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provide very little timing insurance.

Frank N. Caliendo
Department of Economics and Finance
Utah State University
Logan, UT 84322-3565
frank.caliendo@usu.edu

Maria Casanova
California State University, Fullerton
Mihaylo College of Business and Economics
Department of Economics
mcasanova@fullerton.edu

Aspen Gorry
Department of Economics and Finance 
Utah State University 
Logan, UT 84322-3565
aspen.gorry@gmail.com

Sita Slavov
Schar School of Policy and Government
George Mason University
3351 Fairfax Drive, MS 3B1
Arlington, VA 22201
and NBER
sslavov@gmu.edu



1. Introduction

The date of retirement is one of the most important financial events in the life of an individual. It deter-

mines the number of years of wage earnings and the expected length of time over which the individual

must survive on accumulated savings, both of which are crucial for lifetime budgeting decisions. However,

young individuals do not know with certainty when they will ultimately retire because the transition into

retirement is the result of multiple factors that are hard to predict decades in advance. These include

health status, the retirement and health status of a spouse, changes in working conditions, caring for par-

ents, children, or grandchildren, the timing of unemployment spells, and the degree of skill obsolescence,

among others.

This paper shows that uncertainty about the timing of retirement is a major financial risk that affects

consumption and saving decisions and welfare over the life cycle.1 Even though it has received relatively

less attention, our results indicate that the welfare cost of retirement timing uncertainty is at least as

large as that of better known sources of variation in lifetime income such as aggregate business cycle risk

and idiosyncratic wage shocks. Given the magnitude of the welfare cost, a natural question is whether

existing social insurance programs help to mitigate it. We first show that current programs in the U.S.

(OASI and SSDI) offer little protection against retirement timing uncertainty. Next, we characterize

the first-best insurance policy, and we also study more modest, second-best adjustments to the current

programs that would provide a partial hedge against retirement timing uncertainty.

The paper proceeds in three steps. First, we provide empirical evidence about the degree of retirement

timing uncertainty. Second, using the most conservative estimates of the degree of timing uncertainty

from the previous step, we compute a lower bound on the welfare cost to individuals. Third, we assess how

well existing social insurance programs mitigate retirement uncertainty and we explore policy adjustments

that improve individual welfare.

To measure the degree to which individuals are uncertain about the date of retirement, we take a

reduced-form approach that compares an individual’s expected retirement date at some baseline period

with the timing of his eventual retirement. The comparison is informative about the extent to which

individuals optimally update their retirement date in response to the arrival of new information between

1Of course, there are other risks such as uncertainty over asset returns (Grochulski and Zhang (2013)) and uncertainty
over longevity and its correlation with medical expenses (De Nardi, French and Jones (2010)), as well as limitations on
financial literacy (Lusardi and Mitchell (2007), Lusardi and Mitchell (2008), van Rooij, Lusardi and Alessie (2012), Lusardi,
Michaud and Mitchell (2011), Ameriks, Caplin and Leahy (2003), Campbell (2006)) that all present challenges to the
household’s ability to insure itself and plan for the future. These additional complications are beyond the scope of this
paper.
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the baseline period and the time of the retirement transition. We use data from the Health and Retirement

Study (HRS) to measure self-reported retirement expectations of individuals in their early 50s, and then

follow them for up to 20 years to determine their retirement date.2 The degree of retirement uncertainty

is given by the standard deviation of the difference between retirement expectations and realizations.3

We estimate the standard deviation for a number of subsamples and we make conservative assumptions to

obtain a lower bound on the degree of retirement timing uncertainty that individuals face. Our estimates

range from 4.28 to 6.92 years, depending on the sample. To put these estimates into context, note that

an individual who draws a retirement shock at age 60 instead of age 65– approximately one standard

deviation earlier than expected– loses 5 years of prime wage earnings. The loss in lifetime income is

amplified by the need to spread available assets over a longer retirement period.

Next, we use a quantitative life-cycle model to assess how costly this timing risk is to individuals.

The standard deviation of the difference between actual and expected retirement is used to calibrate a

distribution of retirement dates. Individuals in the model make optimal consumption and saving choices

in the face of this distribution.4

We consider two measures of the welfare cost of uncertain retirement. The first one computes the

fraction of total lifetime consumption an individual would be willing to give up in order to live in a safe

world where he is endowed with the same expected wealth as the risky world but faces no retirement timing

uncertainty. This is the value of full insurance against timing risk, because the benchmark is a world

where decision making is not distorted and wealth is fully insured. The second approach computes the

value of simply knowing the retirement date, which allows the individual to optimize with full information

but does not insure the individual’s wealth across realizations of the retirement date. This timing premium

captures the value of early resolution of uncertainty as in Epstein, Farhi and Strzalecki (2014).

2To be consistent with the theoretical model, we should measure retirement expectations of individuals just entering the
labor force. Unfortunately, we know of no dataset that elicits retirement expectations at such young ages and then follows
individuals over time to establish their retirement date. To the extent that the information set at age 50 includes information
about the retirement date that was not available to the individual when younger, our approach understates the degree of
uncertainty facing young workers, and is consistent with the interpretation of our estimates as a lower bound.

3An alternative approach would be to use the dispersion of retirement ages as a measure of uncertainty. This would, how-
ever, confound uncertainty with heterogeneity, because individuals have private information about their expected retirement
age.

4 In this paper we deal only with known probabilities and we therefore use the words risk and uncertainty interchangeably
throughout. Our theory extends the recursive method in Caliendo, Gorry and Slavov (2015) and Stokey (2014), which is
a technique for solving regime switching optimal control problems where the timing and structure of the new regime are
uncertain. Technically speaking, the current paper has the added complication that the timing p.d.f. is truncated, which
renders the Pontryagin first-order conditions for optimality insuffi cient to produce a unique solution. We derive a “stochastic
continuity”condition as the limiting case of an otherwise redundant transversality condition in order to identify the unique
solution. Our method works for any generic control problem with a stochastic stopping time and a free endpoint on the
state variable.
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Our estimate of the value of full insurance in a baseline model with no Social Security is between 2.6%

and 5.7% of total lifetime consumption, depending on the standard deviation of timing risk. The timing

premium for the same model is between 1.9% and 4.0% of total lifetime consumption. The fact that the

welfare costs remain large under the timing premium implies that much of the costs arise from distortions

to the individual’s consumption/savings plan. To put the magnitude of these costs into context, they

are larger than estimates of the cost of business cycle fluctuations as in Lucas (2003) and the cost of

idiosyncratic fluctuations in wage income as in Vidangos (2009).

The welfare costs that we report are conservative for a number of reasons. First, because the HRS

samples people above age 50, our estimates likely underestimate the true uncertainty faced by young indi-

viduals. Second, in calculating the standard deviation of timing risk, we make conservative assumptions

each time the interpretation of the data is ambiguous. Third, we do not assume that individuals have a

direct preference for early resolution of uncertainty (as in the case of Epstein-Zin recursive preferences).

Fourth, individuals in the model have full information about the distribution of the timing risk that they

face. And finally, individuals in the model build up precautionary savings balances to optimally self

insure against timing risk.5

A key modeling choice that deserves special attention is the treatment of labor supply and, specif-

ically, retirement. The possibility of delaying or accelerating retirement in response to shocks offers a

hedge against retirement uncertainty which, if ignored, can magnify the welfare cost. The standard re-

tirement models such as French (2005) incorporate shocks to health, employment, and wages to generate

endogenous uncertainty about the retirement date. This approach is not suitable in our context because

the timing of many of the shocks that eventually lead individuals to retire is not observable.6 Moreover,

given the numerous factors that contribute to an individual’s retirement decision, the contribution of any

given shock to that decision is unknown. If we do not know when the shock hits, we can therefore neither

observe the endogenous response to that shock– i.e., the fact that those individuals whose consumption

risk is the greatest are more likely to delay retirement in the aftermath of a shock– nor measure its im-

portance relative to other shocks that influence retirement. In the baseline model, we treat the transition

5One way in which our single-earner model could overstate the welfare cost is if dual-earner households are able to
hedge the financial impact of uncertain retirement by postponing a spouse’s retirement date in response to the other’s early
retirement shock. But retirement shocks could also be correlated within the household (e.g., the husband gets sick and the
wife is forced to leave her job to take care of him, or couples have grandchildren at the same time, etc.), amplifying the
welfare cost. We leave the study of dual-earner households for future work.

6Self-reports of the reasons that lead HRS respondents to retire show that less than 30% do so as a result of poor health
or disability, unexpected changes in wages, or job loss (Casanova (2013)). The majority of retirements are a result of an
increased preference for leisure, which could itself result from the unexpected death or retirement of a spouse, the birth of
a grandchild, the receipt of an inheritance, etc. These types of shocks are diffi cult to identify in standard datasets.
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into retirement as exogenous, but calibrate it to a distribution of retirement dates that already accounts

for endogenous labor supply responses.7 So while retirement is exogenous in the model, our calibration

appropriately accounts for the endogenous labor supply response to unobserved shocks measured in the

data.

While this approach is consistent with our measurement of individual uncertainty about the timing

of retirement, one might still be concerned that realizing the shock at the date of retirement overstates

the welfare cost as it is completely unanticipated by the individual rather than part of an endogenous

retirement plan. To address this concern, we extend the model to allow individuals to learn the date

of their retirement prior to when it actually occurs, giving them some flexibility to re-optimize their

consumption plans. Assuming that individuals learn their retirement date at age 50– earlier than we

measure their uncertainty in the HRS data and well in advance of the mean retirement age– the timing

premium is still 1.5%, only a half percentage point lower than the baseline. This result indicates that

most of the welfare cost comes from distortions to the saving profile of young individuals, and that there

is only so much that they can do to rectify their choices once they get information about their eventual

retirement date.

In the last part of the paper, we investigate the extent to which social insurance programs help to

mitigate timing risk. At a very basic level, the objective of Social Security is to prevent poverty in old

age by helping retirees maintain a minimum standard of living. Because benefits are paid out as a life

annuity that lasts as long as the individual lives, and because replacement rates are more generous for the

poor than for the rich, Social Security is commonly thought to meet its objectives. However, retirement

timing risk is a major source of uncertainty in lifetime earnings and retirement wellbeing. We find that

a Social Security retirement program that is calibrated to match current U.S. policy provides only a

small amount of timing insurance. Social Security can partially insure timing risk as an early retirement

shock leads to a lower total Social Security tax liability and to a higher replacement rate through the

progressive benefit-earning rule. Moreover, the payment of Social Security benefits as a life annuity boosts

the individual’s expected wealth, which makes him less sensitive to timing risk. However, to adequately

insure against timing risk, a program would need to provide individuals with a large payment if they

7This is best explained with an example. Suppose that, when interviewed at a baseline age, all individuals expect to
retire at age 65. Suppose further that half of them experience a shock that increases their taste for leisure at age 55, while the
other half experience the same shock at 70. Individuals respond to the same shock differently depending on their age: those
who experience it at age 55 face a large drop in consumption if retiring at that age, and hence choose to remain employed
until age 60. Those who experience the shock at 70 retire immediately. When we go to the data, we do not necessarily
observe when the shock hits, just when the individual chooses to retire after his endogenous labor supply response. Our
uncertainty measure will tell us that individuals in this example retire +/-5 years from the expected date.
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unexpectedly retire early and a small payment if they retire late. Social Security does just the opposite

because of the positive relationship between benefits and earnings, making it ineffective at providing

timing insurance: individuals who suffer early retirement shocks have low average earnings and benefits

while individuals who retire late have high average earnings and benefits.

In some public pension systems such as Japan, the UK, Spain and other European countries, part of

retirement benefits are independent of the individual’s earnings history. In other words, a component of

retirement benefits is fixed regardless of when retirement occurs. We show that this feature can mitigate

up to one-third of the welfare costs of retirement timing uncertainty. The largest insurance gain comes

from breaking the link between benefits and earnings. However, the benefit-earning link encourages labor

force participation, and if this is a politically desirable goal then partially basing benefits on earnings

can help create this incentive, while having a component that is unrelated to earnings can significantly

increase the amount of timing insurance provided by Social Security.8

To provide a more comprehensive evaluation of the Social Security program’s overall role in mitigating

timing uncertainty, we extend the model to include disability risk and a disability component within the

Social Security program. In the extended model, individuals face both uncertainty about the timing of

retirement and also uncertainty about their disability status upon retirement. Disability insurance almost

perfectly offsets the disability risk that the individual faces, but it does not offset the timing risk at all.

That is, disability insurance successfully replaces lost post-retirement earnings if the individual is unable

to work at all, but it does not solve the problem that the individual doesn’t know when such a shock

might strike. The joint welfare cost of timing risk and disability risk, in a model with a Social Security

program that features both retirement and disability benefits, is almost the same as when disability risk

and disability insurance are excluded from the model.

In addition, retirement timing uncertainty is a powerful channel that may help to explain precaution-

ary savings balances that otherwise seem large. For instance, Scholz, Seshadri and Khitatrakun (2006)

estimate that as many as 80% of Americans in the HRS have asset balances that exceed the optimal

amount of savings from the perspective of a life-cycle model. Individuals in our model not only save

for retirement but they also save because they don’t know when retirement will strike. We find that a

significant portion of observed savings may be due to uncertainty about the date of retirement. Models

without retirement timing uncertainty will tend to understate the precautionary motive for saving.

8The Supplemental Security Income (SSI) program in the U.S. has a flavor of a fixed component that is unrelated to
earnings. However, only individuals with little or no income qualify. Insuring against timing uncertainty requires a policy
that has a fixed component above and beyond SSI that is available to all retirees.
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Finally, Blau (2008) and Grochulski and Zhang (2013) also study consumption/saving decisions over

the life cycle with uncertainty about the timing of retirement. Like our setting where timing uncertainty

causes a reduction in consumption at retirement, uncertain retirement leads to precautionary savings

and consumption drops discretely when individuals retire.9 We extend their analysis by providing em-

pirical evidence on retirement timing uncertainty, by computing the welfare cost of this uncertainty, and

by evaluating the role of social insurance programs in mitigating this risk and considering alternative

arrangements that improve insurance coverage. On the technical side, both Blau (2008) and Grochulski

and Zhang (2013) assume stationarity of the timing risk (constant hazard rate of job loss). We solve a

non-stationary problem in which the hazard rate is allowed to depend on age as in the data. We also

consider uncertainty over the individual’s disability status and allow this second risk to be non-stationary

with respect to age. While allowing for non-stationary risk departs from standard dynamic programming,

it allows us to more fully calibrate both retirement timing and disability risks to the available data.

The rest of the paper is organized as follows: Section 2 describes the measurement of retirement

timing uncertainty; Section 3 introduces the quantitative model; Section 4 describes the calibration;

Section 5 discusses the baseline results and policy analysis; Section 6 introduces the model augmented

with disability risk; and Section 7 concludes.

2. Measuring retirement uncertainty

When thinking about retirement uncertainty, the distinction between voluntary and involuntary retire-

ments, which is at the forefront of the literature studying retirement patterns, comes to mind. Involuntary

retirements are the result of employment constraints– due, for example, to the onset of disability or job

loss– while voluntary retirees leave the labor force even though the option to remain employed remains

available, usually to enjoy more leisure or spend more time with their families (Casanova (2013)).

The distinction between voluntary and involuntary retirement is often interpreted as a distinction be-

tween expected and unexpected retirement. This interpretation owes much to the retirement-consumption

literature, which has focused on the Euler equation for the periods right before and after retirement

takes place. Several papers have found that the consumption drop at retirement is considerably larger

for individuals who retire involuntarily, suggesting that voluntary retirements are anticipated, and al-

low individuals to better smooth consumption around that event (Banks, Blundell and Tanner (1998),

9There is a large literature that discusses how consumption changes at retirement. For instance, see Hamermesh (1984),
Mariger (1987), Bernheim, Skinner and Weinberg (2001), Hurd and Rohwedder (2006), Hurst (2006), Haider and Stephens
(2007), and Ameriks, Caplin and Leahy (2007) among others.
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Bernheim, Skinner and Weinberg (2001), Hurd and Rohwedder (2008), Smith (2006)).

While this distinction may be appropriate when considering individuals that are one period away from

retirement, it is no longer helpful from the perspective of a model that focuses on the full life cycle profile

of consumption. For a worker just entering the labor force, the degree of uncertainty about the likelihood

of retiring for involuntary reasons is not necessarily larger than that of retiring voluntarily. For example,

a young worker may not be better able to predict the probability of becoming disabled before reaching

retirement age than that of getting married to a spouse who will retire early, and who will lead him to

anticipate his retirement in order to spend time together. The concept of retirement timing uncertainty

we use in this paper is hence not limited to the negative employment shocks that cause the one third of

involuntary retirements observed in the data (Casanova (2013), Szinovacz and Davey (2005)), but rather

covers all life events that may trigger an exit from the labor force which cannot be perfectly foreseen

from a young age, including the retirement of a spouse, the birth of a grandchild, a dislike for the work

environment in the pre-retirement years, etc.

In order to measure retirement timing uncertainty, we must first make an assumption on how individ-

uals form expectations regarding their retirement age. A straightforward approach would be to assume

that the subjective distribution of retirement probabilities coincides with the actual retirement distribu-

tion estimated from the data. In particular, if the expected retirement age is assumed to coincide with the

average retirement age in the population, deviations of actual retirements from that expectation would

be informative about the degree of uncertainty. This assumption of unconditional rational expectations is

likely to yield biased estimates of retirement uncertainty, given that individuals have private information

about, e.g., their health status or taste for work, allowing them to predict whether they will retire earlier

or later than average.

We follow an alternative approach that makes use of self-reported retirement expectations, and is

consistent in the presence of private information.10 The implicit assumption is that individuals use

all private information at their disposal when reporting their expected retirement age. The degree of

uncertainty is given by the size of the deviations between expected and eventual retirement ages. In

particular, we estimate the standard deviation of the following variable:

10The use of expectation variables, and retirement expectations in particular, has become commonplace in the literature in
recent years. There is a growing number of papers studying the validity of retirement expectations elicited from individuals,
and showing that they are strong predictors of actual retirement dates (Bernheim (1989), Dwyer and Hu (1999), Haider and
Stephens (2007)), consistent with rational expectations (Benítez-Silva and Dwyer (2005), Benítez-Silva et al. (2008)), and
updated upon arrival of new information (Benítez-Silva and Dwyer (2005), McGarry (2004)).
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X = (Eret−Ret),

where Eret is an individual’s expected retirement age, and Ret is the actual age at which retirement

takes place.11

2.1. Data and empirical evidence

The data come from the Health and Retirement Study (HRS), a nationally representative longitudinal

survey of 7,700 households headed by an individual aged 51 to 61 in the first survey wave. Interviews

are conducted every two years, and we use data for individuals who are followed for a maximum of 11

waves, from 1992 to 2012. We use retirement expectations that are measured in wave 1, and then follow

individuals up until the end of the panel in order to establish their retirement age.

The variable Eret is constructed from questions that ask individuals when they “plan to stop work

altogether”and when they “think [they] will stop work or retire.”12 We include observations for males

who are aged 51 to 61 in wave 1. We exclude those who are not employed or do not report retirement

plans, which results in a sample of 3,251 individuals. To be consistent with the wording of the retirement

expectations questions, retirement is defined as the first time the individual works zero hours.13 The

variable Ret is constructed combining information on the first wave in which a respondent is observed to

be retired, with the month and year in which he left his last job. In cases where the retirement age is

not observed– either because of attrition or the end of the sample period– and for those individuals who

say they will never retire, we make assumptions that allow us to get a conservative value for the variable

X. These assumptions, together with the strategy used to control for measurement error in retirement

expectations, and further details on sample selection and the construction of the variables Eret and Ret,

are described in Appendix A.

The major strength of the HRS for our purposes is the fact that it both elicits retirement expectations

and then follows workers over time so that their retirement age can be established. The dataset, however,

is not without drawbacks. The main disadvantage is that it samples older individuals, so we measure

11 In addition to computing the standard deviation ofX,
√
E[(X − E(X))2], we have also computed an alternative measure

of the amount of uncertainty about the timing of retirement that individuals face,
√
E(X2). This alternative measure may

be a little more intuitive because it gives the typical gap between Eret and Ret. However, we focus on the first measure
because it is mathematically less than (or equal to) the second, making our estimates of timing uncertainty as conservative
as possible. In any case, the difference between the two measures is practically insignificant in our samples.

12We combine the variables Rwrplnyr and Rwrplnya from the RAND-HRS dataset.
13Some people do go back to work after retirement, and we estimate post-retirement labor income in the theoretical

analysis later in the paper.
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retirement timing uncertainty for a sample of workers who are close to retirement age. Since this likely

understates the degree of retirement timing uncertainty facing young individuals, our welfare estimates

will be conservative.14

The first column of Table 1 displays the distribution of retirement expectations in our sample. Close to

15% of individuals report that they will never retire, and another 10% state that they do not know when

retirement will take place. For individuals who provide a specific retirement date, two peaks are apparent

at the Social Security eligibility ages of 62 and 65. The last two columns of the table compare reported

retirement expectations with actual retirement ages. To do so, we restrict the sample to individuals

for whom both the date at which they expect to retire and their eventual retirement date fall within

the sample period. Expected retirement ages for this subsample, shown in column 2, display the same

peaks at ages 62 and 65. Two facts are striking when comparing the distribution of expected retirements

with that of actual retirements, shown in column 3. First, the peaks at the Social Security ages are

considerably less pronounced in the distribution of actual retirements than that of expected retirements.

Second, the distribution of actual retirements displays a larger concentration at the tails, as evidenced

by the large share of individuals who end up retiring earlier than age 55 or later than age 66.15

Table 2 shows estimates of the standard deviation of X for different samples. The most conservative

estimate, presented in row 1, equals 4.28. It is obtained from the sample of individuals for whom both

Eret and Ret are observed. Because this subsample excludes individuals likely to face the highest degree

of uncertainty– those whose actual retirement date is censored, who say they will never retire, or who

do not know when they will retire– the resulting estimate yields a lower bound on retirement timing

uncertainty. Subsequent rows use larger samples, adding individuals for whom either Eret or Ret are not

observed, but can be assigned a value by making a conservative assumption, as discussed in Appendix A.

It is important to point out that the estimate shown in the last row (6.82) is not intended to represent

an upper bound on uncertainty, as it is still obtained using a conservative approach from a sample of

individuals close to retirement age.

14We also likely overstate the degree of uncertainty facing the oldest workers, although this likely has a small effect
on our welfare estimates. While the degree of retirement timing uncertainty decreases as retirement approaches and more
information becomes available, the evidence indicates that it remains high until very close to retirement age. Haider and
Stephens (2007) estimate that less than 70% of HRS respondents who expect to retire within one year are in fact retired
by the next survey wave. Our own estimates show that we are not missing a sharp drop in uncertainty as retirement nears.
Robustness checks presented in the appendix show that the standard deviation of X decreases by only half a year to one
year when comparing the sample of individuals aged 51 to 55 to those aged 56 to 61.

15A difference between Eret and Ret is not evidence that Eret is irrational. Respondents are asked for a point estimate of
Eret rather than a full distribution. We assume that individuals are rational and have a distribution of potential retirement
dates in mind when making consumption and saving decisions, and we interpret a difference between Eret and Ret as
evidence of such retirement uncertainty.
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In the baseline simulations of the model, we use a value of 5 for the standard deviation of uncertainty,

implying that an individual who draws a one-standard-deviation shock will stop working 5 years earlier

or later than expected. This value likely understates the true degree of retirement timing uncertainty for

the reasons stated above.16 In fact, we would be justified in using a standard deviation closer to 7 years,

based on our conservative analysis of the data. However, our goal in the remainder of the paper is to

establish a lower bound on the cost of retirement timing uncertainty. A standard deviation of 5 years

is as low as we feel comfortable going, because even at this estimate we exclude large portions of the

available sample.17

16 Instead of using self-reported retirement expectations in the construction of retirement timing uncertainty, suppose we
had taken the simple approach of assuming that the subjective distribution of retirement probabilities coincides with the
actual retirement distribution estimated from the data. This simple exercise leads to a standard deviation in retirement
uncertainty that is a little less than 6 years, and so in the end we would calibrate our theoretical model roughly the same
way.

17Although we have consistently interpreted ambiguous data in a conservative way to establish a lower bound on the cost
of retirement timing uncertainty, there are of course some issues that are beyond our control and could affect our conclusions.
In particular, it is diffi cult to control for psychological considerations such as respondents not taking the survey questions
seriously and interpreting survey questions in different ways. For example, respondents may just guess Eret rather than
really think about it, or they may base Eret on the last time they intend to stop working rather than the first.
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Table 1. Distribution of Expected and Actual Retirement Ages

All Both Eret and Ret

during sample period

Eret Eret Ret

Age < 55 0.52 0.74 4.59

Age = 55 1.91 2.69 2.64

Age = 56 1.23 1.85 2.75

Age = 57 1.02 1.37 3.43

Age = 58 1.41 2.22 4.44

Age = 59 1.29 1.69 5.02

Age = 60 4.46 6.39 7.98

Age = 61 2.77 3.70 8.29

Age = 62 18.33 25.30 16.96

Age = 63 8.74 12.15 7.40

Age = 64 1.48 1.85 6.29

Age = 65 16.98 21.45 8.40

Age = 66 7.72 9.93 4.23

Age > 66 8.00 8.66 17.59

Never 14.61

Do not know 9.54

N 3,251 1,893 1,893
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Table 2. Standard Deviation of X for Different Subsamples

Standard

Sample Deviation N

1 Ret observed 4.28 1,903

2 1 + Work past Eret, Ret not observed 5.05 2,147

3 2 + Eret after sample period, Ret not observed 5.04 2,152

4 3 + Will never retire, Ret observed 6.54 2,476

5 4 + Will never retire, Ret not observed 6.35 2,627

6 5 + DK when they will retire, Ret observed 6.92 2,840

7 6 + DK when they will retire, Ret not observed 6.82 2,937

3. A model of retirement uncertainty

In this section we construct a quantitative model of individual consumption and saving decisions over

the life cycle in the face of uncertainty about the timing of retirement and uncertainty about disability

status after retirement. A feature of our approach is to allow for flexible distributions over the timing of

the retirement date, to conform to the moments of timing uncertainty observed in the data. Likewise, we

allow for flexible distributions of disability risk, to calibrate this second layer of uncertainty to estimates

of the probability of becoming disabled conditional on each retirement age.

3.1. Notation

Age is continuous and is indexed by t. Individuals start work at t = 0 and pass away no later than t = T .

The probability of surviving to age t is Ψ(t). A given individual collects wages at rate (1 − τ)w(t) as

long as retirement has not yet occurred, where τ is the Social Security tax rate. The retirement date is

a continuous random variable with continuously differentiable p.d.f. φ(t) and c.d.f. Φ(t), with support

[0, t′], where t′ < T so that everyone draws a retirement shock before some specified age. Truncation

prevents us from needing to estimate the w(t) profile deep into old age when data are not reliable.

When retirement strikes at age t, the individual collects a lump sum B(t, d) = SS(t|d)+Y (t)× (1−d)

where SS(t|d) is the present discounted value (as of shock date t) of Social Security retirement and
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disability benefits, d is an indicator variable that equals 1 if the individual has become disabled and

0 if he is still able to work after retirement, and Y (t) is the present discounted value (as of shock

date t) of post-retirement earnings.18 Let d be a random variable with conditional p.d.f. θ(d|t), hence

θ(0|t) + θ(1|t) = 1 for all t. Note that d may be correlated with the retirement shock t, and we assume

that θ(d|t) is continuously differentiable in t.19 Hence, θ(1|t) should be interpreted as the probability

that the individual will qualify for disability benefits if retirement strikes at date t. We abstract from

policy uncertainty about future Social Security reform as studied by Caliendo, Gorry and Slavov (2015).

Consumption spending is c(t) and private savings in a riskless asset is k(t), which earns interest at

rate r. Annuity markets are closed and capital markets are perfect in the sense that the individual can

borrow and lend freely at rate r. The individual starts with no assets, has no bequest motive, and is not

allowed to leave debt behind at t = T . Hence, k(0) = k(T ) = 0.

3.2. Individual problem

Period utility is CRRA over consumption with relative risk aversion σ, and utils are discounted at the rate

of time preference ρ.20 The individual takes as given factor prices and government taxes and transfers,

while treating the retirement date as a continuous random variable and disability as a binary random

variable. We extend the recursive method in Caliendo, Gorry and Slavov (2015) and Stokey (2014) to

the current setting and we relegate lengthy proofs and derivations to Appendix B.

As long as retirement has not yet occurred, the individual follows a contingent plan (c∗1(t), k
∗
1(t))t∈[0,t′],

which solves the following dynamic stochastic control problem (where t and d are random variables)

max
c(t)t∈[0,t′]

:

∫ t′

0

{
[1− Φ(t)]e−ρtΨ(t)

c(t)1−σ

1− σ +
∑
d

θ(d|t)φ(t)S(t, k(t), d)

}
dt

subject to

S(t, k(t), d) =

∫ T

t
e−ρzΨ(z)

c∗2(z|t, k(t), d)1−σ

1− σ dz,

dk(t)

dt
= rk(t) + (1− τ)w(t)− c(t),

18 Income from asset holdings is not included in Y (t) because asset holdings are modeled separately.
19We assume continuous differentiability in t for notational convenience. We could easily allow for a finite number of

discontinuities in the t dimension, but then we would need to break the p.d.f. apart at each discontinuity and allow for a
unique maximum condition for each continuous segment. This would complicate notation without adding much economic
content.

20We abstract from leisure in the period utility function. As we discuss later in the paper, under common assumptions
this simplification has no impact on our welfare calculations.
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k(0) = 0, k(t′) free,

where c∗2(z|t, k(t), d) solves the post-retirement deterministic problem. For given k(t) and given realiza-

tions of t and d, the post-retirement problem can be written as

max
c(z)z∈[t,T ]

:

∫ T

t
e−ρzΨ(z)

c(z)1−σ

1− σ dz,

subject to
dK(z)

dz
= rK(z)− c(z), for z ∈ [t, T ],

t and d given, K(t) = k(t) +B(t, d) given, K(T ) = 0,

where K(t) is total financial assets at retirement, which includes accumulated savings k(t) plus the

lump-sum payment B(t, d).

The pre-retirement solution (c∗1(t), k
∗
1(t))t∈[0,t′] obeys the following system of differential equations and

boundary condition

dc(t)

dt
=

(
c(t)σe(ρ−r)t

σΨ(t)

∑
d

θ(d|t)
[

(k(t) +B(t, d))e−rt∫ T
t e−rv+(r−ρ)v/σΨ(v)1/σdv

]−σ
− 1

σ

)(
c(t)φ(t)

1− Φ(t)

)
+

[
Ψ′(t)

Ψ(t)
+ r − ρ

]
c(t)

σ
,

dk(t)

dt
= rk(t) + (1− τ)w(t)− c(t),

k(0) = 0,

where the remaining boundary condition c(0) is chosen optimally as explained in Appendix B. The optimal

consumption path for z ∈ [t, T ] after the retirement shock has hit at date t with optimal savings k∗1(t) is

c∗2(z|t, k∗1(t), d) =
(k∗1(t) +B(t, d))e−rt∫ T

t e−rv+(r−ρ)v/σΨ(v)1/σdv
e(r−ρ)z/σΨ(z)1/σ, for z ∈ [t, T ].

3.3. Welfare

In this section we introduce two measures of the welfare cost of retirement uncertainty. The first is

our baseline welfare cost, which captures the value of fully insuring against retirement uncertainty. The

second captures just the value of early resolution of uncertainty. We refer to the baseline welfare cost as

the value of full insurance, and we refer to the second welfare cost as the timing premium.

We begin with the value of full insurance. As a point of reference, consider the case where the
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individual faces no risk (NR) about retirement. Instead, the individual is endowed at t = 0 with the same

expected future income (as in the world with retirement uncertainty) and solves

max
c(t)t∈[0,T ]

:

∫ T

0
e−ρtΨ(t)

c(t)1−σ

1− σ dt,

subject to
dk(t)

dt
= rk(t)− c(t),

k(0) =

∫ t′

0

(∑
d

θ(d|t)φ(t)

(∫ t

0
e−rv(1− τ)w(v)dv +B(t, d)e−rt

))
dt, k(T ) = 0.

The solution is

cNR(t) =
k(0)e(r−ρ)t/σΨ(t)1/σ∫ T

0 e−rv+(r−ρ)v/σΨ(v)1/σdv
, for t ∈ [0, T ].

The baseline welfare cost of living with retirement uncertainty (value of full insurance), ∆, solves the

following equation

∫ T

0
e−ρtΨ(t)

[cNR(t)(1−∆)]1−σ

1− σ dt

=

∫ t′

0

(∑
d

θ(d|t)φ(t)

(∫ t

0
e−ρzΨ(z)

c∗1(z)
1−σ

1− σ dz +

∫ T

t
e−ρzΨ(z)

c∗2(z|t, k∗1(t), d)1−σ

1− σ dz

))
dt.

By equating utility from expected wealth to expected utility, our baseline welfare cost measures the

individual’s willingness-to-pay to have one’s expected wealth. This captures the value of full insurance

because the individual is paying to have his expected wealth with certainty, rather than paying merely

for information about retirement.

While our baseline welfare cost, ∆, follows in the tradition of calculating willingness-to-pay to avoid

uncertainty by equating utility from expected wealth to expected utility, there are other sensible ways to

calculate the welfare cost of retirement uncertainty. For example, rather than using utility from expected

wealth as the welfare benchmark, we could instead use as a benchmark a world in which the individual

learns at time 0 when and how retirement uncertainty will be resolved so that the individual follows the

optimal deterministic consumption path conditional on that information. To compute the welfare cost

of retirement uncertainty, we would then compare the ex-ante expected utility of this world (expected

utility just before the time 0 information is released) to the expected utility of living with retirement

uncertainty.

Following this alternative approach, we now formally define the timing premium. Now our point
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of comparison is a world where at time 0 the individual learns both the retirement date t as well as

the disability indicator d. Upon learning these things, the individual solves the following deterministic

problem

max
c(z)z∈[0,T ]

:

∫ T

0
e−ρzΨ(z)

c(z)1−σ

1− σ dz,

subject to
dk(z)

dz
= rk(z)− c(z),

k(0|t, d) =

∫ t

0
e−rv(1− τ)w(v)dv +B(t, d)e−rt, k(T ) = 0.

The solution is

c(z|t, d) =
k(0|t, d)e(r−ρ)z/σΨ(z)1/σ∫ T
0 e−rv+(r−ρ)v/σΨ(v)1/σdv

, for z ∈ [0, T ].

The timing premium ∆0 is the solution to the following equation

∫ t′

0

(∑
d

θ(d|t)φ(t)

(∫ T

0
e−ρzΨ(z)

[c(z|t, d)(1−∆0)]
1−σ

1− σ dz

))
dt

=

∫ t′

0

(∑
d

θ(d|t)φ(t)

(∫ t

0
e−ρzΨ(z)

c∗1(z)
1−σ

1− σ dz +

∫ T

t
e−ρzΨ(z)

c∗2(z|t, k∗1(t), d)1−σ

1− σ dz

))
dt.

In other words, we are calculating how much an individual would pay at time 0 to know his retirement

date t and his future disability status upon retirement d. This exercise is guaranteed by Jensen’s inequality

to yield a smaller welfare cost from retirement uncertainty than what is generated by our baseline method

as shown in Appendix C. The individual would always pay more to have his expected wealth with certainty

(∆) than he would pay for retirement information (∆0), because simply knowing one’s wealth is not as

good as insuring one’s wealth.

Our timing premium is related to the timing premium in Epstein, Farhi and Strzalecki (2014). In both

cases, it is the amount individuals would pay for early resolution of uncertainty. However, their premium

is the result of Epstein-Zin recursive preferences, which carry a taste for early resolution of uncertainty

even if early information is not used to reoptimize. Indeed, in their setting individuals do not reoptimize

if information is released early. In constrast, in our setting with CRRA utility the timing premium is the

result of better decision making in the face of early information. Including a taste for early information

would only enhance the magnitude of the welfare cost of retirement uncertainty.21

21There are at least two other ways in which our modeling of the welfare cost is conservative. First, we endow the
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Finally, one may be concerned that we have abstracted from leisure in the period utility function.

That is, it may seem that the negative consequences of an early retirement shock are partly mitigated

if early retirement brings more leisure. However, at least for the common case in which consumption

and leisure are additively separable, this is not the case. In fact, if we include leisure in the period

utility function, then the baseline welfare cost will strictly increase. This is because retirement timing

uncertainty now imposes an additional cost on the individual in the form of uncertainty about leisure

time, and he would pay an additional premium to fully insure this risk. On the other hand, adding leisure

to the period utility function leaves the timing premium unchanged; the individual would not pay an

additional premium for early resolution of uncertainty about his fixed leisure endowment. These results

are formally shown in Appendix D.22

4. Calibration

The parameters to be chosen are the maximum lifespan T , the survival probability Ψ(t) as a function of

age t, the individual discount rate ρ, the coeffi cient of relative risk aversion σ, the real return on assets

r, the age-earnings profile w(t), the p.d.f. over timing risk φ(t) and its upper support t′, the present

discounted value of post-retirement earnings Y (t) as a function of retirement date t, the Social Security

tax rate τ , the present discounted value of Social Security retirement and disability benefits SS(t|d) as

a function of retirement date t and disability state d, as well as the conditional p.d.f. over disability

risk θ(d|t). Table 3 provides a comprehensive summary of our calibration of each of these parameters

explained in detail below.

4.1. Lifespan, preferences, and wages

The individual starts work at age 23 (model age t = 0) and passes away no later than age 100 (model

age t = 1). Hence we set the maximum lifespan to T = 1. The age-23 start time allows us to match the

fraction of workers who work less than 35 years (explained in detail below).

individual with full information about the distributions of the random variables over both timing risk and disability risk.
Second, we assume the individual saves optimally in the face of these risks and therefore accumulates optimal precautionary
savings balances to buffer the shocks.

22 If consumption and leisure are complements, then we presume retirement timing uncertainty would become even more
costly than in our baseline model without leisure, because in this case an early retirement shock would leave the individual
with reduced wealth and with a reduced ability to enjoy that wealth. In this way, the stakes are amplified and the welfare cost
would naturally increase. Alternatively, unlike our model where early retirement is bad news, some individuals may retire
early because of a large, positive shock to wealth. But even then individuals would be willing to pay for early information
on the timing of such wealth shocks in order to consume and save the right amount.
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Our survival data come from the Social Security Administration’s cohort mortality tables. These

tables contain the mortality assumptions underlying the intermediate projections in the 2013 Trustees

Report. The mortality table for each cohort provides the number of survivors at each age {1, 2, ..., 119},

starting with a cohort of 10,000 newborns. We truncate the mortality data at age 100, assuming that

nobody survives past that age. In the baseline results, we assume individuals enter the labor market at

age 23, giving them a 77-year potential lifespan within the model. In our baseline parameterization, we

use the mortality profile for males born in 1992, who are assumed to enter the labor market in 2015. For

this cohort, we construct the survival probabilities at all subsequent ages conditional on surviving to age

23.

We fit a continuous survival function that has the following form

Ψ(t) = 1− tx.

After transforming the survival data to correspond to model time, with dates on [0, 1], x = 3.41 provides

a close fit to the data (see Figure 1).

The utility parameters ρ and σ vary somewhat in the literature. We will consider common values, ρ = 0

and σ = 3. We assume a risk-free real interest rate of 2.9% per year, which is the long-run real interest

rate assumed by the Social Security Trustees. In our model, this implies a value of r = 77∗0.029 = 2.233.

We truncate wages w(t) at model time t′ = (75−23)/(100−23) or actual age 75 because of our concern

with the reliability of wage data beyond age 75.23 Using data for workers between 16 and 75 years of age,

we fit a fifth-order polynomial to a wage profile constructed from CPS data described in detail below, and

we normalize the result so that maximum wages are unity. Although we include observations before age

23 with the view that more observations are better, model time zero corresponds to age 23 and therefore

we only use the post-23 segment of the fitted wage profile (model time [0, t′]),

w(t)t∈[0,t′] = 0.3169 + 2.7198t− 1.5430t2 − 12.8220t3 + 37.5777t4 − 33.1772t5.

Figure 2 plots the fitted wage profile along with the data.

Our simulated wage income is based on data from the 2014 Current Population Survey (CPS) Merged

Outgoing Rotation Group (MORG) file created by the National Bureau of Economic Research. House-

holds that enter the CPS are initially interviewed for 4 months. After a break of 8 months, they are then

23For instance, the data show an upward trend in wages for most education groups between ages 75 and 85, which would
seem to reflect selection problems rather than the true wage profile of a particular worker.

19



interviewed again for another 4 months before being dropped from the sample. Questions about earnings

are asked in the 4th and 8th interviews, and these outgoing interviews are included in the MORG file.

We restrict the sample to men and calculate, at each age, the ratio of average annual earnings to the

2014 Social Security average wage index (AWI).24 Next, we project the AWI forward starting in 2015,

assuming that it grows at 3.88% per year in nominal terms. This is consistent with the 2015 Social

Security Trustees Report’s intermediate assumptions about nominal wage growth. Multiplying this series

by the previously calculated age-specific ratios produces a nominal wage profile for a hypothetical worker

who is aged 23 in 2015. This series is deflated to 2015 dollars assuming inflation of 2.7% per year, again

consistent with the Social Security Trustees’intermediate assumptions for 2015.

4.2. Retirement timing

We use a truncated beta density to capture uncertainty over the timing of retirement,

φ(t) =
tγ−1(t′ − t)β−1∫ t′

0 t
γ−1(t′ − t)β−1dt

, for t ∈ [0, t′]

with mean and variance

E(t) = t′
γ

γ + β

var(t) =
t′βE(t)

(γ + β)(γ + β + 1)
.

We truncate the density function at age 75 for consistency with the truncation of wages at age 75, or

model time t′ = (75− 23)/(100− 23). We set the mean retirement age to 65 which corresponds to model

time E(t) = (65− 23)/(100− 23) and the standard deviation to 5 years, consistent with our measure of

retirement timing uncertainty, which corresponds to model time
√
var(t) = 5/(100−23). Then, from the

mean and variance equations we can calculate the remaining parameters

γ =
[t′ − E(t)] (E(t))2

t′var(t)
− E(t)

t′
= 12.7615

β = γ

(
t′

E(t)
− 1

)
= 3.0385.

See Figure 3 for a graph of the p.d.f. of the calibrated distribution.

24Average weekly earnings are provided for non-self employed workers. We multiply these by 52 to obtain annual earnings.
We use the CPS earnings weights to calculate average annual earnings by age. Since CPS earnings data are topcoded, our
average earnings estimates are likely to be biased downward.
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Finally, the age-23 starting point, together with the above parameterization of the mean and variance

of the timing density, imply that the chance of working less than 35 years is 10%. This matches self-

reported data on career length in the HRS; it also ensures that we do not overstate the likelihood

of working less than a “full” career from the perspective of the calculation of Social Security benefits

(explained in detail below).

4.3. Retirement income and insurance

Finally, to simulate decision making and welfare we need to calibrate post-retirement earnings. We also

need to calibrate Social Security retirement benefits and disability benefits as a function of the date of

retirement, as well as the probability of becoming disabled upon retirement.

We use the RAND version of the HRS dataset, which includes 3,517 men who are employed in wave

1, to estimate post-retirement earnings. We define retirement (and determine a person’s retirement age)

as described in Section 2. We drop individuals who do not have a retirement age, who have a zero

respondent-level analysis weight, or who are only observed in a single wave (thus providing no within-

person variation for our fixed effects models). This sample selection leaves us with 2,603 individuals and

23,617 person-wave observations over the 11 waves of the HRS. To check robustness, we also re-do all

of our analysis using the sample of 1,895 individuals (17,326 person-year observations) who provide an

expected retirement age, and the 2,216 individuals (20,526 person-year observations) who have never had

a disability episode.

The RAND HRS includes infomation about several categories of income, including earnings from

work, capital income, pension and annuity income, Supplemental Security Income (SSI) and Social Se-

curity Disability Insurance (SSDI) income, Social Security retirement income, unemployment insurance

and worker’s compensation, other government transfers (including veteran’s benefits, welfare, and food

stamps), and other income (including alimony, lump sums from pensions and insurance, inheritances, and

any other income). Except for capital income and other income, which are provided at the household

level, all income categories are measured at the individual level. We focus on income in two categories:

earnings from work and income from non-Social Security transfers (in which we combine unemployment

insurance, worker’s compensation, and other government transfers). Since we explicitly model post-

retirement SSDI, Social Security retirement benefits, and asset income (which could include income from

pensions and annuities, as well as interest, rent, dividends, and other such income) we exclude these

components of income from our analysis.25 We also ignore the “other income”category, as pension lump

25The capital income category in the HRS also includes self-employment, business, and farm income. Thus, we are also
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sums would be classified as capital income, and alimony and inheritances are unlikely to be correlated

with retirement. All income figures are converted to July 2015 dollars using the Consumer Price Index

for all urban consumers (CPI-U).

To determine how income changes after retirement, we regress each component of income on a set of

indicators for time since/before retirement, a set of age dummies, a set of wave dummies, and a set of

individual fixed effects. We use respondent-level analysis weights in our regressions and cluster standard

errors by individual. The results from these regressions are shown in Table 4. The first three columns

show results for the full sample, the next three for the subset of individuals who have an expected

retirement age, and the final three for the subset of individuals who have never had a disability episode.

We only report coeffi cients for the time since/before retirement indicators; full results are available upon

request. The omitted category is 1-2 years before retirement; thus, all coeffi cients show the change in

income relative to this benchmark. Since income amounts are provided for the previous calendar year,

the change in earnings 0-1 years after is relatively small. However, in subsequent waves, earnings from

work decline by between $37,011 and $41,040 in the full sample. Relative to their mean in the wave

just before retirement (shown in the table), earnings drop by around 79 percent in the 2-3 years after

retirement. Non-Social Security transfers rise slightly upon retirement and possibly continue 2-3 years

after retirement. Results are very similar in the subsample of individuals who have an expected retirement

age and the subsample of individuals who have no disability episodes.

Based on these estimates, we endow the individual with a lump sum at the date of retirement t, that

reflects the present value (as of the retirement date) of post-retirement earnings

Y (t) = 0.21w(t)

∫ T

t
e−r(v−t)dv.

That is, post-retirement earnings are equal to 21% of what they were at the time of retirement. Recall

that this endowment is collected only if the individual does not draw the disability shock.26 We ignore

non-Social Security transfers since these appear to be small.

The Social Security program (τ , SS(t|d)) is modeled after the current U.S. program with a tax of

τ = 10.6% + 1.8% on wage earnings (which includes the retirement and disability parts of the program).

We adopt a simplified Social Security arrangement that captures the most important channels through

excluding these components of income from our analysis.
26 In reality, non-disabled retirees may or may not collect income from work, whereas in our model we are endowing them

with post-retirement earnings that reflect the average life-cycle experience. In doing this, we are suppressing another layer of
risk that could make our welfare cost even larger: in reality, non-disabled individuals face uncertainty about post-retirement
earnings (their skills may or may not become obsolete, for example).
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which the stochastic retirement timing mechanism can influence the level of Social Security benefits. First,

the date of the retirement shock affects the individual’s average wage income, which in turn influences

the individual’s benefits through the benefit-earning rule. Second, for those who become disabled, the

Social Security disability program acts as a bridge between wage income and retirement benefits.

The total level of Social Security benefits collected is state dependent. For those who do not become

disabled but instead retire for other reasons, we compute the individual’s average wage income corre-

sponding to the last 35 years of earnings (which is virtually equivalent to the top 35 years of earnings

for the wage profile that we are using). If retirement strikes before reaching 35 years in the workforce,

then some of these years will be zeros in the calculation. Conversely, as the individual works beyond 35

years, average earnings will increase because a low-wage early year drops out of the calculation while a

high-wage later year is added to the calculation. Then, we use a piecewise linear benefit-earning rule that

is concave in the individual’s average earnings, reflecting realistic slopes and bend points. Finally, we

calculate benefits based on collection at age 65, and then we make actuarial adjustments to accomodate

early and late retirement dates.27

On the other hand, for those who become disabled we compute average wage income corresponding

to the last 35 years of earnings, and no zeros are included in the average if the individual draws a

timing shock that leaves him with fewer than 35 years of work experience. Moreover, he begins collecting

full benefits at the moment he retires (rather than waiting until age 65).28 See Appendix E for a full

explanation of the state-dependent Social Security program.

Finally, to find the probability of becoming disabled conditional on retirement at t, θ(1|t), we fit a

fifth-order polynomial to the joint probability of becoming disabled and retired at age t (which comes

from 2009 disability awards for males between the ages of 17 and 67, reported in 5-year bins, Zayatz

(2011)), and then we divide the result by our p.d.f. over timing risk φ(t) to come up with the probability

of disability conditional on retirement age. If the resulting ratio is greater than 1, we assign a value of 1;

27 In treating 65 as the normal retirement age, we are correctly calculating the present discounted value of Social Security
retirement benefits for individuals in the HRS sample while overestimating benefits for the 1992 birth cohort whose normal
retirement age is 67. For the latter group, the Social Security system in our model is more generous than it is likely to be
in reality.

28We have abstracted from certain aspects of the disability benefit program. In the U.S., disability benefits are based on
average indexed earnings over the highest n years of earnings, where n is the number of years elapsed from age 21 through
the time of disability minus a certain number of “dropout years.”One dropout year is awarded for every five years that pass,
up to a maximum of five dropout years. The number of computation years, n, is further restricted to be between 2 and 35.
Our model ignores the age 21 start and the dropout year provision. Also, in the U.S., it takes a few months for a worker to
begin collecting disability benefits after becoming disabled. We have simplified so that benefits commence upon disability.
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if the resulting ratio is less than 0, we assign a value of 0.29 Figure 4 plots our estimated θ(1|t) profile

θ(1|t) =
0.0014 + 0.0209t+ 0.0485t2 − 1.51t3 + 6.1281t4 − 6.363t5

φ(t)
.

29 In making these calculations, we are assuming that recovery doesn’t occur once someone is disabled; that is, disability
always implies retirement. In reality, some fraction of people do recover, but it’s less than 1% per year (Autor (2011)).
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Table 3. Summary of Baseline Calibration of Paramaters

Lifespan, preferences, and wages:

T = 1 Normalized maximum lifespan (age 23 to age 100)

Ψ(t) = 1− t3.41 Survival probabilities from SS mortality files

ρ = 0 common discount rate in the literature

σ = 3 common CRRA value in the literature

r = 0.029× 77 = 2.233 Real interest rate from Trustees Report

w(t) =
∑5

i=0wit
i pre-ret. wages (wi estimated from CPS MORG 2014)

Retirement timing:

φ(t) = tγ−1(t′−t)β−1∫ t′
0 t

γ−1(t′−t)β−1dt
, for t ∈ [0, t′] truncated beta p.d.f. over retirement date

t′ = (75− 23)/(100− 23) truncation at age 75 (max retirement age)

E(t) = (65− 23)/(100− 23) mean retirement age 65√
var(t) = 5/(100− 23) 5-year standard deviation of ret. age (HRS)

γ = [t′−E(t)](E(t))2
t′var(t) − E(t)

t′ = 12.7615 calibrated value

β = γ
(

t′

E(t) − 1
)

= 3.0385 calibrated value

Retirement income and insurance:

Y (t) = 0.21w(t)
∫ T
t e−r(v−t)dv pdv of post-retirement earnings (HRS)

θ(1|t) prob of disability cond. on ret. (Zayatz (2011) and HRS)

τ = 10.6% + 1.8% Statutory rates for SS ret. and SS dis. (U.S. system)

SS(t|d) state-dependent pdv of SS benefits (U.S. system)
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5. Quantitative results with timing risk only

To focus attention on the main feature of our model (timing risk), we initially abstract from disability risk

and from the disability insurance aspect of the Social Security program. In the next section we consider

how these features impact our results.

We begin by presenting quantitative results from a version of the model in which there is no Social

Security system. Then we assess whether various social insurance arrangements (including Social Security)

can mitigate the welfare cost of retirement timing risk.

5.1. Consumption, savings, and welfare without insurance

Figure 5 plots consumption over the life cycle for the case in which there is no Social Security taxation

and no Social Security retirement benefits. The consumption function c∗1 is the optimal consumption path

conditional on retirement having not yet occurred. The domain of this function stretches from zero up to

the maximum working age t′ = 52/77 (age 75). As soon as the individual draws a retirement shock, he

jumps onto the new optimal consumption path c∗2. Although the retirement date is a continuous random

variable in the model, for expositional purposes in the figure we show just four hypothetical shock dates

(age 60, 65, 70, and 75). The figure helps to illustrate the magnitude of the distortions to consumption,

relative to a safe world in which the individual would simply consume cNR.

Pre-retirement consumption c∗1 starts out below no-risk consumption, cNR. The individual must

be conservative during the earlier years because the timing of retirement is unknown. However, if he

continues to work, then eventually the risk of early retirement begins to dissipate and he responds by

spending more aggressively as c∗1 rises above c
NR.

Notice that the retirement shock is accompanied by a downward correction in consumption, with the

earliest dates generating the largest corrections. Only those who draw the shock at the last possible

moment will smooth their consumption across the retirement threshold. For example, if the shock hits

at the average age of 65, then consumption will drop by about 12%.

Why does consumption always drop, even for those who experience a late shock? Because a shock

at age t is always earlier than expected (in a mathematical sense) from the perspective of age t − ε. In

other words, at t− ε the individual expects the shock to occur later than it actually occurs, and therefore

he turns out to be poorer at t than he anticipated at t − ε. Hence, the consumption drop is the result

of rational expectations over retirement timing risk, as previously recognized by both Blau (2008) and

Grochulski and Zhang (2013).
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The drop in consumption at retirement in our model is consistent with a large literature that docu-

ments a drop in consumption roughly in the range of 10%-30%.30 There have been a variety of explana-

tions for the drop, including the cessation of work-related expenses, consumption-leisure substitutability,

home production, and various behavioral explanations such as the sudden realization that one’s pri-

vate assets are insuffi cient to keep spending at pre-retirement levels. Our paper reinforces the idea that

uncertainty about the timing of retirement could help to explain a drop in consumption at retirement.

Our predictions are also consistent with the conjecture that the drop in consumption is anticipated

(Hurd and Rohwedder (2006), Ameriks, Caplin and Leahy (2007)). While the precise date of retirement

is a random variable that takes individuals in our model by surprise, the drop in consumption upon

retirement is all part of a rational, forward-looking plan. Individuals in our model at time zero cannot

say for sure how big the drop will be, but they can say how big the drop will be conditional on the date

of retirement.

In addition, retirement timing uncertainty may help to explain precautionary savings balances that

otherwise seem large. For instance, Scholz, Seshadri and Khitatrakun (2006) estimate that as much as

80% of Americans in the HRS have asset balances that exceed the optimal amount of savings from a life-

cycle optimization perspective. In their model households face longevity risk, earnings risk, and medical

expense risk but the date of retirement is known with certainty. In our baseline calibration with timing

uncertainty only (no disability risk), individuals in their 50’s who live with retirement timing uncertainty

would accumulate between 15% to 29% more savings by that age than otherwise identical individuals

who know that they will retire at the expected age of 65. In other words, a significant portion of observed

savings for retirement may actually be due to uncertainty about the date of retirement.31

Finally, the full welfare cost ∆ to individuals who live with retirement timing uncertainty and no

insurance is 2.63%. That is, the individual would be willing to give up 2.63% of his total lifetime con-

sumption in order to fully insure the timing uncertainty and thereby live in a safe world with comparable

30For instance, see Hamermesh (1984), Mariger (1987), Bernheim, Skinner and Weinberg (2001), Hurd and Rohwedder
(2006), Hurst (2006), Haider and Stephens (2007), and Ameriks, Caplin and Leahy (2007) among others.

31We obtain these estimates as follows. We compare asset holdings for two individuals, one who knows he will retire at
age 65 (which is model time t = 0.545), and one who expects to retire at age 65 but faces uncertainty about the retirement
date. In both cases, we assume the individual knows that he will not be disabled when he retires, d = 0. If the individual
knows the retirement date t = 0.545 and the disability status d = 0, then he consumes c(z|t, d) = c(z|0.545, 0), which is based
on an initial wealth endowment k(0|t, d) = k(0|0.545, 0). For comparison with the risky world, we use this consumption path
to compute an asset path a(z) with initial condition a(0) = 0 and law of motion

da(z)

dz
= ra(z) + (1− τ)w(z)− c(z|0.545, 0) for z ≤ 0.545.

Then, the amount of additional savings that can be attributed to the precautionary motive to hedge retirement timing risk
is k∗1(z)/a(z)− 1 for z ≤ 0.545.
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expected wealth. Moreover, the timing premium alone is ∆0 = 1.93%, which is the fraction of total

lifetime consumption that he would give up just for early information about the timing of the shock.32

These estimates are very conservative. We are using a 5-year standard deviation of retirement timing

uncertainty, which is significantly less than the 6.82-year standard deviation that we obtain when we

use the full available sample from the HRS while making conservative assumptions each time the inter-

pretation of the data are ambiguous. With a standard deviation of 6.82 years (and holding the mean

fixed at age 65), the full cost of retirement timing uncertainty is ∆ = 5.67% and the timing premium is

∆0 = 3.97%.

While we have made conservative assumptions throughout, we could potentially overstate the welfare

cost of retirement uncertainty by not providing the individual any ability to foresee a retirement shock. In

our model, the individual learns about the retirement timing shock the moment it strikes. In reality, some

people may learn about the shock before it occurs. Early information about one’s retirement date allows

for early re-optimization, which would bring down the welfare cost. We address this concern by extending

our model to allow individuals to learn their date of retirement before it occurs (see Appendix F for

technical details). Suppose the individual faces retirement timing risk as usual, but with an information

revelation date t∗ ∈ (0, t′) when the individual learns the future date of retirement. The shock may

happen before t∗, in which case the individual is taken by surprise. If the shock happens after t∗ then

the individual will adjust his saving behavior in response to the new information. We set t∗ = 0.351,

which corresponds to actual age 50. By setting this age before the age at which uncertainty is measured

in the data, we generate a lower bound on our welfare costs. Hence, the individual knows that when he

turns 50, his future retirement date will be revealed if he is not already retired. The chance of drawing

the shock before age 50 is less than 1% in our calibration. The timing premium goes from ∆0 = 1.93%

without early information revelation to ∆0 = 1.48% with early information revelation.33

Given the size of the welfare cost of timing uncertainty, it is natural to consider whether the predom-

inant social insurance arrangement presently in place (Social Security) succeeds or fails to mitigate this

32The welfare cost of retirement timing uncertainty is larger if people do not accumulate precautionary savings balances.
To see this, consider an individual who incorrectly assumes that he will retire with certainty at the mean age of 65 (model time
t = 0.545). He therefore follows the optimal consumption path conditional on this retirement date, c(z|t, d) = c(z|0.545, 0),
where we continue to assume temporarily that there is no risk of disability. The individual follows this path, rather than the
optimal path c∗1(z), for all z before shock date t, at which point he depletes his available wealth in an optimal, deterministic
way over the remainder of the life cycle. To compute the welfare cost of retirement timing uncertainty, we compute the
timing premium ∆0 as usual but with c(z|0.545, 0) replacing c∗1(z) in the calculation of expected utility. We find ∆0 = 2.54%,
as opposed to ∆0 = 1.93% when the individual self insures.

33Of course, early information alters some of the predictions of our model. There will not necessarily be a drop in
consumption at retirement. For shocks that happen before the information revelation date, consumption will drop as
usual. But for shocks that happen after the information revelation date, consumption will either increase or decrease at the
revelation date (not at the retirement date), depending on whether the revealed shock is better or worse than expected.
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cost, and to consider alternative arrangements that could potentially do better. This is the subject of

the next subsection of the paper.

5.2. Policy experiments

In this section we quantify the impact of the U.S. Social Security system on the welfare of individuals

who face retirement timing uncertainty. While Social Security serves a variety of functions, our particular

focus here is on evaluating its potential role in hedging retirement timing risk, which we have shown to

be a major financial risk that imposes large welfare losses on individuals. We also consider alternative

arrangements, ranging from partial insurance to complete insurance, and we discuss the pros and cons of

each arrangement.

Specifically, we consider four insurance arrangements: (1) U.S. Social Security retirement insurance,

(2) first-best insurance that perfectly protects the individual from timing risk, (3) a simple policy in

which benefits are completely independent of the individual’s earnings history, and (4) a hybrid system

as in Japan, the UK, Spain and other European countries with a benefit component that is unrelated to

earnings and a component that is earnings based.

Our first policy experiment is to add Social Security taxes and retirement benefits to the model. When

we do this, the baseline welfare cost ∆ falls from 2.63% without Social Security to 2.46% with Social

Security, and the timing premium drops from ∆0 = 1.93% without Social Security to ∆0 = 1.80% with

Social Security. Thus, Social Security reduces the welfare cost of timing uncertainty by a small amount.

There are a few ways in which the current Social Security program helps to reduce the welfare cost

of retirement timing uncertainty. Drawing an early retirement shock means a better replacement rate

because of the progressive benefit-earning rule and it also means a smaller overall Social Security tax

liability. In addition, Social Security boosts the individual’s expected wealth because it pays benefits as

a life annuity that lasts as long as the individual survives, which makes him less sensitive to retirement

timing risk. For the individual, the expected net present value of participating in Social Security (i.e.,

Social Security’s contribution to expected wealth) is

E(NPVSS) = −
∫ t′

0
φ(t)

∫ t

0
e−rvτw(v)dvdt+

∫ t′

0
φ(t)SS(t|0)e−rtdt.

At our baseline calibration this quantity is positive, which in turn means that a given loss in wage income

is relatively small compared to when there is no Social Security program in place. However, Social

Security does not really help to insure the individual against retirement timing risk in a substantive way
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because these effects are almost entirely offset by the way that average earnings are calculated to penalize

those who retire early. Such individuals must claim benefits based on an earnings history that is both

short in length and low in level.

The U.S. Social Security system is among the smallest in the OECD. Only Switzerland, Canada, and

Korea have slightly lower public pension tax rates. The average OECD rate is about twice the U.S. rate.

Countries such as Austria, Finland, Greece, Turkey, and Germany are close to the mean, while Poland,

Italy, Czech Republic, and the Netherlands all have rates that exceeds 30%. We run the experiment of

doubling the size of the Social Security program in our model by doubling the tax rate τ and doubling

benefits SS(t|0). Doing this causes our baseline, full insurance welfare cost to drop a little further to

∆ = 2.31% and it causes the timing premium to drop to ∆0 = 1.68%. Hence, even a very large Social

Security system would not provide much insurance against retirement timing uncertainty. The size of the

system is not really the issue, it is the structure that prevents it from providing much insurance.

To make this point, suppose the individual participates in a first-best social insurance arrangement

rather than Social Security. By “first-best” we mean that the individual is perfectly insured against

retirement timing uncertainty by collecting a lump-sum payment FB(t) upon retirement at t. We continue

to assume wages are taxed at rate τ = 10.6%. The magnitude of this lump-sum payment is selected to

make the individual indifferent about when the retirement shock is realized; and, to make a fair comparison

with Social Security, we assume FB(t) is wealth-neutral relative to Social Security in an expectation sense

(see Appendix G for full details). This gives

FB(t) = FB(0)ert +

∫ t

0

[
rY (v)− dY (v)

dv
− (1− τ)w(v)

]
er(t−v)dv

where

FB(0) =

∫ t′

0
φ(t)SS(t|0)e−rtdt−

∫ t′

0
φ(t)

∫ t

0

[
rY (v)− dY (v)

dv
− (1− τ)w(v)

]
e−rvdvdt.

Figure 6 plots FB(t) versus SS(t|0). Recall that both quantities represent the present value of

retirement benefits as of the retirement date t. Notice that the first-best social insurance arrangement

provides the individual with a large payment if he draws an early retirement shock, and a small payment

if he draws a late shock. On the other hand, Social Security does the opposite because of the positive

relationship between benefits and earnings: individuals who suffer early retirement shocks have low

average earnings, while individuals who draw late shocks have high average earnings. In this sense, Social

Security fails to insure workers because it pays high in good states and low in bad states.
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The obvious drawback, however, is that the first-best insurance arrangement creates a disincentive to

work. A compromise between the first-best and the current system would be to make benefits independent

of earnings. This would reduce distortions to labor choices and also eliminate the implicit penalty on

early retirement shocks. Making retirement benefits completely independent of earnings can mitigate

about one-third of the welfare costs of retirement timing uncertainty. We continue to hold taxes fixed

at rate τ = 10.6% on wage income, but with the twist that the individual collects the same benefits no

matter when he draws the retirement shock. As with the other arrangements, we utilize the assumption

that capital markets are complete by endowing the individual with a lump sum SP (t) at retirement age t

that reflects the value at t of a flow of benefits that start at age 65 (see Appendix H for a full explanation)

SP (t) =

∫ t′
0 φ(t)SS(t|0)e−rtdt×

∫ 1
42/77 e

r(t−v)dv∫ t′
0 φ(t)

(∫ 1
42/77 e

−rvdv
)
dt

.

As with first-best insurance, we parameterize the simple policy to be wealth-neutral relative to Social

Security in order to make a fair comparison.

The baseline welfare cost of retirement timing uncertainty drops from 2.63% without any social

insurance to 1.75% with the simple policy, and the timing premium drops from 1.93% without social

insurance to 1.26% with the simple policy. In other words, simply breaking the link between benefits and

earnings would significantly increase the insurance value of Social Security.

If breaking the link is not politically feasible or desirable, it still is possible to provide partial coverage

against retirement timing uncertainty while also encouraging labor force participation. To see this,

consider a hybrid system that requires the same taxes during the working period but whose benefits are

a convex combination of the U.S. Social Security retirement system and our simple policy. We assume a

50-50 split,

HY (t) = 1
2SS(t|0) + 1

2SP (t).

With this hybrid system in place, the baseline welfare cost of retirement timing uncertainty is 2.08%,

and the timing premium is 1.50%. The hybrid system isn’t able to match the effectiveness of the simple

policy in reducing the welfare cost of retirement timing uncertainty, but it does provide better insurance

than the current Social Security system.
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6. Disability

To provide a more comprehensive evaluation of the Social Security program’s overall role in mitigating

retirement uncertainty, we extend the model to include disability risk and a disability component within

the Social Security program. In the extended model, individuals not only face uncertainty about the

timing of retirement, they also face uncertainty about their disability status upon retirement. If the

individual draws a disability shock along with the retirement shock, then he is unable to earn any labor

income during retirement. If the individual draws a retirement shock only (for instance, because of a

plant closing), then he does earn some income after retirement. The former individual collects disability

benefits and the latter individual collects retirement benefits for the remainder of life.34 A separate

literature discusses the optimal design of disability insurance as in Golosov and Tsyvinski (2006) and

its consumption smoothing properties as in Bronchetti (2012). Our purpose here is less ambitious as we

seek only to evaluate the degree to which the current disability program in the U.S. provides insurance

against retirement timing uncertainty.

Figure 7 plots life-cycle consumption when the individual faces retirement timing risk and disability

risk, and he participates in a Social Security program that includes a disability component in addition

to a retirement component. Again, as with Figure 5, although retirement timing is a continuous random

variable, we show just a few of the potential realizations in order to keep the picture informative. For each

retirement shock date, we plot two c∗2 profiles. One profile corresponds to an individual who also draws a

disability shock in addition to a retirement shock, and the other corresponds to an individual who does

not draw a disability shock. The first individual collects disability benefits but has no post-retirement

earnings, while the second individual collects income from work after retirement and no disability benefits.

For relatively late retirement shock dates (for example, beyond age 65), drawing the disability shock

causes a loss in post-retirement income and does not lead to the payment of any disability benefits because

the individual is already at the age in which he can collect Social Security retirement benefits. For these

individuals, disability has a strictly negative effect on lifetime wealth. It is therefore intuitive that a

retirement shock that is coupled with a disability shock causes a much bigger downward correction in

consumption than a retirement shock alone would cause.

For early retirement shock dates, drawing the disability shock causes competing effects on lifetime

wealth. On the one hand it reduces wealth because of lost earnings capacity after retirement, but on

34While disabled individuals technically switch to retirement benefits at the normal retirement age, the benefit amount
is the same.
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the other hand the individual collects disability benefits. If the shock date is early enough (age 45, for

example), then the second effect can dominate and therefore disability benefits are generous enough that

they more than replace lost post-retirement income in a present value sense.

Under our calibration, the probability of becoming disabled upon retirement is much higher for those

who draw an early retirement shock than for those who draw a late retirement shock. Because of this,

disability insurance almost perfectly offsets the added disability risk that the individual faces, but it does

not offset the timing risk. When we compute the joint welfare cost of timing risk and disability risk, while

including both Social Security retirement and disability insurance, we get ∆ = 2.43%. This is almost the

same as when there is only timing risk and Social Security retirement benefits in the model (∆ = 2.46%).

In other words, adding a second layer of risk and a second insurance component leaves the welfare cost

almost unchanged, which suggests that the second insurance component is insuring the second risk but

not the first risk. Finally, the timing premium is ∆0 = 1.77%.

In sum, disability insurance helps to solve the disability risk problem but not the timing risk problem.

That is, it replaces lost post-retirement income due to the inability to work, but it does not solve the

problem that the individual doesn’t know when such a shock might strike. All of the welfare costs that

we have discussed throughout the paper are summarized in Table 5.
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Table 5. Summary of Welfare Costs of Retirement Timing Risk & Disability Risk:

Lower Bound Estimates based on 5-year Standard Deviation of Timing Risk

Panel A: Timing Risk Only

Full Insurance (∆) Timing Premium (∆0)

Laissez Faire (no Social Security) 2.63% 1.93%

U.S. Social Security, retirement only 2.46% 1.80%

Simple policy (w/o benefit-earning link) 1.75% 1.26%

50-50 hybrid policy 2.08% 1.50%

Panel B: Timing Risk and Disability Risk

Full Insurance (∆) Timing Premium (∆0)

U.S. Social Security, retirement and disability 2.43% 1.77%

7. Conclusion

There is a large literature that measures and assesses the economic impact of various life-cycle risks

such as mortality risk, asset return risk, idiosyncratic earnings risk, and temporary unemployment risk,

but less attention has been paid to retirement uncertainty. We document that many individuals retire

earlier or later than planned by at least a few years, which can have dramatic consequences for lifetime

budgeting. For instance, an individual who draws a one-standard deviation retirement shock and retires

unexpectedly at age 60 instead of 65 loses 5 of his best wage-earning years. Moreover, the smaller amount

of total earnings must be spread over a longer retirement period. Not knowing when such a shock might

strike makes planning for retirement a diffi cult task.

We build a detailed microeconomic model that involves dynamic decision making under uncertainty

about the timing of retirement and uncertainty about one’s potential for earning income after retirement.

We calibrate the following model features to our own estimates from a variety of data sources: survival

probabilities are estimated from the Social Security cohort mortality tables; wage earnings are estimated

from the 2014 CPS; the retirement timing p.d.f. is calibrated to match our estimate of the standard
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deviation between planned and actual retirement ages in the HRS; post-retirement earnings are estimated

from the HRS; the Social Security retirement and disability programs are calibrated to match the U.S.

system; and, the probability of becoming disabled conditional on retirement is estimated from the HRS.

We use the calibrated model to compute conservative estimates of the welfare cost of retirement timing

risk. We find that the cost is quite large. Individuals would be willing to pay 2.6%-5.7% of their total

lifetime consumption to fully insure themselves against retirement timing risk, depending on the standard

deviation of timing risk. In fact, individuals would pay 1.9%-4.0% just to know their date of retirement.

Finally, we consider the role of the Social Security retirement program in mitigating timing uncertainty.

We find that Social Security retirement benefits provide almost no protection against timing risk. We

also consider the role of the Social Security disability program in mitigating timing uncertainty. We

find that disability insurance almost completely protects against the risk of lost post-retirement income,

but it doesn’t provide much protection against timing risk. In short, retirement timing risk is a large

and costly risk that has not received very much attention in the literature, and existing social insurance

arrangements do not adequately deal with this risk.
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Technical appendices

Appendix A: Measuring retirement uncertainty

This appendix describes the construction of the variables measuring an individual’s expected retirement

age (Eret) and actual age at retirement (Ret), together with the computation of the standard deviation

of X = (Eret−Ret).

As described in Section 2, we use a sample of male respondents aged 51 to 61 in the first wave of

the Health and Retirement Study (HRS). There are 4,541 male respondents in this age group in wave 1.

Out of these, we drop 864 individuals whose retirement expectations were not elicited because they were

already retired, disabled, or out of the labor force; 255 individuals for whom the retirement expectation

is missing; and 175 individuals who are unemployed, and hence would be considered retired according to

our definition below. This leaves us with 3,251 observations of the variable Eret. The details of sample

selection are summarized in Table 6.

Table 6. Sample Selection for Variable Eret

Males Aged 51 to 61 in wave 1 4,545

Work status missing 4

Unemployed 175

Retired 613

Disabled 189

Not in the labor force 47

Total dropped because not employed 1,028

Males Aged 51 to 61 and Employed in wave 1 3,517

Proxy interview (Eret not asked) 244

Already retired 15

Other missing 7

Total dropped because of missing Eret 266

Males Aged 51 to 61, Employed, and Eret observed in wave 1 (Final Sample) 3,251

To be consistent with the wording of the questions used by the HRS to elicit retirement expectations,

we define retirement as working zero hours. We follow individuals over time, and construct the variable

40



Ret using information on the month and year when they left their last job prior to retirement. There

are a small number of observations (102, or 3% of the total sample) for which we do not observe the

actual retirement year, but for which it is possible to obtain both an upper and a lower bound of their

retirement date. We make the conservative assumption that they retired on the date within that interval

that is closest to Eret.

If either the variable Eret or Ret are measured with error, this will increase the standard deviation

of X, and in turn overstate our measure of retirement uncertainty. We are particularly concerned about

measurement error in the variable Eret. HRS respondents are allowed to report their expected retirement

time as both an age or a specific year. All responses are then transformed into a retirement year, and this

process is bound to generate some rounding error. We deal with this issue by allowing for plus/minus

one year of error in Eret. We compute the variable X as

min{|(Eret− 1)−Ret|, |Eret−Ret|, |(Eret+ 1)−Ret|}.

Table 7 describes retirement outcomes as a function of retirement expectations in wave 1. There are

2,449 individuals in the sample, shown in column 1, who expect to retire before the end of the HRS panel.

1,893 (77%) of those actually retire within that period; 244 (10%) are still employed by the time they

reach their expected retirement age, but their actual retirement age cannot be established because of

attrition, truncation of retirement date, or death; 102 (4%) die and 210 (9%) are lost to attrition before

their expected retirement date. The second column shows 17 individuals who expect to retire after the

last wave in the HRS panel. 10 (59%) of those retire during the sample period, 2 (12%) die before the end

of the panel, and the remaining 5 (29%) remain employed by the time they leave the sample. Column 3

shows retirement outcomes for 475 individuals who state on the first wave that they will never retire. 324

(65%) eventually retire before the end of the panel, while the remaining 35% are still employed when they

exit the sample due to death, attrition, or truncation. Finally, the last column shows retirement outcomes

for 310 individuals who state that they do not know when they will retire. 212 (68%) of those retire

during the sample period, and the remaining 22% remain employed when last observed in the sample.
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Table 7. Retirement Outcomes by Eret Category

Eret

Expect to retire Expect to retire Will never DK if they

by wave 11 after wave 11 retire will retire

Retire during sample period 1,893 10 324 212

Work past Eret,

retirement age not observed 244

Die before Eret 102 2

Exit sample before Eret 210

Employed by last wave

observed in the sample 5 151 98

Total 2,449 17 475 310

The value of the variable X can be computed directly from the data for individuals for whom both

Eret and Ret are observed. In cases when one of those two variables is missing, we can sometimes make

a conservative assumption that allows us to assign a value to the variable X. Table 8 describes these

assumptions in detail. Row 1 shows that X is computed as the difference between the expected and actual

retirement age for the 1,903 (58% of the sample) individuals for whom both Eret and Ret observed. The

244 (8%) individuals in row 2 are still employed by the time they reach their expected retirement age, so

we know that they have made a mistake in their predictions. However, because of truncation or attrition

they leave the sample before their retirement age can be observed, and the exact size of the difference

between Eret and Ret cannot be established. To be as conservative as possible, we assume that those

individuals retire the first year after exiting the sample. The 5 (0%) individuals in row 3 expect to retire

after the sample period and are still employed by the time they exit the panel. Because we have no

evidence that they have made a mistake in their predictions, we assign a value of 0 to the variable X

for this group. Row 4 shows 104 (3%) individuals who die before reaching their expected retirement age.

We do not use these individuals in the computation of retirement timing uncertainty, as mortality risk

is modeled separately. Row 5 shows 210 (6%) individuals who exit the sample because of truncation or

attrition before their expected retirement age. Because we cannot establish whether they have made a

mistake in their prediction, and any assumption to that regard would be ad hoc, we do not use these
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individuals in the computation of uncertainty either.

The next two rows represent individuals who say they will never retire. For those in row 6 (324, or

10%) retirement is observed. We compute the size of the difference between their expected and actual

retirement ages by subtracting the latter from the average life expectancy for this cohort, which is 76.5

years of age. Those in row 7 (151 or 5%) die or leave the sample before retirement is observed, and we

assume the size of their mistake is 0.

Finally, individuals in the last two rows (310 or 10%) say they do not know when they will retire.

It is particularly diffi cult to assign a value to the variable X without making ad-hoc assumptions, as we

have no way of telling what their expected retirement age is. However, their eventual retirement behavior

closely mirrors that of those who say they will never retire. The proportion retiring in every wave of the

panel, as well as the proportion whose retirement is not observed during the sample period, are essentially

the same for the two groups. Therefore, we compute X in the same way for the two groups.

Table 8. Computation of X = Eret−Ret

X computed as N

Eret observed

1. Ret observed (Eret−Ret) 1,903

2. Work past Eret, Ret not observed Eret-(Age in last wave in sample +1) 244

3. Eret is after sample period, Ret not observed 0 5

4. Dies or leaves sample before Eret Not used 104

5. Leaves sample before Eret Not used 210

Will never retire

6. Ret observed (Average life expectancy - Ret) 324

7. Ret not observed 0 151

DK when they will retire

8. Ret observed (Average life expectancy - Ret) 213

9. Ret not observed 0 97

Total 3,251

Table 9 shows the value of the standard deviation of X for different subsamples. The first column

considers the baseline subsample of individuals aged 51 to 61 in wave 1. Within this age group, using
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only individuals for whom both expected and actual retirement are observed (row 1) yields a standard

deviation of 4.28. Adding individuals who work past their expected retirement age and for whom X

is computed as discussed in Table 8, the standard deviation increases to 5.05 (row 2). Row 3 adds

individuals who do not expect to retire before the end of the sample period and whose retirement is

indeed not observed before that date. Because we are assuming that they make no mistakes in their

predictions, the standard deviation decreases slightly, to 5.04. Row 4 adds individuals who say they

will never retire, but whose retirement is observed. Assuming they expected to work until death, and

using the average life expectancy for the cohort, increases the standard deviation to 6.54. Finally, adding

individuals who do not expect to retire and who are still employed by the time they exit the sample

reduces the standard deviation to 6.35.

The second and third columns of Table 9 compute the standard deviation for a younger (51 to 55) and

an older (56 to 61) age group within the baseline sample. This computation is carried out to illustrate

that retirement uncertainty declines slowly as retirement approaches, even for age groups very close to

retirement age. The two age groups considered here are 5 years apart, on average, but the standard

deviation of the variable X declines only between half a year and one year for the older group.

Table 9. Standard Deviation of X for Different Subsamples

Baseline

Sample Age 51 to 61 Age 51 to 55 Age 56 to 61

1 Ret observed 4.28 4.59 3.88

2 1 + Work past Eret, Ret not observed 5.05 5.26 4.78

3 2 + Eret after sample period, Ret not observed 5.04 5.25 4.77

4 3 + Will never retire, Ret observed 6.54 6.93 6.05

5 4 + Will never retire, Ret not observed 6.35 6.73 5.88

6 5 + DK when they will retire, Ret observed 6.92 7.37 6.37

7 6 + DK when they will retire, Ret not observed 6.82 7.24 6.29

44



Appendix B: Solution to individual optimization problem

The individual’s problem is solved recursively as in Caliendo, Gorry and Slavov (2015) and Stokey (2014)

but modified extensively to fit the current setting.35

Step 1. The deterministic retirement problem

The optimal consumption path c(z) for z ∈ [t, T ] after the retirement shock has hit at date t solves

max
c(z)z∈[t,T ]

:

∫ T

t
e−ρzΨ(z)

c(z)1−σ

1− σ dz,

subject to
dK(z)

dz
= rK(z)− c(z), for z ∈ [t, T ],

t and d given, K(t) = k(t) +B(t, d) given, K(T ) = 0.

It is straightfoward to show that the solution to this deterministic control problem is

c∗2(z|t, k(t), d) =
(k(t) +B(t, d))e−rt∫ T

t e−rv+(r−ρ)v/σΨ(v)1/σdv
e(r−ρ)z/σΨ(z)1/σ, for z ∈ [t, T ].

This solution, for an arbitrary k(t) and for given realizations of t and d, will be nested in the continuation

function in the next step.

Step 2. The time zero stochastic problem

Facing random variables t and d, at time zero the individual seeks to maximize expected utility

max
c(z)z∈[0,t′]

: E
t,d

[∫ t

0
e−ρzΨ(z)

c(z)1−σ

1− σ dz +

∫ T

t
e−ρzΨ(z)

c∗2(z|t, k(t), d)1−σ

1− σ dz

]

which can be rewritten as

max
c(z)z∈[0,t′]

:

∫ t′

0

∫ t

0
φ(t)e−ρzΨ(z)

c(z)1−σ

1− σ dzdt+

∫ t′

0

(∑
d

θ(d|t)φ(t)S(t, k(t), d)

)
dt

35Relative to Caliendo, Gorry and Slavov (2015) and Stokey (2014), the current paper has the added complication that
the timing density is truncated, which in turn renders the usual Pontryagin first-order conditions insuffi cient to identify a
unique optimum. We will elaborate more below.
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where

S(t, k(t), d) =

∫ T

t
e−ρzΨ(z)

c∗2(z|t, k(t), d)1−σ

1− σ dz.

Using a change in the order of integration, i.e.,
∫ t′
0

∫ t
0 (·)dzdt =

∫ t′
0

∫ t′
z (·)dtdz, we can write

∫ t′

0

∫ t

0
φ(t)e−ρzΨ(z)

c(z)1−σ

1− σ dzdt =

∫ t′

0

∫ t′

z
φ(t)e−ρzΨ(z)

c(z)1−σ

1− σ dtdz

=

∫ t′

0
[1− Φ(z)]e−ρzΨ(z)

c(z)1−σ

1− σ dz

=

∫ t′

0
[1− Φ(t)]e−ρtΨ(t)

c(t)1−σ

1− σ dt.

Using this result we can state the stochastic problem as a standard Pontryagin problem

max
c(t)t∈[0,t′]

:

∫ t′

0

{
[1− Φ(t)]e−ρtΨ(t)

c(t)1−σ

1− σ +
∑
d

θ(d|t)φ(t)S(t, k(t), d)

}
dt

subject to

S(t, k(t), d) =

∫ T

t
e−ρzΨ(z)

c∗2(z|t, k(t), d)1−σ

1− σ dz,

dk(t)

dt
= rk(t) + (1− τ)w(t)− c(t),

k(0) = 0, k(t′) free,

c∗2(z|t, k(t), d) =
(k(t) +B(t, d))e−rt∫ T

t e−rv+(r−ρ)v/σΨ(v)1/σdv
e(r−ρ)z/σΨ(z)1/σ, for z ∈ [t, T ].

To solve, form the Hamiltonian H with multiplier λ(t)

H = [1− Φ(t)]e−ρtΨ(t)
c(t)1−σ

1− σ +
∑
d

θ(d|t)φ(t)S(t, k(t), d) + λ(t)[rk(t) + (1− τ)w(t)− c(t)].

The necessary conditions include

∂H
∂c(t)

= [1− Φ(t)]e−ρtΨ(t)c(t)−σ − λ(t) = 0

dλ(t)

dt
= − ∂H

∂k(t)
= −

∑
d

θ(d|t)φ(t)
∂S(t, k(t), d)

∂k(t)
− λ(t)r,

where the usual transversality condition λ(t′) = 0 is automatically satisfied by the Maximum Condition
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(since Φ(t′) = 1 by definition). Note that

∂S(t, k(t), d)

∂k(t)
=

∫ T

t
e−ρzΨ(z)[c∗2(z|t, k(t), d)]−σ

∂c∗2(z|t, k(t), d)

∂k(t)
dz

=

∫ T

t
e−ρzΨ(z)

[
(k(t) +B(t, d))e−rt∫ T

t e−rv+(r−ρ)v/σΨ(v)1/σdv
e(r−ρ)z/σΨ(z)1/σ

]−σ
e−rte(r−ρ)z/σΨ(z)1/σ∫ T

t e−rv+(r−ρ)v/σΨ(v)1/σdv
dz

=

[
(k(t) +B(t, d))e−rt∫ T

t e−rv+(r−ρ)v/σΨ(v)1/σdv

]−σ
e−rt.

Using this result, together with the Maximum Condition, we can rewrite the multiplier equation as

dλ(t)

dt
= −

∑
d

θ(d|t)φ(t)

[
(k(t) +B(t, d))e−rt∫ T

t e−rv+(r−ρ)v/σΨ(v)1/σdv

]−σ
e−rt − [1− Φ(t)]e−ρtΨ(t)c(t)−σr.

Now differentiate the Maximum Condition with respect to t

−φ(t)
{[
e−ρtΨ(t)

]
c(t)−σ

}
+[1−Φ(t)]

{[
−ρe−ρtΨ(t) + e−ρtΨ′(t)

]
c(t)−σ − σ

[
e−ρtΨ(t)

]
c(t)−σ−1

dc(t)

dt

}
=
dλ(t)

dt

and combine the previous two equations and solve for dc(t)/dt

dc(t)

dt
=

(
c(t)σe(ρ−r)t

σΨ(t)

∑
d

θ(d|t)
[

(k(t) +B(t, d))e−rt∫ T
t e−rv+(r−ρ)v/σΨ(v)1/σdv

]−σ
− 1

σ

)(
c(t)φ(t)

1− Φ(t)

)
+

[
Ψ′(t)

Ψ(t)
+ r − ρ

]
c(t)

σ
,

which matches the Euler equation stated in the body of the paper.

The Euler equation, together with the law of motion for savings dk/dt and the initial condition

k(0) = 0 are used to pin down solution consumption and savings conditional on c(0), which has yet to

be identified.

In general, in stochastic stopping time problems where there is no restriction on the state variable

at the maximum stopping date– a setting that arises naturally if the timing p.d.f. is truncated– the

usual Pontryagin first-order conditions for optimality are not suffi cient to identify a unique solution. The

transversality condition is redundant and the first-order conditions therefore produce a family of potential

solutions rather than a unique solution. We provide a “work-around”that works in general and is easy

to use. The answer is to use the limiting case of the transversality condition, together with the other

first-order conditions, to derive what we refer to as a “stochastic continuity” condition to provide the

needed endpoint restriction. This extra condition allows us to identify the unique solution.
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We can identify c(0) as follows. Rewrite the Maximum Condition as

e−ρtΨ(t)c(t)−σ =
λ(t)

1− Φ(t)
.

Noting the transversality condition and properties of the c.d.f.

λ(t′)

1− Φ(t′)
=

0

0
,

we can use L’Hôpital’s Rule on this indeterminate expression

lim
t→t′

e−ρtΨ(t)c(t)−σ = lim
t→t′

λ(t)

1− Φ(t)
= lim

t→t′
dλ(t)/dt

−φ(t)
=
dλ(t′)/dt

−φ(t′)

and hence we can use the following as a boundary condition in lieu of the redundant transversality

condition

e−ρt
′
Ψ(t′)c(t′)−σ =

dλ(t′)/dt

−φ(t′)
.

Note that
dλ(t′)

dt
= −

∑
d

θ(d|t′)φ(t′)

[
(k(t′) +B(t′, d))e−rt

′∫ T
t′ e
−rv+(r−ρ)v/σΨ(v)1/σdv

]−σ
e−rt

′

so the new boundary condition becomes

e−ρt
′
Ψ(t′)c(t′)−σ =

∑
d

θ(d|t′)
[

(k(t′) +B(t′, d))e−rt
′∫ T

t′ e
−rv+(r−ρ)v/σΨ(v)1/σdv

]−σ
e−rt

′
.

Simplify

c(t′) =

(∑
d

θ(d|t′)
[

(k(t′) +B(t′, d))e−rt
′∫ T

t′ e
−rv+(r−ρ)v/σΨ(v)1/σdv

]−σ
× e−(r−ρ)t′Ψ(t′)−1

)−1/σ

=

(∑
d

θ(d|t′)
[

(k(t′) +B(t′, d))e−rt
′∫ T

t′ e
−rv+(r−ρ)v/σΨ(v)1/σdv

e(r−ρ)t
′/σΨ(t′)1/σ

]−σ)−1/σ

=

(∑
d

θ(d|t′)
[
c∗2(t

′|t′, k(t′), d)
]−σ)−1/σ

.

In sum, we choose c(0) so that the Euler equation dc/dt, together with dk/dt and the initial condition

k(0) = 0 all imply “stochastic continuity”at time t′: c(t′) =
(∑

d θ(d|t′) [c∗2(t
′|t′, k(t′), d)]−σ

)−1/σ
. Note

that we literally have continuity if d is deterministic, c(t′) = c∗2(t
′|t′, k(t′), d). For the more general case
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where d is stochastic, there is continuity between marginal utility and expected marginal utility.

Appendix C: Welfare decomposition with Jensen’s inequality

Here we prove using Jensen’s inequality that the timing premium is smaller than the value of full insurance.

Making use of the following equations

cNR(t) = k(0)G(t)

k(0) =

∫ t′

0

(∑
d

θ(d|t)φ(t)k(0|t, d)

)
dt

G(t) ≡ e(r−ρ)t/σΨ(t)1/σ∫ T
0 e−rv+(r−ρ)v/σΨ(v)1/σdv

c(z|t, d) = k(0|t, d)G(z)

UNR =

∫ T

0
e−ρtΨ(t)

cNR(t)1−σ

1− σ dt

EU(t, d) =

∫ t′

0

(∑
d

θ(d|t)φ(t)

(∫ T

0
e−ρzΨ(z)

c(z|t, d)1−σ

1− σ dz

))
dt,

we note that

UNR =
k(0)1−σ

1− σ

∫ T

0
e−ρtΨ(t)G(t)1−σdt

=

[∫ t′
0 (
∑

d θ(d|t)φ(t)k(0|t, d)) dt
]1−σ

1− σ

∫ T

0
e−ρtΨ(t)G(t)1−σdt

EU(t, d) =

∫ t′

0

(∑
d

θ(d|t)φ(t)

(∫ T

0
e−ρzΨ(z)G(z)1−σ

k(0|t, d)1−σ

1− σ dz

))
dt

=

∫ t′

0

(∑
d

θ(d|t)φ(t)
k(0|t, d)1−σ

1− σ

)
dt

∫ T

0
e−ρzΨ(z)G(z)1−σdz.

By Jensen’s inequality,

[∫ t′
0 (
∑

d θ(d|t)φ(t)k(0|t, d)) dt
]1−σ

1− σ >

∫ t′

0

(∑
d

θ(d|t)φ(t)
k(0|t, d)1−σ

1− σ

)
dt
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which implies UNR > EU(t, d) and hence ∆ > ∆0. In other words, the individual would always pay more

to have his expected wealth with certainty than he would pay for retirement information, because simply

knowing his wealth is not as good as insuring his wealth.

Appendix D: Leisure

Suppose period utility is additively separable in consumption c and leisure l. In keeping with our main

assumption that retirement is an uncertain event, utility from leisure is now an uncertain quantity as

well. Early retirement brings extra utility from leisure while late retirement erodes utility from leisure.

Without loss of generality, we normalize instantaneous leisure time to l = 0 before retirement and

l = 1 after retirement. We also normalize the instantaneous utility of leisure during the working period

to u(0) = 0. The utility of leisure during retirement is u(1). We assume u′ > 0 and u′′ < 0. For a

given retirement realization t, the total lifetime utility from leisure is
∫ T
t e−ρzΨ(z)u(1)dz. The additive

separability of consumption and leisure implies that consumption decisions are not influenced by the

presence of leisure in the utility function. Hence, the individual will continue to follow c∗1(z) for all

z before the retirement date t is realized and c∗2(z|t, k∗1(t), d) for all z after the retirement date t and

disability status d are realized.

Full insurance

For the case in which the individual is fully insured against retirement uncertainty, he collects with

certainty his expected wealth as before and makes optimal consumption decisions over the life cycle as

before, cNR(t). Concerning leisure, he receives at each moment t his expected leisure at that moment

lNR(t) = Φ(t)× 1 + [1− Φ(t)]× 0

which confers period leisure utility u(Φ(t)) and total leisure utility
∫ T
0 e−ρtΨ(t)u(Φ(t))dt, where Φ(t) = 1

for all t ≥ t′.

Equating utility from expected wealth and expected leisure to expected utility, and then solving for
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∆ (willingness to pay to avoid uncertainty), gives the full insurance value of timing uncertainty

∫ T

0
e−ρtΨ(t)

[cNR(t)(1−∆)]1−σ

1− σ dt+

∫ T

0
e−ρtΨ(t)u(Φ(t))dt

=

∫ t′

0

(∑
d

θ(d|t)φ(t)

(∫ t

0
e−ρzΨ(z)

c∗1(z)
1−σ

1− σ dz +

∫ T

t
e−ρzΨ(z)

c∗2(z|t, k∗1(t), d)1−σ

1− σ dz

))
dt

+

∫ t′

0
φ(t)

(∫ T

t
e−ρzΨ(z)u(1)dz

)
dt.

Now performing some algebra on the last term on both the left and right sides, including a change in the

order of integration on the term on the right, we have

I ≡
∫ T

0
e−ρtΨ(t)u(Φ(t))dt

=

∫ t′

0
e−ρtΨ(t)u(Φ(t))dt+

∫ T

t′
e−ρtΨ(t)u(1)dt

II ≡
∫ t′

0

∫ T

t
φ(t)e−ρzΨ(z)u(1)dzdt

=

∫ t′

0

∫ z

0
φ(t)e−ρzΨ(z)u(1)dtdz +

∫ T

t′

∫ t′

0
φ(t)e−ρzΨ(z)u(1)dtdz

=

∫ t′

0

∫ z

0
φ(t)e−ρzΨ(z)u(1)dtdz +

∫ T

t′
e−ρzΨ(z)u(1)dz

=

∫ t′

0
e−ρzΨ(z)u(1)Φ(z)dz +

∫ T

t′
e−ρzΨ(z)u(1)dz

=

∫ t′

0
e−ρtΨ(t)u(1)Φ(t)dt+

∫ T

t′
e−ρtΨ(t)u(1)dt.

Using the concavity of u and the fact that Φ(t) < 1 for all t < t′, it must be that

u(Φ(t)) > u(1)Φ(t) for all t < t′ =⇒ I > II.

Finally, this implies that ∆ must be strictly larger when we include leisure in the utility function than

when we do not. Hence, we are safe to ignore leisure and treat our calculations of the welfare cost of

retirement uncertainty as a lower bound. While including leisure may at first glance seem to mitigate

the welfare loss of timing uncertainty because early retirement shocks are accompanied by more leisure,

the additive separability of utility prevents this from happening. Instead, retirement timing uncertainty

simply implies that the individual faces risk over two (unrelated) margins, consumption as well as leisure,
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and the presence of the second margin only amplifies his willingness to pay to avoid uncertainty.

Timing premium

Similar arguments can be made for the timing premium. With leisure in the period utility function, the

timing premium ∆0 is the solution to the following equation

∫ t′

0

(∑
d

θ(d|t)φ(t)

(∫ T

0
e−ρzΨ(z)

[c(z|t, d)(1−∆0)]
1−σ

1− σ dz +

∫ T

t
e−ρzΨ(z)u(1)dz

))
dt

=

∫ t′

0

(∑
d

θ(d|t)φ(t)

(∫ t

0
e−ρzΨ(z)

c∗1(z)
1−σ

1− σ dz +

∫ T

t
e−ρzΨ(z)

(
c∗2(z|t, k∗1(t), d)1−σ

1− σ + u(1)

)
dz

))
dt.

The leisure terms cancel out and we are left with the same timing premium ∆0 as when we ignore leisure.

This is an immediate implication of the assumption that leisure is fixed before and after retirement.

Early resolution of retirement uncertainty does not change leisure allocations over the life cycle, which

means the individual isn’t willing to pay any more for retirement information in this case than in the

case without leisure.

Appendix E: Social Security

Because the individual faces uncertainty about becoming disabled, we must model Social Security in both

states.

Without disability

Suppose the individual never becomes disabled but instead retires for other reasons (such as a health

shock to a spouse or parent).

Let w̄(t) be the individual’s average wage income corresponding to the last 35 years of earnings before

retirement (which is virtually equivalent to the top 35 years of earnings given the wage profile that we

are using), where t is the stochastic retirement age. If the individual draws a bad enough shock, some of

these years will be zeros. If the individual draws a very good shock, then the average of his last 35 years

can increase because wages are lowest at age 23 in our calibration.

Let b(w̄(t)) be the constant, flow value of Social Security benefits if claimed at age 65. The individual

receives this constant flow until death. Benefits are a piecewise linear function of an individual’s average

wage, where the kinks (bend points) are multiples of the economy-wide average wage ē. Social Security

replaces 90% of w̄(t) up to the first bend point, 32% of w̄(t) between the first and second bend points,
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15% of w̄(t) between the second and third bend points, and 0% of w̄(t) beyond the third bend point.

The nominal values of the bend points change each year, but Alonso-Ortiz (2014) and others assume the

bend points are the following multiples of the average economy-wide wage: 0.2ē, 1.24ē, and 2.47ē.

To simplify, we assume the economy-wide average wage equals the average wage of an individual who

draws a retirement shock at the average age (65)

ē = w̄(42/77),

which means that the flow value of benefits claimed at 65 is

b(w̄(t)) =



90%× w̄(t) for w̄(t) ≤ 0.2ē

90%× 0.2ē+ 32%× (w̄(t)− 0.2ē) for 0.2ē ≤ w̄(t) ≤ 1.24ē

90%× 0.2ē+ 32%× (1.24ē− 0.2ē) + 15%× (w̄(t)− 1.24ē) for 1.24ē ≤ w̄(t) ≤ 2.47ē

90%× 0.2ē+ 32%× (1.24ē− 0.2ē) + 15%× (2.47ē− 1.24ē) for 2.47ē ≤ w̄(t).

Finally, SS(t|d) is the present discounted value (as of retirement date t) of Social Security benefits,

conditional on disability status. Taking advantage of our assumption that capital markets are complete,

and assuming d = 0, we endow the individual with the following lump sum at t,

SS(t|d) = SS(t|0) =

(
b(w̄(t))×

∫ 1

42/77
e−r(v−42/77)dv

)
er(t−42/77).

With disability

If the individual becomes disabled, we re-use notation and assume w̄(t) is his average wage income

corresponding to the last 35 years of earnings, where t is the stochastic retirement age, and no zeros are

included in the average if the individual draws a timing shock that leaves him with fewer than 35 years

of work experience. Moreover, he begins collecting full benefits at the moment he retires (rather than

waiting until age 65). Hence

SS(t|d) = SS(t|1) = max

{
SS(t|0), b(w̄(t))×

∫ 1

t
e−r(v−t)dv

}
.

The max operator is to recognize that a disability shock after t = 42/77 (age 65) can’t lead to lower

benefits than a system without disability. In other words, disability leads to higher total benefits if the

shock is early and has no effect on total benefits if the shock happens late.
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Appendix F: Early revelation of information

The individual’s problem is solved recursively as before. All random variables are the same as before.

The retirement date t has p.d.f. φ(t) with support [0, t′], and the disability indicator d ∈ {0, 1} has

conditional p.d.f. θ(d|t).

If the individual has not already drawn the stochastic retirement shock, he learns with certainty at

date t∗ ∈ (0, t′) when he will ultimately retire and he also learns at that date whether he will be disabled

upon retirement. We refer to t∗ as the information revelation date.

Step 1. The deterministic problem after the information revelation date

We break into two cases which are differentiated by whether the retirement shock hits before or after the

information revelation date.

First consider the situation in which the retirement shock strikes before the information revelation

date (t < t∗). If so, then the optimal consumption path c(z) for z ∈ [t, T ] after the retirement shock has

hit at date t solves

max
c(z)z∈[t,T ]

:

∫ T

t
e−ρzΨ(z)

c(z)1−σ

1− σ dz,

subject to
dK(z)

dz
= rK(z)− c(z), for z ∈ [t, T ],

t and d given, K(t) = k(t) +B(t, d) given, K(T ) = 0.

The solution to this deterministic control problem is

c∗2(z|t, k(t), d) =
(k(t) +B(t, d))e−rt∫ T

t e−rv+(r−ρ)v/σΨ(v)1/σdv
e(r−ρ)z/σΨ(z)1/σ, for z ∈ [t, T ].

This solution, for an arbitrary k(t) and for given realizations of t and d, will be nested in the continuation

function in the next step.

On the other hand, suppose the retirement shock hits on or after the infomation revelation date. If

so, then the optimal consumption path c(z) for z ∈ [t∗, T ] after retirement date t ≥ t∗ has been revealed

at t∗ solves

max
c(z)z∈[t∗,T ]

:

∫ T

t∗
e−ρzΨ(z)

c(z)1−σ

1− σ dz,

subject to
dK(z)

dz
= rK(z)− c(z), for z ∈ [t∗, T ],
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t and d given, K(t∗) =

∫ t

t∗
(1− τ)w(v)e−r(v−t

∗)dv + k(t∗) +B(t, d)e−r(t−t
∗) given, K(T ) = 0.

The solution to this deterministic control problem is

c∗2R(z|t, t∗, k(t∗), d) =

∫ t
t∗(1− τ)w(v)e−rvdv + k(t∗)e−rt

∗
+B(t, d)e−rt∫ T

t∗ e
−rv+(r−ρ)v/σΨ(v)1/σdv

e(r−ρ)z/σΨ(z)1/σ, for z ∈ [t∗, T ].

This solution, for arbitrary k(t∗) and t∗ and for given realizations of shocks t and d, will also be nested

in the continuation function in the next step.

Step 2. The time zero stochastic problem

Facing random variables t and d, at time zero the individual seeks to maximize expected utility

max
c(z)z∈[0,t∗]

: E
t,d

[
1{t < t∗}

∫ t

0
e−ρzΨ(z)

c(z)1−σ

1− σ dz + 1{t ≥ t∗}
∫ t∗

0
e−ρzΨ(z)

c(z)1−σ

1− σ dz

+1{t < t∗}
∫ T

t
e−ρzΨ(z)

c∗2(z|t, k(t), d)1−σ

1− σ dz + 1{t ≥ t∗}
∫ T

t∗
e−ρzΨ(z)

c∗2R(z|t, t∗, k(t∗), d)1−σ

1− σ dz

]

which can be written as

max
c(z)z∈[0,t∗]

:

∫ t∗

0

∫ t

0
φ(t)e−ρzΨ(z)

c(z)1−σ

1− σ dzdt+ [1− Φ(t∗)]

∫ t∗

0
e−ρzΨ(z)

c(z)1−σ

1− σ dz

+

∫ t∗

0

(∑
d

θ(d|t)φ(t)S(t, k(t), d)

)
dt+

∫ t′

t∗

(∑
d

θ(d|t)φ(t)R(t, t∗, k(t∗), d)

)
dt

where

S(t, k(t), d) =

∫ T

t
e−ρzΨ(z)

c∗2(z|t, k(t), d)1−σ

1− σ dz

R(t, t∗, k(t∗), d) =

∫ T

t∗
e−ρzΨ(z)

c∗2R(z|t, t∗, k(t∗), d)1−σ

1− σ dz.

Using a change in the order of integration, i.e.,
∫ t∗
0

∫ t
0 (·)dzdt =

∫ t∗
0

∫ t∗
z (·)dtdz, we can write

∫ t∗

0

∫ t

0
φ(t)e−ρzΨ(z)

c(z)1−σ

1− σ dzdt =

∫ t∗

0

∫ t∗

z
φ(t)e−ρzΨ(z)

c(z)1−σ

1− σ dtdz

=

∫ t∗

0
[Φ(t∗)− Φ(z)]e−ρzΨ(z)

c(z)1−σ

1− σ dz

=

∫ t∗

0
[Φ(t∗)− Φ(t)]e−ρtΨ(t)

c(t)1−σ

1− σ dt.
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Using this result we can state the stochastic problem as a standard Pontryagin problem

max
c(t)t∈[0,t∗]

:

∫ t∗

0

{
[1− Φ(t)]e−ρtΨ(t)

c(t)1−σ

1− σ +
∑
d

θ(d|t)φ(t)S(t, k(t), d)

}
dt

+

∫ t′

t∗

(∑
d

θ(d|t)φ(t)R(t, t∗, k(t∗), d)

)
dt

subject to

S(t, k(t), d) =

∫ T

t
e−ρzΨ(z)

c∗2(z|t, k(t), d)1−σ

1− σ dz,

R(t, t∗, k(t∗), d) =

∫ T

t∗
e−ρzΨ(z)

c∗2R(z|t, t∗, k(t∗), d)1−σ

1− σ dz,

dk(t)

dt
= rk(t) + (1− τ)w(t)− c(t),

k(0) = 0, k(t∗) free,

c∗2(z|t, k(t), d) =
(k(t) +B(t, d))e−rt∫ T

t e−rv+(r−ρ)v/σΨ(v)1/σdv
e(r−ρ)z/σΨ(z)1/σ, for z ∈ [t, T ],

c∗2R(z|t, t∗, k(t∗), d) =

∫ t
t∗(1− τ)w(v)e−rvdv + k(t∗)e−rt

∗
+B(t, d)e−rt∫ T

t∗ e
−rv+(r−ρ)v/σΨ(v)1/σdv

e(r−ρ)z/σΨ(z)1/σ, for z ∈ [t∗, T ].

To solve, form the Hamiltonian H with multiplier λ(t)

H = [1− Φ(t)]e−ρtΨ(t)
c(t)1−σ

1− σ +
∑
d

θ(d|t)φ(t)S(t, k(t), d) + λ(t)[rk(t) + (1− τ)w(t)− c(t)].

The necessary conditions include

∂H
∂c(t)

= [1− Φ(t)]e−ρtΨ(t)c(t)−σ − λ(t) = 0

dλ(t)

dt
= − ∂H

∂k(t)
= −

∑
d

θ(d|t)φ(t)
∂S(t, k(t), d)

∂k(t)
− λ(t)r,

and the transversality condition

λ(t∗) =
∂

∂k(t∗)

∫ t′

t∗

(∑
d

θ(d|t)φ(t)R(t, t∗, k(t∗), d)

)
dt.

Note that the Maximum Condition and the multiplier equation are the same as in our model without
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early revelation of information. Therefore, the Euler equation is the same as well

dc(t)

dt
=

(
c(t)σe(ρ−r)t

σΨ(t)

∑
d

θ(d|t)
[

(k(t) +B(t, d))e−rt∫ T
t e−rv+(r−ρ)v/σΨ(v)1/σdv

]−σ
− 1

σ

)(
c(t)φ(t)

1− Φ(t)

)
+

[
Ψ′(t)

Ψ(t)
+ r − ρ

]
c(t)

σ
.

To pin down c(0), we need to use the transversality condition. Evaluate the Maximum Condition at

t∗

[1− Φ(t∗)]e−ρt
∗
Ψ(t∗)c(t∗)−σ = λ(t∗)

and insert into the transversality condition

[1− Φ(t∗)]e−ρt
∗
Ψ(t∗)c(t∗)−σ =

∂

∂k(t∗)

∫ t′

t∗

(∑
d

θ(d|t)φ(t)R(t, t∗, k(t∗), d)

)
dt.

Note that

∂

∂k(t∗)
R(t, t∗, k(t∗), d)

=

∫ T

t∗
e−ρzΨ(z)[c∗2R(z|t, t∗, k(t∗), d)]−σ

∂c∗2R(z|t, t∗, k(t∗), d)

∂k(t∗)
dz

=

∫ T

t∗

[∫ t
t∗(1− τ)w(v)e−rvdv + k(t∗)e−rt

∗
+B(t, d)e−rt∫ T

t∗ e
−rv+(r−ρ)v/σΨ(v)1/σdv

erz/σ

]−σ [
e−rt

∗
e(r−ρ)z/σΨ(z)1/σ∫ T

t∗ e
−rv+(r−ρ)v/σΨ(v)1/σdv

]
dz

=

[∫ t
t∗(1− τ)w(v)e−rvdv + k(t∗)e−rt

∗
+B(t, d)e−rt∫ T

t∗ e
−rv+(r−ρ)v/σΨ(v)1/σdv

]−σ ∫ T

t∗
e−rz

[
e−rt

∗
e(r−ρ)z/σΨ(z)1/σ∫ T

t∗ e
−rv+(r−ρ)v/σΨ(v)1/σdv

]
dz

=

[∫ t
t∗(1− τ)w(v)e−rvdv + k(t∗)e−rt

∗
+B(t, d)e−rt∫ T

t∗ e
−rv+(r−ρ)v/σΨ(v)1/σdv

]−σ
e−rt

∗

= [c∗2R(t∗|t, t∗, k(t∗), d)]−σe(r−ρ)t
∗
Ψ(t∗)e−rt

∗

= [c∗2R(t∗|t, t∗, k(t∗), d)]−σe−ρt
∗
Ψ(t∗).

Hence, we can rewrite the transversality condition again as

[1− Φ(t∗)]e−ρt
∗
Ψ(t∗)c(t∗)−σ =

∫ t′

t∗

(∑
d

θ(d|t)φ(t)[c∗2R(t∗|t, t∗, k(t∗), d)]−σe−ρt
∗
Ψ(t∗)

)
dt,

or

c(t∗) =

(∫ t′

t∗

(∑
d

θ(d|t) φ(t)

1− Φ(t∗)
[c∗2R(t∗|t, t∗, k(t∗), d)]−σ

)
dt

)−1/σ
.

Hence, we can choose c(0) so that this transversality condition holds, given the Euler equation dc/dt,
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the law of motion for savings dk/dt, and the initial condition k(0) = 0.

Welfare

The timing premium ∆0 is the solution to the following equation (which has the same left side as before

but the right side is now modified),

∫ t′

0

(∑
d

θ(d|t)φ(t)

(∫ T

0
e−ρzΨ(z)

[c(z|t, d)(1−∆0)]
1−σ

1− σ dz

))
dt

=

∫ t∗

0

(∑
d

θ(d|t)φ(t)

(∫ t

0
e−ρzΨ(z)

c∗1(z)
1−σ

1− σ dz +

∫ T

t
e−ρzΨ(z)

c∗2(z|t, k∗1(t), d)1−σ

1− σ dz

))
dt

+

∫ t′

t∗

(∑
d

θ(d|t)φ(t)

(∫ t∗

0
e−ρzΨ(z)

c∗1(z)
1−σ

1− σ dz +

∫ T

t∗
e−ρzΨ(z)

c∗2R(z|t, t∗, k∗1(t∗), d)1−σ

1− σ dz

))
dt.

In this context, the timing premium is the amount the individual would pay at time 0 to know his

retirement date and his future disability status upon retirement, rather than learning this information

no later than time t∗.

Appendix G: First-best insurance against timing risk

Let’s assume the individual participates in a first-best arrangement that perfectly insures against retire-

ment timing uncertainty by providing a lump-sum payment FB(t) upon retirement at t. We continue to

assume wages are taxed at rate τ .

Suppose there is no disability risk in the model. If so, then the present value (as of time zero) of total

lifetime income, as a function of the retirement date t, is

PV0(t) =

∫ t

0
e−rv(1− τ)w(v)dv + e−rtY (t) + e−rtFB(t) for all t ∈ [0, t′].

By definition, the first-best arrangement would make the individual indifferent about when the retirement

shock is realized, hence it must satisfy
d

dt
PV0(t) = 0,

or
d

dt
PV0(t) = e−rt(1− τ)w(t)− re−rtY (t) + e−rt

dY (t)

dt
− re−rtFB(t) + e−rt

dFB(t)

dt
= 0 .
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Simplify
dFB(t)

dt
= rFB(t) + rY (t)− dY (t)

dt
− (1− τ)w(t).

The general solution to this differential equation is

FB(t) =

(
C +

∫ t [
rY (v)− dY (v)

dv
− (1− τ)w(v)

]
e−rvdv

)
ert

where C is a constant of integration. Evaluate at t = 0 and solve for C

C = FB(0)−
∫ 0 [

rY (v)− dY (v)

dv
− (1− τ)w(v)

]
e−rvdv

which gives the particular solution

FB(t) = FB(0)ert +

∫ t

0

[
rY (v)− dY (v)

dv
− (1− τ)w(v)

]
er(t−v)dv.

Notice that the level is not pinned down; the overall generosity of the first-best arrangement is

indeterminate. To make a fair comparison with Social Security, we assume the first-best arrangement is

wealth-neutral relative to Social Security in an expectation sense

∫ t′

0
φ(t)FB(t)e−rtdt =

∫ t′

0
φ(t)SS(t|0)e−rtdt,

which pins down FB(0)

FB(0) =

∫ t′

0
φ(t)SS(t|0)e−rtdt−

∫ t′

0
φ(t)

∫ t

0

[
rY (v)− dY (v)

dv
− (1− τ)w(v)

]
e−rvdvdt.

Appendix H. Simple policy

Independent of work history, suppose the government makes a fixed payment p from 65 forward that is

not a function of past earnings. Utilizing the assumption that capital markets are complete, we endow

the individual with the following lump sum at retirement age t,

SP (t) =

(
p×

∫ 1

42/77
e−r(v−42/77)dv

)
er(t−42/77).

To make a fair comparison with Social Security, we assume the simple policy is wealth-neutral relative
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to Social Security in an expectation sense

∫ t′

0
φ(t)SP (t)e−rtdt =

∫ t′

0
φ(t)SS(t|0)e−rtdt,

which implies

p =

∫ t′
0 φ(t)SS(t|0)e−rtdt∫ t′

0 φ(t)
(∫ 1
42/77 e

−r(v−42/77)dv
)
e−r42/77dt

.
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Figure 1. Simulated and Fitted Survival Probabilities
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Figure 5. Consumption over the life cycle with retirement timing uncertainty

max retirement
at 75

c
∗

1

c
NR

c
∗

2

c
∗

2

c
∗

2

c
∗

2

shock at 60

shock at 75

shock at 65

shock at 70



0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

retirement age, t

Figure 6. U.S. Social Security vs. First-Best Insurance

FB(t)

SS(t|0)

t
′ = 52/77
(age 75)

FB(t) and SS(t|0) are lump-sum payments at the date of retirement, t.



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

model age, t

co
n
su
m
p
ti
o
n
,
c
(t
)
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