
 

2.3.3 Interpolation and Incorporation of Uncertainty in the Damage 
Function 

 
Comparing equation (29) with equation (2) shows that the damage function for a given 
level of mitigation and in a given state of nature is: 
 
(30) D𝑡𝑡 = (1 − L(Δ𝑇𝑇(𝑡𝑡)) ∙ �1 − I𝑇𝑇𝑇𝑇� 1 − e−TP_damage��, 
 
where I𝑇𝑇𝑇𝑇 is an indicator variable which is equal to one if a tipping point has been hit, 
and zero otherwise. However, recall that L(Δ𝑇𝑇(𝑡𝑡)), I𝑇𝑇𝑇𝑇, and  e−TP_damage are each 
dependent on the specific realization of the draws of random numbers in our 
simulations. 
 
Therefore, for each of three values for the maximum GHG—450, 650, and 1000 ppm—
we run a set of simulations to generate a distribution of D𝑡𝑡 for each period. We order the 
simulations based on D𝑇𝑇, the damage to consumption in the final period. We choose 
states of nature with specified probabilities to represent different percentiles of this 
distribution. For example, if the first state of nature is the worst 1% of outcomes, then 
we assume the damage coefficient at time t for the given level of mitigation is the 
average damage at time t for the worst 1% of values for D𝑡𝑡. 
 
More generally, if the kth state of nature represents the simulation outcomes in the range 
[prob(k-1) , prob(k)], then the damage coefficient for the kth state of nature is the 
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average damage in that range of simulations in which the distribution for D𝑡𝑡 lies within 
those percentiles. 
 
The next step is to calculate damages in any particular period for any particular state of 
nature and any chosen mitigation action. We do this by interpolating smoothly with 
respect to the average percentage mitigated up to each point in time. Zero mitigation 
corresponds to the 1000 ppm maximum GHG scenario, whereas 100% average 
mitigation is assumed to correspond to a 400 ppm maximum GHG scenario. Since there 
is a potential total of 600 ppm additional GHG in the atmosphere to be mitigated, the 
450 ppm maximum GHG scenario corresponds to a 91.7% mitigation (=550/600) and 
the 650 ppm maximum GHG scenario corresponds to a 58.3% mitigation (=350/600). 
 
Our task is to calculate an interpolated damage function between the three scenarios 
where we have damage coefficients (for a given state and period) to find a smooth 
function that gives damages for any particular average mitigation percentage up to each 
point in time. 
 
We first calculate a quadratic section of the damage function which starts (for a given 
state and period) at the level of damages in the 1000 ppm maximum GHG scenario and 
is assumed to have a zero derivative at that point. The curvature as a function of 
mitigation is calculated such that the damage function matches the damage coefficient 
at the 650 ppm maximum GHG scenario. For emissions mitigation percentages less 
than 58.3% we use this quadratic curve to interpolate damages. 
 
We next calculate a quadratic section of the damage function which starts at the level of 
damages in the 650 ppm maximum GHG scenario and is assumed to have a derivative 
equal to that of the first quadratic where they meet at the 58.3% emissions mitigation 
point. The curvature of the second quadratic is then calculated such that the damage 
function matches the damage coefficient at the 450 ppm maximum GHG scenario. We 
use this quadratic curve to interpolate damages when emissions mitigation is greater 
than 58.3% and less than 100%. 
 
We allow for the possibility of net GHG removal from the atmosphere, in which case 
emissions mitigation can become greater that 100%. In that case we extend the second 
quadratic interpolation but decay it toward zero by dividing by 210(%𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚−1). Thus at 
110% mitigation we divide by 2; at 120% mitigation we divide by 4; etc. The purpose of 
this decay is to cause the quadratic curve to smoothly decay toward zero damages. 
 
As an example, consider the 10% worst case in period 5, which is calculated here for our 
base case, using a 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 of 11 and disaster_tail of 18 to result in the following 
interpolated damage functions shown in Figure 8: 
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Figure 8—Interpolated final period damage functions. 

 
The climate sensitivity—summarized by state of nature 𝜃𝜃𝑇𝑇—is not known prior to the 
final period (𝑡𝑡 = 𝑇𝑇). Rather, what the agent knows is the distribution of possible final 
states. We specify that the damage in period 𝑡𝑡, given average mitigation of 𝑋𝑋𝑡𝑡 up to time 
𝑡𝑡, is the probability weighted average of the interpolated damage function over all final 
states of nature reachable from that node. Specifically, the damage function at time 𝑡𝑡, 
for the node indexed by 𝜃𝜃𝑡𝑡 is assumed to be: 
 
(31) D𝑡𝑡�𝑋𝑋𝑡𝑡,𝜃𝜃𝑡𝑡� = ∑ Pr (𝜃𝜃𝑇𝑇 𝜃𝜃𝑇𝑇|𝜃𝜃𝑡𝑡) ∙ D𝑡𝑡�𝑋𝑋𝑡𝑡,𝜃𝜃𝑇𝑇�, 
 
where the sum is taken over all states that are possible from the node indexed by 𝜃𝜃𝑡𝑡 (i.e., 
for which Pr(𝜃𝜃𝑇𝑇|𝜃𝜃𝑡𝑡) > 0). 
 
 

2.4 Risk decomposition 
 
Figure 2 above decomposes the SCC into a risk aversion and an expected damages 
component. We present here the mathematical derivation of these results: Let 𝐷𝐷𝑠𝑠,𝑡𝑡 
denote the marginal damage, that is the loss of consumption in state 𝑠𝑠 in future period 𝑡𝑡 
that results from putting one more ton of carbon into the atmosphere today (at time 0). 
The SCC is then: 
 
(32) 𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ ∑ 𝜋𝜋𝑠𝑠,𝑡𝑡𝑚𝑚𝑠𝑠,𝑡𝑡𝐷𝐷𝑠𝑠,𝑡𝑡

𝑆𝑆(𝑡𝑡)
𝑠𝑠=1

𝑇𝑇
𝑡𝑡=1 �= ∑ 𝐸𝐸0�𝑚𝑚�𝑡𝑡𝐷𝐷�𝑡𝑡�𝑇𝑇

𝑡𝑡=1 �. 
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where 𝑚𝑚𝑠𝑠,𝑡𝑡 is the pricing kernel in state 𝑠𝑠 at time 𝑡𝑡, which is the marginal value today of 
one additional unit of consumption in state 𝑠𝑠 at time 𝑡𝑡,11 𝜋𝜋𝑠𝑠,𝑡𝑡 denotes the probability of 
state 𝑠𝑠 at time 𝑡𝑡, and 𝑆𝑆(𝑡𝑡) denotes the number of states at time 𝑡𝑡. That is, to calculate the 
cost to the representative agent of an additional ton of carbon emissions, we sum over 
all the consumption damages that result from this, in every state of nature at every 
future time, multiplied by the value of an additional unit of consumption in that state at 
that time. 
 
Equation (32) can be decomposed as: 
 
(33) 𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ 𝐸𝐸0[𝑚𝑚�𝑡𝑡] ∙ 𝐸𝐸0�𝐷𝐷�𝑡𝑡�𝑇𝑇

𝑡𝑡=1 + ∑ 𝑐𝑐𝑐𝑐𝑣𝑣0�𝑚𝑚�𝑡𝑡,𝐷𝐷�𝑡𝑡�𝑇𝑇
𝑡𝑡=1 . 

 
Note that: 
 
(34) 𝐸𝐸𝑜𝑜[𝑚𝑚�𝑡𝑡] = 1

𝑅𝑅𝑓𝑓(0,𝑡𝑡) 
 
where 𝑅𝑅𝑓𝑓(0, 𝑡𝑡) is the time 𝑡𝑡 payoff to an investment at time 0 of $1 in a risk-free bond 
that matures at time 𝑡𝑡.12 This implies we can rewrite the first component of (33) as the 
sum of the marginal damages, discounted back to the present at the risk-free rate. The 
second component is the premium over the expected damages that society is willing to 
pay because of the ‘risk’ of the damages, defined as the covariance of the marginal 
damages with marginal utility. 
 
We can, thus, label the first component of (33) as discounted expected damages 𝐸𝐸𝐸𝐸 =
∑ 𝐸𝐸0[𝐷𝐷�𝑡𝑡]

𝑅𝑅𝑓𝑓(0,𝑡𝑡)
𝑇𝑇
𝑡𝑡=1  and the second component as the risk premium 𝑅𝑅𝑅𝑅 = ∑ 𝑐𝑐𝑐𝑐𝑣𝑣0�𝑚𝑚�𝑡𝑡,𝐷𝐷�𝑡𝑡�𝑇𝑇

𝑡𝑡=1 . 
Rewriting (33) then gives the risk premium as the difference between the social cost of 
carbon and the expected-damages, both of which are easily calculated in our model: 
 
(35) 𝑅𝑅𝑅𝑅 = 𝑆𝑆𝑆𝑆𝑆𝑆 − 𝐸𝐸𝐸𝐸. 
 
 

3. Results 
 
The main model output is the price of carbon, both today, and at the beginning of each 
of the next five periods. These are the times in the model when mitigation decisions are 
made. Figure 9 shows the results for the CRRA model run (top left) and two additions: a 
risk aversion coefficient of 7 (lower panel), calibrated to observed financial asset prices; 
and an inclusion of extreme events, what we call the ‘disaster’ scenario (right panel). It 
also shows the implications of using three different climate sensitivity distributions: one 

                                                   
11 Equivalently, 𝑚𝑚𝑠𝑠,𝑡𝑡 is defined as the ratio of marginal utility with respect to current consumption in that 

state to the marginal utility today, that is 𝑚𝑚𝑠𝑠,𝑡𝑡 = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐𝑠𝑠,𝑡𝑡

� / �𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐0
�, where 𝑐𝑐𝑠𝑠,𝑡𝑡 denotes the agent’s consumption 

in state 𝑠𝑠 at time 𝑡𝑡. We present the pricing kernel for each time and state, for our base case, in Figure 14. 
12 Alternatively, 𝐸𝐸0[𝑚𝑚�𝑡𝑡] is the risk-free discount factor between today and time 𝑡𝑡. 
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following Pindyck (2012), the second Roe and Baker (2007), and the third the log-
normal calibration employed by Wagner and Weitzman (2015). 
 

 
Figure 9—Expected price per ton of carbon under four different scenarios and three 
different assumed climate sensitivity distributions. 
 
Risk aversion alone increases prices slightly in the early periods, though barely 
noticeably. Disasters alone increase prices dramatically, an effect that is further 

RA 1.11 1.11
peak temp none 11
disaster_tail none 18

RA 7 7
peak temp none 11
disaster_tail none 18

$0

$10

$20

$30

$40

$50

$60

$70

$80

2000 2100 2200 2300

No Risk Aversion & No Disaster
Roe-Baker
Wagner-Weitzman
Pindyck

$0

$10

$20

$30

$40

$50

$60

$70

$80

2000 2100 2200 2300

Disaster

$0

$10

$20

$30

$40

$50

$60

$70

$80

2000 2100 2200 2300

Risk Aversion

$0

$10

$20

$30

$40

$50

$60

$70

$80

2000 2100 2200 2300

Base Case



– 24 – 

magnified by the inclusion of risk aversion.13 Using a Pindyck (2012) climate sensitivity 
calibration likely leads to conservative estimates. By instead using a heavy-tailed 
probability distribution function such as Roe-Baker or Wagner-Weitzman, implied 
prices increase dramatically. We proceed to use the Wagner-Weitzman (2015) climate 
sensitivity distribution, combined with Pindyck’s (2012) loss function, equation (26), as 
our base case for the remainder of our runs. 
 

3.1 Tree structure 
 
Figure 10 illustrates the tree structure employed in our baseline analysis. At the start of 
the model (i.e., in 2015), the agent is assumed to know the information filtration (i.e., 
the structure of the tree) meaning he knows the state probabilities and the damage 
function in each future state of the world. Period zero runs from 2015 until 2030. In 
2030, the agent learns whether the world is in state ‘u’ or state ‘d’. There is a 50% 
probability of each of the two states. Similarly, at the end of period two (in year 2060) 
the agent learns whether the world is in state ‘uu’, ‘ud’, or ‘dd’, etc. Notice that at the end 
of period four, all uncertainty is resolved, in that the agent will learn which of the six 
final states the world is in and what the true damage function is. Following this point, in 
period five, the agent has one final period in which he can do mitigation. However, in 
period six, which in our base case runs from 2400 on to infinity, the agent can no longer 
mitigate. Consumption continues to grow deterministically from this point forward at a 
rate 𝑔𝑔, meaning that consumption after 𝑇𝑇 = 2400 is given by 𝑐𝑐𝑡𝑡 =  𝑐𝑐𝑇𝑇(1 + 𝑔𝑔)𝑡𝑡−𝑇𝑇, and the 
period six utility is given by equation (9). 
 
In the baseline model, where a move up or down in each period is equally likely, the 
probabilities of the final states are given by a binomial distribution. 
 

 
Figure 10—Diagram of tree structure used in solving the model for each state of nature 
across time. 

                                                   
13 Note that the 2015 price comes from a single node in the tree. In each subsequent year, that price is set 
in expectation over all possible states of nature in that given year. 
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Another feature of the tree is particularly important given our use of the Epstein-Zin 
preference specification. We employ a recombining tree structure, meaning that the 
damage function in state ‘uuudd’, for example, is independent of the way in which 
information was revealed at the end of each period. However, the agent's utility is path-
dependent, as the history of mitigation depends on the process by which the agent 
learns the state. Thus, consumption, and mitigation, will depend upon the path. 
Consequently, in solving for the agent’s utility along each of these paths, we need to 
keep track of the path by which the agent learned about the damage function. 
 
While the agent learns more about the nature of the damage function in discrete 
“chunks,” we calculate the agent's consumption over five-year sub-periods using an 
interpolation method. Specifically, as noted earlier, in our baseline model endowed 
consumption (before climate damages and before mitigation costs) is assumed to grow 
at a rate of 2% per year. Following equation (1), the consumption flow is 𝑐𝑐0, the endowed 
consumption, less the cost of mitigation. Also, from equation (2), the consumption flow 
at the start of period 1 is given by 𝑐𝑐1 = 𝑐𝑐0̅ ∙ 𝑒𝑒0.02×15�1− 𝐷𝐷1(𝑋𝑋1,𝜃𝜃1) − 𝜅𝜅1(𝑥𝑥1)�. That is, the 
consumption at the start of period one (in 2030), 𝑐𝑐1, is equal to endowed consumption 
(endowed 2015 consumption plus 2% growth for 15 years), minus the fractional cost of 
damages and of mitigation chosen at the beginning of period one. Mitigation is 
optimally chosen by the agent, and is therefore a function of the state—mitigation will be 
lower if the agent learns that the world is in state ‘d’ rather than state ‘u’. 
 
Thus, this analysis gives us the consumption flow in 2015 and in 2030, for the two 
states. What we do to calculate the agent’s consumption between 2015 and 2030 is to fit 
an exponential growth function to the consumption at these two points of time. Note 
that this is equivalent to assuming that immediately after choosing the period zero 
mitigation, the agent’s consumption starts to reflect climate damages from the first 
revealed state (‘u’ or ‘d’). However, the agent is not allowed to change the period zero 
mitigation to reflect this knowledge. 
 
The purpose of introducing this interpolation scheme is to ensure that the agents 
consumption path is relatively smooth. This will clearly lead to approximation errors in 
our solution. Adding more periods (as opposed to sub-periods) at which the agent can 
choose a new level of mitigation would result in a smaller approximation error, but 
would result in far higher computational costs: with T periods, we have a “2𝑇𝑇+1 − 1”-
dimensional optimization problem, in that we must choose this number of optimal 
mitigation levels (as a function of the path of states) to calculate the SCC. 
 
In our base case each state has equal probability. The current optimal price of emissions 
is around $40/ton for the representative agent. At the start of period 1, in 2030, the 
agent learns that he has moved either up or down in the tree. The fragility of the 
environment is a function of the number of up moves as the agent traverses through the 
tree structure. Thus, moving up in the tree leads to states which on average have greater 
fragility and worse outcomes. It makes sense for the agent to spend more on mitigation 
as he moves further up in the tree structure. The roughly $45 expected price for 
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emissions in period 1 which we show in the lower right quadrant of Figure 9 is the 
average of the price in the up state, $58, and the price in the down state, $33. 
 
Figure 11 shows probabilities and emissions prices in each node, through the start of 
period five. The lines connecting the boxes indicate the paths that information about the 
earth’s fragility has taken. All grouped nodes at a given time have the same degree of 
fragility and thus the same damage for a given amount of greenhouse gas in the 
atmosphere. Consider period 2, starting in 2060, which has four equally probable nodes. 
The fragility in the up-down node is the same as in the down-up node, but the prices are 
slightly different: $60.47 for up-down, and 60.68 for down-up. 
 

 
Figure 11—Emissions prices (in $ per ton of CO2) across time and states 
 
Figure 12 shows the fractional mitigation for each state, and reveals the reason for the 
different prices. At the start of period one, when there is bad news about fragility, the 
representative agent chooses to mitigate more (0.5463) than when he receives good 
news (0.4296). To induce (atomistic) agents to mitigate more, the optimal emissions 
price in the period 1 up state is $58.25/ton, relative to only $32.61/ton in the down 
state. Then, at the start of period 2 “up-down” state the representative agent mitigates 
slightly less (0.6695) than in the “down-up” state (0.6705), not because the damage 
function is different, but rather because, on the “up-down” path, the agent does so much 
more mitigation in period 1. Thus, there are path dependencies in the tree and we keep 
track of each path-dependent node separately. 
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Figure 12—Fractional mitigation across time and states 
 
In our baseline setting, mitigation becomes cheaper over time as technological change 
occurs, and as a result the optimal level of mitigation increases over time. For example, 
42.83% of emissions are mitigated in period 0. If the agent gets two good draws (ie., two 
down moves in the tree) then in period 2, the period from 2060 to 2100, the agent 
mitigates a larger fraction, 53.99% of emissions. On the other hand, if the agent gets two 
bad draws (up moves) then in period 2 he mitigates 84.13% of emissions. In the base 
case scenario, the cost of the backstop technology has become so low by the fourth 
period that it is employed in the highest fragility state in the fourth period. This is 
reflected in the fractional mitigations which are greater than 1.0. By the fifth period, the 
cost is sufficiently low that it is optimal to extract carbon from the atmosphere in all but 
the lowest fragility state. 
 
Figure 13 shows the consumption (as a multiple of consumption today) and the level of 
greenhouse gases in ppm in the atmosphere at each point in the tree. As would be 
expected, moving up in the tree (to higher levels of fragility) leads to decreased 
consumption as a result of both higher damages and higher mitigation. Note also that, if 
the earth turns out to be more robust than anticipates (i.e., at the bottom right of the 
tree) then the optimal policy leads to a higher overall level of GHGs in the atmosphere.  
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Figure 13—Consumption (upper panel, as multiple of today’s consumption) and 
greenhouse gases (lower panel, in ppm) across time and states 
 
Figure 14 shows how the pricing kernel (Hansen and Richard, 1987) evolves over time 
and across fragility states. The pricing kernel in a given state is the ratio of marginal 
utility with respect to current consumption in that state to the marginal utility today, 

that is 𝑚𝑚𝑠𝑠,𝑡𝑡 = � 𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐𝑠𝑠,𝑡𝑡

� / �𝜕𝜕𝜕𝜕
𝜕𝜕𝑐𝑐0
�. So, for example, the pricing kernel in the bottom right state 
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in Figure 14 is 9.87 ∙ 10−6. Intuitively this means that, to make the representative agent 
in at least as well off in that state, $1 (real) in decreased consumption today, as a result 
of mitigation, has to result in at least an increase in consumption in the lower right state 
of about $100,000 [= 1 (9.87 ∙ 10−6)⁄ ]. This large number reflects the fact that the 
agent’s consumption, between 2015 and 2300, increases so dramatically (c.f. Figure 13). 
 

 
Figure 14. Pricing Kernel as a function of time and state 
 
Another item of interest in Figure 14 is that the pricing kernel does not change much 
across states. Going from the least to the most fragile state in the final period increases 
the pricing kernel by about a factor of 2. This is again consistent with the consumption 
across states shown in Figure 13. The climate damages drive down consumption 
considerably in the most-fragile state (see, e.g., the upper right corner of Figure 13) but 
consumption is still very high relative to today’s level. 
 
Finally, Figure 15 presents the cost to society of mitigation, expressed as a fraction of 
total consumption. Perhaps the most striking set of numbers are the costs at 𝑡𝑡 = 3: In 
the most fragile state, 11.4% of consumption is “spent” on mitigation. In contrast, in the 
least fragile state, only about 1% of consumption needs to be spent on mitigation efforts. 
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Figure 15. Mitigation cost as a fraction of consumption 
 
 

3.2 Sensitivity analyses 
 
Note that in our model the SCC at any 𝑡𝑡 reflects the expected discounted damage of the 
marginal ton of emissions at time 𝑡𝑡, conditional on an optimal policy beginning now, at 
𝑡𝑡 = 0; i.e. that emissions are priced immediately at the appropriate level. Since those 
incentives are not currently in place, and might not be put in place soon, one could also 
be interested in the marginal damage created by emissions today conditional on a delay 
in the implementation of a pricing policy. 
 
Define the constrained SCC as the expected discounted damage of the marginal ton of 
emissions today, conditional on a specified delay in the implementation of an emissions 
price. For example, in our model we can calculate the cost of a constraint of not pricing 
emissions during the first period, which is 15 years. It turns out that this constraint 
almost triples the cost of emissions, it raises the expected discounted damage of the 
marginal ton of emissions today from $40 to $112. In the context of our model, we can 
make this calculation by first finding the optimal emissions plan, subject to the 
constraint of zero emissions mitigation in the first period, and then finding the increase 
in consumption required to equal the change in utility from a marginal increase in 
emissions.  
 
We can also calculate the deadweight loss created by such a constraint. We find the 
increase in consumption today required to bring the utility of an agent inhabiting a 
constrained world up to the utility of an unconstrained world. The answer is that an 
increase in consumption of 6% throughout the first period is required to compensate for 
the deadweight loss created by not pricing emissions during the first period. 
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The mitigation choices that optimize the utility of the representative agent in the tree 
structure and determine the SCC depend on a host of factors. We test them in turn. For 
one, two key assumptions concern the rate of technological change and the potential for 
a backstop technology. We analyze both exogenous and endogenous technical change. 
The former has some surprising results, as the SCC first increases before decreasing 
again (Figure 16). As technical improvements change from 0% to 1%, the SCC rises, only 
to fall again with annual technical improvements at 1.5% or higher. 
 

 
Figure 16—SCC decreases with increased exogenous or endogenous technological change 
 
Endogenous technological change also interacts with a backstop technology, even one as 
high as, for example, $350 per ton of CO2 (Figure 17).14 A backstop plus induced, 

                                                   
14 See Figure 24 on page 37 for an exploration of different backstop technology thresholds, under a high-
risk scenario. 
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endogenous technological change at first leads to a slightly higher SCC. Over time, 
however, endogenous technological change helps decrease the SCC as well. 

 
Figure 17—SCC decreases with backstop, with our without endogenous technological 
change 
 
Next we investigate the effect of growth and interest rates, with corresponding changes 
in the IMRS. Figure 18 shows SCC values with increasing growth rates around the 
central case of 2.0%. In this set of results we adjust the IMRS as we change the assumed 
growth rate in order to hold constant the real interest rate at 2.74%. 
 

 
Figure 18—SCC increases with higher assumed economic growth rates 
 



– 33 – 

Figure 19 shows results for different rates of interest around the central 2.74% case, 
generated by choosing different values for the IMRS. High growth rates (holding the 
IMRS constant) lead to higher SCC values, whereas higher interest rates (holding the 
economic growth rate constant) have the opposite effect. 
 

 
Figure 19—SCC decreases with higher real interest rates 
 
Figure 20 shows the implications of changing the pure rate of time preference. The 
upper graph, testing implications of changing the pure rate of time preference, holds 
fixed the implied real yield on a zero-coupon bond that matures at the end of the last 
period. In early years, a lower discount associated with pure time preference increases 
the SCC, while the reverse is true in later years. This perhaps counter-intuitive result 
occurs because we hold the interest rate constant which implies a lower elasticity of 
substitution and a greater desire to smooth consumption. When the climate model is 
calibrated to observed interest rates the pure rate of time preference is not a particularly 
important determinant of the emissions price. 
 
The lower graph of Figure 20 changes the rate of time preference and holds the IMRS 
fixed: in this case the higher the rate of time preference, the higher is the interest rate 
and the lower is the SCC. 
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Figure 20—As time preference increases and the IMRS is held constant, the SCC decreases 
 
We test for the importance of the peak temperature and disaster tail parameters in 
Figure 21 and Figure 22, respectively. As 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 decreases—and, thus, as the probability 
of reaching a climatic tipping point at any particular temperature increases—the optimal 
carbon cost generally increases (except for very low levels of 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝, when the increased 
risk causes higher mitigation early on, thus resulting in lower expected rates of 
mitigation and cost in the distant future).  
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Figure 21—As the peak temperature parameter increases, and the likelihood of reaching a 
tipping point at lower temperatures decreases, the SCC decreases 
 

 
Figure 22—As the disaster tail parameter increases, thinning the tail of the damage 
distribution, the SCC decreases 
 
Our standard case includes periods of increasing length, but in Figure 23 we display the 
effect of varying the duration of fixed length periods: as period length increases, the 
expected price path pivots downward and optimal carbon price today increases. 
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Figure 23—As the period length increases, the SCC tends to decrease 
 
 

3.3 ‘High risk’ decomposition 
 
Our base case in this paper has been a model that has economic parameters roughly 
calibrated to match historical real interest rates, at 2.74%, a low equity risk premium of 
less than 1%, and with a damage distribution calibrated to match a value of the SCC of 
$40. As seen in Figure 2, with this calibration the risk premium component of the SCC is 
only 7% of the total. We have not attempted to calibrate the appropriate damage 
distribution as a function of emissions.15 We have instead chosen parameters that lead 
to a value of the SCC that approximately matches the current US government estimate 
(U.S. Government Interagency Working Group on Social Cost of Carbon, 2015). Above 
we report on the impact of changing these parameters one at a time. 
 
We also report here on what we call a “high risk” case, and show the impact of choosing 
a different set of parameters designed to increase the risk component of the SCC in our 
model. In the high risk case these parameters are 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =4 and disaster_tail = 4.5. 
compared with 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 11 and disaster_tail = 18 for the base case. The implications in 
terms of increased probabilities for tipping points and increased damage conditional on 
a tipping point can be seen in Figure 6 and Figure 7 above. 
 
To further increase the risk component of the SCC decomposition, we increased the 
degree of risk aversion from 7 to 9, reduced the IMRS from 0.9 to 0.6, lowered the 
exogenous potential growth rate of consumption from 2% annually to 1%, and lowered 
the assumed exogenous rate of technological progress with respect to emissions 
                                                   
15 One notable efforts in this area comes courtesy of the Risky Business Project and its work on the 
American Climate Prospectus: http://climateprospectus.org/ (Houser et al., 2015). Kopp et al. (2016) 
attempts to lay out a path to integrating possible climate-economic tipping points in such an analysis. 

http://climateprospectus.org/
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reduction from 1.5% per year to 0.8% per year. With these changes the real interest rate 
drops from 2.74% to 2.27%, and the SCC rises from around $40 to $156. The risk 
decomposition changes from 93% expected damage and 7% risk premium in the base 
case to 82% expected damage and 18% risk premium in the high risk case. 
 
The ‘high risk’ parameterization has a particularly dramatic impact on the cost of delay. 
In the base case, the constraint of waiting 15 years to price emissions causes the SCC to 
almost triple from $40 to $112. With the ‘high risk’ parameterization, the same 
constraint causes the SCC to jump from $156 to $451 per ton. And finally, rather than 
the 6% of consumption deadweight cost of delay, in the high risk parameterization the 
deadweight cost of a 15-year delay in pricing emissions is a loss of utility equivalent to a 
36% reduction in consumption during that period. 
 
As expected, the high-risk specification also highlights, once again, the importance of 
the backstop technology. The availability of a binding backstop technology decreases the 
SCC in all time periods, providing a firm upper bound (Figure 24). 
 

 
Figure 24—A binding air capture backstop technology lowers the SCC in the high-risk case 
 
 

3.4 A ‘Low growth’ scenario 
 
Another key parameter in our analysis is the rate of economic growth of 2% per year 
(ignoring damages and mitigation costs). Our assumption is consistent with empirically 
observed growth rates over the last century. However, a number of scholars now argue 
that we should anticipate far lower growth going forward than we have observed in the 
last century (e.g., Gordon, 2016, 2012). 
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This growth rate is a particularly interesting parameter to explore in the context of a 
carbon pricing analysis. As noted earlier, a large fraction of the damages that from 
climate change are likely to occur far into the future. With the assumption of a 2%/year 
consumption growth rate, the level of per capita consumption in 2300, even the worst 
state of nature, is more than 250 times higher than what it is today (see Figure 13). As a 
result of this large disparity in current and future consumption levels, future damages 
are discounted at a very high rate.16 However, if future real consumption growth is 
1%/year instead of 2%, the resulting level of consumption in 2300 will be about 95% 
lower. This implies that the any damages will be far more important to the current 
generation factor (ie., the discount factor applied to these damages will be far closer to 
unity). 
 

 
Figure 25—SCC, by year, as a function of the assumed base-case consumption growth rate. 
 
Figure 25 plots the SCCs, as a function of time, that result from running our simulation 
with different economic growth rates, and holding preferences constant.17 Given our 
specification, changing the assumed growth rate from 2%/year to 1%/year results in 
only a small increase in the 2015 SCC—from $41 to $46/ton. Given the considerably 
smaller discount rate, why is it that the SCC does not increase more in response to this 
change? The answer lies in our damage specification in equation(2), where damages, for 
a given level of fragility and cumulative mitigation, are proportional to the baseline level 
of consumption 𝑐𝑐𝑡𝑡� = 𝑐𝑐0� ∙ (1 + 𝑔𝑔)𝑡𝑡. Thus, in this alternative specification with a 1% annual 
growth rate, and consumption in year 2300 that is lower by a factor of 20, we are also 
implicitly specifying that damages are lower by a factor of 20. Whether it is reasonable 

                                                   
16 In the base case, with a growth rate 𝑔𝑔 = 2%/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, the riskfree rate is 2.74%/year. With a lower 𝑔𝑔 =
1%/𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, the risk-free rate falls to 1.62%/year. 
17 For each of the simulations illustrated in Figure 25, the base case preference specification is employed, 
meaning that the elasticity of intertemporal substitution is 0.90. 
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to assume that, if people are poorer in the future, they will be hurt proportionally less by 
climate change is worthy of future research. 
 
 

3.5 Future research and extensions 
 
We have emphasized throughout this paper that the model and model parameterization 
employed here, both in the base case and in the 'high risk’ case, are ad hoc and merit 
considerable future scrutiny by the scientific community. What we believe is unique and 
innovative is the methodology and solution approach outlined here. The framework 
better takes account of climatic risks, without putting undue computational burden on 
the analyst. 
 
There are many possible avenues for future work and research. First and foremost is a 
better calibration of some of the key parameters, perhaps led by the probability and 
impact of tail risks. Our base case assumes a 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 of 11 and disaster_tail of 18. While 
we explore various specifications, including the ‘high risk’ case, none is empirically 
grounded—i.e. linked to actual probabilities and impacts of low-probability, high-
consequence climatic events. A starting point might be some of the guidance provided 
by Kopp et al. (2016): start with candidate ‘climatic tipping elements’ and take the 
growing body of empirical, econometric analyses to estimate their effects. Second, 
employ experiments with empirical, process-based impact models to assess the relative 
importance of different tipping elements. Third, look at social tipping elements such as 
civil conflict and their associated costs. Projects like Risky Business are beginning to 
quantify the impacts of some of these climatic and social tipping elements (Houser et al., 
2015). Finally, where data are scarce, conduct structured expert elicitations to generate 
probability functions around tipping elements and their possible economic impacts 
(e.g., Cooke, 2013). These calibrations are much needed to derive defensible estimates of 
the SCC that stand independent of current U.S. SCC numbers. 
 
Even now, though, the model lends itself to many extensions. For example, if climate 
damages hit growth rates as opposed to levels of economic output, one could similarly 
assume the opposite, likely raising the appropriate SCC today (Bansal and Ochoa, 2011; 
Burke et al., 2015; Dell et al., 2012; Heal and Park, 2013; Moore and Diaz, 2015). None 
of those exploring this important question have done so within the context of an 
Epstein-Zin utility framework. 
 
Another possible extension is around climate impacts on poor versus rich. Our 
representative agent framework models the average, globally representative consumer. 
One could easily imagine different climate based on wealth and income. While the rich 
may have more capital at risk, it would likely be the poor who will be hurt proportionally 
more, as they are less able to adapt (e.g., Wagner and Weitzman, 2015). 
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4. Conclusion 
 
An oft-told analogy in climate economics represents the climate system as a hard-to-
navigate ocean liner. This is used to argue for early action through a slow and gradually 
increasing carbon price. Too strong a policy early on would be overly costly; a small 
course correction now will save us from hitting the far-off proverbial iceberg. There are 
clearly costs of action, but as our simulations show, once we do include a proper 
accounting of risk aversion and extreme events, this standard logic gets turned on its 
head: The optimal carbon price may, in fact, be high today, declining over time.18 
 
That decline reflects the rate at which information is revealed going forward, the degree 
of risk aversion, and the potential for technological progress and backstop technologies. 
Either way, the ‘ocean liner’ logic doesn’t hold. Or perhaps it gets completed: for turning 
a large ship long down the line takes bearing off decisively and early, especially in a 
world of uncertain obstacles. The less certain we are about the risks facing us in future 
states of the world, the higher the optimal price on carbon today. 
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