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1 Introduction

We consider the problem of estimating the effect of an intervention in a panel data setting, where

we observe the outcome of interest for a number of treated units (possibly only a single one),

and a number of control units, for a number of periods prior to the receipt of the treatment, and

for a number of periods after the receipt of the treatment. Two aspects of the problem make

this different from standard analyses of causal effects using matching approaches. First, the key

variables on which we try to match treated and control units are pre-treatment outcomes rather

than qualitatively different characteristics. Second, often the number of control units as well as

the number of pre-treatment periods for which we observe outcomes are modest, and of similar

magnitude. Many of the methods researchers have used in this setting can be divided into a

four groups. First, difference-in-differences methods (e.g., Ashenfelter and Card [1985], Card

[1990], Meyer et al. [1995], Bertrand et al. [2004]) where the difference in average pre-treatment

outcomes between treated and control units is subtracted from the difference in average post-

treatment outcomes, with generalizations to multiple factor structures in Xu [2015]. Second,

matching methods where, for each treated unit, one or more matches are found among the

controls, based on both pre-treatment outcomes and other covariates (e.g., Abadie and Imbens

[2006], Diamond and Sekhon [2013], Rubin [2006], Hainmueller [2012]). Third, synthetic control

methods (Abadie and Gardeazabal [2003], Abadie et al. [2010, 2014]), where for each treated

unit a synthetic control is constructed as a weighted average of control units that matches pre-

treatment outcomes and covariates for the treated units. Fourth, regression methods where

post-treatment outcomes for control units are regressed on pre-treatment outcomes and other

covariates and the regression coefficients are used to predict the counterfactual outcome for the

treated units.

In this paper we develop new methods for this setting. We make two specific contributions.

First, we develop a general framework, that nests many of the existing approaches, where we

characterize the estimated counterfactual outcome for the treated unit as a linear combination of

outcomes for the control units. This framework allows researchers to contrast the assumptions

underlying these methods and thus facilitates the choice of method. We show that there are

substantive differences between the various methods, in the form of the restrictions that are

imposed. For example, a key difference between difference-in-differences on the one hand, and

matching, regression, and synthetic control approaches on the other hand, is that the former
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allows for a non-zero intercept in this linear representation, corresponding to permanent additive

differences between the treatment and control units, whereas the latter do not allow for such

differences. We argue that this, as well as other restrictions, such as the restriction that the

weights sum to one, should be considered on their merit in applications rather than imposed as

a matter of routine. Second, we propose a new estimator that combines some of the advantages

of the difference-in-differences and synthetic control methods by allowing for different sets of

restrictions. Our proposed method can accommodate cases with many or few controls, and

with many or few pre-treatment periods. In the latter case there is a need for regularization or

shrinkage, although standard L1 (lasso) type shrinkage towards zero is not necessarily appropri-

ate in general, and in particular in settings where we wish to impose a restriction on the sum of

the weights. Specifically we recommend an approximate balancing method with an elastic net

penalty term for the weights, with the preferred set of restrictions.

We illustrate the proposed methods using three data sets used previously in this literature.

2 Notation

We consider a panel data setting in which there are N + 1 cross-sectional units observed in time

periods t = 1, . . . , T . Using the potential outcome set up (Rubin [1974], Holland [1986], Imbens

and Rubin [2015]), each of the N + 1 cross-sectional units, in each of the T time periods is

characterized by a pair of potential outcomes Yi,t(0) and Yi,t(1), corresponding to the outcome

given the control and active treatment respectively. The causal effects at the unit and time level

are τi,t = Yi,t(1)− Yi,t(0), for i = 0, 1, . . . , N and t = 1, . . . , T .

Units i = 1, . . . , N are control units which do not receive the treatment in any of the time

periods. Unit 0 receives the the control treatment in periods 1, . . . , T0 and the active treatment

in time periods t = T0 + 1, . . . , T0 +T1,, where T = T0 +T1. (There could be more treated units,

but for expositional reasons we focus on the case with a single treated unit.) The treatment

received is denoted by Wi,t, satisfying:

Wi,t =

 1 if i = 0, and t ∈ {T0 + 1, . . . , T},

0 otherwise.

We are interested in the treatment effects for the unit who receives the treatment, during the
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period this unit receives the treatment, that is, τ0,t, for t = T0 + 1, . . . , T .

The researcher observes, for unit i in period t, the treatment Wi,t and the realized outcome,

Y obs
i,t :

Y obs
i,t = Yi,t(Wi,t) =

 Yi,t(0) if Wi,t = 0,

Yi,t(1) if Wi,t = 1.

The researcher may also observe M time-invariant individual-level characteristics Xi,1, . . . , Xi,M

for all units.

In the following discussion we denote by Xi the M × 1 column vector (Xi,1, . . . , Xi,M)>, for

i = 0, . . . , N . This vector may also include some of the lagged outcomes, Y obs
i,t , in periods t ≤ T0.

We denote by Xc the N ×M matrix with the (i,m)th entry equal to Xi,m, for i = 1, . . . , N ,

excluding the treated unit, and denote by Xt a M -row vector with the mth entry equal to

X0,m, and finally X = (Xc,Xt). Similarly, for the outcome, Y obs
i denotes the T × 1 vector

(Y obs
i,T , . . . , Y

obs
i,1 )>. In addition Y obs

c,pre denotes the N × T0 matrix with the (i, t)th entry equal to

Y obs
i,T0−t+1, again excluding the treated unit, Y obs

t,pre denotes a T0-vector with the t-th entry equal

to Y obs
0,t , and similarly for Y obs

c,post and Y obs
t,post for the post-treatment period. The elements of the

three matrices Y obs
c,post, Y obs

t,pre, and Y obs
c,pre consist of observations of the control outcome Yi,t(0),

and Y obs
t,post consists of observations of the treated outcome Yi,t(1). Combining these matrices we

have

Y obs =

 Y obs
t,post Y obs

c,post

Y obs
t,pre Y obs

c,pre

 =

 Yt,post(1) Yc,post(0)

Yt,pre(0) Yc,pre(0)

 , and X =
(

Xt Xc

)
.

The causal effect of interest depends on the pair of matrices Yt,post(1) and Yt,post(0). The

former is observed, but the latter is not. Putting aside for the moment the presence of covariates,

the question is how to use the three different sets of control outcomes, Yc,post(0), Yt,pre(0), and

Yc,pre(0), and specifically how to model their joint relation with the unobserved Yt,post(0) in

order to impute the latter:

Y (0) =

 ? Yc,post(0)

Yt,pre(0) Yc,pre(0)

 .
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One approach is to model the relationship between Yt,pre(0) and Yc,pre(0), and assume that

this relation is the same as that between Yt,post(0) and Yc,post(0). This is where the setting is

fundamentally different from that where the pre-treatment variables are fixed characteristics

rather than pre-treatment outcomes: modelling the relation between covariates for the treated

unit and the control units would not necessarily translate into a prediction for the post-treatment

outcome for the treated unit given post-treatment outcomes for the control units. An alternative

approach is to model the relationship between Yc,post(0) and Yc,pre(0), and assume that this

relation is the same as that between Yt,post(0) and Yt,pre(0).

To put the problem, as well as the estimators that we discuss in this paper in context, it

is useful to bear in mind the relative magnitude of the different dimensions, the number of

control units N and the number of pre-treatment periods T0. Part of the motivation to pursue

one identification strategy, rather than another, may be the relative magnitude of the different

components of Y obs, and the corresponding ability, or lack thereof, to precisely estimate their

relationship. Put differently, depending on these relative magnitudes there may be a need for

regularization in the estimation strategy and a more compelling case to impose restrictions.

Sometimes we have few pre-treatment time periods but relatively many control units, N >>

T0, e.g.,

Y (0) =


? Y0,3(0) Y2,3(0) Y3,3(0) Y4,3(0) . . . YN,3(0)

Y0,2(0) Y1,2(0) Y2,2(0) Y3,2(0) Y4,2(0) . . . YN,2(0)

Y0,1(0) Y1,1(0) Y2,1(0) Y3,1(0) Y4,1(0) . . . YN,1(0)

 .

In this case it is difficult to estimate precisely the dependence structure between Yt,pre(0) and

Yc,pre(0), relative to the dependence between Yc,post(0) and Yc,pre(0). In this case simple matching

methods where one looks for a set of controls that are all individually similar to the treated

unit may be appropriate. Other times the researcher may have relatively many pre-treatment
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periods but few control units, T0 >> N , e.g.,

Y (0) =



? Y0,T0+1(0) Y2,T0+1(0)

Y0,T0(0) Y1,T0(0) Y2,T0(0)

Y0,T0−1(0) Y1,T0−1(0) Y2,T0−1(0)
...

...
...

Y0,2(0) Y1,2(0) Y2,2(0)

Y0,1(0) Y1,1(0) Y2,1(0)


,

so that it may be easier to estimate precisely the dependence structure between Yt,pre(0) and

Yc,pre(0) compared to the dependence between Yc,post(0) and Yc,pre(0). This may motivate time-

series approaches as in Brodersen et al. [2015], von Brzeski et al. [2015].

In other cases the magnitudes may be similar, T0 ≈ N , and the choice between strategies

may be more difficult, and a regularization strategy for limiting the number of control units that

enter into the estimation of Y0,T0+1(0) may be crucial:

Y (0) =



? Y0,T0+1(0) Y2,T0+1(0) . . . YN,T0+1(0)

Y0,T0(0) Y1,T0(0) Y2,T0(0) . . . YN,T0(0)
...

...
...

. . .
...

Y0,2(0) Y1,2(0) Y2,2(0) . . . YN,2(0)

Y0,1(0) Y1,1(0) Y2,1(0) . . . YN,1(0)


.

In this case both cross-section approaches as in the traditional difference-in-differences literature

(e.g. Ashenfelter and Card [1985], Card [1990], Card and Krueger [1994], Meyer et al. [1995],

Angrist and Krueger [2000], Bertrand et al. [2004], Angrist and Pischke [2008], Athey and Imbens

[2006]), and time-series approach as in Brodersen et al. [2015], von Brzeski et al. [2015] may be

useful, but some type of regularization may be called for.
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3 Four Leading Applications

To frame the discussion of the estimators, and to give a sense of the relative magnitudes of the

sample sizes, let us briefly discuss four influential applications from the difference-in-differences

and synthetic control literatures.

3.1 The Mariel Boatlift Study

One of the classic applications of difference-in-differences methods is the Mariel Boatlift study

by Card [1990]. Card studies the effect of the influx of low-skilled labor into the Miami labor

market on wages using data on other labor markets for comparison. Recently this study has been

revisited using synthetic control methdos in Peri and Yasenov [2015]. The Peri and Yasenov

[2015] study uses N = 44 potential control units, T0 = 7 pre-treatment periods and T1 = 6

post-treatment periods.

3.2 The New-Jersey Pennsylvania Minimum Wage Study

In the seminal Card and Krueger [1994] study, the focus is on the causal effect of a change in the

minimum wage in New Jersey. Card and Krueger use data from fast food restaurants in New

Jersey and Pennsylvania. They use information on N = 78 control (Pennsylvania) units, 321

treated (new Jersey) units, one pre-treatment period, T0 = 1, and one post treatment period,

T1 = 1.

3.3 The California Smoking Legislation Study

In the key study on synthetic control methods, Abadie et al. [2010] focus on estimating the

effect of anti-smoking legislation in California. It uses smoking per capita as the outcome and

uses N = 29 states without such anti-smoking measures as the set of potential controls. Abadie

et al. [2010] use information on T0 = 17 pre-program years and data on T1 = 13 post-program

years.
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3.4 The German Re-Unification Study

In another classic synthetic control application Abadie et al. [2014] study the effect on per capita

Gross Domestic Product in West-Germany of the re-unification with East Germany. They use

N = 16 countries as potential controls and use T0 = 30 years of data prior to re-unification and

T1 = 14 years of data post re-unification.

4 A Class of Estimators

In this section we focus on the case without covariates. The goals is to impute the unobserved

control outcomes for the treated unit, Yt,post(0), on the basis of three sets of control outcomes,

the pre-treatment period outcomes for both treated and control units, and the post-treatment

period outcomes for the control units, Yc,post(0), Yt,pre(0), and Yc,pre(0). We then use these

imputed values to estimate the causal effect τ0,t of the receipt of the treatment on the outcome

for unit 0 in time periods t = T0 + 1, . . . , T0 + T1.

4.1 A Common Structure

Let us focus on the causal effect for unit 0 and for period T for the moment, τ0,T = Y0,T (1) −
Y0,T (0). Because this unit receives the active treatment during these periods, it follows that

Y obs
0,T = Y0,T (1), and therefore the causal effect is equal to τ0,T = Y obs

0,T −Y0,T (0), with only Y0,T (0)

unobserved. The first observation we make is that many of the estimators in the literature share

the following linear structure for the imputation of the unobserved Y0,T (0):

Ŷ0,T (0) = µ+
N∑
i=1

ωi · Y obs
i,T . (4.1)

In other words, the imputed control outcome for the treated unit is a linear combination of the

control units, with intercept µ and weights ωi for control unit i.1 The various methods differ in

the way the parameters in this linear combination, the intercept µ and the weights ω, are chosen

as a function of the outcomes Y obs
c,post, Y

obs
t,pre, and Y obs

c,pre (but typically not involving Y obs
t,post). One

1An exception is the changes-in-changes method, a nonlinear difference in difference method, developed in
Athey and Imbens [2006]. Another exception is Brodersen et al. [2015] which develops a Bayesian method that
allows for time-varying coefficients in the regression.
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obvious way to choose the parameters µ and ω, given the characterization in (4.1), is to estimate

them by least squares:

(µ̂ols, ω̂ols) = arg min
µ,ω

T0∑
s=1

(
Y obs
0,T0−s+1 − µ−

N∑
i=1

ωi · Y obs
0,T0−s+1

)2

. (4.2)

This regression is estimated with T0 observations and N + 1 predictors (the N potential control

units and an intercept). This approach may be attractive in settings where the number of

pre-treatment outcomes is large relative to the number of control units. However, in its simple

form it may not even be feasible if the number of control units is larger than the number of

pre-treatment periods. Even if the number of pre-treatment periods is large enough to make this

approach formally feasible, the resulting estimator may suffer from lack of precision. Recalling

the relative magnitude of T0 and N in the four examples discussed in Section 3, one can see

that this is a common setting in practice. This leads to a need for some regularization for, or

restrictions on, the weights ω.

Many of the estimators considered do attempt to minimize some version of the distance

between the pre-treatment outcomes for the treated unit and the weighted average for the control

units but impose some restrictions. They differ in the restrictions they place on the weights and

intercept. They also differ in what information they bring to bear on the estimation, and how

they rank pairs of values for (ω, µ) that lie within the set of acceptable values, in other words,

how they regularize the estimates of ω. The regularization is somewhat delicate because of the

small data setting.

4.2 Constraints

Here we focus on the representation (4.1) of Ŷ0,T (0) as a linear combination of outcomes for

the control units. We discuss some of the constraints on the parameters, both the intercept µ

and the weights ω, that have been considered in the literature. We do not wish to argue that

there is a single set of restrictions that is to be preferred in general. Rather, our position is that

these are substantive and important restrictions and that different combinations of them may

be useful for different applications, depending partly on the relative magnitude of T0 and N . It

is therefore important to be explicit about the content of, and the motivation for, each of these

restrictions.
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The first five constraints we consider are:

µ = 0, (NO-INTERCEPT)

N∑
i=1

ωi = 1, (ADDING-UP)

ωi ≥ 0, i = 1, . . . , N, (NON-NEGATIVITY)

Y obs
t,pre = µ+ ω>Y obs

c,pre, (EXACT-BALANCE)

ωi = ω, i = 1, . . . , N. (CONSTANT-WEIGHTS)

The first three are substantive restrictions imposed by Abadie et al. [2010, 2014] in the

original synthetic control analyses of the California smoking and the Germany re-unification

applications. The first restriction, NO-INTERCEPT rules out the possibility that the outcome

for the treated unit is systematically larger, by a constant amount, than the other units. Note

that allowing for such a systematic additive difference between the treatment unit and the control

units is an important feature of the standard DID strategy, which assumes that the trend in

the control outcomes in the different groups are the same, but which allows for permanently

different levels for the different units.

The second restriction, ADDING-UP, requires that the weights sum up to one. It is com-

mon in many matching strategies. Like the no-intercept restriction, however, this restriction is

implausible if the unit of interest is an outlier relative to the other units. For example, in the

California smoking example, if the outcome was total number of cigarettes smoked in the state,

this might be implausible. Using per capita smoking rates as the outcome, as Abadie et al.

[2010] do, addresses part of this problem. Taking the first two restrictions together, however,

makes it difficult to obtain good predictions for extreme units, that is, units with systematically

the largest or smallest values for the outcome.

The third restriction, NON-NEGATIVITY, requires the weights to be nonnegative. This is a

key restriction in the ADH estimator, playing somewhat of a dual role in their approach. It helps

regularize the estimation of the weights in cases with relatively many control units by ensuring

in many cases that there is a unique solution. It also helps control the precision of the resulting

imputation by limiting the sum of the squared weights which enters into the variance. Finally, it

often ensures that the weights are non-zero only for a small subset of the control units, making
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the weights easier to interpret. The restriction is also substantively interesting. In many cases

it is plausible, and verifiable, that the raw correlations between the pre-treatment outcomes for

each pair of units are positive. However, this does not mean that the partial correlations are all

non-negative, and allowing for negative weights may well improve the out-of-sample prediction.

The fourth restriction, EXACT-BALANCE, requires that the linear combination of the pre-

treatment period outcomes for the control units is equal to the pre-treatment set of outcomes

for the treated units. This restriction, in combination with the no-intercept and adding up

restrictions, leads exact balancing type approaches used in the matching literature in settings

with large numbers of treated and large numbers of control units, e.g., Graham et al. [2012,

2016], Hainmueller [2012].

In cases with the number of potential control unitsN larger than the number of pre-treatment

outcomes T0, and especially when N is much larger than T0, the combination of the first four

restrictions need not lead to a unique set of values for µ and ω. In such cases there might be sets

of values that satisfy these constraints. We therefore need to find a way of further regularizing

the choice of weights, by restricting the set, or by ranking the parameter values within the set of

values that satisfy the constraints. There are a number of ways of doing so. One approach is to

simply use the fifth restriction, CONSTANT-WEIGHTS, which strengthens the nonnegativity

condition by making the assumption that all control units are equally valid. This assumption,

standard in DID analyses, suggests combining the control units by setting all weights equal. In

combination with restriction ADDING-UP this implies that the weights are all equal to 1/N .

We cannot, however, combine this restriction with the balancing restriction.

We consider alternative ways of finding a unique set of parameters that satisfy some, or

all, of the first four restrictions by presenting objective functions that allow us to rank feasible

values for (µ, ω). In cases where we impose the first four restrictions these will look like exact

balancing estimators such as those considered in Graham et al. [2012, 2016], Hainmueller [2012],

Imai and Ratkovic [2014], Athey et al. [2016]. In general, however, they will be different.

It is important to stress that the allowing the intercept to differ from zero is conceptually

different here, than it is in standard matching settings where the balancing is on covariates

that are qualitatively different from lagged outcomes. Consider the California smoking example

where the outcome is number of cigarettes per capita. Suppose we have two covariates, beer

consumption and cigarette prices. It does not make sense to look for a linear combination of

other states such that the linear combination of the other states matches California both in
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terms of beer consumption and in terms of cigarette prices. Even if there was such a linear

combination, so that, both for beer consumption and cigarette prices, California is equal to

3+0.8× UT+0.5× TX, the results would not be scale-invariant: changing prices from dollars to

cents would lead to a different linear combination. With the covariates qualitatively different

it would only make sense if the weights sum to one, and there is no intercept. When all the

covariates are lagged outcomes, however, allowing for a non-zero intercept, or allowing the sum

of the weights to deviate from one, does not violate scale invariance because all covariates would

change by the same factor.

4.3 The Objective Function

There may be many pairs of (µ, ω) that satisfy the set of restrictions imposed. Within that set

we consider rankings of the pairs of values that take the form of preferences over ω. In general

we prefer values such that the synthetic control unit is similar to the treated unit in terms of

lagged outcomes. In addition, we prefer values such that the dispersion of the weights is small.

We may also prefer to have few control units with non-zero weights.

The first component of the objective function focuses on balance between the treated unit and

the control units. Specifically it focuses on the difference between the pre-treatment outcomes

for the treated unit and the linear combination of the pre-treatment outcomes for the control

units:

∥∥Y obs
t,pre − µ− ω>Y obs

c,pre

∥∥2
2

=
(
Y obs

t,pre − µ− ω>Y obs
c,pre

)> (
Y obs

t,pre − µ− ω>Y obs
c,pre

)
. (BALANCE)

If T0 is sufficiently large relative to N , we may be able to find values for (µ, ω) that uniquely

minimize this objective functions. However, in many cases this will not be possible, as also noted

in Abadie and L’Hour [2016]. When there are multiple solutions that solve EXACT-BALANCE

we need to use an objective function that directly compares different values of the weights, in

other words, we need to regularize the estimator for ω.

The second component of the objective function does so by focusing on the values of the

weights themselves. There are two components to the objective function, which capture a
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preference for small number of non-zero weights, as well as smaller weights:

‖ω‖1 =
N∑
i=1

|ωi|, and ‖ω‖22 =
N∑
i=1

ω2
i .

We can capture both by using an elastic-net type penalty (Hastie et al. [2009, 2015]) that

combines these Lasso and ridge terms:

λ ·
(

1− α
2
‖ω‖22 + α‖ω‖1

)
. (PENALTY FUNCTION)

In Brodersen et al. [2015] the authors take a Bayesian approach, and use a spike and slab

prior distribution (George and McCulloch [1997] to deal with the potentially large number of

parameters.

Alternatively one might want to add a penalty term of the form ‖ω‖0 =
∑N

i=1 1ωi 6=0, directly

penalizing the number of non-zero weights.

4.4 The Proposed Method

Our recommendation is to choose, on subjective grounds, a subset of the five restrictions, (NO-

INTERCEPT)-(CONSTANT-WEIGHTS), to impose as hard restrictions. Within the set of

(µ, ω) satisfying these restrictions we propose minimizing

Q
(
µ, ω

∣∣Y obs
t,pre,Y

obs
c,pre

)
=
∥∥Y obs

t,pre − µ− ω>Y obs
c,pre

∥∥2
2

+ λ ·
(

1− α
2
‖ω‖22 + α‖ω‖1

)
,

(OBJECTIVE FUNCTION)

Whether or not to impose any of the restrictions, and if so which, depends on the substantive

application, as well as on the number of time periods and the number of control units. In

practice the results are more credible if the intercept is not too large, so that the treated unit

is not too different from the control units. It is also more plausible if the control units exhibit

similar patterns over time as the treated units, so that the weights sum up to something close to

one. With a sufficient amount of data, however, one may wish not to impose those restrictions

exactly.

As raised before, an important question is the choice of the parameters of the penalty term,

12



λand α. There are three issues that requires slight modifications to standard approaches to

regularization here. First, we do not want to scale the covariates, because that would change

the interpretation of the weights. Without normalization the restriction that the weights sum

up to one is an important one to consider. With the normalization this would no longer be

the case. Second, the weights are likely to sum up to a number close to one, so that shrinking

towards zero needs to be done with care. Third, if one actually imposes the exact adding up

restriction on the ωi, as well as the non-negativity constraint, lasso-style L1 regularization does

not work because the penalty term would not depend on the values of the ωi.

Given these issues we propose a particular cross-validation procedure, similar to that used

by Abadie et al. [2010] for testing hypotheses, without normalizing the covariates. Consider the

elastic net procedure with no restrictions on µ and ω. We treat each control unit in turn as

the pseudo-treated unit, to determine the optimal value for the tuning parameters. When we

use unit j as the pseudo-treated unit, given tuning parameters α and λ, this leads to a set of

weights ω̂en
i (j;α, λ) and an intercept µ̂en(j;α, λ):

(µ̂en(j;α, λ), ω̂en(j;α, λ)) = arg min
µ,ω

T0∑
t=1

(
Y obs
j,t − µ−

∑
i6=0,j

ωi · Y obs
i,t

)2

+λ ·
(

1− α
2
‖ω‖22 + α‖ω‖1

)
Given these weights we predict the outcome for unit j in period T as

Ŷj,T (0) = µ̂en(j;α, λ) +
∑
i6=j

ω̂en
i (j;α, λ) · Y obs

i,T .

The performance of the model is then evaluated by computing the mean squared error, for

period T , averaged over all control units

CV en(α, λ) =
1

N

N∑
j=1

(
Y obs
j,T − µ̂en(j;α, λ)−

∑
i6=0,j

ω̂en
i (j;α, λ) · Y obs

i,T

)2

.
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We choose the value of the tuning parameter that minimizes the cross-validation error,

(
αen
opt, λ

en
opt

)
= arg min

α,λ

{
CV en(α, λ)

}
.

We consider a finite set of values for α ∈ {0.1, 0.1, . . . , 0.9}, and λ ∈ (0,∞).

5 Four Alternative Methods

Here we discuss four alternative methods for choosing µ and ω to put the proposed method

in perspective. A number of these have been previously proposed, although some appear not

to have been considered. More importantly, the current set up allows for a comparison in a

common setting. We compare them in terms of the restrictions imposed, and the objective

functions chosen, as described in the previous section.

5.1 Difference-in-Differences

The original difference-in-differences method (e.g., Ashenfelter and Card [1985], Card [1990],

Card and Krueger [1994], Meyer et al. [1995], Angrist and Krueger [2000], Bertrand et al. [2004],

Angrist and Pischke [2008], Athey and Imbens [2006]) can be thought of as solving the opti-

mization problem (5.1) subject to (ADDING-UP), (NON-NEGATIVITY), and (CONSTANT-

WEIGHTS). In other words, it solves

(
µ̂did, ω̂did

)
= arg min

µ,ω

{
(Y obs

t,pre − µ− ω>Y obs
c,pre)

>(Y obs
t,pre − µ− ω>Y obs

c,pre)

}
. (5.1)

imposing the restrictions (ADDING-UP), (NON-NEGATIVITY), and (CONSTANT-WEIGHTS).

This implies the ω̂did do not depend on the data, leading to

ωdid
i =

1

N
, i = 1, . . . , N,

µ̂did =
1

T0

T0∑
s=1

Y obs
0,s −

1

N · T0

T0∑
s=1

N∑
i=1

Y obs
i,s .
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This in turn leads to estimates for Y0,t(0), for the periods t ≥ T0 + 1, equal to

Ŷ did
0,t (0) = µ̂did +

N∑
i=1

ω̂did
i · Y obs

i,t (5.2)

=

(
1

T0

T0∑
s=1

Y obs
0,s −

1

N · T0

T0∑
s=1

N∑
i=1

Y obs
i,s

)
+

1

N

N∑
i=1

Y obs
i,t . (5.3)

Let us consider this in the special case with a single pre-treatment period, T0 = 1. In that case

there is no unique solution for (µ, ω), and the DID approach addresses this by fixing ω at 1/N ,

and using the pre-treatment period to estimate µ as µ̂did = Y obs
0,1 − 1

N

∑N
i=1 Y

obs
i,1 . This leads to

τ̂did =

(
Y obs
0,2 −

1

N

N∑
i=1

Y obs
i,2

)
−

(
Y obs
0,1 −

1

N

N∑
i=1

Y obs
i,1

)
.

The constant weights restriction takes care of any need to regularize the estimation of the

weights ω. With that restriction there is a unique solution for µ even in the case with a single

pre-treatment period. Xu [2015] considers generalizations that allow for a factor structure.

5.2 The Abadie-Diamond-Hainmueller Synthetic Control Method

The original synthetic control method of Abadie et al. [2010] imposes the restrictions that the

intercept is zero, and that weights are non-negative and sum up to one, (constraints (NO-

INTERCEPT), (ADDING-UP) and (NON-NEGATIVITY)). The weights ω̂adh are chosen to

match both the pre-treatment outcomes and a set of fixed characteristics, denoted by the M -

component vector Xi for unit i. We first discuss the ADH implementation in the general case

with covariates and then return to the special case with no covariates. Recent work on this

method includes Hahn and Shi [2016] who focus on inference for the treatment effect.

Given an M ×M positive semi-definite diagonal matrix V , define the weights ω̂(V ) as the
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solution

(ω̂(V ), µ̂(V )) = arg min
ω,µ

{(
Xt − µ− ω>Xc

)>
V
(
Xt − µ− ω>X

)}
(5.4)

s.t.
N∑
i=1

ωi = 1 and ωi ≥ 0, i = 1, . . . , N, µ = 0

These weights minimize the distance between the treated unit and the weighted combination of

the other units in terms of the covariates Xi. (Note that in the general ADH approach these

covariates may include some or all of the pre-treatment Y obs
i,t ).

The diagonal weight matrix V is then chosen to match the lagged outcomes:

V̂ = arg min
V=diag(v1,...,vM )

{(
Y obs

t,pre − ω̂(V )>Y obs
c,pre

)> (
Y obs

t,pre − ω̂(V )>Y obs
c,pre

)}
(5.5)

s.t.
M∑
m=1

vm = 1 and vm ≥ 0, m = 1, . . . ,M.

The ADH weights are then ω̂adh = ω̂(V̂ ) (and µ̂adh = 0). In general the researcher has a choice

regarding what to put in the vector of pretreatment variables Xi. This vector may include some

or all of the pretreatment outcomes Y obs
i,t for t = 1, . . . , T0.

5.3 Constrained Regression

Now consider the special case of the ADH method where Xi is equal to the full vector of

pretreatment outcomes Yi,t for t = 1, . . . , T0, and contains no other variables. In that case the

unconstrained weights that minimize (5.5) are the weights that solve (5.4) with V equal to the

N × N identity matrix. We refer to this special case of the ADH method as the constrained

regression. We can characterize it slightly differently by fitting it into the general framework
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(5.1):

ω̂constr = arg min
µ,ω

{
(Y obs

t,pre − µ− ω>Y obs
c,pre)

>(Y obs
t,pre − µ− ω>Y obs

c,pre)

}
(5.6)

s.t. µ = 0,
N∑
i=1

ωi = 1 and ωi ≥ 0, i = 1, . . . , N.

The original version of the ADH approach, as discussed in Section 5.2, makes it clear why it

imposes the NO-INTERCEPT restriction. As discussed before in Section 4.2, in an application

with qualitatively different covariates, it makes little sense to allow there to be a difference

between the treated unit and the weighted average of the control units that is the same for

different covariates. In the context where the pretreatment variables are all the same variable,

however, just measured at different points in time, allowing those differences to be different from

zero but requiring them to be the same can be a meaningful relaxation, the way it is in standard

DID methods. For the constrained estimator, therefore, there is no particular reason why one

would impose the restriction that the intercept is zero, and this restriction can easily be relaxed.

Similarly the adding-up restriction can be relaxed without any problems. Note that we do not

claim that one should always relax these restrictions, our point is that these are substantive

restrictions that should be considered on their merit.

Relaxing the zero intercept restriction (NO-INTERCEPT), but maintaining the adding-up

restriction (ADDING-UP), makes it easier to compare the constrained regression (which is close

to the original ADH estimator) and the standard difference-in-difference approach. The re-

maining difference is that the DID imposes the restriction that the weights ωi are all identical

(restrictions (ADDING-UP) and (CONSTANT-WEIGHTS)), implying that the weights are all

equal to 1/N . Relaxing this restriction, and allowing the weights to vary, is arguably the key

innovation of the ADH approach over the standard DID approach. In the constrained regression

version it becomes clear that this improvement can be achieved without any additional restric-

tions. Moreover, we can relax the other restrictions, (ADDING-UP) and (NON-NEGATIVITY),

as well, if there is a sufficiently large number of pretreatment periods.

In both the original ADH approach and the constrained regression version, there need not be

a unique solution for ω. Because of the non-negativity constraint on the ω the question whether

this is an issue in a specific application is not simply a matter of counting the number of pre-
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treatment periods and the number of controls, but with a sufficiently large number of control

units it is likely that there are multiple solutions. This problem is exacerbated by relaxing the

zero-intercept restriction, but it also can arise in the presence of that restriction.

5.4 Best Subset Selection

An alternative approach is to select the set of best controls. For a fixed number of controls, say

k, the optimal weights solve

(
µ̂subset, ω̂subset

)
= arg min

µ,ω

{
(Y obs

t,pre − µ− ω>Y obs
c,pre)

>(Y obs
t,pre − µ− ω>Y obs

c,pre)

}
, (5.7)

s.t.
N∑
i=1

1ωi 6=0 ≤ k.

The tuning parameter of the model is the number of weights that are allowed to be different

from zero, k. Because of the small sample sizes, using cross-validation may not be an attractive

way to go in practice. Instead we propose using a prior distribution for the number of non-

zero weights, using a Poisson distribution with mean and variance equal to β. In practice we

recommend setting β = 3.

Part of the differences between this best-subset method, the ADH method and the related

constrained regression concerns restrictions NO-INTERCEPT and ADDING-UP. Both the

restriction that the intercept is zero, and the restriction that the weights sum up to one can be

relaxed easily in the constrained regression. A more important between the two methods is the

fact that the best subset selection does not require the weights to be non-negative. A special

case is the best single control which uses the pre-treatment data to select a single control with

weight equal to one:

(
µ̂single, ω̂single

)
= arg min

µ,ω

{
(Y obs

t,pre − µ− ω>Y obs
c,pre)

>(Y obs
t,pre − µ− ω>Y obs

c,pre)

}
(5.8)

s.t. µ = 0,
N∑
i=1

ωi = 1 and ωi ≥ 0, i = 1, . . . , N
N∑
i=1

1ωi 6=0 = 1.
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This leads to choosing the control unit j that minimizes

j = arg min
i∈{1,...,N}

(
Y obs

t,pre − Y obs
i,pre

)> (
Y obs

t,pre − Y obs
i,pre

)
.

In many difference-in-differences applications with a single treatment and single control group,

researchers informally choose the control group. The best single control approach formalizes

that selection process by choosing the single control unit that is the most similar to the treated

unit prior to the treatment. One might also wish to relax the restriction that the intercept is

zero, to gain flexibility.

5.5 Covariates

So far the discussion has almost exclusively been about the setting where the only pre-treatment

variables were the lagged outcomes. With additional pre-treatment variables there are other

issues. First, we should note that in practic these other pre-treatment variables tend to play a

relatively minor role. In terms of predictive power the lagged outcomes tend to be substantially

more important, and as a result the decision how to treat these other pre-treatment variables

need not be a a very important one.

As raised in the discussion on the role of the intercept, we cannot treat the pre-treatment

variables in the same way as the lagged outcomes. Here we suggest one alternative. Prior to

choosing the weights and possibly the intercept, we can regress the control outcomes on the pre-

treatment variables and calculate the residuals. Then we use the residuals in the approaches

discussed in the previous sections.

6 Inference

To conduct inference one needs to be explicit about what is random in the repeated sampling

procedure. Here we discuss two methods to do so based on random assignment of the treatment.

In the first case the unit that is treated is choosen at random, and in the second case the period

in which the treated unit first receive the treatment is choosen at random. We also discuss a

method for combining the two methods. This type of randomization inference is in the spirit of

the way p-values are calculated in Abadie et al. [2010], Firpo and Possebom [2016], Ando and
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Sävje [2013], although here we focus on standard errors rather than p-values. See also Hahn

and Shi [2016], Ferman and Pinto [2016] for a discussion in settings with a large number of

pre-treatment periods.

In general the estimators can be be written as

τ̂ = Y obs
0,T − Ŷ0,T (0).

Because the treatment effect is τ = Y0,T (1) − Y0,T (0) = Y obs
0,T − Y0,T (0), the error is τ̂ − τ =

Y0,T (0)− Ŷ0,T (0). Hence the variance is

V(τ̂) = E
[
(τ̂ − τ)2

]
= E

[(
Y0,T (0)− Ŷ0,T (0)

)2]
.

It is useful here to have a general notation for the estimator. First, we use Y j,t
i,s (0), for i ≤ j

and s ≤ t as shorthand for the matrix where we use units from the i-th unit up to the j-th unit

and time periods from the s=th time period up to the t-th time period:

Y j,t
i,s =


Yi,t(0) . . . Yj,t(0)

...
. . .

...

Yi,s(0) . . . Yj,s(0)

 ,

and Y
(i),t
(i),s as shorthand for the matrix where we leave out unit i from the matrix with all units,

Y N,t
0,s :

Y
(i),t
(i),s =


Y0,t(0) . . . Yi−1,t(0) Yi+1,t(0) . . . YN,t(0)

...
. . .

...
...

. . .
...

Y0,s(0) . . . Yi−1,s(0) Yi+1,s(0) . . . YN,s(0)

 .

Now suppose that we wish to predict Yi,t(0). There are three set of data that will be used to

do so. First, outcome values for unit i in periods 1 through t− 1, contained in Y i,t−1
i,1 . Second,

the period t outcomes for other units, Y
(i),t
(i),t , and third, the earlier outcomes for other units,

Y
(i),t−1
(i),1 . The estimators for the missing Y0,T (0) discussed so far can be written as functions of
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these three matrices:

Ŷ0,T (0) = g
(
Y 0,T−1

0,1 ,Y
(0),T
(0),T ,Y

(0),T−1
(0),1

)
.

6.1 Random Assignment of the Unit

In the first approach to doing inference we view the treated unit as exchangeable with the control

units. We estimate the variance by analyzing the data as if one of the control units had been

treated. Had unit i been treated, we would have estimated Yi,T (0) as

Ŷi,T (0) = g
(
Y i,T−1
i,1 ,Y

(0,i),T
(0,i),T ,Y

(0,i),T−1
(0,i),1

)
.

We actually observe Yi,T (0) = Y obs
i,T , and so we can calculate the squared error (Yi,T (0)−Ŷi,T (0))2,

which, if the treated unit was randomly selected, an unbiased estimator for the variance. We

can do this for all control units, leading to

V̂c =
1

N

N∑
i=1

(
Yi,T (0)− g

(
Y i,T−1
i,1 ,Y

(0,i),T
(0,i),T ,Y

(0,i),T−1
(0,i),1

))2
. (6.1)

This is our preferred estimator for the variance and the one we use in the applications.

6.2 Random Selection of the Treatment Period

An alternative is to view the period in which the treated unit was initially treated as randomly

selected. This leads to

V̂t =
1

s

T0∑
t=T0−s+1

(
Yi,t(0)− g

(
Y 0,t−1
i,1 ,Y

(0),t
(0),t ,Y

(0),t−1
(0),1

))2
.

6.3 Combining the Methods

Finally, we can combine the two approaches, leading to

V̂ct =
1

N · s

N∑
i=1

T0∑
t=T0−s+1

(
Yi,t(0)− g

(
Y i,t−1
i,1 ,Y

(0,i),t
(0,i),t ,Y

(0,i),t−1
(0,i),1

))2
.
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7 Three Applications

We use data from three of the seminal studies in this literature, the California smoking example

from Abadie et al. [2010], the West Germany re-unification example, from Abadie et al. [2014],

and the Mariel boatlift (Card [1990], Peri and Yasenov [2015]).

7.1 The California Smoking Application

Abadie et al. [2010] analyze the effect of anti-smoking legislation in California, enacted in Jan-

uary 1989. We re-analyze their data using the methods discussed in this paper. The outcome

of interest is the per capita smoking rate. We use data from 1970 to 2000. In Figure 1 we

present the actual per capita smoking rate in California, as well as the per capita smoking rate

for a synthetic control version of California, constructed using the five estimators discussed in

this paper. These five estimators include the original ADH estimator, the constrained estimator

with the same restrictions, µ = 0,
∑N

i=1 ωi = 1 and ωi ≥ 0, the best subset estimator, and DID

estimator, and the elastic net estimator. For the best subset estimator the optimal number of

controls, based on cross-validation, is 1. For the elastic net estimator the tuning parameters,

choosen by cross-validation, are α = 0.1 and λ = 45.5, leading to 8 states with non-zero weights,

all of them positive.

Table 1: California: Parameters

Model
∑

iwi α
Original synth. 1 0
Constrained reg. 1 0
Elastic net 0.55 18.5
Best subset 0.32 37.6
Diff-in-diff 1 −14.4
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Figure 1: Tobaco Control Program in California
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7.2 The West Germany Re-Unification Application

In the second application we revisit the analysis by Abadie et al. [2014] of the effect of the

German re-unification on West Germany’s economy. The outcome is per capita GDP, with data

from 1960 to 2004. We compare the same set of five estimators. Here the best subset estimator

selects 5 control countries. For the elastic net estimator the tuning parameters, choosen by

cross-validation, are α = 0.4 and λ = 52.8, leading to 13 countries with non-zero weights, 2 of

them negative.

Table 2: West Germany: Parameters

Model
∑

iwi α
Original synth. 1 0
Constrained reg. 1 0
Elastic net 0.93 213.5
Best subset 1.01 168.5
Diff-in-diff 1 1074.1
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Figure 3: Reunification of Germany
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7.3 The Mariel Boatlift Application

In the final application we analyze the effect of Mariel Boatlift on the logarithm of weekly

wages using the data from Peri and Yasenov [2015].2 Table 3 and Figure 5 report the results

obtained for the subpopulation from 16 to 61 years old. For the best subset estimator the cross-

validation optimal number of controls is 1. Elastic net selects 22 control units (the optimal

tuning parameters are α = 0.2 and λ = 0.001).

Table 3: Mariel Boatlift: Parameters

Model
∑

iwi α
Original synth. 1 0
Constrained reg. 1 0
Elastic net 0.37 3.1
Best subset 0.69 1.5
Diff-in-diff 1 −0.04

2For the counterfactual exercise we drop the average of the logarithm weekly wages and the 1978 logarithm
weekly wages from the set of covariates used in the original synthetic control procedure.
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Figure 5: Mariel Boatlift
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