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1 Introduction

Technological standards are a central component of the modern network economy and can have significant

welfare effects. As a consequence, mechanisms behind standard development and implementation rep-

resent a major policy concern. Most modern standards are created by consensus-driven standard-setting

organizations (SSOs), and involve the voluntary participation and collaboration of many different entities:

firms, government agencies, individuals, academic institutions and research laboratories. Their willingness

to disclose and license standard-essential patents (SEPs)1 is crucial for standard implementation and its

future success. SSOs play a pivotal role in this process by ensuring that concerns about ex-post hold-up

are minimized through proper disclosure of SEPs and fair, reasonable and non-discriminatory (FRAND)

licensing commitments made by patent owners.

The hold-up problems in standard-setting usually come in one of two flavors, the second of which

motivates the exploration in this paper. In the first variant, ex-post hold-up can arise when patent owners

strategically underdisclose their patents, so to avoid FRAND provisions. The case of Rambus is a prime

example.2 Rambus failed to disclose its existing DRAM related patents and patent applications during a

standard-setting process at JEDEC SSO, and suspiciously amended some of its new patent applications to

read on the standard more closely. This kicked off a series of lawsuits that plagued the DRAM industry for

more than a decade and led to an indecisive outcome.3

In the second variant, a firm making an FRAND licensing commitment ex-ante can decide to capitalize

on the vagueness of the term “reasonable” and attempt to extract unreasonably high royalty payments ex-

post. A recent high-profile legal battle between Microsoft and Motorola illustrates this issue remarkably well.

In this case, after being sued by Motorola for patent infringement, Microsoft countersued Motorola, accusing

it of breaching its FRAND commitments made when disclosing SEPs to two different standards: IEEE 802.11

and ITU-T H.264.4 Microsoft has been widely using these standards in many of their flagship products,

including videogame console Xbox 360 and Windows software, and accused Motorola of requesting

unreasonable royalties for their SEPs. In a landmark 2013 decision, District Court Judge James L. Robard

sided with Microsoft and reduced royalties due to Motorola to $1.8 million per year from almost $4 billion

per year originally sought by them. In addition, the court ordered Motorola to pay $14.5 million back to

Microsoft in compensatory damages.5 However, the case did remain in court for more two years, and was

1In the course of the standardization process, there are usually many equally viable paths towards a technological solution, and
SSOs often choose only one of them. In doing so, SSOs transform relevant patents into “standard-essential patents” and may allow
their owners to command high royalties, even when other patents could have offered comparable value, had a different technological
path been chosen.

2See Complaint, In re Rambus Inc., No. 9302 (F.T.C. June 18, 2002).
3http://en.wikipedia.org/wiki/Rambus#Lawsuits.
4See Microsoft Corp. v. Motorola Inc., 696 F.3d 872 (9th Cir.2012).
5Awarded amount comprised legal defense costs, and breach-of-contract damages incurred by Microsoft in relocating its European
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very costly to resolve. Given the relative frequency of this behavior6, it may require a substantial change

in patent disclosure policy and imposition of structured price commitments by patent owners to improve

ex-post outcomes [Lerner and Tirole, 2015].

The type of patent disclosure made by organizations to SSOs varies. In some cases, these disclosures are

very specific, listing actual patent award and/or application numbers potentially essential to the standard.

In other cases, they are much broader, indicating only that the organization has potentially essential

intellectual property (IP) and that any such IP will be made available on FRAND terms. The latter are

known as generic patent disclosures or blanket disclosures.

This paper analyzes disclosure and selection mechanisms in standard-setting. First, we develop a model

of functionality build-up by an SSO. During the standardization process, the SSO comes upon a potential

functionality. Implementing this functionality may require acquiring a license to a commercial patent. If so,

the patent may be minor, in the sense that there may be alternative routes to implementing the functionality

that bypass the patent, or major, in which case a license is the sole path to implementation. Both minor

and major innovations are socially useful, as they enable or at least speed up the incorporation of the

functionality into the standard. The IP owner has an incentive to disclose so as to steer the technology

toward his own solution, but he may be tempted to inflate the importance of his patent.

The SSO indeed does not know which patents are major or minor. To this purpose, it can require

disclosure of essential patents, and then conduct its own investigation to confirm that the patent is a major

one, or to find a substitute to the disclosed patent. This investigation is costly: it consumes engineering and

legal resources and delays the standard’s completion. In this respect, the model follows the tradition of

costly-state-verification modeling [Townsend, 1979].

Generic and specific disclosures differ in several dimensions. The dimension captured in the model

is that specific disclosures are meant to cover more important patents. We formalize this by making

the realistic assumption that FRAND enforcement is more lenient with specific rather than with generic

disclosures: the patent can fetch a higher royalty (we later investigate the foundations of such a policy). We

thus view specific disclosures as claims to essentiality.

This framework allows us to investigate a number of empirically relevant questions: for example, how

do FRAND requirements, the importance and urgency of the standard affect the incentive to disclose, the

expediency of the standard-setting process, and the probability that minor patents be treated as major

ones (i.e. are “standard essential” without being per se essential)? Among other predictions, we show that

downstream presence makes IP owners more likely to make generic disclosures.

distribution center from Germany to Netherlands (to mitigate Motorola’s initial injunction).
6For example, see Broadcom Corp. v. Qualcomm Inc., 501 F.3d 297, 310 (3d Cir. 2007.)
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We then evaluate patent disclosures made to seven large SSOs and find results consistent with theoretical

predictions. We manually examine 10,258 patent disclosures made by 533 different entities to seven large

SSOs through the end of 2012. This results in over 140,000 standard-eligible patents. Disclosed patent

numbers are standardized, and all entity names are harmonized and mapped to their respective parent

companies at the time each disclosure was made. When the probability of a patent being disclosed to an SSO

via specific disclosure is regressed on a set of well-known patent quality measures and control variables, the

coefficients are typically positive and significant, implying that higher quality patents are more likely to be

disclosed in specific disclosures. When the probability of a firm using a specific disclosure is regressed on

that firm’s position in the value chain relative to the standard, a set of firm size measures and an interaction

of the two, all interaction coefficients are negative and significant. This result is consistent with theoretical

predictions that larger, downstream firms are less likely to disclose their patents in specific disclosures. Our

specifications account for SSO, industry and year fixed effects. Both findings are consistent with theoretical

predictions. At the same time, we realize that the interface of patent pools and standardization bodies are

an extremely complex phenomenon, and that neither the model nor the empirics adequately captures the

complexity of these interactions. It is our hope that this work will help illustrate the issues in this setting,

and encourage future researchers.

Our study contributes to several strands of literature. It builds on the work of Farrell et al. [2007], Lemley

and Shapiro [2013], and Lerner and Tirole [2014, 2015], among others, who show that simple FRAND

patent licensing commitments create opportunities for strategic behavior of patent owners, only to induce

outcomes that are ex-post inefficient. When it comes to patent disclosures, this paper shows that patent

owners indeed behave strategically and that asymmetric information presents a problem that SSOs need

to consistently grapple with. A related empirical study is Simcoe et al. [2009] who investigate the patent

disclosure strategies to SSOs, link them to ex-post patent litigation, and show that they heterogeneously

impact small and large-firms’ incentives to litigate. In other related studies, Axelrod et al. [1995] examine

firm choices to join standardization alliances, conditional on firm size and the presence of close competitors

in those alliances, and Simcoe [2012] shows that strategic rent-seeking behavior of individual participants

can lead to delays in standard-setting processes, especially when commercialization pressures are high.

The remainder of this paper is organized as follows: Section 2 discusses technical standards and firm

disclosure strategies, and presents the economic model. Section 3 describes and summarizes the data,

presents the hypotheses, empirical specifications and the results. Section 4 concludes the paper.
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2 Technical Standards and Patent Disclosures

2.1 Background

As a set of one or more technical specifications, a technical standard codifies a collection of common design

rules for a product or a process.7

Standards have many flavors and can emerge in a multitude of ways. Some are developed privately by

a single entity: a firm or government, for example. However, coordinated standard development through

SSOs has been very common in recent decades. In the course of the standard-setting process, SSOs play

several critical roles: they identify multiple paths towards a technological solution, they coordinate on one

approach among conflicting alternatives and regulate the behavior of members.

One of the most important issues under the aegis of SSOs is ensuring that firms disclose relevant

patents and agree not to price licenses to their patents too aggressively. Largely due to high coordination

costs, sizable SSOs like the ETSI or the IEC usually require all of their members and participants to

disclose any patents they believe may be standard-essential. This disclosure requirement serves multiple

purposes, which are captured in the model: it directs the standard-setting process to take note of disclosed

technologies, it forces disclosing parties to make licensing commitments (usually concurrent with the

disclosure), it sends the signal to the market about the potential implementation costs down the line, and

it provides valuable information for legal authorities in case of a dispute. These disclosure policies vary

across different SSOs, and are usually difficult to change once set [Bekkers and Updegrove, 2012].

2.2 Patent Disclosure Practices – Firms’ Perspective

We interviewed nearly one dozen practitioners regarding their organizations’ attitudes and perspectives

about the disclosure of IP to standards. These included lawyers and business development executives at

companies specializing in software and telecommunications, SSO executives, and academic technology

transfer officials.

The attitudes of the organizations towards disclosures of IP varied dramatically. We found a variety of

explanations for undertaking generic or specific disclosures. Many of these are very consistent with our

model, while others suggested a broader set of considerations we did not attempt to capture for brevity.

7See, for example, the definition for the purpose of the National Technology Transfer and Advancement Act (NTTAA):
http://www.nist.gov/standardsgov/definestandards.cfm [last accessed: 06/10/2015].
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2.2.1 Rationales for Generic Disclosure

Many organizations are reportedly more likely to undertake generic disclosures if they are not seeking to

license SEPs, but instead to make money off downstream products. One of the main reasons for undertaking

generic disclosures was search cost containment: making a generic disclosure avoids the need for a patent

search. Firms often found the process of sifting through patents to identify IP relevant to a standard to be

an arduous and expensive task, which can consume thousands of hours of patent attorney time.

Since standards and patent applications evolve, sometimes dramatically, time considerations also lead

firms to shy away from specific disclosures. An initial specific disclosure may not be relevant if the standard

changes considerably during the formulation process. Similarly, patent applications may add or lose claims

as they move through various patent offices, and may have a different scope when finally issued.

Specific disclosures can also lead to fears of being exposed to antitrust claims. If the firm makes a

specific disclosure, there often is believed to be an implicit guarantee that all relevant IP has been disclosed.

If the firm neglects to include all IP that could be relevant, even if the omission was unintentional, the firm

may be vulnerable to antitrust claims if it seeks to enforce its patent portfolio. On the other hand, if the

firm is perceived to disclose too many patents, there can also be accusations of delaying the standards

process (as other firms seek to assess the disclosed patents) and potentially preemptively discouraging the

effort entirely. For instance, to contain over-disclosures, the European Commission recommends that firms

scrub lists of disclosed patents at the end of the standard-setting process, and include standard-relevant

patents only.

2.2.2 Rationales for Specific Disclosure

Other firms prefer specific disclosures, particularly if they have valuable patents that are highly relevant for

the standardization effort. Companies which are expecting to undertake licensing programs of SEPs very

carefully track how different patents map to different standard functionalities. Thus, they are much more

likely to have a good sense of which patents are relevant to a standardization effort, and to be capable of

generating the information needed for a specific disclosure with less effort.

Specific disclosures help the firm with litigation and licensing negotiations if they are seeking to

monetize SEPs. Even if the presence or absence of an SSO disclosure is not explicitly a criterion used in

judicial decisions in patent infringement cases, the fact that the firm has undertaken such disclosure looks

more favorable in court, particularly in a jury trial. In addition, many firms believe that the nature of the

commitment to license with specific disclosures is more limited. In particular, with a specific disclosure,

in many cases, the firm’s commitment to license may only cover the listed patents. Generic disclosure
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ensures that all relevant patents will be made available on FRAND terms, which may not be the case for

a specific disclosure when the standard evolves dramatically between the time of the disclosure and the

promulgation of the final version.

Moreover, even if the SSOs do not explicitly require participants to engage in a patent search, there

is often informal pressure to do so from other participants. Many SSO participants may prefer specific

disclosures to ensure that patent search and examination costs are not passed down from one firm to all

other firms in the group. In addition, they may prefer specific disclosures to avoid potential standard

adoption delays, and obfuscation of user-relevant licensing information. Given the high frequency of

repeated interaction among firms participating in the standard-setting processes, these informal mechanisms

can be sufficiently powerful to complement formal SSO policies.

2.2.3 SSO Role

Of course, these decisions regarding disclosure may be affected by the rules of the SSOs themselves. In

some cases, like the IEC, specific disclosures are strongly encouraged because they reduce search costs

and enable SSOs to make more informed decisions about which patents are relevant and who owns them.

The IEC, the ISO and the ITU common patent declaration policy highlights specific patent information as

"desired but not required".8 Current disclosure policy at the ETSI, another large SSO, mandates that patent

holders disclose specific patents in order to increase the transparency of the standard-setting process.9

Disclosure of essential patents and provision of licensing commitments are some of the main obligations of

the ETSI members, and participation in various technical groups is conditioned on participating entities

becoming members of the ETSI first.

2.3 A model of standard setting disclosure

The following model captures some features of the disclosure process. We refer to the discussion section

for a broader perspective.

8Some standard-setting bodies and consortia operate under the ground rules that all relevant patents will be available un-
der FRAND terms—or royalty-free ones—unless clearly indicated. Thus, firms must explicitly identify which patents are not
covered by these rules, and in some cases, must explain how these patents are relevant to the standard (normally, there is no
requirement for such an explanation). For example, see ITU/ISO/IEC, Guidelines for Implementation of the Common Patent Policy
for ITU-T/ITU-R/ISO/IEC, Edition 3.0, June 26, 2015 (http://www.iec.ch/members_experts/tools/patents/documents/ITU-T_ITU-
R_ISO_IEC_Common_Guidelines_2015-06-26.pdf, accessed May 12, 2016). The first version of the Guidelines for Implementation of the
Common Patent Policy for ITU-T/ITU-R/ISO/IEC was published on March 1, 2007.

9Dirk Weiler (The ETSI Board Chairman), telephone conversation with authors, February 2015.
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2.3.1 Patents

A functionality, whose implementation requires some knowledge, raises the end-user’s gross surplus10 from

V − e to V, and so the parameter e measures the essentiality of the functionality. We will assume that this

knowledge is covered by a patent, which its owner may be eager to monetize. Were an undominated open

source solution be readily usable to implement the functionality, SSO participants (except the owner of a

commercial alternative) would reveal its existence and the functionality would be adopted right away. Thus,

the interesting case arises when the currently dominant solution is patented. We make the “technology

push” assumption that the existence of a patent suggests some new application for this technology, and

that the patent owner proposes the new functionality.

There are two types of patents:

• Essential/major patents (type H innovations) are depicted in this model by the assumption that there

is a single route to implement the corresponding functionality, so the patent cannot be bypassed;

actually, we assume that it cannot even be duplicated within the context of the standard setting

process. As a consequence, unless an SSO participant comes up with the relevant IP during the SS

process, the functionality will not be embedded in the standard as there might be no reasonable

technical solution, in which case compliance with the standard is infeasible11.

• Minor patents (type L innovations) are patents corresponding to an easier innovation, and for which

there exists an alternative route. But in order to find this alternative route within the timeframe of

standard setting, the SSO must build upon the knowledge embedded in the existing patent; put

differently, the SSO cannot find a solution from scratch within the time frame. We further assume

that bypass of the patent requires redefining the functionality in such a way that it is consistent with

the alternative route; so bypass for simplicity is feasible at the SS stage, but not after the standard has

been set.

Ex ante, the patent reading on the functionality has probability ρ of being major and 1− ρ of being

minor. Regardless of whether the patent is major or minor, looking for an alternate route (undertaking an

“inspection”) is costly in two ways: first, it delays the SS process, implying a discount factor δ < 1. Second,

the SSO draws a random cost c from smooth distribution F(c) on [0, +∞); think of c as representing the

10What we mean by “gross” is that the utility of users is equal to this gross surplus minus the royalty fee p. As we will see shortly,
this gross surplus is already net of the prices charged by the downstream implementers.

11An alternative modeling choice would assume that it could be the case that there is a solution, but it will be owned by someone
who does not participate in the process, creating a substantial hold-up concern.
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engineering and legal resources involved in the inspection.12 Thus if p is the royalty licensing fee and if, as

we later assume in the basic version of the model, the SSO internalizes the end-users’ welfare, the SSO’s

payoff is V − p if there is no inspection and δ(V − p)− c if there is one. The cost c is drawn after the firm’s

disclosure choice (see timing below).

The firm wants to participate in the SS process so as to steer the standard towards its own IP.13 For

simplicity, let us assume that firm i knows whether its IP is essential or minor (thus ρ is the probability

assigned by the SSO to firm i having an essential patent conditional on having a patent reading on the

functionality).

2.3.2 Players

There are n firms, indexed by j, that differ

• in their downstream presence (a standard is valued by firm j at downstream profit θjπ, where Σjθj = 1:

θj is firm j’s share of total profit of implementers, for instance θj = 0 for a pure IP player/non

practicing entity, and π is the total implementer profit),

• and in who owns this intellectual property: firm i owns the intellectual property.

There is a single functionality, and (at most) one patent reading on this functionality, so market power

in the upstream (IP) market is a potential issue.

If the functionality is adopted and the intellectual property has not been bypassed, the intellectual

property will be able to command FRAND price pH < e in case of a specific disclosure and pL < pH in

case of a generic one. As we will see, it may not be the case that a minor patent fetches pL. Namely, the

owner of a minor patent may masquerade and pretend the patent is essential. He will then receive either

licensing price pH , or else 0 if his patent is bypassed. The two prices pL and pH are taken as exogenous at

this stage (that’s what a judge or jury would award in expectation if this were to go to court); later on, we

will discuss the considerations involved in the court’s setting of these two prices (optimal FRAND system).

Implementers are differentiated and compete in an oligopolistic fashion for end-users. We assume,

for expositional simplicity only, that the royalties are fully passed through to end-users14 and that the IP

owner’s profit is equal to the royalty fee p plus some downstream profit θiπ. An imperfect pass-through

would not affect the qualitative conclusions, but it would complicate the analysis. Thus, the downstream

prices are equal to {p∗j + p}j=1,...,n where {p∗j } would be the equilibrium prices if i’s patent were to fall into

12The uncertainty about c serves to create some uncertainty about what the SSO will do. Alternatively, we could have assumed
that the SSO receives a private signal as to how likely it is that the patent is major.

13This might not be the case if the SSO were able to find a solution, but might not notice that it is covered by existing IP, giving rise
to a potential hold-up.

14See Weyl and Fabinger [2013] for a general analysis of pass-through and incidence.
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the public domain. The gross surplus V can thus be interpreted as V0 − Σj p∗j , where V0 is the gross surplus

brought about by the standard.

Illustration. To obtain these two properties, suppose that total demand for the technology by end-users

over the relevant price range is fixed at X = 1.15 Let Xj(p1, . . . , pn) denote the demand for implementer j,

with ΣjXj = 1. Because the relative attractiveness of offerings is invariant when all prices are raised by an

equal amount and because total demand is constant, we assume that Xj(p1 + p, . . . , pn + p) = Xj(p1, . . . , pn).

Suppose that firm i, the owner of the patent reading on the functionality, can levy royalty p on the other

implementers and that the marginal distribution cost is di. Then, firm i maximizes over pi

(pi − di)Xi(pi , p−i) + p[1− Xi(pi , p−i)] = (pi − di − p)Xi(pi , p−i) + p,

while a royalty-paying firm j maximizes over pj

(pj − dj − p)Xj(pj, p−j).

Note that firm i de facto has opportunity cost p, and so the equilibrium prices are pj = p∗j + p for

all j, where p∗j is the equilibrium price when p = 0.16 Thus there is a 100% passthrough of the royalty

to end-users (see the discussion in Section 2.3.7). And firm i’s profit takes the form θiπ + p, where

θiπ ≡ (p∗i − di)Xi(p∗i , p∗−i).

We must specify an objective function for the SSO; we will assume that the SSO stands for the interests

of the end-users. As we will observe, it is straightforward to extend the analysis to broader objective

functions. The SSO’s objective function is V − p if the SSO validates the functionality immediately, leading

to price p for the patent, and δ[V − p̃]− c if the SSO inspects, where p̃ = p if no bypass is found (major

patent) and p̃ = 0 otherwise (minor patent).

2.3.3 Timing

The timing goes as follows:

1) The SSO comes upon the potential functionality, which brings incremental value e > pH > pL if

implemented. That is, the gross user surpluses are V − e without the functionality and V with it.

2) The IP owner proposes a solution and selects a generic or specific disclosure strategy.

15We assume that equilibrium prices are not so high that consumers no longer consume the goods.
16If the price game has multiple equilibria, we assume that the equilibrium selection is not affected by p, in the sense that p shifts

all prices one-for-one.

10



3) The SSO knows that the IP solves the problem at hand, but does not know whether this is a major or

a minor innovation, i.e. whether it can be bypassed. It learns c and can either search for an alternative

(“inspect”, “try to bypass”) or not. If it succeeds, the functionality is implemented without the users’

having to pay royalties for this particular functionality.17

Essentiality inflation will refer to the propensity of the owner of a minor patent to declare its patent

essential by making a specific disclosure.

A standard-essential patent, by opposition with a per-se essential (major) patent, will be defined as a

minor patent that is declared specific and is made essential by the standard.18

We make the following assumptions (which reduce the number of cases to be considered without

altering results qualitatively):

Assumption 1 pL ≤ (1− δ)V.

Assumption 1 says that pL is reasonable enough so that it is not worth for the SSO to try to bypass even

if it knows that an alternative exists and c = 0. This means that a generic disclosure will lead to immediate

adoption of the functionality.

Assumption 2 pL + θiπ ≤ δ(pH + θiπ).

Assumption 2 means that the owner of a major innovation will never settle for pL even if a specific

disclosure led to an inspection for sure.

We will let ρ̂ denote the belief that the innovation is major conditionally on a specific disclosure (from

Assumption 2, this belief is equal to 0 in case of a generic disclosure). If y is the probability that a minor

patent falls under a specific disclosure:

ρ̂ =
ρ

ρ + (1− ρ)y
.

y thus covaries negatively with ρ̂.

2.3.4 Equilibrium

Let us first solve for the SSO’s behavior when the owner undertakes a specific disclosure. The SSO chooses

not to inspect and to embed the functionality immediately into the standard if and only if:

V − pH > δ[ρ̂(V − pH) + (1− ρ̂)V]− c.
17In this model, the absence of royalty will be the only “punishment” inflicted upon the owner of a minor patent who claims

essentiality. In practice, courts may frown upon “over-disclosure”. Due to SSO’s rational inattention, disclosing hundreds or thousands
of specific patents amounts to a generic disclosure. We leave it to future work to try to capture this notion in a multi-functionality
extension of this model.

18See footnote 1.
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Let c∗(ρ̂), a decreasing function, be defined on [ρ, 1] by:

V − pH = δ[ρ̂(V − pH) + (1− ρ̂)V]− c∗(ρ̂),

if (1− δ)V ≤ (1− δρ̂)pH and c∗(ρ) = 0 if (1− δ)V ≥ (1− δρ̂)pH . Provided that (1− δ)V < (1− δρ)pH , which

we will assume, the equilibrium does not involve automatic rubberstamping (in particular c∗(ρ) > 0). Were

this condition violated, there would be only specific disclosures.

When a specific disclosure is made, the probability of inspection is thus

x = x(ρ̂) ≡ F(c∗(ρ̂)).

Let us now turn to the disclosure decision. Note first that a separating outcome (in which the essential

patents receive a specific disclosure and the minor ones a generic disclosure: ρ̂ = 1) cannot be an equilibrium:

otherwise the SSO would never try to bypass (since c∗(1) = 0), as this would be doomed to fail. And so the

owner of a minor patent would prefer to get pH instead of pL by claiming essentiality.

Like in standard “inspection games”, the equilibrium must be in mixed strategy. This equilibrium will

be defined by three parameters: the cutoff c∗ under which the SSO attempts to bypass the patent; the

probability x = F(c∗(ρ̂)) that the SSO tries to bypass; and the belief ρ̂ that the firm has an essential patent.

We are thus led to consider two cases:

Non-informative disclosure. In this pooling equilibrium, there is systematic essentiality inflation: y = 1 and

ρ̂ = ρ. This equilibrium exists (and is the unique equilibrium) if

pL + θiπ ≤ x(ρ)δθiπ + [1− x(ρ)](pH + θiπ).

Partly informative disclosure (semi-separating equilibrium). Suppose, next, that pL + θiπ > x(ρ)δθiπ + [1−

x(ρ)](pH + θiπ) and so a pooling equilibrium does not exist. In a partially informative disclosure equilibrium,

the owner of a minor patent does not systematically claim essentiality, while the owner of an essential

patent always does. The owner of a minor patent is indifferent between a generic and a specific disclosures:

pL + θiπ = x(ρ̂)δθiπ + [1− x(ρ̂)](pH + θiπ), (1)

where

x(ρ̂) = F(c∗(ρ̂)). (2)
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Combining (1) and (2) yields.

pH − pL = x(ρ̂)[(1− δ)θiπ + pH] (3)

The LHS of (3) is the financial gain in the absence of inspection. The RHS includes the delay cost,

(1− δ)θiπ, plus the loss of royalty pH , if there is an inspection, which occurs with probability x(ρ̂).

Proposition 1 (equilibrium disclosure) The equilibrium of the disclosure game is unique. Comparative statics

are given by:

An increase in pL, a decrease in pH , an increase in the IP owner’s downstream presence (an increase in θiπ), an

increase in the urgency of the standard (a decrease in δ) all lower the fraction of false essentiality claims (ρ̂ increases,

y decreases) and hastens the SS process (x decreases). An increase in the value of the standard to users (V increases)

increases the frequency of false essentiality claims, but does not affect the speed of the SS process.19

In particular, a firm with a stronger downstream presence is more likely to go for a generic disclosure

and is also treated with less suspicion by the SSO. And generic disclosures correspond on average to lower

quality patents.

Alternative objective function for the SSO. Suppose more generally that the SSO cares not only about the

end-users, but also about the implementers and the IP owner. Let the weights put on the three groups be 1,

α and β < 1, respectively (so far we had α = β = 0). The SSO’s objective can then be written as:

(V − p) + α
[
Σj 6=i(p∗j − dj)Xj(p∗j , p∗−j)

]
+ β
[
(p∗i − di)Xi(p∗i , p∗−i) + p

]
.

It is thus proportional to

V̂ − p

where

V̂ ≡ V + [α(1− θi) + βθi]π
1− β

> V.

Applying Proposition 1, we see that the SSO’s putting weight on implementers and IP owners encourages

false essentiality claims, but overall does not affect the speed of the SS process.

19The probability of delay is [ρ + (1− ρ)y]F(c∗(ρ̂)) = ρF(c∗(ρ̂)
ρ̂ . Note that ρ̂ is determined by (2) and (3), independently of the value of

V.
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2.3.5 Optimal FRAND royalties

In this model, pH and pL perform three functions. They serve to encourage the creation of innovations,

without which the functionality might not be embedded into the standard; they determine the end-users’

cost of technology implementation; and finally they affect disclosure behavior. The first two effects depict

the usual trade-off between innovation and market power. The third one is a novel one: it calls for lowering

the difference pH − pL so as to improve participants’ behavior and economize on delay and inspection

costs.

To make progress on this issue, we must describe the R&D process prior to standard setting. We take

a simple R&D technology so as to clearly highlight the benchmark incentives in the absence of strategic

disclosure. Namely, we assume that the minor and major patents involve R&D costs iL and iH respectively,

where iL < iH . These investments costs are a priori unrelated to the parameters (c, δ) that characterize

the inspection process; for, this process builds on the shoulders of the earlier innovation. The correlation

between the difficulty of the initial discovery and that of bypassing it captures the idea that some pieces of

a technology are more complex than others.

We will focus on the case in which society wants both types of innovation to occur (otherwise a single

royalty rate would be set: p = iL if only L were to be produced20). This gives us incentive constraints:

pk ≥ ik for k ∈ {L, H}.

The end-users’ welfare can be written as:21

W(y, pH , pL) ≡ (1− ρ)(1− y)(V − pL)

+ (1− ρ)y
[∫ c∗(ρ̂)

0
(δV − c)dF(c) +

∫ ∞

c∗(ρ̂)
(V − pH)dF(c)

]
+ ρ

[∫ c∗(ρ̂)

0
(δV − c− δpH)dF(c) +

∫ ∞

c∗(ρ̂)
(V − pH)dF(c)

]
,

where

ρ̂ =
ρ

ρ + (1− ρ)y
and F

(
c∗
(

ρ

ρ + (1− ρ)y

))
≡ pH − pL

(1− δ)θiπ + pH
. (4)

Welfare W is decreasing in pL and pH , and, from Assumption 1, in y as well. Because y is increasing in

20It cannot be the case that only H is produced. Then, there would be no inspection, and the L innovation would make profit
pH − iL ≥ iH − iL > 0, a contradiction. We ignore cases in which the innovations are produced stochastically.

21We here take the point of view that the inspection cost c is borne by users, which is consistent with our assumption that the SSO
represents the end-users’ interests. Alternative assumptions concerning the incidence of c would not alter the analysis much.

14



pH ,
dW
dpH

=
∂W
∂y

∂y
∂pH

+
∂W
∂pH

< 0

and so

pH = iH (5)

Next, pL is either equal to iL (corner solution) or is given by the following first-order condition (using

the optimality of c∗(ρ̃) and the envelope theorem):

[∫ c∗(ρ̂)

0
[c + (1− δ)V − pL]dF(c) + [1− F(c∗(ρ̂))][pH − pL]

] [
− ∂y

∂pL

]
= 1− y

where ∂y/∂pL is given implicitly by (4).

Proposition 2 The optimal FRAND system either involves a single price (pL = pH , and thus makes no distinction

between generic and specific disclosures) or two prices pL ≥ iL and pH = iH . Reducing essentiality inflation requires

compressing the range of rewards pH − pL.

2.3.6 Extension: Portfolio Search

We can extend the model by introducing a cost γ > 0 of searching in one’s patent portfolio to see if one has

a relevant patent. Let β denote the probability of finding that one’s patent covers a desirable functionality.

The expected cost of “useful” search is therefore γ
β . Consistent with our previous assumptions, we can

assume that the functionality is not embedded into the standard if there has not been a search. We also

assume that the IP owner i knows only the fraction of high-quality patents in his portfolio, and thus not

whether the relevant one will have quality H or L (this assumption is not essential). The probability of

discovering a major innovation conditional on a successful search is ρ.22

One can generalize the analysis and show the following: an increase in downstream presence ceteris

paribus (in particular, fixing the average quality of the patent portfolio) reduces the IP owner’s probability of

search through the patent portfolio. The reason for this is that the motivation for searching is the potential

collection of royalties (socially, there is also the benefit for the users of an additional functionality, but this

is not internalized by the IP owner). But claiming IP delays the process as analyzed above (the disclosure

game is the same as above, where ρ is now the probability of H quality conditional on the search having

been performed). Because a firm with a strong downstream presence particularly dislikes delays, such a

22The search is non-directed here. Directed search (in which the IP owner can affect the relative probabilities of discovering major
and minor innovations in his portfolio) would lead, we conjecture, pure IP players to search more for major innovations (relative
to minor ones) than firms with a strong downstream presence. Thus the direction of search, and not only its intensity, depends on
downstream presence.
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firm will conduct fewer searches.

2.3.7 Discussion

This modeling is an incomplete first foray into the dynamics of disclosure and functionality inclusion.

The theoretical model does not capture the richness of the standard setting process. While its two key

conclusions – specific disclosures correspond to higher-quality patents and downstream firms are more

likely to go for generic disclosures – seem robust, a refined description of how functionalities are included

into a standard would be desirable. We can hypothesize that, roughly speaking, the inclusion of new

functionalities can follow either a technology-push or a market- (here, SSO-) pull process.

The technology-push scenario corresponds to the situation in which the existence of a patent suggests a

new functionality. This is the situation that is captured in the model. The originator of the new functionality

through this channel is likely to be the patent owner, especially if the latter has chosen a generic disclosure:

with a specific disclosure, it is easier for other SSO members to conceive of a use for the patent, even though

the owner, incentivized by the prospect of collecting royalties, will always have more incentives than the

other SSO members to look for a new functionality making use of the patent. Relative to the model, the

possibility that other SSO members build on the specifically disclosed patents adds an incentive for the

owner to make a specific disclosure, which enlists other members in the search for applications of the

patent; but this would not qualitatively affect our two main results.

The market-pull view of inclusion of functionalities depicts the SSO thinking of a new functionality and,

before including it into the standard, wondering how it can be implemented. This view may well explain

why some SSOs are so keen to encourage their members to make specific disclosures (whereas in the model

developed above, ignoring the ex-ante incentive to innovate treated in Section 2.3.5, the SSO ex post prefers

generic disclosures). SSO members may search for a way to implement the desired functionality, only to

discover that the solution is actually covered by a patent disclosed only in a generic fashion, and therefore

not that transparent. This “hold up” argument would reinforce the case for discriminating royalties between

specific and generic disclosures. Higher royalties for specifically disclosed patents then would reward not

only the higher quality of such patents (an equilibrium property captured by our model), but also the

prevention of free riding in the search process by the patent owner.

Note that in both the technology-push and the market-pull interpretations, we suggest that pure

implementers (i.e., non-patent owners) might search for either uses of the patent or for implementations

of an envisioned functionality. One might object that this conflicts with the modeling assumption that

both surpluses and royalties are passed through to final users, so implementers are not impacted by the
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existence of a new functionality and by the level of royalties. (This is why we assumed that the SSO stands

for the interests of end-users rather than for those of the implementers.) As a result of this assumption, the

patent owner is the only party having an incentive to add the functionality.

However, a minor change to the model breaks this indifference and provides an incentive for pure

implementers both to search for new functionalities and to object to high royalties. Suppose that a) end-

users draw a payoff ζ from an outside option from some distribution G(ζ) in the population of end-users,

and then decide whether to go for the outside option or for the technology certified by the SSO; and b)

after picking the technology, they learn their preferences among implementers. The model is then the

same as that described in Section 2.3.223, except that an additional functionality or a lower royalty has a

market-expansion effect. So even pure implementers have an incentive to add functionalities and to lower

royalty rates.

As stated above, our model is only a first step toward understanding some of the many features of

disclosure strategies. We leave it to future research to come up with a more refined view.

2.4 Model Testing

We perform an empirical analysis to examine two of the key features of Proposition 1.

First, we examine the relationship between patent quality and disclosure type. As we saw from the

theory, disclosure type is likely to be correlated with patent quality. Hence, our first hypothesis is the

following:

Hypothesis 1 Conditional on being disclosed to SSOs, higher-quality patents are more likely to be disclosed in a

specific disclosure.

Next, we examine the relationship between the downstream presence and disclosure behavior. For firms

with significant downstream presence (a large θiπ), the downside of potentially low royalties is offset by

the upside of rapid technology diffusion, favorable to the firm’s downstream operations. This logic leads

us to our second hypothesis:

Hypothesis 2 Conditional on participating in standard-setting efforts, large downstream firms are more likely to

make a generic disclosure.
23With a mass of end-users given by G(V0 −∑j p∗j − p).
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3 Empirical Analysis

3.1 Data Sources

Our analysis is based on a set of patent disclosures made through the end of 2012 to seven large, modern

SSOs:

1. The American National Standards Institute (ANSI), an SSO overseeing the development of voluntary

consensus standards for products, services, processes, systems, and personnel in the United States

covering the wide range of industries. These include acoustical devices, construction equipment,

dairy and livestock production, energy distribution, and many more. The ANSI also coordinates

United States standards with international standards and serves as official representative of United

States to the two major international standards organizations, the International Organization for

Standardization (ISO), and the International Electrotechnical Commission (IEC).

2. The Advanced Television Systems Committee (ATSC), an SSO responsible for development of voluntary

standards for digital television. The ATSC member organizations represent the broadcast, broadcast

equipment, motion picture, consumer electronics, computer, cable, satellite, and semiconductor

industries. The ATSC is working to coordinate television standards among different communications

media focusing on digital television, interactive systems, and broadband multimedia communications.

3. The European Telecommunications Standards Institute (ETSI), an SSO operating primarily in the telecom-

munications industry, and covering both equipment makers and network providers. The ETSI is

responsible for standardization of Information and Communication Technologies (ICT) within Europe.

These technologies include telecommunications, broadcasting and related areas such as intelligent

transportation and medical electronics.

4. The International Electrotechnical Comission (IEC), an SSO that creates and publishes international

standards for all electrical, electronic and related technologies: anything from electromagnetics,

electrical power and home appliances to semiconductors, fiber optics and nanotechnology.

5. The Institute of Electrical and Electronics Engineers (IEEE), an SSO focused on developing global standards

in a wide range of industries covering power and energy, biomedical, IT, telecommunications,

transportation, nanotechnology and many more.

6. The International Organization for Standardization (ISO), the world’s largest developer of voluntary

international standards covering a large variety of technologies and industries: from food safety and

computers to energy, agriculture and healthcare.
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7. The International Telecommunication Union (ITU), a specialized United Nations agency responsible for

information and communication technologies. The ITU allocates global radio spectrum and satellite

orbits, develops the technical standards that ensure interconnection of networks and technologies in

the global information and communication technology sector.

Our analysis starts with an identification of all standards developed by these seven SSOs. For every

standard in our sample, we then identify all specifically disclosed United States (US) patents and patent

owners, as well as all entities making generic patent disclosures. Identification of patent disclosures made

to SSOs is a very tedious and time consuming task. While some SSOs—such as the ETSI, for example—do

provide easily downloadable, comprehensive databases of patent disclosures, many others do not. And

even in those cases where databases are readily available, patent number formats vary significantly and

patent numbers are sometimes incomplete. In those cases where comprehensive databases were not readily

available—like the IEC, for example—we sifted through scanned copies of disclosure letters and other

documents to analyze patent disclosures, and manually extracted granted patent and patent application

numbers. After extraction, we standardized formats of all disclosed patent numbers and harmonized names

of all entities disclosing them, to be able to merge patent disclosure data with entity-specific financial and

United States Patent and Trademark Office (USPTO) patent data.24,25

Since generic declaration letters do not list any specific patents, but rather provide a general statement

of the type “we believe that we have patents relevant to the implementation of standard X” type, we must

identify all patents that could potentially be disclosed via such statement. To accomplish this, we first build

patent portfolios for all 353 entities making generic disclosures to standards in our sample. Assembling

patent portfolios is a difficult task. Numerous variants of patent-seeking institution names appear in

USPTO records. These are caused by either the variation in patent-prosecuting law firms or by human

error and incorrectly spelled names. In addition, subsidiary and parent companies often appear as patent

assignees completely independent of one another. For example, we could have patent A assigned to Philips

North America, patent B assigned to Philips Healthcare, and patent C assigned to Philips Corporation.

Since Philips North America and Philips Healthcare are both subsidiaries of Philips Corporation, all

24Some public databases of multiple-SSO patent disclosures do exist, however at the time we conducted this research, we found
their time coverage to be inadequate. For example, while the recently updated version of SSO disclosure database maintained by
Bekkers et al. [2012] covers disclosures to 13 SSOs through 2011, when we conducted our study it covered disclosures only through
2008. Our dataset covers disclosures through the end of 2012.

25While there are many international patents in our sample of disclosed patents, our analysis focuses on the US patents mainly
because of the large size of downstream US markets and the “duty of candor” – a duty to disclose to USPTO all information material
to patentability, or potentially deem the patent unenforcable. The large size of the downstream US markets leads us to believe that
our results closely mirror the results one would find if the international patents were to be included. In addition, the USPTO “duty
of candor” requirement is one of the most stringent, without its equivalent counterpart in other parts of the world like Europe, for
example. As a consequence, all citation-based patent quality measures calculated over the set of the US patents should be more
representative of the true patent quality than if calculated over the set of international patents.
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three patents should be grouped together as a part of Philips Corporation patent portfolio.26 We use

a set of special features available in Thomson Innovation database to aggregate patent portfolios more

accurately than the raw USPTO patent records would allow us to do. We use the browse feature in Thomson

Innovation Assignee/Applicant search field to identify all possible assignee name variations. This feature

is used together with a unique 4-letter Assignee Codes available in Thomson Innovation to identify one

of approximately 22,300 patenting organizations worldwide and map them to all subsidiaries listed in

Thomson database. Similarly to what we do with patents, we also aggregate all patent disclosures on

a parent company level. This enables us to count and aggregate U.S. patents and patent applications

wherever a firm or its subsidiary appears as an assignee or applicant on the patent record. Using this

approach, we are able to identify almost 300,000 U.S. patents associated with 353 entities. Mergers and

acquisitions, as well as company name changes are tracked over time, and mapped to the patent disclosure

date to ensure the most accurate mapping. Table 1 shows the overall numbers of disclosed patents and

standards by disclosure type covered in our dataset.

[Table 1 about here.]

Since we want to limit our patent sample only to those patents relevant to standards in question, we

use patent International Patent Classification (IPC) technology codes to accomplish this. First, we use

specifically disclosed patents to build a list of all primary IPC codes associated with every standard in the

specifically disclosed patent sample. Next, we compare these lists with IPC codes assigned to generically

disclosed patent portfolios. All generically disclosed patents having one or more standard-relevant IPC

codes are deemed as standard-eligible. All other patents are dropped.

This process results in a dataset covering 1,589 standards. This dataset has 7,475 specific patent-standard

disclosures from 313 different entities and 2,498 generic declaration letters covering 108,019 standard-eligible

patents belonging to 197 different entities. Table 2 summarizes numbers of disclosed patents by disclosure

type and SSO, including only standard-eligible patents as defined above.

[Table 2 about here.]

We obtain additional information about firms disclosing the patents to SSOs from the Standard & Poor’s

Capital IQ and Compustat databases. These databases integrate financial and operational information on

thousands of companies worldwide. We use Capital IQ’s name-matching feature to match patent owner

names to standardized entity names. We then assign a unique identifier to each entity in our sample and

map it to the parent company. If we have separate disclosures from Philips North America and Philips
26The NBER patent dataset corrects this problem (at least partially), but since it does not cover US patents issued after 2006, we

cannot use it [Hall et al., 2002].
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Healthcare, we map both of these companies to their ultimate parent—Philips Corporation. We use Capital

IQ to obtain time series data on firm size, revenue and earnings, R&D spending, capital expenditures,

primary industry, age, and subsidiary-parent relationships. Since firms change their activities and industries

over time, we also use S&P Compustat to get historical firm segment information encompassing product

and geographical industry segment data.

To test whether higher quality patents are more likely to be disclosed in specific disclosures, we use

specifically disclosed patents to further circumscribe a technology space for each individual standard,

and ensure that generically disclosed patents belong to the same space. This procedure reduces sample

variability, and eliminates patents that are “technically” disclosed in generic disclosures, but have no real

technical relevance for the standard.

We first create a list of all 6-digit IPC codes belonging to specifically disclosed patents for each individual

standard. Next, we match the list of these standard-specific IPC codes to IPC codes belonging to generically

disclosed patents for that same standard. For every standard in the sample we examine, we drop all

generically disclosed patents which have no IPC codes in common with that standard’s IPC code list. We

also drop all standards which have only generic or only specific disclosures. The resulting sample contains

only those standards which have both specifically and generically disclosed patents. On a patent level, we

keep all specifically disclosed patents, and only those generically disclosed patents which have at least one

IPC code in common with a list of IPC codes belonging to the standard they were disclosed to. This final

sample consists of 59,221 generic and 5,453 specific patents.

3.2 Disclosure Preferences and Patent Value

3.2.1 Variables

To measure the economic value of disclosed patents, their technological importance and subsequent

technological impact, we use a set of literature-based patent quality indicators:

1. Number of Forward Citations is associated with the technological importance and overall patent quality

[Trajtenberg, 1990]. The number of forward citations is the number of times a patent document is

cited in subsequent patents. We correct all forward citation counts for truncation on a 3-digit US

patent class and cohort-year basis [Hall et al., 2002].

2. Patent Scope measures the technological breadth of patents by accounting for the number of Inter-

national Patent Classification (IPC) technology classes each patent is assigned to. Patent scope was

shown to have a significant impact on firm valuation: broader patent scope translates to higher firm
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valuation [Lerner, 1994]. For a patent i, the patent scope is calculated as:

Scopei = (Number o f 4–digit IPC codes)i

3. Number of Claims determine the boundary of technology exclusion rights described in the patent and

are associated with technological and economic value of inventions [Lanjouw and Schankerman, 2001,

2004].

4. Patent Originality measures the technological breadth of patent references. Low originality score

implies that a patent’s backward citation set is technologically narrow (a small and focused number

of technology classes), while the high originality score implies that backward citations belong to a

larger and much broader set of technology classes [Trajtenberg et al., 1997, Hall and Trajtenberg, 2004].

The measure of patent originality is calculated using 4-digit IPC classes for all identified backward

patent citations as:

Originalityi = 1−
Ni

∑
j=1

OS2
ij

where OS2
ij is a share of patent i’s citations coming from a patent class j out of set of Ni patent classes

belonging to a set of all identified patent references cited by patent i. Originality is calculated using

all the references retrieved from Thomson Innovation database.

5. Number of Patent References (Backward Citations) was shown to be positively correlated with the patent

value [Harhoff et al., 2003]. The number of patent references is the number of other patent documents

(including patent applications and self-citations) cited in the patent.

6. Number of Non-Patent References (Backward Citations) is correlated with more significant knowledge

content [Cassiman et al., 2008]. The number of non-patent references such as scientific journals and

books is also associated with higher patent quality and approval rates [Branstetter and Ogura, 2005].

7. Patent Family Size is an indicator of the economic value of patent rights. Patent family size is measured

as the number of different patent jurisdictions (nations) in which patent protection was sought,

excluding the European Patent Office (EPO) and the World Intellectual Property Office (WIPO).27

The size of the patent family is highly correlated with the patent ”lifetime”, i.e. the time from the

initial patent application to patent expiration or assignee’s decision not to renew the patent [Putnam,

1996, Lanjouw et al., 1998]. In addition, large patent families have been shown to be more valuable

[Harhoff et al., 2003].
27EPO and WIPO do not issue European or World patents, but rather serve as conduits to the various national patent offices.
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Summary statistics are given in Table 3.

[Table 3 about here.]

3.2.2 Specification

We use logit regressions to test if higher quality patents are more likely to be disclosed in specific disclosures:

Pr(Speci,b,t = 1) = F(α + β× Patent Qualityi + Yeart + SSOb + εi,s,t)

where

F(z) =
ez

(1 + ez)

In this specification, the dependent variable Speci,b,t is a dummy equal to 1 if a patent i was disclosed in

a specific disclosure to SSO b in a year t. Patent Qualityi is the patent quality measure, whose construction

is discussed in detail below. Yearm is a year fixed effect and SSOb is SSO fixed effect. We are particularly

interested in the sign of the β coefficient on the patent quality measure, and expect it to be positive.

In this particular case, we aggregate disclosures on SSO level (rather than the standard itself) for two

reasons. First, our interviewees have indicated SSO-specific disclosure policies to be a major driver of how

and what firms disclose. Second, because multiple patents are disclosed to many standards within and

across SSOs, aggregating disclosures on the standard level would lead to many duplicate observations, and

it would not be entirely appropriate to control for standard-level fixed effects. Since there are still many

patents disclosed to multiple standards within SSOs, to make sure we are not overstating the significance of

our results, we perform a simple degree-of-freedom correction and create a dummy for each year and SSO

and average over them before running the regressions. Thus, our unit of observation is patent-SSO-year

triplet.28 This reduces the number of observations to 63,598.

3.2.3 Results

Table 4 reports the results, and shows that higher quality patents are more likely to be specifically disclosed

to SSOs. Each specification in the table accounts includes results with and without SSO and year fixed

effects, and allows for heteroscedastic standard errors. The binary dependent variable is coded as one if the

patent is disclosed in a specific disclosure, and zero otherwise.

Results for citation-based patent quality measures are shown in Panel A. This includes truncation-

corrected forward citations, patent references and non-patent references. Columns (1)–(3) report estimates

28Since the two sets of specifically and generically disclosed patents are mutually exclusive on the SSO level, performing this
correction does not change the binary nature of our dependent variable.
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for the count of truncation-corrected forward citations as the independent variable. The magnitudes of

estimated coefficients range between statistically insignificant 0.0021 (without fixed effects), to 1% significant

0.093 (with fixed effects). We interpret these results as a 0.093 increase in log-odds of the patent being

disclosed in a specific disclosure for every additional truncation-corrected forward citation it acquires.

Columns (4)–(6) report estimates for the count of patent references as the independent variable. In this case,

magnitudes of estimated coefficients range between 0.0111 (without fixed effects), to 0.0088 (with fixed

effects). All coefficients in Columns (4)–(6) are significant at the 1% level. We interpret these results as a

0.0088 increase in log-odds of the patent being disclosed in a specific disclosure for every additional patent

it cites. Columns (7)–(9) report estimates for the count of non-patent references as the independent variable.

The magnitudes of estimated coefficients range between 0.0188 (without fixed effects), to 0.0172 (with fixed

effects). All coefficients in Columns (7)–(9) are significant at the 1% level. We interpret these results as

a 0.0172 increase in log-odds of the patent being disclosed in a specific disclosure for every additional

non-patent document it cites.

Panel B shows results for additional patent measures including patent scope, number of claims, patent

originality and INPADOC patent family size. Columns (1)–(3) report estimates for the patent scope as the

independent variable. The magnitudes of estimated coefficients range between 0.712 (without fixed effects),

to 0.735 (with fixed effects). All coefficients are significant at the 1% level. We interpret these results as a

0.735 increase in log-odds of the patent being disclosed in a specific disclosure for every additional 4-digit

IPC technology class it is assigned to. Columns (4)–(6), (7)–(9) and (10)–(12) report results for number of

claims, patent originality and INPADOC family size as dependent variables, respectively. We find these

coefficients to be significant at the 1% level. Log-odds of the patent being disclosed in a specific disclosure

increase by 0.0137 for every additional patent claim it has, 3.952 for a unit increase in patent originality

(which represents the whole range for this variable) and 0.0045 for each additional patent family member.

[Table 4 about here.]

Positive and statistically significant effects of patent quality measures on the likelihood of those patents

being disclosed in a specific disclosure support our Hypothesis 2. The coefficients on the patent quality

measures of scope, family size, number of claims, number of patent references, number of non-patent-

literature references and originality are all positive and significant, implying that higher quality patents are

indeed more likely to be disclosed to SSOs via specific disclosures.

For robustness, we also run additional OLS models replicating the analysis from Panels A and B of

Table 4. We use the same dependent variable, and include both year and SSO fixed effects. All estimated

coefficients remain positive and significant.
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3.3 Disclosure Preferences Across the Value Chain

3.3.1 Variables

Next, to test if the large, downstream firms are more likely to use generic disclosures, we first need

to determine if firms who disclose patents to standards have a downstream presence in the area of

those standards. For example, if a firm makes a patent disclosure to the 3G wireless standard, while it

contemporaneously manufactures 3G based products like cellular phones, then that firm is also downstream

relative to 3G standard. This analysis requires us to make a link between industry segments, technical

standards and firm activities.

To link standards with relevant industries, we use all specifically disclosed patents to create a list

of standard-relevant IPC codes, and link those to NAICS industry codes. Past studies have generally

linked patent classes to relevant industries by using one of the two publicly available patent-to-industry

concordances. The first one is Yale Technology Concordance (YTC), originally developed by Evenson et al.

[1991], and the second one is Brian Silverman’s Technology Concordance described in Silverman [1999].

Both of these concordances are probabilistic links of patent technology classes to industry codes based on a

set of Canadian patents which were assigned industry codes in the early 1990s. Unfortunately, because

these concordances are based on 1990s industry codes, some of the important new industries—like wireless

communications—are largely absent.

To get around this problem, we use a newly developed patent-industry concordance using the Algo-

rithmic Links with Probabilities (ALP) approach [Lybbert and Zolas, 2014]. This approach exploits recent

advances in text analysis and relies on a keyword extraction from the patents themselves and subsequent

probabilistic matching to textual descriptions of technology, industry or trade classifications. To generate

the concordance, Lybbert and Zolas [2014] use the full PATSTAT database from the European Patent Office

(EPO), and arrive at two-way probability distributions of 1) the IPC technology classes used within each

industry and 2) industries using certain types of IPC technology classes.29

Before we apply the ALP concordance, we create lists of all 4-digit IPC technology codes relevant to each

individual standard by using specifically disclosed patents. We then match those IPC codes to NAICS codes

obtained from the ALP concordance dataset.30 Once we generate a map of NAICS codes for each standard,

we resort to S&P Compustat Historical Segment data for each firm making a disclosure. Historical segment

NAICS codes are compared to the lists of standard-relevant NAICS codes, and those firms whose historical

NAICS codes match any of standard-relevant NAICS codes are labeled as downstream to that particular
29Lybbert and Zolas [2014] concordance is available from the World Intellectual Property Organization (WIPO) at:

http://www.wipo.int/export/sites/www/econ_stat/en/economics/zip/wp14_concordance.zip [last accessed: 06/10/2015].
30While we generate frequency weights for IPC-standard lists, we do not use them in the final analysis as to not overcomplicate the

process. Rather, we use a simple discrete measure of “match” or “no-match”.
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standard. For example, if firms 1 and 2 disclose patents to standard A, and the ALP concordance results in

that standard A being associated with NAICS codes X and Y, then if firm 1’s historical NAICS code is X at

the time of its disclosure, and firm 2’s historical NAICS code is Z at the time of its disclosure, firm 1 will

be labeled as downstream and firm 2 will be labelled as upstream. In addition, since they are not listed in

Compustat, we manually classify all universities and research institutes as upstream entities.

Counting disclosures can also be tricky. For example, a single specific declaration letter can disclose

multiple patents to multiple standards, while a generic declaration can disclose potentially many patents

to one or more standards. To compare disclosure preference across different entities, we count multiple

patents disclosed to the same standard by the same firm in the same year as a single disclosure. In other

words, even if firm 1 was to disclose 10 patents to standard A in 5 different specific disclosures during the

course of one year, we would count this as a single specific disclosure made by firm 1 to standard A in

that year. To reduce sample variability and ensure consistent comparison across firms and standards, we

analyze only those standards receiving both specific and generic disclosures in a given year. Standards

receiving only specific or only generic disclosures are dropped from the sample. This results in a final

sample of 840 firm-standard-year triplets in which a disclosure took place.

Since our hypothesis contends that the total profitability of downstream firms will increase the likelihood

of these firms to utilize generic disclosures, we need to account for firm total profitability in the analysis.

While various different financial and operational proxies have been used in the past, we use total revenue,31

as we feel this measure of output is the most closely aligned with the model and our downstream size

parameter θi. For this total profitability measure, we calculate the logarithm of the average revenues over

a three year window (from the year of disclosure to two years prior).32 Table 5 provides more detailed

descriptions of variables used in this part of the analysis.

[Table 5 about here.]

Summary statistics are reported in Table 6.

[Table 6 about here.]

3.3.2 Specification

To test if large, downstream firms are more likely to use generic disclosures, we use logit regressions:

31For robustness, we also run separate analyses where we use operating profits (EBIT) and net income as proxies for firm total
profitability. Although the coefficients estimated in these analyses have the same signs as those estimated in our main specification,
they are generally not as significant.

32Our results are robust to changes in time-window length.
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Pr(Speci,s,t = 1) = F(α + β× Di,s,t + γ× Ri,t + δ× Di,s,t × Ri,t + Indi + Yeart + SSOs + εi,s,t)

where

F(z) =
ez

(1 + ez)

In this specification, the dependent variable Speci,s,t is a dummy equal to 1 if a specific disclosure was

made by the firm i to a standard s in a year t. Di,s,t is a dummy equal to 1 if the firm i was determined

to be downstream to a standard s in a year t. Ri,t represents average revenues in 3-year window prior to

the disclosure for the firm i in a year t. Indi is industry sector fixed effect (4-digit SIC level), Yearm is a

year fixed effect and SSOs is SSO fixed effect. We are particularly interested in the sign of δ coefficient on

the interaction term of the downstream dummy and firm size proxy. A negative δ would indicate that for

downstream firms, an increase in firm size measure Ri,t would reduce the probability of making a specific

disclosure.

3.3.3 Results

Table 7 reports the results, and shows that an increase in firm size leads to a reduced probability of specific

disclosure for downstream firms. We include the results with and without year, SSO and industry fixed

effects, and report robust standard errors. The binary dependent variable Specific Disclosure is coded as one

if the disclosure was a specific disclosure, and zero otherwise.

The interaction between the downstream dummy and the proxy for firm size is consistently negative and

statistically significant. We focus our discussion on Column (6), which reports estimates when year, SSO

and industry fixed effects are all accounted for. In this specification, independent variables are Downstream

Presence, which is coded as one of the entity has downstream presence relative to the standard in a given

year in the sample, Total Revenues, which is a proxy for firm size and represents a logged mean of disclosing

entity’s total revenues in the 3-year window prior to the disclosure being made, and Downstream x Total

Revenue which is interaction of the two. In Column (6), Downstream Presence coefficient is positive and

significant at the 10% level. The sign and magnitude of this coefficient imply that a firm being downstream

relative to the standard increases log-odds of specific disclosure by 0.153. The effect of firm size proxied by

Total Revenues is negative, and not statistically significant. The interaction effect Downstream x Total Revenue

is negative and significant at the 10% level. The size of the interaction coefficient implies that an order of

magnitude increase in the mean of disclosing entity’s total revenues in the 3-year window prior to the

disclosure being made leads to 0.114 decrease in log-odds of specific disclosure for downstream firms.
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[Table 7 about here.]

For robustness, we also run additional OLS models replicating the analysis from Table 7. We use

the same dependent variable and include year, SSO and industry fixed-effects. Signs and significance of

estimated coefficients do not change.

One natural concern is that downstream firms could simply have patents of lower-quality than those

of upstream firms (for instance, they may stumble on “low-hanging fruits” in the process of improving

the implementation of the standard). These quality differences may affect the results. To examine this,

we calculated patent portfolio quality measures for all firms and all years in our sample, and merged

them with the SSO disclosure data. We then averaged all the patent portfolio quality measures for all the

upstream firms and the downstream firms for each standard (i.e., we separately calculated average patent

quality measures for each standard within every SSO in our sample). We then ran t-tests comparing mean

patent quality measures for the downstream and upstream firms. The results showed that there were no

statistically significant differences between the upstream and downstream in the measures of scope, family

size, patent references, and the truncation-corrected forward citation count. We did find, however, that

the upstream firms had significantly more claims and non-patent references. These results helped allay

concerns that the disclosure behavior of downstream firms was driven by differences in patent quality.

4 Conclusion

Technological standards are a central component of the modern network economy. Standard setting

organizations play a variety of roles, one of the critical ones is ensuring the disclosure of relevant IP–in

particular, potentially essential patents–prior to the key decisions regarding a proposed standard.

This paper analyzes disclosure and selection mechanisms in standard-setting and highlights several

theoretical insights. The first one is that firms with stronger downstream presence are more likely to opt for

a generic disclosure. The second one is that a generic disclosure corresponds on average to lower quality

patents. In addition, the optimal FRAND system involves either all firms licensing patents at a single

price (thus with no distinction between firms making generic and specific disclosures), or more generally

compressing the range of rewards for these two classes of disclosures.

An illustrative empirical analysis is then undertaken to examine the first two insights. Using a hand-

collected data set, we find strong support for the contentions that large, downstream firms are more likely

to make generic disclosures to SSOs and that higher quality patents are more likely to be disclosed via

specific disclosures.
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At the same time, we are keenly aware that both the theoretical and empirical analyses do not capture

the richness and complexity of this setting. Fortunately, this work suggests a number of avenues for

future research. As we highlighted in Section 2.2.3, there are subtle but important differences in disclosure

requirements across different SSOs. The first of these future directions is a need for a deeper understanding

of the nature of disclosures to SSOs, which are a complex and little documented part of the standardization

process. A better understanding of when and what firms choose to disclose, how these disclosures are

interpreted, and how the commitments evolve over time would be very important for optimal policy setting.

It would also be valuable to better understand the dynamics of technology push and market pull in the

standardization process, a question not addressed in this paper.

Another important question is the interaction between disclosure requirements and forum-shopping.33

To what extent do disclosure requirements drive firms away from certain SSOs? Finally, the interviews

suggest a complex set of interactions between formal and real authority in SSOs, which reflects the fact that

many of the same firms interact across different standardization projects and different SSOs. The extent

to which informal SSO practices affect firm behavior represents yet another important avenue for future

research.

33As in Lerner and Tirole [2006], for example.
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Table 1: Summary of Patent Disclosures

Disclosure Type Standards Declarations
Associated Patent 

Pools
Entities 

Represented
Manufacturers

Generic 1,082 2,498 - 285,972 17 353 174
Specific 1,589 2,883 27,013 7,475 17 313 163

All U.S. Patents 
Disclosed

Patent-Standard 
Pairs

Notes. The table summarizes the disclosures received in the sample. Standards indicates the number of different
standard projects in the sample where disclosures of each type were made. Declarations indicates the number of distinct
documents disclosing patent holdings made to the standards. Patent–Standard Pairs represents the number of distinct
disclosed patent-standard pairs. All U.S. Patents Disclosed is the number of unique patents disclosed across all standards
(the procedure for identifying patents disclosed in generic disclosures and narrowing down the number of identified
patents to standard-relevant ones is discussed in the text). Associated Patent Pools is the number of patents patent pools
related to the standards in the sample. Entities Represented is the number of different entities in the sample where
disclosures of each type were made. Manufacturers is the subset of these entities having a primary SIC code between
2000 and 3999.

Table 2: Summary of Patent Disclosures by SSO

Disclosure Type SSO Declarations
Associated Patent 

Pools
Entities 

Represented
Manufacturers

ANSI 542 - 42,695 5 94 55
ATSC 36 - 4,878 1 24 14
ETSI 501 - 15,603 2 23 11
IEC 420 - 20,804 7 139 77
IEEE 671 - 80,907 1 160 79
ISO 313 - 45,510 8 75 38
ITU 15 - 391 4 4 3

ANSI 150 449 263 0 74 42
ATSC 22 432 409 1 18 11
ETSI 1216 23661 5711 4 94 46
IEC 721 465 294 7 63 37
IEEE 259 921 634 1 101 57
ISO 220 475 275 10 67 39
ITU 295 610 351 6 78 40

Specific

Patent-Standard 
Pairs

U.S. Patents 
Disclosed

Generic

Notes. The table summarizes the disclosures received, broken down by the seven SSOs in the sample. Standards
indicates the number of different standard projects in the sample where disclosures of each type were made. Declarations
indicates the number of distinct documents disclosing patent holdings made to the standards. Patent–Standard Pairs
represents the number of distinct disclosed patent-standard pairs. U.S. Patents Disclosed is the number of unique patents
disclosed across all standards (the procedure for identifying patents disclosed in generic disclosures and narrowing
down the number of identified patents to standard-relevant ones is discussed in the text). Associated Patent Pools is the
number of patents patent pools related to the standards in the sample. Entities Represented is the number of different
entities in the sample where disclosures of each type were made. Manufacturers is the subset of these entities having a
primary SIC code between 2000 and 3999.
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Table 3: Patent Quality Analysis – Summary Statistics

Variables N mean sd min max

Specific Disclosure 63765 0.08233 0.27487 0 1

Forward Citations (Truncated) 63765 1.22786 1.62564 0 46.24749

Patent Scope 63765 1.58625 0.91639 1 12

Number of Claims 63750 19.13075 13.83417 1 269

Patent Originality 63765 0.50233 0.25746 0 0.94690

Number of Patent References 63765 14.71550 28.41547 1 841

Number of Non-Patent Refences 63765 3.42933 11.47524 0 455

INPADOC Family Size 63765 4.67264 19.55966 1 934

Notes. The unit of observation is each U.S. patent disclosed to the standards in the sample. We limit our analysis to
only those standards receiving both specific and generic patent disclosures, resulting in 63,765 observations. Specific
Disclosure is coded as one if the patent is disclosed to a standard in a specific disclosure, and zero otherwise. Forward
Citations (Truncated) is the truncation-corrected number of forward citations to the patent through the end of 2013.
Patent Scope is defined in the text and follows Lerner [1994]. Number of Claims is the count of claims in the patent.
Patent Originality is defined in the text and follows Hall et al. [2002]. Number of Patent References is the number of U.S.
patents cited (backward citations) in the disclosed patents. Number of Non-Patent Patent References is the number of
other prior art (scientific articles, for example) cited in the disclosed patents. INPADOC Family Size is the number of
countries-patents of the patent family.

34



Table 4: Patent Quality Results – Dependent Variable is Specific Disclosure

 

 

Panel A: Citation-based Patent Quality Measures

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9)

Patent Quality 0.00206 0.00351 0.0930*** 0.0111*** 0.0103*** 0.00882*** 0.0188*** 0.0185*** 0.0172***

(0.00995) (0.0107) (0.0142) (0.000582) (0.000631) (0.000649) (0.00138) (0.00190) (0.00192)

Year Fixed Effect No Yes Yes No Yes Yes No Yes Yes

SSO Fixed Effect No No Yes No No Yes No No Yes

Patent Quality Measure Used

Constant -2.417*** -2.163*** 2.769*** -2.616*** -2.326*** 2.694*** -2.499*** -2.259*** 2.783***

(0.0190) (0.138) (0.270) (0.0172) (0.141) (0.272) (0.0154) (0.141) (0.270)

Observations 63,598 62,209 62,209 63,598 62,209 62,209 63,598 62,209 62,209

Log-Likelihood -18045 -13268 -7914 -17573 -12938 -7817 -17819 -13119 -7856

Pseudo R-squared 1.50e-06 0.260 0.558 0.0262 0.278 0.564 0.0125 0.268 0.562

Forward Citations (Truncation Corrected) Patent References Non-Patent References

Panel B: Additional Patent Quality Measures

Variables (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Patent Quality 0.712*** 0.737*** 0.735*** 0.0148*** 0.00891*** 0.0137*** 4.619*** 4.403*** 3.952*** 0.00440*** 0.00312*** 0.00450***

(0.0138) (0.0167) (0.0203) (0.000899) (0.00115) (0.00121) (0.0919) (0.107) (0.132) (0.000440) (0.000466) (0.000732)

Year Fixed Effect No Yes Yes No Yes Yes No Yes Yes No Yes Yes

SSO Fixed Effect No No Yes No No Yes No No Yes No No Yes

Patent Quality Measure Used

Constant -3.742*** -3.625*** 1.381*** -2.718*** -2.381*** 2.565*** -5.193*** -5.073*** -0.155 -2.439*** -2.169*** 2.868***

(0.0313) (0.155) (0.294) (0.0241) (0.142) (0.274) (0.0633) (0.162) (0.321) (0.0145) (0.136) (0.270)

Observations 63,598 62,209 62,209 63,583 62,194 62,194 63,598 62,209 62,209 63,598 62,209 62,209

Log-Likelihood -16430 -12017 -7203 -17909 -13229 -7889 -16262 -12063 -7339 -18005 -13253 -7932

Pseudo R-squared 0.0895 0.330 0.598 0.00749 0.262 0.560 0.0988 0.327 0.591 0.00225 0.261 0.557

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Patent Scope Number of Claims Patent Originality INPADOC Family Size

Notes. The right-hand side variable–Specific Disclosure–is coded as one if the patent is disclosed in a specific disclosure;
and zero otherwise. The unit of observation is each patent-standard pair among the patent disclosures in the sample.
The regressions employ a logit specification. Some regressions include fixed effects for the year of the first disclosure of
the patent to the standard and the SSO. Panel A regressions use citation-based patent quality measures as dependent
variables. Panel B regressions use other patent quality measures as dependent variables. All seven measures of patent
quality employed are defined in the text and Table 3.
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Table 5: Disclosure Preference Analysis – Variable Descriptions

Variables Description

Downstream Presence Dummy equal to 1 if a disclosure was specific; 0 otherwise

Specific Disclosure Dummy equal to 1 if the firm has downstream presence; 0 otherwise

Year Disclosed Year in which a disclosure was made

Total Revenues (Logged 3-year Average) Logged Mean Total Revenue in a 3-yr time window before the disclosure

Table 6: Disclosure Preference Analysis – Summary Statistics

Variables N mean sd min max

Downstream Presence 831 0.7340554 0.442101 0 1
Specific Disclosure 831 0.3670277 0.4822844 0 1
Year Disclosed 831 2003.207 5.614568 1986 2013
Total Revenues (Logged 3-year Average) 817 10.17032 3.00216 0.0497421 18.84476

Notes. The unit of observation is each disclosure made to the standard in a given year in the sample. We limit our
analysis to only those standards receiving both specific and generic patent disclosures, resulting in 831 observations.
Downstream Presence is coded as one if the entity has downstream presence relative to the standard, and zero otherwise.
Specific Disclosure is coded as 1 if the disclosure was specific, and zero otherwise. Year Disclosed represents the year in
which the disclosure to the standard was made. Total Revenues represents a logged mean of disclosing entity’s total
revenues in the 3-year window prior to the disclosure being made.
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Table 7: Disclosure Type Results – Dependent Variable is Specific Disclosure

Variables (1) (2) (3) (4) (5) (6)

Downstream Presence -0.207 -0.263 1.441** 1.192* 1.362* 1.233*
(0.161) (0.168) (0.605) (0.675) (0.721) (0.750)

Total Revenue (Logged 3-year Average) -0.0997*** 0.0128 0.0396 0.0533 -0.0125
(0.0268) (0.0451) (0.0535) (0.0568) (0.0613)

Downstream x Total Revenue -0.168*** -0.140** -0.160** -0.114*
(0.0576) (0.0626) (0.0665) (0.0687)

Year Fixed Effect No No No Yes Yes Yes
SSO Fixed Effect No No No No Yes Yes
Industry Fixed Effect (4-digit SIC) No No No No No Yes

Constant -0.394*** 0.639** -0.528 0.0118 0.546 1.567
(0.137) (0.307) (0.493) (1.854) (1.908) (1.427)

Observations 831 817 817 805 805 799
Log-Likelihood -545.4 -527.1 -522.3 -472.7 -462.1 -430
Pseudo R-squared 0.00150 0.0167 0.0256 0.109 0.129 0.183

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Notes. The right-hand side variable–Specific Disclosure–is coded as 1 if the disclosure was specific, and zero otherwise.
The unit of observation is each disclosure made to the standard in a given year in the sample. We limit our analysis to
only those standards receiving both specific and generic patent disclosures, resulting in 831 observations. Downstream
Presence is coded as one if the entity has downstream presence relative to the standard, and zero otherwise. Year
Disclosed represents the year in which the disclosure to the standard was made. Total Revenues represents a logged
mean of disclosing entity’s total revenues in the 3-year window prior to the disclosure being made.
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