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1 Introduction

Asset values fluctuate widely around measures of economic fundamentals. Some of this variation

is concentrated at high frequencies, as is apparent from the daily volatility in the stock market,

and we might reasonably attribute the origins of this variation to market “noise”around a more

stable aggregate economic state. But what if a significant fraction of this variation is attributable

to low frequency, decades-long shifts in these relative relationships? Such a phenomenon, were

it to exist, could not be readily attributed to short-term volatility in the stock market, but

would instead raise a question about the role of structural changes in the macroeconomy that

govern how high or low assets values can remain relative to economic fundamentals for prolonged

periods.

This paper presents empirical evidence of just such a low frequency phenomenon. The

consumption-wealth variable cayt is an estimated asset market valuation ratio that uses data

on total household net worth (asset wealth), but its variation is driven primarily by movements

in the stock market relative to two key macroeconomic fundamentals: consumer spending

and labor income. In a 2001 published paper, Lettau and Ludvigson (2001) (LL hereafter)

introduced this variable and found that it had strong forecasting power for U.S. stock returns.

We refer to this asset valuation variable interchangeably as a “wealth ratio,”since it measures

how high or low asset values are relative to a linear combination of consumption and labor

income.

In the years since the 2001 paper was published, the statistical properties of the estimated

cayt series have shifted in some fundamental ways. Notably, the measured value of cayt has

become more persistent over time, resulting in forecasting power for stock market returns

increasingly concentrated at longer horizons and making it diffi cult, according to some statistical

tests, to distinguish cayt from a unit root process. Mechanically, the reason for this has to do

with the persistently high asset valuations of the post-millennial period, which have resulted in

observations on cayt that have remained well below the variable’s pre-2000 mean even in the

aftermath of two large stock market crashes and one large housing crash. Similar findings have

been documented for other stock market valuation ratios long used as predictor variables for

stock returns, including price-dividend or price-earnings ratios.1 Despite these findings, a literal

unit root interpretation for these variables is unappealing because it implies that stock prices

or asset values could wander arbitrarily far from measures of fundamental value indefinitely.2

1The near-unit root statistical properties of these ratios and their implications for return forecasting have
been the subject of empirical work by Lewellen (2004), Campbell and Thompson (2008), Lettau, Ludvigson,
and Wachter (2008), Lettau and Van Nieuwerburgh (2008), van Binsbergen and Koijen (2010), and Koijen and
Van Nieuwerburgh (2011).

2This is unappealing even with presumed departures from conventional notions of market effi ciency. Even
theories that postulate “bubbles” almost always imply that the bubble will eventually burst, restoring a pre-
bubble relationship between prices and fundamentals.
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An arguably more appealing interpretation is that there are instead infrequent shifts in certain

moments of the stationary distribution that—when not taken into account—make distinguishing

a stationary from a unit root variable diffi cult in a small sample.

This paper presents evidence that the highly persistent changes in asset values relative

to fundamentals as measured by cayt, including the persistently high asset valuations of the

post-2000 period, are largely driven by infrequent shifts, or “breaks,” in the mean of cayt. In

addition, these shifts are found to coincide with quantitatively large structural changes in the

long-run expected value of the U.S. Central Bank’s core policy interest rate, and with evidence

for changes in risk-taking behavior in equity markets.

To establish this evidence, we first adjust cayt for the infrequent shifts in its mean by esti-

mating a Markov-switching version of the variable, denoted cayMS
t . We find that the sample is

divided into three clear subperiods characterized by two regimes for the mean of cayt: a high

mean/low asset valuation regime that prevails from 1976:Q2 to 2001:Q2, and a low mean/high

asset valuation regime that prevails in two subperiods at the beginning and end of our sample,

namely 1952:Q1-1976:Q1, and the post-millennial period 2001:Q2-2013:Q3. Unlike the conven-

tional cayt, which presumes a constant mean, cayMS
t does not exhibit increasing persistence

as estimates are updated over the sample to include the post-millennial period (the original

estimation used data through 1998). Moreover, evidence in favor of stationarity for cayMS
t is

much stronger in current samples than it is for cayt. This implies that infrequent shifts in the

mean of cayt largely explain why its statistical properties have shifted over time.

After documenting these findings, we first turn our attention to forecasts of the U.S. stock

market. We find that the forecasting power of cayMS
t for future stock market returns is superior

to that of cayt, even if no forward-looking data are used in the construction of cayMS
t . This

remains true out-of-sample, at least for some forecast horizons. Forecasts are improved because

adjustments in the mean imply that estimates of conditional expectations do not mix data

across regimes characterized by very different structural relationships between the level of cayt
and future asset returns.

We then direct our attention to the key question of what these infrequent mean shifts

represent economically. Any estimated statistical relationship is subject to possible structural

change as the number of years over which the relationship is measured rises. This may be

especially true of cayt, where the definitions of the embedded variables have changed discretely

over time as data collection agencies have altered their measurement criteria for all three series.

But structural shifts in the economy are also likely to play a role, as suggested by evidence that

other stock market valuation measures have also experienced “breaks” in the mean values of

their distributions (e.g., Lettau, Ludvigson, and Wachter (2008); Lettau and Van Nieuwerburgh

(2008)). We are interested in the macroeconomic origins of these low frequency shifts in the

mean of cay. Thus we estimate a macroeconomic vector autoregression for output growth,

2



inflation, and the federal funds rate allowing for Markov-switching in its parameters (MS-VAR).

Specifically, we allow the parameters of the MS-VAR to potentially undergo structural breaks

during the periods that correspond to the shifts identified from our estimates of cayMS. With

this approach, we impose the formerly estimated regime sequence for cay on the macro MS-

VAR, but the parameters characterizing the different regimes, as well as the transition matrix,

are freely estimated. We find strong evidence of quantitatively large breaks in the long-run

expected real federal funds rate that coincide with the breaks in the mean of cay, with low

wealth ratios (low asset valuations or high cay) associated with an expectation of persistently

high values for the real federal funds rate, and high wealth ratios (high asset valuations or low

cay) associated an expectation of persistently low values for the real federal funds rate. The

post-millennial period in particular, one characterized by relatively high asset valuations, is

marked by expectations of prolonged low values for the real federal funds rate as compared

to the middle subperiod where asset valuations were low and expected policy rates were high.

By contrast, there is no evidence that these low frequency shifts to high asset valuations and

persistently low policy rates are associated with higher expected economic growth over any

horizon, or lower economic uncertainty; indeed the opposite is true. The findings therefore

run counter to the idea that high asset valuations associated with a persistently low interest

rate environment are the result of a positive outlook for economic growth, or lower uncertainty

about that growth.

This latter result is perhaps not as surprising as it may first seem, if in fact monetary policy

is largely responsible for the low frequency shifts in cay. After all, few macroeconomic theories

imply that the Central Bank’s ability to influence real activity stretches across the very long

horizons over which the regime shifts we document occur. But it does raise a question as to

why the Central Bank’s expected policy rate is associated with such pronounced low frequency

shifts in asset valuations. One answer is that the findings merely reflect corresponding regime

shifts in discount rates, and indeed our evidence is consistent with this interpretation.

But even if we restrict attention to interpretations based on changing discount rates, theories

differ on the reasons discount rates change with interest rates. Some theories tie low and

declining discount rates entirely to the behavior of the risk-free rate, which is presumed to be

driven endogenously downward by shocks that increase the fraction of wealth held in the hands

of more risk averse or more pessimistic investors (e.g., Barro and Mollerus (2014); Caballero

and Farhi (2014); Hall (2016)). In these theories, risk premia rise as the risk-free rate declines,

implying that asset valuations can only be higher if the decline in the risk-free rate exceeds the

rise in risk premia. Other theories imply that shifts downward in the risk-free rate coincide with

shifts downward in risk-premia, as in models with a “reaching for yield”channel (e.g., Rajan

(2006); Rajan (2013); Drechsler, Savov, and Schnabl (2014); Acharya and Naqvi (2016)).

Our empirical findings imply that the decline in discount rates in low interest rate envi-
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ronments is unlikely to be solely attributable to a downward shift in the expected risk-free

rate large enough to more than offset an opposite movement in risk premia. Instead, we find

evidence from equity markets that low interest rate regimes coincide with lower rather than

higher risk premia, consistent with reaching for yield. Specifically, we find that, in a switch

from a high to low interest rate regime, the estimated risk premia of 14 out of 17 portfolios that

carry a positive risk premium on average simultaneously fall to lower levels. Moreover, both

the risk premia and the book-market ratios (adjusted for expected earnings) of evidently more

risky, higher Sharpe ratio portfolios, such as those that go long in value stocks or stocks that

have recently appreciated the most, fall much more than those of evidently less risky, lower

Sharpe ratio portfolios, such as those that go long in growth stocks or stocks that have recently

appreciated the least. For several portfolios, the estimated risk premia reach lows or near-lows

early in the post-2000 period and, after a brief spike upward in the 2007-08 financial crisis,

again in the post-2009 period when interest rates entered the zero-lower-bound range. Our

findings for stock market returns in this regard are reminiscent of recent evidence of reaching

for yield in the Treasury market (e.g., Hanson and Stein (2015)), by U.S. prime money funds

(e.g., Di Maggio and Kacperczyk (2015)), and by U.S. corporate bond mutual funds (Choi and

Kronlund (2015)).

A growing empirical literature documents a linkage between monetary policymaking activ-

ities and financial returns in high frequency data, using either formal event studies and daily

data (Cook (1989); Bernanke and Kuttner (2005); Gürkaynak, Sack, and Swanson (2005)) or by

studying the timing of when premia in the aggregate stock market are earned in weeks related

to FOMC-cycle time (Lucca and Moench (2015); Cieslak, Morse, and Vissing-Jorgensen (2015))

or by directly forecasting weekly stock returns using weekly observations on federal funds fu-

tures implied rates (Neuhierl and Weber (2016)). To the best of our knowledge, the findings

presented in this paper are the first formal statistical evidence that low frequency, decades-long

structural breaks in equity market return premia and asset values relative to economic funda-

mentals are strongly associated with long-horizon expectations of the primary policy instrument

under direct control of the central monetary authority.

We emphasize that our results are silent on the question of whether the shifts expected

policy rates we identify represent exogenous fluctuations, independent of aggregate economic

conditions, or endogenous responses to these conditions. For example, if secular stagnation

leads both agents and the monetary authority to expect a prolonged period of low growth, the

Central Bank might be expected to accommodate this state by keeping policy rates accordingly

low for an extended time. Whether or not the Central Bank’s behavior is a truly exogenous

impulse or an endogenous accommodation, our results imply that low frequency shifts in the

stance of monetary policy have long-term implications for asset valuations.

The rest of the paper is organized as follows. The next section discusses the empirical
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model and the estimation of a Markov-switching cayt. Section 3 presents results from this

estimation, including evidence of breaks in the mean of cay, evidence on the persistence of

cay once corrected for regime shifts in its mean, and a comparison of the forecasting power

of cayMS and cay for U.S. stock market returns. These investigations are all designed to

address the question of whether or not infrequent shifts in the mean of cayt can econometrically

account for its changing statistical properties over the last 15 years. This is an important

first step in understanding the macroeconomic sources of highly persistent fluctuations in asset

market valuations, since if we cannot pinpoint the statistical mechanisms behind the changing

behavior, we cannot hope to explain it. With this evidence in hand, section 4 turns to the key

economic question of what macroeconomic forces lie behind the regime shifts in the mean of

cayt. Section 5 adds to this evidence by empirically evaluating the hypothesis that some of the

shift to high asset valuation regimes is attributable to a decline in risk premia in equity market

assets. Section 6 concludes.

2 Econometric Model of cayMS

The variable studied by LL, denoted cayt, is a stationary linear combination of log consumer

spending, ct, log asset wealth, at, and log labor income, yt, all measured on an aggregate basis.

Under assumptions described in LL and elaborated on in Lettau and Ludvigson (2010), cayt
may be interpreted as a proxy for the log consumption- aggregate (human and non-human)

wealth ratio, and its relationship with future growth rates of at (highly correlated with stock

market returns in quarterly data) and/or future growth rates of ct and yt, may be motivated

from an aggregate household budget constraint. Theory implies that ct, a t, and yt should be

cointegrated, or that cayt should be covariance stationary.

This section presents the econometric model of regime switches in the mean of cayt. In the

standard estimation without regime shifts in any parameters, the stationary linear combination

of ct, a t, and yt can be written

ct = α + γaat + γyyt + εt, (1)

where the parameters to be estimated are α, γa, and γy. The residual εt is the stationary linear

combination of these data, referred to as the cointegrating residual. In this paper, we estimate

a Markov-switching version of this cointegrating relationship, analogously written as

ct = αξαt + βaat + βyyt + et,

where the notation αξαt indicates that the value of the constant depends on the existence of a

latent state variable, ξαt , presumed to follow a two-state Markov-switching process with tran-

sition matrix Hα. This implies that the constant term αξαt can assume one of two discrete
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values, α1 or α2. The parameters βa and βy are the slope coeffi cients in this cointegrating

relationship, analogous to γa and γy in the fixed coeffi cient regression (1). The residual et is

again a stationary variable by assumption.

The standard approach to estimating a single cointegrating relation such as (1) is to run

a dynamic least squares regression (DLS—Stock and Watson (1993)) that controls for leads

and lags of the right-hand-side variables in order to adjust for the asymptotic ineffi ciencies

attributable to regressor endogeneity. Let zt be a 3 × 1 vector of data on ct, at, and yt, and

k leads and k lags of ∆at and ∆yt and let Zt = (zt, zt−1, ...,z1) be a vector containing all

observations obtained through date t. To estimate the parameters of this stationary linear

combination we modify the standard fixed coeffi cient DLS regression to allow for shifts in the

intercept αξαt :

ct = αξαt + βaat + βyyt +
k∑

i=−k

ba,i∆at+i +
k∑

i=−k

by,i∆yt+i + σεt (2)

where εt ∼ N (0, 1) . The parameters of the econometric model include the cointegrating para-

meters and additional slope coeffi cients β =
(
βa, βy, b

)′
, where b = (ba,−k, .., ba,k, by,−k, .., by,k)

′,

the two intercept values α1 and α2, the standard deviation of the residual σ, and the tran-

sition probabilities contained in the matrix Hα. Collect these parameters into a vector θ =(
β, αξαt , σ,H

α
)′
.

Absent regime changes, cay is defined as:

cayFCt = ct − (α + γaat + γyyt) (3)

where the superscript “FC”stands for “fixed coeffi cients”because the constant α is fixed over

time. Notice that when we impose a single regime, the Markov-switching model collapses back

to the specification originally used by LL. The variable cayFCt is the same as that defined in LL

where it was denoted cayt. For the purposes of his paper, we have added the superscript “FC”

in order to explicitly distinguish it from the Markov-switching version. The parameters θ of

the time-series model for cayFCt include the cointegrating parameters γa and γy, the additional

slope coeffi cients on the leads and lags in the DLS regression, and the single intercept value α.

Let T be the sample size used in the estimation accounting for leads and lags in the re-

gression. For the Markov-switching model, the constant αξαt depends on the regime ξ
α
t . If the

sequence ξα,T = {ξα1 , ..., ξαT} of regimes in place at each point in time were observed, we could
immediately compute cayMS

t . Unfortunately, ξα,T is generally unobservable and needs to be

inferred together with the other parameters of the model. It follows that the two values for the

Markov-switching constant αξαt (α1 and α2) must be weighted by their probabilities at each point

in time. For this purpose, we consider two estimates of the state probabilities distinguished as

filtered or smoothed probabilities. Let P (ξαt = i|Zt;θ) ≡ πit|t denote the probability that ξ
α
t = i
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based on data obtained through date t and knowledge of the parameters θ. We refer to these

as filtered probabilities. Smoothed probabilities reflect the information about the state at time

t that can be extracted from the whole sample: P (ξαt = i|ZT ;θ) ≡ πit|T .
3 These measures of the

regime probabilities may be used to construct two versions of a Markov-switching cay, based

on using either smoothed or filtered probabilities. In both cases, the intercept coeffi cient for

cay is a probability weighted average of the two intercepts, α1 and α2. As a benchmark, we use

the smoothed probabilities for our baseline estimate and denote it cayMS
t . When we use filtered

probabilities, we use the notation cayMSfilt
t . Thus, cayMS

t is computed one of two ways:

cayMSfilt
t = ct −

(∑2
i=1 π

i
t|tαi + βaat + βyyt

)
. (4)

cayMS
t = ct −

(∑2
i=1 π

i
t|Tαi + βaat + βyyt

)
. (5)

Note that the econometric model (2) permits regime switches only in the intercept para-

meter. (The Appendix discusses alternative specifications in which σ is also subject to regime

switches.) This specification for cayMS
t maintains the hypothesis that a stationary linear com-

bination of ct, at, and yt exists, just as in the standard cointegration specification and consistent

with the aggregate budget constraint motivation given in LL. The only difference is that, here,

some of the variation in the cointegrating residual is explicitly modeled via regime switches in

its mean. To see this simply rewrite the above expressions for cayFCt and cayMS
t to be inclusive

of the intercept term, i.e.,

cayMS
t +

∑2
i=1 π

i
t|Tαi = ct − βaat − βyyt

cayFCt + α = ct − γaat − γyyt.

These expressions show that the intercept term may be interpreted as the mean of a cointegrat-

ing residual on the right-hand-side in each case. Thinking of the residual as an asset valuation

(or wealth) ratio, we may interpret the intercept as the mean of the asset valuation ratio itself.

A high αi corresponds to a low valuation ratio, since the residual ct−βaat−βyyt is high when-
ever the value of wealth at is low relative to the implied linear combination of ct and yt with

which it is cointegrated.

2.1 Estimation

We use Bayesian methods with flat priors to evaluate the regression parameters in (2). We first

search for the posterior mode using a maximization algorithm. The posterior of the model and

the corresponding regime probabilities πit|t and π
i
t|T are obtained by computing the likelihood

3In using the DLS regression (2) to estimate cointegrating parameters, we lose 6 leads and 6 lags. The
Appendix on computing cayMS explains how we filter the data to obtain esitmates of the regime probabilities
over the whole sample.
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using the Hamilton filter (Hamilton (1994)), and combining it with priors. Since we use flat

priors, the posterior coincides with the likelihood. Our estimate of cayMS
t is based on the pos-

terior mode of the parameter vector θ and the corresponding regime probabilities. We further

use a Gibbs sampling algorithm to do inference on the parameters and compute additional

statistics of interest. In particular, uncertainty about the parameters, or any desired moments

of the model parameters, can easily be characterized using the Gibbs sampling algorithm to

compute the posterior distribution of model parameters. The full statement of the procedure

and sampling algorithm is given in the Appendix.

3 Results: Breaks in the Mean of the Wealth Ratio

We estimate the Markov-switching cointegrating relation described by (2) over the sample

1952:Q1-2013:Q3 using six leads and lags. Table 1 reports the parameter estimates, while

Figure 1 reports the probability of regime 1 for the Markov-switching intercept αξαt based on

the posterior mode parameter estimates. The 90% credible sets are obtained making 2,000,000

draws from the posterior using the Gibbs sampling algorithm described above. One in every

one thousand draws is retained. We check convergence using the methods suggested by Geweke

(1992) and Raftery and Lewis (1992).4

The sample is divided into three clear subperiods characterized by two regimes for α. Regime

1 is a high α regime with the posterior mode point estimate equal to α̂1 = 0.9186. The low

α regime 2 posterior mode estimate is α̂2 = 0.8808. A high α regime for cay corresponds to a

low valuation ratio for the stock market, analogous to a low price-dividend ratio (Lettau and

Ludvigson (2001)). Thus we shall refer to high α regime 1 as the low asset valuation regime, and

low α regime 2 as the high asset valuation regime. Figure 1 shows that the low asset valuation

regime prevails for a prolonged period of time starting from 1976:Q2 to 2001:Q2. The smoothed

probability that α = α̂1 is unity during this period. By contrast, the pre-1976 and post-2001

subsamples are high asset valuation regimes, where the probability that α = α1 is equal to 0.

These correspond to the subperiods 1952:Q1-1976:Q1, and 2001:Q2-2013:Q3, respectively.

Table 1 provides estimates of the difference between the high and low α and its distribution.

The difference is positive and statistically significant, as exemplified by the third row of Table

1, which shows that a 90% credible set only contains non-zero and positive values for this

difference.5 The two regimes turn out to be very persistent and this is reflected in the estimates

4For Raftery and Lewis (1992) we target 90% credible sets, with a 1% accuracy to be achieved with a 95%
minimum probaility. We initialize the Gibbs sampling algorithm making a draw around the posterior mode.
Sims and Zha (2006) point out that in Markov-switching models it is important to first find the posterior mode
and then use it as a starting point for the MCMC algorithm due to the fact that the likelihood can have multiple
peaks.

5The Gibbs sampling algorithm is used to generate a distribution for the difference between the two means
in the same manner it is used to generate a distribution for any parameter. For each draw from the joint
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for the diagonal elements of the transition matrix Hα, also reported in Table 1.

The mode values for the other cointegration parameters are βa = 0.26 and βy = 0.62. These

values are comparable with those originally obtained by LL using a fixed coeffi cient regression

(γa = 0.31 and γy = 0.59). By contrast, Table 2 reports the parameter estimates for the fixed

coeffi cient cointegrating relation over the extended sample used in this paper, where γa = 0.12

and γy = 0.78. Therefore, in our current sample, the fixed coeffi cient parameter estimates

differ substantially from those reported in 2001. Bearing in mind that deviations from the

cointegrating relation are the result of persistent but transitory movements in at rather than ct
or yt (Lettau and Ludvigson (2004), Lettau and Ludvigson (2013)), these results suggest that

the fixed-coeffi cient estimates of cayt attempted to “compensate” for increasingly persistent

deviations in at from its cointegrating relation with ct and yt, by progressively reducing the

weight on at and increasing the weight on yt. The instability in these point estimates is largely

eliminated by allowing for discrete shifts in the mean of cay.

To give a visual impression of these regimes over time, Figure 2 plots cayMS
t +

∑2
i=1 π

i
t|Tαi

over time, which is the estimated Markov-switching cay from (5) inclusive of the intercept. As

explained above, we can think about this variable as a valuation ratio. When its mean is high,

asset valuation is low. Also plotted as horizontal lines are the values α̂1 and α̂2 that arise in

each regime over the sample. The figure shows that this valuation variable fluctuates around

two distinct means in three separate periods of the sample, a low mean in the early part of

the sample, a high mean in the middle, and a low mean again in the last part of the sample.

Therefore, we refer to Regime 1 as the high mean/low valuation regime, whereas Regime 2 is

the low mean/high valuation regime.

3.1 Persistence of cayMS versus cayFC

The most salient change in the statistical properties of the estimated cayFCt series in the time

since it was originally introduced is that it has become more persistent. This can be traced

directly to the persistently high asset valuations of the post-millennial period, which caused

at to persistently deviate from any estimated common trend with ct and yt. Even after two

stock market crashes, cayFCt remains well above its full sample mean. Figure 3 plots the

fixed coeffi cient cayFCt and the Markov-switching cayMS
t as defined in (3) and (5), respectively.

(Unlike Figure 2, these values subtract the estimated α or probability-weighted α, respectively.)

The two vertical bars mark the beginning and the end of the time span during which the high

α regime was most likely to be in place, according to the smoothed probability estimates.

As Figure 3 shows, cayFCt exhibits persistent deviations from zero, especially during the last

subperiod 2001:Q2-2013:Q3, which coincides with the second appearance in our sample of the

distribution of the model parameters, we compute the difference and store it. We may then compute means
and/or medians, and error bands, as for any other parameter of interest.
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high asset valuation regime in which at has been persistently high relative to its estimated

common trend with ct and yt. The estimated cayFCt also exhibits persistent deviations from

zero during the period starting around 1980 and ending in the early 2000s, roughly coinciding

with the occurrence of the low asset valuation regime. Most of this subperiod was included in

the original estimation of cayFCt , so it has contributed less to the growth in the persistence in

the series since that timer.

The key question then is whether adjusting for mean breaks in cayFCt leads to a series

that largely corrects for the growth in the persistence of cayFCt over time. It is evident from

Figure 3 that cayMS
t is quite different from cayFCt in that it does not exhibit such persistent

deviations from its demeaned value of zero. The reason is that the persistent deviations are

instead captured by low-frequency regime changes in the constant of the cointegrating relation.

To formalize this visual impression, the first column of Table 3 reports the first-order au-

toregressive coeffi cient estimate for the two versions of cay. The estimated autocorrelation

coeffi cient for cayFCt is 0.94. The estimated first-order autocorrelation coeffi cient for cayMS
t is

0.81, which is close to the 0.79 estimated coeffi cient reported in LL. Allowing for low frequency

mean shifts in the cointegrating relation largely restores the estimated persistence of cay to its

original values.

Several other tests are employed to assess the degree of persistence in cayMS
t as compared

to cayFCt . First, we apply an augmented Dickey-Fuller t test to the estimated cointegrating

residuals. We applied this test to the two versions of cay, and for different lagged values of

∆cay in the Dickey-Fuller regression. The test statistics and corresponding critical values are

reported in Table 3 . According to this test, the null hypothesis of no cointegration is rejected

for the cayMS
t in every case, whereas the opposite is true for cayFCt .

Second, we examine low frequency averages of cay to gauge its persistence. Figure 4 is based

on weighted averages that summarize low-frequency variability in a series. Specifically, following

Muller and Watson (2008) and Watson (2013), the figure plots the “cosine transformations”of

each version of cay

fj =
T∑
t=1

cos
(
j(t− 0.5)πT−1

)
cayt for j = 1, ..., k.

As Muller and Watson (2008) show, the set of sample averages {fj}kj=1, capture the variability

in cay for periods greater than 2T/k, where T is the sample size. Thus, with T = 247 quarters,

the k = 12 points plotted in Figure 4 summarize the variability in cay for periods greater than

2 ∗ 247/12 = 41.1667 quarters, or approximately 10 years. Smaller values of j correspond to

lower frequencies, so values of fj plotted for small j (e.g., j = 1, 2, 3) give the variability in cayt
at low frequencies, while values of fj plotted for higher j (e.g., j = 10, 11, 12) give the variability

in cayt at higher frequencies. A series that is integrated of order zero, I (0), corresponding to
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covariance stationary, displays roughly the same variability (same value of fj) at all frequencies

j. By contrast, a series that is more persistent than I (0) displays higher variability at low

frequencies, resulting in higher values of fj for low j than for high j. Figure 4 shows that the

cosine transformation of cayMS
t displays a pattern much more consistent with an I (0) series

than that of cayFCt , which shows a clear spike at j = 3, corresponding to a period of roughly

41 years.

As a third way to evaluate the persistence of in cayMS
t versus cayFCt , we consider a parame-

terization from a fractionally integrated model. We therefore assume (1− L)dcayt = ut, where

L is the lag operator and ut is an I(0) process. If cayt is I (0), then d = 0. If cayt has a unit

root, then d = 1. Non-integer values of d > 0 are fractionally integrated series that are more

persistent than I (0) but less persistent than I (1). Figure 5 shows the estimated log likelihoods

for (1− L)d cayMS
t and (1− L)d cayFCt as a function of d. For cayMS

t , the likelihood peaks at

d = 0, while for cayFCt , the likelihood rises with d > 0 and peaks near d = 1.2.6

Although the statistical tests just considered imply that cayFCt is suffi ciently persistent that

it can be diffi cult to distinguish from a unit root process, it does not follow that cayFCt actually

has a unit root. Tests of the null of no cointegration are known to have low power against

the cointegration alternative when deviations from the common trend are stationary but highly

persistent. For this reason, Park (1990), Park (1992), Han and Ogaki (1997), and Ogaki and

Park (1997) developed tests for the null of cointegration, rather than no cointegration, which

they argue are more appropriate when theory suggests the variables should be cointegrated.7

But even if cayFCt is simply highly persistent but ultimately stationary, the resulting low fre-

quency deviations from a fixed mean raise issues for forecasting. We turn to these forecasting

implications next.

3.2 Forecasts of Excess Stock Market Returns

The variable cay has been used as a stock market forecasting variable because most of its

variation has been driven historically by transitory fluctuations in a around more stable values

for c and y. Thus when a is high relative to c and y, that signals lower values for future

asset returns, rather than higher values for c and/or y. It is therefore important to understand

whether or not adjusting for the mean breaks in cay improves its forecasting power. If so, it

suggests that these fundamental relationships between asset wealth, consumption and labor

6Please refer to Appendix 6.1 for details about the estimation of the fractionally integrated model.
7These tests, as they apply to cay specifically, are described in detail in the online appendix to (Lettau and

Ludvigson (2013)) available on the authors’websites. Updated output from the Ogaki and Park (1997) test for
the null of cointegration for cayFCt is provided in Table 4. As in earlier samples, this test continues to show no
evidence against the null of cointegration for cayFCt , lending support to the hypothesis that the standard cay
is stationary even if it is suffi ciently persistent so as to make it diffi cult to distinguish from a non-stationary
variable in our sample.
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income exist within regimes but not across regimes. If not it suggests a breakdown in the

relationship entirely.

Table 5 reports the results of long-horizon forecasts of log returns on the CRSP value-

weighted stock market index in excess of a three month Treasury bill rate. This is the same

return variable that was the focus of the empirical results in LL. The table compares the

forecasting power of cayFCt , cayMSfilt
t , based on filtered probabilities and cayMS

t , based on

smoothed probabilities. The top panel reports full sample forecasts. The bottom panel reports

the results of forecasts based on fully recursive estimates of cayt using data only up to time

t. The recursive estimates are obtained as follows. First, all parameters θ for each model

are estimated in an initial period using data available from 1952:Q1 through 1980:Q4. All

parameters are then reestimated recursively on data from 1952:Q1-1981:Q1, 1952:Q1-1981:Q2,

and so on, until the final recursive estimate of cay is obtained based on data over the full sample

1952:Q1-2013:Q3. The recursively estimated values of cayFCt , cayMS
t , are denoted cayFCrec

and cayMSrec, respectively. These variables are then used to forecast returns over the entire

subsample from 1981:Q1-2013:Q3. Notice that the recursive estimates use no forward looking

data to estimate any of the parameters, including the regime probabilities, regimes values, or

transition probabilities. In both panels we report the coeffi cient estimates on the regressor, the

Newey and West (1987) corrected t-statistic, and the adjusted R2 statistic.

The top panel shows that all measures of cay estimated over the full sample have statistically

significant forecasting power for future excess stock market returns over horizons ranging from

one to 16 quarters. But the coeffi cients, t-statistics and R2 values are all larger using the

Markov-switching versions cayMSfilt
t and cayMS

t than they are for cayFCt . The comparison is

more stark if we compare recursively estimated values of cay to full sample values. For example,

the full sample estimate of cayFCt explains 21% of the 16 quarter-ahead log excess stock market

return in the subsample 1981:Q1-2013Q3, while cayMSrec
t explains 42%. Moreover, in this sub-

sample, cayFCt has little forecasting power for excess returns at all but the longest horizon,

whereas cayMSrec
t has much stronger forecasting power. These results show that accounting for

infrequent shifts in the mean of cayt delivers a more powerful predictor variable for returns,

even if no forward looking data is used to form knowledge of the size and dates of the regime

breaks.

Table 5 also shows that cayFCrect also has stronger predictive power than cayFCt over this

subsample. By recursively estimating the parameters in cayFCt , we allow them to change every

period. In this way, a recursively estimated fixed-coeffi cient model can “compete” with the

Markov-switching version, which explicitly models shifts in the mean parameter. The recursive

estimation effectively allows the parameters of cayFCrect (including the mean) to vary over

different regimes of the sample. But finding that cayFCrect performs better than cayFCt in

forecasting returns hardly provides support for the hypothesis that the fixed-coeffi cient model
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is a better description of the data than the Markov-switching model. On the contrary, this

finding may be taken as additional evidence of the instability in the fixed-coeffi cient parameters.

If there were no such instability, cayFCrect would be identically equal to cayFCt . Furthermore,

because cayMS
t is much less persistent than cayFCt , it is less subject to the spurious regression

concerns raised by Ferson, Sarkissian, and Simin (2003) for return forecasts.

Table 6 reports mean-square forecast errors (MSEs) from out-of-sample forecasts. The

forecasting relation is estimated in an initial period using data available from 1952:Q1 through

1980:Q4. Forecasts over the next h quarters are computed and forecast errors stored. The

forecasting relation is then reestimated in rolling subsamples moving forward, (i.e., over the

period 1952:Q1 through 1981:Q1), and forecasts and forecast errors are computed over the next

h periods. This process is repeated until the end of the sample. Table 6 reports MSEs for

several forecasting regressions. To form a basis for comparison, the first row reports results

using nothing more than an estimated constant as a predictor variable, while the second row

uses the lagged log excess stock market return as a predictor. The next three rows report

results using cayFCt , cayMSfilt
t , and cayMS

t as univariate predictors. These versions of cay are

all estimated using the full historical sample, as explained above. The last two rows report

results using cayFCrect and cayMSrec
t as univariate predictors. These versions of cay are all

estimated using only data up to and including date t, as explained above.

Some researchers have argued that many predictor variables for stock market returns have

diffi culty beating the sample mean of stock returns in out-of-sample tests (e.g., Goyal andWelch

(2003); Goyal and Welch (2008)). The first row of Table 6 shows this is not the case here: all

versions of cay have substantially lower out-of-sample MSEs than a forecasting model that uses

only the (constant) sample mean of excess returns as a predictor, and even the recursively

estimated versions have MSEs that are almost 70% smaller than those of the sample mean

model. Table 6 shows that all versions of cay also have lower lower MSEs than a simple au-

toregressive forecasting model. Among those versions that are estimated using the full sample,

the two Markov-switching versions, cayMSfilt
t , and cayMS

t , are much better predictors than the

fixed-mean version cayFCt , having MSEs that are almost 50% smaller for 16-quarter return fore-

casts. The recursively estimated versions cayFCrect and cayMSrec
t have about the same predictive

power over most horizons, although the Markov-switching cay offers a slight improvement over

the fixed-mean cay at the longest (16 quarter) horizon. Because these recursive versions are

estimated over short subsamples, the estimates of parameters are much noisier than they are

for the full-sample versions, so it is not surprising that they have higher MSEs. For this very

reason, it is likewise notable that cayMSrec
t preforms as well (and slightly better at long hori-

zons) as cayFCrect , given that the former has many more parameters that require estimation over

short subsamples of our quarterly dataset. Postwar samples of the size currently available are,

however, much larger than the repeated subsamples used to construct the recursive estimates
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for this exercise. Going forward, such samples should provide less noisy estimates of cayMS
t

parameters. Researchers using cayt as a predictor variable may wish to consider both measures

as predictors of long-horizon stock market returns.8

4 What’s Behind the Breaks in Asset Valuation?

For the rest of this paper, we search for empirical explanations for the breaks observed in cay.

We argue that the low frequency nature of these shifts in wealth relative to consumer spending

and labor earnings raise a question about the role of structural changes in the macroeconomy.

We therefore carry out our investigation using macroeconomic data, studying how structural

changes in the statistical properties of these data might be connected to the documented breaks

in asset valuations as measured by cay.

To do so, we estimate a Markov-switching macroeconomic VAR (MS-VAR) for output

growth, inflation, and the federal funds rate, allowing the parameters of the VAR to poten-

tially undergo structural breaks during the periods that correspond to the shifts identified in

our estimates for cayMS. Specifically, we impose the formerly estimated regime sequence for

cay on the VAR, but the parameters characterizing the different regimes, as well as the tran-

sition matrix, are freely estimated.9 We denote the MS-VAR transition matrix HA in order

to distinguish it from the cayMS transition matrix Hα. Note that the goal is not to estimate

the regimes of the MS-VAR and see if they are aligned with the previously estimated breaks

in cay. Instead, the goal is to establish what, if anything, is different in the VAR across the

two previously estimated regimes that could help explain the breaks in the mean of cay. Thus

we deliberately “tie our hands”by forcing the regime sequence for the MS-VAR to correspond

to breaks in cay. We then ask whether the parameters of the MS-VAR show any evidence of

important structural shifts under this sequence, when they are freely estimated and could in

principle show no shift.

All MS-VARs estimated in this section and the next are implemented using Bayesian meth-

ods with flat priors. The Appendix provides estimation details.10

We consider the following MS-VAR model with n variables and m = 2 regimes:

Zt = cξt + A1,ξtZt−1 + A2,ξtZt−2 + Vξtεt, εt ∼ N (0, I) (6)

where Zt is an n × 1 vector of variables, cξt is an n × 1 vector of constants, Al,ξt for l = 1, 2

is an n × n matrix of coeffi cients, VξtV ′ξt is an n × n covariance matrix for the n × 1 vector of

8Both series are updated and available on the authors’websites.
9To impose the formerly estimated regime sequence, we choose the particular regime sequence ξ̂

α,T
=

{ξ̂
α

1 , ..., ξ̂
α

T } that is most likely to have occurred, given our estimated posterior mode parameter values for
θ . See the Appendix for details.
10Bayesian methods are used because they offer significant computational advantages in characterizing un-

certainty about parameter transformations such as risk-premia.
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shocks εt. The process ξt controls the regime that is in place at time t and assumes two values,

1 and 2, based on the regime sequence identified in our estimates for cayMS.

The vector Zt includes three variables at quarterly frequency: GDP growth, Inflation, and

the federal funds rate (FFR). Inflation and real output growth are defined as the year-to-year

differences of the logarithm of the GDP price deflator and real GDP, respectively. The quarterly

FFR is obtained by taking the average of monthly figures of the Effective Federal Funds Rate.

All variables are taken from the FRED II database of the Federal Reserve Bank of St. Louis and

are expressed in percentage points. The sample for this estimation spans the period 1955:Q3-

2013:Q3. (The beginning of the sample is three years later than the sample used to estimate

cay because the federal funds rate data is only available starting in 1955:Q3.) Details about

the estimation can be found in the Appendix.

We are interested in knowing the conditional expectation and the conditional standard

deviation of each variable in the MS-VAR as well as for the implied real interest rate RIR, defined

as the difference between the FFR and one-step-ahead inflation expectations. For each variable

zt ∈ Zt, the conditional expectation and conditional standard deviation are given by Et (zt+s)

and sdt (zt+s) =
√
Vt (zt+s) =

√
Et [zt+s − Et (zt+s)]

2, where Et (·) ≡ E (·|It) and It denotes the
information available at time t. We assume that It includes knowledge of the regime in place
at time t, the data up to time t, Zt, and the VAR parameters for each regime. Both statistics

are computed from the MS-VAR parameters and transition matrix HA, taking into account

that future regimes are unknown and that there exists an entire posterior distribution of VAR

parameters and transition matrix HA, translating into posterior distributions for Et (zt+s) and

sdt (zt+s). (Details on how these are calculated can be found in Appendix.) Note that inflation

expectations are computed using the MS-VAR estimates, therefore RIR is not included directly

in the MS-VAR but derived ex-post based on the MS-VAR estimates. Note that sdt (zt+s) can

be considered a measure of economic uncertainty, as implied by the MS-VAR.

Figure 6 reports the conditional expectations of each variable in the MS-VAR plus RIR. The

figure reports the median and 68% credible sets from the posterior distribution of the conditional

expectations. The figure shows striking evidence of structural change in the expected long-run

RIR that coincide with the regime sequence estimated for the mean of cay. The occurrence of

the low asset valuation regime in the middle subsample from 1976:Q2-2001:Q2, coincides with

an expectation of sharply higher values for the real federal funds rate, while the periods of high

asset valuation at the beginning (1955:Q3-1976:Q1) and end (2001:Q3-2013:Q3) of our sample

coincide with expectations of much lower real interest rates. The differences across subsamples

are strongly statistically significant: the figure also reports the 68% posterior credible sets for

the conditional expectations and shows that the sets for the two regimes never overlap. Note

that, because the MS-VAR parameters are freely estimated, the estimation could have found no

evidence of structural change in the expected real interest rate across these subsamples and/or
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that changes occur in variables other than the expected real interest rate.

Figure 6 also shows that the estimated regime shifts in the expected future RIR show up

most prominently in the expectations for the real policy rate five to ten years ahead. This

finding underscores the extent to which low frequency shifts in the mean of cay coincide with

expectations of a persistent low or high interest rate environment, rather than transitory move-

ments in these rates.

There is no clear pattern with inflation. Thus the breaks in the expected real interest

rate five to ten years ahead appear mostly attributable to breaks in the conditional expected

value of the nominal interest rate, which the Federal Reserve directly influences. Of course the

Federal Reserve may also have considerable influence over expected inflation. But movements in

expected inflation do not line up as well with the regime sequence for breaks in the mean of cay as

do movements in the expected nominal interest rate: in the first subperiod, corresponding to the

first instance of the high asset valuation regime, expected inflation was low and then high, while

in the second subperiod, corresponding to the low asset valuation regime, inflation was high and

then low, where it remained throughout the entire span of the third subperiod corresponding

to the second instance of the high asset valuation regime. To the best of our knowledge, these

findings provide among the first formal statistical evidence that low frequency shifts in asset

values relative to economic fundamentals are strongly associated with expectations of the long-

run value of a policy instrument under direct control of the central monetary authority.

Why are high asset valuations associated with low expected long-run policy rates, and vice

versa? Some classic theories of rational bubbles suggest that higher policy rates can lead to

higher asset valuations (e.g., Galí (2014)). But the evidence here is inconsistent with this

story, since high wealth ratios are associated with low policy rates rather than high. An

alternative explanation, consistent with the evidence here, is that any change in the expected

short-term real interest rate will always have some effect on asset values because it changes

the “fundamental” value of the asset. If prices are sticky and the Federal Reserve reduces

the nominal interest rate, changes in monetary policy may reduce the rate at which investor’s

discount future payouts by reducing the real “risk-free”rate component of the discount rate,

thereby increasing asset values. This effect would also be present in bubbles of the resale-option

variant, since unlike the classic rational bubble, the resale-option bubble is proportional to

fundamental value (e.g., Harrison and Kreps (1978); Scheinkman and Xiong (2003)). Regardless

of whether a bubble of this form is present or not, asset valuations would be further increased

if the risk premium component of the discount rate falls simultaneously with the risk-free rate

because investors’willingness to tolerate risk is for some reason inversely related to the long-run

expected value of the Federal Reserve’s core policy instrument, consistent with a “reaching for

yield”channel. We present tests of this hypothesis in the next section.

Alternatively and/or in addition, high wealth ratios could be associated with low expected
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long-run policy rates because the latter are expected to generate either faster long-run economic

growth, or lower uncertainty about that growth. Conversely, regimes characterized by low

wealth ratios and high expected policy rates could be explained by lower expectations for

long-run growth and/or higher uncertainty about that growth. Figure 6, however, provides no

evidence that the low frequency shifts to high asset valuation regimes are associated with higher

expected economic growth, or vice versa; indeed the opposite is true. The high asset valuation

subperiods at the beginning and end of our sample are associated with lower expected GDP

growth 10 years ahead than is the low asset valuation subperiod in the middle of the sample.

In theory, higher asset valuations could be the result of lower expected economic uncertainty

(e.g., Lettau, Ludvigson, and Wachter (2008)). Figure 7 reports the conditional standard of

each variable in the MS-VAR plus RIR. The figure reports the median and 68% credible sets

from the posterior distribution of the conditional standard deviations. Note that the conditional

standard deviation represents a statistical measure of uncertainty. The result in Figure 7 shows

that for GDP growth and inflation, uncertainty is higher rather than lower in subperiods of the

high asset valuation regime as compared to the subperiod of the low asset valuation regime,

but the opposite is true for the nominal and real federal funds rate. Thus infrequent shifts to

high mean wealth ratios cannot be readily explained by lower economic uncertainty, nor can

it be explained by lower inflation uncertainty. Therefore, we can conclude that the high asset

valuation regime is characterized by higher uncertainty for real activity and inflation, but lower

uncertainty about the Federal Reserve’s policy instrument, while the converse is true for the low

asset valuation regime. The finding that macro and fed funds rate uncertainty vary inversely

across the regimes is consistent with a more active role of the Federal Reserve in stabilizing

inflation and real activity. As the Federal Reserve is expected to respond more aggressively

by raising interest rates to counter higher inflation and/or a lower output gap, macroeconomic

volatility is reduced, whereas the volatility of the FFR can increase. This observation hardly

provides support for the hypothesis that the high asset valuation regimes were the product of

low economic uncertainty, however.

Table 7 reports both means and standard deviations for the real interest rate and GDP

growth, conditional on staying in each of the two regimes. The conditional steady state values

are the means and standard deviations given by the VAR coeffi cients conditional on a particular

regime being in place (see the Appendix for a precise definition.) For each statistic we report

the median and 68% credible sets based on the posterior distribution of the MS-VAR para-

meters conditional on that regime. These statistics corroborate the non-steady state evidence

presented above where the possibility of a regime shift is incorporated into expectations: the two

regimes present a clear difference for the mean and volatility of the real interest rate. The high

asset valuation regime is characterized by sharply lower expected real policy rates and lower

uncertainty about those rates, while the opposite is true for the low asset valuation regime. By
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contrast, the high asset valuation regime is characterized by lower expected economic growth

and higher economic uncertainty. Note that the conditional steady states do not depend on the

estimated transition matrix so they show that the main conclusions on the differences across

regimes are robust to estimation error on the transition matrix.

Figure 8 gives a visual impression of the result. The figure plots the “wealth ratio” (the

inverse of cayMS without removing the Markov-switching constant), along with the ten-year-

ahead expected real federal funds rate, on separate scales. The red dashed line in the figure

shows the most likely value of the unconditional mean of the wealth ratio in each regime (given

by the inverse of the regime-probability weighted average of α1 and α2). The mean shows clear

regime shifts in wealth ratios that move from high to low to high over the sample, coinciding

with a low then high then low expected long-run real federal funds rate. Regime shifts in the

expected federal funds rate are large, ranging from about 1% in the low expected interest rate

regimes to 3% in the high expected interest rate regime.

These findings capture three distinct periods of post-WWII US economic history. The

first manifestation of regime 2 is in the subperiod from 1952:Q1-1976:Q1 and coincides with

the run-up of inflation in the 1960s and 1970s, accommodative monetary policy, and low real

interest rates. Economists have provided several possible explanations for why monetary policy

failed to react aggressively to inflation during those years. However, they generally tend to

agree that this was a period of high uncertainty and possibly passive monetary policy (Clarida,

Gali, and Gertler (2000); Lubik and Schorfheide (2004); Sims and Zha (2006); Bianchi (2013)).

The occurrence of the low asset valuation regime, in the middle subperiod from 1976:Q2-

2001:Q2, precedes by three years Volcker’s appointment as Chairman of the Federal Reserve

and the disinflation that followed. The first attempts to bring inflation down started in the late

1970s, but Volcker succeeded only in the early 1980s, perhaps because of the political backing

provided by the Reagan administration (Bianchi and Ilut (2015)). As a result, the beginning

of Great Moderation is generally placed in the mid-1980s, when the economy experienced a

substantial reduction in volatility (McConnell and Perez-Quiros (2000); Stock and Watson

(2002).) Macroeconomists interested in the Great Inflation tend to identify the change in

the anti-inflationary stance of the Federal Reserve with the appointment of Volcker in August

1979. However, Sims and Zha (2006) estimate a structural MS-VAR and find a change in the

conduct of monetary policy from less to more active toward the end of 1977, in line with the

results here. Real interest rates increased significantly during the Volcker disinflation and they

remained higher than in the 1970s for a prolonged period of time. In part this may have been

attributable to a perceived need on the part of the Federal Reserve had to rebuild credibility

for low and stable inflation.

The second occurrence of the high asset valuation regime in the subperiod 2001:Q3-2013:Q3

starts with the end of the information technology (IT) boom and the beginning of the Federal
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Reserve’s accommodative response to the recession that followed. Economists have identified

the end of the Great Moderation with the 2008 recession, consistent with the estimated break

patterns in Figure 7 for GDP growth uncertainty. At the same time, some have argued that

monetary policy underwent a regime shift after the end of the IT boom (Campbell, Pflueger,

and Viceira (2014)) and/or that interest rates were held “too low for too long”(Taylor (2007)) in

response to the IT bust and the aftermath of 9/11. Asset values quickly recovered in 2002, and

after a brief but dramatic decline in the financial crisis of 2007-2009, equity valuations resumed

their upward march in 2009. This period of high equity valuations persists today with rates

in the zero lower bound (ZLB) range coinciding with positive rates of inflation. Our estimates

characterize this third subperiod as a return to a period of prolonged low real interest rates.

The three distinct cay regimes we estimate are remarkably close to the three distinct mone-

tary policy regimes estimated by Campbell, Pflueger, and Viceira (2014), who use a completely

different approach. Instead of identifying the break dates by using a cointegration relation

in cay, they estimate break dates in the parameters of an estimated Taylor rule. Their first

subperiod covers the period 1960:Q2-1977:Q1, the middle period is 1977:Q2-2000:Q4, and the

last subperiod 2001:Q1 to the end of their sample 2011:Q4. They find that these regimes line

up closely with shifts in estimated bond market betas. Although our focus is on regime shifts

in an asset valuation ratio, cay, taken together, the results are suggestive of an important role

for the Federal Reserve in driving persistent movements in equity and interest rate behavior.

5 Reaching for Yield?

We have found that low frequency swings in post-war asset valuation are strongly associated

with low frequency shifts in the long-run expected value of interest rates, with low expected

values for the real federal funds rate associated with high asset valuations, and vice versa.

Moreover, while persistently low policy rates are associated with high asset valuations, this is not

because they signal strong economic growth, favorable changes in inflation, or low uncertainty.

This suggests that persistent changes in monetary policy affect asset valuations because they

change the rate at which investor’s discount future payouts, in a manner that is independent of

uncertainty about the aggregate economy. This could occur simply because the Central Bank

influences the riskless real interest rate, a component of the discount rate. But the magnitude

of this discount rate effect would be amplified if it went beyond the riskless rate to affect risk

premia. If a switch from a high to low interest rate regime prompts investors to take on more

risk, to “reach for yield,” then the risk premium component of the discount rate would fall,

further stimulating risky asset values relative to economic fundamentals. The reverse would

occur in a shift from persistently low expected rates to high. We refer to this general idea as
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the reaching for yield hypothesis, or RFY for brevity.11

Observe that a change in discount rates driven by the risk-free rate alone influences all

assets in the same way, regardless of their riskiness. By contrast, RFY implies that investors

shift portfolio allocations toward riskier/higher return assets in low interest rate environments.

Thus a change in discount rates accompanied by RFY will have effects that differ across assets,

depending on the riskiness of the asset. As interest rates move from high to low, RFY implies a

greater increase in the market value, relative to fundamentals, of higher return/higher Sharpe

ratio assets than it does for lower return/lower Sharpe ratio assets. Equivalently, risk premia

should fall more for riskier assets. We investigate this possibility here, using data on book

equity relative to the market values of individual stock market portfolios that exhibit strong

cross-sectional variation in return premia.

The book-market ratios of individual assets can also be differentially affected by a shift in

interest rates because their expected future earnings are differentially affected. This has nothing

to do with risk premia or discount rates, so it is important to correct for possible differences in

expected earnings growth when assessing the RFY.

To do so, we carry out a log-linearization that follows Vuolteenaho (2000) and constructs

earnings from book-market and return data using clean surplus accounting. Let Bt denote book

value and Mt denote market value, and let the logarithm of the book-market ratio log (Bt/Mt)

be denoted θt. Vuolteenaho (2000) shows that the θt of an asset or portfolio can be decomposed

as:

θt =
∑∞

j=0 ρ
jEtrt+1+j +

∑∞
j=0 ρ

jEtft+1+j −
∑∞

j=0 ρ
jEte∗t+1+j (7)

where ρ < 1 is a parameter, and rt+1+j, ft+1+j, and e∗t+1+j stand for log excess return, log risk-

free rate, and log earnings, respectively.12 In other words, the logarithm of the book-market

ratio θt depends on the present discounted value (PDV) of expected excess returns (risk premia),

expected risk-free rates, and expected earnings.

Given our objective to assess whether assets with different risk/return profiles respond

differently to the regime changes identified above, we begin by focusing on the difference between

the book-market ratios of portfolios known to have different risk/return profiles. Specifically,

given two portfolios x and y, the spread in their book-market ratios, θx,t − θy,t, is given by:

θx,t − θy,t︸ ︷︷ ︸
Spread in BM ratios

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of spread in risk premia

−
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
PDV of spread in expected earnings

Note that the risk-free rate has no affect on this spread, since all portfolios are affected in

11In what follows we use the terms “risk”premia and return premia interchangeably to refer to the expected
return on an asset in excess of the risk-free rate. We remain agnostic as to whether the observed premia are
attributable to mispricing, to covariance with systematic risk factors, or both.
12Specifically, e∗ is the log of 1 plus the earnings-book ratio, adjusted for approximation error. See Vuolteenaho

(2000).
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the same way by the risk-free rate. Instead only the risk premium differential and expected

earnings differential affect the book-market spread. Since RFR pertains only to the return

premium differential, we adjust the book-market spread for the spread in expected earnings to

isolate the return premium differential:

θx,t − θy,t +
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
Spread in BM ratios adjusted for earnings

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of the spread in risk premia

(8)

The above expression shows that the spread in book-market ratios adjusted for expected future

earnings is equal to the PDV of the spread in expected excess returns, or risk premia.

Denote the adjusted (for expected earnings) book-market ratio for portfolio x in regime r

with a tilde as

θ̃
r

x,t ≡ θrx,t +
∑∞

j=0 ρ
jEte∗rx,t+1+j.

Let x denote a high return premia portfolio while y denotes a low return premia portfolio.

Reaching for yield implies that, in a shift from a high (r = 1) to low (r = 2) interest rate regime,

the adjusted book-market ratio of x should fall more than that of y, implying
(
θ̃

1

x,t − θ̃
2

x,t

)
−(

θ̃
1

y,t − θ̃
2

y,t

)
> 0, or that the difference-in-difference of adjusted book-market ratios should be

positive across regimes: (
θ̃

1

x,t − θ̃
1

y,t

)
−
(
θ̃

2

x,t − θ̃
2

y,t

)
> 0. (9)

In summary, RFY implies that the spread in the adjusted book-market ratios between the high

return/high risk portfolio and the low return/low risk portfolio should be greater in regime 1

than in regime 2.

To assess empirically whether the spread in adjusted book-market ratios between assets

with different risk/return profiles is statistically different across the two regimes, we again

estimate MS-VAR, now using portfolio data rather than macro data. The portfolio data are

chosen to exhibit strong cross-sectional variation in average return premia and Sharpe ratios.

The VAR specification takes the same form as equation (6), only the variables differ. Just as

in the previous section, we impose the formerly estimated regime sequence for cay on the

portfolio MS-VAR, but the parameters characterizing the different regimes, as well as the

transition matrix, are freely estimated. The reasoning for doing so is the same as given above

for the macro MS-VAR: we are interested in knowing whether the previously documented

regime sequence for cay is characterized by evidence of RFY. This requires that we impose the

previously estimated regime sequence, but since the MS-VAR parameters are freely estimated,

the empirical procedure is free to find no evidence of structural change across these subsamples

if indeed there is none.

We consider five different spread-portfolio VAR specifications using data on portfolios of

stocks sorted by size (market capitalization) and book-market (BM) ratio, and portfolios of
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stocks sorted according to momentum (recent past return performance). The VARs differ

according to which portfolios of a given size quintile are used to build the value book-market

and return spreads. Specifically, the first portfolio VAR specification includes data on the five

Fama-French risk factors Rm−Rf , SMB, HML, RMW , and CMA (Fama and French (2015)),

the real FFR computed as FFR-inflation, and the following four variables:

1. Value BM spread: The difference between the logarithm of the BM ratio of the small

(size quintile 1) high book-market portfolio and the logarithm of the BM ratio of the

small (size 1) low book-market portfolio.

2. Momentum BM spread: The difference between the logarithm of the BM ratio of the

extreme winner (M10) portfolio and the logarithm of the BM ratio of the extreme loser

(M1) portfolio.

3. Value return spread: The difference between the excess return of the small (size 1) high

BM portfolio and the excess return of the small (size 1) low BM portfolio.

4. Momentum return spread: The difference between the excess return of the extreme winner

(M10) portfolio and the excess return of the extreme loser (M1) portfolio.

The other four portfolio VARs are obtained by replacing the value BM spread and the

value return spread by the corresponding series for the portfolio in a different size quintile. We

denote these size quintiles S1, S2,...,S5, where S1 is the smallest quintile and S5 the largest.

The five Fama/French factors are always included in the VAR because they contain predictive

information for the return premia on these portfolios, and thus for the PDV of the spread

in expected excess returns. The BM data are constructed starting from the 25 Fama/French

portfolios sorted by size and BM, and the 10 portfolios sorted on momentum.13 The data on

BM ratios for individual portfolios are constructed from CRSP and Compustat exactly as the

Fama-French portfolio returns are constructed. We mimic the selection and breakpoints of

this construction and compute the book-market ratio of each portfolio. The sample for this

estimation is 1964:Q1-2013:Q4. This is shorter than the one previously used for cayMS and the

macro VAR because reliable data for book-market ratios are not available prior to 1964:Q1.

It is well known that equity assets formed by sorting stocks into portfolios on the basis of

book-market and size, and on the basis of recent past return or earnings performance, exhibit

sizable cross-sectional variation in return premia and conventional measures of the risk/return

trade-off. High BM portfolios earn much higher average returns than low BM portfolios, espe-

cially in the small size categories. Along the momentum dimension, recent past winner stocks

earn much higher returns than recent past losers. Table 8 reports sample statistics in our data

13http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

22



on the annualized Sharpe ratios and means for the long-short value and momentum strategies.

Specifically, the table reports these statistics for a portfolio that is long in the extreme value

portfolio (highest BM ratio) and short in the extreme growth portfolio (lowest BM ratio) of

a given size category, and for a portfolio that is long in the extreme winner portfolio (M10)

and short in the extreme loser portfolio (M1). The table also reports the same statistics for

the individual portfolio returns in excess of the risk-free rate, where the risk-free rate for this

purpose is the one used by Fama-French, denoted Rf , and equal to the one-month Treasury

bill rate. It is evident that the value strategies that go long in the high BM portfolio and short

the low BM portfolio have high Sharpe ratios and return premia, especially those in the three

smallest size categories. The Sharpe ratio for the smallest value long-short strategy is 0.62

with a mean return of 10%, while that on the medium size quintile has a Sharpe ratio of 0.42

and mean return of 7%. The momentum strategy has an annualized Sharpe ratio of 0.64 and

mean return of over 15%. Moreover, for the individual value, growth, winner, loser portfolios,

value portfolios have much higher risk-premia than growth portfolios in the same size category,

while the winner portfolio has a much higher risk premium than the loser portfolio. Indeed,

the loser portfolio has a negative average return premium in the full sample, suggesting that it

is not a risky asset and may even provide insurance. These statistics confirm the well known

heterogeneity in the risk/return profiles of these portfolios.

Our objective is exploit this heterogeneity to isolate the effects of the previously estimated

regime changes in the mean of cay on the adjusted BM ratios of different portfolios. To do so, we

begin by computing the conditional steady states of the adjusted BM spreads between the high

and low return premia portfolios, θ̃
r

t,x − θ̃
r

t,y, for each regime. As above, the conditional steady

state values are the means and standard deviations given by the VAR coeffi cients conditional on

a particular regime being in place and we report the median and 68% credible sets based on the

posterior distribution of the MS-VAR parameters conditional on that regime. The high and low

return premia portfolios along the BM dimension are always the extreme value (highest BM)

and the extreme growth portfolio (lowest BM), respectively, in each size category. Likewise, the

high and low return premia portfolios along the momentum dimension are always the extreme

winner (M10) and extreme loser portfolio (M1). These results are reported in the first two rows

of Table 9. The third row reports the the difference-in-difference of adjusted book-market ratios

between the high and low return premia portfolios across the two regimes, i.e., the difference

between the spreads
(
θ̃

1

x,t − θ̃
1

y,t

)
−
(
θ̃

2

x,t − θ̃
2

y,t

)
, as implied by the VAR estimates. To interpret

the table, keep in mind that regime 1 is the low asset valuation/high interest rate regime, while

regime 2 is the high asset valuation/low interest rate regime.

For all five size quintiles and every VAR, Table 9 shows that the adjusted BM spreads

between the high and low return premia portfolios are positive in both regimes. This is not

surprising because portfolios that have higher risk premia should have lower market values,
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holding fixed expected earnings and book value. Importantly, however, the table shows that

these spreads are greater in regime 1 (low asset valuations/high interest rates) than in regime

2 (high asset valuations/low interest rates). Thus the difference-in-difference across regimes

is always positive. This implies that the adjusted book-market ratios of high return/high

risk portfolios fall more in a shift from high to low interest rate regime than do those of low

return/low risk portfolios. Put differently, the return premia of evidently riskier/higher return

assets decline more in environments with persistently high aggregate wealth ratios and low

Federal Reserve policy rates than do less risky/lower return assets.

The third row also reports the 68% posterior credible intervals in parentheses for the

difference-in-difference. The break in the BM spreads is proportionally smaller than the break

in the momentum spreads. However, in all cases it is positive and, with the exception of the

adjusted BM spread between the value and growth stocks in the fourth largest size quintile (size

4), this difference is strongly statistically significant. These results are supportive of a channel

that implies an increased appetite for risk-taking in low interest rate environments.

The magnitude of the RFY channel for some portfolios is striking, and the case of momentum

in particular deserves emphasis. The results indicate that, in every VAR estimated, the spread in

adjusted BM ratios between the winner and loser portfolios is nearly one and a half times as high

in the high interest rate regime than in the low interest rate regime, suggesting quantitatively

large shifts toward greater risk-taking in the low interest rate subperiods. It is notable that

momentum investing, with portfolios that exhibit the largest shift in these spreads that we find,

is known to be among the most volatile equity investment strategies studied, one that is subject

to infrequent but extreme crashes especially prevalent in times of crisis or panic (Daniel and

Moskowitz (2013)).

These findings may be equivalently stated in terms of risk premia (see 8): long-short port-

folios that exploit value and momentum spreads have lower risk premia in low interest rate

regimes, and higher risk premia in high interest rate regimes. Specifically, the PDV of all future

risk premia spreads is estimated to be considerably lower in low interest regimes than in high

interest rate regimes.

The findings in Table 9 report the PDV of risk premia, conditional on one regime or another.

We can also estimate the PDV of risk premia as it evolves over the sample, rather than in

conditional steady state. These values are estimated as the VAR forecasts of the return premia

spreads, conditional on information in the VAR data as of time t and taking into account the

probability of a regime change as of t. (The Appendix explains how this is computed from

the MS-VAR estimates.) The first row of Figure 9 reports these conditional forecasts for the

value-growth spreads in each size category and the winner-loser spread. (The results for the

latter are arbitrarily reported using the estimates of the (S5) VAR, since the results are very
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similar across the five VAR specifications).14 Although the risk premia are volatile, there are

some clear patterns. With the exception of the S4 value-growth portfolio, risk premia fluctuate

around a lower point in the high asset valuation/low interest rate regime than they do in the

low asset valuation/high interest rate regime. For the four long-short strategies other than this

one, the estimated risk premia reach lows or near-lows in the post-millennial period, during the

second occurrence of the high asset valuation/low interest rate regime, after shooting up briefly

in the aftermath of the financial crisis of 2007-2008. The risk premia then return to low levels

in the post-crisis ZLB period.

We also investigate how the risk premia on the individual value and momentum portfolios,

as opposed to the long-short strategies, have changed over the sample. To do so, we form an

estimate of the first term on the right-hand-side of (7), namely the PDV of all future risk

premia, for each portfolio. These estimates are formed from six MS-VAR specifications. The

first five VARs pertain to portfolios sorted according to size and book-market, and differ by size

quintile. The sixth VAR uses the same data but for the momentum portfolios. Specifically, each

VAR includes data on the five Fama-French risk factors Rm − Rf , SMB, HML, RMW , and

CMA (Fama and French (2015)), the real FFR computed as FFR-inflation, and the following

four variables:

1. The logarithm of the BM ratio of the high book-market portfolio (value) in a given size

quintile (small, S2, S3, S4, large) or the logarithm of the BM ratio of the extreme winner

(M10) portfolio.

2. The logarithm of the BM ratio of the low book-market portfolio (growth) in a given size

quintile (small, S2, S3, S4, Large) or the logarithm of the BM ratio of the extreme loser

(M1) portfolio.

3. The excess return of the BM ratio of the high book-market portfolio (value) in a given

size quintile (small, S2, S3, S4, large) or the excess return of the BM ratio of the extreme

winner (M10) portfolio.

4. The excess return of the BM ratio of the low book-market portfolio (growth) in a given

size quintile (small, S2, S3, S4, Large) or the excess return of the BM ratio of the extreme

loser (M1) portfolio.

The specification of these six VARs differs from that of the five VARs used above to esti-

mate adjusted BM spreads across portfolios, where the momentum variables were included in

each size/book-market VAR. There are two reasons we use a different VAR specification for

14Both the estimated risk premia over time and the conditional steady states are computed for each draw of
the VAR parameters by taking into account the possibility of regime changes. The lines in the figure correspond
to those for the median values across draws.
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estimating the risk premia on the spreads than for estimating those for the individual portfo-

lios. First, although the VAR specified above for the individual portfolios could in principal be

used to estimate risk premia for the long-short spreads, in practice risk premia for the spreads

are estimated far more precisely using a VAR that includes data on the spreads, rather than

data on the individual portfolios separately. Second, including the momentum variables in the

book-market VARs for the individual portfolios (as was done for the spreads) would have re-

quired two additional variables in each VAR compared to the case for the spreads, a number

that overwhelmed the numerical calculation and caused many draws to be rejected due to non-

stationarity. Stationarity is required to form accurate estimates of the conditional expectations

embedded in risk premia and the PDV of expected returns. The above specification with six

VARs exhibited no problems with stationarity.

The results on risk premia for the individual portfolios are displayed in the second and third

rows of Figure 9. The solid (blue) line is the estimated PDV of risk premia over time, while

the dashed (red) line is the value conditional on the regime in place. For nine of the twelve

portfolios, the PDV of risk premia are all lower in the high asset valuation/low interest rate

regime than in the low asset valuation/high interest rate regime. For several portfolios these

premia reach lows or near-lows in the post-2000 period and the post-crisis period, when in the

latter case interest rates entered the ZLB range. Almost all portfolios exhibit an increase in

risk premia during the years corresponding to the financial crisis, but in every case risk premia

decline subsequent to the crisis. It is worth noting that the one big exception to this is the

loser portfolio, which as noted has an average return over the risk-free rate that is negative,

suggesting not only that it is not a risky asset, but may even provide insurance. If so, we would

not expect the behavior of this portfolio to be even qualitatively consistent with those of the

risky portfolios, since the predictions of either literature discussed in the introduction for how

the risk premium on an asset changes with the interest rate are predicated on the presumption

that the asset in question carries a positive risk premium on average.

The findings reported in Figure 9 are point estimates based on the median draw from the

estimated posterior distribution for the PDV of risk premia. But it is also possible to make

inferences on the extent to which risk premia are lower in high asset valuation/low interest

rate regimes by examining other moments of the posterior distribution. For example, we can

use the estimated posterior distribution to compute the exact probability that a high asset

valuation/low interest rate regime is characterized by lower risk premia than the low asset

valuation/high interest rate regime. These probabilities are computed as the percentage of

draws from the posterior distribution for which a decline in risk premia occurs when moving

from regime 1 to regime 2. The results are reported in Table 10. The first and second rows

refer to the risk premia for the long-short spread portfolios, while the third and fourth rows

refer to the risk premia on individual portfolios.
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Table 10 shows that, for five out of the six spread portfolios, the probability that the

difference in risk premia is positive (i.e., that premia go down when entering a high asset

valuation/low interest rate regime) is at least 85%. The exception is value-growth size 4 spread

portfolio. But three of the value-growth portfolios assign probabilities in excess of 90%, and the

winner-loser portfolios assign a probability of effectively 100%. For the individual portfolios,

the estimation likewise assigns a large probability of a decline in risk premia in most cases.

For 8 out of 12 portfolios this probability is at least 85%. Moreover, taking the results for all

portfolios together, the estimated probability appears related to the riskiness of the portfolio

in the expected way. The long-short (spread) portfolios are arguably the riskiest since they

require leverage. For these portfolios the probability that risk premia fall in the high asset

valuation/low interest rate regime is above 90% for the three value-growth strategies with the

highest average risk premia (those for S1, S2, and S3), and is often close to 100% for winner-loser

strategies. Similarly, the high risk premia value and winner individual portfolios exhibit greater

probabilities of a decline in premia than do the lower risk premia growth and loser portfolios.

Finally, in line with the evidence presented above, the evidence says that the probability of a

decline in risk premia for the loser portfolio is close to zero (5%), consistent with the evidence

that this portfolio does not command a positive risk premium on average and so would not be

expected to exhibit a decline in its premium in regimes where the appetite for risk-taking is on

the rise.

In summary, the results from estimating portfolio VARs indicate that, low interest rate

regimes are associated with lower risk premia for most portfolios that carry a positive (average)

risk premium, while the riskier portfolios exhibit larger declines in premia over the course of a

low interest rate regime than do less risky portfolios. The findings are supportive of reaching

for yield theories. They present a challenge, however, for theories that explain persistently low

interest rate environments with shocks that shift in the composition of wealth toward more risk

averse investors (e.g., Barro and Mollerus (2014); Caballero and Farhi (2014); Hall (2016)).

In contrast to RFY, these theories imply that low interest rates should coincide with higher

risk premia rather than lower. The findings here indicate that, not only are risk premia lower

conditional on being in a low interest rate regime but, for most portfolios the estimated historical

variation in these premia indicates that they declined early in the pre-2000 period and again

at the onset of the ZLB period, after a brief but sharp spike upward during the financial crisis.

6 Conclusion

This paper presents evidence of infrequent shifts, or “breaks,”in the mean of the consumption-

wealth variable cayt, an asset market valuation ratio driven by fluctuations in stock market

wealth relative to economic fundamentals. These infrequent mean shifts generate low frequency
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fluctuations in asset values relative to fundamentals as measured by cay. A Markov-switching

cayt, denoted cayMS
t , is estimated and shown to be less persistent and have superior forecasting

power for excess stock market returns compared to the conventional estimate. Evidence from

a Markov-Switching VAR shows that these low frequency swings in post-war asset valuation

are strongly associated with low frequency swings in the long-run expected value of the Federal

Reserve’s primary policy interest rate, with low expected values for the real federal funds rate

associated with high asset valuations, and vice versa. The findings suggest that the expectation

of persistently low policy rates may be partly responsible for the high asset valuations of the

last several years, and vice versa for the low asset valuation regime in the middle part of our

post-war sample.

At the same time, we find no evidence that the estimated structural shifts to high asset

valuation regimes and persistently low policy rates are associated with optimism about the

future in the form of expectations for stronger long-run economic growth or lower uncertainty

about that growth. Instead, the results suggest that infrequent regime shifts to high asset

valuations are driven by persistent shifts in the stance of monetary policy that merely reduce

the rate at which investors discount future payouts, without engendering favorable expectations

for real economic growth, inflation, or uncertainty. Moreover, this finding does not appear to

be attributable to a movement in discount rates driven solely by the expected real interest

rate. Instead, we find evidence of low frequency shifts in the risk premium component of the

discount rate, consistent with the hypothesis that investors’willingness to tolerate risk in equity

markets rises whenever the long-run expected value of the real federal funds rate is low. We

find that the magnitude of this effect is especially pronounced for some of the most volatile

equity investment strategies subject to infrequent but extreme crashes, such as those based on

leveraged momentum investing.

The theoretical literature on such “reaching for yield”channels is still in its infancy, while

this paper is an empirical study. More theoretical work is needed to understand how and why

this channel may arise, and to elicit additional implications for asset markets and macroeco-

nomic quantities.
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Appendix

Data Appendix

This appendix describes the data used in this study.

CONSUMPTION

Consumption is measured as either total personal consumption expenditure or expenditure

on nondurables and services, excluding shoes and clothing. The quarterly data are seasonally

adjusted at annual rates, in billions of chain-weighted 2005 dollars. The components are chain-

weighted together, and this series is scaled up so that the sample mean matches the sample mean

of total personal consumption expenditures. Our source is the U.S. Department of Commerce,

Bureau of Economic Analysis.

LABOR INCOME

Labor income is defined as wages and salaries + transfer payments + employer contri-

butions for employee pensions and insurance - employee contributions for social insurance -

taxes. Taxes are defined as [ wages and salaries/(wages and salaries + proprietors’income with

IVA and CCADJ + rental income + personal dividends + personal interest income)] times

personal current taxes, where IVA is inventory valuation and CCADJ is capital consumption

adjustments. The quarterly data are in current dollars. Our source is the Bureau of Economic

Analysis.

POPULATION

A measure of population is created by dividing real total disposable income by real per

capita disposable income. Our source is the Bureau of Economic Analysis.

WEALTH

Total wealth is household net worth in billions of current dollars, measured at the end of

the period. A break-down of net worth into its major components is given in the table be-

low. Stock market wealth includes direct household holdings, mutual fund holdings, holdings of

private and public pension plans, personal trusts, and insurance companies. Nonstock wealth

includes tangible/real estate wealth, nonstock financial assets (all deposits, open market paper,

U.S. Treasuries and Agency securities, municipal securities, corporate and foreign bonds and

mortgages), and also includes ownership of privately traded companies in noncorporate equity,

and other. Subtracted off are liabilities, including mortgage loans and loans made under home

equity lines of credit and secured by junior liens, installment consumer debt and other. Wealth

is measured at the end of the period. A timing convention for wealth is needed because the

level of consumption is a flow during the quarter rather than a point-in-time estimate as is

wealth (consumption data are time-averaged). If we think of a given quarter’s consumption

data as measuring spending at the beginning of the quarter, then wealth for the quarter should

be measured at the beginning of the period. If we think of the consumption data as measuring



spending at the end of the quarter, then wealth for the quarter should be measured at the end of

the period. None of our main findings discussed below (estimates of the cointegrating parame-

ters, error-correction specification, or permanent-transitory decomposition) are sensitive to this

timing convention. Given our finding that most of the variation in wealth is not associated with

consumption, this timing convention is conservative in that the use of end-of-period wealth pro-

duces a higher contemporaneous correlation between consumption growth and wealth growth.

Our source is the Board of Governors of the Federal Reserve System. A complete description

of these data may be found at http://www.federalreserve.gov/releases/Z1/Current/.

STOCK PRICE, RETURN, DIVIDENDS

The stock price is measured using the Center for Research on Securities Pricing (CRSP)

value-weighted stock market index covering stocks on the NASDAQ, AMEX, and NYSE. The

data are monthly. The stock market price is the price of a portfolio that does not reinvest

dividends. The CRSP dataset consists of vwretx(t) = (Pt/Pt−1)− 1, the return on a portfolio

that doesn’t pay dividends, and vwretdt = (Pt +Dt) /Pt − 1, the return on a portfolio that

does pay dividends. The stock price index we use is the price P x
t of a portfolio that does not

reinvest dividends, which can be computed iteratively as

P x
t+1 = P x

t (1 + vwretxt+1) ,

where P x
0 = 1. Dividends on this portfolio that does not reinvest are computed as

Dt = P x
t−1 (vwretdt − vwretxt) .

The above give monthly returns, dividends and prices. The annual log return is the sum of the

12 monthly log returns over the year. We create annual log dividend growth rates by summing

the log differences over the 12 months in the year: dt+12 − dt = dt+12 − dt+11 + dt+11 − dt+10 +

· · · + dt+1 − dt. The annual log price-dividend ratio is created by summing dividends in levels
over the year to obtain an annual dividend in levels, DA

t , where t denotes a year hear. The

annual observation on P x
t is taken to be the last monthly price observation of the year, P

Ax
t .

The annual log price-dividend ratio is ln
(
PAx
t /DA

t

)
.

PRICE DEFLATOR

The nominal after-tax labor income and wealth data are deflated by the personal consump-

tion expenditure chain-type deflator (2005=100), seasonally adjusted. In principle, one would

like a measure of the price deflator for total flow consumption here. Since this variable is

unobservable, we use the total expenditure deflator as a proxy. Our source is the Bureau of

Economic Analysis.



Gibbs Sampling Algorithm

This appendix describes the Bayesian methods used to characterize uncertainty in the parame-

ters of the regression (2). To simplify notation, we denote the vector containing all variables

whose coeffi cients are allowed to vary over time xM,t, while xF,t is used to denote the vector

containing all the variables whose coeffi cients are kept constant. We then obtain:

ct = αξαt xM,t + βxF,t + σεt

where, in our case, β =
[
βa, βy, ba,−k, ..., ba,+k, by,−k, ..., by,+k

]
and the vector xM,t is unidimen-

sional and always equal to 1.

Suppose the Gibbs sampling algorithm has reached the r−th iteration. We then have draws
for βr, αξαt ,r, σr, H

α
r , and ξ

α,T
r , where ξα,Tr = {ξα1,r, ξα2,r,...,ξαT,r} denotes a draw for the whole

regime sequence. The sampling algorithm is described as follows.

1. Sampling βr+1: Given αξαt ,r, σr, and ξ
α,T
r we transform the data:

c̃t =
ct − αξαt ,rxM,t

σr
= β

xF,t
σr

+ εt = βx̃t + εt.

The above is a regression with fixed coeffi cients β and standardized residual shocks.

Standard Bayesian methods may be used to draw the coeffi cients of the regression. We

assume a Normal conjugate prior β ∼ N (Bβ,0, Vβ,0)), so that the conditional (on αξαt ,r,

σr, and ξ
α,T
r ) posterior distribution is given by

βr+1 ∼ N (Bβ,T , Vβ,T )

with Vβ,T =
(
V −1
β,0 + X̃ ′F X̃F

)−1

and Bβ,T = Vβ,T

[
V −1
β,0Bβ,0 + X̃ ′F C̃

]
, where C̃ and X̃F

collect all the observations for the transformed data and Bβ,0 and V −1
β,0 control the priors

for the fixed coeffi cients of the regression. With flat priors, Bβ,0 = 0 and V −1
β,0 = 0 and

Bβ,T and Vβ,T coincide with the maximum likelihood estimates, conditional on the other

parameters.

2. Sampling αi,r+1 for i = 1, 2: Given βr+1, σr, and ξ
α,T
r we transform the data:

c̃t =
ct − βr+1xF,t

σr
= αξαt

xM,t

σr
+ εt = αξαt x̃M,t + εt.

The above regression has standardized shocks and Markov-switching coeffi cients in the

transformed data. Using ξα,Tr we can group all the observations that pertain to the same

regime i. Given the prior αi ∼ N (Bαi,0, Vαi,0)) for i = 1, 2 we use standard Bayesian

methods to draw αi from the conditional (on βr+1, σr, and ξ
α,T
r ) posterior distribution:

αi,r+1 ∼ N (Bαi,T , Vαi,T ) for i = 1, 2



where Vαi,T =
(
V −1
αi,0

+ X̃ ′M,iX̃M,i

)−1

andBαi,T = Vαi,T

[
V −1
αi,0

Bαi,0 + X̃ ′M,iC̃i

]
where C̃i and

X̃M,i collect all the observations for the transformed data for which regime i is in place.

The parameters Bαi,0 and V
−1
αi,0

control the priors for the MS coeffi cients of the regression:

αi ∼ N (Bαi,0, Vαi,0) for i = 1, 2. With flat priors, we have Bαi,0 = 0 and V −1
αi,0

= 0 and

Bαi,T and Vαi,T coincide with the maximum likelihood estimates, conditional on the other

parameters.

3. Sampling σr+1: Given βr+1, αξαt ,r+1, and ξα,Tr we can compute the residuals of the

regression:

c̃t = ct − βr+1xF,t − αξαt xM,t = σεt.

With the prior that σ has an inverse gamma distribution, σ ∼ IG (Q0, v0) , we use

Bayesian methods to draw σr+1 from the conditional (on βr+1, αξαt ,r+1, and ξ
α,T
r ) pos-

terior inverse gamma distribution:

σr+1 ∼ IG (QT , vT ) , vT = T + v0, QT = Q0 + E ′E

where E is a vector containing the residuals, T is the sample size, and Q0 and v0 control

the priors for the standard deviation of the innovations: σ ∼ IG (Q0, v0) . With flat

priors, we have Q0 = 0 and v0 = 0. The mean of a random variable with distribution

σ ∼ IG (QT , vT ) is QT/vT . With flat priors we have Q0 = 0 and v0 = 0, and the mean of

σ is therefore (E ′E) /T , which coincides with the standard maximum likelihood (MLE)

estimate of σ, conditional on the other parameters.

4. Sampling ξα,Tr+1: Given βr+1, αξαt ,r+1, and Hα
r we can obtain filtered probabilities for the

regimes, as described in Hamilton (1994). Following Kim and Nelson (1999) we then use

a Multi-Move Gibbs sampling to draw a regime sequence ξα,Tr+1.

5. Sampling Hα
r+1: Given the draws for the MS state variables ξ

α,T
r+1, the posterior for the

transition probabilities does not depend on other parameters of the model and follows a

Dirichlet distribution if we assume a prior Dirichlet distribution.15 For each column of

Hα
r+1 the posterior distribution is given by:

Hα
r+1(:, i) ∼ D(aαii + ηαii,r+1, a

α
ij + ηαij,r+1)

where ηαij,r+1 denotes the number of transitions from state iα to state jα based on ξα,Tr+1,

while aαii and a
α
ij the corresponding priors. With flat priors, we have a

α
ii = 0 and aαij = 0.

6. If r + 1 < R, where R is the desired number of draws, go to step 1, otherwise stop.

15The Dirichlet distribution is a generalization of the beta distribution that allows one to potentially consider
more than 2 regimes. See e.g., Sims and Zha (2006).



These steps are repeated until convergence to the posterior distribution is reached. We

check convergence by using the Raftery-Lewis Diagnostics for each parameter in the chain. See

section below. We use the draws obtained with the Gibbs sampling algorithm to characterize

parameter uncertainty in Table 1.

6.1 Computing cayMS

Our estimate of cayMS
t is based on the posterior mode of the parameter vector θ and the

corresponding regime probabilities. The filtered probabilities reflect the probability of a regime

conditional on the data up to time t, πt|t = p(ξαt |Y t;θ), for t = 1, ..., T , and are part of

the output obtained computing the likelihood function associated with the parameter draw

θ =
{
β, αξαt , σ,H

α
}
. They can be obtained using the following recursive algorithm:

πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

)
πt+1|t = Hαπt|t

where ηt is a vector whose j-th element contains the conditional density p(ct|ξαt = j, xM,t, xF,t;θ),

i.e.,

p(ct|ξαt = j, xM,t, xF,t;θ) =
1√

2πσ2
exp

(
−{ct − (αjxM,t + βxF,t)}2

2σ2

)
,

the symbol � denotes element by element multiplication, and 1 is a vector with all elements
equal to 1. To initialize the recursive calculation we need an assumption on the distribution of

ξα0 . We assume that the two regimes have equal probabilities: p(ξ
α
0 = 1) = .5 = p(ξα0 = 2).

The smoothed probabilities reflect all the information that can be extracted from the whole

data sample, πt|T = p(ξαt |Y T ;θ). The final term, πT |T is returned with the final step of the

filtering algorithm. Then, a recursive algorithm can be implemented to derive the other prob-

abilities:

πt|T = πt|t �
[
Hα′ (πt+1|T (÷) πt+1|t

)]
where (÷) denotes element by element division.

In using the DLS regression (2) to estimate cointegrating parameters, we lose 6 leads and

6 lags. For estimates of cayFCt , we take the estimated coeffi cients and we apply them to the

whole sample. To extend our estimates of cayMS
t over the full sample, we can likewise apply the

parameter estimates to the whole sample but we need an estimate of the regime probabilities

in the first 6 and last 6 observations of the full sample. For this we run the Hamilton filter

from period from −5 to T + 6 as follows. When starting at -5, we assume no lagged values are

available and the DLS regression omits all lags, but all leads are included. When at t = −4 we

assume only one lag is available and the DLS regression includes only one lag, and so on, until



we reach t = 0 when all lags are included. Proceeding forward when t = T + 1 is reached we

assume all lags are available and all leads except one are available, when t = T + 2, we assume

all lags and all leads but two are available, etc. Smoothed probabilities are then computed with

standard methods as they only involve the filtered probabilities and the transition matrix Hα.

Estimation of Fractionally Integrated Models

In order to evaluate the likelihood for the fractionally integrated model we closely follow Muller

and Watson (2013). We in fact use a series of Matlab codes that are available on Mark Watson’s

webpage. The first step consists of computing the cosine transformation of cay:

fj = ιjTT
−1

T∑
t=1

√
2 cos

(
j(t− 0.5)πT−1

)
cayt for j = 1, ..., k.

where ιjT = (2T/ (jπ)) sin (jπ/ (2T )) . As explained in Muller and Watson (2013), this trans-

formation is useful to isolate variation in the sample at different frequencies. Specifically, fj
captures variation at frequency jπ/T . Mueller and Watson (2008, 2013) explain that working

with a subset of the cosine transformations implies truncating the information set. They pro-

vide two reasons for why this is a convenient approach. First, given that each variable is a

weighted average of the original data, a central limit allows to work with a limiting Gaussian

distribution. Second, such a choice implies robustness of the results: Low-frequency information

is used to study the low-frequency properties of the model. Given that we are mostly interested

in the low frequency properties of cay, we can work using a limited number of (low) frequencies.

We therefore choose k = 12.

We can then collect all the cosine transformations in a vectorXT,1:k and compute an invariant

transformation Xs
T,1:k = XT,1:k/

√
X ′T,1:kXT,1:k (notice that this implies that the results that will

follow are independent of scale factors). As explained in Muller and Watson (2013), the limiting

density for the invariant transformations is given by:

pXS (xs) =
1

2
Γ (k/2) π−k/2 |ΣX |−1/2 (xs′Σ−1

X xs
)−q/2

(10)

where Xs = X1:k/
√
X ′1:kX1:k, ΣX = E (XsXs′) , and Γ is the gamma function.

We then assume a fractionally integrated model for cayt: (1− L)dcayt = ut, where L is the

lag operator and ut is an I(0) process and d is a parameter that is allowed to be fractional. The

fractional model implies a binomial series expansion in the lag operator:

(1− L)dcayt =

[∑∞
k=0

(
d

k

)
(−L)k

]
cayt

=

[∑∞
k=0

∏k−1
a=0 (d− a) (−L)k

k!

]
cayt

=

[
1− dL+

d (d− 1)

2!
L2 − ...

]
cayt



Note that when d = 1, the fractional integrated model implies that cayt has a unit root, cayt =

cayt−1 + ut, while for d = 0, cayt = ut, i.e. cayt is an I(0) process.

We compute the covariance matrix ΣX (d) associated with different values of d in the frac-

tionally integrated model. The matrix ΣX (d) is obtained in two steps. First, we compute the

matrix of autocovariances Σ (d) associated with a fractionally integrated model. The (i, i+ h)

element of this matrix is given by the autocovariance γ (h):

Σ (d)(i,i+h) = γ (h) =
Γ (1− 2d)

Γ (1− d) Γ (d)

Γ (h+ d)

Γ (1 + h− d)

Second, we transform the autocovariance matrix Σ (d) in order to obtain the covariance matrix

for the cosine transformations: ΣX (d) = Ψ′Σ (d) Ψ where Ψ is a (T × k) matrix collecting all

the weights used for the cosine transformation:

Ψ(t,j) = ιjTT
−1

T∑
t=1

√
2 cos

(
j(t− 0.5)πT−1

)
Finally, we evaluate (10) to obtain the likelihood for the different values of d given that ΣX (d)

is now a function of the parameter d of the fractionally integrated model.

Robustness: Markov-Switching in Other Parameters

We here analyze two alternative models and compare them to our benchmark model in which

only the constant is allowed to change over time and the fixed coeffi cient regression. In the

first model, we allow for heteroskedasticity and changes in the constant. In the second model,

we only allow for heteroskedasticity. We then use the Bayesian information criterion (BIC) to

compare the different models. This is computed as:

BIC = −2(maxli) + k log(T/(2π))

where maxli is the maximized likelihood, k is the number of parameters, and T the sample

size. Therefore, The Bayesian information criterion automatically penalizes models that have

more parameters.

Table A.1 reports the estimates for the key parameters and the BIC for each model. We

find that the BIC is minimized by the model is the one that allows for both heteroskedasticity

and changes in the constant (MS α and MS σ). Our benchmark model with only changes in

the constant (MS α only) is preferred to the model that only allows for heteroskedasticity (MS

σ only) and the fixed coeffi cient regression (FC). Therefore, our results clearly support the

hypothesis of shifts in the constant. Furthermore, the estimates for the cointegrating vector

are basically unchanged when introducing heteroskedasticity in our benchmark model. For this

reason, we choose the simpler model with only shifts in the constant as our benchmark model.



Model α1 α2 βa βy σ1 σ2 BIC

MS α and MS σ 0.9186 0.8810 0.2599 0.6162 0.0016 0.0105 −1472.0
MS α only 0.9186 0.8808 0.2606 0.6156 0.0080 −1443.7
MS σ only 0.8056 0.1275 0.7845 0.0029 0.0204 −1281.0

FC 0.8706 0.1246 0.7815 0.0158 −1173.5

Table A.1. The table reports the estimates for the cointegration parameters, the estimates for the volatilities,

and the Bayesian Information Criterion (BIC) for four different models. The BIC is used to compare the fit of

different models taking into account the number of parameters used in the estimates. MS α and MS σ: The

model allows for changes in the constant and heteroskedasticity. MS α only: Benchmark model with only

changes in the constant. MS σ only: The model allows for heteroskedasticity, but not changes in the constant.

FC: Standard fixed coeffi cient regression.

Additional Statistical Results

The tables below pertain to convergence of the Gibbs sampling algorithm.

Variable Total(N) I-stat Variable Total(N) I-stat Variable Total(N) I-stat
α1 17413 9.541 ∆at+1 1799 0.986 ∆yt−4 1850 1.014
α2 16949 9.287 ∆yt+1 1812 0.993 ∆at+4 1793 0.982
βa 1918 1.051 ∆at−2 1830 1.003 ∆yt+4 1820 0.997
βy 1843 1.01 ∆yt−2 1801 0.987 ∆at−5 1797 0.985
σ 1797 0.985 ∆at+2 1886 1.033 ∆yt−5 1850 1.014
Hα

11 1826 1.001 ∆yt+2 1767 0.968 ∆at+5 1826 1.001
Hα

22 1820 0.997 ∆at−3 1858 1.018 ∆yt+5 1850 1.014
∆at 1823 0.999 ∆yt−3 1808 0.991 ∆at−6 1850 1.014
∆yt 1850 1.014 ∆at+3 1847 1.012 ∆yt−6 1826 1.001

∆at−1 1839 1.008 ∆yt+3 1820 0.997 ∆at+6 1839 1.008
∆yt−1 1866 1.022 ∆at−4 1830 1.003 ∆yt+6 1866 1.022

Table A.2. Raftery-Lewis Diagnostics for each parameter in the chain. The minimum number of draws

under the assumption of i.i.d. draws would be 1825. The sample is quarterly and spans the period 1952:Q1 to

2013:Q3.

MS-VAR Estimation

In this appendix we provide details on the estimation of the MS-VAR 6. As stated above, we

take the regime sequence as given based on our estimates for the breaks in cayMS. Specifically, we

choose the particular regime sequence ξ̂
α,T

= {ξ̂α1 , ..., ξ̂
α

T} that is most likely to have occurred,
given our estimated posterior mode parameter values for θ . This sequence is computed as

follows. First, we run Hamilton’s filter to get the vector of filtered probabilities πt|t, t =

1, 2, ..., T . The Hamilton filter can be expressed iteratively as



πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

)
πt+1|t = Hαπt|t

where ηt is a vector whose j-th element contains the conditional density p(ct|ξαt = j, xM,t, xF,t;θ),

the symbol � denotes element by element multiplication, and 1 is a vector with all elements
equal to 1. The final term, πT |T is returned with the final step of the filtering algorithm. Then,

a recursive algorithm can be implemented to derive the other smoothed probabilities:

πt|T = πt|t �
[
Hα′ (πt+1|T (÷) πt+1|t

)]
where (÷) denotes element by element division. To choose the regime sequence most likely to

have occurred given our parameter estimates, consider the recursion in the next to last period

t = T − 1:

πT−1|T = πT−1|T−1 �
[
Hα′ (πT |T (÷) πT |T−1

)]
.

We first take πT |T from the Hamilton filter and choose the regime that is associated with the

largest probability, i.e., if πT |T = (.9, .1), where the first element corresponds to the proba-

bility of regime 1, we select ξ̂
α

T = 1, indicating that we are in regime 1 in period T. We now

update πT |T = (1, 0) and plug into the right-hand-side above along with the estimated filtered

probabilities for πT−1|T−1, πT |T−1 and estimated transition matrix H
α to get πT−1|T on the

left-hand-side. Now we repeat the same procedure by choosing the regime for T − 1 that has

the largest probability at T − 1, e.g., if πT−1|T = (.2, .8) we select ξ̂
α

T−1 = 2, indicating that we

are in regime 2 in period T − 1, we then update to πT−1|T = (0, 1), which is used again on the

right-hand-side now

πT−2|T = πT−2|T−2 �
[
Hα′ (πT−1|T (÷) πT−1|T−2

)]
.

We proceed in this manner until we have a regime sequence ξ̂
α,T

for the entire sample t =

1, 2, ..., T . Two aspects of this procedure are worth noting. First, it fails if the updated prob-

abilities are exactly (.5, .5). Mathematically this is virtually zero. Second, note that this

procedure allows us to choose the most likely regime sequence by using the recursive formula

above to update the filtered probabilities sequentially from T to time t = 1. This allows us

to take into account the time dependence in the regime sequence as dictated by the transition

probabilities.

Taking regime sequence as given in this way, we need only estimate the transition matrix

and the parameters of the MS-VAR across the two regimes. The model is estimated by using

Bayesian methods with flat priors on all parameters. As a first step, we group all the observa-

tions that belong to the same regime. Conditional on a regime, we have a fixed coeffi cients VAR.

We can then follow standard procedures to make draws for the VAR parameters as follows.



Rewrite the VAR as

Y
T×n

= XAξt
(T×k)(k×n)

+ ε
T×n

, ξt = 1, 2

εt ∼ N
(
0,Σξt

)
where Y = [Z1,..., ZT ]′ , the t-th row of X is Xt =

[
1, Z ′t−1, Z

′
t−2

]
, Aξt =

[
cξt , A1,ξt , A2,ξt

]′
, the

t-th row of ε is εt, and where Σξt = VξtV
′
ξt
. If we specify a Normal-Wishart prior for Aξt and

Vξt:

Σ−1
ξt
∼ W

(
S−1

0 /v0, v0

)
vec
(
Aξt |Σξt

)
∼ N

(
vec (B0) ,Σξt ⊗N

−1
0

)
where E

(
Σ−1
ξt

)
= S−1

0 , the posterior distribution is still in the Normal-Wishart family and is

given by

Σ−1
ξt
∼ W

(
S−1
T /vT , vT

)
vec
(
Aξt |Σξt

)
∼ N

(
vec (BT ) ,Σξt ⊗N

−1
T

)
Using the estimated regime sequence ξα,T we can group all the observations that pertain to the

same regime i. Therefore the parameters of the posterior are computed as

vT = Ti + v0, NT = X ′iXi +N0

BT = N−1
T

(
N0B0 +X ′iXiB̂MLE

)
ST =

v0

vT
S0 +

Ti
vT

Σ̂MLE +
1

vT

(
B̂MLE − B̂0

)′
N0N

−1
T X ′iXi

(
B̂MLE − B̂0

)
B̂MLE = (X ′iXi)

−1
(X ′iYi) , Σ̂MLE =

1

Ti

(
Yi −XiB̂MLE

)′ (
Yi −XiB̂MLE

)
,

where Ti, Yi, Xi denote the number and sample of observations in regime i. We choose flat priors

(v0 = 0, N0 = 0) so the expressions above coincide with the MLE estimates using observations

in regime i:

vT = Ti, NT = X ′iXi, BT = B̂MLE, ST = Σ̂MLE.

Armed with these parameters in each regime, we can make draws from the posterior distribu-

tions for Σ−1
ξt
and Aξt in regime i to characterize parameter uncertainty about these parameters.

Given that we condition the MS-VAR estimates on the most likely regime sequence ξ̂
α,T

for cayMS, it is still of interest to estimate the elements of the transition probability matrix

for the MS-VAR parameters, HA, conditional on this regime sequence. Note that HA can

be different from Hα because the former is based on a particular regime sequence ξ̂
α,T
, while

the latter reflects the entire posterior distribution for ξα,T . The estimated transition matrix



HA can in turn be used to compute expectations taking into account the possibility of regime

change (see the next subsection). Because we impose the regime sequence to be the same as

that estimated for cayMS, the posterior of HA only depends on ξα,T = ξ and does not depend

on other parameters of the model. The posterior has a Dirichlet distribution if we assume a

prior Dirichlet distribution.16 For each column of HA the posterior distribution is given by:

HA(:, i) ∼ D(aii + ηii,r+1, aij + ηij,r+1)

where ηij,r+1 denotes the number of transitions from regime i to regime j based on ξα,T , while

aii and aij the corresponding priors. With flat priors, we have aii = 0 and aij = 0. Armed with

this posterior distribution, we can characterize uncertainty about HA.

Expectations and Economic Uncertainty

In this appendix we explain how expectations and economic uncertainty are computed for

variables in the MS-VAR. More details can be found in Bianchi (2016). Consider the following

first-order MS-VAR:

Zt = cξt + AξtZt−1 + Vξtεt, εt ∼ N (0, I) (11)

and suppose that we are interested in E0 (Zt) = E (Zt|I0) with I0 being the information set
available at time 0. Note that the first-order VAR is not restrictive because any VAR with

l > 1 lags can be rewritten as above by using the first-order companion form, and the methods

below applied to the companion form.

Let n be the number of variables in the VAR of the previous Appendix section. Let m be

the number of Markov-switching states. Define the mn× 1 column vector qt as:

qt
mn×1

=
[
q1′
t , ..., q

m′
t

]′
where the individual n × 1 vectors qit = E0

(
Zt1ξt=i

)
≡ E

(
Zt1ξt=i|I0

)
and 1ξt=i is an indicator

variable that is one when regime i is in place and zero otherwise. Note that:

qit = E0

(
Zt1ξt=i

)
= E0 (Zt|ξt = i) πit

where πit = P0 (ξt = i) = P (ξt = i|I0). Therefore we can express µt = E0 (Zt) as:

µt = E0 (Zt) =
∑m

i=1 q
i
t = wqt

where the matrix w
n×mn

= [In, ..., In] is obtained placing side by side m n-dimensional identity

matrices. Then the following proposition holds:

16The Dirichlet distribution is a generalization of the beta distribution that allows one to potentially consider
more than 2 regimes. See e.g., Sims and Zha (2006).



Proposition 1 Consider a Markov-switching model whose law of motion can be described by
(11) and define qit = E0

(
Zt1ξt=i

)
for i = 1...m. Then qjt = cjπ

j
t +
∑m

i=1Ajq
i
t−1hji.

It is then straightforward to compute expectations conditional on the information available

at a particular point in time. Suppose we are interested in µt+s|t ≡ Et (Zt+s), i.e. the expected

value for the vector Zt+s conditional on the information set available at time t. If we define:

qt+s|t =
[
q1′
t+s|t, ..., q

m′
t+s|t

]′
where qit+s|t = Et

(
Zt+s1ξt+s=i

)
= Et

(
Zt+s|ξt+s = i

)
πit+s|t, where π

i
t+s|t ≡ P

(
ξt+s = i|It

)
, we

have

µt+s|t = Et (Zt+s) = wqt+s|t, (12)

where for s ≥ 1, qt+s|t evolves as:

qt+s|t = Cπt+s|t + Ωqt+s−1|t (13)

πt+s|t = Hπt+s−1|t (14)

with πt+s|t =
[
π1
t+s|t, ..., π

m
t+s|t

]′
, Ω = bdiag (A1, ..., Am) (H ⊗ In) , and C

mn×m
= bdiag (c1, ..., cm) ,

where e.g., c1 is the n× 1 vector of constants in regime 1, ⊗ represents the Kronecker product
and bdiag is a matrix operator that takes a sequence of matrices and use them to construct a

block diagonal matrix.

Similar formulas hold for the second moments. Before proceeding, let us define the vec-

torization operator ϕ (X) that takes the matrix X as an input and returns a column vector

stacking the columns of the matrix X on top of one another. We will also make use of the

following result: ϕ (X1X2X3) = (X ′3 ⊗X1)ϕ (X2).

Define the vector n2m× 1 column vector Qt as:

Qt =
[
Q1′
t , ..., Q

m′
t

]′
where the n2 × 1 vector Qi

t is given by Q
i
t = ϕ

[
E0

(
ZtZ

′
t1ξt=i

)]
. This implies that we can

compute the vectorized matrix of second moments Mt = ϕ [E0 (ZtZ
′
t)] as:

Mt = ϕ [E0 (ZtZ
′
t)] =

∑m
i=1 Q

i
t = WQt

where the matrix W = [In2 , ..., In2 ] is obtained placing side by side m n2-dimensional identity

matrices. We can then state the following proposition:

Proposition 2 Consider a Markov-switching model whose law of motion can be described by
(11) and define Qi

t = ϕ
[
E0

(
ZtZ

′
t1ξt=i

)]
, qit = E0

[
Zt1ξt=i

]
, and πit = P0 (ξt = i) , for i = 1...m.

Then Qj
t =

[
ĉcj + V̂ V jϕ [Ik]

]
πjt +

∑m
i=1

[
ÂAjQ

i
t−1 + D̂ACjq

i
t−1

]
hji, where ĉcj = (cj ⊗ cj) ,

V̂ V j = (Vj ⊗ Vj) , ÂAj = (Aj ⊗ Aj) , and D̂ACj = (Aj ⊗ cj) + (cj ⊗ Aj) .



It is then straightforward to compute the evolution of second moments conditional on the

information available at a particular point in time. Suppose we are interested in Et
(
Zt+sZ

′
t+s

)
,

i.e. the second moment of the vector Zt+s conditional on the information available at time t.

If we define:

Qt+s|t =
[
Q1′
t+s|t, ..., Q

m′
t+s|t

]′
whereQi

t+s|t = ϕ
(
Et
(
Zt+sZ

′
t+s1ξt+s=i

))
= ϕ

(
Et
(
Zt+sZ

′
t+s|ξt+s = i

))
πit+s|t, we obtain ϕ

(
Et
(
Zt+sZ

′
t+s

))
=

WQt+s|t.Using matrix algebra we obtain:

Qt+s|t = ΞQt+s−1|t + D̂ACqt+s−1|t + V̂ cπt+s|t (15)

qt+s|t = Cπt+s|t + Ωqt+s−1|t, πt+s|t = Hπt+s−1|t. (16)

where

Ξ = bdiag(ÂA1, ..., ÂAm)(H ⊗ In2), V̂ c =
[
V̂ V + ĉc

]
, ĉc = bdiag(ĉc1, ..., ĉcm),

V̂ V = bdiag(V̂ V 1ϕ [Ik] , ..., V̂ V mϕ [Ik]), D̂AC = bdiag(D̂AC1, ..., D̂ACm)(H ⊗ In).

With the first and second moments at hand, it is then possible to compute the variance s

periods ahead conditional on the information available at time t:

ϕ [Vt (Zt+s)] = Mt+s|t − ϕ
[
µt+s|tµ

′
t+s|t

]
, (17)

where Mt+s|t = ϕ
(
Et
(
Zt+sZ

′
t+s

))
=
∑m

i=1 Q
i
t+s|t = WQt+s|t.

To report estimates of (12) and (17) we proceed as follows. Note that µt+s|t = Et (Zt+s) =

wqt+s|t and Mt+s|t depend only on qt+s|t and Qt+s|t. Furthermore we can express (13)-(14) and

(15)-(16) in a compact form as

Q̃t+s|t = Ξ̃sQ̃t|t where Ξ̃ =

 Ξ D̂AC V̂ cH
Ω CH

H

 , (18)

where Q̃t+s|t =
[
Q′t+s|t, q

′
t+s|t, π

′
t+s|t

]′
. Armed with starting values Q̃t|t =

[
Q′t|t, q

′
t|t, π

′
t|t

]′
we can

then compute (12) and (17) using (18). To obtain π′t|t recall that we assume that It includes
knowledge of the regime in place at time t, the data up to time t, Zt, and the VAR parameters

for each regime. Given that we assume knowledge of the current regime, πit|t ≡ P (ξt = i|It)
can only assume two values, 0 or 1. As a result π′t|t will be (1, 0) or (0, 1). As a result,

and given Zt ∈ It, q′t|t =
[
q1′

t|t, q
2′

t|t

]′
with qit|t ≡ Et (Zt|ξt = i) πit|t, will be [Z ′t · 1, Z ′t · 0]′ or

[Z ′t · 0, Z ′t · 1]′. Analogously, Q′t|t =
[
Q1′
t|t, Q

2′
t|t

]′
with Qi

t|t ≡ ϕ (Et (ZtZ
′
t|ξt = i)) πit|t| will be[

ϕ (ZtZ
′
t · 1)′ , ϕ (ZtZ

′
t · 0)′

]′
or
[
ϕ (ZtZ

′
t · 0)′ , ϕ (ZtZ

′
t · 1)′

]′
.



6.2 Conditional Steady State

Consider a MS-VAR:

Zt = cξt + AξtZt−1 + Vξtεt

where Zt is a column vector containing n variables observable at time t and ξt = 1, ...,m, with

m the number of regimes, evolves following the transition matrix H. If the MS-VAR has more

than one lag, the companion form can be used to recast the model as illustrated above.

The conditional steady state corresponds to the expected value for the vector Zt conditional

on being in a particular regime. This is computed by imposing that a certain regime is in place

forever:

Ei (Zt) = µi = (In − Ai)−1 ci (19)

where In is an identity matrix with the appropriate size. Note that unless the VAR coeffi cients

imply very slow moving dynamics, after a switch from regime j to regime i, the variables

of the VAR will converge (in expectation) to Ei (Zt) over a finite horizon. If there are no
further switches, we can then expect the variables to fluctuate around Ei (Zt). Therefore, the
conditional steady states can also be thought as the values to which the variables converge if

regime i is in place for a long enough period of time.

6.3 Book-to-Market Ratio

We use the methods and assumptions of the previous subsection to obtain the present value

decomposition of the book to market ratio. Consider an MS-VAR:

Zt = cξt + AξtZt−1 + Vξtεt

where Zt is a column vector containing n variables observable at time t and ξt = 1, ...,m, with

m the number of regimes, evolves following the transition matrix H. If the MS-VAR has more

than one lag, the companion form can be used to recast the model as illustrated above.

Define the column vectors qt and πt:

qt =
[
q1′

t , ..., q
m′
t

]′
, qit = E0

(
Zt1ξt=i

)
, πt =

[
π1
t , ..., π

m
t

]′
,

where πit = P0 (ξt = i) and 1ξt=i is an indicator variable that is equal to 1 when regime i is in

place and zero otherwise. The law of motion for q̃t = [q′t, π
′
t]
′ is then given by[

qt
πt

]
︸ ︷︷ ︸

q̃t

=

[
Ω CH

H

]
︸ ︷︷ ︸

Ω̃

[
qt−1

πt−1

]



where πt = [π1,t, ..., πm,t]
′ , Ω = bdiag (A1, ..., Am)H, and C = bdiag (c1, ..., cm). Recall that:

E0 (Zt) =

m∑
i=1

qit = wqt, w =

In, ..., In︸ ︷︷ ︸
m


To compute the present value decomposition of the book-to-market ratio, define:

qit+s|t = Et
(
Zt+s1ξt+s=i

)
= E

(
Zt+s1ξt+s=i|It

)
1′x = [0, ...1, ...0, 0, 0]′, mn = m ∗ n

where It contains all the information that agents have at time t, including the probability of
being in one of the m regimes. Note that qit|t = Ztπ

i
t.

Now consider the formula from Vuolteenaho (1999):

θt =
∑∞

j=0 ρ
jEtrt+1+j +

∑∞
j=0 ρ

jEtft+1+j −
∑∞

j=0 ρ
jEte∗t+1+j

Given that our goal is to assess if assets with different risk profiles are affected differently by

the breaks in the long-term interest rates, we are going to focus on the difference between the

book-to-market ratios. Specifically, given two portfolios x and y, we are interested in how the

difference in their book-to-market ratios, θx,t − θy,t, varies across the two regimes:

θx,t − θy,t︸ ︷︷ ︸
Spread in BM ratios

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of the difference in expected excess returns

−
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
PDV of the difference in expected earnings

If then we want to correct the spread in BM ratios by taking into account expected earnings,

we have:

θx,t − θy,t +
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
Spread in BM ratios corrected for earnings

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of the expected difference in excess returns

(20)

Suppose that we have estimated a MS-VAR that includes the difference in excess returns,

rxy,t ≡ rx,t − ry,t. Then the right hand side of (20) can be computed as:∑∞
j=0 ρ

jEt (rxy,t+1+j) =
∑∞

j=0 ρ
j1′rxywqt+1+j|t

= 1′rxyw (I − ρΩ)−1 [Ωqt|t + C (I − ρH)−1 Hπt|t
]
.

Therefore, we have:

θ̃xy,t ≡ θ̃x,t − θ̃y,t +
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
Spread in BM ratios corrected for earnings

= 1′rxyw (I − ρΩ)−1 [Ωqt|t + C (I − ρH)−1Hπt|t
]

where we have used θ̃xy,t to define the spread in BM ratios corrected for earnings.



Note that we can also compute long term values, both conditioning on a regime or not,

because the present value decomposition is just a function of the state vector and the regime

probabilities. Therefore:

θ̃xy,i = 1′rxyw (I − ρΩ)−1 [Ωqi + C (I − ρH)−1 Hπi
]

where πi = 1i and qi is the conditional steady state of the VAR vector Zt for regime i. This

corresponds to the values to which the variables converge if regime i is in place for a prolonged

period of time (see below). Note that θ̃xy,i is computed by conditioning to initially being in

regime i, but taking into account that there might be regime changes in the future.



Variable NSE RNE Variable NSE RNE Variable NSE RNE
α1 0.000131 1 ∆at+1 0.000263 1 ∆yt−4 0.000526 1
α2 0.000131 1 ∆yt+1 0.00053 1 ∆at+4 0.000256 1
βa 0.000074 1 ∆at−2 0.000261 1 ∆yt+4 0.000521 1
βy 0.000085 1 ∆yt−2 0.000572 1 ∆at−5 0.000264 1
σ 0 1 ∆at+2 0.000258 1 ∆yt−5 0.000524 1
Hα

11 0.000069 1 ∆yt+2 0.000547 1 ∆at+5 0.000252 1
Hα

22 0.000053 1 ∆at−3 0.000278 1 ∆yt+5 0.000534 1
∆at 0.000263 1 ∆yt−3 0.000632 1 ∆at−6 0.000275 1
∆yt 0.000529 1 ∆at+3 0.000255 1 ∆yt−6 0.000518 1

∆at−1 0.000252 1 ∆yt+3 0.000537 1 ∆at+6 0.000238 1
∆yt−1 0.000521 1 ∆at−4 0.000259 1 ∆yt+6 0.000525 1

Table A.3 The table reports the numerical standard error (NSE) and the relative numerical effi ciency (RNE)

computed based on Geweke (1992). Values for NSE close to zero and values for RSE close to 1 are indicative of

convergence. The sample is quarterly and spans the period 1952:Q1 to 2013:Q3.
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Tables and Figures

Mode Mean 5% 95%
α1 0.9186 0.9153 0.8853 0.9460
α2 0.8808 0.8767 0.8467 0.9077

α1 − α2 0.0378 0.0385 0.0358 0.0413
βa 0.2606 0.2679 0.2505 0.2852
βy 0.6156 0.6071 0.5873 0.6270
σ 0.0080 0.0087 0.0080 0.0094
Hα

11 0.9900 0.9901 0.9705 0.9995
Hα

22 0.9925 0.9923 0.9771 0.9996

Table 1: Posterior modes, means, and 90% error bands of the parameters of the Markov-
switching cointegrating relation. Flat priors are used on all parameters of the model. The
sample is quarterly and spans the period 1952:Q1 to 2013:Q3.



Parameter Estimates: cayFC

α γa γy
0.8706
(0.0345)

0.1246
(0.0150)

0.7815
(0.0168)

Table 2: Parameter estimates for the fixed coeffi cient cointegrating relation. Standard errors
are in parantheses. The sample is quarterly and spans the period 1952:Q1 to 2013:Q3.

Cointegration Tests
Dickey—Fuller t-statistic Critical values

Persistence cay Lag = 1 Lag = 2 Lag = 3 Lag = 4 5% 10%

MS 0.8131 -4.7609 -4.4168 -4.4586 -4.7618 -3.80 -3.52
FC 0.9377 -2.2911 -2.1556 -1.8894 -1.6583 -3.80 -3.52

Table 3: The first column reports the first-order autoregressive coeffi cient obtained regressing
cayt on its own lagged value and a constant. The next four columns report augmented Dickey-
Fuller t-statistics (ρ̂ − 1)/σ̂ρ̂, where ρ̂ is the estimated value for the autoregressive coeffcient
used to test the null hypothesis of no cointegration. This test is applied to estimates of the
cointegrating residual, cayt. We include up to four lags of the first difference of cayt. The
critical values for the test when applied to cointegrating residual are reported in the last two
columns and are taken from Phillips and Ouliaris (1990). The results for cayMS

t do not account
for sampling error in the estimated Markov-switching mean. The sample is quarterly and spans
the period 1952:Q1 to 2013:Q3.



Canonical Cointegrating Regression Results
γ̂a γ̂y H(0, 1)

0.0774 0.8690 0.5720
(0.0665) (0.0731) (0.4495)

Table 4: Test results for the null of cointegration for standard, fixed-coeffi cient cay. A rejection
of the null at the 5 percent level is warranted if the p-value for the H(0, 1) statistic is less than
0.05. Ogaki and Park’s (1991) VAR pre-whitening method with Andrews’(1991) automatic
bandwidth parameter estimator was used to estimate long-run covariance parameters. The
parameters γ̂a and γ̂y are estimated cointegrating parameters on a and y, respectively. Standard
errors are in parentheses. H(0, 1) has a χ2(1) distribution. p values for this statistic are in
parentheses. The sample is quarterly and spans the period 1952:Q1 to 2013:Q3.



Long Horizon Forecasting Regressions: Stock Returns

h-period regression:
∑h
i=1(rt+i − rf,t+i) = k + γ zt + εt,t+h

Horizon h (in quarters)

zt = 1 4 8 12 16

Full sample

cayFC 0.60 2.26 4.16 5.68 7.42
(2.00) (2.21) (2.47) (2.73) (3.71)
[0.01] [0.05] [0.10] [0.14] [0.20]

cayMSfilt 1.54 6.38 11.60 13.56 13.61
(4.07) (5.22) (6.53) (6.03) (6.18)
[0.04] [0.18] [0.35] [0.37] [0.34]

cayMS 1.49 6.83 11.88 13.79 13.78
(3.86) (6.08) (6.63) (6.11) (6.25)
[0.04] [0.21] [0.36] [0.38] [0.34]

Sub-sample 1981Q1-2013Q3, recursive

cayFC 0.17 1.00 2.48 3.96 6.39
(0.48) (0.83) (1.04) (1.18) (1.82)
[-0.01] [0.00] [0.03] [0.06] [0.11]

cayFCrec 0.30 1.67 4.04 6.16 8.10
(0.97) (1.65) (2.29) (2.79) (4.17)
[ 0.00] [0.04] [0.16] [0.27] [0.41]

cayMSrec 0.41 2.13 6.01 8.65 10.33
(1.10) (1.92) (2.73) (3.51) (5.17)
[ 0.00] [0.04] [0.21] [0.31] [0.37]

Table 5: This tables reports the results from regressions of of h-period-ahead CRSP-VW
returns in excess of a 3-month Treasury-bill rate, rf,t, on the variable listed in the first column.
cayFC is the fixed-coeffi cient consumption-wealth ratio; cayMSfilt denotes the Markov-switching
version of cay using filtered probabilities and cayMS denotes the benchmark Markov-switching
cay using smoothed probabilities. The bottom panel reports results from regressions using
recursively estimated versions of cay, in which all parameters are estimated using data up
to time t rather than using the full sample. The models are first estimated on data from
1952Q1-1970Q1. We then recursively add observations and reestimate the cay variables over
expanding sub-samples using data only up to the end of that subsample, continuing in this
way until the end of the sample, 2013:Q3. Results are reported for the subsample since 1980.
cayFCrec denotes the fixed coeffi cient cay estimated recursively, while cayMSrec denotes the
Markov-switching cay estimated recursively using smoothed probabilities. For each regression,
the table reports OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in
parentheses), and adjusted R2 statistics in square brackets. Significant coeffi cients based on a
t-test at the 5% significance level are highlighted in bold face. The full sample is quarterly and
spans the period 1952:Q1 to 2013:Q3.



Out-Of-Sample Forecasts
h-period regression:

∑h
i=1(rt+i − rf,t+i) = k + γ zt + εt,t+h

Horizon h (in quarters)

zt = 1 4 8 12 16
Mean-squared errors

const 0.75 3.08 5.48 7.92 9.73
r − rf 0.71 2.99 5.32 7.67 9.36
cayFC 0.71 2.90 4.67 6.74 7.36
cayMSfilt 0.70 2.47 2.64 3.01 3.72
cayMS 0.70 2.35 2.53 2.92 3.68
cayFCrec 0.72 2.87 4.38 5.72 6.61
cayMSrec 0.71 2.86 4.49 5.75 6.14

Table 6: This tables reports the mean-squared forecast errors from out-of-sample h-period-
ahead forecasts of CRSP-VW returns in excess of a 3-month Treasury-bill rate using 60-quarter
rolling subsamples. The single predictor variable in each regression is listed in the first column.
The forecasting regression is first estimated on data from 1952Q1-1980Q1, and forecasts are
made over the next h periods. We then repeat this forecasting regression using data from the
next 60 quarters of the sample, continuing in this way until the end of the sample, 2013:Q3.
Mean-square-errors are reported for the subsample since 1980. cayFC is the fixed-coeffi cient
consumption-wealth ratio, cayMSfilt and cayMS are the Markov-switching cay variables using
filtered and smoothed probabilities, respectively, cayFCrec is the recursively estimated cay with
fixed coeffi cients, and cayMSrec is the recursively estimated Markov-switching cay. The recursive
estimates use data only up to time t. The full sample is quarterly and spans the period 1952:Q1
to 2013:Q3.



Summary statistics for the Real Interest Rate and GDP growth
Real Interest Rate GDP growth

Regime 1 Regime 2 Regime 1 Regime 2
Conditional Means 3.5364

(3.5093,3.5631)
0.5932

(0.5745,0.6112)
3.5085

(3.4838,3.5313)
2.9154

(2.8950,2.9363)

Conditional St. Deviations 2.0921
(1.9629,2.2404)

1.5920
(1.5056,1.6863)

1.9693
(1.8642,2.0719)

2.6450
(2.5025,2.8112)

Table 7: This table reports the mean and standard deviation for the real interest rate and
GDP growth based on the VAR estimates conditional on staying in each regime. In parentheses
we report the 65% posterior credible sets. The sample spans the period 1955:Q3-2013:Q3.



Annualized Sharpe Ratios and Mean Returns
Portfolio SR Mean Portfolio SR Mean Portfolio SR Mean
V-G (S1) 0.6225 0.1047 V-RF (S1) 0.5271 0.1346 G-RF (S1) 0.0909 0.0299
V-G (S2) 0.3807 0.0637 V-RF (S2) 0.5072 0.1202 G-RF (S2) 0.1958 0.0565
V-G (S3) 0.4025 0.0671 V-RF (S3) 0.5786 0.1260 G-RF (S3) 0.2255 0.0589
V-G (S4) 0.1681 0.0271 V-RF (S4) 0.4312 0.0974 G-RF (S4) 0.2973 0.0703
V-G (S5) 0.1899 0.0285 V-RF (S5) 0.3978 0.0785 G-RF (S5) 0.2733 0.0500
W-L 0.6446 0.1588 W-RF 0.5689 0.1315 L-RF −0.0859 −0.0273

Table 8: The table reports annualized Sharpe ratios, "SR," and mean returns, "Mean," for
different portfolios. The Sharpe ratio is defined to be the unconditional mean return divided by
the standard deviation of the portfolio return. The long-short portfolios "V-G" are the value-
growth portfolios in a given size quintile, S1=smallest, S5=largest. long-short portfolios "W-L"
are the winner-loser portfolio. For each size category, the return of the V-G portfolio portfolio
return is the difference between the return on the extreme value (highest BM ratio) and the
return of the extreme growth portfolio (lowest BM ratio). The return of the W-L portfolio
return is the difference in returns between the extreme winner (M10) and the extreme loser
(M1). The rows denoted "V-RF", "G-RF", "W-RF" and "L-RF" report the same statistics
for the value, growth, winner and loser portfolios, respectively, in excess of the risk-free rate.
All returns are computed at quarterly frequencies but the Sharpe ratios and mean returns are
reported in annualized units. The sample spans the period 1964:Q1-2013:Q3.



Breaks in Book-Market Ratio Spreads
Size 1 (Small) Size 2 Size 3

Val-Gr W-L Val-Gr W-L Val-Gr W-L
Regime 1 2.5402

(2.4791,2.6127)
4.4258

(3.8221,4.8132)
1.5740

(1.4708,1.6530)
4.4525

(3.8418,4.8380)
1.6086

(1.5560,1.6491)
4.3910

(3.8142,4.7666)

Regime 2 2.3591
(2.2143,2.4869)

2.9713
(2.2002,3.7477)

1.1795
(0.9913,1.3387)

2.9560
(2.2761,3.7596)

1.4296
(1.3055,1.5265)

2.9494
(2.1859,3.7089)

Diff-in-Diff 0.1832
(0.0489,0.3441)

1.3134
(0.8419,1.9107)

0.3817
(0.2537,0.5411)

1.2738
(0.8419,1.9323)

0.1849
(0.0809,0.2976)

1.2922
(0.8253,1.9347)

Size 4 Size 5 (Large)
Val-Gr W-L Val-Gr W-L

Regime 1 0.6981
(0.6520,0.7559)

4.43157
(3.8702,4.799)

0.7617
(0.6450,0.8566)

4.4110
(3.7568,4.8146)

Regime 2 0.6768
(0.5581,0.8359)

3.0214
(2.2810,3.7489)

0.6217
(0.4501,0.7692)

2.8464
(2.0979,3.6757)

Diff-in-Diff 0.0174
(−0.1188,0.1412)

1.2572
(0.8220,1.8571)

0.1281
(0.0141,0.2822)

1.3442
(0.8616,2.0611)

Table 9: The first two rows report the conditional steady states for the spread in adjusted book-
market ratios between the high and low return premia porfolios in each regime. The columns
labeled "Val-Gr" report the spreads for portfolios sorted along the book-market dimension, in a
given size category (extreme value minus extreme growth). The columns labeled "W-L" report
the spreads for portfolios sorted along the recent past return performance dimension (extreme
winner minus extreme loser). The row labeled "Diff-inDff" reports the difference between these
spreads across the two wealth ratio/interest rate regimes. The book-market ratios are adjusted
for the differences in expected earnings, so the adjusted book-market spreads coincide with
spreads in the present discounted values of expected excess returns. In parentheses we report
68% posterior credible sets. The sample spans the period 1964:Q1-2013:Q3.



Probability of a decline in Premia
Size 1 (Small) Size 2 Size 3

Spread V-G W-L V-G W-L V-G W-L
% draws 91.25 100 99.85 100 95.20 100

Size 4 Size 5 (Large)
Spread V-G W-L V-G W-L
% draws 54.85 99.95 86.70 100

Portfolio V (S1) V (S2) V (S3) V (S4) V (S5) Winner
% draws 99.90 99.85 99.00 94.50 95.00 77.60

Portfolio G (S1) G (S2) G (S3) G (S4) G (S5) Loser
% draws 94.20 6.65 49.80 88.60 88.90 0.05

Table 10: The table reports the probability of a reduction in the estimated risk premia when
moving from the low market valuation regime 1 to the high market valuation regime 2. These
probabilities are computed as the percentage of draws for which the premia decline. The first
and second rows refer to the spread portfolios, whereas the third and fourth rows refer to the
individual portfolios.
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Figure 1: Smoothed probability of high mean regime for the Markov-switching cointegrating
relation. The sample is quarterly and spans the period 1952:Q1 to 2013:Q3.
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Figure 2: The Markov-switching estimated cayMS is plotted without removing the constant.
The red dashed lines are the values of α1 and α2, which correspond to the most likely mean
values in each regime. The sample is quarterly and spans the period 1952:Q1 to 2013:Q3.
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Figure 3: Markov-switching and fixed coeffi cients cay. The sample is quarterly and spans the
period 1952:Q1 to 2013:Q3.
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Figure 4: Low frequency averages of cay. The figure plots the set of averages {fj}kj=1, which
capture the variability in cay for periods greater than 2T/k, where T is the sample size. Thus,
with T = 247 quarters, the k = 12 points plotted summarize the variability in cay for periods
greater than 2 ∗ 247/12 = 41.1667 quarters, approximately 10 years. The sample is quarterly
and spans the period 1952:Q1 to 2013:Q3.
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Figure 5: Low frequency log likelihood values for (1 − L)dcayt. The sample is quarterly and
spans the period 1952:Q1 to 2013:Q3.



1960 1980 2000
0

2

4

O
ne

 y
ea

r

GDP growth

Median
68% bands

1960 1980 2000
2

3

4

F
iv

e 
ye

ar

1960 1980 2000

3

3.2

3.4

3.6

T
en

 y
ea

r

1960 1980 2000
0
2
4
6
8

Inflation

1960 1980 2000
2

3

4

5

1960 1980 2000

3

3.5

4

1960 1980 2000
0

5

10

15
Interest rate

1960 1980 2000

4

6

8

1960 1980 2000
4

5

6

1960 1980 2000

0
2
4
6

Real interest rate

1960 1980 2000

1

2

3

4

1960 1980 2000

1

2

3

Figure 6: Projections from MS-VAR. The figure reports the conditional expectations
based on the MS-VAR at different horizons taking into account the possibility of regime changes.
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Figure 7: Uncertainty based on MS-VAR. The figure reports the conditional standard
deviations at different horizons based on the MS-VAR taking into account the possibility of
regime changes.
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Figure 8: Wealth Ratio and federal funds rate. The wealth ratio (solid blue line, left axis) is
plotted together with the ten-year-ahead real federal funds rate (black dashed line, right axis).
The wealth ratio is obtained as the inverse of cayMS without removing the Markov-switching
constant. The red dashed line represents the inverse of the regime-probability weighted average
of the constants α1 and α2. The ten-year-ahead real federal funds rate is computed as the
ten-year-ahead expected value of the real federal funds fate as implied by the Markov-switching
VAR. The sample is quarterly and spans the period 1955:Q4 to 2013:Q3. With respect to the
estimates for cayMS the sample is adjusted to take into account data availability for the Federal
Funds rate.
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Figure 9: Evolution of Risk Premia. The figure reports the evolution of the the PDV of risk premia for different portfolios.
The blue solid line reports the evolution of the risk premia over time, while the red dashed line corresponds to the conditional
steady state of the PDV based on the regime in place. Both are computed by taking into account the possibility of regime changes.
The sample spans the period 1964:Q1-2013:Q3.


