
NBER WORKING PAPER SERIES

MONETARY POLICY AND ASSET VALUATION

Francesco Bianchi
Martin Lettau

Sydney C. Ludvigson

Working Paper 22572
http://www.nber.org/papers/w22572

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
August 2016, Revised January 2021

We thank Ian Dew-Becker, Emmanuel Farhi, Simon Gilchrist, Matteo Maggiori, Emi Nakamura, 
Monika Piazzesi, Jon Steinsson, Andrea Tamoni, Harald Uhlig, and Michael Weber for helpful 
comments and seminar participants at the Bundesbank, Columbia, HEC Montreal, NYU, UCL, 
UCLA, the University of Texas at Austin, Minneapolis Fed, Indiana University, Carey–Johns 
Hopkins University, the National Bank of Belgium, Booth–University of Chicago, the Workshop 
on Monetary Policy, NY Fed, April 2017; the Financial Markets and Macroeconomic 
Performance conference, Frankfurt, May 2017; the Developments in Empirical Monetary 
economics Conference, FRB May 2017; the SED June 2017; the CCBS Research Forum on 
Macrofinance, Bank of England June 2017, the Barcelona GSE Summer Symposium, June 2017; 
the Computing in Economics and Finance conference, June 2017, Wolfe Research’s Global 
Quantitative and Macro Investment Conference, November 2017, and the 2018 American 
Economic Association meetings. We thank Paulo Manoel for excellent research assistance. Any 
errors or omissions are the responsibility of the authors. The views expressed herein are those of 
the authors and do not necessarily reflect the views of the National Bureau of Economic 
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2016 by Francesco Bianchi, Martin Lettau, and Sydney C. Ludvigson. All rights reserved. 
Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



Monetary Policy and Asset Valuation
Francesco Bianchi, Martin Lettau, and Sydney C. Ludvigson 
NBER Working Paper No. 22572
August 2016, Revised January 2021
JEL No. E02,E4,E52,G12

ABSTRACT

We document large, longer-term regime shifts in asset valuations that coincide with shifts in the 
real federal funds rate and in equity market return premia. To interpret these facts, we specify and 
estimate a novel macro-finance model of monetary transmission and find that the documented 
regime shifts coincide with significant shifts in the parameters of a policy rule, with long-lasting 
consequences for the real interest rate. Our estimates imply that two-thirds of the decline in real 
interest rates since the early 1980s is attributable to regime changes in monetary policy. The 
model explains why infrequent changes in the conduct of monetary policy can generate persistent 
changes in asset valuations and equity return premia.

Francesco Bianchi
Social Sciences Building, 201B
Department of Economics
Duke University
Box 90097
Durham, NC 27708-0097
and CEPR
and also NBER
francesco.bianchi@duke.edu

Martin Lettau
Haas School of Business
University of California, Berkeley
545 Student Services Bldg. #1900
Berkeley, CA 94720-1900
and CEPR
and also NBER
lettau@haas.berkeley.edu

Sydney C. Ludvigson
Department of Economics
New York University
19 W. 4th Street, 6th Floor
New York, NY  10002
and NBER
sydney.ludvigson@nyu.edu



1 Introduction

There is growing evidence that the real values of long-term financial assets fluctuate sharply

in response to the actions and announcements of central banks. This includes the value of

the stock market, a perpetual asset that endures indefinitely. But this creates a puzzle. Asset

pricing theories can generally rationalize such large responses only if market participants believe

that something related to the conduct of monetary policy will have a long-lasting influence on

real variables.1 Yet the notion that monetary policy shocks could have long-lived effects on real

variables is contravened by an agglomeration of foundational New Keynesian macro theories,

and empirical evidence appears consistent with this (e.g., Christiano, Eichenbaum, and Evans

(2005)).2 But if this is so, how does monetary policy influence long-lived assets?

One possibility is that some component of monetary policy does in fact have long-lasting,

first-order affects on the aggregate economy, on real interest rates, and on the stock market, even

if identified monetary policy shocks do not. In this paper we present new empirical evidence

consistent with this hypothesis, and a new theoretical explanation consistent with the evidence.

We begin by showing that the U.S. economy is characterized by quantitatively large, decades-

long regime shifts in asset values relative to macroeconomic fundamentals. These movements

coincide with equally important regime shifts in the level of the real federal funds rate in excess

of a widely used measure of the “natural” rate of interest, a variable referred to hereafter as

the monetary policy spread, or mps for short. Since the Federal Reserve targets the federal

funds rate but in theory has no control over the natural rate, a non-zero value for the mps

may be considered a measure of the stance of monetary policy, i.e., whether monetary policy

is accommodative or restrictive. We refer to accommodative regimes with persistently negative

values for themps as “dovish,”and restrictive regimes with persistently positive and high values

for the mps as “hawkish.”

Dovish regimes in our sample coincide with persistently high asset valuations, while hawk-

ish regimes coincide with persistently low valuations. The estimation identifies two hawkish

subperiods characterized by low valuations and a high mps: 1978:Q4 to 2001:Q3, and 2006:Q2

to 2008:Q2. The first period spans the Volcker disinflation and its aftermath, while the second

follows 17 consecutive Federal Reserve rate increases that left the nominal funds rate standing

at 5.25% in June of 2006. All other subperiods of the sample are identified as dovish regimes

with high valuations and low mps.

Our second result is that the dovish, low mps regimes coincide with lower equity market re-

turn premia, while hawkish, high mps regimes coincide with higher return premia. Specifically,

in a switch from a hawkish to dovish regime, the estimated present discounted value of future

1We define a “real variable”here as any non-nominal variable, including risk premia and credit spreads.
2For a review of New Keynesian models, see Galí (2015).
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return premia on the aggregate stock market, as well as that of several equity characteristic

portfolios, simultaneously fall to lower levels. Moreover, the return premia of evidently riskier,

higher Sharpe ratio portfolios, such as those that go long in value stocks or stocks that have

recently appreciated the most, fall more than those of evidently less risky, lower Sharpe ratio

portfolios, such as those that go long in growth stocks or stocks that have recently appreciated

the least.

Taken together, this evidence suggests that low frequency movements in short-term real

interest rates are directly linked to low frequency regime shifts in asset valuations and equity

return premia. But how much if any of these findings can plausibly be attributed to monetary

policy? After all, the canonical models described above would be wholly inconsistent with this

evidence, since monetary policy in those paradigms has only short-lived effects on real variables.

To address this question, we specify and estimate a new macro-finance model of monetary

policy transmission, with two “blocks.” The first block determines risky asset prices and is

driven by the optimal behavior of a representative agent who earns income from investments

in two assets: the aggregate stock market and the one-period nominal bond market. This

agent may be thought of as a relatively sophisticated investor who typifies the type of wealthy

individual or large institution that constitutes a small fraction of the population but owns the

vast majority of highly concentrated financial wealth in the U.S. Because the agent is assumed to

be vanishingly small relative to the overall population, she takes the macroeconomic dynamics

of the economy as given. We refer to this agent interchangeably as the “asset pricing agent”or

“investor.”

The second block of the model determines macroeconomic dynamics and is driven by a

representative “macro agent”who has access to the nominal bond but holds no stock market

wealth. This block consists of a set of equations similar to those commonly featured in New

Keynesian models. But contrary to standard New Keynesian models, macro dynamics here

are influenced by two distinctive features that, taken together, imply that the model can be

consistent with long-lasting (but not permanent) departures from monetary neutrality.

The first such feature is sticky macro-agent expectations about inflation. Specifically, we

allow the evolution of expectations about trend inflation to be potentially influenced by both an

adaptive expectations component as well as a signal about the central bank’s inflation target.

For the adaptive component, expectations about future inflation are formed using a constant

gain learning algorithm, following the survey evidence established in Malmendier and Nagel

(2016) (MN). To ensure that model expectations evolve in a manner that closely aligns with

observed expectations, we map the learning algorithm into data by filtering observations on

household inflation expectations from the University of Michigan Survey of Consumers (SOC).

Overall perceived trend inflation is then a weighted average of the trend implied by the constant

gain learning rule and the central bank’s inflation target. A weight of less than one on the
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target could arise either because the target is imperfectly observed, or because central bank

announcements about the target are not viewed as fully credible. Because the weights on the

two terms are freely estimated, our approach allows us to directly assess the importance of

adaptive expectations and imperfect information about the inflation target.

The second distinctive feature of the macro block is that we allow for regime changes in

the conduct of monetary policy. These take the form of shifts in the parameters of a nominal

interest rate rule that include both the inflation target and the activism coeffi cients governing

how strongly the monetary authority responds to inflation-target deviations and to economic

growth. Such changes in what we call the conduct of monetary policy give rise to movements in

the nominal interest rate that are conceptually distinct from those generated by the monetary

policy shock, an innovation in the nominal rate that is uncorrelated with inflation, economic

growth, and shifts in the policy rule parameters.

This paper does not take a stand on the microfoundations macro block. However, the

framework implies that overall macroeconomic dynamics are driven by a central bank who

infrequently shifts the conduct of monetary policy, and an “average”household who typifies

the vast majority of the population with modest financial assets but whose expectations about

inflation and aggregate economic activity preponderate in the general population.

A key aspect of the model for explaining the stock market behavior documented in the first

part of the paper is the evolution of investor beliefs about infrequent shifts in the monetary

policy rule. Investors in the model are presumed to closely follow central bank communications,

so they observe when shifts in the policy rule occur. However, investors have no way of observing

how long any observed shift in policy will last and must learn about its duration. We further

assume that, once investors have spent enough time in a particular policy regime, memory of

past policy rules fades and they come to view the existing policy stance as the new normal. This

aspect of beliefs implies that investors extrapolate too much from the observed continuity in

the policy stance, so that the perceived persistence of policy regime shifts overstates their true

persistence. The combination of learning plus a fading memory distortion implies that beliefs

evolve in a history-dependent manner, with important consequences for how asset valuations

adjust in the wake of regime changes in monetary policy.

The full theoretical framework is solved and estimated, with the macro block parameters

and latent states estimated using Bayesian methods under flat priors. The estimation uses

data on inflation expectations from the SOC, the nominal federal funds rate, output growth,

inflation, and a measure of asset valuations. Doing so, we find that the parameters of the

monetary policy rule differ markedly across the previously estimated mps regimes. Specifically,

we find that the dovish, low mps subperiods coincide with a dovish policy rule characterized by

a comparatively higher inflation target and less responsiveness to inflation relative to growth,

while the hawkish, high mps subperiods coincide with a hawkish policy rule characterized by a
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lower inflation target and greater responsiveness to inflation relative to growth.

With these model estimation results in hand, we identify movements in real variables that

are attributable solely to the conduct of monetary policy, i.e., to regimes changes in the policy

rule. Several results are noteworthy.

First, the estimates imply that changes in the conduct of monetary policy generate large and

persistent fluctuations in the short-term real interest rate that last for decades. By contrast,

monetary policy shocks have far more transitory effects, consistent with prior empirical evidence.

Second, the estimated model implies that two-thirds of the secular decline in real interest

rates observed since the early 1980s is attributable to regime changes in the conduct of monetary

policy. This occurs because the policy rule parameters exhibit a decisive shift toward more

hawkish values around the time of Volcker’s appointment, but then exhibit an equally decisive

shift back to more dovish values in the aftermath of the near collapse of Long Term Capital

Management, the tech bust in the stock market, and the 9/11 terrorist attacks. The conduct

of monetary policy has remained dovish since, with the exception of a brief interlude from

2006:Q2-2008:Q2.

Third, our estimate of perceived trend inflation closely follows the adaptive learning rule,

which plays a crucial role in the results. Indeed, if perceived trend inflation is counterfactually

set equal to the inflation target, regime changes in the conduct of monetary policy have no affect

on the real interest rate. Fourth, dovish policy rules coincide in the model with persistently

high asset valuations, a low mps, and low return premia, while hawkish rules coincide with

persistently low valuations, a high mps, and high return premia, consistent with our empirical

evidence.

Fourth, we show that the equity return premia estimated from historical data are all strongly

positively correlated over our sample with the component of the real interest rate that we

estimate is driven by regime changes in monetary policy.

The success of the model in explaining these lower frequency asset pricing phenomena results

from the product of two forces: (i) sticky macro-agent expectations about inflation, and (ii)

revisions in investor expectations about future monetary policy. Sticky inflation expectations

are necessary for monetary policy to generate the persistent movements in the real interest rate

that in turn trigger large and persistent fluctuations in asset valuations. Investor learning about

the persistence of regime shifts delivers a plausible, gradual adjustment in valuation ratios after

regime shift dates. Finally, the fading memory component of investor beliefs explains why stock

market return premia can be high (low) in hawkish (dovish) subperiods, as documented in the

first part of the paper. Intuitively, fading memory of past policy rules means that investors over-

react to policy shifts and are always surprised by the inevitable transition out of the existing

policy rule. It follows that an econometrician looking back on the historical sample would find

that hawkish (dovish) subperiods are predictably followed by a “surprise”(from the perspective
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of investors) increase (decrease) in excess returns as policy switches back to dovish (hawkish).

Because the model economy specifies only an aggregate stock market and a nominal bond

market, it cannot speak to one aspect of our empirical evidence, namely the behavior of the

cross-section of equity characteristic portfolios across our identified policy regimes. The conclud-

ing section of the paper discusses some possibilities for future research to explore the theoretical

underpinnings of this finding.

The rest of the paper is organized as follows. The next section discusses related literature.

Section 3 discusses the estimation of a joint Markov-switching system for asset valuations and

the monetary policy spread and investigates whether the low mps regimes are characterized by

lower return premia in equity market assets. Section 4 describes the model, explains how it

is solved and estimated, and presents results of that estimation. Section 5 concludes. A large

amount of additional material, test results, and a detailed data description of each procedure

have been placed in an Appendix for online publication.

2 Related Literature

The research in this paper touches on several different strands of literature that connect mon-

etary policy to movements in asset values. Although not focused specifically on announcement

effects, our work is related to a growing body of evidence that finds the values of long-term

financial assets respond to the actions and announcements of central banks.3 Economists have

proposed various explanations for these responses, including the revelation of private central

bank information and the response of risk premia. Yet no matter what the channel, asset

pricing models can typically only rationalize such large responses if something associated with

the announcement is expected to have a long-lasting influence on real variables or risk premia.4

Our work contributes to this literature by providing evidence of regime changes in the conduct

of monetary policy that have long-lasting effects on real interest rates, asset valuations, and

equity market return premia, and by providing a novel theoretical explanation for these new

empirical findings.

Our empirical findings also relate to a theoretical literature in which shifts in the risk-

free interest rate coincide with shifts in return premia. Prominent examples in this literature

include theories with a “reach-for-yield”motive either in preferences or technologies (e.g., Rajan

3See Hanson and Stein (2015), Gertler and Karadi (2015), Gilchrist, López-Salido, and Zakrajšek (2015),
Boyarchenko, Haddad, and Plosser (2016), Jarocinski and Karadi (2019), Cieslak and Schrimpf (2019), and
Kekre and Lenel (2019). These studies follow on earlier work finding a link between monetary policy surprises
and short-term assets in high frequency data (Cook (1989); Bernanke and Kuttner (2005); Gürkaynak, Sack,
and Swanson (2005)). A separate literature studies the timing of when premia in the aggregate stock market are
earned in weeks related to FOMC-cycle time (Lucca and Moench (2015), Cieslak, Morse, and Vissing-Jorgensen
(2015)).

4For reviews of frontier asset pricing models, see Cochrane (2005) and Campbell (2017).
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(2006); Rajan (2013); Diamond and Rajan (2012); Farhi and Tirole (2012); Drechsler, Savov,

and Schnabl (2018); Piazzesi and Schneider (2015); Acharya and Naqvi (2016); Coimbra and

Rey (2017); Hanson, Lucca, and Wright (2018)). Alternatively, a decline in real rates driven by

monetary policy could increase the fraction of wealth held by more risk tolerant investors, as in

Kekre and Lenel (2019), driving down return premia. Our empirical findings contribute to this

literature by showing that persistently high asset valuations and persistently low return premia

are associated with evidence of a persistently dovish monetary policy stance. And we provide

a new explanation for low return premia in low interest rate regimes based on the idea that

investors may extrapolate too much from the observed continuity in the policy stance, thereby

creating a wedge between the subjective and objective persistence of policy regime shifts.

A separate body of theoretical work addresses the low and declining interest rates of recent

decades with implications for risk premia that are opposite to what would be consistent with our

empirical findings. In these theories, declining real rates are the result of shocks that increase

the fraction of wealth held by more risk averse or more pessimistic investors, implying that risk

premia rise rather than fall as interest rates decline (e.g., Barro and Mollerus (2014); Caballero

and Farhi (2014); Hall (2016)). Thus, asset valuations in these theories can only be higher if the

decline in the risk-free rate exceeds the rise in risk premia. Our evidence from equity markets

implies that low interest rate regimes coincide with lower rather than higher equity market

return premia. Our findings for stock market returns in this regard are reminiscent of similar

evidence for the Treasury market (e.g., Hanson and Stein (2015)), for U.S. prime money funds

(e.g., Di Maggio and Kacperczyk (2015)), and for U.S. corporate bond mutual funds (Choi and

Kronlund (2015)). The evidence in these papers pertains to heavily intermediated asset classes.

By contrast, our evidence pertains to equity market portfolios, an asset class ostensibly held

by retail investors and households, as well as intermediaries.

Finally, our work is related to previous research that has found evidence of infrequent regime

changes in the parameters of an estimated monetary policy rule (e.g., Clarida, Gali, and Gertler

(2000); Lubik and Schorfheide (2004); Bianchi (2013)). Unlike this work, we use a more recent

sample and estimate whether there are joint regime changes in asset valuations and themps that

coincide with regime shifts in the policy rule and risk premia. We also present new evidence,

vis-a-vis this literature, of changes in the policy rule parameters toward more dovish monetary

policy that occurred at beginning of the 21st century.

This latter body of work also helps to motivate why we use regime switching over alternative

procedures such as slowly drifting means, to document joint variation in valuations and policy

rates. The papers cited in the previous paragraph use regimes to identify different phases of

US monetary history. It is quite natural to model changes in the conduct of monetary policy as

occurring with discrete regime changes. Different Chairs of the Federal Reserve bring their own

views and priorities to the conduct of monetary policy, suggesting that data on policy interest
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rates are likely to be better described as being drawn from a mixture of distinct distributions

with infrequent transitions between them, rather than a single distribution where a transition

occurs each period. The regime switching approach therefore helps us evaluate a key hypothesis

of the paper, namely whether infrequent regime changes in the conduct of monetary policy are

associated with changes in the real interest rate, valuations, and return premia.

3 Regimes in Valuations, Interest Rates, and Risk Pre-
mia

This section describes how we model and estimate regimes in asset valuations and the mps

using a Markov-switching model, and how we evaluate whether these regimes are associated

with movements in return premia. Before discussing the Markov-switching estimation, we begin

by presenting some preliminary evidence that helps motivate the evidence for long-lived regimes

in these variables.

3.1 Motivating Evidence

Figure 1 plots the behavior over time of a key instrument of monetary policy, namely the real

federal funds rate, measured for the purposes of this plot as the nominal rate minus a four

quarter moving average of inflation. The left panel plots this series along with an estimate of

the natural real interest rate, from Laubach and Williams (2003). The data are quarterly and

span the sample 1961:Q1-2017:Q3.5 The figure shows that there are important lower-frequency

fluctuations in the real federal funds rate over the full sample, but little long-term trend. By

contrast, the natural rate of interest exhibits a clear downward trend over the entire sample.

The right panel plots the spread between the real funds rate and the Laubach and Williams

(2003) natural rate of interest, a variable we refer to as the monetary policy spread. The natural

rate of interest measures the component of the real rate whose fluctuations cannot be attributed

to monetary policy.6 Thus the spread between the real federal funds rate and the natural rate

is a measure of the stance of monetary policy, with spreads above zero indicative of restrictive

monetary policy and those below zero indicative of accommodative monetary policy. Denote

the time t value of this spread mpst.7 According to this measure of the mps, monetary policy

5The 1961 start date is dictated by the availabililty of the natural rate of interest measure.
6Estimates of the natural rate of interest apply theoretical restrictions on the behavior of real interest rates

to identify the natural rate component. In Laubach and Williams (2003) these restrictions amount to estimates
of the level of the real rate that consistent with no change in inflation.

7mpst is computed as
FFRt − (Expected Inflation)t − r

∗
t ,

where FFR is the nominal federal funds rate and where expected inflation is a four quarter moving average of
inflation. r∗t is the natural rate of interest from Laubach and Williams. The quarterly nominal funds rate is the
average of monthly values of the effective federal funds rate.
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was accommodative in the sample up until about 1980, then sharply restrictive from about

1980 to about 2000, and subsequently mostly accommodative. While there is no secular trend

downward in real interest rates over the full sample, there is a noticeable downward trend in

both the real interest rate and the mps since about 1980, a point we come back to below.

Next, Table 1 reports the correlations between the real interest rate or themps and different

asset valuation metrics. These correlations are reported for the raw series, and for components

of the raw series that retain fluctuations with “medium” term cycles, defined to be cycles

that take between 8 and 50 years to complete, and “business”cycles, defined to take between

1.5 and 8 years, computed with a bandpass filter. Panel A reports these correlations with

−cayt, the negative of the log consumption-wealth variable of Lettau and Ludvigson (2001)
(LL hereafter), one of the broadest asset valuation metrics available. With cayt, asset values

are measured relative to two macroeconomic fundamentals: log consumption “ct”and log labor

income “yt.”The “at”is total household net worth, which is highly correlated with the return

on the aggregate stock market. We use −cayt to put asset values in the numerator, and refer
to it simply as a “wealth” ratio. Columns B-D consider alternative valuation ratios each of

which has some measure of stock market wealth in the numerator. Panel B uses the Shiller

price-earnings ratio8, Panel C uses the price-dividend ratio for the corporate sector, and Panel

D uses the price-earnings ratio for the corporate sector.

Several results in Table 1 stand out. First, correlations between the valuation ratios and

either the real funds rate or the mps are all negative at medium-term frequencies. Thus, over

cycles of 8-50 years, persistently high valuations tend to coincide with indicators of monetary

policy that are persistently more accommodative. By contrast, the correlations are all positive

at business cycle frequencies and generally weaker in absolute terms.

Second, in all cases, the absolute correlation between the valuations and the mps is greater

than that between valuations and the real interest rate itself. Thus, purging the funds rate of the

component estimated to be unrelated to monetary policy leads to greater negative comovement,

which is suggestive that monetary policy as opposed to real rates per se play a role in this

correlation.

Third, the largest absolute correlation is with −cayt, which has a -0.83 correlation with the
real interest rate and a -0.84 correlation with the mps at medium-term frequencies. This is

followed by correlations of -0.49 and -0.60, respectively, with the corporate sector price-dividend

ratio, -0.19 and -0.30 with the Shiller price-earnings ratio, and -0.20 and -0.30 with the corporate

sector price-earnings ratio. This finding, namely that lower frequency movements in cayt are

more highly correlated in absolute terms with short-term interest rates than are other valuation

ratios, is consistent with prior evidence that cayt picks up more variation in expected stock

market returns than do other stock market valuation ratios, and other stock market predictor

8http://www.multpl.com/shiller-pe/
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variables in general.9 One reason for this is that some variation in expected stock market

returns appears to be positively correlated with expected growth in stock market cash flows,

but not with expected growth in ct or yt (Lettau and Ludvigson (2005)). These movements

in expected returns are therefore obscured in stock market valuation ratios where, unlike cayt,

expected stock market cash flows appear in the numerator. We observe this mechanism at work

in the current data in Panel E of Table 1. At medium-term frequencies, decreases in the real

interest rate or mps, which tend to drive stock market valuation ratios up, are simultaneously

associated with increases in the earnings share of output, which tend to drive them down.

Since cayt is not as subject to this type of confounding cash flow effect, and since discount rate

movements are at the core of what we investigate in this study, we use −cayt as a measure of
valuations in our formal econometric analysis, discussed next.

3.2 Regime Changes in cay and mps

This section presents results for a joint Markov-switching model of breaks in the mean of cay

and an instrument of monetary policy. As a cleaner indicator of monetary policy, we use the

mps rather than the real federal funds rate, in order to purge the later of the trending natural

rate component that has nothing to do with monetary policy. We first describe an econometric

model of regime switches in the mean of cayt. We then introduce a similar relation for the mps.

Finally, we explain how we jointly estimate regime changes in the means of the two variables.

The log valuation variable cayt is derived from an approximate formula for the log con-

sumption to aggregate (human and non-human) wealth ratio, and its relationship with future

growth rates of at and/or future growth rates of ct and yt can be motivated from an aggregated

household budget constraint.10 An approximate expression linking ct, at, and yt to expected

future returns to asset wealth, consumption growth, and labor income growth may be derived

to yield

cayt ≡ ct − γaat − γyyt ≈ α + Et
∞∑
i=1

ρiw ((1− ν) ra,t+i −∆ct+i + ν∆yt+1+i) , (1)

9See the review of the literature on expected stock market returns in Lettau and Ludvigson (2013). Earlier
evidence in the literature has found that cayt performs better in predicting stock market returns than other
predictor variables at all but very long horizons. One reason for this is provided in Lettau and Ludvigson
(2005), who show that, at cyclical frequencies, expected returns are high when expected dividend growth is
high, a co-movement that dimishes the predictive power of the price-dividend ratio for stock returns, but does
not do so for cayt. This happens because the measures of “fundamentals” in cayt are c and y, which are only
weakly correlated with dividends. Moreover, a review of the literature shows that, even rigorous statistical
tests find that cayt has one of the best track records for predicting stock market returns both in-sample and
out-of-sample.
10This formula is derived under several assumptions described in LL and elaborated on in Lettau and Lud-

vigson (2010). If labor income is modeled as the dividend paid to human capital, we get the formulation
below.
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where ν is the steady state ratio of human wealth to asset wealth and ra,t is the log return to

asset (non-human) wealth. Theory typically implies that ct, a t, and yt should be cointegrated,

or that the linear combination of variables in cayt should be covariance stationary.

In the standard estimation without regime shifts in any parameters, the above stationary

linear combination of ct, a t, and yt may be written

cayFCt ≡ ct − γaat − γyyt = α + εFCt , (2)

where the parameters to be estimated are α, γa, and γy. The residual ε
FC
t is the mean zero

stationary linear combination of these data, referred to as the cointegrating residual. Note that

εFCt is not in general an i.i.d. shock. The superscript “FC”stands for “fixed coeffi cients”to

underscore the fact that no parameters in this relation are time-varying.

In this paper, we estimate a Markov-switching version of this variable, analogously written

as

cayMS
t ≡ ct − βaat − βyyt = αξt + εct , (3)

where εct ∼ N (0, σ2
MS). The intercept term, αξt , is a time-varying mean that depends on the

existence of a latent state variable, ξt, presumed to follow a two-state Markov-switching process

with transition matrix H. Thus αξt assumes one of two discrete values, α1 or α2. The choice

of two regimes is not crucial, but provides a readily interpretable way to organize the data into

a low and a high valuation regimes. The residual εct is a stationary, continuous-valued random

variable by assumption. The slope coeffi cients βa and βy are analogous to γa and γy in the

fixed coeffi cient regression (2). They are denoted differently to underscore the point that the

coeffi cients in (2) and (3) are not the same, just as the parameters α and αξt , and the residuals

εFCt and εct are not the same. Because our procedure jointly recovers the slope coeffi cients βa
and βy, the timing of regime changes, and, as an implication, the decomposition of cay

MS
t into

αξt and ε
c
t , all three statistical objects can differ.

We combine the estimation of changes in the mean of cayMS
t with an isomorphic model for

mpst to estimate a joint Markov-switching model with synchronized regimes. Specifically, we

assume that regime changes in the mean of cayMS
t coincide with regime changes in the mean of

the mps:

mpst = rξt + εrt , (4)

where εrt ∼ N (0, σ2
r). Unlike cay

MS
t , mpst is an observed variable. Thus, in this case we only

need to estimate the Markov-switching intercept coeffi cient rξt . It is worth emphasizing that the

same latent state variable, ξt, is presumed to follow a two-state Markov-switching process with

transition matrix H, controls both changes in αξt and rξt . Thus the regimes are synchronized

across the two means.
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The econometric model may be succinctly stated as a Markov-switching regression system

with synchronized regimes:

ct = αξt + βaat + βyyt + εct

mpst = rξt + εrt

εct ∼ N
(
0, σ2

MS

)
, εrt ∼ N

(
0, σ2

r

)
where ξt is a latent variable that follows a Markov-switching process with transition matrix H.

Denote the set of parameters to be estimated collectively with the vector

θ =
(
αξt , βa, βy, rξt , σ

2
MS, σ

2
r, vec (H)′

)′
.

We use Bayesian methods with flat priors to estimate the model parameters in (3) and

(4) over the period 1961:Q1-2017:Q3. The sequence ξt = {ξ1, ..., ξT} of regimes in place at
each point is unobservable and needs to be inferred jointly with the other parameters of the

model. Estimates of αξt and rξt are formed by weighting their two estimated values by their

state probabilities at each point in time. Let T be the sample size used in the estimation and

let the vector of observations as of time t be denoted Zt. Let P (ξt = i|ZT ;θ) ≡ πit|T denote

the probability that ξt = i, for i = 1, 2, based on information that can be extracted from the

whole sample and knowledge of the parameters θ. We refer to these as the smoothed regime

probabilities. We may decompose cayMS
t into two components, a discrete-valued time-varying

mean and a continuous-valued random variable:

cayMS
t = ct −

(
βaat + βyyt

)
= αt + εct (5)

αt =
∑2

i=1 π
i
t|Tαi. (6)

thus αt is the probability-weighted average of the Markov-switching means. An analogous

bifurcation exists for mpst, where rξt may be computed as rt =
∑2

i=1 π
i
t|T ri.

The posterior distribution of the empirical model (3) and (4) and the corresponding regime

probabilities πit|t and π
i
t|T are obtained by computing the likelihood using the Hamilton filter

(Hamilton (1994)), and combining it with priors. Since we use flat priors, the posterior coincides

with the likelihood. Our estimate of cayMS
t and its decomposition into αt and εct , and of mpst

into rt and εrt , use the posterior mode of the parameter vector θ and the corresponding regime

probabilities. Uncertainty about the parameters, or about any transformation of the model

parameters, is characterized using a Gibbs sampling algorithm. The full statement of the

procedure and sampling algorithm is given in the Appendix.

The variable cayMS
t may be interpreted as log inverse asset valuation ratios, akin to a log

dividend-price ratio as opposed to log price-dividend ratio. For brevity, we refer to cayMS
t as

an inverse “wealth”ratio, or equivalently define the (log) wealth ratio as −cayMS
t = − [εct + αt].
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Thus, a high αi corresponds to a low wealth ratio, since ct − βaat − βyyt is high whenever at is
low relative to ct − βyyt. In population εct and εFCt are mean zero random variables, thus the

intercept term αt gives the mean of the inverse wealth ratios.11

Since high values for mpst are indicative of restrictive monetary policy while low values are

indicative of accommodative policy, we refer to regimes with the high value for rξt as hawkish and

denote them with an H subscript, and to those with the low value for rξt as dovish, and denote

them with a D subscript, i.e., rH ≥ rD. Because the regimes in rξt and αξt are synchronized,

switches in rξt will by construction coincide with switches in αξt. But the magnitude by which

either variable switches, and whether αξt will be high or low when rξt is high are open empirical

questions that our estimation is designed to address.

Table 2 reports the parameter estimates, while Figure 2 reports the probability of a hawkish

regime over time for the Markov-switching intercept rξt based on the posterior mode parameter

estimates.

The results show that the sample is divided into three subperiods characterized by the two

regimes for α and r. The hawkish regime with the high value for rξt = rH is also a high α regime

with posterior mode point estimates equal to r̂H = 0.0111 and α̂H = −0.7239. The posterior

mode estimates for the low rξt = rD dovish regime are α̂2 = −0.7500 and r̂2 = −0.0252. Since

a high α for cay corresponds to a low valuation ratio, this implies that the dovish mps regime

coincides with high asset valuations, while the hawkish mps regime coincides with low asset

valuations.

The overall sample is divided into estimated regime subperiods using the most likely es-

timated regime sequence, a T -dimensional vector denoted ξT .12 Table 3 shows the resulting

regime subperiods based on this estimated regime sequence. The hawkish regime prevails for a

prolonged period of time from 1978:Q4 to 2001:Q3, during which the smoothed probability that

r = r̂H is very close to unity. By contrast, the pre-1978 and most of the post-2001 subsample

are dovish subperiods with high asset valuations, where the probability that r = r̂H is virtually

0. The hawkish regime briefly reappears from 2006:Q1 to 2008:Q2 following a string of 17 target

federal funds rate hikes by the Federal Reserve that began on June 30, 2004 and ended with

the nominal rate standing at 5.25% on the 29th of June 2006. The target funds rate remained

above 4% until January 2008, when it was lowered to 3%.

How different are the hawkish parameter values from the dovish ones? Table 2 reports

summary statistics for the differences α̂H − α̂D and r̂H − r̂D, along with percentiles of their

posterior distributions. The 90% credible sets for α̂H − α̂D and r̂H − r̂D are non-zero and

positive, indicating that the data strongly favor changes in the mean of the log wealth ratio and

11In a finite sample, εMS
t and εFCt are not necessarily mean zero because of the leads and lags of the first dif-

ferences included in the DLS regression used to correct for finite sample biases—see the Appendix. In population
these variables are mean-zero by definition.
12The Appendix describes how the most likely regime sequence is computed from the filtered probabilities.
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themps across the estimated regime subperiods. The two regimes are stationary but persistent,

as indicated by the estimated diagonal elements of the transition matrix H, also reported in

Table 2.

To give a visual impression of the properties of these regimes, Figure 3 plots −cayMS
t and

the mps over time. Also plotted as horizontal lines are the values −αt and rt that arise in each
regime over the sample. The figure shows that these estimated values differ by quantitatively

large magnitudes across the regime subperiods. The wealth ratio −cayMS
t fluctuates around

two distinct means in five separate periods of the sample, a high mean in the early part of

the sample, a low mean in the middle, a low mean in the shorter subperiod from 2006:Q1

to 2008:Q2, and a high mean again at the end of the sample. The mps is a mirror image,

fluctuating around a low mean in the early part of the sample, a high mean in the middle, and,

with the exception of 2006:Q1 to 2008:Q2, a low mean the latter part of the sample.

Several narrative “events”in monetary history are labeled in themps panel of Figure 3. The

first occurrence of the high asset valuation/low mps regime from 1961:Q1 to 1978:Q3 coincides

with the run-up of inflation in the 1960s and 1970s and low real interest rates. Researchers

have concluded that monetary policy failed to react aggressively to inflation during those years

(Clarida, Gali, and Gertler (2000); Lubik and Schorfheide (2004); Sims and Zha (2006); Bianchi

(2013)). This is labeled the “Burns Accommodation,” after Arthur Burns who chaired the

Federal Reserve Board over much of this subperiod. Real interest rates increased significantly

during the “Volcker disinflation”and remained high for a prolonged period of time, coinciding

with low valuations and high mps. The beginning of second occurrence of the high asset

valuation/low mps regime is labeled the “Greenspan Put,” in Figure 3 after the perceived

attempt of Chairman Greenspan to prop up securities markets in the wake of the IT bust, a

recession, and the aftermath of 9/11, by lowering interest rates and (allegedly) resulting in a

perception of put protection on asset prices. The high valuation/low mps subperiod at the

end of the sample overlaps with the explicit forward guidance “low-for-long” policies under

Chairman Bernanke that promised in 2011 to keep interest rates at ultra low levels for an

extended period of time, possibly longer than that warranted by a 2% inflation objective. We

argue narrative events such as these are likely to coincide with infrequent shifts in the stance

of monetary policy, shifts that are well captured by a Markov-switching specification.

3.3 Return Premia

The evidence above suggests that a persistently low mpst is associated with persistently high

asset valuations. A natural question is whether persistently low/high real interest rates envi-

ronments associated with the previously estimated dovish/hawkish mps regimes influence asset

valuations only through the riskless real interest rate changes, or whether the return premia
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also change.13 We begin with a loglinear framework to illustrate how real interest rate regimes

could be revealed in return premia both in the time series and in a cross-section.

3.3.1 A Loglinear Framework

We consider a log-linearization that constructs earnings from book-market and return data

using clean surplus accounting. Let Bt denote book value and Mt denote market value, and let

the logarithm of the book-market ratio log (Bt/Mt) be denoted θt. Vuolteenaho (2000) shows

that θt of an asset or portfolio can be decomposed as:

θt =
∑∞

j=0 ρ
jEtrt+1+j +

∑∞
j=0 ρ

jEtft+1+j −
∑∞

j=0 ρ
jEte∗t+1+j (7)

where ρ < 1 is a parameter, and rt+1+j, ft+1+j, and e∗t+1+j denote the log excess return, log risk-

free rate, and log earnings, respectively.14 In other words, the logarithm of the book-market

ratio θt depends on the present discounted value (PDV) of expected excess returns (return

premia), expected risk-free rates, and expected earnings.

One way to assess the possibility that return premia are affected by our estimated policy

regimes is to exploit differences across assets. A change in discount rates driven by the riskless

rate alone influences all assets in the same way, regardless of their riskiness. By contrast, if shifts

between dovish and hawkish mps regimes affect return premia, its reasonable to expect high

return premia assets to be more affected than low return premia assets. Specifically, suppose

we have two portfolios x and y, the spread in their book-market ratios, θx,t− θy,t, is given by:15

θx,t − θy,t︸ ︷︷ ︸
Spread in BM ratios

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of spread in return premia

−
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
PDV of spread in expected earnings

Note that the risk-free rate has no affect on this spread, since all portfolios are affected in

the same way by the risk-free rate. Instead only the return premium differential and expected

earnings differential affect the book-market spread. We can adjust the book-market spread for

the spread in expected earnings to isolate the return premium differential:

θx,t − θy,t +
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
Spread in BM ratios adjusted for earnings ≡θ̃x,t−θ̃y,t

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of the spread in risk premia

(8)

13In what follows we use the terms “risk”premia and “return”premia interchangeably to refer to the expected
return on an asset in excess of the risk-free rate. We remain agnostic as to whether the observed premia are
attributable to genuine covariance with systematic risk factors or mispricing, or both.
14Specifically, e∗ is the log of 1 plus the earnings-book ratio, adjusted for approximation error. See Vuolteenaho

(2000).
15This derivation follows Cohen, Polk, and Vuolteenaho (2003) and imposes the approximation that ρ is

constant across portfolios. Cohen, Polk, and Vuolteenaho (2003) find that the approximation error generated
by this assumption is small. We further follow these authors and set ρ = 0.9898 at a quarterly rate, or the
annual rate used in Cohen, Polk, and Vuolteenaho (2003) raised to the power 0.25, ρ = (0.96).25.
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The above expression shows that the spread in book-market ratios adjusted for expected future

earnings is identically equal to the PDV of the spread in return premia.

Denote the adjusted (for expected earnings) book-market ratio for portfolio x in regime i

with a tilde as

θ̃
i

x,t ≡ θix,t +
∑∞

j=0 ρ
jEte∗ix,t+1+j.

Let x denote a high return premium portfolio while y denotes a low return premium portfolio.

To investigate whether return premia fall when policy turns dovish (and rise when it turns

hawkish), we can ask whether, in a shift from a hawkish (i = H) to a dovish (i = D)mps regime,

the adjusted book-market ratio of x falls more than y, implying
(
θ̃
H

x,t − θ̃
D

x,t

)
−
(
θ̃
H

y,t − θ̃
D

y,t

)
> 0,

or that the difference-in-difference of adjusted book-market ratios is positive across regimes:(
θ̃
H

x,t − θ̃
H

y,t

)
−
(
θ̃
D

x,t − θ̃
D

y,t

)
> 0. (9)

Thus if return premia fall in dovish subperiods, the spread in the adjusted book-market ratios

between the high premia portfolio and the low premia portfolio should be lower in dovish

regimes. Equivalently, in a switch from a hawkish to dovish mps regime, the PDV of return

premia on the high return premium portfolio should fall more than that of the low return

premium portfolio, compressing spreads.

Empirical methods can be used to estimate the PDV of the spread in return premia∑∞
j=0 ρ

jEt (rx,t+1+j − ry,t+1+j) for any two stock portfolios, or for the difference-in-difference

(9) in the PDV of return premia, or for the PDV
∑∞

j=0 ρ
jEtrt+1+j of return premia on the

aggregate stock market in excess of a short-term interest rate. We do all of these exercises here.

3.3.2 Policy Regimes and Equity Return Premia

For this purpose we estimate Markov-switching vector autoregressions (MS-VARs) taking the

form:

Zt = AξtZt−1 + Vξtεt,

where Zt is a column vector containing n demeaned variables observable at time t.16 The MS-

VAR coeffi cients and shock volatilities are not fixed over the sample but instead vary with the

discrete valued random variable ξt, which evolves in our application according to a two-state

Markov-switching process with transition matrix H.

In our empirical application, the MS-VAR parameters Aξt and Vξt , and H are freely esti-

mated under flat priors. Our objective in this section is to establish whether return premia differ

across the two previously estimated regimes. We therefore impose the previously estimatedmps

regime sequence ξT on the MS-VAR. Note that there is no implication from this procedure that

16If the MS-VAR has more than one lag, the companion form can be used to recast the model as illustrated
above.
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return premia must necessarily show evidence of structural change across the regimes. All pa-

rameters other than the regime sequence are freely estimated and could in principle show no

shift across the previously estimated regime subperiods.

To form estimates of the PDV
∑∞

j=0 ρ
jEtrt+1+j of return premia, we need an estimate of

the conditional expectation terms, i.e., Etrt+1+j. For this we use the MS-VAR to compute

econometric, time t expectations of excess returns multiple steps ahead. Given that the excess

returns of interest are one element of Zt, these are all functions of E (Zt+s|It) . This expectation
conditions on the information set It available at time t. Note that It includes not only the
history of observations Zt, but also knowledge of the regime in place at time t, which can be

observed from the most likely regime sequence, and the VAR parameters for each regime. The

time t conditional expectation also takes into account the possibility of future regime changes.

Intuitively, this is done by computing expectations conditional on every possible future regime

path, ξt+1, ..., ξt+s, and weighting these expectations by their probabilities:

E (Zt+s|It) = E
(
Zt+s|It, ξt+1, ..., ξt+s

)
× Pr

(
ξt+1, ..., ξt+s|It

)
=

(∏s
j=1 Âξt+j

)
Zt × Pr

(
ξt+1, ..., ξt+s|It

)
where Pr

(
ξt+1, ..., ξt+s|It

)
is the probability of observing a particular path for future regimes

ξt+1, ..., ξt+s,conditional on the current regime. Since the probability of moving across regimes

is controlled by the transition matrix H, Pr
(
ξt+1, ..., ξt+s|It

)
may be computed using just two

pieces of information: the regime in place at t and knowledge of H. In summary, the expected

values computed from the MS-VAR are forecasts that take into account the probability of future

regime changes.

For portfolio data, we choose a few equity characteristic portfolios that are known to exhibit

large cross-sectional variation in average return premia. Specifically, we use the equity return

data available from Kenneth French’s Dartmouth website on portfolios formed from double-

sorting all stocks in the AMEX, NYSE, NASDAQ into categories on the basis of five size

categories and five BM categories, and alternatively single-sorting into 10 momentum categories

based on recent past return performance.17 We then use CRSP/Compustat to construct the

BM ratios of the corresponding portfolios. It is well known that high BM portfolios earn much

higher average returns than low BM portfolios, exhibiting a value-spread, especially in the small

size quintiles. Along the momentum dimension, recent past winner stocks earn much higher

returns than recent past losers. These statistical facts are evident from Table 4, which reports

sample statistics for returns on two value spread portfolios—those long in the extreme value

portfolio (highest BM ratio) and short in the extreme growth portfolio (lowest BM ratio) while

being in the smallest and second smallest size quintile. The same is reported for a momentum

17http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

16



spread portfolio—the portfolio that is long in the extreme winner portfolio (M10) and short in

the extreme loser portfolio (M1). The annualized Sharpe ratio for the smallest value spread

portfolio is 0.60 with an annualized mean return of 10%. Similarly, the momentum spread

portfolio has an annualized Sharpe ratio of 0.63 and annualized mean return of over 15%. Both

of these strategies have much higher annualized Sharpe ratios and average return premia than

the CRSP value-weighted stock market return in excess of the three-month Treasury bill return,

where the corresponding numbers are 0.36 and 6%, respectively.

We estimate a single MS-VAR for the two value spread portfolios and the momentum spread

portfolio along with other data that are predictor variables for the returns on these portfolios,

chosen on the basis of an Akaike Information Criterion (AIC) selection procedure. The variables

included in Zt are: (a) the momentum return spread, i.e., the difference between the excess

return of the extreme winner (M10) portfolio and the excess return of the extreme loser (M1)

portfolio; (b) the value return spread (S1), i.e., the difference between the excess return of the

small (size 1) high BM portfolio and the excess return of the small (size 1) low BM portfolio;

(c) the value return spread (S2), i.e., the difference between the excess return of the size 2 high

BM portfolio and the excess return of the small size 2 low BM portfolio; (d) the momentum BM

spread: the difference between the logarithm of the BM ratio of the M10 and M1 portfolios; (e)

the value BM spread (S1): The difference between the logarithm of the BM ratio of the small

(size quintile 1) high book-market portfolio and the logarithm of the BM ratio of the small

(size 1) low book-market portfolio; (f) the value BM spread (S2): the difference between the

logarithm of the BM ratio of the size quintile 2 high book-market portfolio and the logarithm

of the BM ratio of the size 2 low book-market portfolio; (g) the real federal funds rate (nominal

federal funds rate minus inflation); (h) the excess return on the small value portfolio.18 The

sample for this estimation is 1964:Q1-2017:Q3.19

For the aggregate stock market, we follow a similar procedure to form an estimate of∑∞
j=0 ρ

jEtrt+1+j, where rt+1+j in this instance is a measure of the return on the aggregate

stock market in excess of a short-term interest rate. The variables in Zt for this purpose are

predictor variables more relevant for the aggregate stock market.20

18The BM spreads are included because they represent the natural valuation ratios for the portfolio return
spreads that we are trying to predict (Cohen, Polk, and Vuolteenaho (2003)). The real FFR and the excess
return on the small value portfolio are selected based on the Akaike Information Criterion (AIC) among a set
of possible additional regressors. The five Fama/French factors (Fama and French (2015)) are considered as
possible additional regressors, but not selected based on the AIC. The Online Appendix provides additional
details on the variable selection procedure.
The data on BM ratios for individual portfolios are constructed from CRSP and Compustat exactly as the

Fama-French portfolio returns are constructed. We mimic the selection and breakpoints of this construction
and compute the book-market ratio of each portfolio.
19This is shorter than the sample used previously because reliable data for book-market ratios are not available

prior to 1964:Q1.
20The MS-VAR specification for the market return premium includes the following variables: (a) the market

excess return, computed as the difference in the CRSP value-weighted stock market return (including dividend
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We begin by computing the regime average values of the adjusted BM spreads between the

high and low return premia portfolios, θ̃
i

xy ≡ θ̃
i

x− θ̃
i

y, for each regime i, equivalent to the PDV of

the spread in return premia, i.e., θ̃
i

x − θ̃
i

y =
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j). The regime average

value of θ̃
i

xy is defined as the expected value of θ̃xy,t, conditional on being in regime i today

and on the variables of the MS-VAR being equal to their conditional steady state mean values

for regime i. The analogy for the aggregate stock market, is
∑∞

j=0 ρ
jEtrt+1+j, the PDV of the

spread between the market return and the short-term interest rate. The Appendix gives formal

expressions for the regime average, and explains how they are computed from the MS-VAR

parameters.

Table 5 reports the median and 68% credible sets for θ̃
i

xy, computed from each draw of

the VAR parameters from the posterior distribution. The high (x) and low (y) return premia

portfolios along the BM dimension are always the extreme value (highest BM) and the extreme

growth portfolio (lowest BM), respectively, in each size category. Likewise, the high and low

return premia portfolios along the momentum dimension are always the extreme winner (M10)

and extreme loser portfolio (M1). For the market risk premium, x is the market return and y

is the risk-free rate. The third row reports the analogous values for the regime average of the

difference-in-difference of the PDV of risk premia between the high and low return premia port-

folios across the two previously estimated regimes, i.e., the difference
(
θ̃
H

x,t − θ̃
H

y,t

)
−
(
θ̃
D

x,t − θ̃
D

y,t

)
,

as implied by the MS-VAR estimates. The last row reports the posterior probability that return

premia decline in the dovish, low mps regime, computed as the percentage of draws from the

posterior distribution of regime averages for which return premia are lower in the dovish regime

than the hawkish regime.

Table 5 shows that the median values of the adjusted BM spreads θ̃
i

xy between the high and

low return premia portfolios are positive in both the hawkish and dovish mps regimes. This

is not surprising, since portfolios that have higher return premia should have lower market-

to-book values, holding fixed expected earnings. Ostensibly riskier portfolios have a higher

PDV of return premium on average, regardless of the regime (see (8)). More significantly,

spreads are larger in the hawkish regime than in the dovish, implying that the difference-in-

difference across regimes is always positive. Thus, the return premia of evidently riskier/higher

return assets decline more in environments with persistently low real interest rates than do less

risky/lower return assets.

The third row of Table 5 reports the 68% posterior credible sets in parentheses for the

difference-in-difference. Although the 68% posterior credible sets include negative values for

redistributions) and the three-month Treasury bill rate; (b) −cayMS ; (c) following Campbell and Vuolteenaho
(2004), the small stock value spread (log-difference in the book to market ratio of the S1 value and S1 growth
portfolio); (d) the SMB factor from Fama and French; (e) the HML factor from Fama and French. These
variables are included because they improve the AIC criterion.
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the BM spreads and the market risk premium (though not the momentum spread), this does

not imply that negative values are likely. The posterior distribution of the diff-in-diff displays

substantial negative skewness and, as a consequence, the probability assigned to positive values,

i.e., to lower premia in the dovish mps subperiods, is quite high in all cases: 81%, 90%, 70%,

and 64%,for the market premium, the momentum spread, the S1 BM spread, and the S2 BM

spread, respectively. The odds that premia decline in the dovish mps regime is over 4 to 1 for

the market premium, over 9 to 1 for the momentum spread, over 2.3 to 1 and 1.8 to 1 for the

S1 and S2 BM spreads, respectively. In short, the mass of probability overwhelmingly favors

one particular interpretation, namely that return premia are lower in dovish mps subperiods

than they are in hawkish.

Finally, we estimate the PDV of return premia evolution over the sample using the time

t MS-VAR forecasts. Given the posterior distribution of the VAR parameters, these forecasts

have their own posterior distribution. Figure 4 reports the median values of the PDVs over our

sample as solid (blue) lines, while the regime averages are indicated by the red (dashed) lines.

Although the return premia are volatile, it is evident that they fluctuate around distinct means

across the regime subperiods. Return premia reach lows or near-lows in the post-millennial

period, after shooting up briefly in the aftermath of the financial crisis of 2007-2008. Estimated

return premia return to low levels in the post-crisis zero-lower-bound period of our sample.

4 A Macro-Finance Model of Monetary Transmission

To provide an explanation for these findings, this section proposes a new dynamic macro-

finance model of monetary policy transmission, with two “blocks.”In both blocks we work with

a loglinear approximation to the model that can be solved analytically in which all random

variables are conditionally lognormally distributed.

The first block is an asset pricing block that determines equilibrium risky asset prices in the

model. This block is driven by the optimal behavior of a representative agent who earns all of

her income from investments in two assets: the stock market and the one-period nominal bond

market. This agent may be thought of as a relatively sophisticated investor who typifies the

type of wealthy individual or large institution that constitutes a small fraction of the population

but owns the vast majority of highly concentrated financial wealth in the U.S.21 Given that

this agent is assumed to be vanishingly small relative to the overall economy, she takes the

macroeconomic dynamics of the economy as given. We refer to this agent interchangeably as

the “asset pricing agent”or “investor.”

21Only about half of households report owning stocks either directly or indirectly in 2016 according to the
Survey of Consumer Finances (SCF). More importantly, even among those households that own equity, most
own very little: the top 5% of the stock wealth distribution owns 76% of the stock market value and earns a
relatively small fraction of income as labor compensation. See GLL for further discussion.
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The second block of the model determines macroeconomic dynamics. This block is driven

by a set of reduced-form equations similar to those standard in New Keynesian models. But

contrary to standard New Keynesian models, macroeconomic dynamics here are influenced by

two distinctive features: sticky expectations about inflation of the type documented in Mal-

mendier and Nagel (2016) (MN), and regime changes in the conduct of monetary policy. Taken

together, these departures imply that the model can generate persistent (but not permanent)

departures from monetary neutrality. The magnitude of sticky expectations in inflation is

disciplined by forcing the model to match data on household inflation expectations from the

University of Michigan’s SOC. Thus, although we do not explicitly take a stand on the mi-

crofoundations of the macro block, macroeconomic dynamics can be thought of as driven by a

central bank and an “average”household who typifies the vast majority of the population with

comparatively negligible financial assets but whose expectations about inflation and aggregate

economic activity preponderate in the general population.

An important aspect of the asset pricing block of the model is the evolution of investor

beliefs about infrequent shifts in the monetary policy rule. These beliefs are central to how

shifts in the stance of monetary policy affect asset valuations and return premia. Investors in

the model are presumed to closely follow central bank communications, so they observe when

shifts in the monetary policy rule occur. However, we make two departures from the standard

rational expectations assumption that the agent can observe the true transition matrix for

monetary policy regime shifts. First, we assume that agents are uncertain about how long

any observed policy shift will last and must learn about its duration. Second, we assume that

agents exhibit a form of bounded rationality motivated by evidence in MN and Malmendier

and Nagel (2011) that manifests here as “fading memory” of past policy rules. Specifically,

once agents spend enough time in a particular policy regime, memory of past policy rules fades

and they come to believe that the existing policy stance will persist indefinitely, a distortion

that overstates the true persistence of the regime shifts. As we discuss below, the combination

of these two features of investor beliefs (learning plus a fading memory distortion) implies that

asset prices in the model respond to monetary policy regime changes by initially under-reacting

but eventually over-reacting. These features of beliefs imply that the model is qualitatively

consistent with independent empirical evidence showing that survey expectations—including

those of professional forecasters—initially under-react to shocks but subsequently over-react

(Angeletos, Huo, and Sastry (2020); Bianchi, Ludvigson, and Ma (2020)).

4.1 Model Description

Asset Pricing Block The model allows for a continuum of identical investors indexed by

i who derive utility from consumption, Ci
p,t, at time t.We use the suffi x “p”to denote variables
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pertaining to these asset pricing agents. Investors trade in two assets: a nominal bond and a

stock market. The agents’intertemporal marginal rates of substitution in consumption takes

the form:

Mt+1 = δ exp (ϑpt )︸ ︷︷ ︸
δt

(
Ci
p,t+1

Ci
p,t

)−σp
,

where δt is a time-varying subjective time discount factor. The time discount factor is subject

to an externality in the form of a patience shifter ϑpt that individual investors take as given,

driven by the market as a whole. A time-varying specification for the subjective time-discount

factor is essential for ensuring that, in equilibrium, investors are willing to hold the nominal

bond at the interest rate set by the central bank’s policy rule, specified below.

We assume that investors’derive income only from asset holdings and that the nominal bond

is in zero-net-supply. It follows that, in equilibrium, assets are priced by a representative investor

who consumes per-capita aggregate equity payout, Dt. We further assume that aggregate

payout is derived from a constant “capital share” k of aggregate output Yt, implying Dt =

kYt.22 We therefore drop the i superscript from here on and denote the consumption of the

representative investor as Cp,t = Dt = kYt.
Let lowercase letters denote log variable, e.g., cp,t = ln (Cp,t). The marginal rate of substi-

tution Mt+1is the stochastic discount factor (SDF), with log SDF is

mt = log (δ)− σp (cp,t − cp,t−1) + ϑp,t−1.

The representative investor chooses consumption and optimal nominal bond holdings to

maximize the expected present discounted value of a stream of utility derived from consumption

and “convenience”benefits from the nominal bond due to their liquidity and safety (Krishna-

murthy and Vissing-Jorgensen (2012)). The resulting first-order-condition for optimal holdings

of a one-period zero-coupon bond with a face value equal to one nominal unit is

LP
−1
Qt = Ept

[
Mt+1Π−1

t+1

]
, (10)

where Qt is the nominal bond price, Ept denotes the subjective expectations of the asset pricing
agent, discussed below, Πt+1 = Pt+1/Pt is the gross rate of general price inflation, and LP > 1 is

the convenience premium. We make the simplifying assumption that this premium is constant

over time, which helps the model match a sizable average equity premium, while ensuring that

any time-variation in the equity premium across monetary policy regimes is driven solely by

22The assumption of a constant capital share k is made for simplicity in the current model. An extension of
the model to allow for a time-varying k could in principle account for evidence that factor shares fluctuations
have influenced trends in equity valuations (GLL). Our focus here is to isolate the component attributable to
monetary policy so we keep k constant.
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endogenous fluctuations in investor beliefs about monetary policy, which is the central focus of

this paper.23

Taking logs of (10) and using the properties of conditional lognormality delivers an expres-

sion for the real interest rate as perceived by the investor:

it − Ept [πt+1] = −Ept [mt+1]− .5Vpt [mt+1 − πt+1]− lp

where the nominal interest rate it = − ln (Qt), πt+1 ≡ ln (Πt+1) is net inflation, and Vpt [·] is the
conditional variance under the subjective beliefs of the agent.

Let PD
t denote total value market equity, i.e., price per share times shares outstanding.

Then with Dt equal to total equity payout, the first-order-condition for optimal shareholder

consumption implies the following Euler equation:

PD
t = Ept

[
Mt+1

(
PD
t+1 +Dt+1

)]
PD
t

Dt

= Ept
[
Mt+1

Dt+1

Dt

PD
t+1 +Dt+1

Dt+1

]
.

Taking logs on both sides and using the properties of conditional lognormality we obtain an

expression for the log price-payout ratio:

pdt = κ0 + Ept [mt+1 + ∆dt+1 + κ1pdt+1] +

+.5Vpt [mt+1 + ∆dt+1 + κ1pdt+1] .

where pdt ≡ ln
(
PDt
Dt

)
.

The log return obeys the following approximate identity (Campbell and Shiller (1989)):

rDt+1 = κ0 + κ1pdt+1 − pdt + ∆dt+1,

where κ1 = exp(pd)/(1 + exp(pd)), and κ0 = log
(
exp(pd) + 1

)
− κ1pd. Combining all of the

above, the log equity premium is:

Ept
[
rDt+1

]
− (it − Ept [πt+1])︸ ︷︷ ︸

Equity Premium

=

[
−.5Vpt

[
rDt+1

]
− COVpt

[
mt+1, r

D
t+1

]
+.5Vpt [πt+1]− COVpt [mt+1, πt+1]

]
︸ ︷︷ ︸

Risk Premium

+ lp︸︷︷︸,
Liquidity Premium

where COVpt [·] is the conditional covariance under the subjective beliefs of the agent.
Finally, we derive cayt as implied by the model. Let Ct denote aggregate consumption,

and let ct = ln (Ct). To derive the model-implied cayt, note that the coeffi cients γa and γy
23One could in principle reverse engineer an exogenous process for LPt to match our evidence on return premia

across policy regimes. We instead take the approach of asking how much of this variation can be explained by
investor beliefs about policy shifts alone, without proliferating the model’s degrees of freedom to account for
the empirical findings of the first part of the paper.
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in (1), or βa and βy in (3), are approximately equal to the shares of asset wealth and human

capital in aggregate (human plus non-human) wealth, respectively (see LL). LL show that, if the

streams of income accruing to human and non-human wealth are discounted at the same rate,

these coeffi cients are identically equal to the capital and labor income shares in models where

such shares are constant, an assumption we maintain here. Recalling that k is the presumed

constant capital share of aggregate income Yt, it follows that (1− k)Yt = (1− k)Ct is implied

labor income in the model, where the last equality uses the fact that Yt = Ct. Since payout is

Dt = kYt, we have ∆dt+1 = ∆ct+1 = ∆ ln (Yt+1) . Putting this all together, the model implied

value for the wealth ratio −cayt can be shown to be proportional to the log price-payout ratio,
pdt, plus a constant, i.e., −cayt = kpdt + const.24

Summarizing, the model implies the following asset pricing relations:

1. SDF:

mt = log (δ)− σp∆dt + ϑp,t−1 (11)

2. PD ratio:

pdt = κ0 + µ+ Ept [mt+1 + ∆dt+1 + κ1pdt+1] + (12)

+.5Vpt [mt+1 + ∆dt+1 + κ1pdt+1]

3. Log Euler equation for bonds:

it − Et [πt+1] = −Et [mt+1]− .5Vt [mt+1 + it − πt+1]− lp (13)

4. Wealth ratio, −cay:
−cayt = kpdt + const. (14)

5. Log excess stock market return:

erDt+1 = rDt+1 − (it − πt+1) = κ0 + κ1pdt+1 − pdt + ∆dt+1 + µ− (it − πt+1) (15)

Macro Dynamics Macroeconomic dynamics are driven by a set of equations similar to

those commonly featured in New Keynesian models, but with two distinctive features: sticky ex-

pectations about inflation and output, and regime changes in the conduct of monetary policy.25

In keeping with New Keynesian models, we assume that real variables grow non-stochastically

24To keep the estimation tractible, the model abstracts from one aspect of the data here, namely that −cayt
and pdt are not perfectly correlated. This is attributable to the simplifying assumption that the “capital”share
of Yt is a constant k. Future work could extend the analysis to allow the capital share to be time-varying along
the lines of Greenwald, Lettau, and Ludvigson (2019), thereby breaking the perfect correlation.
25Outside of these two distinctive features, macroeconomic dynamics are identical to those that arise from

the prototypical New Keynesian model of Galí (2015), Chapter 3.
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along a balanced growth path and write all equations in the macro block in terms of detrended

real variables. Hereafter, detrended variables are denoted with a tilde, e.g., l̃n (Yt) ≡ ỹt denotes

detrended log real output.

As in prototypical New Keynesian models, macroeconomic dynamics satisfy a loglinear Euler

equation. In our setting this Euler equation is driven by the behavior of an average household

referred to as the “macro agent.”The macro agent can be considered typical of a household in

the general population who holds small amounts of wealth in the form of nominal bonds and

no equity. The linearized Euler equation takes the form

ỹt = Emt (ỹt+1)− σ [it − Emt (πt+1)− rss] + dt (16)

where ỹt is detrended log output, it is the short-term nominal interest rate, Emt (πt+1) is expected

inflation from the point of view of the macro agent, rss is the steady state real interest rate,

and dt is a demand shock that follows an AR(1) process dt = ρddt−1 + σdεd, εd ∼ N (0, 1). The

coeffi cient σ is a positive parameter.

We introduce two equations for inflation and the nominal interest rate rule. Inflation dy-

namics are described by the following equation, which takes the form of a New Keynesian

Phillips curve:

πt − πt = βEmt [πt+1 − πt] + κ
[
ỹt−1 − ỹ∗t−1

]
(17)

where πt denotes the perceived long term value of inflation that depends on the agent’s infor-

mation It. We discuss the way expectations are formed below. The coeffi cients β and κ are

positive parameters and the variable ỹ∗t denotes the natural level of detrended output. Thus,

ỹt−1−ỹ∗t−1 is the output gap at time t−1. We assume an AR(1) process for ỹ∗t = ρy∗ ỹ
∗
t−1+σy∗εy∗ ,

εy∗ ∼ N (0, 1) .

The central bank obeys the following nominal interest rate rule:

it −
(
rss + πTξt

)
=

(
1− ρi,ξt

) [
ψπ,ξt

(
πt − πTξt

)
+ ψ∆y,ξt

(ỹt − ỹt−1)
]

(18)

+ρi,ξt

[
it−1 −

(
rss + πTξt

)]
+ σiεi, εi ∼ N (0, 1) .

Note the interest rate rule is written in deviations from the steady state conditional on being in

a particular regime dictated by ξt. This means that, once inflation reaches the desired target,

the economy stabilizes around it, absent shocks.

An important feature of this interest rate policy rule, and a departure from the prototypical

model, is that it allows for regime changes in the conduct of monetary policy. These manifest

as regime shifts in the inflation target πTξt and in the activism coeffi cients ψπ,ξt , and ψ∆y,ξt
that

govern how strongly the central bank responds to deviation from the target and to economic

growth. The rule also allows for potential regime shifts in the autocorrelation coeffi cient ρi,ξt .
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These coeffi cients are modeled with a Markov-switching process governed by the discrete ran-

dom variable ξt assumed to take on two values, ξt = H or ξt = D, corresponding to either

“hawkish” or “dovish” monetary policy. It is important to emphasize that these labels do

not imply that we impose any constraints on the estimated values of parameters across the

previously estimated regimes. Since we freely estimate the parameters under flat priors, the

parameters could in principle show no shift across regimes, or shifts that go in the “wrong”

direction with respect to the previously estimated hawkish and dovish regimes.

We interpret equations (16) through (18) as equilibrium dynamics and not a micro-founded

structural model. We consider an equilibrium in which bonds are in zero-net-supply in both

the macro and asset pricing blocks and thus there is no trade between the asset pricing agent

and macro agent.

The macro agent’s expectations about inflation are formed using an adaptive algorithm,

following evidence in Malmendier and Nagel (2016) (MN). The representative macro agent

forms expectations about inflation using an autoregressive process, πt = α + φπt−1 + ηt but

must learn about the parameter α.26 Each period, agents form a belief about about α, denoted

αmt , that is updated over time. Updating not only affects beliefs about next period inflation, it

also affects beliefs about long-term trend inflation. Define perceived trend inflation to be the

limh→∞ Emt [πt+h] and denote it by πt. Given the presumed autoregressive process, the Online

Appendix shows that πt = (1− φ)−1 αmt . This implies that expectations of one step ahead

inflation are a weighted average of perceived trend inflation and current inflation:

Emt [πt+1] = αmt + φπt = (1− φ) πt + φπt. (19)

We allow the evolution of beliefs about αmt and πt to potentially reflect both an adaptive

learning component as well as a signal about the central bank’s inflation target. For the adap-

tive learning component, we follow evidence in MN that the University of Michigan Survey of

Consumers (SOC) mean inflation forecast is well described by a constant gain learning algo-

rithm. For the signal component, we assume that beliefs could be partly shaped by additional

information the agent receives about the current inflation target. This signal could reflect the

opinion of experts (as in MN) or a credible central bank announcement. Combining these two

yields updating rules for αmt and πt that are a weighted averages of two terms:

26In principle one could introduce learning about φ as well. We forgo doing this in order to keep the estimation
tractable, since the most important learning aspects in the model involve those parameters such as α that bear
most closely on trend inflation.
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αmt =
(
1− γT

)αmt−1 + γ
(
πt − φπt−1 − αmt−1

)︸ ︷︷ ︸
αmCGt

+ γT
[
(1− φ) πTξt

]
(20)

πt =
(
1− γT

)πt−1 + γ (1− φ)−1 (πt − φπt−1 − (1− φ) πt−1)︸ ︷︷ ︸
πCGt

+ γT
[
πTξt

]
(21)

The first terms in square brackets, αmCGt and πCGt , are the recursive updating rules implied

by constant gain learning, where γ is the constant gain parameter that governs how much

last period’s beliefs αmt−1 and πt−1 are updated given new information, πt. The second term

in square brackets captures the effect of the signal about the current inflation target πTξt . If

γT = 1, the signal is completely informative and the agent’s belief about trend inflation is the

same as the inflation target. If γT = 0, the signal is completely uninformative and the agent’s

belief about trend inflation depends only on the adaptive learning algorithm. Overall perceived

trend inflation is a weighted average of the trend implied by the constant gain learning rule and

the central bank’s inflation target. A weight of less than one on the target could arise either

because the target is imperfectly observed, or because central bank announcements about the

target are not viewed as fully credible. Note that the parameter γT is closely related to the

speed with which the agent learns about a new inflation target. Since γT is freely estimated, we

can empirically assess the magnitude of this speed and its role in macroeconomic fluctuations.

Agents form expectations about detrended output using a simple backward looking rule:

Emt (ỹt+1) = %ỹt−1. (22)

Unlike inflation, agents do not perceive a moving mean for detrended output. This assumption

is consistent with the equilibrium of the model implying that the central bank cannot have a

permanent effect on real activity. The Online Appendix proves that monetary neutrality holds

in the long run.

Using equations (19), (21), and (22), we substitute out Emt [πt+1] , πt, and Emt (ỹt+1) in the

model equations (16), (17), and (18) to obtain the following system of equations that must hold

in equilibrium:

1. Real activity

ỹt = %ỹt−1 − σ [it − φπt − (1− φ) πt − rss] + dt. (23)

2. Phillips curve:

πt = πt +
κ

1− βφ
[
ỹt−1 − ỹ∗t−1

]
. (24)

26



3. Monetary policy rule with changes in target:

it −
(
rss + πTξt

)
=

(
1− ρi,ξt

) [
ψπ,ξt

(
πt − πTξt

)
+ ψ∆y,ξt

(ỹt − ỹt−1)
]

(25)

+ρi,ξt

[
it−1 −

(
rss + πTξt

)]
+ σiεi, εi ∼ N (0, 1) .

4. Law of motion for dt:

dt = ρddt−1 + σdεd, εd ∼ N (0, 1) . (26)

5. Law of motion for ỹ∗t :

ỹ∗t = ρy∗ ỹ
∗
t−1 + σy∗εy∗ , εy∗ ∼ N (0, 1) . (27)

6. Perceived trend inflation:

πt =
[
1− γT

] [
πt−1 + γ (1− φ)−1 (πt − φπt−1 − (1− φ) πt−1)

]
+ γTπTξt . (28)

Investor Beliefs We now describe how investor beliefs in the model evolve over time.

This evolution is influenced by both a learning aspect and a “fading memory”aspect.

For the learning part, we assume that investors closely follow central bank communications

and are therefore capable of observing when important shifts in the policy rule parameters have

occurred. They are uncertain about how long any shift will last, however, and must therefore

learn about its duration. This assumption may be motivated by observing that sophisticated

financial market participants in the real world expend significant resources on “Fed watching.”

Moreover, central banks have for decades clearly telegraphed their intentions when they seek

to change the stance of monetary policy, but have been comparatively vague about the length

of time such a change will last. The Federal Reserve’s FOMC statement of August 9, 2011,

for example, announced “economic conditions are likely to warrant exceptionally low levels for

the federal funds rate at least [emphasis added] through mid-2013.”Similarly, the FOMC press

release of September 16, 2020 stated “the committee will aim to achieve inflation moderately

above 2 percent for some time [emphasis added] . . . .”and that the Committee expects to

maintain “an accommodative stance”until “inflation expectations remain well anchored [em-

phasis added] at 2 percent.”The emphasized words in these sentences are murky and explicitly

convey uncertainty about the length of time such policy changes will last.

For the fading memory part, we assume that expectations are shaped most strongly by

recently experienced data, motivated by evidence in MN and Malmendier and Nagel (2011).

To model these two aspects of investor beliefs, we combine Bayesian learning about the

persistence of regime changes with distorted beliefs. The key elements of this specification are

twofold. First, if a regime change occurs after many periods in a previous regime, the investor

will at first be almost certain that the deviation is temporary. However, as she observes more
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and more periods in a row in which the new regime holds, she gradually updates her beliefs

and increasingly views the deviation as one that is likely to persist. Second, once the agent

spends enough time in a particular regime, memory of past policy rules fades and she comes

to believe that the existing policy stance is the new normal and will persist indefinitely. Since

the true policy regime transition matrix is persistent but transitory, fading memory about past

policy rules represents a distortion in beliefs whereby agents extrapolate too much from recent

continuity in the policy stance. This over-extrapolation implies that the investor will always

be surprised whenever there is a switch to a new policy rule after many periods in an previous

regime.

In the rest of this subsection, we provide the basic idea for how this is modeled. The

methodology is an extension of Bianchi and Melosi (2016). All technical details on the evolution

of beliefs within and across policy regimes, and on how the model is solved under these beliefs,

are provided in the Online Appendix.

First consider the true data generating process (DGP) for the monetary policy rule, which

we presume follows a two-state Markov-switching process controlled by the variable ξt ∈ {H,D}
with transition matrix H. Let ξt = H be the state characterized by hawkish policy parameters,

and ξt = D be a state characterized by dovish policy parameters. Denote the true DGP

transition probability matrix H as

H=

[
pHH pHD
pDH pDD

]
,

where pij, i, j ∈ {H,D}, is the probability of switching to regime j given that the state is
currently in regime i.

To model the idea that agents must learn about the persistence of regime changes, we

assume that agents believe regime shifts can be either long- or short-lasting. This can be

accommodated by introducing the notion of the perceived regime process ξpt ∈ {1, 2, 3, 4}, with
four states. Specifically, two of the perceived regimes are characterized by hawkish monetary

policy (ξt = H), while two of the perceived regimes are characterized by dovish monetary policy

(ξt = D). Without loss of generality, we assume that regimes ξpt = 1 and ξpt = 2 belong to a

hawkish block 1 associated with ξt = H, while regimes ξpt = 3 and ξpt = 4 belong to a dovish

block 2 associated with ξt = D. In the hawkish block, ξpt = 1 is perceived as a short-lasting

hawkish regime, while ξpt = 2 is perceived as a long-lasting hawkish regime. In the dovish block,

ξpt = 3 is perceived as a short-lasting dovish regime, while ξpt = 4 is perceived as a long-lasting

dovish regime. The perceived probabilities of moving across these regimes are summarized by

the transition matrix:

Hp=


p11 0 0 p14

0 p22 p23 p24

0 p32 p33 0
p41 p42 0 p44

 (29)
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where pij denotes the probability of switching to regime j given that we are in regime i. Since

ξpt = 1 is the perceived short-lasting hawkish regime, while ξpt = 2 is the perceived long-lasting

hawkish regime, we have p22 > p11 by definition. Analogously, since ξ
p
t = 3 is the perceived

short-lasting dovish regime, while ξpt = 4 is the perceived long-lasting dovish regime we have

p44 > p33. To capture the idea that agents eventually “forget”about previous policy regimes

once they spend enough time in a regime, we set p44 = p22 = 0.999. This implies that, once

agents believe they are in a long-lasting regime of either type, they come to view that regime

as persisting almost indefinitely.27

Since the asset pricing agent knows the structure of the macro block and can observe the

endogenous variables and the shocks at time t, she can also determine which set of policy

parameters is in place at each point in time. That is, she can back out the history
{
ξt, ξt−1, ...

}
of policy regimes and the block (dovish or hawkish) in place at time t. However, agents cannot

exactly infer the realized perceived regime ξpt , because the regimes within each block share the

same policy rule parameter values governed by ξt. Thus, after a switch to a new policy regime,

agents must learn about which element (short- or long-lasting) of the block they are actually

in.

Suppose that the economy is initially in a state where the agent’s perceived probability

that she is in the long-lasting Hawkish regime ξpt = 2 is unity. If policymakers then start

conducting dovish monetary policy (ξ = D), investors initially believe that this likely represents

a temporary deviation from the ξpt = 2 regime. This idea is captured by the conditions p23 >

p24, p32 > 0. However, because p44 > p33, if the dovish regime persists long enough, the agent’s

perceived posterior probability that she is in a long-lasting dovish regime goes to unity. There

are symmetric restrictions in the second block, corresponding to p41 > p42, p14 > 0. Note

that the purpose of the perceived short-lasting regimes is merely to model the idea that once

investors perceive they are in a long-lasting regime of one type (hawkish or dovish), deviations

from that policy rule might initially be viewed as transitory. Thus we rule out transitions

from a perceived short-lasting regime of one type to a short-lasting regime of the opposite type

(p31 = p13 = 0) and transitions from a long-lasting regime of one type to a short-lasting regime

of the same type (p21 = p43 = 0).

The fading memory distortion is captured by specifying p22 > pHH and p44 > pDD. That is,

once the agent spends enough time in a regime, she believes the regime will continue virtually

indefinitely even though in reality it is persistent but transitory, so any switch out of a perceived

long-lasting regime will be a surprise. This distortion leads the agent to eventually overstate

the true persistence of policy regimes.

27We rule out setting this probability to unity, since without further assumptions it would not be obvious
how to model the evolution of investor beliefs when a shift out of the perceived long-lasting regime inevitably
occurs.

29



More generally given arbitrary initial beliefs, the above restrictions on the perceived tran-

sition matrix Hp will have implications for how beliefs evolve over time. The Online Appendix

gives recursive formulas for the perceived state probabilities that are history dependent.

Equilibrium An equilibrium is defined as a set of prices (bond prices, stock prices), macro

quantities (inflation, output growth, inflation expectations), laws of motion, and investor beliefs

such that equations (11)-(15) in the asset pricing block are satisfied, equations (23)-(28) in

the macro block are satisfied, and investors beliefs about the persistence of policy regimes are

characterized by Bayesian updating about a perceived Markov-switching process with transition

matrix (29), under the parameter restrictions given in the previous subsection.

4.2 Model Solution and Estimation

The model is solved in two steps. First, we solve for the macro dynamics. This returns a MS-

VAR in the macro block state vector St = [yt, y
∗
t , πt, it, r

∗
t , πt, dt]

′. Second, conditional on this

solution and on the probability assigned by the asset pricing agent to moving across regimes,

we derive the evolution of asset prices. This second step takes the MS-VAR law of motion

for the macroeconomy as an input and combines it with the equilibrium asset pricing relations

(11)-(15), conditional on the law of motion for agents’beliefs outlined above. The final solution

for all variables (macro and asset block) takes the form of MS-VAR in the augmented state

space S̃t = [St,mt, pdt,Ept (mt+1) ,Ept (pdt+1)] .

To estimate the model, we exploit the block structure of the solution to take a two-step

approach. First, we use Bayesian methods to estimate the macro block by combining the MS-

VAR solution for St with an observation equation. As data, we use four observable series:

real per-capita gross domestic product (GDP) growth, inflation, the nominal federal funds rate

(FFR), and the mean of inflation expectations from the SOC. Since we have only three shocks

to match four observable variables, we allow for observation errors on all variables. Second,

conditional on the estimated parameter values from the macro block, the asset pricing block

parameters are chosen to minimize the sum (over t) of squared deviations between the model

implied cayt and the observed series, cayMS
t . Using an objective function penalty, we also

require the asset pricing block parameters to return a sizable equity premium. This two-step

approach keeps the estimation tractable in the face of both regime shifts in monetary policy

and history-dependent beliefs that are part of the asset pricing block.

By using SOC data on inflation expectations, we ask the model to generate realistic behavior

for inflation expectations. Specifically, we map the perceived law of motion of inflation into

the Michigan survey. We show below that the model implied inflation expectations track their

empirical counterparts well.
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Parameter uncertainty is characterized using a random walk Metropolis—Hastings algorithm.

The parameters of the policy rule, πTξt , ψπ,ξt , ψ∆y,ξt
and ρi,ξt , are permitted to switch between two

regimes according to a Markov-switching process. Since we are interested in understanding the

connection between the previously estimated dovish/hawkish regimes, short-term interest rates,

asset valuations and return premia, we force the regime sequence for the policy rule parameters

to correspond to the estimated sequence for αξt and rξt reported in Table 3. Importantly,

however, the parameters characterizing the policy regimes as well as the transition matrix are

freely estimated.28 Thus, there is no implication from this procedure that the parameters of

the policy rule must necessarily show evidence of structural change. Moreover, since we freely

estimate the parameters of the policy regime under flat priors, there is nothing in the model

estimation that restricts the low (high) mps subperiods to coincide with parameters of the

interest rate rule that would imply relatively accommodative (restrictive) monetary policy. Not

only are the parameters permitted to show no shift across the previously estimated regimes,

there is no prior imposed that predisposes the estimates to implying that they are more likely

to shift one direction or the other.

The sample spans the period 1961:Q1 to 2017:Q3, in line with our estimates for the regimes

in the means of cay and the mps. We use the full sample of data, including observations from

the zero lower bound (ZLB) period. The Appendix shows that our findings on the long-lasting

real effects of changes in the conduct of monetary policy are robust to replacing the FFR either

with an estimated shadow rate, or with the one-year Treasury bill rate. The reason for this is

that the policy rule regime changes we uncover are not mainly tied to the ZLB period.

The Online Appendix provides a detailed description of the data, model solution, and esti-

mation.

4.3 Model Estimation Results

This section presents results from the model estimation. The first subsection discusses the

parameter and latent state estimates. The next two subsections discuss the model implications

for how monetary policy regime shifts affect the real interest rate, asset valuations, and return

premia on the aggregate stock market.

4.3.1 Parameter and Latent State Estimates

Table 6 reports the prior and posterior distributions for the macro block model parameters. For

the policy rule parameter estimates for πTξt , ψπ,ξt , ψ∆y,ξt
and ρi,ξt , where we use flat priors, a

key finding is that the previously estimated regime subperiods (given in Table 3) are associated

28We use the regime sequence ξ̂
T
= {ξ̂1, ..., ξ̂T } that is most likely to have occurred, given our estimated

posterior mode parameter values for θ . See the Appendix for details.
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with quantitatively large changes in the estimated policy rule. Specifically, the hawkish high

mps regime is characterized by what we will call a hawkish monetary policy rule with lower

inflation target πTξt and strong activism ψπ,ξt against deviations of inflation from the target

relative to activism ψ∆y,ξt
on growth. The dovish, low mps regime is characterized by a dovish

monetary policy rule with an inflation target that is comparatively higher and an activism

against inflation that is significantly lower. In fact, for the dovish low mps regime, the 90%

credible set for ψπ,ξt includes 1, the threshold generally associated with the “Taylor principle”

(Taylor (1993)), which prescribes that the central bank should raise nominal rates by more

than one-for-one in response to deviations of inflation from target thereby raising the real rate

and reducing inflationary pressure. The activism coeffi cient ψ∆y,ξt
for output growth and the

autoregressive parameter ρi,ξt are more similar across the two regimes.

These findings indicate that the policy rule parameters shifted to values consistent with

restrictive monetary policy in 1978:Q4 around the time of Volcker’s appointment, consistent

with an older empirical literature (e.g., Clarida, Gali, and Gertler (2000)). But we find here that,

starting 2001:Q4, parameters shifted back to values consistent with accommodative monetary

policy. With the exception of a brief interlude from 2006:Q2-2008:Q2, the relatively dovish

policy rule has remained in place since, to the end of our sample in 2017:Q3.

Shifts in the policy rule parameters across the two regimes are large in magnitude. Table

7 reports the posterior distribution for the differences in the parameters across regimes. The

mode of the distribution of the difference in the quarterly πTξt across is around 2%. This large

value implies a difference in the annualized inflation target across regimes of almost 8%. The

90% credible set also indicates strong statistical evidence in favor of a quantitatively large

difference in the inflation target across the two regimes. Similarly, the posterior distribution for

the difference in the inflation activism coeffi cient ψπ,ξt is centered on 1.2 with posterior credible

sets that bounded well away from zero, confirming evidence of a change in the degree of activism

aimed at stabilizing inflation around the desired target. Finally, the posterior distributions for

the difference in activism ψ∆y,ξt
on growth and in the autoregressive parameter ρi,ξt show

only weak evidence of change in these parameters. To summarize, there is strong evidence of

sizable shifts across the previously estimated regimes in the relative importance of inflation and

economic growth in the policy rule and a large shift in the tolerable level of inflation.

For the non-policy-rule parameters, it is worth emphasizing that the estimates imply a

very high level of inertia in inflation expectations. The constant gain parameter γ, controlling

the speed with which beliefs about long-term inflation are updated with new information on

inflation, is estimated to be quite low. Furthermore, the parameter γT , controlling the extent

to which perceived trend inflation is influenced by the central bank target, is estimated to be

very low. Taken together, these findings imply that agents revise their beliefs about long term

inflation only very slowly over time and mostly based on past realizations of inflation rather
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than on the inflation target itself.

Figure 5 shows that the model-implied series track their empirical counterparts quite well.

In general, observation errors play little to no role in the dynamics of the model implied series.

Most important for the application here, the dynamics of the model-implied series for one-step-

ahead inflation expectations tracks the SOC series virtually without error. This is relevant since

inflation expectations play a key role in the model’s predictions, as we show below. Figure

5 underscores the extent to which those predictions are predicated on empirically relevant

inflation expectations. The other model-implied series also track their empirical counterparts

fairly closely. In particular, since the model fits the FFR and inflation expectations well, it also

fits the real rate as measured by the difference in the two. For inflation, there are a handful of

high-frequency spikes that the model is not well positioned to capture. A richer model could

account for these spikes, but since the scope of our investigation is a study of lower frequency

shifts in the policy rule, we do not view this as a important drawback of the framework.

A comment is in order about the estimated values for πTξt shown in Table 7. Although this

parameter plays the role of an “inflation target”in the interest rate rule, unlike traditional New

Keynesian models, πTξt is not a value to which true inflation and inflation expectations in the

model necessarily tend in the long-run. This happens because the model here differs in two

ways from the traditional New Keynesian models: macro expectations are strongly backward

looking, and the policy rule parameters are not constant but instead vary over time. This

combination implies the inflation target can deviate substantially from actual inflation and in-

flation expectations for an extended period of time. For example, consider the value for πTξt
under the dovish policy rule (πTξt = πTD), in the post-millennial dovish subperiod. In this case

πTD is quite high, yet the model matches the observed low values for both inflation and inflation

expectations over the extended subperiod well (see 5), and neither the model-implied inflation

or inflation expectations tend toward the estimated value for πTD, which is 2.9% at a quar-

terly rate. We emphasize that this result is not attributable to the two-state Markov-switching

specification, which forces the early-dovish (1960s and early 1970s) subperiod and late-dovish

(post-millennial) subperiod to share the same policy rule parameter values. Additional results

(not reported) indicate that the early-dovish and late-dovish subperiods both rationalize a high

value for πTξt, but for different reasons. In the early subperiod, both observed inflation and infla-

tion expectations were high, which the model rationalizes with a high value for πTξt. In the late

subperiod, observed inflation is much lower and trending down, but expected inflation remains

relatively elevated, causing a gap to open up between the two. This gap is also rationalized in

the model by a high value for πTξt .
29

29These additional results are based on a re-estimation of the model using the same regime sequence as in the
baseline case, but allowing the policy rule parameters to differ freely across the early- and late- (post-millenial)
dovish subperiods.
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To interpret this result, note that the post-millennial subperiod is characterized by negative

demand shocks in the model (to account for the two sharp recessions), subsequent sluggish

economic growth, and sustained periods of low and even negative inflation. Yet at the same

time, data on inflation expectations remain by comparison elevated. The model reconciles this

set of facts by indicating that monetary policy was extremely dovish, as exhibited by a high

value for πTD. In the real world, central banks have additional policy tools for implementing

accommodative monetary policy, such as forward guidance and quantitative easing, two tools

that were employed in the post-millennial subperiod of our sample. These additional channels

are absent from the stylized model, but manifest as a high value for the inflation target policy

parameter πTξt .

Table 8 reports the parameter values for the asset pricing block. The procedure implies

a modest relative risk aversion coeffi cient of σ̂p = 3. The equity premium implied by the

model parameters is 5.5% at an annual rate, which is slightly lower than the liquidity premium

component l̂p = 5.8% at an annual rate, implying that the risk premium component of the

equity premium is slightly negative. A negative risk premium arises because the central bank’s

policy rule effectively stabilizes both real activity and inflation, thereby providing insurance.

But note that the model generates a plausible mean and volatility for the real interest rate

(Figure 5). Taken together, this shows that the model accounts for the behavior of equity

premia and real interest rates reasonably well. Table 8 also reports parameters of the perceived

transition matrix. The key implications of these parameters for the model implications come

through the affect they have on the evolution of beliefs, discussed below. For now we can observe

that the estimated perceived probability of switching out of a long-lasting regime of one type into

the short-lasting of the other type is close to unity in both cases, i.e., p23/ (p23 + p24) = 0.986,

p41/ (p41 + p42) = 0.9999. This implies that any switch to a dovish (hawkish) policy rule when

the agent had previously believed she was in a long-lasting hawkish (dovish) regime is initially

perceived as a temporary deviation from the old rule.

Evolution of Beliefs To illustrate implications of the perceived transition probabilities,

Figure 6 reports the model’s implications for the evolution of investor beliefs about future

monetary policy over our sample, under the assumption that the agent begins the sample

believing with probably approximately one that she is in the short-lasting dovish regime. The

left panel reports the perceived probability at each point in time of being in the long-lasting

hawkish regime (blue solid line) and the long-lasting dovish regime (red dashed line). The

right panel reports the perceived probability of being in a hawkish regime (either short- or

long-lasting) at some future horizon t+ h, where h = 1, 4, or 80 quarters in the future.

From the left panel we see that, from the beginning of the sample onward, it takes several

years of continuously observing dovish monetary policy before the perceived probability of being
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in a long-lasting dovish regime is 1. Likewise, as the economy switches into the hawkish policy

rule under Volcker, the agent initially places very low probability on the switch enduring.

This can be seen from the right panel, which shows that, immediately after the switch, the

probability of being in the hawkish regime in one year’s time is less than 0.3, and in 20 year’s

time is effectively zero. The agent only eventually comes to see the hawkish policy rule as a

long-lasting feature, after observing years of continuously restrictive policy. This shows that

long-lasting expectations are “sticky;” they only change when agents become convinced that

monetary policy experienced a structural break. By contrast, short-term expectations about

future monetary policy can change quickly, as agents take into account the possibility of a

temporary deviation from the current policy framework. This implies that asset valuations can

experience a sudden but modest jumps in response to the changes in short-term expectations,

followed by further changes investors revise the probability of remaining in the new policy

framework.

On the other hand, when regime shifts are more frequent, even expectations about the long-

term can move quickly. Consider the time after the switch out of the long hawkish subperiod

that extended from 1978:Q4 to 2001:Q3. When the policy rule switches back to hawkish less

than five years later in 2006:Q2, the perceived probability of being in a hawkish regime 20 years

later jumps to unity almost immediately. Due to the history dependence in the evolution of

beliefs, investors in 2006:Q2 still have a strong recent memory of the previously lengthy hawkish

regime, and quickly perceive its return.

4.3.2 Conduct of Monetary Policy, the Real Interest Rate, and Asset Valuation

We now investigate the importance of changes in the conduct of monetary policy for the real

interest rate and asset valuations over our sample. To do so, we consider a number of simulations

that isolate the effects of regime changes in the conduct of monetary policy. All figures present

the values of the variables at the estimated posterior mode parameter values.

Monetary Policy and Macroeconomy Over the Sample Figure 7 shows the results of

a simulation in which the observables and estimated state vector are taken as they were at

the beginning of our sample with all Gaussian shocks are shut down. Thus, the only source of

variation in the variables plotted in the figure arises from changes in the conduct of monetary

policy, i.e., from changes in the policy rule parameters. These isolated movements are the only

ones, other than the policy shock, that the model stipulates can be purely the result of the

behavior of the monetary authority. Monetary policy also affects the propagation of the two

non-policy shocks, but these effects are not solely the result of changes monetary policy.

For the baseline model, the portion of movements in output growth, inflation, and the

real interest rate over our sample that can be directly associated with changes in the policy
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rule are shown in blue (solid) lines in Figure 7. The figure also considers three counterfactual

simulations. The orange (dashed) line assumes that monetary policy starts under the dovish

regime and that no subsequent regime change occurs. The black (dotted) line assumes that

changes in the target occurred, but that the slope coeffi cients in the policy rule always remain

as they are in the dovish rule. The magenta (dashed-dotted) line assumes that the macro

agent’s perceived trend value for inflation coincides in every period with the inflation target

πt = πTξt. As explained above, this corresponds to the case where γ
T = 1. This value is highly

counterfactual, since the estimated value γ̂T = 0.013 implies that expectations of trend inflation

as implied by the SOC data place virtually no weight on the inflation target and instead are

mostly driven by the constant gain adaptive expectations rule.

A series of noteworthy results emerge from Figure 7. First, if instead of switching to a

hawkish stance under Volcker the central bank had maintained the dovish policy rule throughout

our sample, the economy would not have experienced the drop in inflation that occurred in the

early 1980s. Instead, inflation would have kept increasing. What is more relevant and less

obvious is the behavior of the real federal funds rate. The right panel of Figure 7 shows that

changes in the conduct of monetary policy generate fluctuations in the real interest rate that last

for decades. Comparing the estimated case with the orange dashed line that counterfactually

assumes no policy rule changes in our sample, it is evident that the real FFR would have been

substantially more stable had there been no changes in the monetary policy stance.

Second, Figure 7 shows that large, persistent swings in the real interest rate attributable to

changes in the conduct of monetary policy were not solely the result of shifts in the inflation

target. Shifts in the activism coeffi cients also play a role. Comparing the baseline estimation

shown in the blue solid line with the black dotted line showing the counterfactual in which the

inflation target changes but there are no accompanying changes in the activism coeffi cients, it

is evident that the sharp increases in the real rate associated with Volcker would have been

far smaller had the activism coeffi cients remained constant. A similar result holds in the short

hawkish regime that precedes the Great Recession (2007:Q4-2009:Q2). Intuitively, since the

hawkish regime exhibits both a lower inflation target and increased activism against deviations

from the target, the real interest rate increases much more than it would if only the inflation

target had changed. The combination of the two contributed to sharp contractions in output

growth during the recessions of 1980 and 1981 and during the Great Recession, as observed

in the first panel. Without the concomitant shifts in the activism coeffi cients, both inflation

and inflation expectations would have remained higher over the entire post-Volcker sample, as

observed in the middle panel.

Third, the magenta (dashed-dotted) line of Figure 7 shows that the macro agent’s highly

adaptive expectations are crucial to understanding the long-lasting effects of regime changes in

monetary policy. In the counterfactual economy where the perceived trend value for inflation
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coincides in every period with the inflation target, inflation jumps immediately to the new target

whenever the stance of policy changes, with no effect on the real interest rate. Inflation jumps

in the counterfactual case because the central bank does not have to “convince”agents about

the new inflation target. It is the interaction between changes in the anti-inflationary stance of

the central bank and sticky macro expectations that generates long-lasting fluctuations in the

real interest rate

The Secular Decline in Real Interest Rates Figure 8 studies the implications of our

model for the contribution of regime changes in the conduct monetary policy in the secular

decline of real interest rates observed since the early 1980s. For this purpose, we begin a

simulation with the economy as it was in 1980:Q1, at the beginning of the Volcker disinflation,

when inflation had reached its peak in our sample but before the peak in the real interest rate

reached in 1981:Q3. To isolate the effects of changes in the monetary policy rule on the real

interest rate under the Volcker disinflation and afterwards, we set all Gaussian shocks after

1981:Q1 to zero. These movements are shown in blue (solid) lines, and the actual values for

each series are shown in red (dashed) lines.

The right panel of Figure 8 shows that the sharp run-up in real rates in the 1980s, and much

of its decline since that time, can be attributed to changes in the conduct of monetary policy.

Such changes do not track the higher frequency fluctuations in the real rate. For example,

there is a sharp decline in the real rate that lasts for several years after the Great Recession.

These fluctuations are not associated with a shift in the policy rule parameters, but are instead

attributed to a combination of the model’s Gaussian shocks. By contrast, a substantial portion

of the secular trend downward in real rates since the early 1980s is attributable to regime changes

in the conduct of monetary policy. The peak of the real federal funds rate in our sample is

10.22%, which occurs in 1981:Q3. Since that time, the real federal funds rate has gradually

trended downward, with the last observation in our sample equal to 0.56% in 2017:Q3. This

represents a decline of 9.67%. According to our estimated model, regime changes in monetary

policy generate a peak in the real federal funds rate of 6.55% in 1983:Q1 and an end-of-sample

value of 0.20% in 2017:Q3. This translates into a decline of 6.35%, or roughly two-thirds of the

observed secular decline.

Regime Changes Versus Policy Shocks Figure 9 shows the implications of our model

for monetary policy shocks versus monetary policy regime changes, using two sets of estimated

impulse response functions. In the top row, we assume that the economy is initially in the

dovish regime and consider the case of the monetary authority attempting to curb inflation.

The blue solid line in the top row reports responses to a two standard deviation contractionary

(i.e., positive) monetary policy shock and no policy rule regime change. The black dashed line
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in the top row reports responses to a regime change from the dovish to the hawkish regime,

with all Gaussian shocks (including the monetary policy shock) set to zero. The figure shows

the model’s implications for the response of GDP growth, inflation, the real interest rate, and

the log wealth ratio (−cayt), to policy regime changes versus policy shocks. It is immediately
evident that the effects of a regime change in the policy rule parameters are long-lived and last

for decades, while those of monetary policy shocks are relatively short-lived, consistent with

empirical evidence using identified monetary policy shocks (e.g., Christiano, Eichenbaum, and

Evans (2005)). In response to a regime shift to hawkish policy, asset valuations, as measured

by the log wealth ratio, fall and remain low for many years, while a contractionary monetary

policy shock has negligible effects on valuations.

Because the model is nonlinear, the duration of these effects can differ depending on whether

we begin in a dovish or hawkish regime. In the lower row of Figure 9 we assume that the economy

is initially in the hawkish regime and consider the case of the monetary authority attempting

to lift inflation. The blue solid line shows the impulse responses to a two standard deviation

expansionary monetary policy shock and no regime change in the conduct of monetary policy.

The black dashed line shows responses to a regime shift from the hawkish to the dovish regime,

with all Gaussian shocks set to zero. The effects on the real interest rate of a policy rule regime

change in this case are even more long-lived than in the curbing inflation case. The reason is

that, under the dovish policy rule, the central bank responds less aggressively to fluctuations

in inflation and output, as indicated by the smaller estimated activism coeffi cients ψπ,ξt and

ψ∆y,ξt
. Thus, when the central bank seeks to lift inflation as opposed to curb it, it does so more

gradually, so the real interest rate and the log wealth ratio remain perturbed from their steady

state values for a longer period of time.

In either the lifting or curbing inflation case, the effects on the real rate of a pure regime

change in the conduct of monetary policy are extremely long lived, lasting more than 90 years in

both cases, in sharp contrast to a monetary policy shock. Monetary policy shocks have short-

lived effects because they cause inflation to move away from target and are always quickly

stabilized, even in the dovish regime. By contrast, it is a truism that there is no reason for

the central bank to stabilize an intentional change in the stance of monetary policy, so the

extent to which regime changes in monetary policy persist in their real effects depends only on

how quickly agents adapt their expectations about long-term inflation. Since our parameter

estimates imply that agent’s expectations adapt very slowly over time, changes in the conduct

of monetary policy have effects that last for decades.

The Role of Investor Beliefs What is the role of investor beliefs in the response of asset

valuations to policy rule changes? To illustrate their role, Figure 10 again reports impulse

responses implied by the model to policy rule regime changes, under different counterfactual
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simulations. The top row reports responses to a regime change from the dovish to the hawkish

regime (curbing inflation), with all Gaussian shocks set to zero. The bottom row reports the

analogous responses to a regime change from hawkish to dovish (lifting inflation). The blue

(solid) lines in all figures of both rows report the responses in the baseline model. The red

(dotted) line shows a counterfactual in which the asset pricing agent knows the true policy rule

transition matrixH, a case we label “AP rational expectations.”In this case there is no learning

about the persistence of regime shifts and no fading memory distortion. The black (dashed) line

labeled “No AP learning,”shows a counterfactual that retains the fading memory distortion—

implying that investors act as if persistent shifts in the policy rule will continue indefinitely—but

we shut off learning about the persistence of regimes. The magenta (dashed-dotted) line is a

counterfactual that combines AP rational expectations with the case where the macro agent’s

perceived trend value of inflation, πt, coincides in every period with the inflation target, πTξt .

Note that the asset pricing agent’s beliefs play no role in the macro dynamics. Thus, the

blue (solid), black (dashed), and red (dotted) responses for GDP growth, inflation, and the

real interest rate in Figure 10 all lie on top of each other. By contrast, investor beliefs have

a large role in the responses of asset valuations (−cayt), as shown in the last column. In the
baseline model the wealth ratio responds to policy regime changes by jumping modestly on

impact. A switch to hawkish (dovish) policy drives the wealth ratio down (up) as the real

interest rate rises (falls). Because of learning, the initial jump is only the first part of a gradual

response and is followed by further changes in the wealth ratio as agents revise upward the

probability of remaining in the new policy framework. Comparing the blue line to the red

dotted line that corresponds to AP rational expectations, it is evident that valuation ratios

in the baseline model initially under-react to the policy rule regime shifts. Indeed, under AP

rational expectations, the wealth ratio jumps on impact to its maximal response in almost one

period. The wealth ratio nonetheless moves smoothly even under rational expectations back

toward its steady state value, a reflection of the adaptive learning mechanism in the macro block

that drives the persistent behavior of the real interest rate observed in in the third column of

Figure 10.

The role of over-extrapolation can be seen by comparing the red dotted (AP rational expec-

tations) line to the black dashed “No AP learning”line, in which we keep the fading memory

distortion but shut off learning. Over-extrapolation amplifies the response of the wealth ratio to

regime changes in monetary policy, but it does not create gradualism in the response. Since the

baseline model has both learning and over-extrapolation, the baseline wealth ratio responds to

regime shifts in the policy rule by initially under-reacting but eventually over-reacting vis-a-vis

the case of AP rational expectations.

The magenta (dashed-dotted) line of Figure 10 combines AP rational expectations with

πt = πTξt for all t. When expectations of the macro agent are not adaptive, regime changes in
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the policy rule have no effect on the real interest rate or real GDP growth, as noted above. By

contrast, a shift to the hawkish policy rule slightly increases the wealth ratio, while a shift to

the dovish policy rule slightly decreases it. Although policy regime changes in this case have

no affect on the first moments of real variables, they do affect second moments. A switch to

the hawkish policy rule implies that the central bank more aggressively stabilizes real activity,

which reduces the risk premium on equity increases asset valuations. The opposite happens in a

switch to the dovish rule. This demonstrates that, without adaptive macro expectations about

long-term inflation, the model cannot generate the right comovement of valuation ratios with

the monetary policy regime sequence observed in the data, either qualitatively or quantitatively.

Monetary Policy and Asset Valuation Over the Sample Figure 11 shows the implica-

tions of the model for −cayt and mps over our sample. To form a direct comparison with the

data, this figure repeats the information from Figure 3, which plots the corresponding series

−cayMS
t and mpst from the data, along with horizontal lines that show the conditional means

for these series in each regime. The figure also reports the component of the model-implied

values for −cayt and the mps that we estimate are attributable solely to regime changes in
the conduct of monetary policy, shown as black dashed-dotted lines. The magenta dotted lines

report the same components under the AP rational expectations counterfactual.

Figure 11 shows that fluctuations in the model-implied −cayt and mps attributable to

regime changes in monetary policy match well the movements in the conditional means of these

variables found in the data. The black dashed lines in both panels fluctuate around the data

means across the regime subperiods. These lines show that learning about the persistence of

regime changes can coexist with jumps at regime shift dates in the components of the wealth

ratio and mps that are attributable to shifts in the policy rule, consistent with the Markov-

switching specification. For the wealth ratio, however, the initial jump is smaller than its

ultimate change due to learning. This implies that the full change in the wealth ratio after a

regime switch can sometimes lag the full change in the mps, as it does for example after the

switch to the first hawkish subperiod of the sample. Since both beliefs and the interest rate

rule are history dependent, this does not happen after every switch, however.

Under the AP rational expectations counterfactual, the model-implied −cayt jumps after a
regime switch to its final destination in almost one period, driven by the revision in expected

real interest rates. Investors in this case realize that a prolonged period of high or low real

interest rates will follow as the central bank tries to alter inflation in the face of highly adaptive

macro expectations. Eventually, inflation adjusts and the wealth ratio gradually reverts toward

its steady state value as the real interest rate reverts.

Summarizing the lessons from the previous two figures, we have shown that the large move-

ments in the wealth ratio following monetary policy regime changes are the result of the inter-

40



action between two forces: (i) sticky macro-agent expectations about inflation, and (ii) revisions

in investor expectations about future monetary policy. Without stickiness in inflation expec-

tations, the model cannot generate persistent movements in the real interest rate that in turn

trigger large fluctuations in the wealth ratio. Without investor learning about the persistence

of regime shifts, the model produces implausibly large jumps in valuation ratios at regime shift

dates as the asset pricing agent immediately and fully revises her expectations. Without over-

extrapolation, the wealth ratio would not respond to regime changes in monetary policy by

overshooting the case where the agent is fully aware of the underlying transition matrix. This

pattern has important implications for the PDV of equity return premia. We turn to this next.

4.3.3 Monetary Policy and Equity Return Premia

Figure 12 plots the estimated PDV of forecasted excess returns (return premia) for the portfolios

analyzed in Section 3.3 (red dashed line, right axis) together with the component of the real

interest rate attributable to regime changes in the monetary policy rule (solid line, left axis).

There is discernible positive comovement between the two series, implying that low interest

rates associated with dovish monetary policy are also associated with low return premia.

To confirm this visual impression, the second column of Table 9 reports the correlation

between the PDV of return premia of the different equity portfolios and the component of

the real interest rate driven solely by changes in the policy rule, denoted RIRMPR
t in the

table. This correlation is high in all cases, equal to 0.88 for the momentum spread, 0.82 for

the market excess return, 0.75 for the value spread in the small size quintile, and 0.70 for the

value spread in the second smallest size quintile. Importantly, the correlation of premia with

RIRMPR
t is systematically larger than that with the residual component of the real interest rate,

RIRt−RIRMPR
t , and thus also larger than the correlation of premia with the real interest rate

itself (RIRt). This shows that shifts in the monetary policy stance play an important role

in generating the positive comovement between premia and the real interest rate in the data,

but that other movements in the real rate do not share this property. This may be because

persistent low- or high-interest rate environments that are the consequence of shifts in the

conduct of monetary policy have effects that last for decades, in contrast to movements in real

rates driven by other factors.

To evaluate the model implications for these comovements, Figure 13 plots output from

20,000 model simulations of length equal to that in our historical dataset. To ensure that the

artificial samples we generate have a regime sequence commensurate with that observed in the

historical sample, we fix the regime sequence across the simulations, drawing repeatedly from

the model’s Gaussian shocks. With each artificial sample, we construct a time-series of the

model-implied values of several variables. These variables include the PDV of return premia

on the stock market, which are computed from 20,000 Bayesian estimations of an MS-VAR
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using the same methodology that produced the PDV of return premia from the data reported

in Figure 4. For each t, we report the average (across simulations) of the model-implied PDV

in both panels of Figure 13. The left panel of Figure 13 superimposes the average (across

simulations) of the model-implied log wealth ratio −cayt, while the right panel reports the
same for the model-implied real interest rate. Since we average across sample paths that differ

only by the Gaussian shocks, the plotted series reveal fluctuations that are attributable solely

to regime changes in the monetary policy rule.

Figure 13 shows that dovish monetary policy is associated with a high wealth ratio and low

PDV of return premia, while hawkish monetary policy is associated with a low wealth ratio

and high PDV, consistent with the data. When the economy switches into the first hawkish

subperiod of the sample, coinciding with the Volcker disinflation, the PDV of return premia at

first declines slightly before eventually rising to a new, significantly higher level. Meanwhile,

the wealth ratio jumps down at the regime shift date, but not all the way to its final destination

(left panel). Instead, it gradually adjusts downward for several more periods before reaching

its nadir, as investors take time to learn about the persistence of the shift.

To understand why dovish monetary policy is associated with a low PDV of return premia

and vice-versa for hawkish policy, consider what an econometrician armed with our historical

sample who computes the PDVs using an MS-VAR taking into account the probability of

future regime shifts would find. Because of learning, an econometrician would find that asset

prices initially decline predictably after a switch to a hawkish regime, as investors gradually

update their expectation that the regime will last. This implies that, immediately after the

switch, short-horizon return premia are low rather than high. But because investors also over-

extrapolate and eventually come to believe that the regime will persist indefinitely, asset values

ultimately over-react and fall by too much relative to what would be warranted by the true

persistence of the regime change. This means that investors are inevitably surprised by the end

of the existing regime. It follows that long-horizon return premia are always high in hawkish

regimes, since an econometrician would find a predictable jump upward in returns when the

inevitable switch back to dovish policy occurs.

Since the PDV is a weighted sum of return premia spanning short- to long-horizons, it can

initially drift in a direction opposite to its longer-run trajectory if the effect of learning on

short-horizon premia outweighs the effect of over-extrapolation on long-horizon premia. This

happens after the switch into the first hawkish subperiod. But because beliefs evolve in a

history-dependent manner, this need not happen after all switches. Figure 13 shows that the

PDV moves monotonically after the subsequent switches in the sample. Regardless of the initial

trajectory of the PDV, the model implies that the PDV of return premia is always higher on

average in hawkish regimes than in dovish regimes, consistent with the data.

To investigate this further, we use simulated data to compute the model-implied posterior
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probability that the regime average PDV of return premia is lower in the dovish regime than

in the hawkish regime, following the same procedure used to do so in historical data (Table

5).30 For the baseline model, this probability is 73%, a magnitude in the ballpark of the

81%, 70%, and 64% probabilities estimated from historical data for the market premium, the

S1 BM spread, and the S2 BM spread, respectively. By contrast, under the AP rational

expectations counterfactual of the model, this same posterior probability is 56%, providing only

weak evidence of any change in premia across the regimes. Intuitively, since policy rule regime

shifts under rational expectations affect asset valuations primarily by changing the real interest

rate, they leave return premia largely unaffected.31 If instead we consider a counterfactual

that retains the over-extrapolation in investor beliefs but eliminates learning, we find that the

posterior probability rises to 75%, slightly higher than the baseline probability of 73%. This

shows that learning, which is crucial for explaining a gradual adjustment of valuation ratios

after regime shifts, works against the model’s ability to explain the behavior of return premia.

The effect of learning on return premia is nonetheless small because, at the estimated parameter

values, the speed of learning is relatively quick compared to the persistence of policy regimes.

To summarize, in the early stages of a hawkish (dovish) regime, investor learning shows

up as initial under-reaction of asset values and low (high) short-horizon return premia. Over-

extrapolation shows up as eventual over-reaction of asset values and high (low) long-horizon

return premia. In terms of the model’s implications for the PDV of all future return premia,

there is thus a tug-of-war between the learning and over-extrapolation aspects of investor beliefs.

The effect of learning is outweighed by the effect of over-extrapolation because the speed of

learning is relatively quick compared to the persistence of monetary policy regimes.

5 Conclusion

We show that the U.S. economy is characterized by large, longer-term regime shifts in asset

values relative to macroeconomic fundamentals that arise concurrently with equally important

shifts in the level of the short-term real interest rate in excess of a widely used measure of

the “natural”rate of interest, a variable we refer to as the monetary policy spread, mps. Our

results identify two “hawkish”subperiods of the sample characterized by a high mps and low

asset valuations: 1978:Q4 to 2001:Q3, and 2006:Q2 to 2008:Q2. The first subperiod spans the

Volcker disinflation and its aftermath, while the second subperiod follows 17 consecutive Federal

Reserve rate increases that left the nominal funds rate standing at 5.25% in June of 2006. All

other subperiods through the end of our sample in 2017:Q3 are identified as “dovish”regimes

30These probabilities are obtained as the fraction of draws from the posterior distribution for which the
average PDV is lower in the dovish regime than in the hawkish regime.
31Even under AP rational expectations the central bank’s policy rule has a small effect on return premia due

to the implications of the policy rule for macroeconomic stability.
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with low mps and high asset valuations. We further document that the dovish subperiods are

associated with lower equity market return premia.

To investigate what part of these findings could be attributable to monetary policy, we solve

and estimate a novel macro-finance model of monetary transmission. Estimates of this model

imply that the conduct of monetary policy differed markedly across the previously estimated

dovish and hawkish subperiods. Specifically, the dovish, low mps subperiods are characterized

by an estimated interest rate rule that is consistent with accommodative monetary policy,

while the hawkish, high mps subperiods are characterized by a rule consistent with restrictive

policy. In both the model and the data, subperiods characterized by dovish policy rules are also

characterized by persistently low values for the mps, persistently high stock market valuations,

and persistently low equity market return premia, while subperiods characterized by hawkish

policy rules exhibit the opposite pattern. The model therefore provides a rationale for how

monetary policy can have long-lasting effects on real variables, on equity markets, and on

return premia.

The model and its estimates speak to the origins of persistently declining real interest rates

over the past 40 years. A striking finding is that two-thirds of the downward trajectory in real

rates observed since the early 1980s can be attributed to monetary policy, i.e., to regime changes

in the conduct of policy. This occurs because the policy rule parameters exhibit a decisive shift

toward hawkish values around the time of Volcker’s appointment to the Federal Reserve, but

then exhibit an equally decisive shift back to dovish values in the aftermath of 9/11. The

estimated policy rule has remained dovish since, with the exception of a brief interlude from

2006:Q2-2008:Q2.

The model is silent on one aspect of our empirical evidence, namely that spreads in the

cross-section of equity characteristic portfolio returns are significantly compressed in dovish

subperiods compared to hawkish ones. Future research could explore the possibility that a

reach-for-yield in low interest rate environments might be amplified by the type of fading

memory belief distortion considered in the model of this paper. For example, as interest rates

move from high to low in a switch from hawkish to dovish monetary policy, a reach-for-yield

could explain why portfolios with lower market-to-book ratios experience a greater increase in

market value than those with higher market-to-book ratios, compressing return differentials.

But it is unclear how quantitatively important that mechanism alone could be, if regime shifts

are not perceived to be suffi ciently persistent in the first place. One possibility is that reaching-

for-yield is amplified by a fading memory distortion in which all investors over-estimate the

persistence of policy regime shifts.
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Tables and Figures

Overall Medium Business
Panel A: Correlations with −cayt

Real interest rate −0.41 −0.83 0.25
Monetary policy spread −0.52 −0.84 0.16

Panel B: Correlations with Shiller PE ratio
Real interest rate −0.30 −0.19 0.22
Monetary policy spread −0.13 −0.30 0.18

Panel C: Correlations with Corp. PD ratio
Real interest rate −0.22 −0.49 0.22
Monetary policy spread −0.25 −0.60 0.19

Panel D: Correlations with Corp. PE ratio
Real interest rate −0.28 −0.20 0.39
Monetary policy spread −0.04 −0.30 0.29

Panel E: Correlations with Earnings-NVA ratio
Real interest rate −0.54 −0.38 −0.27
Monetary policy spread −0.35 −0.46 −0.16

Table 1: Results under “Medium”use series filtered to retain fluctuations with cycles between
8 and 50 years; “Business”retains cycles x, 1.5 ≤ x ≤ 8 years. r∗ is from Laubach and Williams
(2003). Monetary policy spread = FFRt − Expected Inflationt − r∗t , where expected inflation
is a four period moving average of inflation. Corp. PD ratio is the ratio of market equity (ME)
to net dividends for the corporate sector from the Flow of Funds. Corp. PE ratio is the ratio
of ME to after-tax profits of the corporate sector. NVA is net-value-added for the nonfinancial
corporate sector. The sample spans 1961:Q1-2017:Q3.



Parameter Mode Mean 5% 95%
αH −0.7239 −0.7121 −0.7796 −0.6465
αD −0.7500 −0.7376 −0.8034 −0.6717
rH 0.0111 0.0132 0.0097 0.0165
rD −0.0252 −0.0244 −0.0266 −0.0222
αH − αD 0.0262 0.0255 0.0212 0.0296
rH − rD 0.0363 0.0376 0.0342 0.0411
βa 0.2762 0.2721 0.2414 0.3014
βy 0.7619 0.7657 0.7286 0.8042
σc 0.0128 0.0143 0.0130 0.0157
σr 0.0141 0.0135 0.0123 0.0150
HHH 0.9793 0.9696 0.9306 0.9943
HDD 0.9830 0.9785 0.9539 0.9950

Parameter Estimates: cayFC

α γa γy
−0.8132

(0.0448)
0.2048
(0.0186)

0.8551
(0.0233)

Table 2: Parameter estimates. The top panel reports posterior modes, means, and 90% error
bands of the parameters of the Markov-switching cointegrating relation. Flat priors are used
on all parameters of the model. The lower panel reports parameter estimates for the fixed
coeffi cient cointegrating relation. Standard errors are in parantheses. The two distinct values
for the Markov-switch parameters are denoted with H and D subscripts to indicate hawkish or
dovish values.The sample is quarterly and spans the period 1961:Q1 to 2017:Q3.

1961:Q1-1978:Q3 1978:Q4-2001:Q3 2001:Q4-2006:Q1 2006:Q2-2008:Q2 2008:Q3-2017:Q3
Regime Dovish (2) Hawkish (1) Dovish (2) Hawkish (1) Dovish (2)

Table 3: Estimated regime sequence. The table reports the most likely regime sequence based
on the posterior mode estimates. Dovish refers to the low monetary policy spread regime and
hawkish refers to the high.



Annualized Sharpe Ratios and Mean Returns
Portfolio SR Mean Portfolio SR Mean
Market 0.3665 0.0623 V-G (S1) 0.5966 0.0994
W-L 0.6261 0.1517 V-G (S2) 0.3279 0.0545

Table 4: The table reports annualized Sharpe ratios, "SR," and mean returns, "Mean," for the
stock market and different portfolios. The Sharpe ratio is defined to be the unconditional mean
return divided by the standard deviation of the portfolio return. The long-short portfolios "V-
G" are the value-growth portfolios in a given size quintile, S1=smallest, S2= second smallest.
long-short portfolios "W-L" are the winner-loser portfolio. For each size category, the return
of the V-G portfolio portfolio return is the difference between the return on the extreme value
(highest BM ratio) and the return of the extreme growth portfolio (lowest BM ratio). The
return of the W-L portfolio return is the difference in returns between the extreme winner
(M10) and the extreme loser (M1). All returns are computed at quarterly frequencies but the
Sharpe ratios and mean returns are reported in annualized units. The sample spans the period
1964:Q1-2017:Q3.

Breaks in Market Premium and Book-Market Ratio Spreads
Market W-L Val-Gr (S1) Val-Gr (S2)

Hawkish Regime 1.5896
(0.8960,2.2558)

4.0432
(2.8912,5.2514)

2.6647
(1.7120,3.6701)

1.4875
(0.6118,2.4214)

Dovish Regime 1.2848
(0.5652,1.9219)

3.4000
(2.2660,4.5196)

2.4460
(1.6679,3.2698)

1.3577
(0.6063,2.1193)

Diff-in-Diff 0.2987
(−0.0367,0.7089)

0.6011
(0.1462,1.2409)

0.1958
(−0.1865,0.6593)

0.1251
(−0.2431,0.5429)

Prob. decline 0.81 0.90 0.70 0.64
Odds ratio 4.26 9.00 2.33 1.78

Table 5: The first two rows report the regime averages for the present discounted value of mar-
ket expected excess returns and the spread in the present discounted value of portfolio expected
excess returns. The columns labeled "Val-Gr" report the spreads for portfolios sorted along the
book-market dimension, in a given size category (extreme value minus extreme growth). The
columns labeled "W-L" report the spreads for portfolios sorted along the recent past return
performance dimension (extreme winner minus extreme loser). The row labeled "Diff-in-Diff"
reports the difference between these spreads across the two wealth ratio/interest rate regimes.
The numbers in each cell are the median values of the statistic from the posterior distribution
while in parentheses we report 68% posterior credible sets. The last row reports the probabil-
ity that premia decline when moving from the hawkish to dovish regime. These probabilities
are obtained by computing the fraction of draws from the posterior distribution for which the
premia under the dovish regime are lower than the premia under the hawkish regime.



Mode Mean 5% 95% Type Para1 Para2

πTH 0.8516 0.8411 0.7038 0.9642 U 0 10
ψπ,H 2.3164 2.8146 1.9184 4.2444 U 0 10
ρi,H 0.8913 0.9080 0.8597 0.9494 B 0.5 0.2
ψ∆y,H 2.6387 3.6663 1.9532 6.2615 U 0 10
πTD 2.8794 2.9040 2.7017 3.1626 U 0 10
ψπ,D 1.1089 1.1146 0.8266 1.4120 U 0 10
ρi,D 0.8978 0.9264 0.8579 0.9804 B 0.5 0.2
ψ∆y,D 1.2320 2.6661 0.8990 6.5637 U 0 10
γ 0.0017 0.0019 0.0008 0.0032 B 0.05 0.02
γT 0.0132 0.0131 0.0110 0.0152 B 0.2 0.1
σ 0.7970 1.1462 0.5406 2.0439 G 2 1
% 0.9062 0.9008 0.8048 0.9696 B 0.9 0.05
β 0.7696 0.7156 0.5270 0.8909 B 0.8 0.1
κ 0.0343 0.0317 0.0143 0.0520 G 0.4 0.2
ρd 0.7589 0.8208 0.6731 0.9368 B 0.5 0.2
ρy∗ 0.9457 0.9177 0.8474 0.9695 B 0.5 0.2
φ 0.8057 0.8041 0.7924 0.8149 B 0.5 0.2
rss 0.2540 0.3002 0.1210 0.5581 G 0.5 0.25
∆yss 0.3738 0.4126 0.3427 0.4912 G 0.5 0.2
σd 0.6033 0.6569 0.5431 0.7987 U 0 10
σi 0.1865 0.1950 0.1782 0.2153 U 0 10
σy∗ 2.7349 3.7875 2.1213 7.4099 U 0 10
σoe,∆GDP 0.2897 0.2857 0.2339 0.3366 U 0 10
σoe,INFL 1.2294 1.2514 1.1557 1.3547 U 0 10
σoe,FFR 0.0000 0.0006 0.0000 0.0015 U 0 10
σoe,EXP 0.0686 0.0696 0.0517 0.0853 U 0 10

Table 6: This table reports the posterior mode, mean, and 90% credible sets for the model
parameters of the model. Prior distributions are denoted as follows: N stands Normal, G for
Gaussian, and B for Beta, U for Uniform, where Para1 and Para2 refer to hyperparameters
of the prior. For the Beta, Normanl, and Gaussian distributions, the first parameter and
second parameter correspond to mean and standard deviation, respectively. For the uniform
distribution they correspond to the lower and upper bound. The last four rows report the
standard deviations of the observation errors. The sample spans the period 1961:Q1-2017:Q3.

Mode Mean 5% 95%

πTH − πTD −2.0278 −2.0629 −2.4647 −1.7533
ψπ,H − ψπ,D 1.2074 1.7001 0.6990 3.1387
ρi,H − ρi,D −0.0065 −0.0184 −0.0911 0.0576
ψ∆y,H − ψ∆y,D 1.4067 1.0001 −3.3289 4.4279

Table 7: This table reports the posterior mode, mean, and 90% credible sets for the difference
between the monetary policy rule parameters across the two regimes, defined as hawkish (H)
and dovish (D). The sample spans the period 1961:Q1-2017:Q3.



Parameter Value Parameter Value

k 0.4506 p11 0.6750
σp (fixed) 3 p22 (fixed) 0.9990
δ 0.9329 p33 0.7331
lp 5.8% p44 (fixed) 0.9990
eq. premium 5.5% p23/(p23 + p24) 0.9864

p41/(p41 + p42) 0.9999

Table 8: Parameters of the asset pricing block. The parameters are chosen to minimize the
distance between the fluctuations in cay implied by the model as a result of regime changes and
the actual cayMS. The values for lp and eq. premium are annualized log units. The sample is
quarterly and spans the period 1961:Q1 to 2017:Q3.

RIRt RIRMPR
t RIRRESt

Market Excess Return 0.43 0.82 0.09
Momentum Spread 0.52 0.88 0.18
Value Spread (S1) 0.51 0.75 0.23
Value Spread (S2) 0.46 0.70 0.20

Table 9: Corr. between PDV of market risk premium (rp) or portfolio rp spreads withRIRMPR
t

vs. movements in real rates driven by Gaussian shocks (RIRRES
t ). Market is the PDV of the

market rp, Momentum W-L is the PDV of the difference in the Winner-Loser risk premia;
Value Spread is the PDV of the difference in the High-Low book-market ratio portfolios in the
smallest (S1) and next to smallest (S2) size quintiles. RIRt is defined as FFR minus expected
inflation (based on the model). The sample is quarterly and spans 1961:Q1 - 2017:Q3.
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Figure 1: Real interest rate and Monetary Policy Spread (MPS). The real interest rate is the difference between the
nominal federal funds rate (FFR) and expected inflation, where expected inflation is computed as a four quarter moving average
of inflation. The monetary policy spread is defined as MPSt ≡ FFRt − Expected Inflationt − r∗t ., where r∗t is the natural rate
of interest from Laubach and Williams (2003). The sample spans the period 1961:Q1-2017:Q3.
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Figure 2: Regime probabilities. Smoothed probabilities of the Hawkish monetary policy regime. The sample is quarterly and
spans the period 1961:Q1 to 2017:Q3.
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Figure 3: Wealth ratio and MPS in the data. Figure plots the wealth ratio (−cayMS) and the monetary policy spread
MPSt ≡ FFRt −Expected Inflationt − r∗t . The series for r∗t is from Laubach andWilliams (2003). The solid line corresponds to
the estimated mean at the posterior mode. The sample spans 1961:Q1-2017:Q3.
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Figure 4: Evolution of Risk Premia in the data. The figure reports the evolution of the PDV of risk premia for the stock
market and three different spread portfolios. The blue solid line reports the evolution of the risk premia over time, while the red
dashed line corresponds to the conditional steady state of the PDV based on the regime in place. Both are computed by taking
into account the possibility of regime changes. The sample spans the period 1964:Q1-2017:Q3.
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Figure 5: Macroeconomic series and their filtered counterparts. The figure reports the model implied series and the
corresponding observed series. Expected inflation comes from the Michigan Survey of Consumers. The difference is due to
observation errors. The sample spans 1961:Q1 - 2017:Q3.
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Figure 6: Evolution of investor beliefs under learning. The left panel reports the perceived probability of currently being
in the long-lasting hawkish regime (blue solid line in the top scale) or the long-lasting dovish regime (red dashed line in the lower
scale). The right panel reports the perceived probability of being in either hawkish (long- or short-lasting) regime at t+ h, where
h = 1, 4, or 80 quarters in the future. We initialize the asset pricing agent’s beliefs in 1960:Q1 assuming that she assigns Pr ≈ 1
to being in the short-lasting dovish regime. The sample spans 1961:Q1 - 2017:Q3.
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Figure 7: The role of changes in the monetary policy rule and adaptive expectations. The blue line corresponds to
the fluctuations generated by changes in both the target and the slope coeffi cients of the policy rule. The red dashed line assumes
that monetary policy starts under the dovish regime and no regime changes occur. The black dotted line assumes that changes
in the target occurred, but that the slope coeffi cients in the interest rate rule remain fixed as in the dovish regime. Finally, the
magenta dashed-dotted line shows a counterfactual in which the policy rule shifts but the macro agent’s perceived trend inflation
equals the central bank’s target. The dovish regime is defined by a high target πT and low activism against deviations from the
πT . The hawkish regime has a low πT and high activism against deviations from πT . The sample spans 1961:Q1 - 2017:Q3.
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Figure 8: The Volcker disinflation. We start the economy as it was in 1980:Q1 and remove all Gaussian shocks that occured
after that period, but keep the estimated regime sequence. The dashed line corresponds to the data. The real interest rate is
computed as the difference between the FFR and expected inflation. Expected inflation is obtained based on the model solution.
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Figure 9: Regime changes versus policy shocks. Top row: curbing inflation. The economy is initially in the dovish
regime. The blue solid line presents the evolution of the macro variables and the wealth ratio in response to a two standard
deviation contractionary monetary policy shock and no regime change. The black dashed line presents the evolution of the macro
variables and the wealth ratio in response to a regime change from the dovish regime to the hawkish regime. Bottom row: lifting
inflation. The economy is initially in the hawkish regime. The blue solid line presents the evolution of the macro variables and
the wealth ratio in response to a two standard deviation expansionary monetary policy shock and no regime change. The black
dashed line presents the evolution of the macro variables and the wealth ratio in response to a regime change from the hawkish
regime to the dovish regime.
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Figure 10: The role of AP learning and of macro stickiness. The blue solid line corresponds to the baseline model with
learning of the asset pricing (AP) agent about the probability of moving across regime, over-reaction of the asset pricing agent
about the persistence of regime changes, and adaptive expectations of the macro agent; the black dashed line shuts down learning
of the asset pricing agent; the red dashed line is the case where the asset pricing agent observes the true transition matrix of the
Markov-switching process controlling policy rule regimes; the dotted-dashed magenta line shuts down both learning of the asset
pricing agent and adaptive expectations of the macro agent. Top row: Curbing inflation. The economy is initially in the dovish
regime and in period 20 moves to the hawkish regime. Lower row: Lifting inflation. The economy is initially in the hawkish
regime and in period 20 moves to the dovish regime.
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Figure 11: Wealth ratio and MPS: data and model. The figure reports the time series of the log wealth ratio and the
monetary policy spread. The red dashed lines represent the data, the blue solid line represent the regime means, the black dashed-
dotted lines represent the fluctuations that can be explained by regime changes in monetary policy under the baseline model, and
the magenta dotted lines represent the fluctuations that can be explained by regime changes in monetary policy assuming that the
asset pricing agent observes the true transition matrix of the Markov-switching process controlling changes in monetary policy.
The sample spans 1961:Q1 - 2017:Q3.
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Figure 12: Excess returns and policy rule changes. The figure reports the time series of the PDV of expected excess returns
for different portfolios (dashed line, right axis) together with fluctuations of the real interest rate due to changes in the monetary
policy rule (solid line, left axis). The sample is quarterly and spans the period 1961:Q1 to 2017:Q3.
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Figure 13: Simulated wealth ratio, real interest, and implied PDV of expected excess returns. This figure plots
results from simulating the dynamic macro-finance model at the posterior mode parameter values 20,000 times using a sample
length and regime sequence equal to that in our historical data. Using data from each simulated sample, we estimate a MS-VAR
and use it to compute the PDV of expected (i.e., forecasted) future excess returns. At each point in time we compute the average
(across simulations) of the PDV of excess returns (reported in both panels), the wealth ratio −cayt (left panel) and the real
interest rate (right panel). Since we average across sample paths, the observed movements in −cayt and the real interest rate are
attributable to changes in the policy rule.



Appendix for Online Publication

Data Appendix

This appendix describes the data used in this study.

CONSUMPTION

Consumption is measured as either total personal consumption expenditure or expenditure

on nondurables and services, excluding shoes and clothing. The quarterly data are seasonally

adjusted at annual rates, in billions of chain-weighted 2005 dollars. The components are chain-

weighted together, and this series is scaled up so that the sample mean matches the sample mean

of total personal consumption expenditures. Our source is the U.S. Department of Commerce,

Bureau of Economic Analysis.

LABOR INCOME

Labor income is defined as wages and salaries + transfer payments + employer contri-

butions for employee pensions and insurance - employee contributions for social insurance -

taxes. Taxes are defined as [ wages and salaries/(wages and salaries + proprietors’income with

IVA and CCADJ + rental income + personal dividends + personal interest income)] times

personal current taxes, where IVA is inventory valuation and CCADJ is capital consumption

adjustments. The quarterly data are in current dollars. Our source is the Bureau of Economic

Analysis.

POPULATION

A measure of population is created by dividing real total disposable income by real per

capita disposable income. Our source is the Bureau of Economic Analysis.

WEALTH

Total wealth is household net worth in billions of current dollars, measured at the end of

the period. A break-down of net worth into its major components is given in the table be-

low. Stock market wealth includes direct household holdings, mutual fund holdings, holdings of

private and public pension plans, personal trusts, and insurance companies. Nonstock wealth

includes tangible/real estate wealth, nonstock financial assets (all deposits, open market paper,

U.S. Treasuries and Agency securities, municipal securities, corporate and foreign bonds and

mortgages), and also includes ownership of privately traded companies in noncorporate equity,

and other. Subtracted off are liabilities, including mortgage loans and loans made under home

equity lines of credit and secured by junior liens, installment consumer debt and other. Wealth

is measured at the end of the period. A timing convention for wealth is needed because the

level of consumption is a flow during the quarter rather than a point-in-time estimate as is

wealth (consumption data are time-averaged). If we think of a given quarter’s consumption

data as measuring spending at the beginning of the quarter, then wealth for the quarter should
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be measured at the beginning of the period. If we think of the consumption data as measuring

spending at the end of the quarter, then wealth for the quarter should be measured at the end of

the period. None of our main findings discussed below (estimates of the cointegrating parame-

ters, error-correction specification, or permanent-transitory decomposition) are sensitive to this

timing convention. Given our finding that most of the variation in wealth is not associated with

consumption, this timing convention is conservative in that the use of end-of-period wealth pro-

duces a higher contemporaneous correlation between consumption growth and wealth growth.

Our source is the Board of Governors of the Federal Reserve System. A complete description

of these data may be found at http://www.federalreserve.gov/releases/Z1/Current/.

CRSP PRICE-DIVIDEND RATIO

The stock price is measured using the Center for Research on Securities Pricing (CRSP)

value-weighted stock market index covering stocks on the NASDAQ, AMEX, and NYSE. The

data are monthly. The stock market price is the price of a portfolio that does not reinvest

dividends. The CRSP dataset consists of vwretx(t) = (Pt/Pt−1)− 1, the return on a portfolio

that doesn’t pay dividends, and vwretdt = (Pt +Dt) /Pt − 1, the return on a portfolio that

does pay dividends. The stock price index we use is the price P x
t of a portfolio that does not

reinvest dividends, which can be computed iteratively as

P x
t+1 = P x

t (1 + vwretxt+1) ,

where P x
0 = 1. Dividends on this portfolio that does not reinvest are computed as

Dt = P x
t−1 (vwretdt − vwretxt) .

The above give monthly returns, dividends and prices. The annual log return is the sum of the

12 monthly log returns over the year. We create annual log dividend growth rates by summing

the log differences over the 12 months in the year: dt+12 − dt = dt+12 − dt+11 + dt+11 − dt+10 +

· · · + dt+1 − dt. The annual log price-dividend ratio is created by summing dividends in levels
over the year to obtain an annual dividend in levels, DA

t , where t denotes a year hear. The

annual observation on P x
t is taken to be the last monthly price observation of the year, P

Ax
t .

The annual log price-dividend ratio is ln
(
PAx
t /DA

t

)
. Note that this value for dividend growth

is only used to compute the CRSP price-dividend ratio on this hypothetical portfolio. When

we investigate the behavior of stock market dividend growth in the MS-VAR, we use actual

dividend data from all firms on NYSE, NASDAQ, and AMEX. See the data description for

MS-VARs below.

FLOW OF FUNDS EQUITY PAYOUT, DIVIDENDS, PRICE

Flow of Funds payout is measured as “Net dividends plus net repurchases”and is computed

using the Flow of Funds Table F.103 (nonfinancial corporate business sector) by subtracting Net

Equity Issuance (FA103164103) from Net Dividends (FA106121075). We define net repurchases
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to be repurchases net of share issuance, so net repurchases is the negative of net equity issuance.

Net dividends consists of payments in cash or other assets, excluding the corporation’s own

stock, made by corporations located in the United States and abroad to stockholders who

are U.S. residents. The payments are netted against dividends received by U.S. corporations,

thereby providing a measure of the dividends paid by U.S. corporations to other sectors. The

price used for FOF price-dividend and price-payout ratios is “Equity,”the flow of funds measure

of equities (LM103164103).

PRICE DEFLATOR FOR CONSUMPTION AND ASSET WEALTH

The nominal after-tax labor income and wealth data are deflated by the personal consump-

tion expenditure chain-type deflator (2005=100), seasonally adjusted. In principle, one would

like a measure of the price deflator for total flow consumption here. Since this variable is

unobservable, we use the total expenditure deflator as a proxy. Our source is the Bureau of

Economic Analysis.

DATA FOR MS-VAR TO ESTIMATE RISK PREMIA

The variables included in the MS-VAR for the equity characteristics portfolio data are: (a)

the momentum return spread, i.e., the difference between the excess return of the extreme

winner (M10) portfolio and the excess return of the extreme loser (M1) portfolio; (b) the value

return spread (S1), i.e., the difference between the excess return of the small (size 1) high

BM portfolio and the excess return of the small (size 1) low BM portfolio; (c) the value return

spread (S2), i.e., the difference between the excess return of the size 2 high BM portfolio and the

excess return of the small size 2 low BM portfolio; (d) the momentum BM spread: the difference

between the logarithm of the BM ratio of the M10 and M1 portfolios; (e) the value BM spread

(S1): The difference between the logarithm of the BM ratio of the small (size quintile 1) high

book-market portfolio and the logarithm of the BM ratio of the small (size 1) low book-market

portfolio; (f) the value BM spread (S2): the difference between the logarithm of the BM ratio

of the size quintile 2 high book-market portfolio and the logarithm of the BM ratio of the size

2 low book-market portfolio; (g) the real FFR (FFR minus inflation); (h) the excess return on

the small value portfolio. We then use CRSP/Compustat to construct the BM ratios of the

corresponding portfolios.

The MS-VAR specification for the market risk premium includes the following variables:

(a) the market excess return, computed as the difference in the CRSP value-weighted stock

market return (including dividend redistributions) and the three-month Treasury bill rate; (b)

−cayMS; (c) the small stock value spread (log-difference in the book to market ratio of the

S1 value and S1 growth portfolio); (d) the SMB factor from Fama and French; (e) the HML

factor from Fama and French. These variables are obtained from Kenneth French’s Dartmouth

webpage.

DATA FOR MODEL ESTIMATION
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Inflation expectations are taken from the mean inflation forecasts of one year ahead inflation,

provided by the University of Michigan Survey of Consumers. Our data sources for output

growth are the NIPA tables constructed by the Bureau of Economic Analysis and the St. Louis

Fed. Real GDP per capita is obtained by dividing nominal GDP (NIPA 1.1.5, line 1) by the

GDP deflator (NIPA 1.1.4, line 1) and population. Population is measured as Civilian Non-

institutional Population (CNP16OV) and downloaded from FRED, a website maintained by the

Federal Reserve Bank of St. Louis. Inflation is measured as the quarter-to-quarter log-change

of CPI. Both the CPI and the FFR series are downloaded from FRED, a website maintained by

the Federal Reserve Bank of St. Louis. Expected inflation is the mean of the one-year-ahead

expected inflation based on the Michigan survey. All variables are annualized.

Computing cayMS

Let zt be a 3×1 vector of data on ct, at, and ỹt, and k leads and k lags of∆at and∆yt and let Zt

= (zt, zt−1, ...,z1) be a vector containing all observations obtained through date t. To estimate

the parameters of this stationary linear combination we modify the standard fixed coeffi cient

dynamic least squares regression (DLS—Stock and Watson (1993)) regression to allow for shifts

in the intercept αξt:

ct = αξt + βaat + βyyt +
k∑

i=−k

ba,i∆at+i +
k∑

i=−k

by,i∆yt+i + σcεct (A1)

where εt ∼ N (0, 1) .32 The parameters of the econometric model include the cointegrating para-

meters and additional slope coeffi cients β =
(
βa, βy, b

)′
, where b = (ba,−k, .., ba,k, by,−k, .., by,k)

′,

the two intercept values α1 and α2, the standard deviation of the residual σ, and the transition

probabilities contained in the matrix H.

We combine the estimation of changes in the mean of cayMS
t with an isomorphic model for

the monetary policy spread. Specifically, we assume that regime changes in the mean of cayMS
t

coincide with regime changes in the mean of the mps:

mpst = rξt + εrt , (A2)

where εrt ∼ N (0, σ2
r). Importantly, unlike cayMS

t , mpst is an observed variable. Thus, in

this case we only need to conduct inference about the MS intercept coeffi cient rξt . It is worth

emphasizing that the same latent state variable, ξt, presumed to follow a two-state Markov-

switching process with transition matrix H, controls both changes in αξt and rξt .

32The DLS regression controls for leads and lags of the right-hand-side variables to adjust for the ineffi ciencies

attributable to regressor endogeneity that arise in finite samples.
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The model can then be summarized as follows:

ct = αξt + βaat + βyyt +
k∑

i=−k

ba,i∆at+i +

k∑
i=−k

by,i∆yt+i + σcεct

mpst = rξt + σrεrt

εct ∼ N (0, 1) , εrt ∼ N (0, 1)

where ξt is a hidden variable that follows a Markov-switching process with transition matrix

H. Collect all model parameters into a vector θ =
(
rξt , σ

r, β, αξt , σ
c,H

)′
. The model can be

thought as a multivariate regression with regime changes in which some of the parameters are

restricted to zero.

Our estimate of cayMS
t is based on the posterior mode of the parameter vector θ and the

corresponding regime probabilities. To simplify notation, we denote the vector containing all

variables whose coeffi cients are allowed to vary over time xM,t, while xF,t is used to denote the

vector containing all the variables whose coeffi cients are kept constant. We then obtain:

ct = αξtxM,t + βxF,t + σcεct

mpst = rξtxM,t + σrεrt

where, in our case, β =
[
βa, βy, ba,−k, ..., ba,+k, by,−k, ..., by,+k

]
and the vector xM,t is unidimen-

sional and always equal to 1.

Collect the conditional probabilities πit|t = p(ξt = i|Y t;θ) for i = 1, ..,m into anm×1 vector

πt|t = p(ξt|Y t;θ). The filtered probabilities reflect the probability of a regime conditional on the

data up to time t, πt|t = p(ξt|Y t;θ), for t = 1, ..., T , and are part of the output obtained com-

puting the likelihood function associated with the parameter vector θ =
{
rξt , σ

r, β, αξt , σ,H
}
.

They can be obtained using the following recursive algorithm given by the Hamilton filter:

πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

) (A3)

πt+1|t = Hπt|t

where ηt is a vector whose j-th element contains the conditional density p(ct,mpst|ξt = j, xM,t, xF,t;θ),

i.e.,

p(ct,mpst|ξt = j, xM,t, xF,t;θ) =
1√

2πσc,2
1√

2πσr,2
exp

[
− [ct − (αjxM,t + βxF,t)]

2

2σc,2
− [mpst − rjxM,t]

2

2σr,2

]
,

(A4)

the symbol � denotes element by element multiplication, and 1 is a vector with all elements
equal to 1. To initialize the recursive calculation we need an assumption on the distribution of

ξ0. We assume that the two regimes have equal probabilities: p(ξ0 = 1) = .5 = p(ξ0 = 2).
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The smoothed probabilities reflect all the information that can be extracted from the whole

data sample, πt|T = p(ξt|Y T ;θ). The final term, πT |T is returned with the final step of the

filtering algorithm. Then, a recursive algorithm can be implemented to derive the other prob-

abilities:

πt|T = πt|t �
[
H′
(
πt+1|T (÷) πt+1|t

)]
where (÷) denotes element by element division.

In using the DLS regression (A1) to estimate cointegrating parameters, we lose 6 leads and

6 lags. For estimates of cayFCt , we take the estimated coeffi cients and we apply them to the

whole sample. To extend our estimates of cayMS
t over the full sample, we can likewise apply the

parameter estimates to the whole sample but we need an estimate of the regime probabilities

in the first 6 and last 6 observations of the full sample. For this we run the Hamilton filter

from period from −5 to T + 6 as follows. When starting at -5, we assume no lagged values are

available and the DLS regression omits all lags, but all leads are included. When at t = −4 we

assume only one lag is available and the DLS regression includes only one lag, and so on, until

we reach t = 0 when all lags are included. Proceeding forward when t = T + 1 is reached we

assume all lags are available and all leads except one are available, when t = T + 2, we assume

all lags and all leads but two are available, etc. Smoothed probabilities are then computed with

standard methods as they only involve the filtered probabilities and the transition matrix H.

Gibbs Sampling Algorithm

This appendix describes the Bayesian methods used to characterize uncertainty in the regres-

sion parameters. To simplify notation, we denote the vector containing all variables whose

coeffi cients are allowed to vary over time xM,t, while xF,t is used to denote the vector containing

all the variables whose coeffi cients are kept constant. We then obtain:

ct = αξtxM,t + βxF,t + σcεct (A5)

mpst = rξtxM,t + σrεrt (A6)

where, in our case, β =
[
βa, βy, ba,−k, ..., ba,+k, by,−k, ..., by,+k

]
and the vector xM,t is unidimen-

sional and always equal to 1.

Suppose the Gibbs sampling algorithm has reached the n−th iteration. We then have draws
for rξt,n, σ

r
n, βn, αξt,n, σ

c
n, Hn, and ξ

T
n , where ξ

T
n = {ξ1,n, ξ2,n,...,ξT,n} denotes a draw for the

whole regime sequence. The parameters for equations (A5) and (A6) can be drawn separately,

while the regime sequence ξTn requires a joint evaluation of the Hamilton filter. Finally, the

transition matrix Hn is drawn conditionally on the regime sequence.

Specifically, the sampling algorithm is described as follows.
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1. Sampling βn+1: Given αξt,n, σ
c
n, and ξ

T
n we transform the data:

c̃t =
ct − αξt,nxM,t

σcn
= β

xF,t
σcn

+ εt = βx̃t + εt.

The above is a regression with fixed coeffi cients β and standardized residual shocks.

Standard Bayesian methods may be used to draw the coeffi cients of the regression. We

assume a Normal conjugate prior β ∼ N (Bβ,0, Vβ,0)), so that the conditional (on αξt,n,

σcn, and ξ
T
n ) posterior distribution is given by

βn+1 ∼ N (Bβ,T , Vβ,T )

with Vβ,T =
(
V −1
β,0 + X̃ ′F X̃F

)−1

andBβ,T = Vβ,T

[
V −1
β,0Bβ,0 + X̃ ′F C̃

]
, where C̃ = (c̃1, ..., c̃T )′

and X̃F = (xF,1, ..., xF,T )′ and Bβ,0 and V −1
β,0 control the priors for the fixed coeffi cients

of the regression. Keeping in mind that the residuals have been normalized to have unit

variance, with flat priors, Bβ,0 = 0 and V −1
β,0 = 0 and Bβ,T and Vβ,T coincide with the

maximum likelihood estimates, conditional on the other parameters.

2. Sampling αi,n+1 for i = 1, 2: Given βn+1, σ
c
n, and ξ

T
n we transform the data:

c̃t =
ct − βn+1xF,t

σcn
= αξt

xM,t

σcn
+ εt = αξtx̃M,t + εt.

The above regression has standardized shocks and Markov-switching coeffi cients in the

transformed data. Using ξTn we can group all the observations that pertain to the same

regime i. Given the prior αi ∼ N (Bαi,0, Vαi,0)) for i = 1, 2 we use standard Bayesian

methods to draw αi from the conditional (on βn+1, σ
c
n, and ξ

T
n ) posterior distribution:

αi,n+1 ∼ N (Bαi,T , Vαi,T ) for i = 1, 2

where Vαi,T =
(
V −1
αi,0

+ X̃ ′M,iX̃M,i

)−1

andBαi,T = Vαi,T

[
V −1
αi,0

Bαi,0 + X̃ ′M,iC̃i

]
where C̃i and

X̃M,i collect all the observations for the transformed data for which regime i is in place.

The parameters Bαi,0 and V
−1
αi,0

control the priors for the MS coeffi cients of the regression:

αi ∼ N (Bαi,0, Vαi,0) for i = 1, 2. With flat priors, we have Bαi,0 = 0 and V −1
αi,0

= 0 and

Bαi,T and Vαi,T coincide with the maximum likelihood estimates, conditional on the other

parameters.

3. Sampling ri,n+1 for i = 1, 2: Given σrn and ξ
T
n we transform the data:

m̃pst =
mpst
σrn

= rξt
xM,t

σrn
+ εt = αξtx̃M,t + εrt .

The above regression has standardized shocks and Markov-switching coeffi cients in the

transformed data. Using ξTn we can group all the observations that pertain to the same
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regime i. Given the prior ri ∼ N (Bri,0, Vri,0)) for i = 1, 2 we use standard Bayesian

methods to draw ri from the conditional (σri and ξ
T
n ) posterior distribution:

ri,n+1 ∼ N (Bri,T , Vri,T ) for i = 1, 2

where Vri,T =
(
V −1
ri,0

+ X̃ ′M,iX̃M,i

)−1

and Bri,T = Vri,T

[
V −1
ri,0
Bri,0 + X̃ ′r,iR̃i

]
where R̃i and

X̃r,i collect all the observations for the transformed data for which regime i is in place.

The parameters Bri,0 and V
−1
ri,0
control the priors for the MS coeffi cients of the regression:

ri ∼ N (Bri,0, Vri,0) for i = 1, 2. With flat priors, we have Bri,0 = 0 and V −1
ri,0

= 0 and

Bri,T and Vri,T coincide with the maximum likelihood estimates, conditional on the other

parameters.

4. Sampling σcn+1: Given βn+1, αξt,n+1, and ξ
T
n we can compute the residuals of the regres-

sion:

c̃t = ct − βn+1xF,t − αξtxM,t = σcεt.

With the prior that σc has an inverse gamma distribution, σc ∼ IG (Q0, v0) , we use

Bayesian methods to draw σcn+1 from the conditional (on βn+1, αξt,n+1, and ξ
T
n ) posterior

inverse gamma distribution:

σn+1 ∼ IG (Qc
T , vT ) , vT = T + v0, QT = Q0 + Ec′Ec

where Ec is a vector containing the residuals, T is the sample size, and Q0 and v0 control

the priors for the standard deviation of the innovations: σc ∼ IG (Q0, v0) . The mean of a

random variable with distribution σc ∼ IG (Qc
T , v

c
T ) is QT/vT . With flat priors we have

Q0 = 0 and v0 = 0, and the mean of σc is therefore (Ec′Ec) /T , which coincides with the

standard maximum likelihood (MLE) estimate of σc, conditional on the other parameters.

5. Sampling σrn+1: Given rξt,n+1 and ξ
T
n we can compute the residuals of the regression:

m̃pst = mpst − rξtxM,t = σrεrt .

With the prior that σr has an inverse gamma distribution, σr ∼ IG (Q0, v0) , we use

Bayesian methods to draw σrn+1 from the conditional (on rξt,n+1 and ξ
T
n ) posterior inverse

gamma distribution:

σn+1 ∼ IG (Qr
T , vT ) , vT = T + v0, Q

r
T = Q0 + Er′Er

where E is a vector containing the residuals, T is the sample size, and Q0 and v0 control

the priors for the standard deviation of the innovations: σr ∼ IG (Q0, v0) . The mean of a

random variable with distribution σr ∼ IG (Qr
T , v

r
T ) is Qr

T/v
r
T . With flat priors we have

Q0 = 0 and v0 = 0, and the mean of σr is therefore (Er′Er) /T , which coincides with the

maximum likelihood (MLE) estimate of σr, conditional on the other parameters.
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6. Sampling ξTn+1: Given rξt,n, σ
r
n, βn, αξt,n, σ

c
n, and Hn, we can treat equations (A5) and

(A6) as a multivariate regression in which some parameters are restricted to zero. This

allows to obtain filtered probabilities for the regimes using the filter described in Hamilton

(1994). Following Kim and Nelson (1999) we then use a Multi-Move Gibbs sampling to

draw a regime sequence ξTn+1.

7. Sampling Hn+1: Given the draws for the MS state variables ξ
T
n+1, the posterior for the

transition probabilities does not depend on other parameters of the model and follows a

Dirichlet distribution if we assume a prior Dirichlet distribution.33 For each column of

Hn+1 the posterior distribution is given by:

Hn+1(:, i) ∼ D(aii + ηii,n+1, aij + ηij,n+1)

where ηij,n+1 denotes the number of transitions from state i to state j based on ξTn+1,

while aii and aij the corresponding priors. With flat priors, we have aii = 0 and aij = 0.

8. If r + 1 < R, where R is the desired number of draws, go to step 1, otherwise stop.

These steps are repeated until convergence to the posterior distribution is reached. We check

convergence by using the Raftery-Lewis Diagnostics for each parameter in the chain. See section

below. We use the draws obtained with the Gibbs sampling algorithm to characterize parameter

uncertainty in Table 2. The Gibbs sampling algorithm is used to generate a distribution for the

difference between the two means in the same manner it is used to generate a distribution for

any parameter. For each draw from the joint distribution of the model parameters, we compute

the difference and store it. We may then compute means and/or medians, and error bands, as

for any other parameter of interest.

Convergence Checks

The 90% credible sets are obtained making 2,000,000 draws from the posterior using the Gibbs

sampling algorithm. One in every one thousand draws is retained. We check convergence using

the methods suggested by Raftery and Lewis (1992) and Geweke (1992). For Raftery and

Lewis (1992) checks, we target 90% credible sets, with a 1% accuracy to be achieved with a

95% minimum probability. We initialize the Gibbs sampling algorithm making a draw around

the posterior mode. Sims and Zha (2006) point out that in Markov-switching models it is

important to first find the posterior mode and then use it as a starting point for the MCMC

algorithm due to the fact that the likelihood can have multiple peaks. The tables below pertain

to convergence of the Gibbs sampling algorithm.

33The Dirichlet distribution is a generalization of the beta distribution that allows one to potentially consider

more than 2 regimes. See e.g., Sims and Zha (2006).

9



Most Likely Regime Sequence

In this appendix we explain how to compute the most likely regime sequence. This most

likely regime sequence is based on our estimates for the breaks in cayMS and mps, and is

taken as given in the portfolio MS-VAR and the model estimation. Specifically, we choose

the particular regime sequence ξTn = {ξ̂1,n, ..., ξ̂T,n} that is most likely to have occurred, given
our estimated posterior mode parameter values for θ . This sequence is computed as follows.

Let P (ξt = i|Zt−1;θ) ≡ πit|t−1. First, we run Hamilton’s filter to get the vector of filtered

probabilities πt|t, t = 1, 2, ..., T . The Hamilton filter can be expressed iteratively as

πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

)
πt+1|t = Hπt|t

where ηt is a vector whose j-th element contains the conditional density p(ct|ξt = j, xM,t, xF,t;θ),

the symbol � denotes element by element multiplication, and 1 is a vector with all elements
equal to 1. The final term, πT |T is returned with the final step of the filtering algorithm. Then,

a recursive algorithm can be implemented to derive the other smoothed probabilities:

πt|T = πt|t �
[
H′
(
πt+1|T (÷) πt+1|t

)]
where (÷) denotes element by element division. To choose the regime sequence most likely to

have occurred given our parameter estimates, consider the recursion in the next to last period

t = T − 1:

πT−1|T = πT−1|T−1 �
[
H′
(
πT |T (÷) πT |T−1

)]
.

We first take πT |T from the Hamilton filter and choose the regime that is associated with the

largest probability, i.e., if πT |T = (.9, .1), where the first element corresponds to the proba-

bility of regime 1, we select ξ̂T = 1, indicating that we are in regime 1 in period T. We now

update πT |T = (1, 0) and plug into the right-hand-side above along with the estimated filtered

probabilities for πT−1|T−1, πT |T−1 and estimated transition matrix H to get πT−1|T on the left-

hand-side. Now we repeat the same procedure by choosing the regime for T − 1 that has the

largest probability at T − 1, e.g., if πT−1|T = (.2, .8) we select ξ̂T−1 = 2, indicating that we are

in regime 2 in period T − 1, we then update to πT−1|T = (0, 1), which is used again on the

right-hand-side now

πT−2|T = πT−2|T−2 �
[
H′
(
πT−1|T (÷) πT−1|T−2

)]
.

We proceed in this manner until we have a most likely regime sequence ξT for the entire sample

t = 1, 2, ..., T . Two aspects of this procedure are worth noting. First, it fails if the updated
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probabilities are exactly (.5, .5). Mathematically this is virtually zero. Second, note that this

procedure allows us to choose the most likely regime sequence by using the recursive formula

above to update the filtered probabilities sequentially from T to time t = 1. This allows us

to take into account the time dependence in the regime sequence as dictated by the transition

probabilities.

Book-to-Market Ratio and PDVs

We use the methods and assumptions of the previous subsection to obtain the present value

decomposition of the book to market ratio. Consider an MS-VAR:

Zt = cξt + AξtZt−1 + Vξtεt

where Zt is a column vector containing n variables observable at time t and ξt = 1, ...,m, with

m the number of regimes, evolves following the transition matrix H. If the MS-VAR has more

than one lag, the companion form can be used to recast the model as illustrated above.

The subappendix “conditional expectations and volatility” below shows how to compute

Et (Zt+s) = wqt+s|t, where

qit+s|t ≡ Et
(
Zt+s1ξt=i

)
= E

(
Zt+s1ξt=i|It

)
1′x = [0, ...1, ...0, 0, 0]′, mn = m ∗ n

and where It contains all the information that agents have at time t, including knowledge of
the regime in place, for the case where there are m regimes.

Now consider the formula from Vuolteenaho (1999):

θt =
∑∞

j=0 ρ
jEtrt+1+j +

∑∞
j=0 ρ

jEtft+1+j −
∑∞

j=0 ρ
jEte∗t+1+j

Given that our goal is to assess if assets with different risk profiles are affected differently by the

breaks in the long-term interest rates, we focus on the difference between the book-to-market

ratios. Specifically, given two portfolios x and y, we are interested in how the difference in their

book-to-market ratios, θx,t − θy,t, varies across the two regimes:

θx,t − θy,t︸ ︷︷ ︸
Spread in BM ratios

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of the difference in expected excess returns

−
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
PDV of the difference in expected earnings

If then we want to correct the spread in BM ratios by taking into account expected earnings,

we have:

θx,t − θy,t +
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
Spread in BM ratios corrected for earnings

=
∑∞

j=0 ρ
jEt (rx,t+1+j − ry,t+1+j)︸ ︷︷ ︸

PDV of the expected spread in excess returns

(A7)

11



The spread in excess returns, rxy,t ≡ rx,t − ry,t. Then the right hand side of (A7) can be
computed as:∑∞

j=0 ρ
jEt (rxy,t+1+j) =

∑∞
j=0 ρ

j1′rxywqt+1+j|t

= 1′rxyw (I − ρΩ)−1 [Ωqt|t + C (I − ρH)−1Hπt|t
]
.

Therefore, we have:

θ̃xy,t ≡ θ̃x,t − θ̃y,t +
∑∞

j=0 ρ
jEt
(
e∗x,t+1+j − e∗y,t+1+j

)︸ ︷︷ ︸
Spread in BM ratios corrected for earnings

= 1′rxyw (I − ρΩ)−1 [Ωqt|t + C (I − ρH)−1Hπt|t
]

(A8)

where we have used θ̃xy,t to define the spread in BM ratios corrected for earnings.

Similar formulas are used to compute risk premia for the individual portfolios. The premium

for a portfolio z coincides with the present discounted value of its excess returns:

premiaz,t︸ ︷︷ ︸
Premia

≡
∑∞

j=0 ρ
jEt (rz,t+1+j)︸ ︷︷ ︸

PDV of excess returns

= 1′rzw (I − ρΩ)−1 [Ωqt|t + C (I − ρH)−1Hπt|t
]
, (A9)

where 1′rz is a vector used to extract the PDV of excess returns from a vector containing the PDV

of all variables included in the VAR. In our VAR application, we compute πt|t to correspond

to the most likely regime sequence, as defined in the subsection below. This implies that the

vector πt|t assumes only one of two values, (1, 0)′ or (0, 1)′.

Regime Average We also compute the regime average value of θ̃xy,t. The regime average is

defined as:

θ̃
i

xy ≡ 1′rxyw (I − ρΩ)−1 [Ωqi + C (I − ρH)−1Hπi
]

where πi = 1i and qi ≡ [0, ..., µi, ..., 0] is a column vector that contains the conditional steady

state of for the mean value of Zt conditional on being in regime i, i.e., Ei (Zt) = µi =

(In − Ai)−1 ci, and zero otherwise. Recall that the conditional steady state, µi, is a vector

that contains the expected value of Zt conditional on being in regime i. Therefore, the vector

captures the values to which the variables of the VAR converge if regime i is in place forever.

Although none of our regimes are estimated to be absorbing states, this is still a good approx-

imation for regimes that can be expected to persist for prolonged periods of time. Note that

θ̃
i

xy is computed by conditioning on the economy being initially at Zt = µi and in regime i, but

taking into account that there might be regime changes in the future. Therefore, we can also

think about θ̃
i

xy as the expected value of θ̃xy,t, conditional on being in regime i today and on

the variables of the VAR being equal to the conditional steady state mean values for regime i.

Formally:

θ̃
i

xy = E
(
θ̃xy,t|ξt = i, Zt = µi

)
. (A10)
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Similarly, we can compute the regime average value of risk premia for an individual portfolio

z, premiaz,t:

premia
i

z ≡ 1′rzw (I − ρΩ)−1 [Ωqi + C (I − ρH)−1Hπi
]
. (A11)

Formulas (A8), (A9), (A10), and (A11) are used in the paper to produce Figure 4 and Table

5. For each draw of the VAR parameters from the posterior distribution, we can compute the

evolution of θ̃xy,t and individual portfolio premiaz,t, by using (A8) and (A9). Thus, we obtain

a posterior distribution for θ̃xy,t and premiaz,t. The medians of these posterior distributions are

reported as the blue solid lines in Figure 4. Similarly, for each draw of the VAR coeffi cients, we

compute θ̃
i

xy and the difference θ̃
1

xy − θ̃
2

xy. Thus, we obtain a posterior distribution for θ̃
i

xy and

for the difference θ̃
1

xy − θ̃
2

xy. The medians of the distribution of θ̃
i

xy and premia
i

z for i = 1, 2,

are reported in Figure 4 (red dashed line). Table 5 reports the median and the 68% posterior

credible sets both for the distribution of θ̃
i

xy, for i = 1, 2, and for the difference in these across

regimes, θ̃
1

xy − θ̃
2

xy. Finally, the last row of Table 5 reports the percentage of draws for which

θ̃
1

xy − θ̃
2

xy > 0 and premia
1

z − premia
2

z > 0 as the probability that risk premia are lower in

the high asset valuation/low interest rate regime than they are in the low asset valuation/high

interest rate regime.

Variable Selection for VARs to Compute PDV of Risk Premia

We start with a series of fixed regressors that are relevant for predicting market excess returns

or the return of the spread portfolios. To limit the size of the MS-VAR, we then use the

Akaike information criterion (AIC) to decide whether to include some additional regressors.

Specifically, we compute the AIC for the equation(s) that correspond(s) to the return(s) that

we are trying to predict. We then choose the specification that minimizes the AIC.

Here are the details:

1. MS-VAR for the Market excess return:

Fixed regressors (all lagged): Market excess return, inverse valuation ratio based on cayMS.

The inverse valuation ratio is included because it represents a measure of asset valuation

that can predict future stock market returns. Note that given that we are conditioning to

the regime sequence obtained when estimating cayMS, the intercept for the corresponding

equation will adjust in a way to reflect the low frequency breaks identified above.

Possible additional variables to be chosen for the estimation based on the AIC: Value

(small) spread (log-difference in the book to market ratio of the small value portfolios

and the book to market ratio of the small growth portfolios), Real FFR, term yield

spread, four of the five Fama and French factors (SMB, HML, RMW, CMA), cay (based
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on PCE, available on Martin Lettau’s website.) Note that we do not include the market

excess return from Fama and French (MKTMINRF) as a possible additional regressor

because our dependant variable is the excess market return itself. Therefore, this variable

is automatically included in the MS-VAR.

Additional regressors selected based on the AIC: Value Spread, and SMB and HML factors

from Fama and French.

2. MS-VAR for (a) Momentum return spread: The difference between the excess return of the

extreme winner (M10) portfolio and the excess return of the extreme loser (M1) portfolio;

(b) Value return spread (S1): The difference between the excess return of the small (size

1) high BM portfolio and the excess return of the small (size 1) low BM portfolio; (c)

Value return spread (S2): The difference between the excess return of the size 2 high BM

portfolio and the excess return of the small size 2 low BM portfolio.

Fixed regressors (all lagged): (a) Momentum return spread; (b) Value return spread (S1);

(c) Value return spread (S2); (d) Momentum BM spread: The difference between the

logarithm of the BM ratio of the extreme winner (M10) portfolio and the logarithm of the

BM ratio of the extreme loser (M1) portfolio; (e) Value BM spread (S1): The difference

between the logarithm of the BM ratio of the small (size quintile 1) high book-market

portfolio and the logarithm of the BM ratio of the small (size 1) low book-market portfolio;

(f) Value BM spread (S2): The difference between the logarithm of the BM ratio of the

size quintile 2 high book-market portfolio and the logarithm of the BM ratio of the size

2 low book-market portfolio.

Possible additional variables to be chosen for the estimation based on the AIC: Real FFR

computed as the difference between FFR and Inflation, excess return of small growth

portfolio, excess return of small value portfolio, five Fama-French factors (SMB, HML,

RMW, CMA, MKTMINRF.)

Additional regressors selected based on the AIC: Real FFR and excess return of the small

value portfolio.
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Estimation of the MS-VAR

In this appendix we provide details on the estimation of the MS-VAR. Given that we take the

regime sequence as given, we need only estimate the transition matrix and the parameters of

the MS-VAR across the two regimes. The model is estimated by using Bayesian methods with

flat priors on all parameters. As a first step, we group all the observations that belong to the

same regime. Conditional on a regime, we have a fixed coeffi cients VAR. We can then follow

standard procedures to make draws for the VAR parameters as follows.

Rewrite the VAR as

Y
T×n

= XAξt
(T×k)(k×n)

+ ε
T×n

, ξt = 1, 2

εt ∼ N
(
0,Σξt

)
where Y = [Z1,..., ZT ]′ , the t-th row of X is Xt =

[
1, Z ′t−1, Z

′
t−2

]
, Aξt =

[
cξt , A1,ξt , A2,ξt

]′
, the

t-th row of ε is εt, and where Σξt = VξtV
′
ξt
. If we specify a Normal-Wishart prior for Aξt and

Vξt:

Σ−1
ξt
∼ W

(
S−1

0 /v0, v0

)
vec
(
Aξt |Σξt

)
∼ N

(
vec (B0) ,Σξt ⊗N

−1
0

)
where E

(
Σ−1
ξt

)
= S−1

0 , the posterior distribution is still in the Normal-Wishart family and is

given by

Σ−1
ξt
∼ W

(
S−1
T /vT , vT

)
vec
(
Aξt |Σξt

)
∼ N

(
vec (BT ) ,Σξt ⊗N

−1
T

)
Using the estimated regime sequence ξTn we can group all the observations that pertain to the

same regime i. Therefore the parameters of the posterior are computed as

vT = Ti + v0, NT = X ′iXi +N0

BT = N−1
T

(
N0B0 +X ′iXiB̂MLE

)
ST =

v0

vT
S0 +

Ti
vT

Σ̂MLE +
1

vT

(
B̂MLE − B̂0

)′
N0N

−1
T X ′iXi

(
B̂MLE − B̂0

)
B̂MLE = (X ′iXi)

−1
(X ′iYi) , Σ̂MLE =

1

Ti

(
Yi −XiB̂MLE

)′ (
Yi −XiB̂MLE

)
,

where Ti, Yi, Xi denote the number and sample of observations in regime i. We choose flat priors

(v0 = 0, N0 = 0) so the expressions above coincide with the MLE estimates using observations

in regime i:

vT = Ti, NT = X ′iXi, BT = B̂MLE, ST = Σ̂MLE.
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Armed with these parameters in each regime, we can make draws from the posterior distribu-

tions for Σ−1
ξt
and Aξt in regime i to characterize parameter uncertainty about these parameters.

Given that we condition the MS-VAR estimates on the most likely regime sequence, ξTn ,

for cayMS, it is still of interest to estimate the elements of the transition probability matrix

for the MS-VAR parameters, HA, conditional on this regime sequence. Because we impose

this regime sequence, the posterior of HA only depends on ξTn and does not depend on other

parameters of the model. The posterior has a Dirichlet distribution if we assume a prior Dirichlet

distribution.34 For each column of HA the posterior distribution is given by:

HA(:, i) ∼ D(aii + ηii,r+1, aij + ηij,r+1)

where ηij,r+1 denotes the number of transitions from regime i to regime j based on ξTn , while

aii and aij the corresponding priors. With flat priors, we have aii = 0 and aij = 0. Armed with

this posterior distribution, we can characterize uncertainty about HA. Note that the posterior

HA will be in general different from the posterior distribution of H because the former is based

on a particular regime sequence ξTn , while the latter reflects the entire posterior distribution for

ξTn . The estimated transition matrix H
A can in turn be used to compute expectations taking

into account the possibility of regime change (see the next subsection).

Conditional Expectations and Volatility

In this appendix we explain how expectations and economic uncertainty are computed for

variables in the MS-VAR. More details can be found in Bianchi (2016). Consider the following

first-order MS-VAR:

Zt = cξt + AξtZt−1 + Vξtεt, εt ∼ N (0, I) (A12)

and suppose that we are interested in E0 (Zt) = E (Zt|I0) with I0 being the information set
available at time 0. The first-order VAR is not restrictive because any VAR with l > 1 lags can

be rewritten as above by using the first-order companion form, and the methods below applied

to the companion form.

Let n be the number of variables in the VAR of the previous Appendix section. Let m be

the number of Markov-switching states. Define the mn× 1 column vector qt as:

qt
mn×1

=
[
q1′
t , ..., q

m′
t

]′
where the individual n × 1 vectors qit = E0

(
Zt1ξt=i

)
≡ E

(
Zt1ξt=i|I0

)
and 1ξt=i is an indicator

variable that is one when regime i is in place and zero otherwise. Note that:

qit = E0

(
Zt1ξt=i

)
= E0 (Zt|ξt = i)πit

34The Dirichlet distribution is a generalization of the beta distribution that allows one to potentially consider

more than 2 regimes. See e.g., Sims and Zha (2006).
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where πit = P0 (ξt = i) = P (ξt = i|I0). Therefore we can express µt = E0 (Zt) as:

µt = E0 (Zt) =
∑m

i=1 q
i
t = wqt

where the matrix w
n×mn

= [In, ..., In] is obtained placing side by side m n-dimensional identity

matrices. Then the following proposition holds:

Proposition 1 Consider a Markov-switching model whose law of motion can be described by
(A12) and define qit = E0

(
Zt1ξt=i

)
for i = 1...m. Then qjt = cjπ

j
t +
∑m

i=1 Ajq
i
t−1hji.

It is then straightforward to compute expectations conditional on the information available

at a particular point in time. Suppose we are interested in µt+s|t ≡ Et (Zt+s), i.e. the expected

value for the vector Zt+s conditional on the information set available at time t. If we define:

qt+s|t =
[
q1′
t+s|t, ..., q

m′
t+s|t

]′
where qit+s|t = Et

(
Zt+s1ξt=i

)
= Et (Zt+s|ξt = i) πit+s|t, where π

i
t+s|t ≡ P

(
ξt+s = i|It

)
, we have

µt+s|t = Et (Zt+s) = wqt+s|t, (A13)

where for s ≥ 1, qt+s|t evolves as:

qt+s|t = Cπt+s|t + Ωqt+s−1|t (A14)

πt+s|t = Hπt+s−1|t (A15)

with πt+s|t =
[
π1
t+s|t, ..., π

m
t+s|t

]′
, Ω = bdiag (A1, ..., Am) (H⊗ In) , and C

mn×m
= bdiag (c1, ..., cm) ,

where e.g., c1 is the n× 1 vector of constants in regime 1, ⊗ represents the Kronecker product
and bdiag is a matrix operator that takes a sequence of matrices and use them to construct a

block diagonal matrix.

Similar formulas hold for the second moments. Before proceeding, let us define the vec-

torization operator ϕ (X) that takes the matrix X as an input and returns a column vector

stacking the columns of the matrix X on top of one another. We will also make use of the

following result: ϕ (X1X2X3) = (X ′3 ⊗X1)ϕ (X2).

Define the vector n2m× 1 column vector Qt as:

Qt =
[
Q1′
t , ..., Q

m′
t

]′
where the n2 × 1 vector Qi

t is given by Q
i
t = ϕ

[
E0

(
ZtZ

′
t1ξt=i

)]
. This implies that we can

compute the vectorized matrix of second moments Mt = ϕ [E0 (ZtZ
′
t)] as:

Mt = ϕ [E0 (ZtZ
′
t)] =

∑m
i=1 Q

i
t = WQt

where the matrix W = [In2 , ..., In2 ] is obtained placing side by side m n2-dimensional identity

matrices. We can then state the following proposition:
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Proposition 2 Consider a Markov-switching model whose law of motion can be described

by (A12) and define Qi
t = ϕ

[
E0

(
ZtZ

′
t1ξt=i

)]
, qit = E0

[
Zt1ξt=i

]
, and πit = P0 (ξt = i) , for

i = 1...m. Then Qj
t =

[
ĉcj + V̂ V jϕ [Ik]

]
πjt +

∑m
i=1

[
ÂAjQ

i
t−1 + D̂ACjq

i
t−1

]
hji, where ĉcj =

(cj ⊗ cj) , V̂ V j = (Vj ⊗ Vj) , ÂAj = (Aj ⊗ Aj) , and D̂ACj = (Aj ⊗ cj) + (cj ⊗ Aj) .

It is then straightforward to compute the evolution of second moments conditional on the

information available at a particular point in time. Suppose we are interested in Et
(
Zt+sZ

′
t+s

)
,

i.e. the second moment of the vector Zt+s conditional on the information available at time t.

If we define:

Qt+s|t =
[
Q1′
t+s|t, ..., Q

m′
t+s|t

]′
whereQi

t+s|t = ϕ
(
Et
(
Zt+sZ

′
t+s1ξt=i

))
= ϕ

(
Et
(
Zt+sZ

′
t+s|ξt = i

))
πit+s|t, we obtain ϕ

(
Et
(
Zt+sZ

′
t+s

))
=

WQt+s|t.Using matrix algebra we obtain:

Qt+s|t = ΞQt+s−1|t + D̂ACqt+s−1|t + V̂ cπt+s|t (A16)

qt+s|t = Cπt+s|t + Ωqt+s−1|t, πt+s|t = Hπt+s−1|t. (A17)

where

Ξ = bdiag(ÂA1, ..., ÂAm)(H⊗ In2), V̂ c =
[
V̂ V + ĉc

]
, ĉc = bdiag(ĉc1, ..., ĉcm),

V̂ V = bdiag(V̂ V 1ϕ [Ik] , ..., V̂ V mϕ [Ik]), D̂AC = bdiag(D̂AC1, ..., D̂ACm)(H⊗ In).

With the first and second moments at hand, it is then possible to compute the variance s

periods ahead conditional on the information available at time t:

ϕ [Vt (Zt+s)] = Mt+s|t − ϕ
[
µt+s|tµ

′
t+s|t

]
, (A18)

where Mt+s|t = ϕ
(
Et
(
Zt+sZ

′
t+s

))
=
∑m

i=1Q
i
t+s|t = WQt+s|t.

To report estimates of (A13) and (A18) we proceed as follows. Note that µt+s|t = Et (Zt+s) =

wqt+s|t and Mt+s|t depend only on qt+s|t and Qt+s|t. Furthermore we can express (A14)-(A15)

and (A16)-(A17) in a compact form as

Q̃t+s|t = Ξ̃sQ̃t|t where Ξ̃ =

 Ξ D̂AC V̂ cH
Ω CH

H

 , (A19)

where Q̃t+s|t =
[
Q′t+s|t, q

′
t+s|t, π

′
t+s|t

]′
. Armed with starting values Q̃t|t =

[
Q′t|t, q

′
t|t, π

′
t|t

]′
we

can then compute (A13) and (A18) using (A19). To obtain π′t|t recall that we assume that

It includes knowledge of the regime in place at time t, the data up to time t, Zt, and the

VAR parameters for each regime. Given that we assume knowledge of the current regime,

πit|t ≡ P (ξt = i|It) can only assume two values, 0 or 1. As a result π′t|t will be (1, 0) or (0, 1). As
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a result, and given Zt ∈ It, q′t|t =
[
q1′

t|t, q
2′

t|t

]′
with qit|t ≡ Et (Zt|ξt = i)πit|t, will be [Z ′t · 1, Z ′t · 0]′

or [Z ′t · 0, Z ′t · 1]′. Analogously, Q′t|t =
[
Q1′
t|t, Q

2′
t|t

]′
with Qi

t|t ≡ ϕ (Et (ZtZ
′
t|ξt = i))πit|t will be[

ϕ (ZtZ
′
t · 1)′ , ϕ (ZtZ

′
t · 0)′

]′
or
[
ϕ (ZtZ

′
t · 0)′ , ϕ (ZtZ

′
t · 1)′

]′
.

Mean Square Stability

We consider the following MS-VAR model with n variables and m = 2 regimes:

Zt = cξt + A1,ξtZt−1 + A2,ξtZt−2 + Vξtεt, εt ∼ N (0, I) (A20)

where Zt is an n × 1 vector of variables, cξt is an n × 1 vector of constants, Al,ξt for l = 1, 2

is an n × n matrix of coeffi cients, VξtV ′ξt is an n × n covariance matrix for the n × 1 vector of

shocks εt. The process ξt controls the regime that is in place at time t and evolves based on

the transition matrix H.

When estimating the MS-VAR we require the model to be mean square stable. Mean square

stability is defined as follows:

Definition 1 An n-dimensional process Zt is mean square stable if and only if there exists an
n-vector µ and an n2-vector M such that:

1) limt→∞ E0 [Zt] = µ

2) limt→∞ E0 [ZtZ
′
t] = M

for any initial Z0 and ξ0.

Mean-square-stability requires that first and second moments converge as the time horizon

goes to ∞. Under the assumptions that the Markov-switching process ξt is ergodic and that
the innovation process εt is asymptotically covariance stationary, Costa, Fragoso, and Marques

(2004) show that a multivariate Markov-switching model as the one described by (A20) is mean-

square stable if and only if it is asymptotically covariance stationary. Both conditions hold for

the models studied in this paper and are usually verified in economic models.

Costa, Fragoso, and Marques (2004) show that in order to establish MSS of a process

such as the one described by (A20), it is enough to check MSS stability of the correspondent

homogeneous process: Zt = AξtZt−1. In this case, formulas for the evolution of first and second

moments simplify substantially: qt = Ωqt−1 and Qt = ΞQt−1. Let rσ (X) be the operator that

given a square matrix X computes its largest eigenvalue. We then have:

Proposition 3 A Markov-switching process whose law of motion can be described by (A20) is
mean square stable if and only if rσ (Ξ) < 1.

Mean square stability allows us to compute finite measures of uncertainty as the time horizon

goes to infinity. Mean square stability also implies that shocks do not have permanent effects

on the variables included in the MSVAR.
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Conditional Steady State

Consider a MS-VAR:

Zt = cξt + AξtZt−1 + Vξtεt

where Zt is a column vector containing n variables observable at time t and ξt = 1, ...,m, with

m the number of regimes, evolves following the transition matrix H. If the MS-VAR has more

than one lag, the companion form can be used to recast the model as illustrated above.

The conditional steady state for the mean corresponds to the expected value for the vector

Zt conditional on being in a particular regime. This is computed by imposing that a certain

regime is in place forever:

Ei (Zt) = µi = (In − Ai)−1 ci (A21)

where In is an identity matrix with the appropriate size. Note that unless the VAR coeffi cients

imply very slow moving dynamics, after a switch from regime j to regime i, the variables

of the VAR will converge (in expectation) to Ei (Zt) over a finite horizon. If there are no
further switches, we can then expect the variables to fluctuate around Ei (Zt). Therefore, the
conditional steady states for the mean can also be thought as the values to which the variables

converge if regime i is in place for a long enough period of time.

The conditional steady state for the standard deviation corresponds to the standard devi-

ation for the vector Zt conditional on being in a particular regime. The conditional standard

deviations for the elements in Zt are computed by taking the square root of the main diagonal

elements of the covariance matrix Vi (Zt) obtained imposing that a certain regime is in place
forever:

ϕ (Vi (Zt)) = (In2 − Ai ⊗ Ai)−1 ϕ
(
VξtV

′
ξt

)
(A22)

where In2 is an identity matrix with the appropriate size, ⊗ denotes the Kronecker product,
and the vectorization operator ϕ (X) takes a matrix X as an input and returns a column vector

stacking the columns of the matrix X on top of one another.

Dynamic Macro-Finance Model: Macro block

This section reports technical details about the MS-DSGE model.

Constant Gain Adaptive Learning

Suppose the representative macro agent believes that inflation evolves according to an AR(1)

process:

πt = α + φπt−1 + ηt. (A23)
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Macro agents undertake an adaptive learning process whereby they estimate b ≡ (α, φ)′ from

past data following

Rt = Rt−1 + γt
(
xt−1x

′
t−1 −Rt−1

)
bt = bt−1 + γtR

−1
t xt−1

(
πt − b′t−1xt−1

)
(A24)

where xt = (1, πt)
′. Assume that the recursion is started at some point in the distant past.

The sequence of gains 0 < γt < 1 determines the speed of updating when faced with an

inflation surprise at time t. For γt = 1/t the algorithm represents a recursive formulation of an

ordinary least squares estimation that uses all available data until time t with equal weights

(see Evans and Honkapohja (2001)). By contrast, for constant γt = γ, it represents a constant-

gain learning algorithm with exponentially decaying weights on past observations. This implies

that the agent gives more weight to the more recent observations, possibly to guard against

parameter instability, as in this model. This specification simplifies if we assume that agents

are only uncertain about the long term value of inflation, but not its persistence. If agents only

learn about α and the recursion has started in the distant past we have:

Rt = 1 if Rt−1 = 1 (A25)

αmt = αmt−1 + γt
(
πt − φπt−1 − αmt−1

)
(A26)

To see the above, note that if φ were known, the agent would estimate α by running a regression

of πt − φπt−1 on a constant, or a vector or ones. So xt = 1 in every period and Rt = Rt−1 +

γt
(
xt−1x

′
t−1 −Rt−1

)
= Rt = Rt−1 + γt (1−Rt−1) . Starting value for R = R0 => R1 =

R0 + γ (1−R0). Continuing to iterate, this converges to 1 no matter what R0 as long as

0 < γt < 1. Set xt = R1 = 1 in (A24) to get (A26).

With constant gain learning, the variable γt is a constant parameter that we denote γ. This

implies:

αmt = αmt−1 + γ
(
πt − φπt−1 − αmt−1

)
. (A27)

Hereafter we assume that expectations are formed using a constant gain adaptive rule.

Perceived trend inflation, πt, is defined as the lim
h→∞

Emt (πt+h). Observe that, since expecta-

tions obey the constant gain adaptive rule, πt is not constant but varies with information at

time t. This can be seen by taking expectations on both sides of equation A23 to find,

πt = lim
h→∞

Emt (πt+h)

= lim
h→∞

Emt (αmt + φπt+h−1)

= lim
h→∞

Emt
(
αmt + φαmt + φ2αmt + ...φh−1αmt + φhπt

)
= αmt / (1− φ) ,
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where we plug in the value of αmt that agents perceive at t as the last step. In the above we

have used the standard notion of “anticipated utility,”whereby beliefs at time t about αmt are

perceived by the agent to hold forever in the future; i.e., the agent does not recognize that

she will update her estimate of αmt in future periods. With this, the AR(1) process implies a

one-to-one mapping between the perceived constant αmt and perceived trend inflation πt.Using

the relation between πt and αmt , we get:

αmt = (1− φ) πt =>

(1− φ)πt = (1− φ) πt−1 + γ (πt − φπt−1 − (1− φ) πt−1) =>

πt = πt−1 + γ (1− φ)−1 (πt − φπt−1 − (1− φ) πt−1) , (A28)

where the second equation above follows from (A27).

Finally, the unconditional mean of inflation as perceived by the agent is estimated recursively

under the constant gain adaptive rule and so depends on the sample of data she uses at time t

to estimate α. Denote this information It. Taking perceived unconditional means on both sides
of (A23), we find that the unconditional mean of inflation as perceived by the agent at time t

is the same as perceived trend inflation:

Em (πt|It) = α + φEm (πt|It) => EmTmt (πt) = πt = αmt / (1− φ) .

Signal About the Inflation Target In our model, we combine the constant gain learning

algorithm described above with a signal about the central bank’s inflation target, thereby

allowing beliefs to be partly shaped by additional information the agent receives about the

target. This signal could reflect the opinion of experts (as in MN), or a credible central bank

announcement. If we use αmCGt and πCGt to denote the beliefs implied by the constant gain

learning described above, we obtain modified updating rules for αmt and πt that are a weighted

averages of two terms:

αmt =
(
1− γT

)αmt−1 + γ
(
πt − φπt−1 − αmt−1

)︸ ︷︷ ︸
αmCGt

+ γT
[
(1− φ) πTξt

]
.

πt =
(
1− γT

)πt−1 + γ (1− φ)−1 (πt − φπt−1 − (1− φ) πt−1)︸ ︷︷ ︸
πCGt

+ γT
[
πTξt

]
.

The first terms in square brackets, αmCGt and πCGt , are the recursive updating rules implied

by constant gain learning as in (A27) and (A28). These terms are combined with two terms

that involve the central bank’s current inflation target πTξt. Note that, since α
m
t = (1− φ) πt
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under the autoregressive model, the term (1− φ) πTξt is simply the value of α
m
t that would arise

if πt = πTξt . If γ
T = 1, the signal is completely informative and the agent’s belief about trend

inflation is the same as the inflation target. If γT = 0, the signal is completely uninformative

and the agent’s belief about trend inflation depends only on the learning algorithm. Thus,

the resulting laws of motion for the beliefs are a weighted average of what would arise under

constant gain learning and a term reflecting information about the current inflation target.

Expected inflation

Expected inflation from the point of view of the agents in the model is formed based on equation

A23 and their beliefs about the constant α, i.e., αmt . Specifically, we have

Emt [πt+1] = αmt + φπt

Emt [πt+2] = αmt + φαmt + φ2πt

Emt [πt+3] = αmt + φαmt + φ2αmt + φ3πt

Emt [πt+4] = αmt + φαmt + φ2αmt + φ3αmt + φ4πt

where, in line with the learning literature, we have assumed that agents do not take into account

that their beliefs might change in the future (i.e., they do not have anticipated utility).

Cumulative inflation over the next year is:

Emt [πt,t+4] =
[
4 + 3φ+ 2φ2 + φ3

]
αmt +

[
φ+ φ2 + φ3 + φ4

]
πt

=
[
4 + 3φ+ 2φ2 + φ3

]
(1− φ)πt +

[
φ+ φ2 + φ3 + φ4

]
πt

where in the second row we have used the fact that πt = αmt / (1− φ) . The general formulas

are:

Emt [πt+h] = αmt + φαmt + ...+ φh−1αmt + φhπt

Emt [πt,t+h] = (1/h)
∑h

i=1 E
m
t [πt+i]

Using matrix algebra, we can express the perceived law of motion for inflation as:[
αmt
πt+1

]
=

[
1 0
1 φ

] [
αmt
πt

]
+

[
0
ηt+1

]
This is equivalent to: [

πt
πt+1

]
=

[
1 0

1− φ φ

]
︸ ︷︷ ︸

Ω

[
πt
πt

]
︸ ︷︷ ︸
eππSt

+

[
0
ηt+1

]

where once again we have used πt = αmt / (1− φ) and the matrix eππ is used to extract both

inflation πt and the perceived long term inflation πt from the state vector St. The latter
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formulation is used for the solution of the model since it is πt rather than αmt that appears in

the state space representation of the model. It follows that

Emt [πt,t+h] = eπΩ (I − Ω)−1 (I − Ω4
)

(eππSt)

where the vector eπ is used to extract inflation.

Long-run Monetary Neutrality

Suppose the central bank were to permanently change the inflation target. Would this have a

long-run influence on real activity? In a model with rational expectations, the relation between

inflation and the output gap is controlled by a New-Keynesian Phillips curve:

πt − πt = βEt [πt+1 − πt] + κ
[
yt−1 − y∗t−1

]
where πt denotes the long term value of inflation that coincides, under rational expectations,

with the central bank’s inflation target πTξt . Taking unconditional expectation on both sides,

we have:

E [πt − πt] = βE [πt+1 − πt] + κE
[
yt−1 − y∗t−1

]
E [πt]− E [πt] = βE [πt]− βE [πt] + κE

[
yt−1 − y∗t−1

]
0 = κE

[
yt−1 − y∗t−1

]
where we have used the fact that πt = E [πt] = πTξt. Therefore, we have: E

[
y∗t−1

]
= E [yt−1] = 0.

Thus in the long-run, real output is expected to equal the natural rate, and monetary policy is

neutral.

With sticky expectations, long-term neutrality still holds. In a rational expectations model,

the econometrician’s beliefs and the agent’s beliefs about trend inflation are always aligned,

even in the short-run. These beliefs in turn align with the central bank’s target inflation. In

the constant gain adaptive world, the agent’s beliefs about long-term inflation, πt, align with

the econometrician’s beliefs and with the central bank’s inflation target only in the long-run.

But, even with sticky expectations, if the central bank permanently changes the target, we

still have limh→∞ Et [πt+h] = E [πt] = πTξt = E [πt], where Et [·] denotes the expectations of the
econometrician. Then,

πt − πt = βφ [πt − πt] + κ
[
yt−1 − y∗t−1

]
E [πt] = E [πt] +

κ

1− βφE
[
yt−1 − y∗t−1

]
0 = κE

[
yt−1 − y∗t−1

]
.

Therefore, we again have: E
[
y∗t−1

]
= E [yt−1] = 0.
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Solution and Estimation of the Macro Block

We can rewrite the system of equations as:

yt = %yt−1 − σ [it − φπt − (1− φ)πt − r] + dt (A29)

πt = πt +
κ

1− βφ
[
yt−1 − y∗t−1

]
(A30)

it −
(
r + πTξt

)
=

(
1− ρi,ξt

) [
ψπ,ξt

(
πt − πTξt

)
+ ψ∆y,ξt

(yt − yt−1)
]

(A31)

+ρi,ξt

[
it−1 −

(
r + πTξt

)]
+ σiεi,t (A32)

r∗t = − (1/σ)
(
y∗t − δy∗t−1 − dt

)
+ r (A33)

y∗t = ρy∗y
∗
t−1 + σy∗εy∗,t (A34)

πt =
[
1− γT

] [
πt−1 + γ (1− φ)−1 (πt − φπt−1 − (1− φ) πt−1)

]
+ γTπTξt(A35)

dt = ρddt−1 + σdεd,t (A36)

State space and parameter vectors

Define the parameter vectors θξt and θ
c
ξt
as

θξt =
[
%, σ, β, κ, ψπ,ξt , ψ∆y,ξt

, ρi,ξt , ρy∗ , γ
T , γ, φ, ρd

]′
θcξt =

[
πTξt , r

]′
and the state vector St and the vector of Gaussian shocks εt as

St = [yt, y
∗
t , πt, it, r

∗
t , πt, dt]

′

εt =
[
εi,t, εy∗t , εd,t

]′
, εt ∼ N (0, I)

Let the matrix Q = diag (σi, σy∗ , σd) be a square matrix with the shock standard deviations

on the main diagonal. Conditional on each regime, the system of equations can be rewritten

using matrix notation:

Γ0

(
θξt
)
St = Γc

(
θcξt

)
+ Γ1

(
θξt
)
St−1 +Qεt

Note that the vector Γc

(
θcξt

)
includes the inflation target for the corresponding regime.

Inverting the matrix Γ0

(
θξt
)
, we obtain the solution of the model as MS-VAR:

St = C
(
θcξt , θξt

)
+ T (θξt)St−1 +R(θξt)Qεt

where C
(
θcξt , θξt

)
= Γ−1

0

(
θξt
)

Γc

(
θcξt

)
, T (θξt) = Γ−1

0

(
θξt
)

Γ1

(
θξt
)
, and R(θξt) = Γ−1

0

(
θξt
)
.

The solution of the model can be combined with an observation equation to estimate the

model. Given that we know the regime sequence, we can estimate the model with a standard
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Kalman filter algorithm. The only caveat is that the associated transition equation (A38),

below, varies over time. We thus have the following state space representation:

Xt = D + Z [S ′t, yt−1]
′
+ Uvt (A37)

St = C
(
θcξt , θξt

)
+ T (θξt)St−1 +R(θξt)Qεt (A38)

vt ∼ N (0, I) (A39)

where vt is a vector of observation errors and U is a diagonal matrix with the standard deviations

of the observation errors on the main diagonal. As said before, we condition on a regime

sequence ξt, so the transition equation (A38) in at each point in time is known.

In our estimation, we use four observables: Real GDP per capita growth, Inflation, Federal

Funds rate, and the mean of the Michigan survey one-year-ahead inflation forecasts. All vari-

ables are annualized. We have observation errors on all variables because we have 3 shocks for

four observables.

Thus, the vector of data Xt is defined as:
∆GDP
Inflation
FFR

E (Inflation)

 =


∆GDP

0
0
0

+


4yt − 4yt−1

4πt
4it[

4 + 3φ+ 2φ2 + φ3
]

(1− φ)πt +
[
φ+ φ2 + φ3 + φ4

]
πt

+


vyt
vπt
vft
vet


where in the last row we have used the fact that expectations for an agent in the model is:

Emt [πt,t+4] =
[
4 + 3φ+ 2φ2 + φ3

]
αmt +

[
φ+ φ2 + φ3 + φ4

]
πt

=
[
4 + 3φ+ 2φ2 + φ3

]
(1− φ) πt +

[
φ+ φ2 + φ3 + φ4

]
πt

The mapping from the variables of the model to the observables can be written using matrix

algebra. The vector D is then:

D =


∆GDP

0
0
0

 .
The matrix Z is then:

Z =


4 0 0 0 0 0 0 0 −4
0 0 4 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0

[
φ+ φ2 + φ3 + φ4

]
0 0 0 0

[
4 + 3φ+ 2φ2 + φ3

]
(1− φ) 0


Note that the matrix Z loads detrended output (yt) and lagged detrended output (yt−1).
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The likelihood is computed with the Kalman filter and then combined with a prior distribu-

tion for the parameters to obtain the posterior. As a first step, a block algorithm is used to find

the posterior mode, while a Metropolis-Hastings algorithm is used to draw from the posterior

distribution.

Draws from the posterior are obtained using a standard Metropolis-Hastings algorithm

initialized around the posterior mode. When working with models whose posterior distribution

is very complicated in shape it is very important to find the posterior mode. Here are the key

steps of the Metropolis-Hastings algorithm:

• Step 1: Draw a new set of parameters from the proposal distribution: ϑ ∼ N
(
θn−1, cΣ

)
• Step 2: Compute α (θm;ϑ) = min

{
p (ϑ) /p

(
θm−1

)
, 1
}
where p (θ) is the posterior evalu-

ated at θ.

• Step 3: Accept the new parameter and set θm = ϑ if u < α (θm;ϑ) where u ∼ U ([0, 1]),

otherwise set θm = θm−1

• Step 4: If m ≤ nsim, stop. Otherwise, go back to step 1

The matrix Σ corresponds to the inverse of the Hessian computed at the posterior mode

θ. The parameter c is set to obtain an acceptance rate of around 30%. We use four chains of

540, 000 draws each (1 every 200 draws is saved). Convergence is checked by using the Brooks-

Gelman-Rubin potential reduction scale factor using within and between variances based on

the four multiple chains used in the paper.

The only aspect of the estimation that it is not traditional is that the transition equation

(A38) varies over time. However, given that we estimate the model fixing the regime sequence,

we can easily modify the standard Kalman filter to handle this change. Specifically, the modified

Kalman filter is described as follows.

Given a sequence of regimes ξT = ξ1...ξT , the Kalman filter involves the following steps for

each t = 1...T :

1. Prediction:

St|t−1 = C
(
θcξt , θξt

)
+ T (θξt)St−1|t−1 (A40)

Pt|t−1 = T (θξt)Pt−1|t−1T (θξt)
′ +R(θξt)Q

2R(θξt)
′ (A41)

ηt|t−1 = Xt −Xt|t−1 = Xt −D − Z ∗ St|t−1 (A42)

ft|t−1 = ZPt|t−1Z
′ + U2 (A43)
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2. Updating

St|t = St|t−1 +Ktηt|t−1 (A44)

Pt|t = Pt|t−1 −KtZPt|t−1 (A45)

where Kt = Pt|t−1Z
′f−1
t|t−1 is the Kalman gain.

The log-likelihood lnL is then obtained as:

lnL = −.5
∑T

t=1 ln
(
2πft|t−1

)
− .5

∑T
t=1 η

′
t|t−1f

−1
t|t−1ηt|t−1.

Details about the solution. The matrices used to write the model in state space form are

described below.

Equations:

yt = %yt−1 − σ [it − φπt − (1− φ) πt − r] + dt

πt = πt +
κ

1− βφ
[
yt−1 − y∗t−1

]
(A46)

it −
(
r + πTξt

)
=

(
1− ρi,ξt

) [
ψπ,ξt

(
πt − πTξt

)
+ ψπ,ξt

(
πt − πTξt

)
+ ψ∆y,ξt

(yt − yt−1)
]
(A47)

+ρi,ξt

[
it−1 −

(
r + πTξt

)]
+ σiεi,t (A48)

y∗t = ρy∗y
∗
t−1 + σy∗εy∗,t (A49)

πt =
[
1− γT

] [
πt−1 + γ (1− φ)−1 (πt − φπt−1 − (1− φ) πt−1)

]
+ γTπTξt + σπεπ,t(A50)

dt = ρddt−1 + σdεd,t (A51)

We get:
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yt = δyt−1 − σit + σφπt + σ(1− φ)πt + σr + dt

πt = πt +
κ

1− βφyt−1 −
κ

1− βφy
∗
t−1

it − (r + πTξt) = (1− ρi,ξt)ψπ,ξtπt − (1− ρi,ξt)ψπ,ξtπ
T
ξt

+ (1− ρi,ξt)ψπ,ξtπt − (1− ρi,ξt)ψπ,ξtπ
T
ξt

+ (1− ρi,ξt)ψ∆y,ξt
yt − (1− ρi,ξt)ψ∆y,ξt

yt−1

+ ρi,ξtit−1 − ρi,ξt(r + πTξt)

+ σiεi,t

y∗t = ρ∗yy
∗
t−1 + σy∗εy∗,t

πt = (1− γT )πt−1 + (1− γT )γ(1− φ)−1πt

− (1− γT )γ(1− φ)−1φπt−1

− (1− γT )γ(1− φ)−1(1− φ)πt−1

+ γTπTξt + σπεπ,t

dt = ρddt−1 + σdεd,t

Equations with state variables at t on the LHS, everything else on the RHS, and re-ordered to

match the state variable vector:

yt + σit − σφπt − σ(1− φ)πt − dt = δyt−1 + σr

y∗t = ρ∗yy
∗
t−1 + σy∗εy∗,t

πt − πt = +
κ

1− βφyt−1 −
κ

1− βφy
∗
t−1

it − (1− ρi,ξt)ψπ,ξtπt − (1− ρi,ξt)ψπ,ξtπt − (1− ρi,ξt)ψ∆y,ξt
yt = −(1− ρi,ξt)ψπ,ξtπ

T
ξt

− (1− ρi,ξt)ψπ,ξtπ
T
ξt

− (1− ρi,ξt)ψ∆y,ξt
yt−1

+ ρi,ξtit−1 − ρi,ξt(r + πTξt)

+ σiεi,t + (r + πTξt)

πt − (1− γT )γ(1− φ)−1πt = (1− γT )πt−1

− (1− γT )γ(1− φ)−1φπt−1

− (1− γT )γ(1− φ)−1(1− φ)πt−1

+ γTπTξt + σπεπ,t

dt = ρddt−1 + σdεd,t
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Goal: matrix form with Γ0St = ΓC + Γ1St−1 + ΨQεt. Γ0 and Γ1 are 6× 6 matrices. ΓC is 6× 1.

Ψ is 6× 4.

State variables: St = [yt, y
∗
t , πt, it, πt, dt]

′.

Stochastic variables: Q = diag(σi, σy∗ , σπ, σd).

First, Γ0, which is for the time t state variables on the LHS. Empty cells are zero.

Γ0 =



yt y∗t πt it πt dt
yt 1 −σφ σ −σ(1− φ) −1
y∗t 1
πt 1 −1
it −(1− ρi,ξt)ψ∆y,ξt

−(1− ρi,ξt)ψπ,ξt 1 −(1− ρi,ξt)ψπ,ξt
πt −(1− γT )γ(1− φ)−1 1
dt 1


Next, Γ1, which is for the time t− 1 state variables on the RHS. Empty cells are zero.

Γ1 =



yt−1 y∗t−1 πt−1 it−1 πt−1 dt−1

yt %
y∗t ρ∗y
πt

κ
1−βφ − κ

1−βφ
it −(1− ρi,ξt)ψ∆y,ξt

ρi,ξt
πt −(1− γT )γ(1− φ)−1φ (1− γT )(1− γ)
dt ρd


Ψ inserts the stochastic processes into each of the equations. Empty cells are zero.

Ψ =



εi,t εy∗,t επ,t εd,t
yt
y∗t σy∗

πt
it σi
πt σπ
dt σd


Finally, ΓC collects all of the leftover constant terms on the RHS.
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ΓC =



yt σr
y∗t 0
πt 0
it (1− ρi,ξt)[r + πTξt(1− ψπ,ξt − ψπ,ξt)]
πt γTπTξt
dt 0


Dynamic Macro-Finance Model: Asset prices

In this section, we provide details on how to solve for asset prices in the baseline model with

learning on the side of the AP agent. Note that learning on the side of the AP agent does

not affect the dynamics of the macro block, only the beliefs of the AP agent about the future

evolution of monetary policy. These beliefs affect forecasts of the AP agent about all macro

variables in the model and current asset prices.

The results on the evolution of the AP agent’s beliefs that we present below build on Bianchi

and Melosi (2016). Bianchi and Melosi (2016) develop methods to solve general equilibrium

models in which forward-looking agents are uncertain about the statistical properties of the

regime changes that they observe. For example, when observing Hawkish monetary policy

agents might be uncertain whether such policy rule will persist for a long time or not.

Agents in the model are fully rational, conduct Bayesian learning, and they know that they

do not know. Therefore, when forming expectations, agents take into account that their beliefs

will evolve according to what they will observe in the future. A maintained assumption of

Bianchi and Melosi (2016) is that agents know the transition matrix governing regime changes.

However, some regimes only differ in terms of their persistence and the probability of moving

to different regimes. Thus, agents engage in Bayesian learning to uncover what kind of policy

regime they are currently facing (short-lasting or long-lasting). This implies that agents are

still rational, but not perfectly informed.

In this paper, we depart from the assumption that the transition matrix guiding the Bayesian

learning process coincides with the DGP transition matrix. This allows us to capture a series

of behavioral features that help in explaining the response of asset valuation to structural

changes in the conduct of monetary policy. First, while asset pricing agents might always be

aware of what the central bank is currently doing, they might be uncertain about what this

implies for its future behavior. Second, if agents have spent a long time in one policy regime,

they might experience excess-extrapolation about what this implies for future monetary policy

and memories of previous regimes might fade away. Finally, consistently with the previous

assumption, when encountering a policy change after a prolonged period under the same policy

regime, agents might initially consider the policy change as temporary and expect to revert

to the old regime. Only after spending enough time in the new regime, they might come to
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consider the regime change as a structural one.

Beliefs: Overview

The policy rule follows two regime ξt = H for hawkish and ξt = D for dovish. We assume that

the asset pricing agent observes all variables of the economy in the current time period t. If

agents can also observe the regime in place ξt and know the transition matrix H governing the

probability of moving across regimes, we have the full information rational expectations model.

Define the augmented state space S̃t = [St,mt, pdt,Ept (mt+1) ,Ept (pdt+1)]′ . Suppose first

that agents can observe the monetary policy regime in place and they form expectations based

on the transition matrix H of the true data generating process (DGP) transitions across the

two policy regimes. In this case, the model can be expressed in the following form:

Γ0,ξtS̃t = Γc,ξt + Γ1,ξtS̃t−1 + Ψξtεt + Πηt (A52)

where ηt is a vector containing the endogenous expectation errors, and the random vector εt
contains the familiar Gaussian shocks. The variable ξt controls the parameter values in place at

time, θ (ξt) , assumes discrete values ξt ∈ {1, 2}, and evolves according to a Markov-switching
process with transition matrix H. Denote the true DGP transition probabilities

H=

[
pHH pHD
pDH pDD

]
,

in which the probability of switching to regime j given that we are in regime i is denoted by pij,

where j = H,D. The model can then be solved with any of the solution algorithms developed

for Markov Switching Rational Expectations (MS-RE) models.

Now suppose agents have a distorted transition matrix Hp that differs from H. The model

can be solved in the same way, replacing H with the perceived transition matrix Hp. This

gives us the “no learning”distorted beliefs case reported in the text, in which agents correctly

observe the monetary policy regime in place today, but overstate the probability of remaining

in the current regime.

Finally, under the baseline model, we combine distorted beliefs with learning about the

persistence of policy regimes. In this case, when a monetary policy regime change occurs, the

asset pricing agent initially perceives the shift as a transitory deviation from the old regime,

effectively underestimating the true persistence of the regime change. However, as she spends

more time in the new regime the agent comes to believe that a structural change has occurred,

effectively overstating the true persistence of the regime change. Thus the probabilities that

the agent assigns to future monetary policy regimes changes over time. To capture this idea,

we introduce the perceived regime sequence ξpt ∈ {1, 2, 3, 4} . Some of these perceived regimes
are assumed to bring about the same macro block model parameters, θ (ξpt ). Specifically, two of
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the perceived regimes are characterized by Hawkish monetary policy, while two of the perceived

regimes are characterized by Dovish monetary policy. Without loss of generality, we assume that

regimes ξpt = 1 and ξpt = 2 belong to a block 1: b1 = {ξpt ∈ {1, 2} : θ (ξt) = θb1}, characterized
by Hawkish monetary policy (ξt = 1), while regimes ξpt = 3 and ξpt = 4 belong to a block 2:

b2 = {ξpt ∈ {3, 4} : θ (ξt) = θb2}, characterized by Dovish monetary policy (ξt = 2). The regime

ξpt = 1 is perceived as a short-lasting Hawkish regime, while ξpt = 2 is perceived as a long-lasting

Hawkish regime. The perceived regime ξpt = 3 is assumed to be a short-lasting Dovish regime,

while the perceived regime ξpt = 4 is assumed to be long-lasting Dovish regime.

Given that agents know the structure of the model and can observe the endogenous variables

and the shocks, they can also determine which set of parameters is in place at each point in

time. In other words, they can tell whether monetary policy is dovish or hawkish and can back

out the history of policy regimes. This allows them to determine ξt and the block bj in place

at time t. However, while this is enough for agents to establish the history of blocks, agents

cannot exactly infer the realized regime ξpt , because the regimes within each block share the

same parameter values. It is important to emphasize that regimes that belong to the same

block are not identical in all respects, as they differ in their perceived persistence and therefore

the probability of switching to other perceived regimes.

The perceived probabilities of moving across regimes are summarized by the transition

matrix:

Hp=


p11 0 0 p14

0 p22 p23 p24

0 p32 p33 0
p41 p42 0 p44

 (A53)

in which the probability of switching to regime j given that we are in regime i is denoted by pij.

Since ξpt = 1 is the perceived short-lasting Hawkish regime, while ξpt = 2 is the perceived long-

lasting Hawkish regime, it must be that p22 > p11. Analogously, since ξ
p
t = 3 is the perceived

short-lasting Dovish regime, while ξpt = 4 is the perceived long-lasting Dovish regime we have

p44 > p33. We set p44 = p22 = 0.999 to capture the idea that, as agents spend more and more

time in a regime, they become convinced that this regime will persist indefinitely.35

Suppose that the economy is initially in a state where the agent’s posterior probability

that she is in the long-lasting Hawkish regime ξpt = 2 is unity. If policymakers then start

conducting Dovish monetary policy, we further assume that agents will initially believe that

this likely represents just a temporary deviation from ξpt = 2 regime. This idea is captured

by the conditions p23 > p24, p32 > 0, p31 = 0. That is, the probability that she has switched

from long-lasting Hawkish to short-lasting Dovish is greater than the probability of switching

35We rule out setting this probability to unity, since without further assumptions it would not be obvious

how to model the evolution of investor beliefs when a shift out of the perceived long-lasting regime inevitably

occurs.
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from long-lasting Hawkish to long-lasting Dovish, and given that she is in short-lasting Dovish,

she can only switch back to long-lasting Hawkish. However, because p44 > p33, if policymakers

remain in the Dovish regime for long enough, the agents perceived posterior probability that

they are in a long-lasting Dovish regime goes to unity. There are symmetric restrictions in the

second block, corresponding to p41 > p42, p14 > 0, p13 = 0. The distorted beliefs component of

the baseline model implies that p22 > pHH and p44 > pDD, where recall that the latter transition

probabilities pHH equals the true probability of remaining in a Hawkish regime, and pDD equals

the true probability of remaining in a Dovish regime.

More generally given arbitrary initial beliefs, the above restrictions on the perceived transi-

tion matrixHp will have implications for how beliefs evolve over time. Given the model of belief

formation described below, if a regime change occurs after many periods of the same monetary

policy rule, agents will be almost certain that the deviation is temporary. By contrast, if regime

changes are frequent, agents will be uncertain about their nature and beliefs could change more

abruptly.

To solve the model, we first need to establish how agents’beliefs about the perceived regimes

evolve over time. This will allow us to characterize the evolution of beliefs about future mon-

etary policy, i.e. beliefs about the persistence of the current monetary policy regime ξt. We

will then define an expanded set of regimes that keep track at the same time of the policy rule

in place (ξt) and agents’beliefs about future monetary policy (captured by the probabilities

assigned by agents to the regimes ξpt belonging to the same block).

We will now proceed in two steps. First, in Subsection 5 we will characterize the evolution

of agents’beliefs within a block for given prior beliefs. This will allows us to track the evolution

of beliefs as agents observe more and more periods of the same policy rule regime. Second,

in Subsection 5 we will explain how agents’beliefs are pinned down once the economy moves

across blocks. This will allow us to characterize agents’beliefs when agents observe a change

in the conduct of monetary policy. All results are based on the Bayes’theorem. Finally, for

each of these cases, we will describe how to recast the model with information frictions as a

perfect information rational expectations model obtained by expanding the number of regimes

to keep track of agents’beliefs.

Evolution of Beliefs Within a Block

In what follows, we will derive the law of motion of agents’beliefs conditional on being in a

specific block, i.e. conditional on observing a certain policy rule. The formulas derived below

will provide a recursive law of motion for agents’beliefs based on Bayes’theorem. Such recursion

applies for any starting values for agents’ beliefs. These initial values will be determined by

agents’beliefs at the moment the system enters the new block, i.e. the moment agents observe a
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policy regime that is different from the one observed in the previous period. We will characterize

these initial beliefs in the next subsection.

As we have noticed in the previous section, agents can infer the history of the blocks (i.e.

the history of the policy rule in place, ξT ). Therefore, at each point in time, agents know the

number of consecutive periods spent in the current block since the last switch. Let us denote

the number of consecutive realizations of Block i at time t as τ it, i ∈ {1, 2}. To fix ideas, suppose
that the system is in Block 1 (Hawkish monetary policy) at time t, implying that τ 1

t > 0 and

τ 2
t = 0. Then, there are only two possible outcomes for the next period. The economy can

spend an additional period in Block 1 (Hawkish monetary policy), implying that τ 1
t+1 = τ 1

t + 1

and τ 2
t+1 = 0, or it can move to Block 2 (Dovish monetary policy), implying τ 1

t+1 = 0 and

τ 2
t+1 = 1. In this subsection, we restrict our attention to the first case.

Using Bayes’theorem and the fact that prob
(
ξt−1 = 2|τ 1

t−1

)
= 1− prob

(
ξt−1 = 1|τ 1

t−1

)
, the

probability of being in Regime 1 given that we have observed τ 1
t consecutive realizations of

Block 1, prob (ξt = 1|τ 1
t ) , is given by:

prob
(
ξt = 1|τ 1

t

)
=

prob
(
ξt−1 = 1|τ 1

t−1

)
p11

prob
(
ξt−1 = 1|τ 1

t−1

)
p11 + prob

(
ξt−1 = 2|τ 1

t−1

)
p22

=
prob

(
ξt−1 = 1|τ 1

t−1

)
p11

prob
(
ξt−1 = 1|τ 1

t−1

)
(p11 − p22) + p22

(A54)

where τ 1
t = τ 1

t−1 + 1 and for τ 1
t > 1. Notice that for τ 1

t = 1, prob (ξt = 1|τ 1
t ) denotes the initial

beliefs that will be discussed in Subsection 5. Equation (A54) is a rational first-order difference

equation that allows us to recursively characterize the evolution of agents’beliefs about being

in Regime 1 while the system is in Block 1. As agents observe more and more periods of Block

1 (Hawkish monetary policy), the probability that they assign to the short-lasting Hawkish

Regime 1 declines. Once agents have spent enough time under Hawkish monetary policy, they

conclude that the probability of a short lasting regime is zero.

Similarly, the probability of being in Regime 3 given that we have observed τ 2
t consecutive

realizations of Block 2, prob (ξt = 3|τ 2
t ) , can be analogously derived:

prob
(
ξt = 3|τ 2

t

)
=

prob
(
ξt−1 = 3|τ 2

t−1

)
p33

prob
(
ξt−1 = 3|τ 2

t−1

)
p33 + prob

(
ξt−1 = 4|τ 2

t−1

)
p44

=
prob

(
ξt−1 = 3|τ 2

t−1

)
p33

prob
(
ξt−1 = 3|τ 2

t−1

)
(p33 − p44) + p44

. (A55)

where τ 2
t = τ 2

t−1 + 1 and for τ 2
t > 1.

The recursive equations (A54) and (A55) characterize the dynamics of agents’beliefs in both

blocks for a given set of prior beliefs. Bianchi andMelosi (IER) show that under our assumptions

for the transition matrix, these recursive equations converge. This convergence result will be
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key to being able to recast the model with learning in terms of a finite dimensional set of

regimes indexed with respect to agents’beliefs.

In what follows, we denote the converging probabilities for prob (ξt = 1|τ 1) and prob (ξt = 3|τ 2)

as λ̃b1and λ̃b2 , respectively.

Evolution of Beliefs Across Blocks

In the previous subsection, we characterized the evolution of agents’beliefs conditional on being

in a specific block, i.e. conditional on observing additional realizations of the same policy rule.

The formulas derived above apply to any set of initial beliefs. In this subsection, we will pin

down agents’beliefs at the moment the economy moves across blocks, i.e. for the alternative

case in which the policy regime observed at time t differs from the policy regime in place at time

t− 1. These beliefs will serve as starting points for the recursions (A54) and (A55) governing

the evolution of beliefs within a block.

Suppose for a moment that before switching to the new block, agents are convinced of being

in one of the two regimes of the current block (in other words, they believe that they know

which ξpt is in place). Notice that in this case the transition matrix conveys all the information

necessary to pin down agents’starting beliefs about the regime in place within the new block.

Specifically, we have that if the economy moves from block 2 (Dovish) to block 1 (Hawkish),

the probability of being in regime 1 (short-lasting Hawkish) is given by

prob
(
ξpt = 1|ξpt−1 = 3, τ 1

t = 1
)

=
p31

p31 + p32

= 0, (A56)

if the economy was under regime 3 (short-lasting Dove) in the previous period, or by

prob
(
ξpt = 1|ξpt−1 = 4, τ 1

t = 1
)

=
p41

p41 + p42

= 1 (A57)

if the economy was under regime 4 (long-lasting Dove) in the previous period. Symmetrically,

the initial probability of being in regime 3 (short-lasting Dovish) given that the economy just

moved to block 2 (Hawkish monetary policy) is given by

prob
(
ξpt = 3|ξpt−1 = 1, τ 2

t = 1
)

=
p13

p13 + p14

= 0, (A58)

if the economy was under regime 1 (short-lasting Hawk) in the previous period, or by

prob
(
ξpt = 3|ξpt−1 = 2, τ 2

t = 1
)

=
p23

p23 + p24

= 1 (A59)

if the economy was previously under regime 2 (long-lasting Hawk).

However, in the model, agents are generally not sure about the nature (short-lasting v.s.

long-lasting) of the observed monetary policy regime that is in place. Therefore, their beliefs
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at the moment the economy moves from one block to the other will be a weighted average of

the probabilities outlined above. The weights in general, in turn, will depend on agents’beliefs

right before the moment of the switch. Specifically, agents’starting beliefs in a new block 1

upon the shift from block 2 are given by

prob {ξpt = 1|It} =

(
1− prob

{
ξpt−1 = 3|It−1

})
p41

prob
{
ξpt−1 = 3|It−1

}
p32 +

(
1− prob

{
ξpt−1 = 3|It−1

})
(p41 + p42)

(A60)

while if the system just entered block 2, starting beliefs read

prob {ξpt = 3|It} =

(
1− prob

{
ξpt−1 = 1|It−1

})
p23

prob
{
ξpt−1 = 1|It−1

}
p14 +

(
1− prob

{
ξpt−1 = 1|It−1

})
(p23 + p24)

(A61)

where It includes the history of policy regimes (blocks) up to time t. Because the above are
recursive formulations, we observe that the only information in It that is relevant for knowing
the starting beliefs upon switching to a new block is the agent’s beliefs last period and the

perceived transition matrix Hp.

To summarize, taking together movements within and across blocks, two variables pin down

the dynamics of beliefs over time: how many consecutive periods the system has spent in the

current block and the initial beliefs agents had when the system entered the current block.

Tracking beliefs

To solve the model under learning, we need to keep track of the evolution of beliefs. An

approximation is required, since beliefs are continuous variables with an infinite number of

possible values. To keep the problem tractable, we map beliefs into a grid of possible values.

As the number grid points approaches infinity, the approximation becomes arbitrarily accurate.

Note that for each point in the grid (A60) and (A61) tell us how beliefs will evolve if we observe

a change in the conduct of monetary policy, while (A54) and (A55) tell us how beliefs will

evolve if an additional period of the same policy regime is observed. In other words, these two

pairs of equations tell us how beliefs evolve across every possible scenario. This allows us to

compute the probability of moving to any point in the grid from any other point, and can be

represented by an expanded transition matrix that keeps track at the same time of the evolution

of policymakers’behavior and agents’beliefs. Once we have the expanded transition matrix, we

can combine it with the model equations to solve the model. When agents form expectations,

the expanded the transition matrix will determine the evolution of their beliefs about future

monetary policy. Importantly, agents know that they do not know : They understand that their

beliefs will change based on what they will observe in the future. In what follows, we provide

the details.

Denote the grid for beliefs prob {ξpt = 1|It} as Gb1= {G1, ...,Gg1} and for beliefs prob {ξ
p
t = 3|It}

as Gb2= {Gg1+1, ...,Gg1+g2} where 0 ≤ Gi ≤ 1, all 1 ≤ i ≤ g = g1 + g2. Furthermore, we de-
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note the whole grid as G = Gb1 ∪ Gb2 . Endowed with such a grid, we can keep track of agents’
beliefs and policymakers’behavior by introducing a new set of regimes ζpt . The new regime

ζpt characterizes the policy regime in place and the knot of the grid G that best approximates
agents’ beliefs; that is, in our notation prob {ξpt = 1|It} when the system is in block 1 and

prob {ξpt = 3|It} when the system is in block 2. Thus, each regime ζpt is associated with a

pair {ξt = 1, prob {ξpt = 1} = Gb1} or {ξt = 2, prob {ξpt = 3} = Gb2}. For example, the regime
ζpt = g1 + i is associated with the pair {ξt = 2, prob {ξpt = 3} = Gg1+i} and corresponds to mon-
etary policy being Dovish (ξt = 2) and agents thinking that the probability of being in the

short lasting Dovish regime is Gg1+i.

The expanded transition probability matrix for these new regimes can be pinned down

using the recursions (A54) and (A55) and the initial conditions (A60) and (A61). Denote

this expanded perceived transition matrix Ĥp. The algorithm below illustrates how exactly to

perform this task.

Algorithm Initialize the transition matrix Ĥp for the new regimes ζt, setting Ĥ
p = 0g×g.

Step 1 For each of the two blocks, do the following steps (without loss of generality we describe
the steps for Block 1):

Step 1.1 For any grid point Gi ∈ Gb1 , 1 ≤ i ≤ g1, compute

Ĥp (i, j) = prob
{
ξpt−1 = 1|It−1

}
p11 +

(
1− prob

{
ξpt−1 = 1|It−1

})
p22

where prob
{
ξpt−1 = 1|It−1

}
= Gi and j ≤ g1 is set so as tomin |prob {ξpt = 1|It} − Gj|,

where prob {ξpt = 1|It} is computed using the recursive equation (A54) by approxi-
mating prob

{
ξpt−1 = 1|It−1

}
= Gi. To ensure the convergence of beliefs, we correct

j as follows: if j = i and Gi 6= λ̃b1 , then set j = min (j + 1, g1) if Gi < λ̃b1 or

j = max (1, j − 1) if Gi > λ̃b1 .

Step 1.2 For any grid point Gi ∈ Gb1 , 1 ≤ i ≤ g1, compute Ĥp (i, l) = 1− Ĥp (i, j) with

l > g1 satisfying

min

∣∣∣∣∣
(
1− prob

{
ξpt−1 = 1|It−1

})
p23

prob
{
ξpt−1 = 1|It−1

}
p14 +

(
1− prob

{
ξpt−1 = 1|It−1

})
(p23 + p24)

− Gl

∣∣∣∣∣
where prob

{
ξpt−1 = 1|It−1

}
= Gi.

Step 2 If no column of Ĥp has all zero elements, stop. Otherwise, go to Step 3.

Step 3 Construct the matrix T as follows. Set j = 1 and l = 1. While j ≤ g, if
∑g

i=1

Ĥp (i, j) = 0 set j = j + 1. Otherwise, if
∑g

i=1 Ĥ
p (i, j) 6= 0: (1) set T (j, l) = 1, (2) set

T (j, v) = 0 for any 1 ≤ v ≤ g and v 6= l, (3) set l = l + 1 and j = j + 1.
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Step 4 Write the transition equation as H̃p = T · Ĥp · T ′. If no column of H̃p has all zero

elements, set Ĥp = H̃p and stop. Otherwise, go to step 3.

Step 1.1 determines the regime j the system will go to if it stays in block 1 next period

and fills up the appropriate element (i, j) of the transition matrix Ĥp with the probability of

moving to Regime j. Step 1.2 computes the regime l the system will go to if it leaves block 1

and fills up the appropriate element (i, l) of matrix H̃p. Steps 2-4 are not necessary but help

to keep the dimension of the grid small, getting rid of regimes that will never be reached. For

computational convenience, we always add the convergence points for the two blocks (i.e., λ̃b1
in the case of block 1) to the grid G. On many occasions, it is a good idea to make the grid
near the convergence knot very fine to improve the precision of the approximation.

At the end of this algorithm we end up with a transition matrix for the expanded regime

space with elements taking the form

Ĥij = Pr
(
ζt+1 = j|ζt = i

)
. (A62)

Solving the Dynamic Macro-Finance Model

The model can be solved in two steps. First, we solve for the macro dynamics. This returns

a MS-VAR in the state vector St defined above. Then, conditional on this solution and the

probability assigned by the asset pricing agent to moving across perceived regimes as captured

by the expanded (g × g) transition matrix Ĥp, we can solve for the evolution of asset prices.

In equations, the first step returns a MS-VAR in the macro state vector:

St = Cξt +TξtSt−1 +RξtQεt.

The second step takes this regime specific law of motion for the macroeconomy as an input

and combines it with the equilibrium asset pricing relations, conditional on the law of motion

for agents’beliefs as captured by the transition matrix Ĥp. All variables that enter the asset

pricing system of equations are linear transformation of the variables entering the macro block

for which we have a solution. For example, the log SDF can be expressed as a function of

the macro state vector St: mt = emSt, where em is a vector that extracts the desired linear
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combination of the variables contained in St. We have:

mt = log (δ)− σpec (St − St−1) + ϑp,t−1 (A63)

eiSt − Ept [eπSt+1] = −Ept [mt+1]−.5Vpt [mt+1 + eiSt − eπSt+1]︸ ︷︷ ︸
Regime dependent risk adjustment

− lp (A64)

pdt = κ0 + µ+ [.5Vpt [mt+1 + ec (St+1 − St) + κ1pdt+1]]︸ ︷︷ ︸
Regime dependent risk adjustment

(A65)

+Ept [mt+1 + ec (St+1 − St) + κ1pdt+1]

ηpdt = pdt − Ept−1 (pdt) (A66)

ηmt = mt − Ept−1 (mt) (A67)

St = Cξt +TξtSt−1 +Rξt+1Qεt (A68)

where ex is a vector that extracts the desired linear combination of the variables contained in

St: xt = exSt.

Notice that the solution of the macro block implies heteroskedasticity for the endogenous

variables, the Markov-switching coeffi cients in the equation for St. To keep the framework one

that is conditionally lognormal with a risk adjustment, we follow Bansal and Zhou (2002) and

compute the one-step-ahead conditional variance as the weighted average of the conditional

variances across regimes resulting from the Gaussian shocks. This implies that lognormality is

assumed, conditional on ξt+1. (The section “Solving the model with a risk adjustment,”below

provides details on lognormality in a setting with regime shifts.) Define the augmented state

space as S̃t = [St,mt, pdt,Ept (mt+1) ,Ept (pdt+1)]. For any variable xt in the asset pricing block,

conditional lognormality assumption implies:

Vpt [xt+1] ≈ Ept
(
Vt
[
xt+1|ξt+1

])
= exEpt

[
Rξt+1QQ

′R′ξt+1

]
ex (A69)

where ex is a vector used to extract the desired linear combination of the variables in St.

This assumption maintains conditional log-normality of the entire system and guarantees the

algorithm above converges in one step. Notice that Vt
[
·|ξt+1

]
without a “p” superscript is

the conditional variance under the objective measure given the specification of the lognormal

shocks in the model.

The second step consists of expanding the number of regimes to reflect the evolution of

beliefs. To do so, we recast the model in terms of the new set of regimes ζt that keep track

both of the behavior of monetary authority (as captured by ξt) and agents’beliefs about the

nature of these regime changes (i.e. beliefs about ξpt ). Furthermore, given the approximation

(A69), the one-step-ahead variance Vpt [xt+1] is only a function of the expanded regimes at time

t, ζt. This leaves us with a new system to be solved, given by:

Γ0 (ζt) S̃t = Γc (ζt) + Γ1 (ζt) S̃t−1 + Ψ (ζt)Qεt + Πηt (A70)
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where the regime ζt ∈ {1, ..., g1 + g2} follows the transition matrix Ĥp and the terms Γc (ζt)

now also contain the regime-specific risk adjustment terms Vpt [xt+1] that are part of the asset

pricing block. Note that Γc (ζt) depends on V
p
t [xt+1] as given in (A69). For variables in the

system (A63)-(A68) expressed in recursive form, like pdt, the vector ex is not known until we

solve for S̃t. We therefore employ an iterative procedure. First, we guess a value for ex. We can

then use solution methods available for dynamic macro models with Markov-switching random

variables. The resulting solution takes the form once again as a MS-VAR:

S̃t = C̃
(
ζt, Ĥ

p
)

+ T̃
(
ζt, Ĥ

p
)
St−1 + R̃

(
ζt, Ĥ

p
)
Qεt (A71)

We use the solution to update ex, then solve the model again. The iteration converges in one

step due to linear system and the fact that the risk corrections only affect Γc (ζt). The desired

observables can then be reconstructed starting from the augmented state vector.

Armed with S̃t, any vector of endogenous variables Yt in the model has a solution taking

the form

Yt = D + ZS̃t,

where D is a constant vector and Z is a constant matrix.

Let the model solution for the price-dividend ratio be denoted pdt = pd
(
S̃t

)
, where pd (·) is

a linear transformation. The solution satisfies the recursion below. To see how agents’beliefs

matter for asset prices, consider the recursive formulation for the price-dividend ratio:

pd
(
S̃t

)
= κ0+µ+[.5Vpt [mt+1 + ec (St+1 − St) + κ1pdt+1]]︸ ︷︷ ︸

Regime dependent risk adjustment

+Ept
[
mt+1 + ec (St+1 − St) + κ1pd

(
S̃t+1

)]
As explained above, the regime dependent risk adjustment only depends on the regime in

place at time t. Then:

pd
(
S̃t

)
= κ0+µ+

[
.5exEpt

[
R̃
(
ζt, Ĥ

p
)
QQ′R̃

(
ζt, Ĥ

p
)′]

ex

]
︸ ︷︷ ︸

Regime dependent risk adjustment

+Ept
[
mt+1 + ec (St+1 − St) + κ1pd

(
S̃t+1

)]

where we use ex to denote a vector that extracts the desired linear combination from the one

step ahead covariance matrix. We then have:

pd
(
S̃t

)
= κ0 + µ+ Ept

[
.5exR̃ζt+1QQR̃

′
ζt+1

ex +mt+1 + ec (St+1 − St) + κ1pd
(
S̃t+1

)]
pd
(
S̃t

)
= κ0 + µ+

∑g1+g2
j=1 P

{
ζt+1 = j|ζt = i

}
Ept

[
.5exR̃ζt+1QQR̃

′
ζt+1

ex +mt+1

+ec (St+1 − St) + κ1pd
(
S̃t+1

) ]

where we have used the output in (A62) from the algorithm discussed above to obtain the

P
{
ζt+1 = j|ζt = i

}
that are elements of the expanded transition matrix Ĥp.
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Solving a model with risk adjustment

This section provides more details about solving the model with a risk adjustment. As ex-

plained in the main text, our approach is quite common in the asset pricing and macro-finance

literatures. This appendix provides the following points:

1. The method can be characterized as a guess-and-verify approach. This is because once

the model is log-linearized and solved, with or without a risk-adjustment, the variables

of the model follow a linear process in logs and are therefore log-normal in levels. The

method exploits this property of the solution when log-linearizing the model and imple-

ments a risk-adjusted log-linearization. This affects only the equilibrium conditions in

which an expectational term appears. Note that log-normality does not affect the rest

of the log-linearized equations. When introducing regime changes, the process becomes

conditionally log-normal, conditional on the regimes.

2. To understand why the solution without risk adjustment already implies lognormality, it

is important to notice that all shocks are specified as shocks to log variables. Thus, when

taking a lognormal approximation, the solution of the model implies a linear process in

logs with Gaussian innovations.

3. The solution with risk-adjustment allows us to take into account the effects of risk on

asset prices.

Conditional log-normality

Suppose that a variable Zt+1 has a log-normal distribution such that zt+1 = log(Zt+1) follows

the process:

zt+1 = c+ azt + σεt+1

Then:

ln (Et[Zt+1]) = Et[zt+1] + .5Vt[zt+1] = c+ azt + .5σ2 (A72)

Now, suppose zt+1 = log(Zt+1) follows a Markov-switching process:

zt+1 = cξt+1 + aξt+1zt + σξt+1εt+1 (A73)

where ξt+1 denotes the regime at time t + 1. The solution of the model, presented in the

main text, has this form. When we log-linearize the system of model equations, we are facing

log-linearization equations of the following form:

Et[ezt+1 ]. (A74)
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We extend the approach in Bansal and Zhou (2002), who utilize conditional log-normality of

the process in equation (A73). Conditioning on the regime in the next period, log-normality

holds:

Et[ezt+1 |ξt+1] = eEt[zt+1|ξt+1]+0.5Vt[zt+1|ξt+1],

ln(Et[ezt+1|ξt+1]) = Et[zt+1|ξt+1] + 0.5Vt[zt+1|ξt+1].

Therefore, using the law of iterated expectations:

Et[ezt+1 ] = Et[Et[ezt+1|ξt+1]] = Et[eEt[zt+1|ξt+1]+0.5Vt[zt+1|ξt+1]] =

= Et[ecξt+1+aξt+1zt+σξt+1εt+1 ].

To proceed, we follow Bansal and Zhou (2002) and use the approximation: ecξt+1+azt+0.5σ2ξt+1 ≈
1 + cξt+1 + aξt+1zt + 0.5σ2

ξt+1
. With this approximation, we have

Et[ezt+1 ] = Et[Et[ezt+1|ξt+1]] ≈ Et[1 + cξt+1 + aξt+1zt + 0.5σ2
ξt+1

] = (A75)

= 1 + Et[cξt+1 + aξt+1zt] + 0.5Et[σ2
ξt+1

] (A76)

Thus, we obtain:

ln (Et[Zt+1]) ≈ Et[cξt+1 + aξt+1zt] + 0.5Et[σ2
ξt+1

] (A77)

again using the approximation ln (1 + x) ≈ x, for x small.

Above we have made use of the fact that zt+1 = cξt+1+aξt+1zt+σξt+1εt+1 is close to zero. But

the solution is always approximating around the steady state values. The same approximation

holds even if zt+1 is not close zero. To see this, suppose z is the steady state of zt+1 and

z̃t+1 ≡ zt+1 − z is the log-deviation of Zt+1 from its mean. Then, we have:

ezEt[ez̃t+1 ] = ezEt[Et[ez̃t+1|ξt+1]] (A78)

= ezEt[eEt[z̃t+1|ξt+1]+0.5Vt[z̃t+1|ξt+1]] (A79)

≈ ezEt[1 + Et[z̃t+1|ξt+1] + 0.5Vt[z̃t+1|ξt+1]] (A80)

= ez[1 + Et[z̃t+1] + 0.5Et[σ2
ξt+1

]] (A81)

where we have used the fact that Vt[z̃t+1|ξt+1]] = Vt[zt+1|ξt+1]].Then:

log (Et[Zt+1]) = log
(
ezEt[ez̃t+1 ]

)
(A82)

≈ z + Et[z̃t+1] + 0.5Et[σ2
ξt+1

] (A83)

= Et[zt+1] + 0.5Et[σ2
ξt+1

] (A84)

= Et[cξt+1 + aξt+1zt] + 0.5Et[σ2
ξt+1

]. (A85)
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To see how the method works in our model, note that the above approximations hold both

under the objective probability distribution in the model as well as under the distorted beliefs

Ept [·] , since in both cases the random variables are conditionally lognormal. Consider the

forward looking relation for the price-payout ratio:

PD
t = Ept

[
Mt+1

(
PD
t+1 +Dt+1

)]
PD
t

Dt

= Ept
[
Mt+1

Dt+1

Dt

(
PD
t+1

Dt+1

+ 1

)]
.

Taking logs on both sides, we get:

pdt = log [Ept [exp (mt+1 + ∆dt+1 + κ0 + κ1pdt+1)]] .

Applying the approximation implied by conditional log-normality we have:

pdt = κ0 + Ept [mt+1 + ∆dt+1 + κ1pdt+1] +

+.5Vpt [mt+1 + ∆dt+1 + κ1pdt+1] .

where under the conditional lognormality approximation we have:

Vpt [mt+1 + ∆dt+1 + κ1pdt+1] ≈ Ept
[
Vt
[
mt+1 + ∆dt+1 + κ1pdt+1|ξt+1

]]
.

44



1970 1980 1990 2000 2010

-5

0

5

10

GDP growth

Model
Data

1970 1980 1990 2000 2010

-5

0

5

10

Inflation

Model
Data

1970 1980 1990 2000 2010

0

5

10

15

Shadow FFR

Model
Data

1970 1980 1990 2000 2010

2

4

6

8

10

12
Expected Inflation

Model
Data

Figure A.1: Shadow rate estimates of the MS-DSGE model. The figure reports the model implied series and the

corresponding observed series. Expected inflation comes from the Michigan Survey of Consumers. The difference is due to

observation errors. The sample spans 1961:Q1 - 2017:Q3. Results are based on estimates obtained replacing the FFR with the

Wu-Xia shadow rate when the ZLB is binding.
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Figure A.2: Shadow rate estimates of the MS-DSGE model. The blue line corresponds to the fluctuations generated
by changes in both the target and the slope coeffi cients. The orange line assumes that monetary policy starts under the Dovish

regime and no regime change occurs. Finally, the black dotted line assumes that changes in the target occurred, but that the

slope coeffi cients in the Taylor rule coeffi cients always remain as in the Dovish-high target regime. Results are based on estimates

obtained replacing the FFR with the Wu-Xia shadow rate when the ZLB is binding.
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Figure A.3: Shadow rate estimates of the MS-DSGE model. The Volcker disinflation. We start the economy as it was in
1980:Q1 and remove all Gaussian shocks that occured after that period, but keep the estimated regime sequence. The dashed line

corresponds to the data. The real interest rate is computed as the difference between the FFR and expected inflation. Expected

inflation is obtained based on the model solution. Results are based on estimates obtained replacing the FFR with the Wu-Xia

shadow rate when the ZLB is binding.
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Figure A.4: Shadow rate estimates of the MS-DSGE model. Perfect information about the target. The blue solid line
shows estimated fluctuations generated only by changes in the policy rule (inflation target and slope coeffi cients) when agents

learn about trend inflation. The orange dashed line shows a counterfactual in which the policy rule shifts but agents observe the

inflation target. Dovish regime has a high target πT and low activism against deviations from the target πT . Hawkish regime has

a low πT and high activism against deviations from πT . The sample spans 1961:Q1 - 2017:Q3. Results are based on estimates

obtained replacing the FFR with the Wu-Xia shadow rate when the ZLB is binding.
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Figure A.5: Shadow rate estimates of the MS-DSGE model. Top row: Curbing inflation. The economy is initially
in the Dovish regime. The blue solid line presents the evolution of the macro variables in response to a two standard deviation

contractionary monetary policy shock and no regime change. The black dashed line presents the evolution of the macro variables

in response to a regime change from the Dovish regime to the Hawkish regime. Lower row: Lifting inflation. The economy is
initially in the Hawkish regime. The blue solid line presents the evolution of the macro variables in response to a two standard

deviation expansionary monetary policy shock and no regime change. The black dashed line presents the evolution of the macro

variables in response to a regime change from the Hawkish regime to the Dovish regime. Results are based on estimates obtained

replacing the FFR with the Wu-Xia shadow rate when the ZLB is binding.
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Figure A.6: Shadow rate estimates of the MS-DSGE model. Excess returns and policy rule changes. The figure reports
the time series of the present discounted value of expected excess returns for different portfolios (dashed line, right axis) together

with fluctuations of the real interest rate due to changes in the monetary policy rule (solid line, left axis). Results are based on

estimates obtained replacing the FFR with the Wu-Xia shadow rate when the ZLB is binding.
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Figure A.7: One-year yield estimates of the MS-DSGE model. The figure reports the model implied series and the

corresponding observed series. Expected inflation comes from the Michigan Survey of Consumers. The difference is due to

observation errors. The sample spans 1961:Q1 - 2017:Q3. Results are based on estimates obtained using the one-year treasury

yield instead of the FFR.
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Figure A.8: One-year yield estimates of the MS-DSGE model. The blue line corresponds to the fluctuations generated
by changes in both the target and the slope coeffi cients. The orange line assumes that monetary policy starts under the Dovish

regime and no regime change occurs. Finally, the black dotted line assumes that changes in the target occurred, but that the

slope coeffi cients in the Taylor rule coeffi cients always remain as in the Dovish-high target regime. Results are based on estimates

obtained using the one-year treasury yield instead of the FFR.
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Figure A.9: One-year yield estiamtes in the Volcker disinflation. We start the economy as it was in 1980:Q1 and remove
all Gaussian shocks that occured after that period, but keep the estimated regime sequence. The dashed line corresponds to the

data. The real interest rate is computed as the difference between the FFR and expected inflation. Expected inflation is obtained

based on the model solution. Results are based on estimates obtained using the one-year treasury yield instead of the FFR.
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Figure A.10: One-year yield estimates of the MS-DSGE model. Perfect information about the target. The blue solid
line shows estimated fluctuations generated only by changes in the policy rule (inflation target and slope coeffi cients) when agents

learn about trend inflation. The orange dashed line shows a counterfactual in which the policy rule shifts but agents observe the

inflation target. Dovish regime has a high target πT and low activism against deviations from the target πT . Hawkish regime has

a low πT and high activism against deviations from πT . The sample spans 1961:Q1 - 2017:Q3. Results are based on estimates

obtained using the one-year treasury yield instead of the FFR.
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Figure A.11: One-year yield estimates of the MS-DSGE model. Top row: Curbing inflation. The economy is initially
in the Dovish regime. The blue solid line presents the evolution of the macro variables in response to a two standard deviation

contractionary monetary policy shock and no regime change. The black dashed line presents the evolution of the macro variables

in response to a regime change from the Dovish regime to the Hawkish regime. Lower row: Lifting inflation. The economy is
initially in the Hawkish regime. The blue solid line presents the evolution of the macro variables in response to a two standard

deviation expansionary monetary policy shock and no regime change. The black dashed line presents the evolution of the macro

variables in response to a regime change from the Hawkish regime to the Dovish regime. Results are based on estimates obtained

using the one-year treasury yield instead of the FFR.
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Figure A.12: One-year yield estimates of the MS-DSGE model. Excess returns and policy rule changes. The figure
reports the time series of the present discounted value of expected excess returns for different portfolios (dashed line, right axis)

together with fluctuations of the real interest rate due to changes in the monetary policy rule (solid line, left axis). Results are

based on estimates obtained using the one-year treasury yield instead of the FFR.
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Figure A.13: Distributuion of observation errors. The figure reports mean, median, and 90% error bands for the distribution of

observation errors over time.
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Estimating the Dynamic Macro-Finance Model

As explained in subsection 5, the macro block is put into state space form and estimated using

standard Bayesian methods. The solution of the macro block at the estimated mode parameter

values are then taken as inputs into the asset pricing block. To pin down the parameters of

the asset pricing block, we take the estimates for the macro block as given and search for

the parameters that minimize the distance between the data valuation ratio −cayMS
t and its

model implied counterpart, caymt . We also require the model to deliver an average annualized

equity premium, er, of around 6%. Thus, we introduce a penalty for deviations of the average

annualized equity premium from the 6% target. The distance between the two valuation ratios

is defined as the sum of squared differences between the two ratios. Thus, we search for the

set of parameters θp =
{
k, σp, βp, lp, p11, p33, p23/(p23 + p24), p41/(p41 + p42)

}
that minimizes the

following object function:

θ̂p = arg min
[∑T

t=1

(
cayMS

t − caymt
(
θp, X

T , ξT
))2

+ .05
(∣∣er (θp, XT , ξT

)
− 6
∣∣)]

where caymt and the annualized average equity premium er depend on the parameters of the

model, the data used in the macro block estimation XT , and the regime sequence in our sample

ξT . The path for the model implied −caymt is computed based on the estimated regime sequence
and the estimated initial conditions. Thus, we ask the model to explain as much as possible of

the observed variation in −cayMS
t out of regime changes.

5.1 Constructing the PDV of Expected Returns from the Model

Suppose that we want to build the PDV of a vector of variables Yt based on the model solution,

where Yt depends on S̃t according to the following linear transformation:

Yt = D + ZS̃t.

In doing this, the econometrician can use the transition matrix reflecting the actual frequency

of regime changes or the transition matrix used by the asset pricing agent when forming expec-

tations. In the first case, we obtain the actual path of PDV of excess returns based on the data

generating process, in the second case we obtain the PDV perceived by agents in the economy.

For the main results in the paper, we compute the PDV that an econometrician would find if

the dynamic macro model proposed in the paper generated the data. In this case we have:∑∞
j=0 ρ

jEtYt+1+j =
∑∞

j=0 ρ
jEt
(
D + ZS̃t+1+j

)
= (1− ρ)−1D + Z

∑∞
j=0 ρ

jEt
(
S̃t+1+j

)
where we have omitted the superfix p on the expectation operator because the probability

assigned by the econometrician to moving across regimes is not in general the same as that
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implied by the transition matrix used by the asset pricing agent. The transition matrix H of

the econometrician coincides with what was estimated in the first part of the paper and differs

from Hp and Ĥp, the transition matrices that enter the solution of the asset pricing block.

To use H in the expanded regime space, we expand it to cover the same number of regimes

an reflect the probability of moving across them as implied by H. We denote this expanded

transition matrix consistent with the original transition matrix Ĥ.

As above, Define the column vectors qt and πt:

qt =
[
q1′

t , ..., q
m′
t

]′
, qit = E0

(
S̃t1ζt=i

)
, πt =

[
π1
t , ..., π

m
t

]′
,

where πit = P0 (ζ = i) and 1ζt=i is an indicator variable that is equal to 1 when regime i is in

place and zero otherwise. The law of motion for q̃t = [q′t, π
′
t]
′ is then given by[

qt
πt

]
︸ ︷︷ ︸

q̃t

=

[
Ω CĤ

Ĥ

]
︸ ︷︷ ︸

Ω̃

[
qt−1

πt−1

]

where πt = [π1,t, ..., πm,t]
′ , Ω = bdiag (A1, ..., Am) Ĥ, and C = bdiag (c1, ..., cm).

Similar formulas are used to compute risk premia for the individual portfolios. The premium

for a portfolio z coincides with the present discounted value of its excess returns:

premiaz,t︸ ︷︷ ︸
Premia

≡
∑∞

j=0 ρ
jEtrt+1+j︸ ︷︷ ︸

PDV of excess returns

= 1′rw (I − ρΩ)−1

[
Ωqt|t + C

(
I − ρĤ

)−1

Ĥπt|t

]
, (A86)

where 1′rz is a vector used to extract the PDV of excess returns from a vector containing the

PDV of all variables included in the VAR.

ZLB Robustness Checks for the Dynamic Macro Model

In this appendix, we conduct two robustness checks to verify that our results are not distorted

by the time spent at the zero lower bound (ZLB) in the aftermath of the financial crisis. First,

we re-estimate our MS-DSGE model using the Wu-Xia (Wu and Xia (2016)) shadow rate.

Second, we use the one-year Treasury yield instead of the federal funds rate in our estimation.

The shadow rate is downloaded from Professor Wu’s website, while the one-year Treasury yield

is downloaded from FRED. The figures presented in this appendix show that the main result

of the paper are not affected by using these alternative measures for the interest rate.

In the Wu and Xia model, the short-term interest rate is the maximum of the shadow federal

funds rate and the lower bound on interest rates. Wu and Xia set this lower bound to 25 basis

points because that was the rate paid on both required and excess reserve balances during the

December 16, 2008, to December 15, 2015, period when the Federal Open Market Committee
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(FOMC) set the target range for the federal funds rate at 0 to 25 basis points. On December

16, 2015, the FOMC increased the rate paid on reserve balances to 50 basis points and the

target range for the federal funds rate to 25 to 50 basis points. Once the lower bound is not

binding anymore, the shadow rate coincides with the actual FFR.

The results of Wu and Xia are based on a multivariate version of the shadow rate term

structure model (SRTSM) introduced by Black (1995). In the SRTSM, the observed short term

rate is the maximum between a lower bound and the shadow rate. The shadow rate, in turn,

is an affi ne function of a vector of state variables that follow a VAR process. Absent the lower

bound, the model would be fully linear. Thus, the lower bound introduces a non-linearity in

the mapping from the factors to the observed short term interest rate. The key idea behind

the model and the work of Wu and Xia is that by observing the behavior of forward rates at

different maturities, the researcher can back out a measure of the shadow short term interest

rate. In other words, forward rates reflect the overall monetary policy stance and can be used

to recover the implicit behavior of the shadow interest rate.
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