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1 Introduction

Safety nets are a central pillar of modern financial architectures. By granting liquidity support

to a collection of institutions, a safety net can relieve the strains of eligible members in financial

distress. A long-standing concern about safety nets, however, is that they can lead to excessive

risk taking.1 Accordingly, a key question regarding the design of safety nets is: How should

the stability gained from a financial safety net be balanced against the moral hazard problem?

Despite extensive discussions, the literature lacks a theoretical framework that can be used to

address this question.

In this paper, we tackle the design of financial safety nets using a stylized model of liquidity

demand under limited private credit. As in Holmström and Tirole (1998), the government can

relax credit constraints by providing public liquidity. The question we address is whether the

government should restrict ex ante the set of investors to whom it provides liquidity support

ex post. In a nutshell, how wide should the financial safety net be?

The importance of defining the scope of financial safety nets was underscored during the

2008 financial crisis, especially surrounding the run on the shadow banking system. Because

only depository institutions are granted access to discount window facilities, the Federal Re-

serve found it challenging to provide a backstop to those non-depository institutions in financial

distress. Invoking legal constraints, the US Treasury and the Federal Reserve let Lehman Broth-

ers fail, despite mounting pressures to provide a rescue package.2 At the time, many observers

interpreted the failure to rescue Lehman as a manifestation of a line in the sand between de-

pository institutions and shadow banks, or, through the lens of our model, a definition of the

scope of the safety net.3

We study a model in which investors can save in short-term and long-term assets. These

investors are subject to private idiosyncratic liquidity shocks, which occur before the long-term

asset’s payo↵s are realized, as in Diamond and Dybvig (1983). Because private contracts are

not enforceable, this limits borrowing to smooth liquidity shocks, and in turn introduces a role

for public liquidity provision. The government issues bonds to finance liquidity facilities, and

investors can anonymously trade these bonds. The new feature we introduce in this model is a

government’s choice about the share of investors that are eligible for public liquidity support.

Specifically, we consider a government that chooses at time 0 the share of investors that will be

1Greenspan (2001) notably warned that policymakers must be “very cautious about purposefully or inad-
vertently extending the scope and reach of the safety net.”

2 In his testimony at the Financial Crisis Inquiry Commission in 2009, then Chairman Ben Bernanke stated:
“I will maintain to my deathbed that we made every e↵ort to save Lehman, but we were just unable to do so
because of a lack of legal authority.”

3 Other examples of safety nets arise naturally in international credit markets, involving, for example, the
IMF or other multilateral organizations.
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eligible for liquidity support in the interim period, and lacks commitment to the magnitude of

the liquidity support provided to each eligible investor. The assumption that the government

can commit to the safety net captures in a stylized manner that once a safety net is defined,

it is more di�cult for the government to bypass the scope of the safety net ex post, as vividly

illustrated by the example of Lehman’s bankruptcy. We label the set of investors eligible

for ex post public support the protected sphere and the set of investors excluded from it the

unprotected sphere. Having access to a public liquidity facility, protected agents choose higher

yield, longer-term portfolios than unprotected agents, who have to rely on the short-term asset

to self-insure.

Our analysis of financial safety nets delivers several results, on both the positive and nor-

mative fronts. We first show that if the government can commit to a future liquidity provision

policy, the optimal safety net covers the entire set of investors. With commitment, the govern-

ment can provide an amount of public liquidity that induces the e�cient amount of investment

in long-term assets and thereby leads to the e�cient allocation.4 O↵ering a di↵erential treat-

ment to identical investors is ine�cient if the government has commitment. In this case, the

optimal size of the unprotected sphere is zero.

We then consider the optimal safety net when the government lacks commitment. Specif-

ically, we study a time-consistent equilibrium in which the government chooses without com-

mitment the liquidity support in the interim period. We can characterize in closed form three

distinct regions depending on how wide the safety net is (i.e., how large is the protected sphere

chosen by the government at time 0). In an economy with a small protected sphere, only a

small subset of agents invest in the higher yield, long-term asset, resulting in low output. With

few agents accessing the liquidity facilities, this results in a low level of public debt and a low

interest rate. A low interest rate benefits protected agents because it reduces the cost of access-

ing liquidity facilities in the event of a liquidity shock. Conversely, unprotected agents who save

in the short-term assets are hurt by the low return on their savings. As a result, there is a large

welfare gap between protected and unprotected agents. An economy with a larger protected

sphere features more agents investing in the higher yield, long-term asset and therefore higher

output. In turn, because many agents resort to liquidity facilities, this leads to a higher level

of public debt and a high interest rate, which reduces the welfare gap between protected and

unprotected agents.

Our main normative result is that in a time-consistent equilibrium, the optimal ex ante

government’s choice implies an intermediate-size protected sphere. Unlike in the commitment

case, it is optimal to leave a fraction of investors, strictly between 0 and 1, without liquidity

4As in Yared (2013), the amount of liquidity provision under commitment induces a wedge between the
technological rate of return on the long asset and the rate of return on government bonds.
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support. A safety net covering all investors is undesirable because, under lack of commitment,

the government provides too much liquidity support to protected investors ex post. Anticipating

an access to public liquidity facilities, protected investors free ride on others’ investment in

short-term assets and choose excessively illiquid portfolios. In order to finance the liquidity

facilities, the government needs to issue a large amount of public debt. This in turn yields an

interest rate on government bonds that is too high from a social point of view. A high interest

rate redistributes resources away from investors that have liquidity shortfalls and hurts ex ante

welfare. Because of incomplete markets, the costs of this higher interest rate for borrowing

investors that have a shortfall of liquidity outweigh the benefits to lending investors that have

a surplus of liquidity. In addition, a midsize protected sphere also dominates a small protected

sphere because it features less socially costly liquidity hoarding. A safety net with a midsize

protected sphere is thus desirable from an ex ante welfare perspective.

Related literature This paper is related to a vast literature on public liquidity provision.

Woodford (1990) and Holmström and Tirole (1998) are classic papers showing how public

liquidity provision may relax private borrowing limits. In our model, the government also has

a special role as a liquidity provider, but we address a distinct issue—the design of financial

safety nets. In particular, our model rationalizes a key feature of prevailing safety nets, where

some financial institutions have access to a discount window while other institutions performing

essentially the same activities do not.

Jacklin (1987) argues that full trading opportunities in the Diamond and Dybvig model

generates a free-rider problem that leads to an ine�cient equalization of the marginal rate of

transformation and the interest rate. Farhi, Golosov and Tsyvinski (2009) study a mechanism

design problem and show how liquidity regulation can achieve a constrained e�cient outcome in

this context. In Grochulski and Zhang (2015), the ability of banks to bypass liquidity regulation

puts an additional constraint on the mechanism design problem, and reduces the magnitude of

the intervention. We abstract from liquidity regulation and focus instead on public liquidity

provision and the design of the safety net.

Our environment is closest to Yared (2013). He studies optimal liquidity provision under

commitment, and shows that it entails a wedge between the technological rate of return on the

long asset and the rate of return on government bonds. The government restricts transfers and

bond issuances, so that the return on government bonds remains low, which leads to superior

risk sharing.5 We study instead optimal liquidity provision policy when the government lacks

commitment. In particular, we show that the government provides too much liquidity ex

5In a di↵erent environment, Yared (2015) and Bhandari, Evans, Golosov and Sargent (2015) study the e↵ects
of government debt on inequality.
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post for investors within the safety net, and hence the optimal liquidity provision plan under

commitment is not implementable. We characterize aggregate investment and risk sharing as

a function of the size of the safety net and show that it is strictly optimal to leave a share of

investors outside the safety net.

A related literature highlights how bailouts can increase financial fragility when the govern-

ment lacks commitment. Farhi and Tirole (2012) show that discretionary interest rate policy

makes private leverage decisions strategic complements and generates multiple equilibria. Lack

of commitment also plays an important role in the analysis of bailouts by Acharya and Yorul-

mazer (2007), Diamond and Rajan (2012), and Chari and Kehoe (20016). Nosal and Ordoñez

(2016) show that a government’s uncertainty about whether failed institutions were a↵ected by

idiosyncratic or systemic shocks creates strategic restraint in leverage decisions and supports

government commitment. Freixas (1999) shows that randomizing between bailing out banks

in distress or not can create “constructive ambiguity” and reduce risk taking. Keister (2016)

presents an environment in which a commitment to a no bailout policy is undesirable because

it can increase the likelihood of bank runs, and Keister and Narasiman (2016) show that these

policy conclusions emerge regardless of whether bank runs are driven by expectations or fun-

damentals. Bianchi (2016) finds that bailouts are desirable despite the moral hazard e↵ects if

conducted only during systemic crises. None of these papers, however, study the optimal design

of financial safety nets.

Our paper also relates to a growing literature on shadow banking. Existing work emphasizes

regulatory arbitrage as the raison d’être of shadow banks (see, for instance, Acharya, Schnabl

and Suarez (2013); Gorton and Metrick (2012); and Pozsar et al. (2010)). In this spirit, Plantin

(2015) develops a model in which capital requirements lead banks to bypass regulation through

a shadow banking sector. Ordoñez (2013) shows that the bluntness of capital requirements

can make shadow banks desirable as a way to build reputation and better align the interests

of banks and bondholders. In contrast, our analysis shows that the very existence of these

institutions could be the result of the optimal plan of a government that is subject to a classic

time-inconsistency problem.

The paper proceeds as follows. Section 2 describes the model. Section 3 describes the main

results, and Section 4 concludes. The Appendix includes all of the proofs.

4



2 The Model

2.1 Technology and Preferences

The environment is based on the Diamond and Dybvig (1983) model of consumer liquidity

demand that has been a workhorse in the study of financial intermediation. It is closest to the

model presented by Yared (2013). The economy lasts for three dates: t = 0, 1, 2. There is a

single consumption good and there are two technologies, which we label the short asset and

the long asset. The short asset pays one unit of the good at t + 1 for each unit invested at t.

The long asset pays R̂ > 1 units at date 2 for each unit invested at date 0. For simplicity, we

assume that the long asset cannot be liquidated at date 1.6

The economy is populated by a unit continuum of ex-ante identical agents. These agents

are endowed with e units of the good at t = 0. The type space has two dimensions. At date

0, each individual draws the first dimension of his type: s = {P, U}. A fraction � 2 [0, 1]

of individuals is of type s = P , and the complementary fraction 1 � � is of type s = U . P

stands for protected, while U stands for unprotected. As we will explain below, protected agents

have access to public liquidity and unprotected agents do not. The type dimension s is public

information, and the parameter � is a policy choice on which we elaborate more in Section 2.2.

At date 1, an agent draws the second dimension of his type, ✓ = {0, 1}, which determines the

preference for early consumption. With probability ⇡ 2 (0, 1), an individual is of type ✓ = 0,

while with probability 1�⇡, he is of type ✓ = 1. The distribution parameter ⇡ is a fundamental

of the economy. Agents have Diamond-Dybvig preferences: the utility of an individual of type

(s, ✓) is given by

U (cs1, c
s
2, ✓) = (1� ✓)u (cs1) + ✓⇢u (cs1 + c

s
2) , (1)

where c

s
1 and c

s
2 represent the respective date 1 and date 2 consumption levels, while ⇢ is a

discount factor. The utility function u(·) is twice continuously di↵erentiable, strictly increasing,

and strictly concave, and satisfies the Inada conditions limc!0 u
0(c) = 1 and limc!1 u

0(c) = 0.

The type dimension ✓ refers to liquidity shocks. Agents of type ✓ = 0 are hit by liquidity

shocks and only value consumption at date 1, whereas agents of type ✓ = 1 are not hit by

liquidity shocks and are indi↵erent between consumption at date 1 and date 2. As is standard

in the literature, we assume that the type dimension ✓ is private and cannot be observed by

other agents or the government. We will often refer to agents hit by a liquidity shock as

impatient agents and to agents not hit by a liquidity shock as patient agents.

The type dimension s determines the eligibility for public support at t = 1. Agents of type

s = U are unprotected and are not entitled to public liquidity provision, whereas agents of type

6All results carry through qualitatively as long as the date 1 liquidation value is strictly smaller than one.
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s = P are protected and can receive public liquidity at date 1. Unlike the type dimension ✓,

the type dimension s is public. In what follows, we will denote an allocation of consumption

across consumers by {cs1(✓), cs2(✓)}✓2{0,1},s2{U,P}.

We define `s 2 [0, 1] as the fraction of the date 0 endowment invested in the short asset

by a type s individual. Accordingly, we denote by L

s 2 [0, 1] the aggregate choice of type

s individuals. In equilibrium, consistency will require that aggregate and individual choices

coincide, that is, Ls = `

s for s 2 {U, P}.
We make some parametric assumptions to ensure that the equilibria we consider fall within

economically interesting regions.

Assumption 1. As in Diamond and Dybvig (1983), the relative risk aversion is weakly larger

than 1:

� u

0(c)

cu

00(c)
 1 for all c > 0, (2)

and R̂

�1
< ⇢ < 1.

Assumption 1 notably implies that e�cient risk sharing requires impatient agents to consume

more than e and patient agents to consume less than R̂e.

Assumption 2. The probability of being hit by a liquidity shock is not too small:

⇡ � ⇢(R̂� 1)

1 + ⇢(R̂� 1)
.

This assumption ensures that in all equilibria we consider, agents make investment choices

such that they never consume positive amounts at date 2 when they turn out to be impatient.7

2.2 Public Liquidity Provision and Markets

We assume that private contracts are not enforceable. The assumption of unobservability

of liquidity shocks implies that contracts cannot be written at date 0 contingent upon their

realization at date 1, and the lack of enforceability implies that agents cannot borrow privately

either at date 0 or at date 1. The assumption of imperfect private contract enforceability

motivates the analysis of public liquidity provision and the design of an optimal safety net.

The government makes two distinct choices at date 0 and date 1. At date 0, it sets the share

of protected agents �, and hence sets the respective probabilities with which an agent draws a

7Agents who turn out to be impatient do not value date 2 consumption, but if liquidity shocks occur with a
su�ciently low probability, they might find it optimal to make investment decisions at date 0 that result in an
ex post wasting of date 2 resources in the contingency where they are hit by these shocks. Assumption 2 rules
out this case.
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type s = U or s = P at date 0. At date 1, it provides a liquidity facility to protected agents,

and finances it by issuing public debt. We hereafter provide details on the government’s policy

at date 1 and postpone our exposition of the government’s date 0 safety net decision to Section

3.

At date 1, the government issues public debt and extends credit to protected agents. At

date 2, it uses the proceeds from protected private investors’ repayments to pay back public

debt holders. In the background, we assume that the government has a superior technology

to enforce repayment, which is a standard assumption in the literature on public liquidity

provision. As we will show below, this access to a better enforcement technology allows the

government to reach the e�cient allocations under commitment, but not under discretion.

We assume that the credit facility is contingent on protected agents’ portfolio position.8

Because the liquidity shock realization is private information, the credit facility cannot be made

contingent on ✓. Accordingly, we denote the quantity of credit extended by the government to

agents with short asset position ` by B(`) and the aggregate amount of public debt by B. The
government demands the same interest rate 1/q on the credit it extends to protected agents as

the one it pays on its own public debt, it has zero initial public debt, and it does not finance

any public expenditures. Its budget constraints thus require that

Z �

0

B(`j)dj = B. (3)

We denote by b

s(✓) the individual holdings of government bonds and assume that govern-

ment bonds cannot be shortened (i.e., bs(✓) � 0). The budget constraints of an unprotected

agent are represented by

`

U 2 [0, 1], (4)

c

U
1 (✓) = `

U
e� qb

U(✓), (5)

c

U
2 (✓) = R̂(1� `

U)e+ b

U(✓), (6)

while those of a protected agent are represented by

`

P 2 [0, 1], (7)

c

P
1 (✓) = `

P
e� qb

P (✓) + qB(`P ), (8)

c

P
2 (✓) = R̂(1� `

P )e+ b

P (✓)� B(`P ), (9)

8By making the government liquidity provision contingent on individual variables as opposed to aggregate
variables, we are able to abstract from issues of multiplicity that would arise in this model when we turn to the
optimal time-consistent equilibria (see, e.g., Farhi and Tirole, 2012).
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for ✓ 2 {0, 1}. We have used in (5) and (8) that in an equilibrium with q  1, agents weakly

prefer to save using government bonds between date 1 and date 2 rather than use the short

asset.9 Combining the government’s budget constraint (3) with (5), (6), (8), (9) and the public

debt market clearing condition

B = (1� �)[⇡bU(0) + (1� ⇡)bU(1)] + �[⇡bP (0) + (1� ⇡)bP (1)], (10)

we obtain that a feasible allocation needs to satisfy the economy’s resource constraint

⇡



(1� �)

✓

c

U
1 (0) +

c

U
2 (0)

R̂

◆

+ �

✓

c

P
1 (0) +

c

P
2 (0)

R̂

◆�

+(1� ⇡)



(1� �)

✓

c

U
1 (1) +

c

U
2 (1)

R̂

◆

+ �

✓

c

P
1 (1) +

c

P
2 (1)

R̂

◆�

= e. (11)

An alternative representation of the agents’ constraint set is given by

c

s
1(✓) + qc

s
2(✓) = `

s
e+ qR̂(1� `

s)e

c

s
1(✓)  `

s
e+ I{s=P}qB(`s).

These substitutions show that the protected agent’s problem induced by a government debt

policy is equivalent to that of an agent who faces an exogenous borrowing limit bP (✓) � �B(`P )

in the absence of public liquidity provision. On the other hand, because they do not benefit

from public liquidity provision, unprotected agents always face an e↵ective borrowing limit

b

U(✓) � 0. The government’s date 0 choice about the size of the protected sphere will determine

the respective fractions of agents facing a relaxed borrowing limit �B(`) and of those facing an

unrelaxed limit at 0. One might think that the government would like to maximize the fraction

of agents who face a relaxed borrowing limit ex post, but as our analysis of Section 3 reveals,

this not the case when the government cannot commit ex ante about its debt issuance policy.

The timeline is summarized in Figure 1.

We let (s, `, ✓) denote an agent’s individual state and X ⌘ (�, LU
, L

P ) denote the aggregate

state. We also let B(`) denote a public liquidity provision policy, q(X) denote the bond pricing

function, and C1(s, `, ✓, X), C2(s, `, ✓, X) represent the date 1 decision rules of an agent, whose

9An equilibrium with q > 1 implies bs(✓) = 0. That is, if the return on government bonds is lower than the
return on short assets, government bonds would be strictly dominated assets.
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Time

t = 0

Gov. chooses
share of protected agents

Agents observe
their public type s

and invest

t = 1

Agents observe
their private

type ✓

Gov. provides liquidity
to protected agents

Agents invest
and consume

t = 2

Gov. collects repayments
from protected agents

Agents collect
investment proceeds

and consume

Figure 1: Timeline of the model.

problem is

V1(s, `, ✓, X) = max
c1,c2

U (c1, c2, ✓) (12)

subject to

c1 + q(X)c2 = `e+ q(X)R̂(1� `)e, and c1  `e+ (s, `, X),

where

(s, `, X) ⌘

8

<

:

0 for s = U

q(X)B(`) for s = P

(13)

is a type- and agent-specific e↵ective borrowing limit. This problem is defined for any policy

B(`). We can then define a date 1 continuation equilibrium.

Definition 1 (Continuation equilibrium). Given a government policy B(`), a continuation equi-

librium is a value function V1(s, `, ✓, X) with associated decision rules C1(s, `, ✓, X), C2(s, `, ✓, X),

and a bond pricing function q(X) such that

1. given q(X) and B(`), V1(s, `, ✓, X) solves the agent’s date 1 problem (12), and

2. the markets for date 1 and 2 consumption clear:10

X

s

X

✓

�s⇡✓C1(s, Ls
, ✓, X) 

X

s

�sL
s
e, (14)

X

s

X

✓

�s⇡✓C2(s, Ls
, ✓, X) =

X

s

�sR̂(1� L

s)e

+

"

X

s

�sL
s
e�

X

s

X

✓

�s⇡✓C1(s, Ls
, ✓, X)

#

. (15)

10To simplify notation, we define ⇡0 ⌘ ⇡ and ⇡1 ⌘ 1� ⇡, as well as �P ⌘ � and �U ⌘ 1� �.
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This is a standard definition of a competitive equilibrium, adapted to accommodate the

dependence of the government’s liquidity provision policy upon the ex-ante choices of agents.

Condition (14) requires that aggregate date 1 consumption does not exceed the aggregate payo↵

of the short asset at date 1. Condition (15) requires that aggregate date 2 consumption does

not exceed the aggregate payo↵ of the long asset, plus the payo↵ of the short asset invested

in between date 1 and date 2. By Walras’ law, the market clearing condition on government

bonds is satisfied. The following lemma characterizes a continuation equilibrium. This charac-

terization will be useful when we turn to analyze the optimal government policy and highlight

the role of commitment.

Lemma 1 (Continuation equilibrium). A continuation equilibrium features11

1. a bond price function satisfying

q(X) = min

(

e

1� ⇡

⇡

�L

P + (1� �)LU

�min{R̂(1� L

P )e, B(LP )}
, 1

)

, (16)

2. consumption allocations satisfying

C1(s, `, 0, X) = `e+min
n

q(X)R̂(1� `)e,(s, `, X)
o

, (17)

C2(s, `, 0, X) = max

⇢

R̂(1� `)e� (s, `, X)

q(X)
, 0

�

, (18)

C1(s, `, 1, X) = 0, (19)

C2(s, `, 1, X) = R̂(1� `)e+
`e

q(X)
. (20)

Proof. See Appendix A.1.

According to this lemma, in the absence of public liquidity provision, all impatient agents

consume the proceeds of their short asset at date 1 and consume the payo↵ of their long asset at

date 2. The latter is wasteful because these agents do not value date 2 consumption, but they

have no choice since credit constraints prevent them from transferring resources from date 2 to

date 1. By relaxing protected agents’ e↵ective credit constraint, the extension of public liquidity

allows this set of agents to transfer some or all of their date 2 illiquid wealth stemming from the

payo↵ of their long asset back into date 1. Patient agents, on the other hand, consume only at

date 2. These agents are natural savers at date 1, and therefore public debt issuance does not

11When an equilibrium features q = 1, any other allocation such that c1+c2 = R̂(1� `)e+ `e (and c1, c2 � 0),
together with the price q = 1, also constitutes an equilibrium, but we can focus without loss of generality on
the one featuring c1 = 0 and c2 = R̂(1� `)e+ `e.
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generate an asymmetry between the protected and unprotected patient agents’ consumption.

However, patient agents (at least weakly) benefit from a higher level of public debt to the extent

that it (weakly) increases the interest rate they earn on date 1 bond purchases (the bond price

q is weakly decreasing in public debt issuance B since the demand for government bonds by

patient agents is decreasing in the price).

For a given liquidity provision policy B(`), an agent’s date 0 problem can be represented as

V0(s,X) = max
`2[0,1]

⇡V1(s, `, 0, X) + (1� ⇡)V1(s, `, 1, X). (21)

Given this date 0 problem and Definition 1 of a continuation equilibrium, we have the following

definition of a competitive equilibrium:

Definition 2 (Competitive equilibrium). Given government policies {�, B(`),B}, a competitive

equilibrium is a vector of aggregate variables X, a date 0 value function V0(s,X) with associated

policy function `(s,X), a date 1 value function V1(s, `, ✓, X) with associated decision rules

C1(s, `, ✓, X), C2(s, `, ✓, X), and a bond price function q(X) such that

1. V1(s, `, ✓, X), C1(s, `, ✓, X), C2(s, `, ✓, X), and q(X) are induced by a continuation equilib-

rium according to Definition 1,

2. V0(s,X), `(s,X) solve the agent’s problem (21),

3. aggregate variables are consistent with individual choices: X = (�, `(P,X), `(U,X)),

4. the government’s budget constraint (3) is satisfied.

Discussion of assumptions. Before we turn to the normative analysis of safety nets, it

is useful to discuss some assumptions we have made. A first set of assumptions regard the

imperfect enforceability of private contracts, which are standard in the literature to motivate

a role for public liquidity provision. We also assume that there is no private credit market at

either date 0 or date 1, and that there are no secondary markets for long assets in the interim

period.12 Both of these assumptions can be relaxed to some extent, as discussed in Section

3.3.4. As long as the constraints on either borrowing or sales of assets are su�ciently tight, our

qualitative results remain unchanged.

12 Allowing for a secondary market for assets is equivalent to allowing for private credit markets. The basic
idea is that a patient investor would buy the assets from an impatient investor, in the same way as a patient
investor would lend to an impatient investor in the credit market. A standard argument for restrictions on
secondary markets is asymmetric information. If the quality of the asset cannot be verified by the buyer, the
market could break down or restrictions could be imposed on the amount of assets that can be sold (e.g., Akerlof
(1970); Kiyotaki and Moore, 2012).

11



Our second set of assumptions regard our modeling of safety nets. We assume that the

government can credibly commit to excluding a set of investors from financial assistance. In line

with our motivation, we are interested in developing an environment in which the government is

able to implement such a policy. In the background, we want to capture a variety of situations

in which explicitly defining a safety net makes it more di�cult for the government to rescue ex

post those institutions that are not eligible to receive assistance. While in practice there are

certainly circumstances under which the government bypasses the scope of the safety net defined

earlier in time, doing so brings up reputational costs for the government.13 Incorporating these

reputational costs would require a dynamic environment, which is beyond the scope of this

paper. Still, Section 3.3.4 shows that when investors anticipate that the safety net announced

by the government will be implemented, the government does not find it optimal to deviate

from the announcement ex post.

In addition, we also assume that investors have no choice regarding which sphere they belong

to. The government chooses the size of the protected and unprotected spheres, and investors are

assigned randomly to either of the two spheres. As it will turn out, the equilibrium welfare of

protected investors will be higher than that of unprotected investors. A potentially interesting

issue that we abstract from is investors’ entry decision into the two spheres in the presence of

other costs associated with being in the protected sphere (e.g., there could be a tax on protected

investors so that in equilibrium, investors are indi↵erent between belonging to either of the two

spheres).14

3 Optimal Policy Analysis

3.1 E�cient Allocation

We start by characterizing the e�cient allocation. This allocation will serve as a benchmark

for our normative analysis. In presenting this allocation, we abstract from the type dimension s

of agents, since it is unrelated to their preferences. The e�cient allocation solves the following

13 For example, the Federal Reserve ended up providing emergency liquidity assistance to non-depository
primary dealers, through programs such as the Primary Dealer Credit Facility (PDCF) and the Term Securities
Lending Facility (TSLF).

14 In an interesting paper, Grochulski and Zhang (2015) analyze optimal regulation in an environment in
which banks can choose to shift activity to an unregulated sector to avoid liquidity regulation by incurring an
exogenous cost. One possible foundation for this cost could be a loss of safety net coverage associated with
shifting activity away from the regulated sector that we model in this paper.
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problem:

max
c1(0),c2(0),c1(1),c1(2)

⇡U (c1(0), c2(0), 0) + (1� ⇡)U (c1(1), c2(1), 1) (22)

subject to

⇡



c1(0) +
c2(0)

R̂

�

+ (1� ⇡)



c1(1) +
c2(1)

R̂

�

 e,

and c1(0), c2(0), c1(1), c2(1) � 0.

The solution to this problem is described in the lemma below.

Lemma 2 (E�cient Allocation). The solution to the planning problem satisfies e < c

⇤
1(0) <

c

⇤
2(1) < R̂e and c

⇤
2(0) = c

⇤
1(1) = 0, with u

0(c⇤1(0)) = ⇢R̂u

0(c⇤2(1)).

Proof. See Appendix A.2.

Thus, as is standard under Diamond-Dybvig preferences, the allocation features zero date 2

consumption of impatient agents, zero date 1 consumption of patient agents, and risk sharing

between patient and impatient agents that is consistent with an equalization of the social

marginal rate of transformation 1/R̂ and the marginal rate of substitution ⇢u0(c⇤2(1))/u
0(c⇤1(0)).

3.2 Optimal Safety Net under Commitment

We now turn to analyzing decentralized equilibria. We start by assuming that the government

can commit at date 0 about its date 1 liquidity provision policy. This will be helpful to highlight

the role of the government’s inability to commit in our analysis of the design of the optimal

safety net.

In this case, after the government sets � and credibly announces a future liquidity provi-

sion policy B

c(`) at date 0, private agents make investment choices. Recall that agents know

whether they are protected at the time of making their date 0 investment choice. As discussed

earlier, households draw their type randomly and thus cannot choose to become protected or

unprotected.

Under commitment, the government chooses the policy {�c, Bc(`),Bc} to attain the com-

petitive equilibrium with highest time 0 utility.

Proposition 1 (Optimal policy under commitment). A safety net architecture covering all

agents (�c = 1), together with a commitment to provide an amount of public liquidity B

c(`) =

B

c = (1� ⇡)c⇤2(1), achieves the e�cient allocation described in Lemma 2.

Proof. See Appendix A.3.
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This proposition shows that it is optimal to cover all agents and that the appropriate amount

of liquidity provision achieves the e�cient allocations. The latter result is related to Yared

(2013), who established that under a weaker version of Assumption 2, a fiscal policy scheme

equivalent to our credit facility can achieve the e�cient allocations when the government has

commitment.15 Proposition 1 indicates that if the government were able to commit to a future

liquidity provision policy, it would not leave any agent outside the safety net. In fact, setting

a boundary between protected agents and unprotected agents not only is redundant but also

would deliver strictly lower ex ante welfare.16

Below, we relax the assumption that the government can commit to its liquidity provision

policy and show that having a smaller safety net becomes strictly optimal. To put the results

below into perspective, it is useful to note that under commitment, the amount of liquidity

provision that the government commits to provide puts a lower bound on the amount of short

assets that agents choose to invest in. If agents were to invest less in short assets than the level

associated with the e�cient allocation and were to end up being impatient, they would become

credit constrained. This will contrast with the outcome that prevails when the government lacks

commitment. As we show below, under discretion the government will ex post relax agents’

credit constraints unconditionally (i.e., for any values of their investment choice). Anticipating

the reaction of the government, agents will invest too little in short assets in the initial period.

The inability of the government to commit to the extent of an ex post public liquidity provision

will create a rationale for optimal management of the safety net.

3.3 Optimal Safety Net under Discretion

To analyze optimal policy under discretion, we proceed by backward induction. We start

by solving for the government’s optimal liquidity provision policy at date 1 when it is not

bound by past commitments. We then move back to date 0 choices and characterize time-

consistent equilibria, for a given safety net architecture represented by the value of �. Finally,

we characterize the optimal ex ante choice of �.

3.3.1 Ex post Policy: Liquidity Provision

After date 0 choices have been made, the government chooses the liquidity provision policy

rule Bd(`) to maximize the average welfare of unprotected and protected agents subject to the

15Without this assumption, Yared (2013) finds that the government, despite not reaching the e�cient alloca-
tion, should still restrict public debt issuances to prevent underinvestment in liquid assets.

16To see this, note that an unprotected impatient agent’s consumption cannot exceed e, which is strictly lower
than the impatient agents’ consumption in the e�cient allocation.
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private sector’s date 1 response to its actions. The government solves

max
{Bj}j2[0,�]

Z �

0

[⇡V1 (P, `i, 0, X) + (1� ⇡)V1 (P, `i, 1, X)] di

+

Z 1

�

[⇡V1 (U, `i, 0, X) + (1� ⇡)V1 (U, `i, 1, X)] di, (23)

where V1(·) is given by our definition of a continuation equilibrium.

The following proposition establishes that an optimal ex post policy always features a full

relaxation of impatient protected agents’ e↵ective borrowing constraints at date 1.

Proposition 2 (Optimal ex post bailout). An equilibrium with an optimal ex post policy

features a full relaxation of impatient protected agents’ e↵ective credit constraints, B

d(`) =

R̂(1� `)e. Further, the equilibrium bond price is given by

q(X) = min

⇢

1

R̂

1� ⇡

⇡

�L

P + (1� �)LU

�(1� L

P )
, 1

�

, (24)

and the equilibrium consumption of protected agents is given by

C1(P, `, 0, X) = `e+ q(X)R̂(1� `)e, (25)

C2(P, `, 1, X) = R̂(1� `)e+
`e

q(X)
. (26)

Proof. See Appendix A.4.

Proposition 2 establishes that it is always optimal for the government to provide an amount

of public liquidity that makes a protected agent unconstrained in a date 1 continuation equi-

librium. The intuition for the ex post optimality of fully relaxing constraints is as follows. For

Bi < R̂(1 � `i)e, increasing Bi always increases the equilibrium consumption of some agent

without decreasing the equilibrium consumption of another agent. To see this, we distinguish

the situations in which q = 1 from the ones in which q < 1. When q = 1, an increase in

Bi increases the equilibrium consumption of the protected impatient agent i while leaving the

equilibrium consumption of other agents unchanged. The increase in agent i’s consumption

is the result of a borrowing constraint relaxation at a locally unchanged interest rate. When

q < 1, on the other hand, an increase in Bi increases the equilibrium consumption of all patient

agents while leaving the equilibrium consumption of impatient agents unchanged. The increase

in patient agents’ consumption results from the upward pressure on the return on government

debt from date 1 to date 2 (i.e., q is decreasing in Bi). It follows that the government’s value

function is strictly increasing in Bi for Bi < R̂(1 � `i)e. For Bi � R̂(1 � `i)e, on the other

15



hand, equilibrium consumption allocations do not locally depend on Bi. It follows that the

debt issuance policy B

d(`) = R̂(1� `)e is optimal.

A higher level of public liquidity provision is thus always desirable ex post up to the point

where protected agents’ e↵ective credit constraints are fully relaxed. This is true for any level

of private investment. In the absence of commitment, an optimal public liquidity provision

policy hence works as insurance provided freely to protected agents. This contrasts with the

optimal policy under commitment, which o↵ers a limited amount of insurance. This extra layer

of insurance present under discretion will distort ex ante incentives.

As we will see below, the moral hazard costs induced by discretion in public liquidity

provision depend on the size of the protected sphere. In the next sections, we provide a sharp

analytical characterization of this relationship and analyze the key trade-o↵s involved in the

optimal setting of the size of the safety net.

3.3.2 Time-Consistent Equilibrium

After the government has set � at date 0, private agents make investment choices. Agents

know � and forecast aggregate actions LP
, L

U to form beliefs about q(X). They also rationally

anticipate the ex post public liquidity provision policy rule B

d(`). We can define a time-

consistent equilibrium as follows:

Definition 3 (Time-consistent equilibrium for given safety net �). For a given �, a time-

consistent equilibrium is a liquidity provision policy B

d(`), a bond price q(X), consumption

policies C1(s, `, ✓, X), C2(s, `, ✓, X) and investment portfolio ` such that:

1. B

d(`) solves (23),

2. ` solves (21),

3. V1(s, `, ✓, X) , C1(s, `, ✓, X), C2(s, `, ✓, X), q(X), and B

d(`) are a continuation equilibrium

according to Definition 1.

Using Proposition 2’s result that Bd(`) = R̂(1�`)e, the time-consistent equilibrium for given

� can be conveniently solved for in closed form, as summarized in the following proposition.

Proposition 3 (Characterization of time-consistent equilibria for given safety net �). In a

time-consistent equilibrium, unprotected agents always invest all of their endowment into the

short asset: L

U = 1. For other variables, we can distinguish between three mutually exclusive

regions, characterized by boundaries 0 < � < � < 1, with � ⌘ 1�⇡
1�⇡+R̂⇡

and � ⌘ 1� ⇡:

• Region I (0  � < �): protected agents invest LP = 0, the date 1 bond price is q = 1, and

the consumption allocations are c

U
1 (0) = c

U
2 (1) = e and c

P
1 (0) = c

P
2 (1) = R̂e.
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• Region II (�  �  �): protected agents invest L

P = 0, the date 1 bond price is q =
1
R̂

(1�⇡)(1��)
⇡� , and the consumption allocations are cU1 (0) = e, cU2 (1) = R̂

⇡�
(1�⇡)(1��)e, c

P
1 (0) =

(1�⇡)(1��)
⇡� e, and c

P
2 (1) = R̂e.

• Region III (� < �  1): protected agents invest LP = ⇡+��1
� , the date 1 bond price is

q = 1/R̂, and the consumption allocations are cU1 (0) = c

P
1 (0) = e and c

U
2 (1) = c

P
2 (1) = R̂e.

Proof. See Appendix A.5.

The equilibrium of the model takes di↵erent forms depending on the size of the protected

sphere �. In all of the cases that arise, unprotected agents always invest all of their endowment

in the short asset at date 0. We note that in the laissez-faire benchmark where all agents

are unprotected (� = 0), everyone invests his entire endowment into the short asset (LU = 1)

and consumes an amount equal to that endowment whether hit by a liquidity shock or not at

date 1 (cU(0) = c

U(1) = e). Thus, the laissez-faire benchmark features an extreme form of

self-insurance that results in clear e�ciency losses relative to the e�cient allocation. We now

discuss equilibrium properties in the di↵erent regions.

Region I When the fraction of protected agents is smaller than a threshold � <

1�⇡
1�⇡+R̂⇡

, we

say that there is a small protected sphere. In this case, the demand for government bonds by

patient unprotected agents at date 1 is large enough to push the interest rate down to its lower

bound 1/q = 1. In this region, impatient protected agents benefit from fully relaxed credit

constraints and a low interest rate at date 1, which allow them to transfer the date 2 proceeds

of their long investment back into date 1 one for one. On the other side of the trade, patient

unprotected agents are not able to earn a return higher than the storage technology between date

1 and date 2 on the proceeds of their date 0 short investment. Thus, in equilibrium, protected

agents always end up consuming R̂e, and unprotected agents always end up consuming e,

whatever the realization of their liquidity shocks. This region features an extreme form of

redistribution between the two spheres. A large unprotected sphere has the same consumption

profile as in the laissez-faire benchmark (i.e., when � = 0) and implicitly subsidizes a small set

of protected agents.

Region II When the fraction of protected agents is between two thresholds 1�⇡
1�⇡+R̂⇡

 � 
1 � ⇡, we say that there is a medium protected sphere. In this case, the mass of unprotected

agents is still large enough for protected agents to completely rely on the short asset investment

made by unprotected agents. However, the aggregate amount of debt issued by the government

is not high enough relative to the supply of funds to push the date 1 interest rate to R̂, so

impatient protected agents, whose credit constraints are fully relaxed by the bailout, can enjoy
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a consumption level higher than e (the date 0 payo↵ on their long investment, R̂e, is worth more

than e when discounted into date 1 at the prevailing interest rate). Patient unprotected agents,

on the other hand, earn a positive return, albeit lower than R̂, between date 1 and date 2 on

the proceeds from their date 0 short investment. Their date 2 consumption is therefore higher

than the laissez-faire level of e, but it falls short of R̂e. This discussion, together with Panel

(d) of Figure 2, makes it clear that in this region, government bailouts induce a redistribution

of resources from unprotected to protected agents, whose strength decreases with the share of

protected agents �. As � increases, the gap between the equilibrium consumption of protected

and unprotected agents narrows in both liquidity risk contingencies (✓ = 0 and ✓ = 1). The fact

that this gap is decreasing in � reflects the fact that as � increases, there are fewer and fewer

unprotected agents who self-insure by investing in the short asset, which puts an increasing

upward pressure on the date 1 interest rate.

Region III When the fraction of protected agents is greater than a threshold � > 1� ⇡, we

say that there is a large protected sphere. Protected agents invest only a fraction L

P = ⇡+��1
�

of their date 0 endowment in the short asset. This fraction is equal to zero when � = 1 � ⇡,

is increasing in �, and reaches ⇡ when � = 1. Panel (e) of Figure 2 represents the date 0

investment choice of agents as a function of the size of the protected sphere �. Protected

agents anticipate being bailed out by the government at date 1. This a priori eliminates their

incentive to self-insure by investing in the short asset. However, someone needs to invest in the

short asset to support the consumption of impatient agents at date 1, and when the number of

unprotected agents in the economy is small, protected agents need to do their share of short

investment at date 0. Given a full relaxation of credit constraints by the government ex post,

for there to be an incentive to invest in the short asset for protected agents, the return on

government bonds between date 1 and date 2, 1/q, needs to equal the return on the long asset

R̂. Panel (d) of Figure 2 represents the consumption allocations of agents as a function of the

size of the protected sphere �. In this region, all impatient agents consume e, and all patient

agents consume R̂e. This consumption allocation strictly dominates the allocation achieved

by the benchmark economy without government intervention (� = 0). Perhaps surprisingly,

protected agents are not better o↵ than unprotected agents in this case, even though the former

benefit from a public liquidity provision and the latter do not. Despite not benefiting directly

from a public liquidity provision, unprotected agents benefit from it indirectly through the

price system. In this region, the government issues aggregate amounts of public debt that are

su�ciently high to push the date 1 interest rate on government bonds to its upper bound R̂.

Unprotected agents who turn out to be patient are thus able to earn a return of R̂ between date
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1 and date 2 on the proceeds from their date 0 short investment. This enables them to achieve

the same equilibrium consumption profile as protected agents. Panel (b) of Figure 2 displays

the interest rate as a function of the size of the protected sphere, and Panel (c) represents

aggregate public debt issuance.

To see more clearly why the allocations under commitment are not an equilibrium outcome

under discretion, consider the date 0 decision of a protected agent in a fully protected economy,

when all other agents hypothetically make the same investment choice as under commitment.

Note that this collective investment choice leads to an interest rate such that 1/q < R̂ ex post.

And given that the government will always relax the protected individual’s credit constraint

ex post, it is strictly optimal for this agent to invest all if his endowment into the long asset

at date 0. By doing so, he is better o↵ in any contingency. If he turns out patient, he enjoys

a strictly higher date 2 consumption of R̂e > c

⇤
2(1). If he turns out impatient, he can freely

borrow against his date 2 investment income R̂e at an interest rate 1/q = c

⇤
2 (1) /c

⇤
1 (0) and hence

will also enjoy a strictly higher date 2 consumption of qR̂e = c

⇤
1 (0) R̂e/c

⇤
2 (1) > c

⇤
1 (0). Since

there is an incentive for individual deviations, this, of course, cannot constitute an equilibrium.

The fundamental problem is that agents free ride on other agents’ short investments when the

government lacks commitment about its liquidity provision policy, exactly as they would if side

trades were available (Jacklin, 1987).17

Now that we have fully characterized time-consistent equilibria conditional on the size of the

protected sphere �, we can finally turn to the analysis of the optimal choice of this parameter

by a welfare benevolent government at date 0.

3.3.3 Ex ante Policy: Size of the Protected Sphere

We now consider the date 0 choice of a welfare benevolent government that sets the size of the

protected sphere � while anticipating the response of agents in a time-consistent equilibrium.18

The government solves

W0 = max
�2[0,1]

�V0(P,X) + (1� �)V0(U,X) (27)

subject to

X = (�, `(P,X), `(U,X)).

The following proposition contains our main result.

17This free rider problem is distinct from the coordination problem typically present in the literature on
bailouts (e.g., Farhi and Tirole, 2012, Keister, 2016).

18We deliberately abstract from prudential policies that influence agents’ portfolio choices at time 0.
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Proposition 4 (Optimal ex ante size of protected sphere). The optimal size of the protected

sphere is interior, satisfying � < �

d
< �.

Proof. See Appendix A.6.

Proposition 4 establishes that the optimal size of the protected sphere is not a corner

solution. The optimal safety net architecture from an ex ante perspective features positive

masses of protected and unprotected agents. The intuition for this result can most easily be

built by considering how welfare depends on � within each of the three regions defined in Section

3.3.2.

Panel (e) of Figure 2 represents ex ante average welfare as a function of the size of the

protected sphere �. We first note that ex ante average welfare is continuous in � since all

equilibrium consumption allocations are continuous in �. In region I, protected agents always

consume R̂e, whereas unprotected agents always consume e. Hence in that region, the welfare

of protected agents is strictly higher than that of unprotected agents. It follows that ex ante

average welfare is strictly increasing in � in that region, with a maximum of �u(e)+(1��)u(R̂e)

at the upper bound � = �. Safety net architectures with small protected sectors strictly

dominate the laissez-faire benchmark (� = 0) because protected agents are strictly better

o↵ than in the laissez-faire benchmark and unprotected agents are no worse o↵. In region III,

protected and unprotected agents consume the same amounts in equilibrium in the contingency

in which they are patient. Likewise, they consume the same in the contingency in which they

are impatient. It follows that within this region, ex ante average welfare is constant with respect

to � and given by ⇡u(e) + (1� ⇡)⇢u(R̂e). We also note that since � < 1� ⇡, ex ante average

welfare is strictly higher in region III than in region I. By the continuity of ex ante average

welfare with respect to �, it must therefore be that the optimal size of the protected sphere

falls in region II. But a key feature of our first result in Proposition 4 is that the optimal size

of the protected sphere lies in the interior of region II rather than at its right boundary, so that

the optimal safety net architecture strictly dominates a fully protected economy.

The ex ante optimality of restricting the scope of protection in the economy can be drawn

from the fact that the left derivative of ex ante average welfare is strictly negative at � = � =

1 � ⇡. The intuition has to do with the improvement in risk sharing induced by the splitting

of agents between a protected and an unprotected sphere. In region II, a marginal decrease

in � causes a decrease in the equilibrium date 1 interest rate. Since in this region impatient

protected agents borrow in equilibrium from patient unprotected agents, this decrease in the

interest rate redistributes wealth from the latter to the former.19 At � = � = 1 � ⇡, such

a wealth redistribution is necessarily socially desirable given that (i) the masses of patient

19The e↵ect of this redistribution on equilibrium consumption can be inferred from Panel (d) of Figure 2.
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unprotected and impatient protected agents are equal (i.e., to ⇡(1 � ⇡)), and (ii) relative to

the e�cient allocation, impatient agents consume too little and patient agents consume too

much (a consequence of Assumption 1). Hence, a marginal decrease in the share of protected

agents from � = 1�⇡ unambiguously increases the ex ante average welfare criterion. It directly

follows that the optimal size of the protected sphere �d must lie strictly between � and �. This

intuition is illustrated in Panel (e) of Figure 2. There, it is apparent that directly to the left of

� = � = 1� ⇡, the welfare increase for protected agents more than o↵sets the welfare decrease

for unprotected agents, so that ex ante average welfare is strictly decreasing in �.

The optimal size of the safety net �d then balances the risk-sharing benefits just de-

scribed with the costs induced by a distortion resulting from a dispersion in the consump-

tion of protected and unprotected agents. In region III, this distortion is absent, since all

impatient agents consume e and all patient agents consume R̂e. But in region II, when �

is lowered starting from �, consumption gaps of c

P
1 (0) � c

U
1 (0) = (1 � ⇡ � �)e/(⇡�) and

c

P
2 (1) � c

U
2 (1) = (1 � ⇡ � �)R̂e/[(1 � ⇡)(1 � �)] emerge between protected and unprotected

agents. These gaps are decreasing in �. Therefore, the optimal safety net �d can be seen as the

point where, from the perspective of the government, the benefits arising from the (pecuniary

externality induced) redistribution between unprotected patient agents and protected impa-

tient agents just o↵set the costs arising from the distortion between protected and unprotected

agents.

How does the safety net vary with fundamental parameters of the economy? The following

proposition characterizes how the size of the safety net varies with the probability of experi-

encing a liquidity shock and the return on the long asset.

Proposition 5 (Comparative statics). The optimal size of the protected sphere � is strictly

decreasing in the probability of experiencing a liquidity shock (i.e., @�d/@⇡ < 0) and weakly

decreasing in the long asset return (i.e., @�d/@R̂  0).

Proof. See Appendix A.7.

The interpretation of these comparative statics results can be framed in terms of the trade-o↵

described above. We start by discussing the partial e↵ect of ⇡. Consider a marginal increase in

⇡ from ⇡0 to ⇡1, and label the optimal safety nets associated with ⇡0 and ⇡1 by �
d
0 and �

d
1 , respec-

tively. At �d0 , the risk-sharing benefits of lowering � further are larger for ⇡1 than for ⇡0, both

because the interest rate becomes more sensitive to � as ⇡ grows (i.e., @(1/q)/(@�@⇡) > 0) and

because the gap in consumption between patient unprotected and impatient protected agents

increases with a higher ⇡ (i.e., cU2 (1)� c

P
1 (0) is increasing in ⇡). Meanwhile, the distortionary

costs of lowering � further diminish, as the consumption gaps between protected and unpro-

tected agents get smaller as ⇡ grows (i.e., cP1 (0)� c

U
1 (0) and c

P
2 (1)� c

U
2 (1) are both decreasing
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in ⇡). In a nutshell, as the probability of liquidity shocks increases, manipulating the size of the

safety net to improve social insurance becomes simultaneously more powerful, more beneficial,

and less costly. As a result, �d1 must be strictly lower than �d0 .

The interpretation of the partial e↵ect of R̂ is more subtle because it involves counteracting

e↵ects. Consider a marginal increase in R̂ from R̂0 to R̂1, and label the optimal safety nets

associated with R̂0 and R̂1 by �
d
0 and �

d
1 , respectively. At �

d
0 , the risk-sharing benefits of lowering

� further are larger for R̂1 than for R̂0, both because the interest rate becomes more sensitive

to � as R̂ grows (i.e., @(1/q)/(@�@R̂) > 0) and because the gap in consumption between patient

unprotected and impatient protected agents increases with a higher R̂ (i.e., cU2 (1) � c

P
1 (0) is

increasing in R̂). However, this time the distortionary costs of lowering � further increase with

R̂ as well, as the consumption gap between protected and unprotected agents who are patient

gets larger as R̂ grows (i.e., cP1 (0)� c

U
1 (0) does not vary with R̂ but cP2 (1)� c

U
2 (1) is increasing

in R̂). In a nutshell, as the return on the long asset increases, manipulating the size of the

safety net to improve social insurance becomes more powerful and more beneficial, but also

more costly. When risk aversion is exactly one, these two e↵ects happen to cancel out, whereas

when it is larger than one, the first e↵ect dominates. As a result, we have �d1  �

d
0 , with = only

if �cu

00(c)/u0(c) = 1 8c > 0.

3.3.4 Extension and Robustness

In this section, we consider the relaxation of two previously maintained assumption and explain

why our main result is robust to these changes.

Absence of commitment over �. We have assumed throughout that the government could

commit not to bail out a measure 1�� of agents. Here, we show that even if the government has

the possibility of changing the value of � ex post, it has no incentive to deviate from �

d when

the market anticipated that the government would implement �d. To be clear, we maintain the

assumption that if an unprotected agent individually deviates at time 0 by investing in long

assets, he would not receive a bailout from the government.20

It is straightforward to show that the value �d derived in Section 3.3.3 under the assumption

that the government could commit to its choice of � remains implementable when the govern-

ment can renege on its announcement. For a given value of � anticipated by agents at date 0,

20That is, the government is able to commit to not bail out an agent who, following the government’s ex post
choice of �, ends up belonging to the unprotected sphere.
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the government’s date 1 problem is now

max
�̃,{sj}j2[0,1],{Bj}j2[0,�̃]

Z 1

0

�

⇥

⇡V1

�

si, L
P
, 0, X

�

+ (1� ⇡)V1

�

si, L
P
, 1, X

�⇤

+(1� �)
⇥

⇡V1

�

si, L
U
, 0, X

�

+ (1� ⇡)V1

�

si, L
U
, 1, X

�⇤

di (28)

subject to
R 1

0 I{si=P}di = �̃, for X = (�, LP
, L

U).

To see that the value of � chosen in problem (27) remains optimal ex post, we observe that

substituting X = (�d, 0, 1) into (28) gives a government’s ex post payo↵ of21

W̃ =

8

>

>

<

>

>

:

W0 � (�d � �̃)⇡
h

u

⇣

q(X)R̂e

⌘

� u(0)
i

| {z }

>0

for �̃ < �

d

W0 for �̃ � �

d
,

whereW0 is the government’s payo↵ under commitment over � in (27). Hence, reneging upon its

date 0 announcement to choose a lower � is not optimal for the government. The reason is that

in doing so, the government would leave some impatient agents who anticipated to be protected,

and hence invested all of their endowment in the long asset, with zero consumption. Similarly,

the government cannot increase its payo↵ by choosing a higher � ex post. This time the reason

is that reneging on the announcement would extend the safety net to impatient agents who do

not need it anyway because they anticipated being unprotected and hence invested all of their

endowment in the short asset.

Private market. We have assumed throughout that enforcement problems are such that

private borrowing is fully precluded. Under a milder assumption on enforcement, we could

have instead assumed that private credit is possible but constrained. In that case, (13) would

be replaced by

(s, `, X) ⌘

8

<

:

d̄ for s = U

q(X)[B(`) + d̄] for s = P,

(29)

for d̄ > 0. For a su�ciently tight private borrowing constraint d̄,22 all of our qualitative

results would apply. In particular, despite impatient unprotected agents being hurt by higher

interest rate, it would still be ex post optimal for the government to fully relax impatient

protected agents’ credit constraint so that the bailout policy of Proposition 2 would become

21It is straightforward to see that it is optimal to choose {sj}j2[0,1] such that I{si=P} is weakly decreasing in
i, for it would not be optimal to “unprotect” more than the minimum measure of agents who expected to be
protected.

22More precisely, for d̄  e(1� ⇡)
n

u0(e)/[⇢u0(R̂e)]� 1
o�1

.
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B

d(`) = R̂(1 � `)e � d̄. Given the possibility of limited private credit, unprotected agents’

equilibrium investment in the short asset would be lowered to L

U = 1� d̄/(R̂e), as would the

thresholds of Proposition 3, which would generalize to �(d̄) ⌘ [1 � d̄/(R̂e)]�1[� � d̄/(R̂e)] and

�̄(d̄) ⌘ [1 � d̄/(R̂e)]�1[�̄ � d̄/(R̂e)].23 Our main result on the optimality of an interior safety

net would hence be preserved.

4 Conclusion

In this paper, we presented a model of financial safety net. We study a workhorse model

of liquidity demand with limited private credit, in which the government chooses the share

of investors that will be eligible for liquidity support.Our analysis delivers the following key

results. First, if the government can commit about future policies, the optimal financial safety

net covers all agents. Second, when the government lacks commitment, the government provides

excessive liquidity to agents protected by the safety net. Third, in the absence of commitment,

the optimal financial safety net includes only a subset of agents. Compared with an economy

where all agents are protected, this results in more liquid asset portfolios, lower interest rates,

and superior social insurance.

Our analysis underscores the importance of the institutional design of central banks’ frame-

work for liquidity provision. Following the financial crisis, there have been calls to expand the

safety net to include shadow banks. Our paper presents a cautionary note to this view and

highlights that expanding the safety net could lead to underinvestment in liquid assets and

too little risk sharing. We do abstract, however, from important elements, such as liquidity

regulation and issues of regulatory arbitrage. In Grochulski and Zhang (2015), for example,

liquidity regulation improves risk sharing, but investors can bypass regulation at a cost, by

engaging in shadow banking activities. An interesting approach would be to investigate the

interaction between liquidity regulation, regulatory arbitrage, and financial safety nets, and

how this interaction a↵ects risk sharing and moral hazard.

23Details are available from the authors upon request.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Step 1 : Date 1 consumption choice

A type s agent solves the following date 1 problem:

V1(s, `, ✓, X) = max
c1,c2

U (c1, c2, ✓) (A.1)

subject to

c1 + q(X)c2 = `e+ q(X)R̂(1� `)e (A.2)

c1  `e+ (s, `, X) (A.3)

c1, c2 � 0.

Note that c2 cannot be negative. Thus, for an agent who turns out to be impatient (type ✓ = 0)

at date 1, it is optimal to maximize c1 and minimize c2. It must therefore be that

C1(s, `, 0, X) = `e+min
n

q(X)R̂(1� `)e,(s, `, X)
o

, (A.4)

and

C2(s, `, 0, X) = max{R̂(1� `)e� (s, `, X)

q(X)
, 0}. (A.5)

For an agent who turns out to be patient (type ✓ = 1) at date 1, it is weakly (strongly if

q < 1) optimal to set c1 = 0 and24

C2(s, `, 1, X) = R̂(1� `)e+
`e

q(X)
. (A.6)

Step 2 : Bonds price

First, note that the opportunity to invest in the short asset at date 1 requires that q  1. We

now show that conditional on the aggregate state X, if q(X) < 1, then it must satisfy

q(X) =
C1(s, Ls

, 0, X)

C2(s, Ls
, 1, X)� C2(s, Ls

, 0, X)
= e

1� ⇡

⇡

�L

P + (1� �)LU

�min{R̂(1� L

P )e, B(LP )}
. (A.7)

To establish this, we use the fact that in equilibrium, we must have ` = L

s for the agents of

24When q � 1, any plan such that c1+ c2 = R̂(1� `)e+ `e (and c1, c2 � 0) is also optimal for a patient agent,
but we can focus without loss of generality on the one featuring c1 = 0 and c2 = R̂(1� `)e+ `e.
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type s (consistency). From (A.2) and C1(s, Ls
, 1, X) = 0, we have

C1(s, Ls
, 0, X) + q(X)C2(s, Ls

, 0, X) = L

s
e+ qR̂(1� L

s)

q(X)C2(s, Ls
, 1, X) = L

s
e+ qR̂(1� L

s).

Combining these two equations allows us to obtain the first equality in (A.7):

q(X) =
C1(s, Ls

, 0, X)

C2(s, Ls
, 1, X)� C2(s, Ls

, 0, X)
for s 2 {U, P}, (A.8)

which itself implies

q(X) =
�C1(P, LP

, 0, X) + (1� �)C1(U,LU
, 0, X)

�[C2(P, LP
, 1, X)� C2(P, LP

, 0, X)] + (1� �)[C2(U,LU
, 1, X)� (C2(U,LU

, 0, X)]
.

(A.9)

Now, as q < 1, agents do not invest in short assets between date 1 and date 2, since they could

otherwise make themselves strictly better o↵ by saving in public bonds. Thus, the market

clearing condition for date 1 consumption holds with equality:

X

s

X

✓

�s⇡✓C1(s, Ls
, ✓, X) =

X

s

�sL
s
e.

Along with the fact that C1(s, Ls
, 1, X) = 0 for s 2 {P, U}, this implies

�C1(P, LP
, 0, X) + (1� �)C1(U,LU

, 0, X) =
e

⇡

(�LP + (1� �)LU). (A.10)

Using (A.5) (with (13)) and (A.6), the denominator in (A.9) is given by

�[C2(P, LP
, 1, X)� C2(P, LP

, 0, X)] + (1� �)[C2(U,LU
, 1, X)� C2(U,LU

, 0, X)]

=
�L

P + (1� �)LU

q(X)
e+ �min

n

R̂(1� L

P )e, B(LP )
o

. (A.11)

Substituting (A.10) and (A.11) into (A.9) yields, after some algebraic manipulation, to the

second equality in (A.7):

q(X) = e

1� ⇡

⇡

�L

P + (1� �)LU

�min
n

R̂(1� L

P )e, B(LP )
o

.

Since the opportunity to invest in the short asset at date 1 requires that q  1, the general
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bond price expression in a continuation equilibrium is given by

q(X) = min

(

e

1� ⇡

⇡

�L

P + (1� �)LU

�min{R̂(1� L

P )e, B(LP )}
, 1

)

. (A.12)

A.2 Proof of Lemma 2

We start by establishing that c

⇤
2(0) = c

⇤
1(1) = 0. First, c2(0) > 0 cannot be optimal, since

impatient agents do not value consumption at date 2. Second, if it were the case that c1(1) > 0,

then the planner could decrease c1(1) by some ✏ > 0 arbitrarily small while increasing c2(1) by

✏R̂ and while still satisfying the resource constraint (11) and strictly increasing welfare.

Next, we characterize c

⇤
1(0) and c

⇤
2(1). The planner’s first-order condition with respect to

c1(0) and c2(1) is given by

u

0(c⇤1(0)) = ⇢R̂u

0(c⇤2(1)).

Since ⇢R̂ > 1 by Assumption 1, this implies that c

⇤
1(0) < c

⇤
2(1). As shown in Diamond and

Dybvig (1983) (footnote 3), condition (2) on the relative risk aversion in Assumption 1 further

implies that u0(e) > ⇢R̂u

0(R̂e), and therefore that c⇤1(0) > e and c

⇤
2(1) < R̂e.

A.3 Proof of Proposition 1

We show that � = 1 and B = (1�⇡)c⇤2(1) achieve the e�cient allocation described in Lemma 2.

Since this safety net architecture only features protected agents, we ignore unprotected agents

in what follows.

The protected agents’ date 0 problem is

max
`2[0,1]

⇡u

⇣

`e+ qmin
n

R̂ (1� `) e, B
o⌘

+ (1� ⇡) ⇢u

✓

R̂ (1� `) e+
`e

q

◆

We consider separately the agent’s problem in the two intervals [0, 1 � B/(R̂e)] and [1 �
B/(R̂e), 1]. In the first interval, the problem is

max
`2[0,1� B

R̂e
]
⇡u (`e+ qB) + (1� ⇡) ⇢u

✓

R̂ (1� `) e+
`e

q

◆

The first-order condition is given by

 (`) ⌘ e⇡u

0 (`e+ qB)� e (1� ⇡) ⇢

✓

R̂� 1

q

◆

u

0
✓

R̂ (1� `) e+
`e

q

◆

S 0

with “” if ` = 0, “� 0” if ` = 1 � B/(R̂e), and “=” if ` 2 (0, 1 � B/(R̂e)). Note that the
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agent’s objective function is strictly concave in `, as  0 (·) < 0 for ` 2 [0, 1 � B/(R̂e)]. In the

second interval, the problem is

max
`2[1� B

R̂e
,1]
⇡u

⇣

`e+ qR̂ (1� `) e
⌘

+ (1� ⇡) ⇢u

✓

R̂ (1� `) e+
`e

q

◆

.

We conjecture that the policy consisting of � = 1 and B = (1� ⇡)c⇤2(1) leads to an equilib-

rium collective choice of LP = 1�B/(R̂e) = 1� (1� ⇡)c⇤2(1)/(R̂e) = ⇡c

⇤
1(0)/e, and verify this

conjecture. Under the conjecture, the bond price is given by

q = min

(

e

1� ⇡

⇡

L

P

R̂ (1� L

P ) e
, 1

)

=
1� ⇡

⇡

L

P

R̂ (1� L

P )
=

c

⇤
1(0)

c

⇤
2(1)

< 1.

Starting with the first interval, we have

 

✓

1� B

R̂e

◆

⌘ e⇡u

0 (c⇤1(0))� (1� ⇡) e

✓

R̂� 1

q

◆

⇢u

0 (c⇤2(1))

> e⇡u

0 (c⇤1(0))� (1� ⇡) e
⇣

R̂� 1
⌘

⇢u

0 (c⇤2(1))

> e

h

⇡ � ⇢ (1� ⇡) e
⇣

R̂� 1
⌘i

u

0 (c⇤1(0)) > 0,

where the last inequality follows from Assumption 2. The fact that  (1�B/(R̂e)) > 0 implies

that within this first interval, ` = 1� B/(R̂e) is optimal. Since the conjecture induces a bond

price such that q = c

⇤
1(0)/c

⇤
2(1) > 1/R̂, in the second interval the agent’s objective function is

strictly decreasing in `, so ` = 1�B/(R̂e) is optimal. We have thus verified that the privately

optimal investment choice over ` 2 [0, 1] is consistent with the conjectured aggregate investment

choice above. The fact that the policy in question achieves the e�cient allocation follows from

simple algebra.

A.4 Proof of Proposition 2

At date 1, the government chooses a debt issuance policy B (`) to maximize the average welfare

of agents, subject to the private sector’s date 1 response to its action. The government solves

max
{Bj}j2[0,�]

Z �

0

[⇡V1 (P, `j, 0, X) + (1� ⇡)V1 (P, `j, 1, X)] di+

Z 1

�

[⇡V1 (U, `j, 0, X) + (1� ⇡)V1 (U, `j, 1, X)] dj
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Using Lemma 1, this problem can be written as

max
{Bj}j2[0,�]

Z �

0



⇡u

⇣

`je+ q (X)min
n

R̂ (1� `j) e, Bj

o⌘

+ (1� ⇡) ⇢u

✓

R̂ (1� `j) e+
`je

q

◆�

dj

+

Z 1

�



⇡u (`je) + (1� ⇡) ⇢u

✓

R̂ (1� `j) e+
`je

q

◆�

dj

subject to25

q = min

8

<

:

e

1� ⇡

⇡

R 1

0 `jdj

R �

0 min
n

R̂ (1� `j) e, Bj

o

dj

, 1

9

=

;

.

The first-order condition for Bi is

I{Bi<R̂(1�`i)e}⇡u
0 (`ie+ qBi) q+

I(
e 1�⇡

⇡

R 1
0 `jdj

R �
0 min{R̂(1�`j)e,Bj}dj

<1

) ⇥ I{Bi<R̂(1�`i)e}

2

4� q

R �

0 min
n

R̂ (1� `j) e, Bj

o

dj

3

5

⇥
h

⇡

Z �

0

u

0
⇣

`je+ qmin
n

R̂ (1� `j) e, Bj

o⌘

min
n

R̂ (1� `j) e, Bj

o

dj

+(1� ⇡) ⇢

Z 1

0

u

0
✓

R̂ (1� `j) e+
`je

q

◆✓

�`je
q

2

◆

dj

i

= 0.

To show that the optimal bailout rule satisfies B (`) � R̂ (1� `) e, suppose otherwise, seeking a

contradiction. Then the first-order condition, evaluated at symmetric date 0 investment choices,

becomes

⇡u

0 (`ie+ qBi) q

+I⇢
e 1�⇡

⇡

R 1
0 `jdj

�Bi
<1

�


� q

�Bi

�

⇥
h

⇡�u

0 (`ie+ qBi)Bi + (1� ⇡) ⇢u0
✓

R̂ (1� `i) e+
`ie

q

◆✓

�`ie
q

2

◆

i

= 0.

If e1�⇡
⇡

R 1
0 `jdj

�Bi
� 1, we are left with ⇡u0 (`ie+ qBi) q = 0, which is a contradiction. If e1�⇡

⇡

R 1
0 `jdj

�Bi
<

1, we have

(1� ⇡) ⇢u0
✓

R̂ (1� `i) e+
`ie

q

◆

`ie

q�Bi
= 0,

which is also a contradiction. It follows that the optimal rule satisfies B (`) � R̂ (1� `) e. Note

that any such rule trivially satisfies the first-order condition, since in that case the indicator vari-

able I{Bi<R̂(1�`i)e} is zero. Without loss of generality, the solution is thus B (`) = R̂ (1� `) e.

25This equilibrium price expression is obtained by a procedure analogous to that of Lemma 1, but without
(yet) imposing the symmetry of date 0 investment choices.
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A.5 Proof of Proposition 3

Step 1 : Date 0 short asset choice

An agent at date 0 faces this problem:

V0(s,X) = max
`2[0,1]

⇡u (C1(s, `, 0, X)) + (1� ⇡)⇢u (C1(s, `, 1, X) + C2(s, `, 1, X)) (A.13)

subject to (A.4) with B(`) = R̂(1� `)e, (A.6), and (24).

First, it is useful to prove that 1/R̂  q(X)  1. We have already argued that the presence

of the short asset at date 1 requires q(X)  1. We now show that 1/R̂  q(X). Seeking

a contradiction, we suppose that q(X) < 1/R̂. In this case, from the perspective of date 0,

investing in the short asset strictly dominates investing in the long asset. As a result, all agents

invest only in the short asset at date 0, resulting in L

R = L

U = 1, and, according to (24), in

q(X) = min {1, 1} = 1, a contradiction. It follows that 1/R̂  q(X)  1.

Next, we specialize the problem (A.13) for an unprotected agent as

max
`2[0,1]

⇡u (`e) + (1� ⇡)⇢u

✓

R̂(1� `)e+
`e

q(X)

◆

. (A.14)

The first-order condition is

 (`) ⌘ e⇡u

0 (`e)� e(1� ⇡)(R̂� 1

q(X)
)⇢u0

✓

R̂(1� `)e+
`e

q(X)

◆

= 0.

Note that the agent’s objective function is strictly concave in `, as  0(·) < 0 for ` 2 [0, 1].

Seeking a contradiction, suppose that ` = 1 is not optimal. It must thus be that  (1) < 0, or

⇡u

0(e) < (1�⇡)
✓

R̂� 1

q(X)

◆

⇢u

0
✓

e

q(X)

◆

 (1�⇡)(R̂�1)⇢u0
✓

e

q(X)

◆

 (1�⇡)(R̂�1)⇢u0(e),

which requires ⇡ <

⇢(R�1)
1+⇢(R�1) . This contradicts Assumption (2). The solution to (A.14) must

thus feature ` = 1.

Problem (A.13) specialized for a protected agent is given by

max
`2[0,1]

⇡u

⇣

`e+ q(X)R̂(1� `)e
⌘

+ (1� ⇡)⇢u

✓

R̂(1� `)e+
`e

q(X)

◆

. (A.15)

We distinguish two cases: q(X) = 1/R̂ and q(X) > 1/R̂. When q(X) = 1/R̂, date 1 and 2

consumption does not depend on `, and therefore protected agents are then indi↵erent across

all levels of ` 2 [0, 1]. When q(X) > 1/R̂, agents optimally choose ` = 0, since in that case the
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objective function is strictly decreasing in `.

Step 2 : Time-consistent equilibrium (as a function of �)

The investment decision of unprotected agents always leads to ` = L

U = 1. Regarding protected

agents, we consider several cases. When q = 1/R̂, protected agents are indi↵erent across any

short-term investment level. Therefore, we can have L

P 2 [0, 1], but consistency with the

equilibrium price expression (24) requires

L

P =
⇡ + � � 1

�

.

And since LP � 0, this constellation only prevails when � � 1�⇡. The equilibrium consumption

allocations are then given by c

s
2(0) = c

s
1(1) = 0 for s 2 {U, P} and

c

U
1 (0) = c

P
2 (0) = e, and c

U
2 (1) = c

P
2 (1) = R̂e. (A.16)

When q > 1/R̂, protected agents’ short asset decision at date 0 leads to L

P = 0. Substituting

L

P = 0 and L

U = 1 into the equilibrium price expression (24), we obtain

q = min

⇢

1

R̂

1� ⇡

⇡

1� �

�

, 1

�

.

Consistency thus requires � < 1� ⇡, and the equilibrium consumption allocations are given by

c

U
1 (0) = e, c

U
2 (1) =

1

q

e, c

P
1 (0) = qR̂e, and c

P
2 (1) = R̂e. (A.17)

A.6 Proof of Proposition 4

Let us define � ⌘ 1�⇡
1�⇡+R̂⇡

and � ⌘ 1� ⇡. The government chooses � to maximize the average

indirect utility function of private agents. It solves

W0 = max
�2[0,1]

�V0

�

P, (�, LP (�), 1)
�

+ (1� �)V0

�

U, (�, LP (�), 1)
�

. (A.18)

To characterize the solution to this problem, it is convenient to separately consider the optimal

choice of � in the three intervals [0, �], [�, �], and [�, 1]. We note that the objective function is

continuous in �.

First, for � 2 [�, 1], the problem reduces to

max
�2[�,1]

⇡u(e) + (1� ⇡)⇢u(R̂e).

The objective function is constant with respect to �, and therefore any � 2 [�, 1] is optimal.
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Next, for � 2 [0, �], the problem is

max
�2[0,�]

[⇡ + (1� ⇡)⇢]
h

�u

⇣

R̂e

⌘

+ (1� �)u (e)
i

.

The objective function is strictly increasing in �, so the optimal choice is given by � = �.

Finally, for � 2 [�, �], the problem is given by

max
�2[�,�]

�



⇡u

✓

e

1� ⇡

⇡

1� �

�

◆

+ (1� ⇡)⇢u(R̂e)

�

+(1��)


⇡u(e) + (1� ⇡)⇢u

✓

R̂e

⇡

1� ⇡

�

1� �

◆�

.

(A.19)

Since the overall objective function in (A.18) is strictly increasing over [0, �] and constant over

[�, 1], it must be that if (A.19) admits a strictly interior solution, then it will be the global

solution of (A.18).

The first-order condition for problem (A.19) is

�(�) ⌘


⇡u

✓

e

1� ⇡

⇡

1� �

�

◆

+ (1� ⇡)⇢u(R̂e)

�

�


⇡u(e) + (1� ⇡)⇢u

✓

R̂e

⇡

1� ⇡

�

1� �

◆�

�e

1� ⇡

�

u

0
✓

e

1� ⇡

⇡

1� �

�

◆

+ e

⇡

1� �

⇢R̂u

0
✓

R̂e

⇡

1� ⇡

�

1� �

◆

S 0,

with “” if �d = �, “�” if �d = �, and “=” if �d 2 (�, �). Evaluating �(·) at the bounds � and

�, we have

�(�) = [⇡ + (1� ⇡) ⇢]
h

u

⇣

R̂e

⌘

� u (e)
i

+ e

⇣

1� ⇡ + R̂⇡

⌘

⇢

h

u

0 (e)� ⇢

�1
u

0
⇣

R̂e

⌘i

> 0,

�(�) = �e

h

u

0 (e)� ⇢R̂u

0
⇣

R̂e

⌘i

< 0.

The global optimum is therefore strictly interior: �d 2 (�, �).

A.7 Proof of Proposition 5

To establish how �

d changes with ⇡ and R̂, we use the implicit function theorem:

@�

d

@x

= ��
0(x)

�

0(�)
, for x 2 {⇡, R̂}.

First, we note that

�

0(�) =
e

2(1� ⇡)2

⇡�

3
u

00�
qR̂e

�

+
e

2
⇡

2

(1� ⇡)(1� �)3
R̂

2
⇢u

00
✓

e

q

◆

< 0.
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The derivative of the implicit function �(·) with respect to ⇡ is given by

�

0(⇡) =
h

u

⇣

qR̂e

⌘

� u(e)
i

+ e

1

�

✓

1� 1� �

⇡

◆

u

0
⇣

qR̂e

⌘

+⇢



u

✓

e

q

◆

� u(R̂e)

�

+ ⇢R̂e

1

1� �

✓

1� �

1� ⇡

◆

u

0
✓

e

q

◆

+e

2 (1� ⇡)(1� �)

⇡

2
�

2
u

00
⇣

qR̂e

⌘

+ e

2 ⇡�

(1� �)2
1

(1� ⇡)2
⇢R̂

2
u

00
✓

e

q

◆

.

Since u(y)� u(z)  u

0(z)(y � z) for all z � 0 and y � 0 and u

0(R̂e)  u

0(e/q), we have

�

0(⇡)  e

2 (1� ⇡)(1� �)

⇡

2
�

2
u

00
⇣

qR̂e

⌘

+ e

2 ⇡�

(1� �)2
1

(1� ⇡)2
⇢R̂

2
u

00
✓

e

q

◆

< 0,

and therefore
@�

d

@⇡

= ��
0(⇡)

�

0(�)
< 0.

The derivative of the implicit function �(·) with respect to R̂ is given by

�

0(R̂) =
1� ⇡

R̂

⇢



R̂eu

0(R̂e)� e

q

u

0
✓

e

q

◆�

+ e

⇡

1� �

⇢u

0
✓

e

q

◆

u

0
✓

e

q

◆

+
e

q

u

00
✓

e

q

◆�

=
1� ⇡

R̂

⇢

"

Z R̂e

e
q

@

@z

[zu0(z)]dz

#

+ e

⇡

1� �

⇢u

0
✓

e

q

◆

u

0
✓

e

q

◆

+
e

q

u

00
✓

e

q

◆�

=
1� ⇡

R̂

⇢

"

Z R̂e

e
q

[u0(z) + zu

00(z)]dz

#

+ e

⇡

1� �

⇢u

0
✓

e

q

◆

u

0
✓

e

q

◆

+
e

q

u

00
✓

e

q

◆�

,

where we note that the both terms in square brackets are necessarily non-positive by Assumption

1. It follows that �0(R̂)  0, which in turn implies

@�

d

@R̂

= ��
0(R̂)

�

0(�)
 0.
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