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1. Introduction

There are large gross capital flows across countries. In its “Capital for the Future,”World Bank

(2013) projects that annual gross capital flows will grow from approximately 15 trillion in 2016

to over 40 trillion dollars by 2030. Capital inflows are also fickle, that is, foreign investors have a

tendency to exit a country when the country is in distress. For example, Broner et al. (2013a,b)

document that, for a large panel of countries since the 1970s, capital inflows decrease during

(local) contractions. The combination of their large size and fickleness has made capital flows a

perennial source of headaches for policymakers around the world. This concern has spawned an

academic and policy literature that attempts to identify the mechanisms and costs of fickleness.

Understandably, this literature analyzed the issue from the perspective of a recipient country,

emphasizing that fickle capital flows can exacerbate the local fire-sale externalities, and should

therefore be subject to macroprudential regulation (see e.g. IMF (2012) for a recent survey).

By revealed preferences, the large stock of external assets and liabilities accumulated by the

large gross flows is somewhat at odds with fickleness. After all, fickleness is an undesirable

feature not only for the receiving country but also for the investor herself, since a fickle investor

tends to liquidate when the country is in distress and local prices are weak. If the prices are in

fact lowered by fire sales, as the academic literature emphasizes, then the fickle investor must

also experience some losses. Why would an investor want to invest in foreign markets in which

she is fickle, thereby exposing herself to potential fire-sale losses?

It could be the case that the foreign assets yield higher returns when there is no crisis– we

analyze this reach-for-yield possibility later. However, the bulk of gross capital flows are among

advanced countries that share similar fundamentals and asset returns. For these types of flows,

a more plausible driving force is diversification. In particular, investors might choose to hold

diversified international portfolios, which generate gross flows and facilitate risk sharing. There

is already a neoclassical literature that emphasizes the role of gross flows and diversification for

sharing plain-vanilla business cycle risks. Perhaps less understood, is the fact that gross flows

can also facilitate the sharing of financial crisis (or fire-sale) risks. Specifically, when there is

a local crisis, capital outflows tend to be retrenched : that is, local investors tend to liquidate

their past foreign investments and bring this liquidity back into the country. Obstfeld (2012)

documents the large retrenchment that occurred in the US at the peak of the subprime financial

crisis, and argues that retrenchment helped to mitigate the crisis.1 Broner et al. (2013a,b)

1Specifically, Obstfeld (2012) writes:

Figure ... illustrates the example of the United States over the two quarters of intensive global
deleveraging following the Lehman Brothers collapse in September 2008.... Gross capital inflows,
which in previous years had been suffi cient to more than cover even a 2006 net current account
deficit of 6 percent of GDP, went into reverse, as foreigners liquidated $198.5 billion in U.S. assets.
In addition, the U.S. financed a current account shortfall of $231.1 billion (down sharply from the
current account deficit of $371.4 billion over the previous two quarters). Where did the total of
nearly $430 billion in external finance come from? It came from U.S. sales of $428.4 billion of assets
held abroad– a volume so big that the dollar actually appreciated sharply through March 2009. Had
these resources not been available (as a result of past gross financial outflows from the U.S.)...the
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document that retrenchment of outflows is an empirical regularity that is just as widespread as

the fickleness of inflows. They write: “during contractions foreigners reduce their investments

in domestic assets and domestic agents reduce their investments abroad. This retrenchment

towards home financial markets is particularly acute during crises.”

If retrenchment– and its close cousin, diversification– is behind fickle capital flows, it is no

longer a foregone conclusion that these flows reduce financial stability. While the fickleness of

inflows is a financially destabilizing force, retrenchment of outflows is a potentially stabilizing

counterforce. Our main goal in this paper is to address this tension. To this end, we develop

a model of capital flows that replicates the empirical regularities associated with fickleness and

retrenchment in a world with frequent liquidity needs.

Specifically, we consider a world conformed by countries that experience occasional domestic

financial crises– that is, liquidity shocks that lower the asset prices below their fundamental

valuations. We focus on investors that are specialists in their local markets and can provide

liquidity during a local crisis– we interpret these investors as sophisticated financial institutions.

We also make these investors extremely fickle in foreign markets: that is, we assume they liquidate

their positions in a country that experiences a crisis regardless of the price level. This assumption

can capture a variety of factors that could handicap foreigners during local distress: Knightian

uncertainty, asymmetric information, deterioration of property rights, and so on. We remain

agnostic about the source of fickleness, since our objective is not to understand why (some)

foreign investors are jittery.2 Rather, we ask the question of whether gross capital flows driven

by jittery investors can be beneficial for financial stability, and if so, in which environments

that’s the case, and whether local policymakers incentives are well aligned with these potential

benefits. Briefly, our answers are that away from extreme search-for-yield environments gross

flows generate stabilizing global liquidity services, that these benefits rise when there is a scarcity

of safe assets and global correlations are low, and that local policymakers will undervalue the

global liquidity services of gross flows.

The intuition for the net financial stability benefit of gross flows is that fickle foreigners sell

local assets at fire-sale prices, but the local investors sell and retrench their diversified foreign

assets at relatively high valuations. In a symmetric environment, every inflow is matched by

an outflow that has equal size (that is, there are no net imbalances). Since the outflows are

liquidated at a higher return than inflows, symmetric capital flows provide liquidity and increase

the fire-sale prices during crises. The return differential between the outflows and inflows (during

a crisis) is the amount of liquidity insurance the country obtains from international capital

markets. That is, once we focus on certain types of flows that could be subject to fire sales,

U.S. current account deficit would have been compressed further, and the dollar would have slumped
in currency markets.

2While it simplifies the exposition to talk about domestic and foreign investors, the key distinction for us
is between local (specialist) and non-local (fickle generalist) investors, which need not be perfectly aligned with
domestic and foreign investors, respectively.
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such as, equity, long-term debt, or short-term debt denominated in local currency, our model

suggests that they create global liquidity despite their fickleness.

For this liquidity creation to be significant, crises need to be suffi ciently uncorrelated. If this

is the case, a worsening in the scarcity of safe assets increases gross capital flows, a correlation

reminiscent of the pre-crisis period. The liquidity service from flows is naturally reduced when

the local liquidity shocks become more correlated. Thus, an increase in the importance of global

shocks– which can be thought of as capturing the aftermath of the global financial crisis–

reduces the magnitude of gross flows and increases the demand for safe assets. In terms of

prices, the risk premium on flows increases, the safe interest rate declines, and domestic fire

sales become more severe. All these features have been observed during the post-crisis period.

We also find that, even though flows are stabilizing from a global perspective, they are

disliked by local regulators. Intuitively, every capital inflow into a country is an outflow from

the perspective of some other countries. The local regulators take into account the fickleness

cost of inflows, but they do not take into account the retrenchment benefit of inflows for those

other countries. In an uncoordinated policy environment, this externality leads to too much

protectionism– excessive taxes or restrictions on capital inflows. We also find that protectionist

policies are exacerbated when there are worldwide safe asset shortages, as this environment leads

to more severe crises and a stronger motivation for local regulators to do something about them.

The protectionist policies are also strategic complements: the more some countries adopt them,

the more other countries will have incentives to adopt them.

We envision the symmetric case of our model as roughly capturing the gross flows between

developed countries. The above liquidity-creation based conclusions must be qualified when there

are substantial asymmetries in liquidity or investment returns across the different regions of the

world. We identify two potentially destabilizing mechanisms– reach for safety and reach for

yield– that apply when developed markets with substantial liquidity but relatively low returns

trade capital flows with emerging markets with smaller liquidity but relatively high returns.

The reach-for-safety mechanism is driven by cross-country differences in liquidity. The

greater liquidity in a developed country makes its assets relatively attractive for the investors

in emerging markets. This induces the developed country to experience greater inflows relative

to its outflows (or run current account deficits). The model further reveals that, when there

are global liquidity shocks, the inflows into the developed country are relatively safe whereas

the outflows are relatively risky. Intuitively, the investors in the developed country sell liquidity

insurance (at a premium) to the emerging markets. These types of reach-for-safety flows are a

mixed bag for financial stability, as they exacerbate the financial crises in the developed country

while mitigating the crises in emerging markets.

The reach-for-yield mechanism is driven by cross-country differences in investment returns.

If the return in developed markets is much lower than in emerging markets, then investors in

developed markets hold foreign assets not only to mitigate local crises, but also to chase after

the higher returns in emerging markets. We show that the flows that are purely driven by
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the pursuit of higher returns are destabilizing, since they exacerbate crises in emerging markets

without providing financial stability benefits elsewhere. Our model therefore provides a rationale

for taxing certain types of flows into emerging markets even if policy can be coordinated across

countries. However, the model also reveals that these types of flows happen in equilibrium only

if the return differentials across the regions are suffi ciently high to compensate for the developed

market investors’lack of expertise (or fickleness) in emerging markets.

Our main results are described in sixteen propositions, most of which characterize equilibrium

in different environments and provide a few comparative statics for the corresponding context.

It is useful to summarize some of these comparative statics at this stage, in order to give the

reader a fuller sense of the issues addressed (and not) in this paper and its connection with a

wide variety of recent literatures, as well as of the parsimony of the framework:

• Proposition 1: A reduction in safe asset supply worsens fire-sale prices during crises,

lowers safe interest rates, and increases gross capital flows

• Proposition 2: In a global equilibrium with scarcity of safe assets, a country with abun-

dance of them will experience net capital inflows (or run current account deficits) that

exacerbate its own fire sales during crises

• Proposition 3: In the same equilibrium, a country with high returns during normal times
will also experience net capital inflows that exacerbate its own fire sales during crises

• Proposition 4: As liquidity shocks become more correlated across countries, gross flows

become less effective in providing global liquidity, a risk-premium on gross flows emerges,

and safe interest rates drop.

• Proposition 5: As the frequency of highly correlated states rises, gross capital flows decline
and safe interest rates drop.

• Proposition 6: As the global liquidity cycle grows in importance, a safe asset producer

country not only receives net capital inflows, but the composition of its gross flows changes,

with outflows targeting risky assets while inflows are mostly after domestic safe assets.

That is, the country effectively leverages its outflows.

• Proposition 7: A decline in asset returns and cross-correlations (i.e., a “risk-on”environ-
ment) exacerbates capital flows to high-yielders and the size of the potential fire sale.

• Proposition 8: In a symmetric environment, a global planner will always choose not to tax
capital flows.

• Proposition 9: In the same symmetric environment and with no costs of taxation (beyond
its effect on capital flows), there is a unique Nash equilibrium of local regulators that has

positive taxes on capital flows. This equilibrium has lower gross capital flows and safe
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interest rates, and worse local fire sales during crises, than under the global planner’s

outcome.

• Proposition 10: In the same environment but with convex costs of taxation there can be
multiple equilibria. The worst equilibrium has higher taxes on capital flows. In this case, a

reduction in the global supply of safe assets increases taxes on capital inflows, exacerbates

fire sales, and lowers safe rates.

• Proposition 11: If local governments have some capacity to inject liquidity during crises,
the global planner would maximize the utilization of this capacity.

• Proposition 12: In contrast, local governments that can commit to their liquidity-injection
policies would be reluctant to use this capacity.

• Proposition 13: However, local governments that decide their liquidity-injection policies
after the crises are realized (without commitment) would also use this capacity. Hence, the

lack of commitment is associated with a silver lining in terms of global liquidity creation.

• Proposition 14: In an environment where the reach for safety dominates global liquidity
creation, taxing capital inflows to safe asset producers exacerbates fire-sale prices in EMs

but reduces them in DMs.

• Proposition 15: In an environment where EMs have lower safe liquidity but higher yields
during normal times, a drop in returns in DMs may increase capital inflows into EMs and

exacerbate its fire sales.

• Proposition 16: In a reach-for-yield dominated environment, taxing capital flows to EMs
stabilizes them without worsening financial stability in DMs

Related literature-Methodology. From a methodological angle, our two central ingredients

are endogenous liquidity creation and fire sales. As such, our paper relates to Allen and Gale

(1994, 2005) who endogenize market size and volatility in a closed economy context with entry

costs. In our model liquidity is created in a manner akin to Holmström and Tirole (1998,

2001), though our context is different, as we focus on countries and their policies rather than

corporations that create the assets behind the liquidity.

The core (non-reach-for-yield) reason for capital flows in our environment is the scarcity of

locally safe assets to store value for domestic fire-sales stabilization. In this sense, our work

is closely related to the burgeoning literature on limited availability of global assets and its

macroeconomic consequences (e.g. Caballero (2006); Caballero et al. (2008, 2016); Bernanke

et al. (2011); Gorton et al. (2012); Krishnamurthy and Vissing-Jorgensen (2012); Gorton (2016)).

Our model also shares elements of the limits-to-arbitrage and fire sales literature. In particu-

lar, the (limited) liquidity pricing of local assets is similar to, e.g., Allen and Gale (1994); Shleifer
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and Vishny (1997); Gabaix et al. (2007); Lorenzoni (2008); Krishnamurthy (2010); Gromb and

Vayanos (2016); Holmström and Tirole (2001). The all or none attitude of fickle foreign investors

behind the fire sales is reduced form in our model, but is intended to capture the attitude of

Knightian agents facing an unfamiliar (foreign) situation, and as such it relates to Dow and

da Costa Werlang (1992); Caballero and Krishnamurthy (2008); Caballero and Simsek (2013);

Haldane (2013)

Our paper offers a balancing act of some of the forces highlighted in two strands of the

international finance literature. The first strand is a neoclassical benchmark that attempts

to understand capital flows using standard frictionless models of international risk sharing (see

e.g., Grubel (1968); Cole and Obstfeld (1991); Obstfeld (2009); Van Wincoop (1994, 1999); Lewis

(2000); Coeurdacier and Rey (2013); Lewis and Liu (2012)). The famous equity home-bias puz-

zle (while declining in recent years) suggests that diversification flows in household portfolios

are relatively small. Related, a large empirical literature that has tried to quantify the potential

benefits from international risk sharing has found mixed results (e.g., Coeurdacier et al. (2015)

argue they are small and Colacito and Croce (2010) take the opposite view). However, the main

reason for diversification in our model is different from the mostly neoclassical ones highlighted

in this literature, as in our model international liquidity is used to fund the comparative ad-

vantage of domestic arbitrageurs during fire sales. In fact, we view our model as capturing the

international positions held by sophisticated institutional investors that can arbitrage fire sales

(as opposed to unsophisticated households that make passive portfolio investments).

The second strand of the literature on capital flows focuses on liquidity/capital allocation in

an environment with financial frictions as the central driving force behind gross flows. As in our

paper, this literature focuses on gross positions held by sophisticated financial intermediaries, and

emphasizes the role of these flows in allocating liquidity where it is most needed (see, for instance,

Brunnermeier et al. (2012); Bruno and Shin (2013); Miranda-Agrippino and Rey (2015); Gabaix

and Maggiori (2015); Fostel et al. (2015)). The normative implications of these liquidity-driven

gross flows, however, are not fully understood and has been a cause for policy concern. First,

the centrality of large levered intermediaries raises the standard concerns associated to them,

especially in a context where there is no well developed permanent cross-currency lender of last

resort framework. Second, as we described earlier, the fickleness of inflows suggest that capital

flows can exacerbate domestic fire-sale externalities.3 In view of these and other concerns, the

literature has recently emphasized that fickle capital flows, while potentially useful for capital

allocation purposes, can increase crisis risks and should be subject to macroprudential regulation

(see, for instance, Caballero and Krishnamurthy (2004, 2005, 2006); Korinek (2010); Jeanne and

Korinek (2010); Ostry et al. (2010); Ostry (2012); Caballero and Lorenzoni (2014); Stiglitz

and Gurkaynak (2015); Brunnermeier and Sannikov (2015); Calvo (2016); Korinek and Sandri

3This criticism was a central theme of the post World War II meetings at Bretton Woods (e.g., Forbes (2016a)),
and it has reemerged in earnest in the post subprime crisis era, mostly in response to the spillovers of developed
markets’expansionary monetary policies onto emerging market economies (see, e.g., IMF (2012)) but also onto
other developed market economies (see, e.g., Klein (2012)).
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(2016)).

Through our fickleness assumption we take as given the core conclusions of the second

(liquidity-centric) literature, and study whether the mechanisms of the first (risk sharing) liter-

ature can offset the negative volatility implications once we consider the feedbacks of the global

equilibrium. In this methodological sense we also relate to Scott and Uhlig (1999), who take

as given the fickleness of financial investors and study the impact of this feature on economic

growth.

Our fickleness assumption is also reminiscent of the international finance literature that at-

tempts to understand the portfolio home bias in equities using models in which locals are more

informed about their home market than foreign markets (see, for instance, Gehrig (1993); Bren-

nan and Cao (1997); Van Nieuwerburgh and Veldkamp (2009)). Fickleness can be interpreted as

saying that the information disadvantage in a foreign market becomes particularly acute when

the market is distressed. We show that fickleness can explain the simultaneous collapse of inflows

and outflows during crises observed in the data. We also focus on the normative implications of

fickleness for the regulation of capital flows, whereas the recent contributions (e.g., Albuquerque

et al. (2009); Tille and Van Wincoop (2010)) analyze the positive implications of certain types

of information asymmetry for the dynamics of flows.

Much of the theoretical support for building policy barriers to capital flows relies on some

externality, principally within the domestic financial system, which leads to an excessive credit

boom, followed by destructive busts. This analysis is typically conducted from the perspective

of an individual country. However, an increasing body of empirical literature documents that

capital account restrictions divert capital flows to other countries (see, for instance, Forbes

et al. (2016); Giordani et al. (2014); Ghosh et al. (2014)). There is a small but important

theoretical literature that incorporates these diversions into a multilateral analysis of capital flow

taxation (e.g. Ostry et al. (2012); Blanchard and Ostry (2012); Jeanne (2014); Korinek (2012)).4

Ostry et al. (2012); Jeanne (2014); Blanchard and Ostry (2012) emphasize the importance of a

multilateral analysis of capital control measures and the value of coordination in preserving the

power of a domestic policy. Our analysis shares some of the mechanisms and logic behind their

work but we focus on the potential global liquidity costs of these controls rather than on their

benefits.

Related literature-Supporting Facts. For an exhaustive description of the large magnitude

of gross flows and their fluctuations see Lane and Milesi-Ferretti (2012); Milesi-Ferretti and

Tille (2011). For a report connecting these flows to the liquidity provision functioning of global

intermediaries, see e.g., Committee on the Global Financial System report, Landau (2011).

Also consistent with this view is the fact that the decline of gross flows in the aftermath of the

global financial crisis coincided with a large and stubborn rise in cross-country liquidity-scarcity

measures. See, e.g., Borio et al. (2016); Du et al. (2016) for a stark illustration of the reduced

4 IMF (2012) refers to this multilateral approach as the Keynes-White notion of operating “at both ends of the
transaction.”

8



international liquidity, as even the covered interest parity condition among the major currency

pairs broke down since the subprime crisis.

The key mechanism by which flows improve financial stability in our model is retrenchment.

Forbes and Warnock (2012) document that retrenchment is a widespread phenomenon that

applies for the outflows of countries as diverse as the U.S. and Chile (see also Broner et al.

(2013a,b); Bluedorn et al. (2013)).

On the other side of our balance of ingredients, the fickleness assumption is supported by the

evidence in Bluedorn et al. (2013), who document that capital flows are fickle for all countries,

developed and emerging, although the former experience less volatility of total net inflows despite

greater volatility of each component. As we mentioned earlier, and most directly related to our

framework, Broner et al. (2013a,b) document that, for a large panel of countries since the 1970s,

capital inflows and outflows increase during expansions and decrease during contractions. A

strand of the literature analyzes which subcomponents of capital inflows are fickle. A number

of papers argue that FDI inflows are somewhat different than portfolio flows and might actually

expand during crises (see Krugman (2000); Aguiar and Gopinath (2005); Acharya et al. (2011)),

although the evidence is not conclusive (see, for instance, Baker et al. (2009)).

We further show that changes in the (perceived) correlations of liquidity shocks naturally

generate a global cycle in capital flows and asset prices (see Section 3.1), which relates to the

work of, e.g., Calvo et al. (1996); Forbes and Warnock (2012); Fratzscher (2012); Rey (2015,

2016); Miranda-Agrippino and Rey (2015); Bruno and Shin (2015). We also analyze the reach-

for-safety and the reach-for-yield mechanisms in the presence of correlated shocks (see Sections

3.2 and 3.3). This is related to the empirical work on how changes in the global cycle (as

captured by the VIX) or the monetary policy in the U.S. affects the flows between DMs and

EMs, e.g., Baskaya et al. (2016); Chari et al. (2016); IMF (2012).

Finally, the implications of the reach-for-safety mechanism in our model are consistent with

the important empirical work by Gourinchas and Rey (2007); Gourinchas et al. (2010), who

document that the U.S. serves the role of the World’s venture capitalist, and estimate a valuation

transfer from the U.S. to the rest of the world during the global financial crisis of close to three

trillion dollar.5

The rest of the paper is organized as follows. Section 2 presents the baseline environment and

equilibrium in a largely symmetric world with no global liquidity shocks. This section illustrates

how symmetric capital flows help to create liquidity in our environment. It also illustrates

the reach-for-safety and the reach-for-yield mechanisms by minimally departing from symmetry

(in particular, considering an infinitesimal country). Section 3 revisits the previous topics after

introducing aggregate liquidity shocks that create a liquidity premium for foreign financial flows.

5 In our stylized model, all valuation effects are fully exercised by fickle and retrenching investors. In practice,
a significant share of the large gross position are maintained, and the insurance happens largely through capital
gains and losses. In this sense, an extended interpretation of our model is perfectly aligned with the valuation
literature. See, for instance, Forbes (2016b), for a careful analysis of the insurance role of valuation (and primary
income) effects in the current context of the UK.
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We show that increasing the correlations of liquidity shocks can naturally generate a global

liquidity cycle, and investigate how the presence of this cycle interacts with the reach for safety

and the reach for yield. The remaining sections focus on the policy implications. Section

4 analyzes optimal policy in our baseline environment with symmetric flows. We show that

the coordinated policy outcomes sharply differ from those that would be chosen in a Nash

equilibrium. Section 5 extends the baseline model to incorporate asymmetric regions, and uses

this model to investigate the policy implications of the reach for safety and the reach for yield.

Section 6 concludes and is followed by several appendices containing extensions and the proofs

of the propositions that are not developed in the body of the paper.

2. Core Environment and Equilibrium

In this section we describe the baseline model in which countries are symmetric and there is

no aggregate risk. Within this environment we explain the mechanism by which gross capital

flows help to create liquidity and stabilize crises. We also develop two variants of the model

to illustrate the reach-for-safety and reach-for yield mechanisms by which capital flows can be

potentially destabilizing.

2.1. Liquidity Creation with Fickle Flows

Consider a model with three periods, t ∈ {0, 1, 2}, with a single consumption good that we refer
to as a dollar (for simplicity, we do not explicitly model exchange rates). There is a continuum

of measure one of countries denoted by superscript j ∈ [0, 1]. Each country is associated with

a new investment technology– a risky asset that is supplied elastically at date 0. This asset

always pays R dollars, but the timing of the payoff depends on the local state ωj ∈ {0, 1} that
is realized at date 1. State ωj = 0 represents the case without a liquidity shock in which the

project pays off early at date 1. State ωj = 1 represents the case with a liquidity shock in which

the project payoff is delayed to date 2. In this case, the asset is traded at date 1 at a price pj

that will be endogenously determined. When there is a shortage of liquidity, which is the case

that we will focus on, the asset will be traded at a fire-sale price, pj < R. Hence, we envision the

liquidity shock as capturing a financial crisis in which asset prices fall below their fundamental

valuations. In the baseline model, the crises are i.i.d. across countries with Pr
(
ωj = 1

)
= π,

where π > 0 denotes the probability of a liquidity shock within a country.

Each country is also endowed with a legacy asset with liquid payoffs (safe asset), which is

supplied inelastically at date 0. Each unit of the safe asset yields η dollars at date 1. The safe

asset is traded at price η/Rf at date 0, where Rf denotes the (gross) risk-free interest rate that

will be endogenously determined.

In each country j, there are two types of agents, entrepreneurs and investors. There is a mass

e of entrepreneurs. They are born at date 1, with preferences given by E [c̃2]. Each entrepreneur

is endowed with 1 unit of the risky asset at date 1, and has access to a profitable project that
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delivers (nonpledgeable) payoffs at date 2. Thus, each entrepreneur sells her endowment at date

1 to invest in the project. These entrepreneurs are largely passive: their main role is to capture

asset sales driven by liquidity needs and the potential welfare losses with these types of sales.

The main agents are investors (with mass one), which are denoted by the superscript j of

their locality. They are endowed with all of the safe legacy asset supply as well as 1 dollar at date

0. They have preferences given by E [u (c0) + c1 + c2]. Here, c0 denotes the investors’spending

in an outside option other than holding financial assets. It can be viewed as consumption or

investment in an illiquid project. We assume u (c0) is an increasing and strictly concave function

that also satisfies Inada-type conditions, u′ (0) =∞ and u′ (1) < R, which will ensure an interior

solution.

The novel ingredient of the model is the fickleness of investors in foreign markets. Specifically,

if the foreign market is hit by a liquidity shock at date 1, then the investor is required to close

her position in this market. In contrast, the local investor can take unrestricted positions in

the local market. This assumption captures in reduced form the idea that investors might

not feel comfortable outside of their natural markets due to unmodeled features (e.g., Knightian

uncertainty, asymmetric information, deterioration of property rights) and they might flee at the

first sign of trouble. The assumption also captures the concerns by policymakers that portfolio

investments by outsiders tend to be fickle and might exacerbate financial instability.

The investor in country j chooses how much to consume, cj0, how much to invest in the local

risky asset, xloc,j , how much to invest in risky foreign assets,
[
xj
′,j
]
, and how much to invest

in the safe asset, yj . Here, xj
′,j denotes a Lebesgue-measurable function of j′ that captures the

investor’s foreign portfolio. We focus on symmetric equilibria in which the assets trade at the

same price in all markets, pj ≡ p ≤ R for each j. The investor’s problem can then be written

as,

max
c̃0.x̃loc,[x̃j′ ]j′ ,ỹ≥0

u (c̃0) + x̃locR+
(
x̃R+ ỹRf

)
M , (1)

R = (1− π)R+ πp

M = 1− π +
R

p
π

c̃0 + x̃loc + x̃+ ỹ = η/Rf + 1 and x̃ =

∫
xj
′
dj′.

If she invests in a local asset, she holds it until maturity, which leads to return R regardless

of the local shock. If instead she invests in a foreign asset, she obtains a liquid return at date

1, either because there is no shock in the foreign market, or there is a shock and the investor

sells in view of fickleness. The variable, R, denotes the expected one-period payoff from foreign

investment. Likewise, if the investor holds cash, she obtains a one-period return denoted by

Rf . The final return from foreign investment or cash also depends on whether there is a local

shock, as the domestic shock generates a reinvestment opportunity to purchase local assets at
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fire-sale prices, p < R. The variable, M , denotes the investor’s expected marginal utility from

reinvestment, which combines a marginal utility of 1 in case there is no domestic shock and

a marginal utility of R/p in case there is a shock. Note that the expected return from foreign

investment, R, is multiplied with the expected marginal utility from reinvestment, M , since the

local and foreign shocks are uncorrelated.6

The market clearing condition for the risky asset in a country j that experiences a liquidity

shock at date 1 can be written as,

pj = min
(
R,C

(
xin,j , xout,j

))
, where (2)

C
(
xin,j , xout,j

)
=
Rfy

j +Rxout,j

e+ xin,j
and xin,j =

∫
xj,j

′
dj′, xout,j =

∫
xj
′,jdj′.

Here, xin,j denotes the inflows into country j: that is, risky asset purchases in country j made

by the foreigners. Likewise, xout,j denotes the outflows from country j: that is, foreign asset

purchases made by country j investors. The expression, C
(
xin,j , xout,j

)
, denotes the cash-per-

asset in country j at date 1 as a function of inflows and outflows. The denominator of this term

captures the amount of sales, which come from liquidity-driven sales (e) and the past inflows all

of which are liquidated in a crisis in view of the fickleness assumption. The numerator captures

the total amount of cash in the market, which comes from the local investors’cash and foreign

asset positions that are determined by the past outflows. Eq. (2) says that, if the cash-per-asset

is abundant, then the asset price is determined by its fundamental value. Otherwise, there are

fire sales and the asset price is determined by the cash-per-asset in the market. This equation

also illustrates the key tension captured by our model: while the inflows tend to reduce the

fire-sale prices during a crisis, the outflows are retrenched back into the country and help to

stabilize the fire-sale prices.

There is also a market clearing condition for the safe legacy asset, which can be written as,∫
yjdj = η/Rf . (3)

An equilibrium with symmetric prices is a collection of allocations,
(
cj0, x

loc,j ,
[
xj
′,j
]
j′
, yj
)
j

,

and prices, pj = p ≤ R and Rf , such that the allocations solve problem (1), and the market

clearing conditions (2)− (3) hold.

We analyze a symmetric equilibrium that satisfies, c0,j = c0, x
loc,j = xloc, xj

′,j = x, yj = y.

This also implies that inflows and outflows in each country are the same, xin,j = xout,j = x for

each j. The symmetry together with Eq. (3) also implies that the equilibrium holdings of the

safe asset is positive and given by, y = η/Rf > 0. Plugging this observation into the investor’s

6We relax this assumption in Section 3. Note also that the investors cannot trade financial assets (backed by
foreign investment or cash) with payoffs contingent on the realizations of local liquidity shocks,

{
ωj
}
j
. We allow

for this possibility in Section 2.1.1.
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budget constraint, we obtain c0 + xloc + x = 1. It remains to characterize how the investor

optimally splits her dollar between outside spending, local investment, and foreign investment.

Using problem (1), the marginal benefit from local investment is equal to R. The marginal

benefit from foreign investment, x, can be calculated as,

RM = ((1− π)R+ πp)

(
1− π +

R

p
π

)
≡ µ (p) . (4)

Here, the second equality defines the function µ (p). Note that the foreign investment delivers

lower one-period return than local investment in view of the fickleness assumption, R < R. On

the other hand, foreign investment delivers a higher marginal reinvestment utility, M > 1, since

it can be retrenched back into the country in a crisis to arbitrage local fire sales. The following

lemma resolves this tension and shows that there will be foreign investment in equilibrium despite

the fickleness element.

Lemma 1. The marginal benefit from foreign investment, µ (p), is strictly decreasing in p over

the range p ∈ (0, R], and it satisfies µ (R) = R. In particular, µ (p) > R for each p ∈ (0, R).

The lemma implies that, when p < R, local investment is strictly dominated by foreign

investment, xloc = 0. Intuitively, the scarcity of local liquidity (safe assets) induces investors to

obtain liquidity insurance by holding foreign assets. Consistent with this intuition, a decline in

the fire-sale price p increases the marginal benefit from foreign investment, µ (p).

The equilibrium level of foreign investment is then characterized as the solution to,{
u′ (1− x) = µ (p) , if p < R

x ∈ [0, x] if p = R
, (5)

The first line captures the case with fire sales. In this case, xloc = 0 and the foreign investment

is determined by equating its marginal benefit with the marginal utility from consumption,

c0 = 1 − x. The second line captures the case without fire sales. In this case, consumption is
at its upper bound, c0 = 1−x, which is found by solving u′ (1− x) = R. Total investment is at

its lower bound, x> 0. The investor is indifferent between investing in the foreign and the local

market, and there is a range of optimal foreign investment levels (with the residual invested in

the local market, xloc = x− x).
Eq. (5) can also be viewed as describing the price level that is consistent with the optimality

of a given amount of foreign flows, x ∈ (0, 1). We denote this optimality relation with p =

P opt (x). Note that this is a decreasing relation (and strictly so if p < R), that is, a decline in

fire-sale prices increases the amount of foreign flows. Figure 1 illustrates the optimality relation

for a particular parameterization (with u (c0) = h log c0 for some h ∈ (0, R)). The strictly

decreasing region corresponds to the case with fire sales, and the flat region corresponds to the

case without fire sales,
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Next consider the market clearing condition (2), which can be rewritten as,

p = min

(
R,

η +Rx

e+ x

)
= min

(
R,

η + x (1− π)R

e+ x (1− π)

)
≡ Pmc (x) . (6)

Here, the first equality substitutes the market clearing condition for the safe asset, y = η/Rf .

The second equality rearranges terms to eliminate p from the right hand side. The third equality

defines the market clearing relation, p = Pmc (x), which describes the price level as a function

of flows. As we noted before, greater inflows tend to decrease the fire-sale price level due to

fickleness but greater outflows tend to increase it in view of retrenchment. The following lemma

resolves this tension and shows that, with symmetric flows, retrenchment dominates fickleness.

Lemma 2. The market clearing price level, Pmc (x), is weakly increasing in symmetric gross

flows, x, and strictly so if there are fire sales, Pmc (x) < R.

The intuition for why retrenchment dominates fickleness can be understood by inspecting

the first equality in (6). Note that inflows (x in the denominator) are liquidated at the fire-sale

return, p. However, the outflows (x in the numerator) are retrenched back into the country

at the diversified portfolio return, R. If there are fire sales, p < R (which is the only case in

which gross flows strictly influence prices), then the fire-sale return is lower than the diversified

portfolio return, p < R = (1− π)R + πp. It follows that the symmetric flows on net increase

liquidity and fire-sale prices. Intuitively, the fickle flows exit at weak local prices, as they are

driven by local shocks, while retrenchment flows take place at favorable prices as they are driven

by shocks back at home rather than globally. Hence, despite their fickleness, gross flows help

to bring the excess liquidity in foreign financial markets that do not experience liquidity shocks

into the local market that has a liquidity shock.

The equilibrium is characterized as the intersection of the increasing market clearing relation,

p = Pmc (x), with the decreasing optimality relation, p = P opt (x). Figure 1 illustrates the

characterization of equilibrium for a particular parameterization. There exists an equilibrium

that satisfies x ∈ (x, 1) and that features fire sales, p < R, as long as the following domestic

liquidity scarcity condition holds– which we maintain for the rest of the analysis.7

Assumption 1. η < eR.

Once the variables, x, p, are characterized, the risk-free return is characterized by the financial

market equilibrium condition,

Rf = R. (7)

In the baseline model, cash and foreign investment yield the same one-period return since they

7The parameter, η, has two roles in our model. It captures the supply of the safe asset, and it also increases the
relative wealth of specialist investors (since we assume the safe asset is endowed to them). If we were to decouple
the two roles, and endogenize the mass of specialists via costly entry, then we could expect Assumption 1 to be
endogenously satisfied. As emphasized by Allen and Gale (1994, 2005), this type of equilibrium must feature fire
sales so as to compensate the specialists for their ex-ante entry costs.
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Figure 1: The left panel illustrates the characterization of equilibrium in the baseline environ-
ment. The dashed line illustrates the effect of a reduction in the liquidity from legacy assets, η.
The right panel illustrates the risk-free rate in equilibrium.

are perfect substitutes [cf. problem (1)]. This feature will be modified once we introduce global

liquidity shocks (see Section 3). Our next result summarizes the above discussion and establishes

some properties of equilibrium.

Proposition 1. Consider the baseline model (with Assumption 1). There exists a unique sym-
metric equilibrium,

((
c, xloc, x, y

)
, p, Rf

)
, which satisfies yRf = η, xloc = 0, c = 1 − x and

fire-sale prices, p < R. The pair (x, p) is characterized by Eqs. (5) and (6). Decreasing the local

liquidity (safe assets), η, decreases p and Rf , and increases the capital flows, x. Decreasing the

return, R, decreases p and Rf , as well as the capital flows, x.

The comparative static result with respect to η follows by observing that reducing liquidity

shifts the market clearing curve p = Pmc (x) downwards, without affecting the optimality curve,

p = P opt (x) (see Figure 1 for an illustration). Intuitively, the price declines in view of the

market clearing condition (6). In turn, the lower price induces greater foreign investment; with

smaller local liquidity, there is greater need for global liquidity creation. The risk-free return

also declines in view of the financial optimality condition (7). Hence, the result implies that a

reduction in global supply of safe assets lowers the risk-free return and increases gross capital

flows. This result provides one explanation for the worldwide increase in gross capital flows in

the run-up to the Global Financial Crisis (see Bluedorn et al. (2013)). From the lens of our

model, the gross flows increased at least in part as a response to the global asset shortages that

developed in early 2000s (see e.g., Caballero (2006)). In Section 4, we will ask the follow-up
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question of whether the endogenous reaction by governments exacerbates or mitigates the impact

of a contraction in global liquidity.

Likewise, the comparative static result with respect to R follows by observing that decreasing

R shifts market clearing curve downward as global liquidity declines. It also shifts the optimality

curve downward, since investment becomes relatively unattractive. The net effect is a decline

in the fire-sale price, p, as well as safe asset returns, Rf . This analysis does not help to identify

the effect on x. The proof in the appendix uses a more subtle argument to show that decreasing

R also decreases x. In Section 2.3, we will ask the follow-up question of how the decline in the

return in developed countries, captured by R, affects flows into and fire-sale prices in emerging

markets with relatively high returns.

2.1.1. Insurance markets with respect to local shocks

Note that the financial markets in our baseline model are incomplete in the sense that investors

cannot trade financial contracts (backed by foreign investment or cash) whose payoffs are con-

tingent on the realizations of the local liquidity shocks,
{
ωj
}
j
. This incompleteness results in

an ineffi cient allocation of liquidity at date 1. Specifically, the investors have liquid financial

wealth in states in which their country does not experience liquidity shocks which they would

have ideally liked to transfer to states with local liquidity shocks. In Appendix A.1, we relax

this assumption by introducing intermediaries that sell contingent contracts and invest in foreign

markets as well as cash. We show that local investors purchase the contracts contingent on local

liquidity shocks, and that the presence of these insurance arrangements further increases local

fire-sale prices.

Nonetheless, the equilibrium continues to feature fire sales under a strengthening of Assump-

tion 1, which can be dubbed a global liquidity scarcity condition. This condition always holds

when π is suffi ciently high, in which case the crises have a global scope and the local insurance

markets provide little help. It also holds when π is not too large and η is suffi ciently low. More-

over, as long as there are fire sales, the qualitative features of this equilibrium are similar to our

baseline setting. For instance, our main normative results (that we develop in Section 4) con-

tinue to apply in this setting. We therefore abstract away from insurance arrangements in our

baseline analysis. This is arguably a realistic feature of the model. It could also be motivated

by informational considerations: frictions such as moral hazard or adverse selection would have

a particularly strong bite for insurance arrangements with respect to idiosyncratic shocks. That

said, to the extent that these markets are feasible, they should be promoted. See e.g., Caballero

(2003); Brunnermeier et al. (2016), for proposals in the context of emerging markets and the

Eurozone, respectively.
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2.2. Reach for safety

We next consider a variant of the baseline model to illustrate the reach-for-safety mechanism.

Specifically, consider the same setup with the only difference that one country j (that has

measure zero) has potentially different liquidity, ηj , compared to the world average, η. A

developed country with deep financial markets and a large supply of safe assets– such as the

U.S.– can be thought of as featuring ηj > η. Conversely, an emerging market country is captured

by low ηj .

Suppose ηj > η so that the country in consideration has a relatively developed financial

market (the other case is discussed at the end of the subsection). As a benchmark, first suppose

the country is in autarky. In this case, consumption and local investment in risky assets is given

by respectively cj0 = 1 − x and xloc,j =x, and the safe asset holding is yj = ηj/Rf . The asset

price at date 1 (conditional on a liquidity shock) is pj = min
(
R, η

j

e

)
. To obtain sharp results,

we make the following safe asset abundance assumption (in addition to Assumption 1).

Assumption S. eR < ηj .

That is, country j has access to abundant domestic liquidity, which ensures that the autarky

equilibrium features no fire sales, pj = R.

Let us contrast this outcome with the equilibrium with free capital flows. The world equi-

librium, which we continue to denote by (x, p,Rf ) is the same as before. However, the equilib-

rium allocations in country j are potentially different. When the country experiences positive

inflows– which will be the case in equilibrium– the optimality conditions for foreign investors

imply,

(1− π)R+ πp = (1− π)R+ πpj . (8)

In particular, the fire-sale price in country j is exactly the same as in the representative country.

Put differently, even though the country j has abundant liquidity and would not feature fire

sales in autarky, it cannot escape fire sales in the equilibrium with free capital flows.

For intuition, consider the optimality conditions in (8). All else equal, greater liquidity in

the country, ηj , would increase the fire-sale price, pj . However, this makes the country’s assets

attractive to foreign investors and increase the inflows, xin,j . Foreign investors will be indifferent

to invest in the country only when the inflows increase to the point at which the expected return

is in line with that in the representative country. Formally, the market clearing condition in

country j can be written as,

pj = min

(
R,

ηj + xout,jR

e+ xin,j

)
, (9)

where xout,j denotes the outflows from the country. Using the optimality condition for local

investors, u′
(
1− xout,j

)
= R, the outflows are the same as in other countries, xout,j = x.

Combining this with Eqs. (9) , (8) and (6), we obtain, xin,j − xout,j =
(
ηj − η

)
/p > 0. That is,

the liquidity difference advantage of the country is neutralized by its greater inflows relative to

outflows (i.e., capital account surplus and current account deficit). The following proposition
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summarizes this discussion.

Proposition 2. Consider the baseline model in which a country has abundant local liquidity,
ηj > η, that satisfies Assumption S (so that the country would not experience fire sales in

autarky). In an equilibrium with free financial flows, the country receives more inflows than

its outflows, xin,j > xout,j, and experiences fire-sales that are just as severe as those in the

representative country, pj = p < R.

This result suggests that the reach-for-safety flows have potentially destabilizing effects.

However, note that the flows are also potentially stabilizing for foreign investors that invest in

the developed country. To see this, consider the mirror-image situation in which a country has

relatively low liquidity compared to the world average, ηj < η. The equilibrium in this country

is characterized by similar steps as above. With symmetric flows, this country would experience

deeper fire sales in view of its low local liquidity, pj < p. All else equal, these fire sales would

make the country’s assets relatively unattractive to foreigners, which would reduce inflows. This

process continues until the fire sales are on average the same as those in the representative

country, pj = p (except when ηj < η − xp, in which case the equilibrium features xin,j = 0 and

pj < p). Hence, the effect of reach-for-safety flows on worldwide financial stability is ambiguous.

2.3. Reach for yield

We next consider another variant of the model to illustrate the reach-for-yield mechanism.

Specifically, consider the same setup as in Section 2.1 with the only difference that one country j

(that has measure zero) has a greater fundamental return relative to the world average, Rj > R.

Country j can be thought of as a rapidly growing or high yielding emerging market such as

China, India, or Brazil. These types of countries appear to have relatively attractive fundamental

returns, especially in recent years in which the asset returns in developed markets have been

unusually low. In line with this interpretation, we also assume the country has (weakly) lower

liquidity than the representative country, ηj ≤ η. To obtain an interior solution, we also assume
that Rj and ηj are not too far from their representative country counterparts.

Assumption Y. Rj −R ∈
(

0, π
1−πp

)
and ηj − η ∈ [−px, 0].

The analysis parallels Section 2.2 with minor differences. With positive inflows into country

j– which will be the case in equilibrium– the optimality condition for foreign investors imply,

(1− π)R+ πp = (1− π)Rj + πpj . (10)

In particular, the fire-sale price in country j is lower than in the representative country, pj < p.

For intuition, first imagine the country had the same investment return as the world average.

As we discussed above, this country’s outflows would exceed its inflows, xout,j ≥ xin,j (the coun-
try would run a current-account surplus), which would stabilize local financial crises, pj = p.
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Relative to this benchmark, an increase in the country’s investment return, Rj , makes its as-

sets relatively attractive to foreigners. The inflows increase (and the current account surplus

declines) up to the point at which the local fire-sales are suffi ciently severe to deter the foreigners

from investing further in the country.

We next analyze how a decline in asset yields in developed markets, which we capture with

a decline in R, affects the equilibrium in the emerging market country j. As we noted in

Proposition 1, a decline in R reduces the fire-sale price in the representative country, p (via

a reduction in international liquidity). In view of this observation, Eq. (10) implies that an

increase in R also decreases the fire-sale price in country j. It can further be seen that the fire-

sale price declines more in country j than in the representative country, that is, pj − p declines.
The following result summarizes this discussion.

Proposition 3. Consider the baseline model in which a country has relatively high return,
Rj > R, and satisfies Assumption Y. In an equilibrium with free financial flows, the country

experiences fire sales that are more severe than in the representative country, pj < p. A decrease

in R reduces the fire-sale price in the country, pj, as well as the relative fire-sale price, pj − p.

3. Environment with Aggregate Shocks

We next introduce aggregate liquidity shocks into our analysis to illustrate a number of additional

mechanisms. We show that aggregate shocks result in a risk premium on capital flows (over safe

assets). We then analyze the key determinants of the liquidity risk premium, and how this

premium affects the reach-for-safety as well as the reach-for-yield mechanisms. We show that

changes in the correlation of liquidity shocks drives a global cycle in liquidity premia, asset

returns, and capital flows.

To address these issues, consider the setup in Section 2 with the only difference that there

are several aggregate states denoted by s ∈ S = {1, 2, .. |S|}. The states differ in the probability
of the liquidity shock, πs. Throughout, we assume:

Assumption 2. πs is increasing in s.

Hence, the states with higher s are associated with a greater probability of the liquidity shock

(and thus, greater financial distress).8 We denote the probability of the aggregate state s with

γs, where γs > 0 for each s and
∑

s γs = 1.

We also assume that, at date 0, the agents can trade financial securities contingent on the

aggregate state at date 1. Specifically, for each state s ∈ S, there is an Arrow-Debreu financial
8 In Appendix A.4, we consider the possibility that aggregate shocks can also affect the cash flows from legacy

assets and new investment, ηs and Rs. We show that these types of shocks do not change the baseline analysis in
a significant way as long as ηs and Rs scale proportionally across states– which we view as a neutral assumption
in our setting. In this case, the available liquidity also scales proportionally with ηs and Rs across states. In
particular, the fire-sale price to return ratio, ps/Rs, remains constant and the analysis becomes similar to the
case without aggregate uncertainty.
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security that pays 1 dollar if state s is realized. The security is traded at date 0 competitively

at price qs. We assume the Arrow-Debreu securities are supplied by competitive intermediaries

that undertake risky foreign investments at date 0. As before, xin,j ≥ 0 denotes the inflows into

country j. The intermediaries’optimality conditions then imply that,

1 ≥
∑
s

qsR
j
s, with equality if x

in,j > 0, (11)

where R
j
s = R (1− πs) + pjsπs. Hence, the date-0 value of investment in a country is equal to its

cost, normalized to 1, whenever there are positive inflows.

Similar to the earlier analysis, the investor in country j chooses how much to consume, c0,

how much to invest locally, xloc, how much to invest in the legacy asset, y, and how much to

invest in Arrow-Debreu securities, denoted by (zs)s. Her problem is,

max
c̃0,x̃loc,ỹ,(z̃s≥−ỹRf)s

u (c0) + x̃locR+
∑
s

γs (ỹRf + z̃s)M
j
s , (12)

c̃0 + x̃loc +
∑
s

qsz̃s + ỹ = η/Rf + 1.

Here,M j
s = 1−πs+ R

pjs
πs denotes the marginal utility from reinvestment as before. We assume the

investors’holdings of the Arrow-Debreu securities satisfy, z̃s ≥ −ỹRf : that is, the investor can
take a short position but only if she holds the safe asset to cover the position. Unlike in problem

(1), the investor does not directly choose risky investment in foreign countries. Instead, she

chooses financial claims on the investments that are undertaken by competitive intermediaries as

described above. To ensure continuity with the earlier analysis, we use xout,j =
∑

s qszs to denote

the outflows from the country into risky investment. We also define xout,j = yj−η/Rf +
∑

s qszs

as the total outflows that include the net trading of safe assets.9

The market clearing conditions can be written as,

pjs = min

(
R,

Rfy
j + zjs

e+ xin,j

)
for each s ∈ S, (13)∫

yjdj = η/Rf ,∫
zjsdj =

∫
xin,jR

j
sdj for each s ∈ S.

Here, the first two equations are the analogs of the earlier market clearing conditions. The third

equation is a new condition that says that the total amount of traded Arrow-Debreu securities

is equal to the amount of financial payoffs from foreign investment in state s. There is also an

9 In the previous section, this distinction was not important since the safe assets and foreign investment were
perfect substitutes in equilibrium, and we focused (without loss of generality) on symmetric equilibria in which
the countries retained their safe asset endowments. The distinction will play some role when we revisit the
reach-for-safety mechanism in Section 3.2.
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aggregate resource constraint at date 0 which can be written as,
∫
j

(
cj0 + xloc,j + xin,j

)
dj = 1.

By Walras’law, this resource constraint is satisfied when all of the budget constraints hold in

equilibrium.

An equilibrium with aggregate shocks is a collection of allocations,(
cj0, x

loc,j , yj ,
[{
zjs
}
s

]
j

)
,
[
xin,j

]
j
, and prices,

(
Rf , {qs}s ,

[{
pjs
}
s

]
j

)
, such that the finan-

cial intermediaries’ optimality condition (11) holds, the investors’ allocations solve problem

(12), and the market clearing conditions (13) hold.

The characterization of equilibrium closely parallels the baseline model without aggregate

shocks. As before, we focus on symmetric equilibrium allocations and prices, which we denote

by dropping the superscript j. Note that the aggregate resource constraint implies the inflows

and risky outflows are equated in equilibrium, xin =
∑

s qszs = xout (which is also equal to xout).

To ensure continuity with the earlier analysis, we use the notation x = xin = xout to denote

these symmetric flows.

As before, the symmetry implies the safe asset holdings are given by, y = η/Rf . The local

investors’budget constraint can then be written as, c0+xloc+x = 1. It can also be seen that (as

before) local investment is dominated, xloc = 0 (since there are fire sales in view of Assumption

1). The optimality conditions for problem (12) then imply,

u′ (1− x) =
γs
qs
Ms for each s ∈ S. (14)

Combining this with by Eq. (11), which holds as equality, we obtain,

u′ (1− x) =
∑
s

γsRsMs ≡
∑
s

γsµs (ps) . (15)

Here, µs (ps) ≡ ((1− πs)R+ πsps)
(

1− πs + R
ps
πs

)
denotes the marginal benefit from foreign

investment conditional on state s [cf. Eq. (4)]. Using the market clearing conditions (13) and

symmetry, we also obtain,

ps = min

(
R,

η + xRs
e+ x

)
= min

(
R,

η + x (1− πs)R
e+ x (1− πs)

)
. (16)

The equilibrium is characterized by Eqs. (15) and (16), which are the analogs of Eqs. (5)

and (6) in this setting. It can be checked that there is a unique symmetric equilibrium with

x ∈ (x, 1) and ps < R for each s. Using Eq. (16), note also that the price, ps, is decreasing in s:

that is, states with greater financial distress (in terms of the likelihood of crises) are associated

with lower prices. Likewise, the expected payoff from foreign assets, Rs = (1− πs)R + πsps, is

decreasing in s.

Given the flows and fire-sale prices, (x, p), Eq. (14) determines the Arrow-Debreu prices in

financial markets. Note that the price-to-probability ratio, qs/γs, corresponds to the stochastic
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discount factor (SDF) for state s. Rewriting Eq. (14), we have,

qs/γs =
Ms

u′ (1− x)
=

1

u′ (1− x)

(
1− πs +

R

ps
πs

)
.

Since πs is increasing in s (Assumption 2) and ps is decreasing in s, we also have that the SDF

is increasing in s. That is, the states with greater financial distress are associated with more

expensive Arrow-Debreu asset (insurance) prices. We also calculate the risk-free rate as,

Rf =
1∑
s qs

=
u′ (1− x)

E [Ms]
=
E
[
RsMs

]
E [Ms]

. (17)

Here, the second equality follows from Eq. (14) and the third equality follows from Eq. (15).

Using this expression, we also calculate the risk premium on financial assets (which can be

viewed as a liquidity premium) as,

E
[
Rs
]
−Rf =

−cov
(
Ms, Rs

)
E [Ms]

. (18)

Note that the covariance term is negative since expected asset payoff, Rs, is decreasing in s,

whereas the marginal utility, Ms (which is proportional to the SDF), is increasing in s. Thus,

with aggregate liquidity risk, the risk premium on foreign financial assets is strictly positive.

Intuitively, the value of the foreign assets is reduced by the fact that they pay relatively less

when the liquidity is relatively scarce. The following result summarizes this discussion.

Proposition 4. Consider the symmetric model with aggregate risk (with Assumptions 1 and 2).
There exists a unique symmetric equilibrium,

((
c0, x

loc, y, {zs}
)
, {qs, ps}s , x

)
, which satisfies

c0 = 1 − x, xloc = 0, x > x, and fire-sale prices, ps < R. The tuple (x, (ps)s) is characterized

by Eqs. (15− 16). The fire-sale price, ps, is decreasing in s: that is, more distressed states

with greater likelihood of liquidity shocks are associated with lower prices. The state price-to-

probability ratios, {qs/γs}s, are characterized by Eq. (14) and are increasing in s (the degree

of financial distress). The risk-free return is characterized by Eq. (17). The risk premium on

foreign assets is positive and characterized by Eq. (18).

3.1. Correlated Shocks and the Global Liquidity Cycle

We next use a special case of the model with correlated liquidity shocks to show that changes in

correlations can naturally generate a global liquidity cycle (e.g., Calvo et al. (1996); Forbes and

Warnock (2012); Rey (2015)). To this end, suppose there are three aggregate states, s ∈ {1, 2, 3},
that feature,

π1 = 0 < π2 = π < π3 = 1, (19)
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for some π ∈ (0, 1). In particular, state s = 2 corresponds to the state in the baseline analysis in

which the liquidity shocks are i.i.d. across the regions. States {1, 3} together represent a “cor-
related shock”state in which the liquidity shocks are perfectly correlated across the countries.

Specifically, either all countries are hit (state 3) or no country is hit (state 1). We also assume

the state probabilities are given by,

γ1 = β(1− π), γ3 = βπ and γ2 = 1− β. (20)

Here, the parameter β captures the extent to which the shocks are correlated– controlling for

everything else in the model. The case, β = 0, corresponds to the model in the previous section

with i.i.d. shocks, whereas the case β = 1 corresponds to the other limit in which the liquidity

shocks are always correlated.

Note also that µ1 (p) = R and µ3 (p) = p× R
p [cf. Eq. (4)]. Thus, Eq. (15) becomes,

u′ (1− x) = βR+ (1− β)µ2 (p2) . (21)

The market clearing conditions (16) imply,

p2 =
η + x (1− π)R

e+ x (1− π)
.

The last two equations determine the pair, (x, p2). By inspecting the equations it can be

seen that increasing β reduces x. Intuitively, as liquidity shocks become more correlated, the

liquidity-provision benefit from capital flows declines. Note also that an increase in correlations,

β, reduces the fire-sale prices even in the i.i.d. state, p2, in view of the reduction in capital flows,

x.

Using the market clearing condition (16), we also calculate the price in state 3 (with π3 = 1)

as,10 p3 = η
e . This is also the average fire-sale price conditional on a liquidity shock in the

aggregate shock state, {1, 3} (since π1 = 0 and π3 = 1). Note that we have, p3 < p2: that is, the

aggregate shock state features deeper fire sales than the i.i.d. state. Intuitively, the aggregate

shock state has as much aggregate liquidity on average but this liquidity is not distributed

appropriately across the states (state 3 has too little and state 1 has too much of it).

Next consider the effect of β on the expected return on foreign assets,

E
[
Rs
]

= β ((1− π)R+ πp3) + (1− β) ((1− π)R+ πp2)

= (1− π)R+ π (βp3 + (1− β) p2) .

This expression implies that increasing the correlations reduces E
[
Rs
]
, because it decreases the

(unconditional) average fire-sale price, βp3 + (1− β) p2.

10We could similarly calculate the fire-sale price in state 1 as p1 = η+xR
e+x

. This price does not play any role in
the analysis since π1 = 0, that is, the liquidity shock happens with zero probability in state 1.
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Next consider the effect of β on the risk-free return. Using Eq. (17), we have,

Rf =
E
[
RsMs

]
E [Ms]

=
βR+ (1− β) ((1− π)R+ πp2)

(
1− π + π R

p2

)
β
(

1− π + π R
p3

)
+ (1− β)

(
1− π + π R

p2

) .

The last expression is decreasing in β (since the numerator is decreasing and the denominator is

increasing in β). Intuitively, as the liquidity shocks become more correlated, the risk-free asset

becomes more valuable as it provides liquidity when there is a global liquidity shock. Finally,

consider the risk premium on foreign financial investment, E
[
Rs
]
− Rf [cf. (18)]. Since the

expected return on foreign asset as well as the risk-free asset decline, the effect on the risk

premium is in general ambiguous. However, recall that the risk premium is zero for β = 0 (see

Section 2) and becomes strictly positive for any β > 0 (see Eq. (18)). Thus, the risk premium

is increasing in the neighborhood of β = 0. The following result summarizes this discussion.

Proposition 5. Consider the symmetric model with the possibility of correlated liquidity shocks.
Increasing β (so that the shocks become more correlated) reduces the capital flows, x, and reduces

fire-sale asset price in the i.i.d. state, p2. It reduces the expected return on foreign financial

assets, E
[
Rs
]
, as well as the risk-free interest rate, Rf . In the neighborhood of β = 0, it also

increases the risk premium on foreign assets, E
[
Rs
]
−Rf .

An increase in β in this model can be thought of as capturing a “risk-off” environment

in which the investors retrench into their home markets (even at date 0, before the crises are

realized). This reduces the capital flows and liquidity creation, while also reducing the risk-free

rate and increasing the risk premia. This result is consistent with the large decline in gross

capital flows in the aftermath of the Global Financial Crisis (see Bluedorn et al. (2013) and

Lane and Milesi-Ferretti (2012); Milesi-Ferretti and Tille (2011)). From the lens of our model,

the global crisis increased the (real or perceived) correlations of financial crises, which in turn

reduced the usefulness and the magnitude of gross capital flows. In the next section, we will

also analyze how this type of switch to a “risk-off”environment affects the reach-for-safety and

the reach-for-yield mechanisms that we introduced in Section 2.

3.2. Reach for Safety with Aggregate Shocks

We next revisit the reach-for-safety mechanism we introduced in Section 2.2 in the presence of

aggregate liquidity shocks. To this end, suppose a developed country j (that has measure zero)

has greater liquidity than the world average, ηj > η. As before, suppose Assumption S holds so

that the autarky equilibrium in the country would feature no fire sales, pjs = R for each s ∈ S.
Consider the equilibrium with free capital flows. The world equilibrium is the same as in

Section 3. However, the equilibrium allocations in country j are different. In particular, the
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optimality conditions for foreign investment implies the following analogue of Eq. (8),

1 =
∑
s

qs ((1− πs)R+ πsps) =
∑
s

qs
(
(1− πs)R+ πsp

j
s

)
. (22)

This equation implies pj = p, where we define the (price-)weighted average fire-sales as respec-

tively,

p =

∑
s qsπsps∑
s qsπs

and pj =

∑
s qsπsp

j
s∑

s qsπs
. (23)

As before, the country receives positive net inflows and cannot escape fire-sales “on average”

even though it would not feature fire sales in autarky.

This leaves open the possibility that the volatility of the fire-sale prices in country j could be

lower than in the representative country. In fact, a naive look at the market clearing condition

(16) could suggest that country j would experience relatively less severe fire sales in states with

greater s, as its large endowment of the safe asset would provide some cushion from the declines

in aggregate liquidity. This prediction turns out to be incorrect. To see this, note that the local

investors’optimality condition is given by,

u′
(
cj0

)
=

M j
s

qs/γs
for each s ∈ S, where M j

s = 1− πs + πs
R

pjs
. (24)

This equation, together with Eq. (22), represents a system of |S| + 1 equations in |S| + 1

unknowns, where the unknowns are the prices
{
pjs
}
s
and consumption, cj0. The unique solution

is given by, pjs = ps < R for each s and cj0 = c0. In particular, the fire-sale price in country j is

the same as in the representative country state-by-state.

The naive intuition is incorrect since the local investors do not retain their initial endowments

of the safe asset. Rather, as captured by Eq. (24), they trade financial assets so as to move their

liquidity across aggregate states. Recall also that the states with greater s command higher risk

prices, qs/γs, and that the country j has relatively large endowment of liquidity in these states.

Thus, the local investors sell financial claims for states with higher s (and purchase financial

claims for states with lower s). These financial trades ensure that the country’s liquidity– and

thus, fire-sale price– is in line with that in the representative country state-by-state.

We obtain additional insights by explicitly calculating the risks of the country’s outflows

relative to its inflows. Recall that xout,j = yj − ηj/Rf +
∑

s qsz
j
s denotes the date-0 value of

the country’s total outflows including its net trade of the safe asset. In the appendix, we show

that xout,j = x, that is, the country has the same size of outflows as the representative country.

However, the outflows have a different risk composition. To see this, let xout,js = Rf
(
yj − ηj

)
+zjs

denote the payoff from the outflows conditional in state s of date 1. We show that,

xout,js = −
(
lj − 1

)
x+ ljxRs for each s, where lj > 1. (25)
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That is, the local investors can be thought of as selling some of their safe asset endowments to

make a leveraged investment in foreign diversified portfolio. The variable, lj > 1, is a measure

of the leverage ratio in outflows: the value of the the risky investments the country undertakes

relative to the value of its outflows. Note also that the date-1 payoff from the inflows is given

by, xin,js = xin,jRs for each s, that is, the leverage ratio in inflows is equal to one. Hence, Eq.

(25) implies that the country’s outflows are riskier than its inflows.

It follows that, in addition to having greater inflows than outflows as in Section 2.2, xin,j >

xout,j = x (which continues to hold in this setting), the country also experiences relatively

safe inflows and relatively risky outflows. This difference in the composition of flows is further

destabilizing, and ensures that the country experiences the same (fire-sale) asset price volatility

as the representative country. These results are consistent with the empirical work by Gourinchas

and Rey (2007); Gourinchas et al. (2010), who document that the outflows of the U.S. are riskier

than its inflows. They also show that the U.S. earns a risk premium on capital flows in normal

times, but it transferred resources and provided insurance to the rest of the world during the

Global Financial Crisis. Our model suggests that these transfers are likely to have exacerbated

the severity of the GFC in the U.S., while mitigating its impact in the countries that held the

(relatively) safe U.S. assets.

We also analyze how the global liquidity cycle affects the level and the risk composition of

the country’s net inflows. To this end, consider the special case of the model with aggregate

shocks described in Section 3.1. Suppose β increases so that the shocks become more correlated.

As captured by Proposition 5, this decreases the symmetric flows, x, as well as the risk-free

rate, Rf . In the appendix, we show that xin,j − xout,j increases: that is, the country’s inflows
decline less than its outflows, xout,j = x. Furthermore, we also show that the leverage ratio

of the country’s outflows, lj , increases. Intuitively, the “risk-off” induced by the increase in β

makes international liquidity scarce and increases the value of safe assets that provide liquidity

in global distress states. This increases the relative inflows into the developed country j, while

also inducing the country to undertake foreign investment with a greater leverage ratio. The

following result summarizes this discussion.

Proposition 6. Consider the setting with aggregate risk in which a country has abundant local
liquidity, ηj > η, that satisfies Assumption S (so that it would not experience fire sales in

autarky). In an equilibrium with free financial flows, the country receives more inflows than

its outflows, xin,j > xout,j, and experiences fire sales with prices that are equal to those in

the representative country, pjs = ps < R for each s. The country’s outflows are riskier than its

inflows, and they can be replicated as in (25) where lj > 1 captures the leverage ratio in outflows.

In the special case with correlated liquidity shocks, increasing β (so that the shocks become

more correlated) reduces the outflows, xout,j, increases the inflows relative to outflows, xin,j −
xout,j, and increases the leverage ratio, lj.
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3.3. Reach for Yield with Aggregate Shocks

We next revisit the reach-for-yield mechanism we introduced in Section 2.3 in the presence of

aggregate liquidity shocks. For simplicity, we focus on the special case with correlated liquidity

shocks described in Section 3.1. In this setting, suppose an emerging market country j (that

has measure zero) has greater fundamental return than the world average, Rj > R. As before,

suppose also that the country has relatively low liquidity, ηj ≤ η. We also modify Assumption

Y as follows.

Assumption Ỹ. Rj −R ∈
(

0, p
∑
s qsπs∑

s qs(1−πs)

)
and ηj − η ∈

[
−x

∑
s qsps∑
s qs

, 0
]
.

When xin,j > 0 (which will be the case in equilibrium), foreign intermediaries’optimality

condition implies,∑
s∈{1,2,3}

qs ((1− πs)R+ πsps) =
∑

s∈{1,2,3}
qs
(
(1− πs)Rj + πsp

j
s

)
. (26)

Note that this equation implies pj < p (since Rj > R), where the weighted average fire-sales are

defined in (23). Hence, as in Section 2.3, the country with higher return receives positive net

inflows and experiences greater fire-sales “on average.”

In the appendix, we complete the characterization of equilibrium and show that the coun-

try experiences deeper fire sales relative to the representative country in both distress states,

s ∈ {2, 3}. We further show that the relative depth of fire sales in country j is greater in the
idiosyncratic shock state than in the aggregate shock state, that is, R

j/pj2
R/p2

>
Rj/pj3
R/p3

> 1. Intu-

itively, since the crises are more frequent in state 3, the local investors in country j purchase

relatively more liquidity for this state than in state 2. This helps to mitigate somewhat the

fire sales caused by the reach-for-yield inflows in state 3 (the global crisis), at the expense of

deepening the fire sales in state 2 (the local crises).

We next establish the comparative statics of the reach-for-yield mechanism. To this end, we

combine the optimality condition (23) with Eqs. (23) , (14), (19), and (20) to obtain,

(
Rj −R

)
(1− π) (M1β +M2 (1− β)) =

(
p− pj

)
π (M2 (1− β) +M3β) (27)

This equation illustrates that investing in country j as opposed to other countries represents a

trade-off between crisis and non-crisis states. The investors collect net positive returns if there

is no crisis (captured by the left side), but they make net negative returns if there is a crisis

(captured by the right side). The net gains are multiplied by the probability of no crisis (1− π)
and the average marginal utility conditional on no crisis. The net losses are calculated in similar

fashion. The equilibrium obtains when the weighted net gains and the net losses are equated.

Eq. (27) shows that, all else equal, a decline in investment returns in other countries,

R, makes investing in country j more attractive. In equilibrium, this tends to decrease the

relative fire-sale price in country j– so as to counter the greater net gains with greater net losses
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conditional on a crisis. However, the result does not immediately follow since the marginal

utilities are also endogenous and depend on R. In the appendix, we show that (for the model

with three states) the endogenous effect reinforces the direct effect. In particular, a decrease in

R decreases pj − p, generalizing Proposition 3.
Eq. (27) also shows that, all else equal, a decline in the correlation parameter, β, makes

investing in country j relatively more attractive: it decreases the weighting term on the right

(loss) side while increasing the weighting term on the left (gain) side since M1 < M2 < M3.

In equilibrium, this reduces the relative fire-sale price in country j. As before, the result does

not immediately follow since the marginal utilities are endogenous. In the appendix we show

that the endogenous effect mitigates but does not overturn the direct effect. In particular, an

increase in β increases pj − p, that is, it shrinks the gap between the fire-sale prices in country
j and the representative country.

It follows that a decline in R (low global returns) as well as a decline in β (risk-on) strengthens

the reach-for-yield mechanism. The intuition for the latter effect is that investing in high-yielders

makes losses during local crises, and these losses are less costly when the local crises are less

correlated with aggregate distress states. The following proposition summarizes this discussion.

Proposition 7. Consider the special case of the aggregate risk model with correlated liquidity
shocks, in which a country has relatively high return, Rj > R, and Assumption Ỹ holds. In

an equilibrium with free financial flows, the country experiences deeper fire sales than in the

representative country in both distress states, but less so in the more distressed state; that is,
Rj/pj2
R/p2

>
Rj/pj3
R/p3

> 1. A decrease in R as well as a decrease in β reduces the country’s relative

weighted average fire-sale price, pj − p.

4. Optimal Policy with Symmetric Flows

In the rest of the paper we analyze the policy implications of our analysis. In this section we

consider optimal capital restriction policy in the baseline model with symmetric capital flows. We

show that a global planner that is concerned with financial stability encourages capital flows,

in view of their liquidity creation benefits, but local planners restrict capital flows. We also

analyze the liquidity-injection policies by which the planners can mitigate crises, and show that

these policies are subject to a similar coordination problem. In the next section we revisit the

optimal capital restriction policy in asymmetric environments that feature the reach-for-safety

and the reach-for-yield mechanisms.

Recall that fire sales are costly in our setting since they reduce the financing available to

entrepreneurs, each of which sells one unit of the asset at date 1 to reinvest. To analyze welfare,

we need to be more specific about entrepreneurs’investment technology. We assume entrepre-

neurs come in two varieties that differ in the type of their projects. A fraction, ζ, of them have

a project with decreasing returns to scale: Investing p dollars in this project at date 1 yields

λf (p) dollars at date 2. Here, f (·) is an increasing and strictly concave function. The remaining
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fraction, 1−ζ, of entrepreneurs have a project with constant returns to scale: Investing p dollars
yields λp dollars at date 2. Here, the parameter λ captures the strength of the financial stability

concerns (the benefits from mitigating fire sales and increasing p). The concave function, f (·),
captures that the the marginal benefit from financial stabilization will be greater when the prices

are lower and the fire sales are deeper. The distinction between entrepreneurs with diminishing

and linear scales is not important, but it provides an additional level of generality that helps to

simplify some of the expressions in our optimal policy analysis.

We also suppose the planner in each country is utilitarian: she maximizes the sum of the

local investors’and the local entrepreneurs’expected utilities. Since all agents are risk neutral,

the social welfare function for the planner in country j can be written as,

W j = u
(
cj0

)
+ E

[
cj1 + cj2

]
+ λe

(
ζ
(
(1− π) f (R) + πf

(
pj
))

+ (1− ζ)
(
(1− π)R+ πpj

) ) . (28)

We focus on the special case in which the financial stability concerns are very important, λ→∞.
In this case, the planner effectively maximizes the output per entrepreneur,

W j/ (λe)→ ζ
(
(1− π) f (R) + πf

(
pj
))

+ (1− ζ)
(
(1− π)R+ πpj

)
, (29)

which is increasing in the local fire-sale price level, pj . In Appendix A.2, we analyze the more

general case with finite λ. As our analysis there illustrates, there are in fact other welfare consid-

erations in this model, but we envision a regulatory environment in which those considerations

are dominated by concerns with financial stability.

We next investigate the desirability of various policies in settings with symmetric flows. In

each setting, we consider the policies that would be chosen by a global planner that could coor-

dinate the decisions of individual planners, and compare this outcome with the Nash equilibrium

that would obtain absent coordination. We assume the global planner maximizes the sum of

individual planners’objectives,
∫
j

(
W j/(λe)

)
dj. In a symmetric equilibrium, this amounts to

maximizing each individual planner’s objective. We start by analyzing the desirability of capital

taxes targeted towards reducing the inflows ex ante. We then analyze the desirability of liquidity

injection policies targeted towards mitigating crises ex post.

4.1. Capital Restrictions with Symmetric Flows

Consider the baseline model in Section 2.1 with the only difference that the planner in each

country j can impose a linear tax, τ j ≥ 0, on the short-term return on foreign inflows: that is,

the return on the foreign financial holdings in country j is now given by R
(
1− τ j

)
. We assume

that the tax revenues are used to purchase an equal-weighted portfolio of all financial assets. The

assets that are purchased are then wasted by the planner. The latter assumption ensures that

expropriating foreigners is not the rationale behind taxing capital flows. The former assumption

(asset purchases) ensures that the liquidity that the government collects via taxation is injected
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back into the financial markets in equal proportion so that the government taxation does not

directly waste liquidity. This leads to simpler expressions, but our results continue to hold if we

instead assume the government wastes the tax revenues without purchasing assets.11

Coordinated policy. To analyze the optimal coordinated policy, consider the equilibrium in

which all countries apply the same tax rate, τ ≥ 0. The analysis is similar to Section 2 with

minor differences. One caveat is that foreign investment does not necessarily dominate local

investment at date 0 since foreign investment is taxed. In the appendix, we show that the

equilibrium behavior depends on a threshold tax level, τ̄ . If the tax level is above the threshold,

τ ≥ τ̄ , then there is zero foreign investment, x = 0, and the fire-sale price level is given by

p = η/e. If instead the tax level is below the threshold, τ < τ̄ , then there is positive foreign

investment, x > 0. In this case, the equilibrium conditions can be written as,

Rf = R (1− τ) , (30){
u′ (1− x) = µ (p) (1− τ) if µ (p) (1− τ) > R

x ∈ [0, x] if µ (p) (1− τ) = R
,

and p = min

(
R,

η + xR (1− τ) + xRτ

e+ x

)
= min

(
R,

η + x (1− π)R

e+ x (1− π)

)
.

These conditions are the analogues of respectively Eqs. (7) , (6) and (5) in Section 2.1. The first

two equations are adjusted for the presence of taxes. The market clearing condition is unchanged

in view of the assumption that the taxes taken away by the planner are injected back into the

market, as illustrated by the equation.

Figure 2 plots the analogs of the optimality and the market clearing curves, which we now

denote by p = P opt (x; τ) and p = Pmc (x). Note that introducing (or increasing) taxes shifts

the optimality curve downward and leads to lower capital flows, x. The threshold tax, τ , is the

level which ensures the optimality and market clearing curves intersect at x = 0. As the figure

illustrates, there is also a lower threshold tax, τ< τ̄ , which ensures that the two curves intersect

at x> 0. If τ <τ , the local investment is zero, xloc = 0, and the foreign flows exceed x. If

τ ∈ (τ , τ), then the equilibrium is in the flat part of the optimality curve: that is, there is some

local investment, xloc > 0, and the foreign flows satisfy, x =x−xloc > 0.

Figure 2 also illustrates that, in either case, increasing taxes leads to a lower fire-sale price

level, p. Intuitively, capital taxation discourages foreign flows. This in turn decreases global

liquidity and the fire-sale price in local distressed markets, because for symmetric flows re-

trenchment dominates fickleness as we discussed earlier. It follows that a global planner that

coordinates countries’policies and that focuses on increasing the fire-sale price level sets zero

tax on capital inflows. The following result summarizes this discussion.

Proposition 8. Consider the symmetric model with capital taxes in the limit as λ → ∞ (fi-

11 In fact, the results become stronger since the alternative specification creates a second channel by which
capital taxes reduce global liquidity and asset prices.
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Figure 2: The characterization of equilibrium with taxes. The dashed line replicates the baseline
characterization without taxes.

nancial stability concerns are dominant). There exists a threshold tax level τ̄ > 0 such that, for

each τ < τ̄ , there are positive capital flows, x > 0, and the equilibrium is characterized as the

solution to the system in (30). There also exists a lower threshold tax level τ∈ (0, τ̄) such that,

for each τ <τ , the local investment is dominated, xloc = 0, and the foreign flows satisfy, x >x.

Increasing the symmetric tax level, τ , reduces the capital flows, x, and decreases p and Rf . A

global planner that coordinates countries’policies sets zero tax on capital inflows, τ = 0.

Nash equilibrium. We next analyze the uncoordinated outcomes that would emerge in a

Nash equilibrium in which each planner chooses its own policy taking the policies in other

countries as given. To this end, consider the optimal tax rate for an individual country, τ j ≥ 0,

when all other countries apply the same tax rate, τ . To keep the analysis simple, suppose the

taxes cannot be increased above the lower threshold characterized above, that is, τ j ≤τ for each
j (the case with τ j >τ is slightly more complicated but does not offer much additional insight).

We will establish that the only Nash equilibrium is one in which all countries set the highest

allowed tax level, τ j = τ .

To show this, suppose the common tax level is strictly below the threshold, τ <τ . Consider a

country j that deviates and sets a potentially the tax level, τ j . For suffi ciently small deviations,

the foreign investors’optimality condition can be written as,

Rf = R (1− τ) = R
j (

1− τ j
)
, where R

j
= (1− π)R+ πpj .

Inspecting this condition, it follows that increasing τ j (in a neighborhood of τ) increases pj .

Intuitively, greater taxes discourage foreign inflows and increase pj . This process continues
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until pj is suffi ciently high to convince the foreigners to invest in the country. Since the local

planner prefers a higher local price level pj , it follows that there is a profitable deviation as

long as the symmetric tax level is below its upper bound, τ <τ . Hence, the unique symmetric

Nash equilibrium features the highest allowed tax level, τ =τ . Our next result summarizes this

discussion.

Proposition 9. Consider the symmetric model with capital taxes in the limit as λ→∞ (with the

restriction that τ j ∈ [0, τ ]). There exists a unique Nash equilibrium with symmetric allocations

in which the individual planners set the highest allowed tax level, τ j =τ for each j. The capital

flows, x =x, the fire-sale price, p, and the risk-free return, Rf , are lower than what would obtain

in an equilibrium without taxes.

Comparing this result with Proposition 8 illustrates that the uncoordinated Nash equilibrium

generates a highly ineffi cient outcome at the global level. The Nash equilibrium features the

highest allowed level of capital taxes, whereas the globally effi cient solution features zero taxes.

Intuitively, a country that taxes capital inflows improves its own financial stability at the expense

of reducing the global liquidity and exacerbating fire sales in other countries. The country does

not take into account the negative externalities it causes on other countries by reducing global

liquidity. This leads to protectionist capital policies that are ineffi cient at the global level.

4.1.1. Complementarities in Capital Restrictions

The result that the Nash equilibrium exhibits the highest allowed tax level helps to illustrate

our point sharply. However, it is extreme and it also prevents us from analyzing how the capital

market policies in one country react to other countries’policies or exogenous changes. To analyze

these issues, we next consider a version of the model with convex costs of taxation, which ensure

that the optimal tax level is interior.

Suppose the capital taxes cannot be targeted perfectly, and some of the taxes also fall on

the entrepreneurs. Since entrepreneurs sell assets to undertake productive projects, these costs

reduces the planner’s welfare even as λ→∞. More specifically, suppose applying a tax τ ≥ 0 on

the foreign capital reduces the returns of the entrepreneurs that have linear scale by v (τ) ≥ 0.

Then, as λ → ∞, the planner effectively maximizes the following analogue of the objective
function in (29),

(1− ζ)
(
(1− π) f (R) + πf

(
pj
))

+ ζR
j (

1− v
(
τ j
))
. (31)

To ensure an interior solution, suppose the cost function v (·) is strictly increasing and convex
and satisfies v (0) = v′ (0) = 0 and v′ (τ̃) =∞ for some τ̃ ∈ (0, τ).

We view the cost function as capturing in reduced form various diffi culties associated with

restricting capital flows in practice. The objective function in (31), together with the concavity

of the function f (·), captures the idea that the planner has greater incentives to restrict flows
when the fire-sale prices are lower. In particular, in the appendix, we characterize the optimal
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tax level as the unique solution to,

V
(
τ j
)

=
(1− ζ) f ′

(
pj
)

+ ζ

ζ
, where V

(
τ j
)

= v′
(
τ j
) (

1− τ j
)

+ v
(
τ j
)
. (32)

Here, V (τ) is an increasing function over [0, τ̃) with V (0) = 0 and V (τ̃) = ∞. Note that a
lower price level, pj , induces a greater tax level, τ j , because it increases the (local) benefits of

taxation more than its costs.

A symmetric Nash equilibrium is a pair, (p, τ), that satisfies the earlier competitive equilib-

rium conditions (30) as well as the individual planners’optimality condition (32). Recall that

the competitive equilibrium describes a decreasing relation between p and τ : that is, greater

taxes reduce global liquidity and fire-sale prices. The optimality condition also establishes a

decreasing relation between τ and p. These observations lead to the following result.

Proposition 10. Consider the symmetric model with costly capital taxes in the limit as λ→∞.
(i) There can be multiple symmetric Nash equilibria. When this is the case, the equilibrium

with a lower price level leads to lower welfare for all planners.

(ii) Suppose the parameters are such that there is a unique Nash equilibrium (or consider the

neighborhood of any stable equilibrium). Reducing the local liquidity, η, increases the equilibrium

tax level, τ , and reduces the price, p, as well as the risk-free return, Rf . Moreover, the price and

the risk-free return decline more than the alternative case in which the taxes are kept at their

pre-change levels.

The intuition follows from observing that capital restriction policies are strategic comple-

ments. A country that sets a more restrictive policy reduces global liquidity. This leads to

lower fire-sale prices in other countries. The low fire-sale prices not only reduce the welfare of

other planners (in view of the externality that we discussed earlier), but they also induce those

planners to set more restrictive policies. When these complementarities are suffi ciently strong,

there can be multiple equilibria. Even when there is a single equilibrium, the complementarities

amplify the impact of exogenous shocks that reduce liquidity.

We illustrate these results using a numerical example. Suppose the utility from consumption

is given by u (c0) = h log c0, with h ∈ (0, R). Suppose the cost function takes the form, v (τ) =

−k
(
log
(
τ̃−τ
τ̃

)
+ τ

τ̃

)
for some k > 0, which satisfies the regularity conditions over τ ∈ [0, τ̃ ].

Suppose the entrepreneurs’production function takes the piecewise-linear form,12

f (p) =

{
ap, for p ≤ p
bp, for p > p

, for some a > b > 0, and p̄ ∈ (0, R) .

The left panel of Figure 3 illustrates the possibility of multiple equilibria using a particular

parameterization. The straight decreasing line plots the equilibrium price as a function of the

12This function violates the regularity conditions on f (·) (e.g., it is not striclty concave) but it can be made to
satisfy the conditions after some smoothing and it helps to illustrate the result sharply.
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Figure 3: The left panel illustrate the equilibria with costly capital taxes for a parameterization
that generates multiple equilibria. The right panel illustrates the parameterization with a unique
equilibrium. The shift form the solid line to the dashed line captures the effect of decreasing
local liquidity, η.

tax. The jagged decreasing line plots the planner’s optimal tax choice as a function of the

price. The two intersections illustrate the stable equilibria. If the price is above the threshold,

p, financial stability concerns are not too significant and the planners set relatively low taxes.

This leads to high global liquidity and supports fire-sale prices that are above the threshold.

However, if the price falls below the threshold, p, then financial stability concerns become more

important, which induces the planners to set high taxes. This leads to a reduction in global

liquidity and leads to fire-sale prices below the threshold. Note that the equilibrium with the

higher tax and the lower price is dominated: it yields a lower utility for each planner than the

other equilibrium.

The right panel of Figure 3 illustrates the amplification mechanism using a parameterization

that leads to a unique equilibrium. The solid and the dashed lines plot the equilibrium price

function with respectively higher and lower local liquidity, η. If the tax level was exogenously

fixed, a reduction in local liquidity would reduce the price level as formalized in Proposition 1.

When the tax level is endogenous, the price declines even more. In this example, the exogenous

liquidity shock reduces the price below the threshold below which the financial stability concerns

increase. This leads to higher taxes and lower prices.

In Appendix A.5, we also analyze how introducing aggregate shocks affects our analysis of

capital taxation in this section. Specifically, we allow the planners to set state-contingent taxes,
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{τ s}s, in the setting with aggregate shocks introduced in Section 3. We show that the tax rate
is positive for each state, τ s > 0 for each s ∈ S, generalizing the results in this section. We

also show that τ s is increasing in s ∈ S: that is, states with greater probability of liquidity

shocks are associated with higher taxes. For intuition, recall from Section 3 that the foreign

investors value payoff in distressed states relatively more. Taxing them in those states provides

a cheaper way of discouraging (ex-ante) inflows. Hence, the planner applies larger taxes– more

protectionism– in states with greater financial distress.

4.2. Crisis Mitigation Policies with Symmetric Flows

In practice, governments intervene during crises to provide liquidity and alleviate fire sales.

We next analyze the potential coordination problems associated with the use of these types

of policies. To this end, suppose the planner in each country can generate additional (public)

liquidity at date 1 by taxing a third group of agents, which we refer to as nonparticipants.

Nonparticipants are endowed with η̄ > 0 dollars at date 1 that are taxable by the government.

We assume the planner can only intervene by purchasing financial assets in case of a local

liquidity shock. In particular, a planner that raises ηpl,j ∈ [0, η̄] dollars in the low liquidity state

of date 1 purchases ηpl,j/pj units of the asset, where pj denotes the equilibrium price that obtains

after the intervention. We start by assuming that the planner can commit to implementing a

particular policy, i.e., there are no time-inconsistency problems. We will analyze the case without

commitment at the end of the section.

We also assume that the assets purchased by the planner are wasted, which ensures that the

rationale for intervention is not driven by the government’s comparative advantage in financial

markets.13 The social welfare function in (28) is then modified by,

W j = u (c0) + E [c1 + c2] + λe
(
ζ ((1− π) f (R) + πf (p)) + (1− ζ)R

)
+ η̄ − πηpl,j . (33)

The last term captures the expected consumption loss due to the government liquidity creation

in the low liquidity state. As λ → ∞, the planner cares only about financial stability and
effectively maximizes the same objective function (29) as before. However, for any finite λ,

there are costs associated with liquidity creation, which will help to break ties when various

policy choices yield the same value for the objective in (29).

Coordinated policy. As in the case of capital taxes, first consider the symmetric coordinated

policy, ηj = ηpl for each j, that would be chosen by a global planner. The characterization of

equilibrium is the same as in the baseline analysis in Section 2 with the only difference that the

market clearing condition (6) is replaced by,

p = min

(
R,

η + ηpl + xR

e+ x

)
= min

(
R,

η + ηpl + x (1− π)R

e+ x (1− π)

)
. (34)

13The planner’s advantage lies in its unique ability to raise tax revenues and generate liquidity as in Holmstrom
and Tirole (1998).
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In particular, for any level of foreign flows, x, the asset price in each country is increased by

public liquidity injection by the planner. In equilibrium, the increase in the price reduces the

foreign flows x, as there is less need of private liquidity creation, but this effect does not undo the

initial price increase. It follows that a global planner creates the maximum amount of liquidity.

Proposition 11. Consider the symmetric model with public liquidity creation in the limit as
λ→∞. Suppose the parameters satisfy, η + η̄ < eR, and the planners can commit to liquidity-

creation policies. A global planner that coordinates countries’ policies creates the maximum

amount of liquidity, ηpl = η̄.

Nash equilibrium. Next consider the optimal public liquidity injection policy for the planner

of a country, ηpl,j , when all other countries set their public liquidity injection at some level,

ηpl > 0. For suffi ciently small deviations, the foreign investors’optimality condition is the same

as Eq. (8) in Section 2.2. Inspecting this condition implies that the policy has no impact on the

asset price, pj . The reason is that the amount of public liquidity injection is anticipated by the

financial markets and neutralized by capital inflows. If the country decides to inject more public

liquidity than other countries, ηpl,j > ηpl, all else equal this increases the price in its financial

markets, pj . However, as in our earlier analysis with the reach for safety, this policy also makes

the country’s assets more attractive compared to other countries’, which in turn increases the

inflows, xin,j . This process continues until the country’s assets are equally attractive as other

countries’assets.

It follows that public liquidity creation by an individual country leaves the fire-sale price in

the country unchanged and does not provide any financial stability benefits. Since the liquidity

creation is costly for any finite λ (and thus, in the limit as λ → ∞), a local planner with
commitment does not create public liquidity during crises. This result can be viewed as a

variant of the standard moral hazard argument: the planner commits not to intervene during

crisis so as to deter (ex-ante) fickle flows that reduces (local) financial stability. The following

result summarizes this discussion.

Proposition 12. Consider the symmetric model with public liquidity creation in the limit as
λ→∞. Suppose the planners can commit to liquidity-creation policies. The uncoordinated Nash
equilibrium features zero public liquidity creation, ηj = 0 for each j.

Comparing this result with Proposition 11 illustrates that the coordinated and the unco-

ordinated equilibria sharply differ. The coordinated equilibrium calls for the maximum public

liquidity creation, whereas the uncoordinated equilibrium with commitment features zero public

liquidity creation (in view of standard moral hazard concerns by individual planners). Intu-

itively, when a country creates liquidity, it also attracts greater inflows. While these inflows

look costly from the country’s perspective, they actually help to increase global liquidity and

ensure that other countries now have access to greater liquidity to arbitrage fire sales in their
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own financial markets. Put differently, the inflows dilute the financial stability benefits of the

planner’s intervention to other countries. A planner that sets policy in isolation does not take

into account the positive externalities on other countries, which leads to commitment to create

too little liquidity.

So far, we analyzed the planners’incentives to intervene during crises so as to create public

liquidity. A related question is whether the planners might also want to encourage the creation of

private liquidity. We address this question in Appendix A.3 by allowing the planner to interfere

with the investors’date 0 decisions. By discouraging/taxing consumption, the planner might

increase local investors’financial asset holdings, which in turn increases liquidity and improves

asset prices. We find that the policy implications of private liquidity creation is similar to

public liquidity creation. Specifically, a global planner that is concerned with financial stability

incentivizes local investors to hold financial assets, whereas the Nash equilibrium features no

such incentives for the same reason as above. Greater financial savings by the local investors

are neutralized by greater fickle flows from abroad, leaving the local fire sales unchanged.14

The results so far show that the local planners would like to commit to not create public

liquidity during crises. This type of commitment might be diffi cult to maintain in practice, since

crises tend to generate considerable pressure on policymakers to intervene. We next consider the

polar opposite case in which a local planner cannot commit and chooses her liquidity-creation

policy after the local liquidity shock is realized. In this case, the market clearing condition in

country j can be written as,

pj = min

(
R,

η + ηpl,j + xout,jR

e+ xin,j

)
.

The planner chooses ηpl,j taking the inflows and outflows, xin,j , xout,j , as given (as they are

determined in the past). Then, the objective function in (33) implies that the planner chooses

to create the maximum amount of liquidity, ηpl,j = η̄. Intuitively, the ex-ante flows are already

realized by the time the planner decides. Hence, the planner chooses to inject public liquidity

and increase the fire-sale price level.

Proposition 13. Consider the symmetric model with public liquidity creation in the limit as
λ→∞. Suppose the planners cannot commit and decide their liquidity-creation policies ex post.
The uncoordinated Nash equilibrium features maximum public liquidity creation, ηj = η̄ for each

j.

Comparing Propositions 11-13 illustrates that the lack of policy commitment has a silver

14This discussion also suggests that a country might want to combine protectionist policies in the capital
market with local liquidity-creation policies. To accomplish this, however, the country would have to use quantity
restrictions in the capital market– rather than price restrictions such as taxes– as the arguments for liquidity
creation continue to apply for any interior tax level (that allows some positive inflows). By setting a quantity
restriction on foreign flows, the country can ensure that the additional liquidity it creates remains inside the
country. Note, however, that this outcome would still not replicate the coordinated solution as it would feature
too little capital flows and ineffi cient global liquidity creation.
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lining: It helps to overcome the individual planner’s resistance to create public liquidity, which

in turn improves global liquidity and generates positive externalities on other countries. In our

model, the lack of commitment completely solves the coordination problem for public-liquidity

creation and replicates the outcome that would be chosen by a global planner with commitment.

However, this feature is driven by rather special features of the model (e.g., as λ→∞, the benefit
of liquidity creation always dominates its cost), and it is unlikely to hold generally. The robust

message here is that the lack of commitment for crisis-intervention policies improves global

liquidity and tends to mitigate the coordination problem among local planners.

More broadly, Propositions 8-12 illustrate the importance of policy coordination for managing

global liquidity in an environment with fickle capital flows. These flows reduce financial stability

in the receiving country, but they also help to distribute excess liquidity to countries and areas

that need it relatively more. The Nash equilibrium might feature too much impediment to capital

inflows and too little local global liquidity creation, because the individual countries do not take

into account the external benefits of distributing the excess liquidity they have or newly create.

Moreover, individual countries’ decisions to restrict capital flows are complementary, which

amplifies the negative liquidity shocks by restricting the endogenous global liquidity creation.

5. Optimal Policy with Asymmetric Flows

In Sections 2 and 3, we showed that the asymmetric liquidities or returns across countries

naturally generate a reach-for-safety and a reach-for-yield mechanism. We developed these

mechanisms in an environment in which the world was symmetric except for one country. While

this approach is useful to illustrate the mechanisms, it does not allow for a meaningful welfare

analysis, since a country with measure zero does not enter the global planner’s welfare function.

In this section, we first extend the baseline model in Section 2 (without aggregate risk) to

a setting with multiple and asymmetric regions. We then use special cases of this model to

analyze the policy implications of the reach-for-safety and the reach-for-yield mechanisms.

Suppose there are multiple regions of countries denoted by the superscript k ∈ K =

{1, .., |K|}. Each region k consists of a continuum of countries that is identical to the con-

tinuum we analyzed in the baseline model in Section 2. We let mk denote the mass of countries

in region k and assume
∑

k∈K m
k = 1. The earlier analysis is the special case with a single

region.

The liquidity shocks are i.i.d. within regions as well as across regions (so we abstract away

from aggregate risk for simplicity). The regions are the same as one another except that the

countries in each region might feature heterogeneous amounts of liquidity,
{
ηk
}
k
, as well as

heterogeneous returns from new investment,
{
Rk
}
k
. Later, we will focus on special cases with

two regions that can be thought of as corresponding to developed and emerging markets.

As before, investors are fickle and are forced to liquidate positions during a foreign crisis–

even in the countries that might be in the same region as their own country. The investors
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can now take positions in multiple regions. We focus on symmetric equilibria in which the

investors of the same region take identical positions, and assets (of the countries) within the

same region trade at the identical price denoted by pk. As problem (35) illustrates, the latter

assumption implies that the distribution of an investor’s portfolio among the countries of a

region is not payoff relevant– what matters is the total position in the region. Hence, without

loss of generality, we also focus on symmetric allocations in which the representative investor

in region k takes fully diversified positions within each region k′. We denote these positions

by
{
xk
′,k
}
k′∈K

. We also denote the investor’s positions in safe assets supplied by region k′ as{
yk
′,k
}
k′∈K

. The problem for the representative investor (in region k) can then be written as,

max
c̃0.x̃loc,{x̃k′ ,ỹk′}k′

u (c̃0) + x̃locRk +

(∑
k′

x̃k
′
R
k′

+ ỹk
′
Rf

)
Mk, (35)

R
k′

= (1− π)Rk
′
+ πpk

′
for each k′ ∈ K

Mk = 1− π +
Rk

pk
π

c̃0 + x̃loc +
∑
k′

(
x̃k
′
+ ỹk

′
)

= ηk/Rf + 1.

Note that the investor solves a generalized version of problem (1).

The market clearing condition for the risky assets in a country of region k can be written as,

pk = min

(
Rk,

∑
k′ y

k′,kRf +
∑

k′ x
k′,kR

k′

e+ xin,k

)
(36)

where xin,k =
∑
k′

mk′xk,k
′
/mk and xout,k =

∑
k′

xk
′,k.

Here, xin,k and xout,k respectively denote the inflows into and the outflows from the country.

The inflows are normalized by the mass of the region, mk, because xk,k
′
denotes the total flows

into the region (as opposed to the country). There are also market clearing conditions for the

safe assets supplied by each region k,∑
k′∈K

mk′yk,k
′

= mkηk/Rf . (37)

An equilibrium with symmetric allocations and prices is a collection,(
ck0, x

loc,k,
{
xk
′,k, yk

′,k
}
k′

)
k
,
(
pk ≤ Rk

)
k
, Rf , such that the allocations solve problem (35), and

the market clearing conditions (36) and (37) hold.

To characterize the equilibrium, we make a number of simplifying observations. First, we
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restrict attention to equilibria in which each country retains its safe asset endowment, that is,

yk
′,k =

{
ηk/Rf , if k′ = k

0, otherwise
.

This is without loss of generality since there is no aggregate risk, which implies that safe assets

and foreign investment are perfect substitutes. This restriction also ensures that the market

clearing condition for legacy asset holds. It remains to characterize how the investors split their

dollars between outside spending, local investment, or investment in other regions, ck0 + xloc,k +

xout,k = 1.

As before, Lemma 1 implies that absent taxes local investment, xloc,k, is weakly dominated

by investing in the other countries of the same region, xk,k, and strictly so if there are local fire

sales, pk < Rk. Hence, whenever there are no taxes, we also restrict attention to equilibria in

which xloc,k = 0 without loss of generality.15

Next note that, by problem (35), the optimality condition for investment in region k (by any

region k′) implies,

Rf ≥ R
k
, with equality if xin,k > 0 (equivalently, xk,k

′
> 0 for some k′). (38)

The return in a region cannot exceed Rf since safe assets are held in positive quantities in

equilibrium. Moreover, the return is exactly equated to Rf as long as the country receives

inflows from some other country. Combining these observations, the optimality condition for

outflows from a country can be written as,

u′
(

1− xout,k
)

=

{
R
k
Mk = µk (pk) , if xin,k > 0

RfM
k ≥ µk (pk) , if xin,k = 0

. (39)

Hence, for regions that experience inflows, the size of the foreign flows are determined by the

same equation as before [cf. Eq. (5)]. For regions that do not experience inflows, the foreign

flows are greater than before and determined by the (higher) asset returns in other regions. This

illustrates a key feature of the present setup: investors hold foreign positions not only because

it helps them to arbitrage local fire sales but also because doing so might enable them to obtain

greater returns than what they could obtain in their own region.

Finally, using these observations, the market clearing condition (36) can be rewritten as,

pk = min

(
Rk,

ηk + xout,kRf
e+ xin,k

)
. (40)

15To see that this is without loss of generality, note that the local investment can be feasible only if pk = Rk.
In this case, it can be checked that if there is an equilibrium with xloc,k > 0, then there is also an equilbrium with
x̃loc,k = 0 and x̃k,k = xk,k + xloc,k: that is, the local investment can be substituted for investment in the other
countries of the same region without changing any of the equilibrium conditions.
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In addition, the total outflows and the inflows satisfy the conservation equation,∑
k

mkxin,k =
∑
k

mkxout,k. (41)

The equilibrium is then characterized by a collection of inflows into and outflows from the

representative countries within regions,
(
xin,k, xout,k

)
k
, and prices (pk)k , Rf , that solve Eqs.

(38− 41). Note that there are 3 |K|+ 1 equations in 3 |K|+ 1 unknowns (although some of the

equations take the form of complementary slackness).

5.1. Optimal Policy with Reach for Safety

We next consider a special case of the model to analyze the policy implications for the reach

for safety. We assume π = 1 so that the liquidity shocks happen with certainty. This ensures

that risky capital flows are not driven by liquidity-insurance considerations (since the shocks are

correlated) or return differentials (since π = 1 implies that foreigners cannot realize the higher

returns in other regions). That is, we abstract away from the liquidity-insurance benefits we

emphasized in Section 4, while also shutting down the reach-for-yield motive for flows, which

enables us to focus on the welfare effects that are purely driven by the reach for safety.

For concreteness, we also assume there are two regions, k ∈ {D,E}, where k = D corresponds

to developed financial markets and k = E corresponds to emerging markets. We assume region

D has suffi cient liquidity that it would avoid fire sales in autarky (similar to Assumption S in

Section 2.2). We also assume that there is a worldwide scarcity of liquidity, that is, we modify

Assumption 1 as follows.

Assumption 1S. ηD > eRD > ηE , and ηDmD + ηEmE < emin
(
RD, RE

)
. In addition,

xout,E ≥ e
(

1− ηE

ηDmD+ηEmE

)
.

Note that the autarky prices in regions D and E are then, respectively, given by RD and

ηE/e < RE . In the last part of the assumption, xout,E denotes the minimum level of outflows

form region E, characterized as the solution to, u′
(
1− xout,E

)
= RE . The assumption does not

play an important role– it ensures that there is an equilibrium with positive flows into both

regions.

With these assumptions, the characterization of equilibrium is relatively simple. In the

appendix, we obtain a closed form solution (to Eqs. (38− 41)) that satisfies,

pD = pE =
ηDmD + ηEmE

e
< min

(
RD, RE

)
, (42)

xin,k − xout,k = e

(
ηk

ηDmD + ηEmE
− 1

)
for each k ∈ {D,E} .

These equations generalize the reach-for-safety result in Section 2.2. The first equation shows

that, with free financial flows, region D also experiences fire sales, even though it would not
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feature fire sales in autarky. The second equation illustrates that this outcome obtains because

the countries in region D receive more inflows relative to their outflows, xin,D−xout,D > 0 (that

is, they run current account deficits).

Conversely, since ηDmD+ηEmE

e > ηE

e , the first equation in (42) shows that financial flows

improve the fire-sale prices in region E. The second equation illustrates that this outcome obtains

because the countries in region E have more outflows than their inflows, xout,E−xin,E > 0 (that

is, they runs current account surpluses).

These observations suggest that capital restrictions in this setting have costs as well as

benefits. To investigate further, suppose the planner in each country j can impose a linear tax,

τ j , on inflows. We assume that the planner injects the tax receipts back into different regions

(via equal-weighted asset purchases in that region) according to the fraction of investment in

the country that comes from each region. For instance, if the fraction, α ∈ (0, 1), of the inflows

into the country, xin,j , come from region E, then the planner injects αxin,jR
j
τ j into region E

and (1− α)xin,jR
j
τ j into region D. This ensures that taxation does not affect the liquidity in

either region, ensuring continuity with our earlier analysis.

Consider the equilibrium with symmetric taxes within each region,
{
τk ≥ 0

}
k∈{D,E}. In the

appendix, we show that taxes in region E do not affect the equilibrium prices. In particular,

we can take τE = 0 without loss of generality. The taxes in region D, however, affect the

equilibrium. When τD is suffi ciently small, the equilibrium returns now satisfy the indifference

condition, pE = pD
(
1− τD

)
. The appendix completes the analysis and shows that the prices

have a closed form solution,

pD =
ηDmD + ηEmE/

(
1− τD

)
e

and pE =
ηDmD

(
1− τD

)
+ ηEmE

e
. (43)

In particular, increasing τD increases the fire-sale price in region D at the expense of reducing

the fire-sale price in region E. Hence, the optimal tax for the global planner is ambiguous as

it depends on the relative cost of fire sales in respective regions. Our model does not help to

resolve this ambiguity since we capture the relative cost of fire sales in reduced form using the

functions fD (p) , fE (p) (which might in principle differ across the regions). The following result

summarizes this discussion.

Proposition 14. Consider the asymmetric model with developed and emerging market regions
that satisfy Assumption 1S. When τE = τD = 0, the equilibrium prices and the flows satisfy

(42). Increasing τE does not affect the equilibrium prices. Starting with zero taxes, increasing

the tax in the developed region τD increases the fire-sale price in this region, pD, and decreases

the fire-sale price in the emerging market region, pE.
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5.2. Optimal Policy with Reach for Yield

We next consider another special case of the model with asymmetric regions to analyze the

policy implications for the reach for yield. As in the previous case, we consider two regions,

k ∈ {D,E}. We depart from the previous case by assuming π < 1. This enables for flows to be

driven at least in part by the return differentials, but it also makes the analysis less tractable. We

make a number of assumptions that bring back analytical tractability. First, we relax the earlier

assumptions on u (·) and assume instead that investors receive no utility from consumption.

Assumption 0. u (c0) = 0 for each c0.

This assumption ensures that ck0 = 0 and xout,k = 1; that is, the outflow from each country is

exogenously fixed. This helps to drop Eqs. (39) from the equilibrium conditions and replace

xout,k in the remaining conditions by 1. The assumption does not play an important role beyond

simplifying the analysis, since our goal in this section is to analyze the direction of the global

capital flows as opposed to their magnitudes.

Second, we assume that ηD is suffi ciently large so that pD = RD regardless of the flows in

equilibrium: that is, the developed markets have abundant liquidity to prevent fire sales. We

also assume ηE is relatively small so that pE < RE in any equilibrium with positive inflows into

E: that is, the emerging markets have relatively low liquidity and are subject to fire sales. The

following assumption specifies the exact parametric conditions.

Assumption 1Y. ηD >
(
e+ 1/mD − 1

)
RD, and ηE < eRE −max

(
RE , RD

)
.16

With these assumptions, we have xout,D = xout,E = 1 and pD = RD. To characterize the rest

of the equilibrium, first consider the case in which there are positive flows into both markets,

xin,D, xin,E > 0. The conditions for this type of equilibrium can be written as,

Rf = (1− π)RE + πpE = RD, (44)

pE =
ηE +R

E

e+ xin,E
=
ηE + (1− π)RE

e+ xin,E − π .

mDxin,D +mExin,E = 1.

In the appendix, we show that these conditions are satisfied as long as the return in developed

markets lies in an interval, RD ∈
(
RDlow, R

D
high

)
(see Eq. (B.74)). We also check that the

equilibrium takes one of three forms depending on the return in region D. If RD ∈
(
RDlow, R

D
high

)
,

there are flows in both directions as described above. If RD ≥ RDhigh, then there are zero flows

into region E, xin,E = 0, and all flows go into region D. If RD ≤ RDlow, then there are zero flows
into region D, xin,D = 0, and all flows go into region E. We also show that RDhigh < RE : it takes

a strictly lower return in region D than in region E to ensure some flows will go into region E.

This is because region E is subject to fire sales, in view of its low liquidity, whereas region D is

16Note that the latter condition also implies e > 1, which in turn implies e > π (since 1 > π). This observation
might help to follow some of the susbequent analysis.
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not.

We next analyze the comparative statics of equilibrium with respect to the return in devel-

oped markets, RD. For simplicity, consider the case with flows in both directions. As the first

equation in (44) illustrates, a decline in RD leads to a decline in pE . As the second equation

illustrates, this decline is brought about by an increase in fickle inflows into region E, xin,E .

Intuitively, a reduction in RD makes the assets in emerging markets relatively more attractive,

which induces more of the global financial flows to flow into this region, generalizing Proposition

3 to this setting. The following result summarizes this discussion.

Proposition 15. Consider the asymmetric model with developed and emerging market regions.
The equilibrium depends on the comparison of the return in the developed region, RD, with two

thresholds RDlow, R
D
high that satisfy R

D
low < RDhigh < RE. If RD ≤ RDlow, then xin,D = 0. If instead

RD ≥ RDhigh, then xin,E = 0. If RD ∈
(
RDlow, R

D
high

)
, then there are positive flows in each

region and the equilibrium is characterized by the system in (44). When RD ∈
(
RDlow, R

D
high

)
, a

decrease in the return in region D, RD, increases the inflows into region E, xin,E, and decreases

the fire-sale price in this region, pE.

We next analyze the desirability of policies directed toward restricting capital flows. As

before, suppose the planner in each country j can impose a linear tax, τ j , on inflows. The planner

injects the taxed liquidity back into the regions in which the flows come from as described in

Section 5.1. We also assume that taxation is costly as in Section 4.1.1. Specifically, adopting

the tax level τ reduces the return of the entrepreneurs that have linear scale by v (τ) ≥ 0, where

v (·) is a convex function with the same properties as before.
We consider a global planner that can coordinate tax policies across countries and regions.

The planner chooses two tax rates, τD, τE , to be applied in the countries in, respectively, region

D and region E. As λ→∞, the global planner’s problem can be written as [cf. (31)],

max
τD,τE≥0

∑
k∈{D,E}

mk
(

(1− ζ)
(

(1− π) f
(
Rk
)

+ πf
(
pk
))

+ ζR
k
(

1− v
(
τk
)))

. (45)

It can be seen that the planner always sets τD = 0. This is because there are no fire sales in

region D, and taxing the flows into region D does not help to increase the price in region E.

However, the planner might want to set a positive tax rate in region E. We next characterize

the equilibrium with tax levels, τD = 0, τE ≥ 0, and analyze the optimal tax rate.

One caveat is that investors in the countries of region E might choose to invest locally in

view of the taxes on foreign flows in region E. In the appendix, we show that this does not

happen if we assume RD > RDlow (so that there is some investment in region D absent taxes) as

well as the following parametric condition.17

17Here, pE,max is the maximum price level that can obtain in country E when RD > RDlow (see below). The

44



Assumption 3. RD > RDlow and
(

1− π + π RE

pE,max

)
RD ≥ RE , where pE,max = ηE+RD

e .

The characterization of the equilibrium with τE ≥ 0 then parallels the analysis in the previous

section. First consider the case with relatively high return in region D, RD ≥ RDhigh. In this

case, the equilibrium without taxes features zero flows into region E, xin,E = 0. Increasing the

tax level on these flows has no effect on equilibrium (they continue to remain at zero). The

planner optimally sets a zero tax level, τE = 0.

Next suppose RD ∈
(
RDlow, R

D
high

)
so that the equilibrium without taxes features flows into

both regions. For suffi ciently small levels of taxes, τE ≥ 0, the foreigners’optimality condition

in (44) is modified as,

Rf =
(
1− τE

) (
(1− π)RE + πpE

)
= RD, (46)

This expression illustrates that setting a greater tax level in region E increases the fire-sale prices

in this region, pE . As before, greater taxes discourage foreign inflows into region E, which in

turn improves the local fire-sale prices.

We next characterize the optimal tax rate. In the appendix, we show that the planner can

increase the price up to the level, pE,max = ηE+RD

e (which obtains when xin,E = 0). We let

τE,max > 0 denote the tax level that brings about this price level (see Eq. (B.76)). Increasing

the taxes beyond τE,max does not affect the equilibrium, since it leaves the flows into region

E unchanged at zero. Thus, the planner’s problem is to choose τE ∈
[
0, τE,max

]
to maximize

the objective function in (45), subject to Eq. (46). The optimal tax level is given by, τE =

min
(
τE,max, τE,∗

)
, where τE,∗ ∈ (0, 1) is the unique solution to,

V
(
τE,∗

)
=

(1− ζ) f ′
(
pE
)

+ ζ

ζ
. (47)

Here, V
(
τ j
)
is an increasing and convex function that satisfies the appropriate boundary con-

ditions as in Section 4.1.1. Note that τE = τE,max corresponds to a corner solution in which

the planner reduces the inflows to zero, xin,E = 0, whereas τE = τE,∗ < τE,max correspond to

an interior solution in which the planner leaves some inflows, xin,E > 0, due to costly taxation.

Note also that comparative statics that decrease the fire-sale price level, pE– for instance, a

decline in RD as in Proposition 15, increases the optimal interior tax rate. The following result

summarizes this discussion.

Proposition 16. Consider the asymmetric model with developed and emerging market regions
and costly taxation in the limit as λ → ∞ (with Assumptions 0, 1Y and 3). Consider a global

planner that coordinates countries’policies. The optimal tax rate in the D region is zero, τD = 0.

The optimal tax rate in the E region is also zero, τE = 0, when the return in the D region exceeds

parametric condition ensures that, even when the price is maximized, investors in E will invest in foreign assets (as
opposed to investing locally) to arbitrage local fire sales. The condition holds as long as RD exceeds a threshold
which is strictly below RE . Moreover, the threshold can be made arbitrarily small by increasing the forced sales,
e (and reducing ηE).
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a threshold, RDhigh (which is strictly below the return in the E region, R
E), but it is strictly positive

for lower levels of return, RD ∈
(
RDlow, R

D
high

)
. If the optimal tax rate is positive and corresponds

to an interior solution (with xin,E > 0), then a decrease in RD increases the optimal tax rate,

τE, and reduces the equilibrium price, pE.

The result qualifies some of our earlier conclusions about the undesirability of capital taxes

(e.g., Proposition 8). Specifically, in an environment in which capital flows are purely driven by

reach-for-yield considerations, taxing capital flows might be justified even for a global planner.

Intuitively, the pure reach-for-yield flows exacerbate the fire sales in region E without providing

financial stability benefits elsewhere. The global planner optimally applies capital taxes in region

E so as to lean against these types of destabilizing flows, and more so, if the return in developed

regions is low and the reach-for-yield phenomenon is strong.18

We note a couple caveats about applying Proposition 16 in practical settings. First, the

analysis in this section abstracts away from flows that are driven by liquidity-insurance consid-

erations. In practice, the aggregate flows are likely to be driven by a combination of liquidity-

insurance and reach-for-yield motives. The composition of flows should be carefully inspected,

and (only) those that are predominantly driven by the reach for yield should be subject to

closer scrutiny. Second, and related, the analysis shows that the presence of asymmetric returns

is not suffi cient to generate pure reach-for-yield flows. Foreign capital flows into region E only

if the return in region D is suffi ciently below the return in region E (since RDhigh < RE) so as to

compensate the fickleness of foreigners. This suggests that the destabilizing pure reach-for-yield

flows are likely to be a relatively rare phenomenon.

6. Final Remarks

In this paper, we developed a global equilibrium model of capital flows that addresses the tension

between their fickleness during foreign crises and retrenchment during local crises. In the core

of the paper we selected a configuration of parameters where local and global regulators worry

exclusively about financial stability. From this perspective, fickle capital flows play three roles

in our model: global liquidity creation, reach for safety, and reach for yield. The first role

is unambiguously good, the second one is a mixed bag, while the last one is unambiguously

bad. The weight of these different roles varies across countries and across global risk and return

conditions. However there is a systematic bias among local regulators against capital flows

(relative to a benevolent global planner), as the costs associated with fickleness are felt directly

at the local level, while the benefits of global liquidity creation are spread across the world

economy.

18Although we do not analyze optimal policy with aggregate shocks, our earlier analysis (specifically, Proposition
7) suggests a “risk-on”environment driven by a decrease in correlations would also increase the destabilizing flows
and induce a higher optimal tax.
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While actual policymakers do focus on financial stability, it is important to note that there

could be additional welfare considerations. To explore some of these, in Appendix A.2 we

focus on the polar opposite case in which there are no financial stability concerns (by assuming

the entrepreneurs’ projects merely break even). In this context, the fire-sale prices do not

reduce social welfare– as they are merely transfers among the agents. The global planner is not

concerned with fire sales, and she discourages liquidity creation via foreign investment. However,

investors continue to undertake foreign investment, so as to exploit and profit from the local fire

sales. Hence, absent financial stability concerns, the model features too much liquidity creation

and too much foreign investment (similar to Hart and Zingales (2011)). In addition, this version

of the model features a different type of coordination problem among planners. While the global

planner dislikes foreign flows, local regulators encourage foreign inflows into their countries, as

they realize that some of these investments will be appropriated by the local investors (who will

purchase them at fire-sale prices). This captures the broader notion that, absent concerns with

financial stability and fire sales, the countries would actually welcome foreign flows as some of

the returns from foreign investment would accrue to the locals.

There are many other important topics in the capital flow taxation debate that we omitted

from our analysis. Perhaps the most significant one is the differentiation of the kinds of capital

flows (e.g., equity vs fixed income, short term vs long term). While our model is not designed

to address these issues directly, there are insights that carry over to that discussion. The key

mechanism by which fickle capital flows generate liquidity in our model is the gap between the

return received by local investors on their diversified international portfolios and the fire sale

returns received by fickle foreign investors withdrawing their funds from local turmoil. However,

if capital inflows take the form of short term debt denominated in foreign currency, then the

fire sale and return-gap is limited and so is the liquidity service of these flows. Hence, a global

planner that coordinates policies might discourage the short-term flows more than longer-term

flows. We leave an exploration of these issues for future work.

Similarly, while in our model all foreign investors are fickle, in practice some foreign investors

are not (conversely, some local investors are fickle). Our model can accommodate this extension

naturally, at least in the positive economics sections, as our concept of local is just that of

an investor that has enough expertise in a market to attempt to arbitrage domestic fire sales

rather than running away from them. Of course, the nationality of such investor has practical

implications for the mechanism used to tax and identify fickle capital flows.

Another strong assumption we made is that investors have rational and thus common beliefs

at the ex-ante investment stage (although we motivated the ex-post fickleness of foreigners

with an unmodeled belief friction). Introducing belief disagreements would generate a tension

between speculation and risk sharing, similar to Simsek (2013), that would qualify some of our

conclusions. In particular, an investor who is relatively optimistic about a foreign market can

invest there even though she does not need liquidity and is not an expert in the foreign market.

These speculative flows would be destabilizing for the foreign market without providing insurance
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benefits elsewhere– just like the reach-for-yield flows in our environment. In fact, the speculative

flows can also be categorized as reaching for yield as they are driven by high perceived returns

in the minds of the investors. We thus conjecture that heterogeneous beliefs would strengthen

the reach-for-yield channel and create a stronger rationale for taxing capital flows (even if the

planner respects the investors’heterogeneous beliefs, since the rationale for taxation would be

driven by fire-sale externalities).

There are two other extensions that we leave for future work. The first one is to add an

investment margin at date 0 to entrepreneurs. In this case capital inflows at date 0 may increase

the size of the illiquid assets and the potential fire sales, but also allow for a larger domestic

investment. In fact, the single-country literature typically focuses on this particular trade-off,

which serves to highlight that our mechanisms and externalities are distinct from those in the

standard capital flow taxation literature. Second, in our model foreign investment is (ultimately)

undertaken by unleveraged investors. In practice, leveraged intermediaries play a central role in

facilitating foreign investment, and some of the most significant global crises stem from shocks

to intermediary capital, as considered by the stringent macro-stress tests applied to most large

banks around the world in the aftermath of the subprime crisis (see, e.g., Bruno and Shin (2015)).
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Appendix A: Extensions

A.1. Insurance for Local Liquidity Shocks

In the baseline model we assumed the investors cannot trade financial contracts contingent on the real-

ization of idiosyncratic risks. In this section we relax this assumption by introducing intermediaries that

sell contingent contracts.

Consider the model in Section 2 with the difference that investors can also purchase insurance with

respect to idiosyncratic liquidity shocks. Specifically, there is an insurance contract that pays 1 dollar if

the country has a crisis at date 1. The contract is traded at date 0, and it costs f dollars (the fee/or the

premium) to be paid at date 1. Hence, the net payoff from the contract is 1− f dollars if there is a crisis
and −f dollars if there is no crisis. We assume the insurance market is competitive, which implies that
the insurance is actuarially fair. In a symmetric equilibrium, the fee is equal to the probability of the

liquidity shock, f = π.

We also require the investor to hold suffi cient liquid assets at date 1 to back up her insurance

premiums. Specifically, letting zj denote the amount of insurance country j purchases, we require

xjR+ yjRf ≥ zjf . The investor’s problem (1) is then modified as,

max
c̃0.x̃loc,[x̃j′ ]

j′
,ỹ≥0,z̃

u (c̃0) + x̃locR+

[
(1− π) (x̃R+ ỹRf − z̃f)

+π (x̃p+ ỹRf + z̃ (1− f)) (R/p)

]
,

c̃0 + x̃loc + x̃+ ỹ = η/Rf + 1 where x̃ =

∫
xj

′
dj′ and z̃f ≤ x̃R+ ỹRf .

A symmetric-price equilibrium is defined as in Section 2, with the additional condition that the insurance

contracts break even, f = π.

As before, we focus on equilibria that feature symmetric allocations. We conjecture that under an

appropriate parametric assumption (that we specify below), the equilibrium features fire sales, p < R. In

this equilibrium the investor’s net return from the insurance purchase is given by,

− (1− π) f + π (1− f) (R/p) > 0.

The inequality follows from f = π and p < R. Hence, the investors purchase the maximum amount of

insurance, z = (xR+ yRf ) /f . As before, we also have y = η/Rf , x
loc = 0, and c0 = 1− x. It remains to

characterize the amount of foreign investment, x.

To this end, first consider the return to foreign investment. Note that one dollar of foreign investment

enables the investor to purchase R/π units of insurance. This induces the investor to pay R/π × f = R

dollars when there is no crisis, and receive R/π − R dollars when there is a crisis. Recall also that the

foreign asset has a direct payoff during a crisis given by p. Combining these observations, the return from

foreign investment in this setting is given by,

π (p+R (1/π − 1))R/p = RR/p, (A.48)

where R = (πp+ (1− π)R) as before. Note that this expression is greater than the return in the baseline

setting, µ (p) = RM (since R/p > M = 1 − π + πR/p). Intuitively, the insurance market enables the

investors to transfer their payoffs in the no crisis states to the crisis states, which makes foreign investment
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more valuable. The amount of foreign investment is determined by the condition,

u′ (1− x) = RR/p. (A.49)

As before, this describes a decreasing relation between x and p.

Next note that the asset market clearing condition can also be written as,

p = min

(
R,

η + (p+R (1/π − 1))x

e+ x

)
= min

(
R,

η + xR (1/π − 1)

e

)
. (A.50)

As before, this describes an increasing relation between x and p.

The equilibrium is the intersection of Eqs. (A.49) and (A.50). The following strengthening of Assump-

tion 1, which can be dubbed the global liquidity scarcity condition, ensures that there is an equilibrium

with fire sales, p < R.

Assumption 1I. η + xR (1/π − 1) < eR.

Note that, in view of Assumption 1, the assumption always holds for suffi ciently large levels of the crisis

probability, π. It also holds for lower levels of π, as long as η is suffi ciently low (see Footnote 7 for an

interpretation of η in this context).

Finally, we characterize the risk-free return, Rf . Like the foreign investment, the investor uses the

payoff from the risk-free asset in the no crisis state to purchase insurance. A similar analysis as above

then implies that the return from risk-free investment is given by RfR/p. Equating this with the return

in foreign investment in (A.48) gives Rf = R. In particular, condition (7) in the baseline model continues

to apply in this setting.

Next consider how the presence of the insurance market affects the baseline analysis. Comparing

Eqs. (A.49−A.50) with (5− 6) in the baseline setting, note that both curves (in the x − p space) are
shifted upwards in this setting. It follows that the presence of the insurance market increases the fire-sale

price, p. Intuitively, as captured by Eq. (A.50), the insurance market transfers the excess liquidity in the

countries that do not experience crises to countries with crises. As captured by Eq. (A.49), the insurance

market (by utilizing the foreign liquidity more effectively) also induces the local investors to undertake

greater foreign investment conditional on a given level of fire-sales. Both effects increase the fire-sale price

in equilibrium.

Nonetheless, as long as Assumption 1 holds, the equilibrium still features fire sales, p < R. Moreover,

the qualitative features of this equilibrium are very similar to the baseline setting. For instance, an increase

in local liquidity, η, increases p and decreases x as in Proposition 1. Likewise, when regulators tax capital

flows without costs, the global regulator sets zero tax as in Proposition 8, but the local regulators in an

uncoordinated equilibrium set prohibitively high taxes and implement x = 0 as in Proposition 9.

A.2. Welfare Analysis with Weaker Financial Stability Concerns

Our welfare analysis in the main text focused on the special case in which λ → ∞ so that financial

stability concerns dominated all other concerns. In this appendix we investigate the case with finite

λ and illustrate the other forces at play. To keep the analysis simple, we focus on the baseline model
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analyzed in Section 2. Recall that the social welfare in a country is given by,

W j = u (c0) + E [c1 + c2] + λeE [c̃2] (A.51)

= u (c0) +Rxloc,j +

(∫
j′
xj

′,jR
j′

dj′ + yj
)
M j + λe

(
ζ
(
(1− π) f (R) + πf

(
pj
))

+ (1− ζ)R
j

)
,

where R
j

= (1− π)R+ πpj ,M j = 1− π + π
R

pj
.

The global welfare is the aggregation of this expression over all countries, W =
∫
W jdj. We first describe

the forces that influence the global welfare, and then turn to the forces that influence the welfare in an

individual country.

Determinants of Global Welfare We first start by analyzing the determinants of global welfare.

In a symmetric allocation without taxes or other interventions, the global welfare can be simplified further,

W = u
(
1− xloc − x

)
+ η +R

(
xloc + x+ e

)
− eR+ eλ

(
ζ ((1− π) f (R) + πf (p))

+ (1− ζ)R

)
(A.52)

Here, the first term follows from the resource constraints at date 0. The remaining two terms follow

from the sum of the resource constraints at dates 1 and 2. At these dates, the investors consume the

available resources in the economy plus the expected net profits that are generated by the entrepreneurs’

investment, as captured by the last two terms.

To understand the forces that influence welfare, it is useful to analyze a special case with ζ = 0 and

λ = 1. In this case, the entrepreneurs break even from their investments, and the last two terms in (A.52)

disappear. As this happens, the fire-sale price, p, also disappears from (A.52). It can be checked that

the world’s welfare is maximized when the outside spending is at its upper bound, c0 = 1−x, and total
investment (local or foreign) is at its lower bound, x + xloc =x (recall that x solves u′ (1− x) = R). In

particular, in the special case with ζ = 0 and λ = 1, the baseline competitive equilibrium characterized

in Section 2 which features xloc = 0 and x >x is ineffi cient. Moreover, the equilibrium features too much

foreign investment, and the global planner would like to reduce the foreign flows– the opposite of what

we emphasized in the main text.

Intuitively, the special case ζ = 0 and λ = 1 captures the opposite situation in which the global planner

has no financial stability concerns (increasing the price does not increase the planner’s utility since the

entrepreneurs break even). Hence, the force that we emphasized in the main text is completely shut down.

Instead, another force comes into play and generates too much liquidity creation, which translates into

too much foreign investment in this model. Intuitively, investors in a competitive equilibrium have greater

incentives to invest in liquid assets (compared to the planner), because they perceive they will make high

returns in states with fire sales. The planner without financial stability concerns views these fire sales as

harmless transfers among the agents in the economy, and thus, she does not perceive a particularly high

return from arbitraging them. Hence, the planning allocation features less liquidity creation and deeper

fire sales compared to the competitive equilibrium.19

Our goal is to understand the regulation of capital flows in an environment in which the planners are

19Technically, in this case, the investors exert fire sale externalities on one another as opposed to the entrepre-
neurs. By investing one more unit in liquid assets, the investor increases the price and hurts other investors but
she does not internalize these effects.
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concerned with asset price volatility and fire sales. Therefore, in the main text we abstract away from

this counterforce by focusing on cases in which λ is suffi ciently large (specifically, the limit as λ→∞) so
that the planning allocation features more stable prices relative to the competitive equilibrium.

Determinants of Local Welfare Now consider the determinants of welfare in an individual coun-

try. Unlike the global welfare, we cannot simplify this expression much further than in (A.51) without

specifying particular policies and characterizing the equilibrium. For concreteness, consider the extension

with capital taxes we analyzed in Section 4.1. In particular, suppose all other countries set the tax level,

τ > 0, and country j deviates to a tax level, τ j , in a suffi ciently small neighborhood of τ so that the

characterization in Eq. (B.69) in Appendix A.5 applies. The resulting welfare in country j can be written

as,

W j
(
τ j
)

= u
(
1− xj

)
+
(
η + xjR (1− τ) + xRτ

)
M j + eλ

(
ζ
(
(1− π) f (R) + πf

(
pj
))

+ (1− ζ)R
j

)
,

where M j = 1− π + π
R

pj
and R

j
= (1− π)R+ πpj .

Here, xj , pj , as well as xin,j (which does not directly appear in the welfare function) are implicit functions

of τ j as describes by the equation system (30). Taking the first order condition and using the Envelope

Theorem, we obtain,

dW j

dτ j
=
∂W j

∂pj
dpj

dτ j
= π

[
eλ
(
ζf ′
(
pj
)

+ (1− ζ)
)
− R

(pj)
2

(
η + xjR (1− τ) + xRτ

)] dpj
dτ j

= π

[
eλ
(
ζf ′
(
pj
)

+ (1− ζ)
)
− R

pj
(
e+ xin,j

)] dpj
dτ j

.

Here, the second line uses the pricing equation, pj = η+xjR(1−τ)+xRτ
e+xi n ,j , to substitute the local liquidity

with the total asset sales. Recall that the term, dpj

dτj , is weakly positive, that is, taxing capital flows

increases the fire-sale price. The bracketed term captures the effect of the increase in the price on the

welfare in the country. A greater price yields financial stability benefits, as captured by the first term

inside the brackets. However, it also reduces the expected return of the investors, as captured by the

second term. In fact, in the special case with ζ = 0 and λ = 1 (no net financial stability benefits),

the bracketed term is positive since pj < R and xin,j > 0. That is, increasing the local price level via

taxes reduces the local welfare via a reduction of the investors’welfare. In this special case, the planner

that acts in isolation chooses lower taxes and encourages greater capital flows– the opposite of what we

emphasized in the main text.

Intuitively, a local planner without financial stability concerns would like to increase the inflows into

the country because some of the payoffs from these investments are ultimately appropriated by locals (as

the foreigners liquidate in case of a liquidity shock). Note, however, that the mechanism by which local

investors (with limited liquidity) appropriate greater inflows by foreigners is a reduction in asset prices

and a deepening of fire sales. Thus, these beneficial effects would be arguably second order for a planner

that has financial stability concerns and dislikes fire sales. Therefore, in the main text we abstract away

from this counterforce by focusing on cases in which λ is suffi ciently large.
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A.3. Private Liquidity Creation

In the main text, we analyzed the planners’ incentives to create public liquidity. Instead of creating

liquidity directly, the planner might also encourage the private sector to hold more liquid assets. In this

section, we analyze this set of policies and show that they have similar implications as public liquidity

creation.

Suppose the planner can tax the outside spending/consumption of local investors so as to incentivize

them to hold more financial assets. Specifically, suppose spending c0 dollars on the outside option yields

(1− τ c) c0 dollars of consumption. The utility from outside spending is now given by u ((1− τ c) c0). As
before, the government wastes the tax revenues it collects, τ cc0.

First consider the symmetric coordinated policy, τ jc = τ c for each j, that would be chosen by a

worldwide planner. The characterization of equilibrium parallels the analysis in Section 2. The main

difference is that Eq. (5), is replaced by,{
(1− τ c)u′ ((1− x) (1− τ c)) = µ (p) , if p < R

x ∈ [0, x (τ c)] if p = R
,

where the lower bound on investment, x (τ c), is now an increasing function of the taxes on outside

spending. The same steps as earlier imply that there exists a unique equilibrium with x ∈ (x (τ c) , 1) and

p < R. Moreover, the tax on outside spending increases foreign flows, x, as well as the asset price, p.

By taxing the illiquid outside spending, the planner encourages liquidity creation and mitigates fire

sales. Since the safe asset is in scarce supply, global liquidity is created via greater foreign flows in

equilibrium. Intuitively, greater flows help to utilize the countries’excess liquidity more effectively. The

implication is that a global planner with financial stability concerns (λ→∞) sets prohibitively high level
of taxes, τ c = 1, and creates the maximum amount of private liquidity, x = 1.

Next consider optimal private liquidity policy for the planner, τ jc, when all other countries set their

private liquidity policies at some level, τ c. When the deviation is in a suffi ciently small neighborhood of

τ c, the equilibrium conditions can now be written as,

Rf = R = R
j
, where R

j
= (1− π)R+ πpj(

1− τ jc
)
u′
((

1− xj
) (

1− τ jc
))

= RM j , where M j = 1− π + π
R

pj

and pj = min

(
R,

η + xjR

e+ xin,j

)
.

As in the case of public liquidity creation, private liquidity policy does not affect the local fire-sale price,

pj . Intuitively, the private liquidity creation in country j is anticipated and neutralized by financial

markets. The implication is the Nash equilibrium features too little private liquidity creation relative to

the coordinated solution.

A.4. Aggregate Shocks to Cash Flows

In the main text, we analyzed the effect of aggregate liquidity shocks, πs. In this section, we analyze

other sources of aggregate uncertainty that affect cash flows. Specifically, suppose the payoff from the

legacy asset, ηs, as well as the return from new investment, Rs, can now depend on the realization of the

state s ∈ S = {1, .., |S|}. Throughout, we assume the liquidity shocks are constant across states, πs = π,
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so as to focus on shocks to cash flows. We also maintain the following assumptions about cash flows.

Assumption 1C . ηs < eRs for each s ∈ S.

Assumption 2C . There exist variables, {κs > 0}s , R, η > 0, such that ηs = ηκs and Rs = Rκs for each

s ∈ S. The weights, κs, are decreasing in s and satisfy
∑
s γsκs = 1.

The first assumption a strengthening of Assumption 1 for aggregate uncertainty. The second assumption

says that the cash flows from legacy assets and new investment scale proportionally as the aggregate

state changes. We view this as a natural starting point. We will discuss the implications of relaxing

this assumption at the end of the section. As before, η denotes the expected payoff from the legacy

asset (since E [ηs] =
∑
s γsκsη = η), and R denotes the expected return from new investment (since

E [Rs] =
∑
s γsκsR = R). The assumption that κs is decreasing in s captures that greater s corresponds

to greater “distress”as in the analysis in the main text.

Note that the legacy asset is no longer risk-free. Hence, we use Rl (as opposed to Rf ) denote the

expected return on the legacy asset. In particular, the legacy asset is traded at a price η/Rl that will be

endogenously determined. Note that Rlκs denotes the return of the legacy asset conditional on state s,

and Rκs denotes the return on new investment conditional on state s.

As in Section 3, the investors can trade financial securities contingent on the aggregate state at date

1 that are provided by competitive intermediaries. The intermediaries’optimality condition is still given

by (11), with the modification that the expected payoff is adjusted for the uncertainty about cash flows,

R
j

s = Rκs (1− π) + pjsπ. The investors’problem is given by the following analogue of problem (12),

max
c̃0,x̃loc,ỹ,(z̃s≥−ỹRl)s

u (c0) + x̃locR+
∑
s

γs (ỹRlκs + z̃s)M
j
s ,

c̃0 + x̃loc + ỹ +
∑
s

qsz̃s = η/Rl + 1,

where M j
s = 1− π + Rκs

pjs
π. The market clearing conditions are given by the following analogues of (13),

∫
yjdj = η/Rl∫
zjsdj =

∫
xin,jR

j

sdj for each s ∈ S,

and pjs = min

(
Rκs,

Rlκsy
j + zjs

e+ xin,j

)
for each s ∈ S.

Note that the last market clearing condition takes into account the state dependence in the cash flows.

The characterization of the symmetric equilibrium parallels the analysis in the main text. Eqs.

(14− 15) continue to apply. The main difference concerns the market clearing condition (13). Following

similar steps, we now obtain,

ps = min

(
Rκs,

ηκs + xRs
e+ x

)
= min

(
Rκs,

ηκs + x (1− π)Rκs
e+ x (1− π)

)
for each s.

Hence, we have ps = pκs, where we define

p = min

(
R,

η + x (1− π)R

e+ x (1− π)

)
.
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That is, the price scales proportionally with cash flows as the aggregate state changes. More specifically,

the price to return ratio, ps/ (Rκs), is constant across states. This also implies that the marginal utility

is constant across states, Ms = M ≡ 1 − π + R
p π for each s. Plugging this into Eq. (15), and using the

notation R = (1− π)R+ πp, we obtain,

u′ (1− x) = E
[
Rs
]
M = RM = µ (p) .

The last two equations determine the pair, (p, x), from which the rest of the equilibrium can be obtained.

Note that these equations are identical to Eqs. (5) and (6) in the baseline setting.

Hence, under Assumptions 1 and 2, introducing aggregate shocks to cash flows leaves the baseline

analysis largely unchanged. Intuitively, when the payoffs to legacy and new assets scale proportionally, the

liquidity– and thus, the fire-sale price level– scale by the same proportion. Consequently, the investors’

marginal utility remains constant across states and the analysis reduces to the setting without aggregate

uncertainty.

A.5. Capital Flow Restrictions with Aggregate Shocks

In Section 3, we generalized our baseline model to incorporate aggregate liquidity shocks, which we then

used to investigate a number of issues. In this section, we investigate how the presence of aggregate

shocks affect the planners’ incentives to restrict capital flows. To this end, consider the setup with

arbitrary aggregate states, s ∈ S. Suppose the planner in each country j can impose a state-contingent
linear tax,

{
τ js ≥ 0

}
s
, on date 1 payoff from foreign inflows: that is, the return on the inflows (by the

intermediaries) in country j is now given by Rs
(
1− τ js

)
. As before, the tax revenues are used to purchase

an equal-weighted portfolio of all financial assets, which are then wasted by the planner.

Note that we allow the planner to make the tax rate (or more broadly, capital restrictions) contingent

on the aggregate state.20 Our goal is to understand how the optimal tax rate differs across aggregate

states, s ∈ S. To this end, we assume taxation is costly as in Section 4.1.1. Specifically, applying the tax
rate τs ≥ 0 on foreign financial flows reduces the return of the entrepreneurs that have linear scale by

v (τs) ≥ 0, where v (·) is a convex function that satisfies the Inada type conditions as before. As λ→∞,
the planner effectively maximizes the objective function,

∑
s

γs

(
(1− ζ) ((1− πs) f (R) + πsf (ps))

+ζRs (1− v (τs))

)
. (A.53)

The equilibrium is defined as before, with the difference that the optimality condition for the inter-

mediaries is now adjusted for the presence of taxes [cf. Eq. (11)],

1 ≥
∑
s

qsR
j

s

(
1− τ js

)
for each j, with equality if x in,j > 0.

The portfolio problem (12) remains unchanged since the investors are not directly affected by the presence

of taxes (they hold financial assets indirectly through intermediaries). The market clearing conditions

20We could also allow the planner to condition the tax level on the idiosyncratic state. With the assumptions
we made, it can be seen that the planner would not use this conditionality. Intuitively, the taxes only affect
the outcomes through the foreigners who only care about the average tax level across idiosyncratic realizations.
Hence, conditioning the tax level on the idiosyncratic state would not increase the benefits, but it would increase
the costs of taxation since v (τ) is convex.

60



(13) are adjusted by the presence of taxes and the asset purchases by the government. As before, in a

symmetric allocation, the market clearing condition for risky assets will remain unchanged and given by

Eq. (16).

To characterize the equilibrium, first consider the symmetric case in which all planners choose the

same tax policies, τ js = τs for each j. In Appendix A.5, we show that there exists τ> 0 such that, if

τs ∈ [0,τ) for each s ∈ S, then outside spending is below its lower bound, c0 < 1−x, and local investment
is dominated in equilibrium, xloc = 0 (and thus, foreign investment satisfies x >x). We assume that

v′ (τ̃) =∞ for some τ̃ <τ so that the equilibrium always falls in this region. The analogue of Eq. (15) is

then given by,

u′ (1− x) =
∑
s

γsRsMs (1− τs) ≡
∑
s

γsµs (ps) (1− τs) . (A.54)

The equilibrium is the intersection of Eq. (A.54) and Eqs. (16). Once we solve for (x, (ps)s), the asset

prices are determined by Eq. (14) as before. It can also be seen that increasing the tax level in any state,

τs, reduces the capital flows, x, and the fire-sale price level in all states, (ps)s∈S , as well as the risk-free

interest rate, Rf . Hence, similar to the earlier analysis, the global planner optimally chooses zero taxes

in all states, τs = 0 for each s ∈ S.
Next suppose an individual country sets the tax policy,

{
τ js
}
s∈S , when all other countries apply the

same tax policy, {τs}s∈S . When
{
τ js
}
s∈S is in a neighborhood of {τs}s∈S , the equilibrium in country

j is characterized by the system of equations (B.78) listed in the proof of Proposition 17 (in the proofs

appendix). To characterize the optimal tax policy, it suffi ces to analyze the following subset of those

equations,

1 =
∑
s

qsR
j

s

(
1− τ js

)
, where R

j

s = (1− πs)R+ πsp
j
s, (A.55)

and qs/γs =
M j
s

M j
0

for each s ∈ S, where M j
s = 1− πs + πs

R

pjs
.

Here, M j
0 = u′

(
1− xj

)
is a constant independent of state s. Note that the country takes the Arrow-

Debreu prices, (qs)s, as given. Hence, Eq. (A.55) represents |S| + 1 equations in |S| + 1 unknowns,(
pjs
)
s
,M j

0 . After factoring out M
j
0 , it can be thought of as |S| equations in the |S| unknown prices.

Intuitively, the first equation determines the “weighted average”level for the prices. This equation follows

from the foreign investors’optimality condition to invest in the country. The second set of equations

determines the relative fire-sales across different states, pjs. This equation follows from the local investors’

optimality condition to trade financial securities across states. Note also that, when the country sets the

same taxes as other countries (which will be the case in Nash equilibrium), the unique solution is the

same as the symmetric equilibrium described above, that is, pjs = ps for each s.

Next consider the optimal tax policy for country j. The planner chooses the tax policy,
{
τ js
}
s∈S ,

to maximize the objective function in (A.53) subject to the equilibrium conditions in (A.55). Given the

prices {qs, ps}s, the optimal tax rate is characterized as the solution to the equation system (A.56) in

the proof of Proposition 17. In turn, in a symmetric Nash equilibrium, the prices are functions of the

symmetric tax policies, {τs}s, as described above. The Nash equilibrium is found as the intersection of

these two systems. As before, there can also be multiple stable Nash equilibria. The following result

summarizes this discussion and establishes the properties of taxes in any Nash equilibrium.

Proposition 17. Consider the symmetric model with aggregate risk and costly (and state-contingent)
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capital taxes in the limit as λ→∞. A global planner that coordinates countries’policies sets zero tax in
each state, τs = 0 for each s. In any Nash equilibrium, the tax rate is positive for each state, τs > 0 for

each s ∈ S. Moreover, the tax rates satisfy,

v′ (τs)

v′ (τs′)
=

qs/γs
qs′/γs′

for each s, s′. (A.56)

In particular, the tax rate is increasing in s ∈ S: that is, states with greater probability of liquidity shocks
are associated with higher taxes.

The last claim in the proposition follows from Eq. (A.56) after observing that qs/γs, is increasing in

s. In turn, Eq. (A.56) follows from an individual planner’s optimality condition. The intuition is that

foreign investors value payoff in distressed states relatively more. Taxing them in these states provides a

cheaper way of discouraging foreign investment at date 0. Hence, the planner applies larger taxes– more

protectionism– in states with greater financial distress.

Appendix B: Proofs

Proof of Lemma 1. We have,

µ′ (p) = π

(
1− π +

R

p
π

)
− π R

p2
((1− π)R+ πp)

= π (1− π)

(
1− R2

p2

)
.

Hence, µ (p) is strictly decreasing over the range p ∈ (0, R). The result follows after observing that

µ (R) = R.

Proof of Lemma 2. If η ≥ eR, then Pmc (x) = R, which does not depend on x. Suppose η < eR, in

which case Pmc (x) = η+x(1−π)R
e+x(1−π) . Taking the derivative, we obtain,

d

dx

(
η + x (1− π)R

e+ x (1− π)

)
=

(1− π)

e+ x (1− π)
(R− Pmc (x)) > 0.

Here, the inequality follows since η < eR implies Pmc (x) = η+x(1−π)R
e+x(1−π) < R, which completes the

proof.

Proof of Proposition 1. Let P opt : [0, 1) → [0, R] and Pmc : [0, 1] → [0, R] denote the functions

that are defined in the main text: that is, P opt (x) corresponds to the optimality condition for foreign

investment (5), and Pmc (x) corresponds to the market clearing condition (6). Note that P opt (x) is

strictly increasing, in view of Lemma 2, and Pmc (x) is weakly decreasing, in view of Lemma 1. We also

have that Pmc (x) ∈ (0, R) for each x in view of Assumption 1. In addition, we have limx→1 P
opt (x) = 0

and P opt (x) = R, where recall that x > 0 denotes the threshold below which P opt (x) = R and there is

some local investment. In view of the boundary conditions, there exists x ∈ (x, 1) and p ∈ (0, R) such

that p = Pmc (x) = P opt (x). The pair (x, p) corresponds to the equilibrium.

Next consider the comparative statics. Increasing η strictly increases the curve Pmc (x), for each

x ∈ [0, 1], while leaving the curve, P opt (x), unchanged. This increases p and reduces x in equilibrium.
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Using condition (7), it also increases the risk-free return, Rf . Likewise, decreasing R strictly decreases

both curves Pmc (x) and P opt (x) for each x ∈ [0, 1]. This reduces p as well as Rf .

It remains to show that decreasing R also decreases x. To this end, define the variable p̃ = p/R as

the price-to-return ratio. Eqs. (5) and (6) can then be written in terms of (p̃, x) as,

u′ (1− x) = R (1− π + πp̃)

(
1− π + π

1

p̃

)
,

and p̃ = min

(
1,
η/R+ x (1− π)

e+ x (1− π)

)
.

As before, the first equation describes p̃ as a decreasing function of x, the second function describes p̃ as

an increasing function of x, and the equilibrium corresponds to the intersection. Note also that decreasing

R strictly decreases the first curve for each x, and strictly increases the second curve for each x. This

implies that decreasing R also reduces x, completing the proof.

Proof of Proposition 2. Most of the proof is provided in the main text. It remains to check that the
conjectured allocations, xout,j = x and xin,j = x+

(
ηj − η

)
/p, satisfy the market clearing condition (9).

Plugging the expressions for xout,j and xin,j into the market clearing condition, we obtain,

pj = min

(
R,

p
(
ηj + xR

)
(e+ x) p+ ηj − η

)

= max

(
R,

η+xR
e+x

(
ηj + xR

)
η + xR+ ηj − η

)
= min

(
R,

η + xR

e+ x

)
= p.

Here, the second line uses the market clearing condition for the representative country (6). This verifies

the conjecture that pj = p. Note also that xin,j > xout,j = x > 0, which completes the proof.

Proof of Proposition 3. We conjecture an equilibrium with xin,j > 0. Under this conjecture, the

equilibrium in country j is characterized by condition (10) in addition to the following equations,

u′
(
1− xout,j

)
= ((1− π)R+ πp)

(
1− π + π

Rj

pj

)
, (B.57)

and pj = min

(
R,

ηj + xout,jR

e+ xin,j

)
. (B.58)

Here, the first line captures the optimality condition for the local investors, and the second line is the

market clearing condition.

We next show that there exists a tuple,
(
pj , xout,j , xin,j

)
, that satisfies the equilibrium conditions

and that features positive inflows. Let pj =
(1−π)(R−Rj)+πp

π , which lies in the interval (0, p) in view

of Assumption Y. With this price level, the optimality condition (10) holds as equality. Next let xout,j

denote the solution to Eq. (B.57) and note that xout,j > x (since Rj/pj > R/p). We finally let

xin,j = ηj+xo u t ,jR
pj − e so that the market clearing condition (B.58) also holds. We also note that xin,j > 0

since pj < p, xout,j > x, and ηj ≥ η−px by Assumption Y. Thus, the constructed tuple,
(
pj , xin,j , xout,j

)
,

corresponds to an equilibrium in country j.

Next consider a decrease in R. By Proposition 1, this decreases x and p. Since pj −p =
(1−π)(R−Rj)

π ,

it also decreases pj − p, which in turn implies that it decreases pj .This completes the proof.
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Proof of Proposition 4. Most of the proof is provided in the main text. It remains to check that there
exists a solution to Eqs. (15) and (16), which satisfies x ∈ (x, 1). To this end, define the function,

F (x) = u′ (1− x)−
∑
s

γsµs (ps) , where ps =
η + x (1− πs)R
e+ x (1− πs)

for each s.

Note that F (x) = R−
∑
s γsµs (ps) < 0, and F (1) =∞. Note also that F (x) is strictly increasing in x.

By continuity, there exists a unique solution to the equation, F (x) = 0, over the range, x ∈ (x, 1). This

completes the proof.

Proof of Proposition 5. The proof is provided in the main text.

Proof of Proposition 6. The equilibrium in the country is determined by the optimality conditions

(22) and (24), together with the conditions

cj0 +
∑
s

qsz
j
s + yj = 1 + ηj/Rf . (B.59)

and pjs = min

(
R,

Rfy
j + zjs

e+ xin,j

)
for each s.

Here, the first equation is the the budget constraint at date 0 and the equations in the second line capture

the market-clearing conditions in state s of date 1. We conjecture (and verify) that the prices and outside

spending is given by

pjs = ps for each j, and c
j
0 = c0, (B.60)

and the inflows and the local investor’s financial portfolio satisfy respectively,

xin,j = lj (e+ x)− e, (B.61)

and Rfyj + zjs = lj
(
η + xRs

)
for each s. (B.62)

Here, we define the leverage ratio as

lj =
ηj/Rf + x

η/Rf + x
. (B.63)

To verify that these allocations satisfy the equilibrium conditions, note that Eqs. (22) and (24) hold

as described in the main text. Next note that Eq. (B.62) determines the investor’s portfolio (up to

multiplicity that does not affect the total payoffs). In particular, in view of no arbitrage, the date-0 value

of the investor’s portfolio is given by,

yj +
∑
s

qsz
j
s = lj (η/Rf + x) = ηj/Rf + x. (B.64)

Combining this expression with cj0 = c0 implies the budget constraint in (B.59) (since c0 = 1− x). The
market clearing conditions in (B.59) also hold since,

pjs = min

(
R,

lj
(
η + xRs

)
e+ xin,j

)
= min

(
R,

η + xRs
e+ x

)
= ps for each s.
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Here, the first equality uses (B.62), the second equality uses the definition of xin,j in (B.61), and the

last equality uses the market clearing condition for the representative country. Hence, the allocations

described by Eq. (B.60) and (B.61−B.62) correspond to the equilibrium in country j.

We next establish the properties of the inflows and outflows in this equilibrium. Note that the date-0

value of the outflows in the country is the same as in the representative country since Eq. (B.64) implies,

xout,j = yj +
∑
s qsz

j
s − ηj/Rf = x.Combining this with Eq. (B.61), the difference between the inflows

and the outflows is given by,

xin,j − xout,j = (e+ x)

(
ηj − η

)
/Rf

η/Rf + x
> 0. (B.65)

In particular, the inflows exceed outflows. Next note that, using (B.62), the date-1 payoff from the

outflows is given by,

xout,js = yjRf + zjs − ηj =
(
ljη − ηj

)
+ xljRs = −x

(
lj − 1

)
Rf + xljRs,

which proves (25). Here, the second equality uses Eq. (B.62), and the last equality uses the valuation

equation (B.64). Note also that lj > 1 since ηj > η [cf. Eq. (B.63)].

Next consider the special case with correlated shocks described in Section 3.1. Consider an increase

in β. As described by Proposition 5, this reduces x and Rf . Since xout,j = x, the outflows from country

j also decline. Since xRf declines, Eq. (B.65) implies that xin,j − xout,j increases: that is, the inflows
decline less than the outflows. Finally, note that Eq. (B.63) implies

lj =
ηj + xRf
η + xRf

= 1 +
ηj − η
η + xRf

.

Since xRf declines, lj increases, completing the proof of the proposition.

Proof of Proposition 7. We conjecture an equilibrium with xin,j > 0. The optimality condition for

foreign investors is given by Eq. (26) in the main text. As we discuss there, this condition implies that

the country experiences greater fire sales “on average.”

The remaining question is how these fire sales are distributed across the two distress states s ∈ {2, 3}
(recall that p1 does not affect the equilibrium since there are no crises in state 1, π1 = 0). The distribution

of fire sales is determined by local investors’ allocation of liquidity across states. Specifically, these

investors’optimality conditions for states {2, 3} are given by,

u′
(
cj0

)
=

M j
2

q2/γ2
=

M j
3

q3/γ3
, where M j

2 = 1− π + π
Rj

pj2
and M j

3 =
Rj

pj3
.

Next note that the analogues of the optimality conditions above also hold for the representative country.

In particular, we have M2

q2/γ2
= M3

q3/γ3
. Combining this with the above conditions and substituting the

respective marginal utilities, we obtain,

1− π + πRj/pj2
1− π + πR/p2

=
Rj/pj3
R/p3

. (B.66)

Eqs. (26) and (B.66) represent two equilibrium conditions in two unknowns, pj2, p
j
3. Under Assumption Ỹ,

there is a unique positive solution to these equations that satisfy, pj2 ∈ (0, p2) and p
j
3 ∈ (0, p3). Inspecting
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the equations also implies that the solution satisfies, R
j/pj2
R/p2

>
Rj/pj3
R/p3

> 1.

We also show that the optimality condition for the no-distress state 1 is satisfied with inequality,

u′
(
cj0

)
=

Mj
3

q3/γ3
>

Mj
1

q1/γ1
. To see this, note that applying the same condition for the representative

country implies M3

q3/γ3
= M1

q1/γ1
. Combining this with M j

3 > M3 and M
j
1 = M1 = 1 proves the claim.

This in turn implies the investors in country j hold zero liquidity in the no-distress state, zj1 + yjRf = 0.

Intuitively, he investors’marginal utility in this state is relatively low, M j
1 = 1. In equilibrium, this

induces them to hold as little liquidity as possible so as to hold more liquidity in distress states 2 and 3.

We next show that the prices characterized above correspond to an equilibrium in country j with

appropriate corresponding allocations,
(
cj0,
{
zjs + yjRf

}
s∈{2,3} , x

in,j
)
that satisfies xin,j > 0 as well as

the following market clearing and budget constraints,

pjs =
zjs + yjRf
e+ xin,j

for each s ∈ {2, 3} ,∑
s∈{2,3}

qs
(
zjs + yjRf

)
= ηj/Rf + 1− cj0.

Note that, for each s ∈ {2, 3}, the market clearing condition defines zjs + yjRf as a function of xin,j .

Plugging this into the budget constraint, we obtain,(
e+ xin,j

) ∑
s∈{2,3}

qsp
j
s = ηj/Rf + 1− cj0.

Using the same steps for the representative country, we also obtain

(e+ x)
∑
s

qsps = η/Rf + 1− c0.

Subtracting these equations and using cj0 < c0 (since u′
(
cj0

)
> u′ (c0)), we obtain,

xin,j
∑

s∈{2,3}

qsp
j
s >

(
ηj − η

)∑
s

qs + x
∑
s

qsps.

In view of Assumption Ỹ, this equation implies xin,j > 0. It follows that the allocations,(
cj0,
{
zjs + yjRf

}
s∈{2,3} , x

in,j
)
, together with the prices characterized earlier, (p2, p3) (and z

j
1+yjRf = 0)

correspond to the equilibrium in country j.

We next establish the comparative statics of the equilibrium. First consider a decrease in R. Let

p̃2 = p2/R denote the price-to-return ratio in state 2. Then, the optimality condition (21) and the market

clearing condition (16) can be written in terms of (p̃2, x) as,

u′ (1− x) = R

(
β + (1− β) (1− π + πp̃2)

(
1− π + π

1

p̃2

))
,

and p̃2 = min

(
1,
η/R+ x (1− π)

e+ x (1− π)

)
.

As before, the first equation describes p̃2 as a decreasing function of x, the second equation describes p̃2
as an increasing function of x, and the equilibrium corresponds to the intersection. Moreover, decreasing

R strictly decreases the first curve for each x, and (under Assumption 1) strictly increases the second
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curve for each x. It follows that decreasing R decreases the equilibrium level of foreign investment, x.

Thus, decreasing R also decreases the price level, p2 = min
(
R, η+Rx(1−π)e+x(1−π)

)
, while leaving p3 = min

(
R, ηe

)
unchanged.

Next note that Eq. (27) implies,

p− pj
Rj −R =

1− π
π

M1β +M2 (1− β)

M2 (1− β) +M3β
. (B.67)

This implies that p−pj
Rj−R < 1−π

π since M1 < M2 < M3.After substituting for Ms = 1 − πs + πs
R
ps
, the

equation can also be written as,

p− pj
Rj −R

π

1− π =
β 1
R + (1− β) ξ (R)

(1− β) ζ (R) + β 1
p3

, where ξ (R) = (1− π)
1

R
+ π

1

p2
.

It can be checked that increasing ξ (R) increases the right hand side (since it is less than one). Thus,

decreasingR increases p−pj
Rj−R , both directly via the 1/R term in the numerator, and indirectly by increasing

ξ (R) = (1− π) 1
R + π 1

p2
. It follows that decreasing R decreases pj − p.

Next consider a decrease in β. By Proposition 5, this increases x, which in turn increases p2 and

leaves p3 unchanged. Thus, it also decreases M2 and leaves M1 and M3 unchanged.

Inspecting Eq. (B.67) illustrates that decreasing β tends to increase p−pj
Rj−R by decreasing the weight

on the smaller marginal utility (M1) in the numerator as well as the weight on the larger marginal utility

(M3) in the denominator. However, decreasing β also generates an indirect effect since it also decreases

M2. As it turns out, the indirect effect tends to decrease
p−pj
Rj−R , counteracting the direct effect. We

conjecture that the indirect effect does not overturn the direct effect, that is, d
dβ

(
p−pj
Rj−R

)
< 0, which in

turn implies that decreasing β decreases p− pj (equivalently, increases pj − p).
To prove this conjecture, we differentiate Eq. (B.67) with respect to β, which implies that

d
dβ

(
p−pj
Rj−R

)
< 0 if and only if,

M1β +M2 (1− β)

M2 (1− β) +M3β
>
M1 + d

dβ (M2 (1− β))

M3 + d
dβ (M2 (1− β))

We make a second conjecture that d
dβ (M2 (1− β)) < 0. Under this conjecture, the above inequality holds

because,
M1β +M2 (1− β)

M2 (1− β) +M3β
>
M1

M3
>
M1 + d

dβ (M2 (1− β))

M3 + d
dβ (M2 (1− β))

.

Here, the first equality follows from M1 < M2 < M3, and the second inequality uses M1 < M3 together

with d
dβ (M2 (1− β)) < 0.

Hence, it remains to prove the second conjecture, d
dβ (M2 (1− β)) < 0. To this end, note that Eq.

(21) in Section 3.1 implies,

u′ (1− x) = Rβ + ((1− π)R+ πp2) (1− β)M2.

Taking the derivative with respect to β, and using du′(1−x)
dβ < 0 (since increasing β decreases x), we

obtain,

R+ π
dp2
dβ

(1− β)M2 + ((1− π)R+ πp2)
d

dβ
(M2 (1− β)) < 0.
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>From here, note that R + π dp2dβ (1− β)M2 > 0 implies that d
dβ (M2 (1− β)) < 0. That is, our second

conjecture follows from a third conjecture,

(1− β)π

(
−dp2
dβ

)
M2 < R. (B.68)

To prove the third conjecture, note that Eq. (21) can also be written as,

u′ (1− x)

R
= β + (1− β)

(
1− π + π

p2
R

)(
1− π + π

R

p2

)
.

Taking the derivative with respect to β, and using du′(1−x)/R
dβ < 0, we obtain,

(1− β)π

(
−dp2
dβ

)
M2

R
<

(
1− π + π p2R

) (
1− π + π Rp2

)
− 1

1−π+π p2
R

(1−π) 1R+π
1
p2

R
p22
− 1

< 1

Hence, the last inequality follows since it is equivalent to,
(

1− π + π Rp2

)(
(1− π) 1

R + π 1
p2

)
< R

p22
, which

in turn holds since 1− π + π Rp2 <
R
p2
and (1− π) 1

R + π 1
p2
< 1

p2
. This establishes the third conjecture in

(B.68), which in turn implies d
dβ

(
p−pj
Rj−R

)
< 0. This completes the proof of the proposition.

Proof of Proposition 8. First consider the case in which the equilibrium features x > 0 (despite the

presence of taxes). Let P opt (x; τ) correspond to the solution to Eq. (5), which describes the optimality

condition for foreign investment. As before P opt (x; τ) is weakly decreasing with a flat part for x ≤x and a
strictly decreasing part for x >x. However, the value of the flat part is slightly different and given by the

unique solution to µ (p) (1− τ) = R over the range p ∈ [0, R]. Note that the value of the flat part is strictly

decreasing in τ . Let τ ∈ (0, 1) denote the tax level such that the equality, µ (p) (1− τ) = R, holds with

p = η/e. For τ < τ , we have P opt (0; τ) > η/e = Pmc (0). A similar argument to that in the Proposition

1 then implies that there exists x ∈ (0, 1) and p ∈ (0, p (τ)] such that p = Pmc (x) = P opt (x; τ). The pair

(x, p) corresponds to the equilibrium with taxes τ < τ .

Next let τ denote the tax level such that the equality, µ (p) (1− τ) = R, holds with p = Pmc (x) =
η+x(1−π)R
e+x(1−π) . Note that this threshold is lower than the previous threshold, τ∈ (0, τ̄). If τ <τ , then

the equilibrium features x >x, and thus, xloc = 0. If instead τ ∈ (τ , τ̄), then the equilibrium features

x ∈ (0, x) and xloc = x− x ∈ (0, x) .

This completes the characterization of the equilibrium for τ < τ . For completeness, consider also

the remaining case with τ ≥ τ . In this case, we have a corner solution x = 0 and xloc =x. In addition,

the first equation in (30) is replaced by RfM = R (as opposed to Rf = R (1− τ)) since the foreign

investment is strictly dominated and the legacy asset is priced by equating its marginal utility with that

of local investment.

Next consider the comparative statics with respect to taxes. If τ ≥ τ̄ , increasing the tax level further
has no effect on the equilibrium. Consider the case with τ < τ̄ . Using Eq. (5) and Lemma 1, increasing

the tax level shifts the curve p = P opt (x; τ) downwards. Since the curve p = Pmc (x) is strictly increasing

and unaffected by the taxes, it follows that increasing the tax level strictly reduces both p and x. It also

reduces Rf through the first equation in (30).

Finally, consider the optimal coordinated tax level set by a global planner. The planner’s welfare is

inversely proportional to the symmetric fire-sale price level in all countries, p. Since increasing the tax
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level reduces p, the planner optimally sets τ = 0.

Proof of Proposition 9. First consider the case in which all countries set the tax level, τ ∈ [0, τ̄). We

prove that there exists a suffi ciently small neighborhood of τ such that, when τ j is in this neighborhood,

the equilibrium in country j is characterized as the unique solution to the following system of equations,

Rf = R (1− τ) = R
j (

1− τ j
)
, where R

j
= (1− π)R+ πpj . (B.69)

u′
(
1− xj

)
= M jR (1− τ) , where M j = 1− π + π

R

pj

and pj = min

(
R,

η + xjR (1− τ) + xRτ

e+ xin,j

)
.

To see this, first note that the first equation describes pj as an implicit function of τ j . Then note that

the second equation describes xj as an implicit function of the pair,
(
τ j , pj

)
. Finally, note that the last

equation describes xin,j as an implicit function of τ j , pj , xj . It follows that there exists a suffi ciently

small neighborhood, (τ − ε, τ + ε), such that there is a unique solution to the system in (B.69) when

τ j ∈ (τ − ε, τ + ε). Moreover, ε can be taken to be suffi ciently small so that xj >x and xin,j > 0 (since

the equilibrium with symmetric taxes, τ j = τ , satisfies x = xin >x). When this is the case, the solution

corresponds to an equilibrium in country j (since xj >x implies u′
(
1− xj

)
> R and local investment is

dominated as implicitly assumed by (B.69)).

Suppose τ j ∈ (τ − ε, τ + ε) and consider the comparative statics for the equilibrium in country j.

Increasing the tax level increases the price, pj , in view of the first equation in (B.69). It follows that the

planner in country j strictly prefers to increase the tax level, τ j . Thus, the symmetric allocation with

τ ∈ [0, τ̄) does not correspond to a Nash equilibrium.

Next consider the case in which all countries set the tax level, τ =τ . In this case, the symmetric

equilibrium features flows, x, and the corresponding price level, Pmc (x). We claim that there is no

profitable deviation for an individual planner. Note that the tax level cannot be increased further (by

assumption). Suppose the planner lowers the tax level to an arbitrary, τ j ∈ [0,τ). Suppose τ j is not

too low so that there is a solution to the first equation with pj > 0 (otherwise, the equilibrium features

pj = 0, which does not correspond to a profitable deviation). Then, the same argument as above applies

and shows that there is a unique solution to the system in (B.69). Moreover, reducing the tax level

decreases pj , increases xj , and increases xin,j . In particular, we have xj >x, which ensures that the

solution corresponds to an equilibrium in country j. Note also that pj < Pmc (x), which shows that the

deviation is not profitable for the planner in country j. Thus, the symmetric allocation with the tax

level, τ =τ , corresponds to a Nash equilibrium.

Finally, let (x, p) denote the equilibrium without taxes and note that x > x and p > Pmc (x). This

proves that the capital flows and the fire-sale price in the Nash equilibrium are lower than what would

obtain in an equilibrium without taxes. By the first equation in (30), the risk-free return is also lower,

completing the proof.

Proof of Proposition 10.
Part (i). The possibility of multiple equilibria is illustrated in the left panel of Figure 3. The example

features a discontinuous function f (·), but the multiple equilibria in the figure would remain if we were
to approximate f (·) with a smooth function. Next suppose there are multiple symmetric equilibria and
consider their welfare ranking. Recall that the system in (A.55) describes the equilibrium price as a
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decreasing function of the tax level. Thus, an equilibrium with lower price level is also associated with a

higher tax level. Given the welfare function in (31), this equilibrium is dominated for each planner by an

equilibrium with a higher price level and a lower tax level.

Part (ii). Suppose there is a unique equilibrium. The equilibrium is characterized as the intersection
of two decreasing curves. Moreover, the intersection is such that the best response curve crosses the

equilibrium price curve, p (τ), from above (as illustrated in the right panel of Figure 3). Inspecting the

equilibrium system in (30) shows that decreasing η shifts the equilibrium price curve, p (τ), downwards.

Combining these observations, it follows that reducing η reduces p and increases τ in the unique Nash

equilibrium. The risk-free return also declines from the first equation in (30). The last part of the

proposition follows by combining the observation that τ increases with the comparative statics of the

increase in τ established in Proposition 8.

Proof of Proposition 11. Let Pmc
(
x; ηpl

)
= min

(
R, η+η

pl+x(1−π)R
e+x(1−π)

)
denote the market clearing curve

when the planner injects liquidity, ηpl. As in the proof of Proposition 1, the equilibrium is characterized as

the intersection of the strictly increasing curve, p = Pmc
(
x; ηpl

)
, and the decreasing curve, p = P opt (x).

Moreover, the intersection is in the strictly decreasing range of p = P opt (x) (with x >x). Note that

increasing ηpl shifts the market clearing curve upwards without affecting the optimality curve. Hence, it

leads to a higher price, p, and lower capital flows, x. Since the global planner prefers higher prices, she

creates the maximum amount of liquidity, ηpl = η̄.

Proof of Proposition 12. Consider the case in which all countries create positive liquidity, ηpl > 0.

We prove that, when ηpl,j is in a suffi ciently small neighborhood of ηpl, then the equilibrium in country

j is characterized as the unique solution to the following system of equations,

Rf = R = R
j
, where R

j
= (1− π)R+ πpj (B.70)

and u′
(
1− xj

)
= RM j , where M j = 1− π + π

R

pj

and pj = min

(
R,

η + ηpl,j + xjR

e+ xin,j

)
.

To see this, note that the first equation determines pj = p as independent of ηj . The second equation

determines xj = x as independent of ηj . The third equation then implies that

xin,j − x =
(
ηpl,j − ηpl

)
/p.

Hence, there exists a suffi ciently small neighborhood,
(
ηpl − ε, ηpl + ε

)
, such that there is a unique solution

to the system in (B.70) with xin,j > 0. The solution corresponds to an equilibrium since xj = x >x

(and thus, u′
(
1− xj

)
> R and the local investment is dominated as implicitly assumed by the system in

(B.70)).

Next suppose ηpl,j ∈
(
ηpl − ε, ηpl + ε

)
and consider the comparative statics for the equilibrium in

country j. Decreasing ηpl,j has no effect on the price. However, for any finite λ, it helps to economize

on the liquidity-creation costs (see the social welfare function in (33)). Hence, the symmetric allocation

with ηpl > 0 does not correspond to a Nash equilibrium for any finite λ, and thus, also as λ→∞.
Next consider the case in which all countries create zero liquidity, ηpl = 0. We claim that there is

no profitable deviation for an individual planner. Suppose the planner deviates to ηpl,j > 0. The same
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argument as above implies that, for any ηpl,j > 0, the local equilibrium is characterized by pj = p, xj = x,

and xin,j = x + ηpl,j > 0. The deviation is not profitable since it does not change the price but it

increases liquidity-creation costs for any finite λ. This proves that the symmetric allocation with ηpl = 0

corresponds to a Nash equilibrium for any finite λ, and thus, also as λ→∞.

Proof of Proposition 13. The proof is provided in the main text.

Proof of Proposition 14. First consider the case without taxes. Under Assumption 1S, we conjecture
an equilibrium in which xin,D > 0, xin,E ≥ 0, and conditions (38) and (39) are satisfied as equalities

(even at the corner case, xin,E = 0). Under this conjecture, combining condition (38) with π = 1 implies

Rf = pD = pE . Likewise, combining condition (39) with π = 1 implies,

u′
(
1− xout,k

)
= R

k
Mk = pk

Rk

pk
= Rk for each k.

In particular, the foreign outflows from each region are fixed at their minimum levels, xout,k = xout,k

(defined as the solution to u′
(
1− xout,k

)
= Rk).

We next plug π = 1 into the market clearing conditions (40), and use pD = pE , to obtain,

pk =
ηk + xout,kpk

e+ xin,k
=

ηk

e+ xin,k − xout,k for each k ∈ {D,E} . (B.71)

After multiplying these inequalities with mk/pk and aggregating, we obtain,

mD
(
e+ xin,D − xout,D

)
+mE

(
e+ xin,E − xout,E

)
= ηD

mD

pD
+ ηE

mE

pE
. (B.72)

After using mD + mE = 1 and the conservation equation (41), the left hand side becomes e. Using

pD = pE on the right hand side, this implies,

pD = pE =
ηDmD + ηEmE

e
.

Combining this with the market clearing condition in (B.71), we obtain,

xin,k − xout,k = e

(
ηk

ηDmD + ηEmE
− 1

)
for each k ∈ {D,E} . (B.73)

Since xout,k = xout,k, this equation determines xin,D, xin,E in terms of the parameters of the problem.

Note also that xin,D > xout,D > 0 since ηD > ηE , and xin,E < xout,E since ηE < ηD. In addition xin,E ≥ 0

since xout,E ≥ e
(

1− ηE

ηDmD+ηEmE

)
by Assumption 1S. This verifies our conjecture and completes the

characterization of equilibrium without taxes. In particular, the equilibrium prices and flows satisfy Eqs.

(42) in the main text.

It is also useful to note that in equilibrium investors are indifferent between local and foreign invest-

ment. The equilibrium characterized above corresponds to zero local investment and xout,k = xout,k for

each k. However, there are also equilibria with xout,k ∈
[
0, xout,k

]
for each k. The only requirement is

that the outflows from the region E exceed a minimum level, xout,E ≥ e
(
1− ηk/

(
ηDmD + ηEmE

))
. For

each pair of outflows, xout,D, xout,E , that satisfies these conditions, there exists an equilibrium in which

the inflows are determined by Eq. (B.73) and the prices are determined by Eq. (9). In particular, the
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indeterminacy does not affect the equilibrium prices.

Next consider the equilibrium with taxes. The equilibrium conditions (38− 41) are slightly modified

since investing locally is no longer weakly dominated. First suppose τE > 0 and τD = 0. In this case,

it is easy to check that the equilibrium prices are unchanged. The taxes in region E imply the inflows

into region E are zero, xin,E = 0, and the outflows from region E (which go into region D) are at their

minimum level, xout,E = e
(
1− ηk/

(
ηDmD + ηEmE

))
. Hence, the taxes in region E help to partially

resolve the indeterminacy described above, but they do not affect the equilibrium prices or net inflows.

Next suppose τE = 0 and τD > 0, where τD is in a suffi ciently small neighborhood of 0. We conjecture

an equilibrium in which the after-tax returns are equated, Rf = pD
(
1− τD

)
= pE . Note that the market

clearing conditions (B.71) remain unchanged (since the taxed liquidity is injected back into the investing

regions by assumption). The aggregated condition (B.72) also remains unchanged. As before, the left

hand side of this equation is equal to e, which implies,

ηD
mD

pD
+ ηE

mE

pE
= e.

The equilibrium is determined by solving this equation together with pE = pD
(
1− τD

)
. The prices have

a closed form solution given by Eq. (43) in the main text. To obtain the corresponding flows, first note

that combining Eq. (43) with the market clearing conditions (B.71)implies,

xin,D − xout,D = e

(
ηD

ηDmD + ηEmE/ (1− τD)
− 1

)
,

and xin,E − xout,E = e

(
ηE

ηDmD (1− τD) + ηEmE
− 1

)
.

Next note that xout,D = 0, since investing in other countries of region D is dominated by local investment

in region D. Finally, note that xout,E ≥ e
(

1− ηE

ηDmD(1−τD)+ηEmE

)
and xout,E ≤xout,E . Given any choice

of xout,E in this interval and xout,D = 0, the flows are uniquely pinned down by the above displayed

equations.

Finally, consider the case with τE > 0 and τD > 0, where τD is in a suffi ciently small neighborhood

of 0. The equilibrium prices in this case are exactly as in the previous case. The only difference (as

before) is that the taxes in region E imply the inflows into region E are zero, xin,E = 0, and the outflows

from region E (which go into region D) are at their minimum level, xout,E = e
(

1− ηE

ηDmD(1−τD)+ηEmE

)
.

This completes the proof.

Proof of Proposition 15. We first complete the characterization of equilibrium. The return thresholds
are given by,

RDlow ≡ (1− π)RE + πpElow and R
D
high = (1− π)RE + πpEhigh, (B.74)

with pElow ≡
ηE + (1− π)RE

e+ 1/mE − π and pEhigh ≡
ηE + (1− π)RE

e− π .

These thresholds are obtained from the system in (44) by noting that any price between pElow and p
E
high

can be obtained by adjusting the flows that go into region E and letting the residual flows go into region

D. It follows that an equilibrium with flows into both regions (that satisfies the system in (44)) exists if

and only if RD ∈
(
RDlow, R

D
high

)
.
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Next suppose RD ≤ RDlow. Then, the equilibrium system (44) is replaced by,

Rf = (1− π)RE + πpE ≥ RD,

xin,D = 0, xin,E = 1/mE and pE =
ηE + (1− π)RE

e+ 1/mE − π .

Suppose instead RD ≥ RDhigh. Then, the equilibrium is system is replaced by,

Rf = (1− π)RE + πpE ≤ RD,

xin,D = 1/mD, xin,E = 0 and pE =
ηE + (1− π)RE

e− π .

In either case, there is a solution to the system in view of the definition of the thresholds RDlow, R
D
high in

(B.74).

Next suppose RD ∈
(
RDlow, R

D
high

)
and consider the comparative statics for the system (44). A

decrease in RD decreases pE via the first equation. This increases xin,E via the second equation. This in

turn decreases xin,D via the third equation.

Proof of Proposition 16. The case RD ≥ RDhigh is straightforward since the taxes in region E have

no effect on the equilibrium. Consider the case RD ∈
(
RDlow, R

D
high

)
. Note that this case always features

flows into region D (but flows into region E might be driven to zero by taxes in this region). Hence,

the local investor’s return from investing in other countries is equal to MERD =
(

1− π + πR
E

pE

)
RD.

Note also that the maximum price level in this case is given by pE,max = ηE+RD

e (which obtains when

all of the flows exit region E). Hence, as long as the condition in Assumption 3 holds, we have MERD =(
1− π + πR

E

pE

)
RD ≥ RE .

Thus, local investment in region E is dominated, xloc,E = 0. We also continue to assume the local

investment in region D is zero, xloc,D = 0, which is without loss of generality as before. Using these

observations, an equilibrium with flows in both directions is characterized by the system,

Rf =
(
1− τE

) (
(1− π)RE + πpE

)
= RD, (B.75)

pE =
ηE +RD

e+ xin,E
,

mDxin,D +mExin,E = 1.

The second equation suggests that the planner can increase the fire-sale prices in region E up to the level,

pE,max = ηE+RD

e , which obtains when the inflows are zero, xin,E = 0. We let τE,max denote the tax level

that brings about this outcome, that is, τE,max is the solution to,

(
1− τE,max

) (
(1− π)RE + πpE,max

)
= RD, where pE,max =

ηE +RD

e
. (B.76)

Below, we verify that this equation has a positive solution, τE,max > 0. It follows that, as long as

τE ≤ τE,max, there is a solution to the system in (B.75) with xin,E ≥ 0 and pE ≤ pE,max, which

corresponds to the equilibrium.

To verify that Eq. (B.76) has a positive solution, note that the solution is a strictly decreasing

function of RD (since e/π < 1 in view of Assumption 3), that is, lower returns in region D require higher
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taxes to eliminate all flows into region E. Note also that RD = RDhigh implies p
E
high = pE,max, which in

turn implies τE,max = 0 (since RDhigh = (1− π)RE + πpEhigh by definition). It follows that τ
E,max > 0 for

each RD ∈
(
RDlow, R

D
high

)
.

Next note that the planner’s optimality condition implies Eq. (47) where V
(
τ j
)

= v′
(
τ j
) (

1− τ j
)

+

v
(
τ j
)
. In view of the Inada conditions on the cost function, v (·), there is a unique interior optimal tax

level, τE,∗ ∈ (0, 1). The unconstrained optimal tax level is given by τE = min
(
τE,max, τE,∗

)
, which is

strictly positive since τE,max, τE,∗ > 0. The equilibrium pair,
(
τE,, pE

)
, is found by solving Eq. (46)

together with the optimality condition τE = min
(
τE,max, τE,∗

)
.

Next suppose the optimal tax level takes an interior value, τE = τE,∗ < τE,max (so that xin,E > 0).

In this case, Eq. (46) describes pE as a strictly increasing function τE (since higher taxes increase the

price level). Condition (47) represents pE as a strictly decreasing function of τE (since lower prices

induce greater taxes). The optimal tax level is the intersection of these two curves. A decline in RD

shifts the first (increasing) curve downwards without affecting the second (decreasing) curve. This leads

to a greater tax level, τE , as well as a lower price level, pE , completing the proof.

Proof of Proposition 17. Let τ∈ (0, 1) denote the unique solution to,

u′ (1− x) = R =
∑
s

γsµs

(
η + x (1− πs)R
e+ x (1− πs)

)
(1− τ) . (B.77)

Suppose τs <τ for each s ∈ S. We prove that the equilibrium is characterized by the unique solution to

Eq. (15) and Eqs. (16). To this end, define the function,

F (x; (τs)s) = u′ (1− x)−
∑
s

γsµs (ps) (1− τs) , where ps =
η + x (1− πs)R
e+ x (1− πs)

for each s.

Note that F (x; (τs)s) < 0 in view of Eq. (B.77) and τs <τ for each s ∈ S. Note also that F (1; (τs)s) =

∞. Since F (x; (τs)s) is continuous and strictly increasing in x, there exists a unique solution, x ∈ (x, 1).

Since x >x (and thus, u′ (1− x) > R), the solution corresponds to the equilibrium.

Next suppose τs <τ for each s ∈ S and consider the comparative statics for taxes. Note that

increasing τs for any s shifts the function, F (x; (τs)s), upwards. This reduces the equilibrium foreign

investment, x (characterized as the solution to F (x; (τs)s) = 0). By Eq. (16), this also reduces the

fire-sale price level, ps, in every state. It follows that the global planner sets, τs = 0, for each s.

Next consider the Nash equilibrium. Consider an allocation with symmetric taxes, τs < τ̃ <τ , for

each s (where recall that τ̃ is an upper bound on the taxes in view of the assumption that v′ (τ̃) = ∞).
Suppose a planner deviates and sets a different tax policy,

(
τ js
)
s
. We let xin,j denote the inflows into the

country j, and xj =
∑
qsz

j
s denote the total outflows from the country. When

(
τ js
)
s
is in a suffi ciently

small neighborhood of (τs)s, we conjecture that the equilibrium will feature xin,j > 0, zjs > 0 for each s,

and xj >x. The conditions for such an equilibrium can be written as,

1 =
∑
s

qsR
j

s

(
1− τ js

)
, where R

j

s = (1− πs)R+ πsp
j
s, (B.78)

and qs/γs =
M j
s

u′ (1− xj) for each s, where M
j
s = 1− πs + πs

R

pjs
,

and pjs = min

(
R,

η + zjs + xRsτs
e+ xin,j

)
for each s.
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It can be checked that there exists a suffi ciently small neighborhood of (τs)s, denoted by B ((τs)s) ⊂ R|S|,
such that if

(
τ js
)
s
∈ B ((τs)s), then there exists a unique solution to this system,

(
pjs, z

j
s , x

in,j
)
, that

satisfies the conjecture (since xin = x > 0 and zs = xinRs > 0 in the symmetric allocation). The

solution corresponds to the equilibrium given taxes since xj >x (so that u′
(
1− xj

)
> R and local

investment is dominated as implicitly assumed by the second set of equations). This establishes that,

when
(
τ js
)
s
∈ B ((τs)s), the prices,

(
pjs
)
s
, are determined as the unique solution to the reduced system

(A.55) in the main text.

Next suppose the planner solves the constrained optimization problem,

max
{τjs}

s
∈B((τs)s)

∑
s

γs

(
(1− ζ)

(
(1− πs) f (R) + πsf

(
pjs
))

+ ζR
j

s

(
1− v

(
τ js
)))

.

The taxes can be optimal for the planner only if the first order conditions for this problem are satisfied

so that there is no profitable deviation within the neighborhood. Taking the first order condition with

respect to τ js, we obtain,

ζγsR
j

sv
′ (τ js) =

∑
s̃

γs̃

(
(1− ζ) f ′

(
pjs̃

)
+ ζ

(
1− v

(
τ js̃

)))
πs̃
dpjs̃
dτ js

for each s.

Differentiating the first equation in (A.55) with respect to τ js, we also obtain,

qsR
j

s =
∑
s̃

qs̃

(
1− τ js̃

)
πs̃
dpjs̃
dτ js

for each s.

Differentiating the second equation in (A.55) for state s̃ ∈ S with respect to τ js, we obtain,

πs̃
dpjs̃
dτ js

= −dM
j
0

dτ js

qs̃
γs̃

(
pjs̃

)2
R

for each s̃.

Plugging the last equation into the previous two equations, we obtain,

ζγsR
j

sv
′ (τ js) = −dM

j
0

dτ js

∑
s̃

qs̃

(
(1− ζ) f ′

(
pjs̃

)
+ ζ

(
1− v

(
τ js̃

))) (pjs̃)2
R

,

and qsR
j

s = −dM
j
0

dτ js

∑
s̃

qs̃

(
1− τ js̃

)
(qs̃/γs̃)

(
pjs̃

)2
R

,

for each s ∈ S. Taking the ratio of these expressions, we have,

ζ
γs
qs
v′
(
τ js
)

=

∑
s̃ qs̃

(
(1− ζ) f ′

(
pjs̃

)
+ ζ

(
1− v

(
τ js̃

)))
(pjs̃)

2

R∑
s̃ qs̃

(
1− τ js̃

)
(qs̃/γs̃)

(pjs̃)
2

R

for each s. (B.79)

This expression describes the optimal tax rate in state s in terms of the other tax rates and the endogenous

variables. For the special case in which S is a singleton, the equation reduces to Eq. (32) that describes

the optimal tax rate. In the more general case, the equations for all tax rates, {τs}s, are jointly solved
taking the prices, {qs, ps}s, as given. Note also that the prices are determined as a function of the tax
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rates, {τs}s, as described in the main text. The Nash equilibrium must satisfy both of these equation

systems. As before, there can be multiple stable equilibria.

Note that, since v′ (0) = v (0) = 0, Eq. (B.79) cannot be satisfied for τs = 0. This proves that the

taxes are strictly positive in any Nash equilibrium.

Now consider a particular equilibrium. Note that the right hand side of Eq. (B.79) does not depend

on state s. Then, taking the ratio of these equations for two arbitrary states we obtain Eq. (A.56) in the

main text, completing the proof.
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