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1 Introduction

In a 2001 published paper, Lettau and Ludvigson (2001) (LL hereafter) introduced an estimated

variable shown to have strong forecasting power for U.S. stock returns. It is best thought of

as an asset market valuation ratio driven by fluctuations in stock market wealth relative to

economic fundamentals. The variable, denoted cayt, is a stationary linear combination of log

consumer spending, ct, log asset wealth, at, and log labor income, yt, all measured on an

aggregate basis in quarterly data. The coeffi cients of this linear combination may be estimated

as parameters of a cointegrating relationship and the variable cayt is the estimated cointegrating

residual of this relationship. Under assumptions described in LL and elaborated on in Lettau

and Ludvigson (2010), cayt may be interpreted as a proxy for the log consumption- aggregate

(human and non-human) wealth ratio, and its relationship with future growth rates of at (highly

correlated with stock market returns in quarterly data) and/or future growth rates of ct and yt,

may be motivated from an aggregate household budget constraint. This consumption-wealth

variable is well described as an asset valuation ratio, or more simply “wealth ratio,”because

its variability is driven primarily by transitory fluctuations in stock market wealth relative to

economic fundamentals (Lettau and Ludvigson (2004)).

In the years since the 2001 paper was published, updated estimates of cayt have continued

to display predictive power for long horizon stock market returns. But over time, the statistical

properties of the estimated series appear to have shifted in some fundamental ways. Notably,

the measured value of cayt has become more persistent, resulting forecasting power increasingly

concentrated at longer horizons. The rising persistence is also evident from cointegration tests

for ct, a t, and yt. Although cayt has always had a substantial autocorrelation (with a first-

order autoregressive coeffi cient of 0.79 reported in the 2001 paper), theory implies that ct, a t,

and yt should be cointegrated, or that cayt should be covariance stationary. Yet in recent

samples it has become diffi cult, according to some statistical tests, to distinguish cayt from

a unit root process. Similar findings have been documented for other stock market valuation

ratios long used as predictor variables for stock returns. These include price-dividend or price-

earnings ratios, which are themselves cointegrating residuals.1 Despite these findings, a literal

unit root interpretation for these variables is unappealing because it implies that stock prices

or asset values could wander arbitrarily far from measures of fundamental value indefinitely.2

An arguably more appealing interpretation is that there are instead infrequent shifts in certain

moments of the stationary distribution that—when not taken into account—make distinguishing

1The near-unit root statistical properties of these ratios and their implications for return forecasting have
been the subject of empirical work by Lewellen (2004), Campbell and Thompson (2008), Lettau, Ludvigson,
and Wachter (2008), and Lettau and Van Nieuwerburgh (2008).

2Even theories that postulate “bubbles”almost always imply that the bubble will eventually burst, restoring
a pre-bubble relationship between prices and fundamentals.
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a stationary from a unit root variable diffi cult in a small sample.

This paper presents evidence of infrequent shifts, or “breaks,”in the mean of the consumption-

wealth proxy cayt and introduces a Markov-switching version that adjusts for these shifts. We

refer to the regime switching measure as a Markov-switching cay, denoted cayMS
t . These infre-

quent mean shifts generate low frequency fluctuations in asset values relative to fundamentals

as measured by cay. Unlike the conventional cayt, which presumes a constant mean, cayMS
t

does not exhibit increasing persistence as estimates are updated over the sample. Moreover,

evidence in favor of stationarity for cayMS
t is much stronger in current samples than it is for

cayt. And the estimated persistence of cayMS
t , as well as the point estimates of the cointegrat-

ing slope coeffi cients, are close to values originally reported in LL for cayt. This suggests that

infrequent shifts in the mean of cayt can help explain why its statistical properties have shifted

over time.

After documenting these findings, we first turn our attention to forecasts of the U.S. stock

market. We find that the forecasting power of cayMS
t for future stock market returns is superior

to that of cayt, even if no forward-looking data are used in the construction of cayMS
t . This

remains true out-of-sample, at least for some horizons. Simulations suggest, however, that this

improvement in forecasting power may be harder exploit out-of-sample, unless researchers have

a suffi ciently large number of observations with which to estimate the Markov-switching para-

meters. But the simulations also suggest that postwar samples close the size currently available

may be large enough to do so going forward. Researchers using cayt as a predictor variable may

wish to consider using both measures to forecast long-horizon stock market returns.3

The final section of the paper turns to the key question of what these infrequent mean shifts

represent economically. Any estimated statistical relationship is subject to possible structural

change as the number of years over which the relationship is measured rises. This may be

especially true of cayt, where the definitions of the embedded variables have changed discretely

over time as data collection agencies have altered their measurement criteria for all three series.4

But structural shifts in the economy are also likely to play a role, as suggested by evidence that

other stock market valuation measures have also experienced “breaks” in the mean values of

their distributions (e.g., Lettau, Ludvigson, and Wachter (2008); Lettau and Van Nieuwerburgh

(2008)). Thus we study what could explain the breaks observed in cay by estimating a Markov-

switching macroeconomic VAR (MS-VAR) for output growth, inflation, and the federal funds

3Both measures are available on the autors’websites.
4As one example, the measurement of at (household net worth) was significantly altered in 2013 due to a

change in the treatment of defined benefit pension plans. Prior to this time, the plans entered household net
worth as the value of the assets held by the funds. From September 2013, these plans were instead accounted
for by the present value of promised benefits. Because government pension plans are the majority of these
plans and are heavily underfunded, this resulted in a shift up of the whole net worth path. The change can
be expected affect the dynamics of cayt, as the relative economic importance of defined benefit versus defined
contribution pension plans has changed over the sample.
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rate, allowing the parameters of the VAR to potentially undergo structural breaks during the

periods that correspond to the shifts identified in our estimates for cayMS.With this approach,

we impose the formerly estimated regime sequence for cay on the VAR, but the parameters

characterizing the different regimes, as well as the transition matrix, are freely estimated. We

find strong evidence of breaks in the long-run expected real federal funds rate that coincide

with the breaks in the mean of cay, with low wealth ratios (low asset valuations or high cay)

associated with an expectation of sharply higher values for the real federal funds rate, and high

wealth ratios (high asset valuations or low cay) associated with expectations of much lower

value for the long-run real federal funds rate. By contrast, there is no evidence that these low

frequency shifts to high asset valuations and persistently low policy rates are associated with

higher expected long-run economic growth or lower economic uncertainty; indeed the opposite

is true. These findings therefore run counter to the idea that high asset valuations created by

a persistently low interest rate environment are the result of a positive outlook for economic

growth, or lower uncertainty about that growth. To the best of our knowledge, these findings

are among the first formal statistical evidence that low frequency breaks in asset values relative

to economic fundamentals are strongly associated with expectations of the long-run value of

the primary policy instrument under direct control of the central monetary authority.

The rest of the paper is organized as follows. The next section of the paper discusses the

empirical model and the estimation of a Markov-switching cayt. Section 3 presents results of

this estimation, including evidence of breaks in the mean of cay, evidence on the persistence

of cay once corrected for regime shifts in its mean, and a comparison of the forecasting power

of evidence of cayMS and cay for U.S. stock market returns. This section also briefly discusses

evidence for regime shifts in the mean of a newer measure of cayt introduced in Lettau and

Ludvigson (2015) that uses total personal consumption expenditures as a measure of ct in place

of the usual nondurables and services expenditures employed in the construction of the original

cayt. Section 4 then turns to the question of what could explain the evidence for regime shifts

in the mean of the wealth ratio cayt by estimating a Markov-switching macroeconomic VAR

(MS-VAR) for output growth, inflation, and the federal funds rate, allowing the parameters of

the VAR to potentially undergo structural breaks during the periods that correspond to the

shifts identified in our estimates for cayMS. Section 5 concludes.

2 Empirical Model

The model investigated in this section is as follows. Let zt be a 3 × 1 vector of data on

ct, at, and yt, and let Zt =
(
zt, zt−1, ...,z

′
−m
)
be a vector containing all observations obtained

through date t. We extend the methodology of LL to allow for possible shifts in the mean in the

cointegrating relation between consumption, asset wealth, and income over time. Specifically,
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we modify the Stock and Watson (1993) dynamic least squares (DLS) regression to allow for

shifts in the intercept αξαt :

ct = αξαt + βaat + βyyt +
∑k
−k ba,i∆at−i +

∑k
−k by,i∆yt−i + σεt (1)

where εt ∼ N (0, 1) . The notation αξαt indicates that the value of the constant in the above

regression depends on the existence of a latent state variable, ξαt . The latent state ξ
α
t is presumed

to follow a two-state Markov-switching process with transition matrix Hα so that αξαt can

assume one of two discrete values, α1 or α2. The econometric specification (1) permits regime

switches only the in the intercept parameter. The Appendix discusses alternative specifications

where other parameters are also subject to regime switches.

The parameters of the time-series model for zt include the cointegrating parameters βa and

βy, the additional slope coeffi cients ba,i and by,i in (1), the two intercept values α1 and α2, and

the transition probabilities contained in the matrixHα. Collect these parameters into a vector

θ.

Absent regime changes, cay is defined as:

cayFCt = ct − (α + βaat + βyyt)− α (2)

where the superscript “FC”stands for “fixed coeffi cients”because the constant α is fixed over

time. Notice that when we impose a single regime, the Markov-switching model collapses back

to the specification originally used by LL. The variable cayFCt is the same as that defined in LL

where it was denoted cayt. For the purposes of his paper, we have added the superscript “FC”

in order to explicitly distinguish it from the Markov-switching version (3). The parameters θ of

the time-series model for cayFCt include the cointegrating parameters βa and βy, the additional

slope coeffi cients ba,i and by,i and the single intercept values α.

For the Markov-switching model, the constant αξαt depends on the regime ξ
α
t . If the sequence

ξα,T = {ξα1 , ..., ξαT} of regimes in place at each point in time were observed, we could immediately
compute cayMS

t . Unfortunately, ξα,T is generally unobservable and needs to be inferred together

with the other parameters of the model. It follows that the two values for the Markov-switching

constant αξαt (α1 and α2) must be weighted by their probabilities at each point in time. For

this purpose, we consider two estimates of the state probabilities distinguished as filtered or

smoothed probabilities. Let P (ξαt = i|Zt;θ) ≡ πit|t denote the probability that ξ
α
t = i based

on data obtained through date t and knowledge of the parameters θ. We refer to these as

filtered probabilities. Smoothed probabilities reflect the information about the state at time

t that can be extracted from the whole sample: P (ξαt = i|ZT ;θ) ≡ πit|T . These measures of

the state probabilities may be used to construct two versions of a Markov-switching cay, based

on using either smoothed or filtered probabilities. In both cases, the mean value for cay is a

probability weighted average of the two intercept coeffi cients, α1 and α2. As a benchmark, we
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use the smoothed probabilities for our baseline estimate and denote it cayMS
t . When we use

filtered probabilities, we use the notation cayMSfilt
t . Thus, cayMS

t is computed one of two ways:

cayMSfilt
t = ct −

(∑2
i=1 π

i
t|tαi + βaat + βyyt

)
. (3)

cayMS
t = ct −

(∑2
i=1 π

i
t|Tαi + βaat + βyyt

)
. (4)

We depart in one way from previous work in our estimation of the cointegrating parameters

for cayFCt . Previously, the cointegrating coeffi cients α, βa, and βy are estimated from the static

ordinary least squares (OLS) regression

ct = α + βaat + βyyt + εt (5)

while the DLS regression (1) was used to compute standard errors for the OLS cointegrating

coeffi cients in a manner that adjusts for endogeneity of the regressors. For the Gibbs sampling

algorithm described below, it turns out to be numerically more convenient to estimate the

cointegrating coeffi cients in one-step as part of the DLS regression (1). Asymptotically, this

will not affect the cointegrating coeffi cient point estimates.

2.1 Estimation

We use Bayesian methods to estimate regression (1). We first search for the posterior mode

using a maximization algorithm. The posterior of the model is obtained by computing the

likelihood, as explained in Hamilton (1994), and combining it with the priors. In practice we

use a flat prior so our parameter “estimates”are simply those that maximize the likelihood.

Nevertheless, from here on our estimation procedure is expressed in Bayesian language to make

the use of a Gibbs sampling algorithm sensible, which makes it convenient to do inference and

compute additional statistics of interest. The maximized likelihood (posterior mode) is used

to obtain initial values for the Gibbs sampling algorithm. Once we have the posterior mode,

uncertainty about the parameters and the sequence of regimes can be characterized using the

Gibbs sampling algorithm described below.

To simplify notation, we denote the vector containing all variables whose coeffi cients are

allowed to vary over time xM,t, while xF,t is used to denote the vector containing all the variables

whose coeffi cients are kept constant. We then obtain:

ct = αξαt xM,t + βxF,t + σεt

where, in our case, β =
[
βa, βy, ba,−k, ..., ba,+k, by,−k, ..., by,+k

]
and the vector xM,t is unidimen-

sional and always equal to 1.

Suppose the Gibbs sampling algorithm has reached the r−th iteration. We then have draws
for βr, αξαt ,r, σr, H

α
r , and ξ

α,T
r , where ξα,Tr = {ξα1,r, ξα2,r,...,ξαT,r} denotes a draw for the whole

regime sequence. The sampling algorithm is described as follows.
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1. Sampling βr+1: Given αξαt ,r, σr, and ξ
α,T
r we transform the data:

c̃t =
ct − αξαt ,rxM,t

σr
= β

xF,t
σr

+ εt = βx̃t + εt.

The above is a regression with fixed coeffi cients β and standardized residual shocks.

Standard Bayesian methods may be used to draw the coeffi cients of the regression. We

assume a Normal conjugate prior β ∼ N (Bβ,0, Vβ,0)), so the conditional (on αξαt ,r, σr,

and ξα,Tr ) posterior distribution is given by

βr+1 ∼ N (Bβ,T , Vβ,T )

with Vβ,T =
(
V −1β,0 + X̃ ′F X̃F

)−1
and Bβ,T = Vβ,T

[
V −1β,0Bβ,0 + X̃ ′F C̃n

]
, where C̃n and X̃F

collect all the observations for the transformed data and Bβ,0 and V −1β,0 control the priors

for the fixed coeffi cients of the regression. With flat priors, Bβ,0 = 0 and V −1β,0 = 0 and

Bβ,T and Vβ,T coincide with the maximum likelihood estimates.

2. Sampling αi,r+1 for i = 1, 2: Given βr+1, σr, and ξ
α,T
r we transform the data:

c̃t =
ct − βr+1xF,t

σr
= αξαt

xM,t

σr
+ εt = αξαt x̃M,t + εt.

The above regression has standardized shocks and Markov-switching coeffi cients in the

transformed data. Using ξα,Tr we can group all the observations that pertain to the same

regime i. Given the prior αi ∼ N (Bαi,0, Vαi,0)) for i = 1, 2 we use standard Bayesian

methods to draw αi from the conditional (on βr+1, σr, and ξ
α,T
r ) posterior distribution:

αi,r+1 ∼ N (Bα,T , Vα,T ) for i = 1, 2

where Vαi,T =
(
V −1αi,0

+ X̃ ′M,iX̃M,i

)−1
and Bαi,T = Vαi,T

[
V −1αi,0

Bαi,0 + X̃ ′M,iC̃n,i

]
where C̃n,i

and X̃M,i collect all the observations for the transformed data for which regime i is in

place. The parameters Bαi,0 and V
−1
αi,0

control the priors for the MS coeffi cients of the

regression: αi ∼ N (Bαi,0, Vαi,0) for i = 1, 2. With flat priors, we have Bαi,0 = 0 and

V −1αi,0
= 0 and Bαi,T and Vαi,T coincide with the maximum likelihood estimates.

3. Sampling σr+1: Given βr+1, αξαt ,r+1, and ξα,Tr we can compute the residuals of the

regression:

c̃t = ct − βr+1xF,t − αξαt xM,t = σεt.

With the prior that σ has an inverse gamma distribution, σ ∼ IG (Q0, v0) , we use

Bayesian methods to draw σr+1 from the conditional (on βr+1, αξαt ,r+1, and ξ
α,T
r ) pos-

terior inverse gamma distribution:

σr+1 ∼ IG (QT , vT ) , vT = T + v0, QT = Q0 + E ′E
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where E is a vector containing the residuals, T is the sample size, and Q0 and v0 control

the priors for the standard deviation of the innovations: σ ∼ IG (Q0, v0) .With flat priors,

we have Q0 = 0 and v0 = 0.

4. Sampling ξα,Tr+1: Given βr+1, αξαt ,r+1, and H
α
r we can obtain filtered probabilities for the

regimes, as described in Hamilton (1994). Following Kim and Nelson (1999) we then use

a Multi-Move Gibbs sampling to draw a regime sequence ξα,Tr+1.

5. Sampling Hα
r+1: Given the draws for the MS state variables ξ

α,T
r+1, the posterior for the

transition probabilities does not depend on other parameters of the model and follows

a Dirichlet distribution if we assume a prior Dirichlet distribution.5 For each column of

Hα
r+1 the posterior distribution is given by:

Hα
r+1(:, i) ∼ D(aαii + ηαii,r+1, a

α
ij + ηαij,r+1)

where ηαij,r+1 denotes the number of transitions from state iα to state jα based on ξα,Tr+1,

while aαii and a
α
ij the corresponding priors. With flat priors, we have a

α
ii = 0 and aαij = 0.

6. If r + 1 < R, where R is the desired number of draws, go to step 1, otherwise stop.

For each draw of the parameters βr, αξαt ,r, σr, and H
α
r we can then compute an estimate for

cayMS
t using the filtered, πt|t, or smoothed probabilities, πt|T , of the regimes conditional on the

model parameters. The filtered probabilities reflect the probability of a regime conditional on

the data up to time t, πt|t = p(ξαt |Y t;θ), for t = 1, ..., T , and are part of the output obtained

computing the likelihood function associated with the parameter draw θ =
{
β, αξαt , σ,H

α
}
.

They can be obtained using the following recursive algorithm:

πt|t =
πt|t−1 � ηt

1′
(
πt|t−1 � ηt

)
πt+1|t = Hαπt|t

where ηt is a vector whose j-th element contains the conditional density p(ct|ξαt = j, xM,t, xF,t; β, αξαt , σ),

the symbol � denotes element by element multiplication, and 1 is a vector with all elements
equal to 1. To initialize the recursive calculation we need an assumption on the distribution of

ξα0 . We assume that the two regimes have equal probabilities: p(ξ
α
0 = 1) = .5 = p(ξα0 = 2).

The smoothed probabilities reflect all the information that can be extracted from the whole

data sample, πt|T = p(ξαt |Y T ;θ). The final term, πT |T is returned with the final step of the

filtering algorithm. Then, a recursive algorithm can be implemented to derive the other prob-

abilities:

πt|T = πt|t �
[
Hα′ (πt+1|T (÷) πt+1|t

)]
where (÷) denotes element by element division.

5The Dirichlet distribution is a generalization of the beta distribution that allows one to potentially consider
more than 2 regimes. See e.g., Sims and Zha (2006).
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3 Results

We estimate the Markov-switching cointegrating relation described by (1) over the sample

1952:Q1-2013:Q3 using six leads and lags. Table 1 reports the parameter estimates, while

Figure 1 reports the probability of Regime 1 for the Markov-switching intercept αξαt based on

the posterior mode parameter estimates. The 90% credible sets are obtained making 2,000,000

draws from the posterior using the Gibbs sampling algorithm described above. One in every

one hundred draws is retained. We check convergence using the methods suggested by Geweke

(1992) and Raftery and Lewis (1992).6

The sample is divided into three clear subperiods characterized by two regimes for the

mean of cayt. Regime 1 is a high mean regime with the posterior mode point estimate equal

to α̂1 = 0.9186. The low mean regime posterior mode estimate is α̂2 = 0.8808. A high mean

regime for cay corresponds to a low valuation ratio for the stock market, analogous to a low

price-dividend ratio (Lettau and Ludvigson (2001)). Figure 1 shows that the high mean regime

prevails for a prolonged period of time starting from 1976:Q2 to 2001:Q2. The smoothed

probability that α = α̂1 is unity during this period. By contrast, the pre-1976 and post-2001

subsamples are low mean regimes, where the probability that α = α1 is equal to 0. These

correspond to the subperiods 1952:Q1-1976:Q1, and 2001:Q2-2013:Q3, respectively.

Table 1 provides estimates of the difference between the two means and its distribution.

The difference is positive and statistically significant, as exemplified by the third row of Table

1, which shows that a 95% credible set only contains non-zero and positive values for this

difference.7 The two regimes turn out to be very persistent and this is reflected in the estimates

for the diagonal elements of the transition matrix Hα, also reported in Table 1.

The mode values for the other cointegration parameters are βa = 0.26 and βy = 0.62. These

values are comparable with those originally obtained by LL using a fixed coeffi cient regression

(βa = 0.31 and βy = 0.59). By contrast, Table 2 reports the parameter estimates for the fixed

coeffi cient cointegrating relation over the extended sample used in this paper, where βa = 0.12

and βy = 0.78. Therefore, in our current sample, the fixed coeffi cient parameter estimates

differ substantially from those reported in 2001. Bearing in mind that deviations from the

cointegrating relation are the result of persistent but transitory movements in at rather than ct
or yt (Lettau and Ludvigson (2004), Lettau and Ludvigson (2013)), these results suggest that

6For Raftery and Lewis (1992) we target 90% credible sets, with a 1% accuracy to be achieved with a 95%
minimum probaility. We initialize the Gibbs sampling algorithm making a draw around the posterior mode.
Sims and Zha (2006) point out that in Markov-switching models it is important to first find the posterior mode
and then use it as a starting point for the MCMC algorithm due to the fact that the likelihood can have multiple
peaks.

7The Gibbs sampling algorithm is used to generate a distribution for the difference between the two means
in the same manner it is used to generate a distribution for any parameter. For each draw from the joint
distribution of the model parameters, we compute the difference and store it. We may then compute means
and/or medians, and error bands, as for any other parameter of interest.
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the fixed-coeffi cient estimates of cayt attempted to “compensate” for increasingly persistent

deviations in at from its cointegrating relation with ct and yt, by progressively reducing the

weight on at and increasing the weight on yt. The instability in these point estimates is largely

eliminated by allowing for discrete shifts in the mean of cay.

To give a visual impression of these regimes over time, Figure 2 plots cayMS
t +

∑2
i=1 π

i
t|Tαi

over time, which is the estimated Markov-switching cay from (4) inclusive of the intercept. Also

plotted as horizontal lines are the values α̂1 and α̂2 that arise in each regime over the sample.

The figure shows that cay fluctuates around two distinct means in three separate periods of

the sample, a low mean in the early part of the sample, a high mean in the middle, and a low

mean again in the last part of the sample.

3.1 Persistence of cayMS versus cayFC

Figure 3 plots the fixed coeffi cient cayFCt and the Markov-switching cayMS
t as defined in (2) and

(4), respectively.8 (Unlike Figure 2, these values subtract the estimated mean or probability-

weighted mean, respectively.) The two vertical bars mark the beginning and the end of the time

span during which the high mean regime was most likely to be in place. As Figure 3 shows,

cayFCt exhibits persistent deviations from zero, especially during the period starting around 1980

and ending in the early 2000s. This period roughly coincides with the occurrence of Regime

1 when allowing for a Markov-switching constant. By contrast, cayMS
t does not exhibit such

persistent deviations from its demeaned value of zero. The persistent deviations are instead

captured by low-frequency regime changes in the constant of the cointegrating relation.

Overall cayMS
t appears to be substantially less persistent than cayFCt . To formalize this

visual impression, the first column of Table 3 reports the first-order autoregressive coeffi cient

estimate for the two versions of cay. The estimated autocorrelation coeffi cient for cayFCt is 0.94.

The estimated first-order autocorrelation coeffi cient for cayMS
t is 0.81, which is close to the 0.79

estimated coeffi cient reported in LL. Allowing for low frequency mean shifts in the cointegrating

relation largely restores the estimated persistence of cay to its original values.

Several other tests are employed to assess the degree of persistence in cayMS
t as compared

8In using the DLS regression (1) to estimate cointegrating parameters, we lose 6 leads and 6 lags. For
estimates of cayFCt , we take the estimated coeffi cients and we apply them to the whole sample. For estimates
of cayMS

t , we need the filtered and smoothed probabilities for these six lead and lags periods as well. To obtain
the estimated probabilities for these points in the sample, we fix the parameters to the values estimated with
the 6 leads and 6 lags and proceed as follows. Filtered probabilities for the first observation are obtained using a
regression that includes 6 leads but no lags. Filtered probabilities for the second observation are obtained using
a regression with 6 leads and 1 lag; estimates for the third observation are obtained using a regression with 6
leads and 2 lags, and so on until we reach the standard regression with 6 leads and 6 lags. To obtain filtered
probabilities for the last 6 observations, we proceed the other way around: The last observation estimates are
based on a regression that has 6 lags and 0 leads, the next to last is based on a regression that has 6 lags and
1 lead and so on. Smoothed probabilities are then computed with standard methods as they only involve the
filtered probabilities and the transition matrix Hα.
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to cayFCt . First, we apply an augmented Dickey-Fuller t test to the estimated cointegrating

residuals. We applied this test to the two versions of cay, and for different lagged values of

∆cay in the Dickey-Fuller regression. The test statistics and corresponding critical values are

reported in Table 3 . According to this test, the null hypothesis of no cointegration is rejected

for the cayMS
t in every case, whereas the opposite is true for cayFCt .

Second, we examine low frequency averages of cay to gauge its persistence. Figure 4 is based

on weighted averages that summarize low-frequency variability in a series. Specifically, following

Muller and Watson (2008) and Watson (2013), the figure plots the “cosine transformations”of

each version of cay

fj =
T∑
t=1

cos
(
j(t− 0.5)πT−1

)
cayt for j = 1, ..., k.

As Muller and Watson (2008) show, the set of sample averages {fj}kj=1, capture the variability
in cay for periods greater than 2T/k, where T is the sample size. Thus, with T = 247 quarters,

the k = 12 points plotted in Figure 4 summarize the variability in cay for periods greater than

2 ∗ 247/12 = 41.1667 quarters, or approximately 10 years. Smaller values of j correspond to

lower frequencies, so values of fj plotted for small j (e.g., j = 1, 2, 3) give the variability in cayt
at low frequencies, while values of fj plotted for higher j (e.g., j = 10, 11, 12) give the variability

in cayt at higher frequencies. A series that is integrated of order zero, I (0), corresponding to

covariance stationary, displays roughly the same variability (same value of fj) at all frequencies

j. By contrast, a series that is more persistent than I (0) displays higher variability at low

frequencies, resulting in higher values of fj for low j than for high j. Figure 4 shows that the

cosine transformation of cayMS
t displays a pattern much more consistent with an I (0) series

than that of cayFCt , which shows a clear spike at j = 3, corresponding to a period of roughly

41 years.

As a third way to evaluate the persistence of in cayMS
t versus cayFCt , we consider a parame-

terization from a fractionally integrated model to formalize the heteroskedasticity shown in 4.

We therefore assume (1− L)dcayt = ut, where L is the lag operator and ut is an I(0) process.

If cayt is I (0), then d = 0. If cayt has a unit root, then d = 1. Non-integer values of d > 0

are fractionally integrated series that are more persistent than I (0) but less persistent than

I (1). Figure 5 shows the estimated log likelihoods for (1− L)d cayMS
t and (1− L)d cayFCt as a

function of d. For cayMS
t , the likelihood peaks at d = 0, while for cayFCt , the likelihood rises

with d > 0 and peaks near d = 1.2.9

Although the statistical tests just considered imply that cayFCt is suffi ciently persistent that

it can be diffi cult to distinguish from a unit root process, it does not follow that cayFCt actually

has a unit root. Tests of the null of no cointegration are known to have low power against

9Please refer to Appendix 5 for details about the estimation of the fractionally integrated model.
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the cointegration alternative when deviations from the common trend are stationary but highly

persistent. For this reason, Park (1990), Park (1992), Han and Ogaki (1997), and Ogaki and

Park (1997) developed tests for the null of cointegration, rather than no cointegration, which

they argue are more appropriate when theory suggests the variables should be cointegrated.

These tests, as they apply to cay specifically, are described in detail in the online appendix

to (Lettau and Ludvigson (2013)) available on the authors’websites. Updated output from

the Ogaki and Park (1997) test for the null of cointegration for cayFCt is provided in Table 4.

As in earlier samples, this test continues to show no evidence against the null of cointegration

for cayFCt , lending support to the hypothesis that the standard cay is stationary even if it is

suffi ciently persistent so as to make it diffi cult to distinguish from a non-stationary variable

in our sample. But even if cayFCt is simply highly persistent but ultimately stationary, the

resulting low frequency deviations from a fixed mean raise issues for forecasting. We turn to

these forecasting implications next.

3.2 Forecasts of Excess Stock Market Returns

Table 5 reports the results of long-horizon forecasts of log returns on the CRSP value-weighted

stock market index in excess of a three month Treasury bill rate. This is the same return

variable that was the focus of the empirical results in LL. The table compares the forecasting

power of cayFCt , cayMSfilt
t , based on filtered probabilities and cayMS

t , based on smoothed prob-

abilities. The top panel reports full sample forecasts. The bottom panel reports the results of

forecasts based on fully recursive estimates of cayt using data only up to time t. The recursive

estimates are obtained as follows. First, all parameters θ for each model are estimated in an

initial period using data available from 1952:Q1 through 1980:Q4. All parameters are then rees-

timated recursively on data from 1952:Q1-1981:Q1, 1952:Q1-1981:Q2, and so on, until the final

recursive estimate of cay is obtained based on data over the full sample 1952:Q1-2013:Q3. The

recursively estimated values of cayFCt , cayMS
t , are denoted cayFCrec and cayMSrec, respectively.

These variables are then used to forecast returns over the entire subsample from 1981:Q1-

2013:Q3. Notice that the recursive estimates use no forward looking data to estimate any of

the parameters, including the regime probabilities, regimes values, or transition probabilities.

In both panels we report the coeffi cient estimates on the regressor, the Newey and West (1987)

corrected t-statistic, and the adjusted R2 statistic.

The top panel shows that all measures of cay estimated over the full sample have statistically

significant forecasting power for future excess stock market returns over horizons ranging from

one to 16 quarters. But the coeffi cients, t-statistics and R2 values are all larger using the

Markov-switching versions cayMSfilt
t and cayMS

t than they are for cayFCt . The comparison is

more stark if we compare recursively estimated values of cay to full sample values. For example,
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the full sample estimate of cayFCt explains 21% of the 16 quarter-ahead log excess stock market

return in the subsample 1981:Q1-2013Q3, while cayMSrec
t explains 42%. Moreover, in this sub-

sample, cayFCt has little forecasting power for excess returns at all but the longest horizon,

whereas cayMSrec
t has much stronger forecasting power. These results show that accounting

for infrequent shifts in the mean of cayt delivers a much more powerful predictor variable for

returns, even if no forward looking data is used to form knowledge of the size and dates of the

regime “breaks.”

Table 5 also shows that cayFCrect also has much stronger predictive power than cayFCt over

this subsample. By recursively estimating the parameters in cayFCt , we allow them to change

every period. In this way, a recursively estimated fixed-coeffi cient model can “compete”with

the Markov-switching version, which explicitly models shifts in the mean parameter. The

recursive estimation effectively allows the parameters of cayFCrect (including the mean) to vary

over different regimes of the sample. But finding that cayFCrect performs better than cayFCt in

forecasting returns hardly provides support for the hypothesis that the fixed-coeffi cient model is

a better description of the data than the Markov-switching model. On the contrary, this finding

may be taken as additional evidence of the instability in the fixed-coeffi cient parameters. If

there were no such instability, cayFCrect would be identically equal to cayFCt . Furthermore,

because cayMS
t is much less persistent than cayFCt , it is less subject to the spurious regression

concerns raised by Ferson, Sarkissian, and Simin (2003) for return forecasts.

Table 7 reports mean-square forecast errors (MSEs) from out-of-sample forecasts. The

forecasting relation is estimated in an initial period using data available from 1952:Q1 through

1980:Q4. Forecasts over the next h quarters are computed and forecast errors stored. The

forecasting relation is then reestimated in rolling subsamples moving forward, (i.e., over the

period 1952:Q1 through 1981:Q1), and forecasts and forecast errors are computed over the next

h periods. This process is repeated until the end of the sample. Table 7 reports MSEs for

several forecasting regressions. To form a basis for comparison, the first row reports results

using nothing more than an estimated constant as a predictor variable, while the second row

uses the lagged log excess stock market return as a predictor. The next three rows report

results using cayFCt , cayMSfilt
t , and cayMS

t as univariate predictors. These versions of cay are

all estimated using the full historical sample, as explained above. The last two rows report

results using cayFCrect and cayMSrec
t as univariate predictors. These versions of cay are all

estimated using only data up to and including date t, as explained above.

Some researchers have argued that many predictor variables for stock market returns have

diffi culty beating the sample mean of stock returns in out-of-sample tests (e.g., Goyal andWelch

(2003); Goyal and Welch (2008)). The first row of Table 7 shows this is not the case here: all

versions of cay have substantially lower out-of-sample MSEs than a forecasting model that uses

only the (constant) sample mean of excess returns as a predictor, and even the recursively
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estimated versions have MSEs that are almost 70% smaller than those of the sample mean

model. Table 7 shows that all versions of cay also have lower lower MSEs than a simple au-

toregressive forecasting model. Among those versions that are estimated using the full sample,

the two Markov-switching versions, cayMSfilt
t , and cayMS

t , are much better predictors than the

fixed-mean version cayFCt , having MSEs that are almost 50% smaller for 16-quarter return fore-

casts. The recursively estimated versions cayFCrect and cayMSrec
t have about the same predictive

power over most horizons, although the Markov-switching cay offers a slight improvement over

the fixed-mean cay at the longest (16 quarter) horizon. Because these recursive versions are

estimated over short subsamples, the estimates of parameters are much noisier than they are

for the full-sample versions, so it is not surprising that they have higher MSEs. For this very

reason, it is likewise encouraging that cayMSrec
t preforms as well (and slightly better at long

horizons) as cayFCrect , given that the former has many more parameters that require estimation

over short subsamples of our quarterly dataset. Postwar samples of the size currently available

are, however, much larger than the repeated subsamples used to construct the recursive esti-

mates for this exercise. Going forward, such samples should provide less noisy estimates of cay

parameters. Researchers using cayt as a predictor variable may wish to consider both measures

as predictors of long-horizon stock market returns.10

3.3 cay Measured With Total PCE

We now explore evidence for regime shifts in the mean of a newer measure of cayt introduced

in Lettau and Ludvigson (2015) that uses total personal consumption expenditure (PCE) as

a measure of ct in place of nondurables and services (NDS) expenditures employed in the

construction of the original cayt and used for all the results above. The common practice of

using NDS expenditures as a proxy total consumption is well understood to omit a component

of total consumption, namely the service flow from the stock of household durable goods. This

service flow is unobserved and no reliable measures exists for the durables stock as a whole.

Expenditures on durable goods, which are observed, represent investment (replacements and

additions to the durable goods capital stock), rather than a flow of consumption. If NDS

expenditures were a stable fraction of total flow consumption, the two would be approximately

proportional and the dynamic relationship between the log values of either variable with log

labor income, yt, and log asset wealth, at, would be the same. Such stability would justify

the use of NDS in place of the unobserved total flow consumption. Looking at data over the

last 40 years, however, it has become clear that such stability is likely to be illusory (Figure

(6)). The data exhibit a sharp downward trend in the ratio of NDS to total PCE over last 40

years. Although PCE is not equivalent to total flow consumption, any plausible model of the

10Both series will be updated and available on the authors’websites.
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service flow from the durables stock would imply a similar trend in the ratio of NDS to total

consumption.

The clear secular trend in NDS expenditures relative to total PCE, whatever its cause, means

that it is no longer tenable to ignore durables expenditures when constructing a measure of cayt
with fixed coeffi cients. Such trends would introduce a non-stationarity into the cointegrating

residual of a fixed coeffi cient cayt. One way that this might be addressed is to model regime

switches in the parameters, as we have done above. Allowing for low frequency regime changes

in the appropriate parameters could correct for the nonstationarity induced by low frequency

shifts in the NDS/PCE ratio. The findings above are suggestive that a regime-switching mean

partly corrects for this source of nonstationarity.

We have also experimented with using crude proxies of the service flow from the household

durable stock, but lacking compelling data on key features of this flow, such measures appear

unsatisfactory. Instead, in the 2015 update of cayt, we have simply replaced NDS expenditures

with total PCE as our measure of “ct”in the fixed coeffi cient measure of cayt. Lettau and Lud-

vigson (2015) argue that, under empirically plausible assumptions, the log of total consumption

is cointegrated with the log of PCE, with cointegrating vector (1,−1)′. It follows that we can

use total PCE in place of unobserved total consumption, and still obtain a valid cointegrating

relation with at and yt.

We redid our analysis above for this newer measure of cayt that uses total PCE. In order

to conserve space, we do not report all the tables reported above corresponding to the NDS

measure, and instead focus only on the forecasting performance of the MS versions compared to

the fixed mean versions. Overall, the results show that the PCE measure of cayt is slightly less

persistent even with a fixed mean than is the NDS measure. It has a first-order autoregressive

coeffi cient of 0.91 instead of 0.94, and estimates of the fractionally integrated model imply that

it has a root that is just below unity (indicating fractional integration, rather than unit root).

Moreover, the Ogaki and Park tests for the null of cointegration typically have sample test

statistics that indicate more evidence of cointegration.

This may explain why we find that allowing for breaks in the mean of the PCE cay doesn’t

result in a large impact on its stationarity. The estimated PCE cayMS is less persistent than

the fixed coeffi cient version, but the cosine transformations continue to exhibit a peak at low

frequencies and the log likelihood values for (1− L)d cay continue to peak in the fractionally

integrated ranges. The estimated regimes are less persistent than those for the NDS cayMS, so

there is more switching between the two regimes over the sample. The large infrequent shifts

in mean that render the NDS version of cayMS much more clearly stationary than the fixed

coeffi cient counterpart are simply not present in the PCE version.

Table 6 presents long-horizon forecasts analogous to those in Table 5, while the bottom

panel of Table 7 presents out-of-sample results. Taken together, the results show that the fixed
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coeffi cient PCE cay has stronger forecasting power than the fixed coeffi cient NDS cay. But

the MS version of the latter performs better than the MS of the former, and has the strongest

forecasting power of all the measures. This is true both in and out-of-sample. These measures

are also the least persistent. These findings echo those in previous work studying the dividend-

price ratio. Lettau and Van Nieuwerburgh (2008) remove the non-stationary component of the

dividend-price ratio by estimating a structural break model of its mean. Once this ratio is

adjusted for structural shifts in its mean, the resulting adjusted process is far less persistent

than the original series and exhibits stronger forecasting power for future returns than the

unadjusted series.

The finding that the fixed coeffi cient PCE version of cay is somewhat less persistent than

the fixed coeffi cient NDS version suggests that a part of the persistence in the latter may be

attributable to factors related to the measurement of consumption. A possible contributing

factor to the increasing divergence between NDS and PCE expenditures is the sharply rising

income and (to a lesser extent) wealth inequality over this same period, which has increased

the income and wealth of households at the very top of these distributions relative to those

elsewhere in the distribution. Although we lack high quality measures of the consumption

for the wealthy, it stands to reason that consumption inequality has likely grown in tandem

with income and wealth inequality. If luxury goods are disproportionately durable goods, then

NDS expenditures would omit and increasingly important component of aggregate consumption

driven by the consumption of the wealthy that should be cointegrated with aggregate wealth

and labor income. Hence using total PCE in cay could help correct for some of these biases.

At the same time, the PCE version of cay is still quite persistent, regardless of whether

the mean is allowed to switch, suggesting that these measurement issues may not be the whole

story behind its persistence. Because the PCE measures with fixed mean are less persistent

than the NDS measure, while the MS PCE measure is much more persistent than the the MS

NDS measure, there seems to be a clear ranking in terms of forecasting power: the MS NDS

measures perform best, the fixed coeffi cient PCE measure performs second best, and the fixed

coeffi cient NDS measure performs least well. Data on the first two measures will be posted

regularly on the authors’websites.

4 Explaining Breaks in cay: Monetary Policy Regimes

In this section we study what could explain the breaks observed in cay using the standard

NDS measure of ct. To do so, we estimate a Markov-switching macroeconomic VAR (MS-

VAR) for output growth, inflation, and the federal funds rate, allowing the parameters of the

VAR to potentially undergo structural breaks during the periods that correspond to the shifts

identified in our estimates for cayMS. With this approach, we impose the formerly estimated

15



regime sequence for cay on the VAR, but the parameters characterizing the different regimes,

as well as the transition matrix, are freely estimated. Note that the goal is not to estimate

the regimes of the MS-VAR and see if they are aligned with the previously estimated breaks

in cay. Instead, the goal is to establish what, if anything, is different in the VAR across the

two previously estimated regimes that could help explain the breaks in the mean of cay. Thus

we deliberately “tie our hands”by forcing the regime sequence for the MS-VAR to correspond

to breaks in cay. We then ask whether the parameters of the MS-VAR show any evidence of

important structural shifts under this sequence, when they are freely estimated and could in

principle show no shift.

Specifically, we consider the following multivariate model:

Zt = cξt + A1,ξtZt−1 + A2,ξtZt−2 + Vξtεt, εt ∼ N (0, I) (6)

where Zt is an n × 1 vector of variables, cξt is an n × 1 vector of constants, Al,ξt for l = 1, 2

is an n × n matrix of coeffi cients, VξtV ′ξt is an n × n covariance matrix for the n × 1 vector of

shocks εt. The process ξt controls the regime that is in place at time t and assumes two values,

1 and 2, based on the regime sequence identified in our estimates for cayMS.

The vector Zt includes three variables at quarterly frequency: GDP growth, Inflation, and

the federal funds rate (FFR). Inflation and real output growth are defined as the year-to-year

differences of the logarithm of the GDP price deflator and real GDP, respectively. The quarterly

FFR is obtained by taking the average of monthly figures of the Effective Federal Funds Rate.

All variables are taken from the FRED II database of the Federal Reserve Bank of St. Louis

and are expressed in percentage points. The sample period ranges from 1955:Q3-2013:Q3. (The

beginning of the sample is three years later than the sample used to estimate cay because the

federal funds rate data is only available starting in 1955:Q3.) Details about the estimation can

be found in the Appendix.

Figure 7 and Figure 8 report the conditional means and conditional standard deviations

for the three observables in the VAR and the implied real interest rate at different horizons.

The conditional means and the conditional standard deviations for a variable zt correspond

to Et (zt+s) and sdt (zt+s) =
√
Vt (zt+s) =

√
Et [zt+s − Et (zt+s)]

2, where both statistics are

computed by taking into account the possibility of regime changes. (Details about how these

are calculated can be found in Appendix.) The real interest rate (RIR) is defined as the

difference between the FFR and one-step-ahead inflation expectations. Inflation expectations

are, in turn, computed based on the VAR estimates. Therefore, the real interest rate is not

included directly in the VAR, but derived ex-post based on the VAR estimates.

Figure 7 shows striking evidence of structural change in the expected long-run RIR that

coincide with the regime sequence estimated for the mean of cay. The occurrence of regime

1, a period of low equity valuation (high cay) in the middle subsample from 1976:Q2-2001:Q2,
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coincides with an expectation of sharply higher values for the real federal funds rate, while

the periods of high equity valuation at the beginning (1955:Q3-1976:Q1) and end (2001:Q3-

2013:Q3) of our sample coincide with expectations of much lower real interest rates. The

differences across subsamples are strongly statistically significant. Note that, because the MS-

VAR parameters are freely estimated, the estimation could have found no evidence of structural

change in the expected real interest rate across these subsamples and/or that changes occur in

variables other than the expected real interest rate.

Figure 7 also shows that the estimated regime shifts in the expected future RIR show up

most prominently in the expectations for the real policy rate five to ten years ahead. This

finding underscores the extent to which low frequency shifts in the mean of cay coincide with

expectations of a persistent low or high interest rate environment, rather than transitory move-

ments in these rates. Moreover, the breaks in the expected real interest rate five to ten years

ahead appear mostly attributable to breaks in the conditional mean of the nominal interest

rate, which the Federal Reserve directly influences. Of course the Federal Reserve may also

have considerable influence over expected inflation. But movements in expected inflation do

not line up as well with the regime sequence for breaks in the mean of cay as do movements in

the expected nominal interest rate: in the first subperiod, corresponding to the first instance

of regime 1, expected inflation was low and then high, while in the second subperiod, corre-

sponding to regime 2, inflation was high and then low, where it remained throughout the entire

span of the third subperiod corresponding to the second instance of regime 2 at the end of our

sample. To the best of our knowledge, these findings provide among the first formal statistical

evidence that low frequency shifts in asset values relative to economic fundamentals are strongly

associated with expectations of the long-run value of a policy instrument under direct control

of the central monetary authority.

Why are high asset valuations, as measured by the breaks in the mean of cay, associated

with low expected long-run policy rates, and vice versa? Some theories of rational bubbles

suggest that higher policy rates can lead to higher asset valuations (e.g., Galí (2014)). But the

evidence here is inconsistent with this story, since high wealth ratios are associated with low

policy rates rather than high. An alternative explanation, consistent with the evidence here,

is that any change in the expected short-term real interest rate will always have some effect

on asset values because it changes the “fundamental”value of the asset. If prices are inflexible

and the Federal Reserve reduces the nominal interest rate, changes in monetary policy may

reduce the rate at which investor’s discount future payouts by reducing the real “risk-free”

rate component of the discount rate, thereby increasing asset values. Asset valuations could

be further increased if the risk premium component of the discount rate falls simultaneously

with the risk-free rate because investors’willingness to tolerate risk is for some reason inversely

related to the long-run expected value of the Federal Reserve’s core policy instrument, as in
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some “reaching for yield”stories.

Alternatively and/or in addition, high wealth ratios could be associated with low expected

long-run policy rates because the latter are expected to generate either faster long-run economic

growth, or lower uncertainty about that growth. Conversely, regimes characterized by low

wealth ratios and high expected policy rates could be explained by lower expectations for

long-run growth and/or higher uncertainty about that growth. Figure 7, however, provides no

evidence that the low frequency shifts to high asset valuation regimes are associated with higher

expected economic growth, or vice versa; indeed the opposite is true. The high asset valuation

regime (low cay regime 2) at the beginning and end of our sample is associated with lower

expected GDP growth 10 years ahead than the low asset valuation regime in the middle of the

sample. Nor is there a clear pattern in long run expectations of inflation that could explain

the corresponding wealth ratio regimes. As mentioned, expected inflation was high in the first

subsample (regime 2) but lower in both the middle and ending subsamples (regimes 1 and 2,

respectively).

In theory, higher asset valuations could be the result of lower expected economic uncertainty

(e.g., Lettau, Ludvigson, and Wachter (2008)). Figure 8 shows the estimated conditional stan-

dard deviations for each variable in the MS-VAR across our sample. Note that the conditional

standard deviation represents a statistical measure of uncertainty. The result in Figure 8 shows

that for GDP growth and inflation, uncertainty is higher rather than lower in subperiods of

high equity valuation (regime 2) as compared to the subperiod of low equity valuation (regime

1), but the opposite is true for the nominal and real federal funds rate. Thus infrequent shifts

to high mean wealth ratios cannot be readily explained by lower economic uncertainty, nor can

it be explained by lower inflation uncertainty. Therefore, we can conclude that the high asset

valuation regime 2 is characterized by higher uncertainty for real activity and inflation, but

lower uncertainty about the Federal Reserve’s policy instrument, while the converse is true for

regime 1. This result is consistent with a more active role of the Federal Reserve in stabilizing

inflation and real activity. As the Federal Reserve is expected to respond more aggressively

by raising interest rates to counter higher inflation and/or a lower output gap, macroeconomic

volatility is reduced, whereas the volatility of the FFR can increase.

Table 8 reports both means and standard deviations for the real interest rate and GDP

growth, conditional on staying in each of the two regimes. These conditional steady state values

are the means and volatilities that we would expect to observe if one regime were to prevail for a

prolonged period of time.11 Note that these estimates do not depend on the estimated transition

matrix. These statistics corroborate the non-steady state evidence presented above where the

possibility of a regime shift is incorporated into expectations: the two regimes present a clear

11Formally, the conditional means and standard deviations are the values to which Et (rirt+s) and sdt (zt+s) =√
Vt (rirt+s) would converge if one of the two regimes were in place forever as the horizon s goes to infinity.
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difference for the mean and volatility of the real interest rate. The high asset valuation regime

2 is characterized by sharply lower expected real policy rates and lower uncertainty about those

rates, while the opposite is true for the low asset valuation regime. By contrast, the high asset

valuation regime 2 is characterized by lower expected economic growth and higher economic

uncertainty.

Figure 9 gives a visual impression of the key result. The figure plots the “wealth ratio”(the

inverse of cayMS without removing the Markov-switching constant), along with the ten-year-

ahead expected real federal funds rate, on separate scales. The red dashed line in the figure

shows the most likely value of the unconditional mean of the wealth ratio in each regime (given

by the inverse of the regime-probability weighted average of α1 and α2). The mean shows clear

regime shifts in wealth ratios that move from high to low to high over the sample, coinciding

with a low then high then low expected long-run real federal funds rate. Note that the regime

shifts in the expected federal funds rate are large, ranging from about 1% in the low expected

interest rate regimes to 3% in the high expected interest rate regime.

These results capture three distinct periods of post-WWII US economic history. The first

manifestation of regime 2 is in the subperiod from 1952:Q1-1976:Q1 and coincides with the run-

up of inflation in the 1960s and 1970s, accommodative monetary policy, and low real interest

rates. Economists have provided several possible explanations for why monetary policy failed

to react aggressively to inflation during those years. However, they generally tend to agree

that this was a period of high uncertainty and possibly passive monetary policy (Clarida, Gali,

and Gertler (2000); Lubik and Schorfheide (2004); Sims and Zha (2006); Bianchi (2013)). The

occurrence of Regime 1, in the middle subperiod from 1976:Q2-2001:Q2, proceeds by three

years Volcker’s appointment as Chairman of the Federal Reserve and roughly coincides with

the Volcker disinflation that followed and the Great Moderation. The first attempts to bring

inflation down started in the late 1970s, whereas the beginning of Great Moderation is generally

placed in the mid-1980s. Macroeconomists interested in the Great Inflation tend to identify the

change in the anti-inflationary stance of the Federal Reserve with the appointment of Volcker in

August 1979. However, Sims and Zha (2006) estimate a structural MS-VAR and find a change

in the conduct of monetary policy from less to more active toward the end of 1977, in line with

our results. Real interest rates increased significantly during the Volcker disinflation and they

remained higher than in the 1970s for a prolonged period of time. In part this was probably

due to the fact that the Federal Reserve had to rebuild credibility for low and stable inflation.

At the same time, the economy experienced a substantial reduction in volatility (McConnell

and Perez-Quiros (2000); Stock and Watson (2002)). Finally, the second occurrence of Regime

2 in the subperiod 2001:Q3-2013:Q3 starts with the end of the information technology (IT)

boom and the start of the Federal Reserve’s accommodative response to the recession that

followed. Economists have identified the end of the Great Moderation with the 2008 recession,
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consistent with the estimated break patterns in Figure 8 for GDP growth uncertainty. At the

same time, some have argued that monetary policy underwent a regime shift after the end of

the IT boom (Campbell, Pflueger, and Viceira (2014)) and/or that interest rates were held “too

low for too long”(Taylor (2007)) in response to the IT bust and the aftermath of 9/11. Asset

values quickly recovered in 2002, and after a brief but dramatic decline in the financial crisis of

2007-2009, equity valuations resumed their upward march in 2009. This period of high equity

valuations persists today with the zero lower bound associated with positive rates of inflation.

Our estimates characterize this third subperiod as a return to a period of prolonged low real

interest rates, i.e. regime 2.

The three distinct cay regimes we estimate are remarkably close to the three distinct mon-

etary policy regimes estimated by Campbell, Pflueger, and Viceira (2014), who use completely

different approach. Instead of identifying the break dates by using a cointegration relation

in cay, they estimate break dates in the parameters of an estimated Taylor rule. Their first

subperiod covers the period 1960:Q2-1977:Q1, the middle period is 1977:Q2-2000:Q4, and the

last subperiod 2001:Q1 to the end of their sample 2011:Q4. They find that these regimes line

up closely with shifts in estimated bond market betas. Although our focus is on regime shifts

in an asset valuation ratio, cay, taken together, the results are suggestive of an important role

for the Federal Reserve in driving persistent movements in equity and interest rate behavior.

5 Conclusion

This paper presents evidence of infrequent shifts, or “breaks,”in the mean of the consumption-

wealth variable cayt, an asset market valuation ratio driven by fluctuations in stock market

wealth relative to economic fundamentals. These infrequent mean shifts generate low frequency

fluctuations in asset values relative to fundamentals as measured by cay. A Markov-switching

cayt, denoted cayMS
t , is estimated and shown to be less persistent and have superior forecasting

power for excess stock market returns compared to the conventional estimate. Evidence from

a Markov-Switching VAR shows that these low frequency swings in post-war asset valuation

are strongly associated with low frequency swings in the long-run expected value of the Federal

Reserve’s primary policy interest rate, with low expected values for the real federal funds rate

associated with high asset valuations, and vice versa. The findings suggest that the expectation

of persistently low policy rates may be partly responsible for the high asset valuations of the

last several years, and vice versa for the low asset valuation regime in the middle part of our

post-war sample.

At the same time, we find no evidence that the estimated structural shifts to high asset

valuation regimes and persistently low policy rates are associated with optimism about the

future in the form of expectations for stronger long-run economic growth, or lower uncertainty
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about that growth. Instead, the results suggest that infrequent regime shifts to high asset

valuations may be driven by persistent shifts in the stance of monetary policy that merely

reduce the rate at which investors discount assets, without engendering favorable expectations

for real economic growth, inflation, or uncertainty.
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Appendix

Data Appendix

This appendix describes the data used in this study.

CONSUMPTION

Consumption is measured as either total personal consumption expenditure or expenditure

on nondurables and services, excluding shoes and clothing. The quarterly data are seasonally

adjusted at annual rates, in billions of chain-weighted 2005 dollars. The components are chain-

weighted together, and this series is scaled up so that the sample mean matches the sample mean

of total personal consumption expenditures. Our source is the U.S. Department of Commerce,

Bureau of Economic Analysis.

LABOR INCOME

Labor income is defined as wages and salaries + transfer payments + employer contri-

butions for employee pensions and insurance - employee contributions for social insurance -

taxes. Taxes are defined as [ wages and salaries/(wages and salaries + proprietors’income with

IVA and CCADJ + rental income + personal dividends + personal interest income)] times

personal current taxes, where IVA is inventory valuation and CCADJ is capital consumption

adjustments. The quarterly data are in current dollars. Our source is the Bureau of Economic

Analysis.

POPULATION

A measure of population is created by dividing real total disposable income by real per

capita disposable income. Our source is the Bureau of Economic Analysis.

WEALTH

Total wealth is household net worth in billions of current dollars, measured at the end of

the period. A break-down of net worth into its major components is given in the table be-

low. Stock market wealth includes direct household holdings, mutual fund holdings, holdings of

private and public pension plans, personal trusts, and insurance companies. Nonstock wealth

includes tangible/real estate wealth, nonstock financial assets (all deposits, open market paper,

U.S. Treasuries and Agency securities, municipal securities, corporate and foreign bonds and

mortgages), and also includes ownership of privately traded companies in noncorporate equity,

and other. Subtracted off are liabilities, including mortgage loans and loans made under home

equity lines of credit and secured by junior liens, installment consumer debt and other. Wealth

is measured at the end of the period. A timing convention for wealth is needed because the

level of consumption is a flow during the quarter rather than a point-in-time estimate as is

wealth (consumption data are time-averaged). If we think of a given quarter’s consumption

data as measuring spending at the beginning of the quarter, then wealth for the quarter should

be measured at the beginning of the period. If we think of the consumption data as measuring



spending at the end of the quarter, then wealth for the quarter should be measured at the end of

the period. None of our main findings discussed below (estimates of the cointegrating parame-

ters, error-correction specification, or permanent-transitory decomposition) are sensitive to this

timing convention. Given our finding that most of the variation in wealth is not associated with

consumption, this timing convention is conservative in that the use of end-of-period wealth pro-

duces a higher contemporaneous correlation between consumption growth and wealth growth.

Our source is the Board of Governors of the Federal Reserve System. A complete description

of these data may be found at http://www.federalreserve.gov/releases/Z1/Current/.

STOCK PRICE, RETURN, DIVIDENDS

The stock price is measured using the Center for Research on Securities Pricing (CRSP)

value-weighted stock market index covering stocks on the NASDAQ, AMEX, and NYSE. The

data are monthly. The stock market price is the price of a portfolio that does not reinvest

dividends. The CRSP dataset consists of vwretx(t) = (Pt/Pt−1)− 1, the return on a portfolio

that doesn’t pay dividends, and vwretdt = (Pt +Dt) /Pt − 1, the return on a portfolio that

does pay dividends. The stock price index we use is the price P x
t of a portfolio that does not

reinvest dividends, which can be computed iteratively as

P x
t+1 = P x

t (1 + vwretxt+1) ,

where P x
0 = 1. Dividends on this portfolio that does not reinvest are computed as

Dt = P x
t−1 (vwretdt − vwretxt) .

The above give monthly returns, dividends and prices. The annual log return is the sum of the

12 monthly log returns over the year. We create annual log dividend growth rates by summing

the log differences over the 12 months in the year: dt+12 − dt = dt+12 − dt+11 + dt+11 − dt+10 +

· · · + dt+1 − dt. The annual log price-dividend ratio is created by summing dividends in levels
over the year to obtain an annual dividend in levels, DA

t , where t denotes a year hear. The

annual observation on P x
t is taken to be the last monthly price observation of the year, P

Ax
t .

The annual log price-dividend ratio is ln
(
PAx
t /DA

t

)
.

PRICE DEFLATOR

The nominal after-tax labor income and wealth data are deflated by the personal consump-

tion expenditure chain-type deflator (2005=100), seasonally adjusted. In principle, one would

like a measure of the price deflator for total flow consumption here. Since this variable is

unobservable, we use the total expenditure deflator as a proxy. Our source is the Bureau of

Economic Analysis.



Estimation of Fractionally Integrated Models

In order to evaluate the likelihood for the fractionally integrated model we closely follow Muller

and Watson (2013). We in fact use a series of Matlab codes that are available on Mark Watson’s

webpage. The first step consists of computing the cosine transformation of cay:

fj = ιjTT
−1

T∑
t=1

√
2 cos

(
j(t− 0.5)πT−1

)
cayt for j = 1, ..., k.

where ιjT = (2T/ (jπ)) sin (jπ/ (2T )) . As explained in Muller and Watson (2013), this trans-

formation is useful to isolate variation in the sample at different frequencies. Specifically, fj
captures variation at frequency jπ/T . Mueller and Watson (2008, 2013) explain that working

with a subset of the cosine transformations implies truncating the information set. They pro-

vide two reasons for why this is a convenient approach. First, given that each variable is a

weighted average of the original data, a central limit allows to work with a limiting Gaussian

distribution. Second, such a choice implies robustness of the results: Low-frequency information

is used to study the low-frequency properties of the model. Given that we are mostly interested

in the low frequency properties of cay, we can work using a limited number of (low) frequencies.

We therefore choose k = 12.

We can then collect all the cosine transformations in a vectorXT,1:k and compute an invariant

transformation Xs
T,1:k = XT,1:k/

√
X ′T,1:kXT,1:k (notice that this implies that the results that will

follow are independent of scale factors). As explained in Muller and Watson (2013), the limiting

density for the invariant transformations is given by:

pXS (xs) =
1

2
Γ (k/2) π−k/2 |ΣX |−1/2

(
xs′Σ−1X xs

)−q/2
(7)

where Xs = X1:k/
√
X ′1:kX1:k, ΣX = E (XsXs′) , and Γ is the gamma function.

We then assume a fractionally integrated model for cayt: (1− L)dcayt = ut, where L is the

lag operator and ut is an I(0) process and d is a parameter that is allowed to be fractional. The

fractional model implies a binomial series expansion in the lag operator:

(1− L)dcayt =

[∑∞
k=0

(
d

k

)
(−L)k

]
cayt

=

[∑∞
k=0

∏k−1
a=0 (d− a) (−L)k

k!

]
cayt

=

[
1− dL+

d (d− 1)

2!
L2 − ...

]
cayt

Note that when d = 1, the fractional integrated model implies that cayt has a unit root, cayt =

cayt−1 + ut, while for d = 0, cayt = ut, i.e. cayt is an I(0) process.



We compute the covariance matrix ΣX (d) associated with different values of d in the frac-

tionally integrated model. The matrix ΣX (d) is obtained in two steps. First, we compute the

matrix of autocovariances Σ (d) associated with a fractionally integrated model. The (i, i+ h)

element of this matrix is given by the autocovariance γ (h):

Σ (d)(i,i+h) = γ (h) =
Γ (1− 2d)

Γ (1− d) Γ (d)

Γ (h+ d)

Γ (1 + h− d)

Second, we transform the autocovariance matrix Σ (d) in order to obtain the covariance matrix

for the cosine transformations: ΣX (d) = Ψ′Σ (d) Ψ where Ψ is a (T × k) matrix collecting all

the weights used for the cosine transformation:

Ψ(t,j) = ιjTT
−1

T∑
t=1

√
2 cos

(
j(t− 0.5)πT−1

)
Finally, we evaluate (7) to obtain the likelihood for the different values of d given that ΣX (d)

is now a function of the parameter d of the fractionally integrated model.

Robustness: Markov-Switching in Other Parameters

We here analyze two alternative models and compare them to our benchmark model in which

only the constant is allowed to change over time and the fixed coeffi cient regression. In the

first model, we allow for heteroskedasticity and changes in the constant. In the second model,

we only allow for heteroskedasticity. We then use the Bayesian information criterion (BIC) to

compare the different models. This is computed as:

BIC = −2(maxli) + k log(T/(2π))

where maxli is the maximized likelihood, k is the number of parameters, and T the sample

size. Therefore, The Bayesian information criterion automatically penalizes models that have

more parameters.

Table A.1 reports the estimates for the key parameters and the BIC for each model. We

find that the BIC is minimized by the model is the one that allows for both heteroskedasticity

and changes in the constant (MS α and MS σ). Our benchmark model with only changes in

the constant (MS α only) is preferred to the model that only allows for heteroskedasticity (MS

σ only) and the fixed coeffi cient regression (FC). Therefore, our results clearly support the

hypothesis of shifts in the constant. Furthermore, the estimates for the cointegrating vector

are basically unchanged when introducing heteroskedasticity in our benchmark model. For this

reason, we choose the simpler model with only shifts in the constant as our benchmark model.



Model α1 α2 βa βy σ1 σ2 BIC

MS α and MS σ 0.9186 0.8810 0.2599 0.6162 0.0016 0.0105 −1472.0
MS α only 0.9186 0.8808 0.2606 0.6156 0.0080 −1443.7
MS σ only 0.8056 0.1275 0.7845 0.0029 0.0204 −1281.0

FC 0.8706 0.1246 0.7815 0.0158 −1173.5

Table A.1. The table reports the estimates for the cointegration parameters, the estimates for the volatilities,

and the Bayesian Information Criterion (BIC) for four different models. The BIC is used to compare the fit of

different models taking into account the number of parameters used in the estimates. MS α and MS σ: The

model allows for changes in the constant and heteroskedasticity. MS α only: Benchmark model with only

changes in the constant. MS σ only: The model allows for heteroskedasticity, but not changes in the constant.

FC: Standard fixed coeffi cient regression.

Additional Statistical Results

The tables below pertain to convergence of the Gibbs sampling algorithm.

Variable Total(N) I-stat Variable Total(N) I-stat Variable Total(N) I-stat
α1 17413 9.541 ∆at+1 1799 0.986 ∆yt−4 1850 1.014
α2 16949 9.287 ∆yt+1 1812 0.993 ∆at+4 1793 0.982
βa 1918 1.051 ∆at−2 1830 1.003 ∆yt+4 1820 0.997
βy 1843 1.01 ∆yt−2 1801 0.987 ∆at−5 1797 0.985
σ 1797 0.985 ∆at+2 1886 1.033 ∆yt−5 1850 1.014
Hα
11 1826 1.001 ∆yt+2 1767 0.968 ∆at+5 1826 1.001

Hα
22 1820 0.997 ∆at−3 1858 1.018 ∆yt+5 1850 1.014

∆at 1823 0.999 ∆yt−3 1808 0.991 ∆at−6 1850 1.014
∆yt 1850 1.014 ∆at+3 1847 1.012 ∆yt−6 1826 1.001

∆at−1 1839 1.008 ∆yt+3 1820 0.997 ∆at+6 1839 1.008
∆yt−1 1866 1.022 ∆at−4 1830 1.003 ∆yt+6 1866 1.022

Table A.2. Raftery-Lewis Diagnostics for each parameter in the chain. The minimum number of draws

under the assumption of i.i.d. draws would be 1825. The sample is quarterly and spans the period 1952:Q1 to

2013:Q3.

MS-VAR estimation

In this appendix we provide details on the estimation of the MS-VAR 6. As explained above,

we take the regime sequence as given based on our estimates for the breaks in cayMS. This

means that we only have to estimate the transition matrix and the parameters of the VAR

across the two regimes. The model is estimated by using Bayesian methods with flat priors on

all parameters.

As a first step, we group all the observations that belong to the same regime. Conditional

on a regime, we have a fixed coeffi cients VAR. We can then follow standard procedures to make



draws for the VAR parameters. Conditional on each regime, we can rewrite the VAR as

Y
T×n

= Xβξt
(T×k)(k×n)

+ ε
T×n

, εt ∼ N
(
0,Σξt

)
, ξt = 1, 2

where Σξt = VξtV
′
ξt
. If we specify a Normal-Wishart prior for βξt and Vξt :

Σ−1ξt ∼ W
(
S−10 /v0, v0

)
vec
(
βξt |Σξt

)
∼ N

(
vec (B0) ,Σξt ⊗N

−1
0

)
where E

(
V −1ξt

)
= S−10 , the posterior distribution is still in the Normal-Wishart family and is

given by

Σ−1ξt ∼ W
(
S−1T /vT , vT

)
vec
(
β|Σξt

)
∼ N

(
vec (BT ) ,Σξt ⊗N

−1
T

)
where

vT = T + v0, NT = X ′X +N0

BT = N−1T

(
N0B0 +X ′XB̂MLE

)
ST =

v0
vT
S0 +

T

vT
Σ̂MLE +

1

vT

(
B̂MLE − B̂0

)′
N0N

−1
T X ′X

(
B̂MLE − B̂0

)
B̂MLE = (X ′X)

−1
(X ′Y ) , Σ̂MLE =

1

T

(
Y −XB̂MLE

)′ (
Y −XB̂MLE

)
We choose flat priors (v0 = 0, N0 = 0) so the expressions above coincide with the maximum

likelihood estimates (MLE):

vT = T, NT = X ′X, BT = B̂MLE, ST = Σ̂MLE.

Finally, the posterior of the transition matrix H of the MS-VAR only depends on the

regime sequence ξα,T estimated for cayMS. Given the draws for the MS state variables ξα,T , the

posterior for the transition probabilities does not depend on other parameters of the model and

follows a Dirichlet distribution if we assume a prior Dirichlet distribution.12 For each column

of H the posterior distribution is given by:

H(:, i) ∼ D(aii + ηii,r+1, aij + ηij,r+1)

where ηij,r+1 denotes the number of transitions from state i to state j based on ξα,T , while aii
and aij the corresponding priors. With flat priors, we have aii = 0 and aij = 0.

12The Dirichlet distribution is a generalization of the beta distribution that allows one to potentially consider
more than 2 regimes. See e.g., Sims and Zha (2006).



Expectations

In this appendix we explain how expectations and uncertainty are computed for the MS-VAR.

More details can be found in Bianchi (2016). Consider the following multivariate Markov-

switching model:

Zt = cξt + AξtZt−1 + Vξtεt, εt ∼ N (0, I) (8)

and suppose that we are interested in E0 (Zt) = E (Zt|I0) with I0 being the information set
available at time 0. Note that any VAR with l > 1 lags can be rewritten as above by using

the companion form. Let n be the number of variables in the VAR of the previous Appendix

section. Define the mn× 1 column vector qt as:

qt =
[
q1′t , ..., q

m′
t

]′
where qit = E0

(
Zt1ξt=i

)
= E

(
Zt1ξt=i|I0

)
and 1ξt=i is an indicator variable that is one when

regime i is in place. Note that:

qit = E0
(
Zt1ξt=i

)
= E0 (Zt|ξt = i) πit

where πit = P0 (ξt = i) = P (ξt = i|I0). Therefore we can express µt = E0 (Zt) as:

µt = E0 (Zt) =
∑m

i=1 q
i
t = wqt

where the matrix w = [In, ..., In] is obtained placing side by side m n-dimensional identity

matrices. Then the following proposition holds:

Proposition 1 Consider a Markov-switching model whose law of motion can be described by
(8) and define qit = E0

(
Zt1ξt=i

)
for i = 1...m. Then qjt = cjπ

j
t +
∑m

i=1Ajq
i
t−1hji.

Using this result, we can write the law of motion of qt as:

qt = Cπt + Ωqt−1 (9)

πt = Hπt−1 (10)

with πt = [π1t , ..., π
m
t ]
′
, Ω = bdiag (A1, ..., Am) (H ⊗ In) , and C = bdiag (c1, ..., cm) , where

⊗ represents the Kronecker product and bdiag is a matrix operator that takes a sequence of
matrices and use them to construct a block diagonal matrix. The central insight of (9)-(10)

consists of the fact that while Zt is not Markov, qt is. It is then straightforward to compute

expectations conditional on the information available at a particular point in time. Suppose we

are interested in µt+s|t = Et (Zt+s), i.e. the expected value for the vector Zt+s conditional on

the information set available at time t. If we define:

qt+s|t =
[
q1′t+s|t, ..., q

m′
t+s|t

]′



where qit+s|t = Et
(
Zt+s1ξt+s=i

)
, we have Et (Zt+s) = wqt+s|t.

Similar formulas hold for the second moments. Before proceeding, let us define the vec-

torization operator ϕ (X) that takes the matrix X as an input and returns a column vector

stacking the columns of the matrix X on top of one another. We will also make use of the

following result: ϕ (X1X2X3) = (X ′3 ⊗X1)ϕ (X2).

Define the vector n2m× 1 column vector Qt as:

Qt =
[
Q1′t , ..., Q

m′
t

]′
where the n2 × 1 vector Qi

t is given by Q
i
t = ϕ

[
E0
(
ZtZ

′
t1ξt=i

)]
. This implies that we can

compute the vectorized matrix of second moments Mt = ϕ [E0 (ZtZ
′
t)] as:

Mt = ϕ [E0 (ZtZ
′
t)] =

∑m
i=1Q

i
t = WQt

where the matrix W = [In2 , ..., In2 ] is obtained placing side by side m n2-dimensional identity

matrices. We can then state the following proposition:

Proposition 2 Consider a Markov-switching model whose law of motion can be described by
(8) and define Qi

t = ϕ
[
E0
(
ZtZ

′
t1ξt=i

)]
, qit = E0

[
Zt1ξt=i

]
, and πit = P0 (ξt = i) , for i = 1...m.

Then Qj
t =

[
ĉcj + V̂ V jϕ [Ik]

]
πjt +

∑m
i=1

[
ÂAjQ

i
t−1 + D̂ACjq

i
t−1

]
hji, where ĉcj = (cj ⊗ cj) ,

V̂ V j = (Vj ⊗ Vj) , ÂAj = (Aj ⊗ Aj) , and D̂ACj = (Aj ⊗ cj) + (cj ⊗ Aj) .

Using matrix algebra we obtain:

Qt = ΞQt−1 + D̂ACqt−1 + V̂ cπt (11)

qt = Cπt + Ωqt−1, πt = Hπt−1. (12)

where

Ξ = bdiag(ÂA1, ..., ÂAm)(H ⊗ In2), V̂ c =
[
V̂ V + ĉc

]
, ĉc = bdiag(ĉc1, ..., ĉcm),

V̂ V = bdiag(V̂ V 1ϕ [Ik] , ..., V̂ V mϕ [Ik]), D̂AC = bdiag(D̂AC1, ..., D̂ACm)(H ⊗ In).

Even in this case, the central insight consists of the fact that while Zt is not Markov, Qt

is. It is then straightforward to compute the evolution of second moments conditional on the

information available at a particular point in time. Suppose we are interested in Et
(
Zt+sZ

′
t+s

)
,

i.e. the second moment of the vector Zt+s conditional on the information available at time t.

If we define:

Qt+s|t =
[
Q1′t+s|t, ..., Q

m′
t+s|t

]′
where Qi

t+s|t = ϕ
[
Et
(
Zt+sZ

′
t+s1ξt+s=i

)]
, we obtain ϕ

[
Et
(
Zt+sZ

′
t+s

)]
= WQt+s|t.

With the first and second moments at hand, it is then possible to the variance s periods

ahead conditional on the information available at time t:

ϕ [Vt (Zt+s)] = Mt+s|t − ϕ
[
µt+s|tµ

′
t+s|t

]
. (13)



Variable NSE RNE Variable NSE RNE Variable NSE RNE
α1 0.000131 1 ∆at+1 0.000263 1 ∆yt−4 0.000526 1
α2 0.000131 1 ∆yt+1 0.00053 1 ∆at+4 0.000256 1
βa 0.000074 1 ∆at−2 0.000261 1 ∆yt+4 0.000521 1
βy 0.000085 1 ∆yt−2 0.000572 1 ∆at−5 0.000264 1
σ 0 1 ∆at+2 0.000258 1 ∆yt−5 0.000524 1
Hα
11 0.000069 1 ∆yt+2 0.000547 1 ∆at+5 0.000252 1

Hα
22 0.000053 1 ∆at−3 0.000278 1 ∆yt+5 0.000534 1

∆at 0.000263 1 ∆yt−3 0.000632 1 ∆at−6 0.000275 1
∆yt 0.000529 1 ∆at+3 0.000255 1 ∆yt−6 0.000518 1

∆at−1 0.000252 1 ∆yt+3 0.000537 1 ∆at+6 0.000238 1
∆yt−1 0.000521 1 ∆at−4 0.000259 1 ∆yt+6 0.000525 1

Table A.3 The table reports the numerical standard error (NSE) and the relative numerical effi ciency (RNE)

computed based on Geweke (1992). Values for NSE close to zero and values for RSE close to 1 are indicative of

convergence. The sample is quarterly and spans the period 1952:Q1 to 2013:Q3.
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Tables and Figures

Mode Mean 5% 95%
α1 0.9186 0.9153 0.8853 0.9460
α2 0.8808 0.8767 0.8467 0.9077

α1 − α2 0.0378 0.0385 0.0413 0.0358
βa 0.2606 0.2679 0.2505 0.2852
βy 0.6156 0.6071 0.5873 0.6270
σ 0.0080 0.0087 0.0080 0.0094
Hα
11 0.9900 0.9901 0.9705 0.9995

Hα
22 0.9925 0.9923 0.9771 0.9996

Table 1: Posterior modes, means, and 90% error bands of the parameters of the Markov-
switching cointegrating relation. Flat priors are used on all parameters of the model. The
sample is quarterly and spans the period 1952:Q1 to 2013:Q3.



Parameter Estimates: cayFC

α βa βy
0.8706
(0.0345)

0.1246
(0.0150)

0.7815
(0.0168)

Table 2: Parameter estimates for the fixed coeffi cient cointegrating relation. Standard errors
are in parantheses. The sample is quarterly and spans the period 1952:Q1 to 2013:Q3.

Cointegration Tests
Dickey—Fuller t-statistic Critical values

Persistence cay Lag = 1 Lag = 2 Lag = 3 Lag = 4 5% 10%

MS 0.8131 -4.7609 -4.4168 -4.4586 -4.7618 -3.80 -3.52
FC 0.9377 -2.2911 -2.1556 -1.8894 -1.6583 -3.80 -3.52

Table 3: The first column reports the first-order autoregressive coeffi cient obtained regressing
cayt on its own lagged value and a constant. The next four columns report augmented Dickey-
Fuller t-statistics (ρ̂ − 1)/σ̂ρ̂, where ρ̂ is the estimated value for the autoregressive coeffcient
used to test the null hypothesis of no cointegration. This test is applied to estimates of the
cointegrating residual, cayt. We include up to four lags of the first difference of cayt. The
critical values for the test when applied to cointegrating residual are reported in the last two
columns and are taken from Phillips and Ouliaris (1990). The results for cayMS

t do not account
for sampling error in the estimated Markov-switching mean. The sample is quarterly and spans
the period 1952:Q1 to 2013:Q3.



Canonical Cointegrating Regression Results

β̂a β̂y H(0, 1)

0.0774 0.8690 0.5720
(0.0665) (0.0731) (0.4495)

Table 4: Test results for the null of cointegration for standard, fixed-coeffi cient cay. A rejection
of the null at the 5 percent level is warranted if the p-value for the H(0, 1) statistic is less than
0.05. Ogaki and Park’s (1991) VAR pre-whitening method with Andrews’(1991) automatic
bandwidth parameter estimator was used to estimate long-run covariance parameters. The
parameters β̂a and β̂y are estimated cointegrating parameters on a and y, respectively. Standard
errors are in parentheses. H(0, 1) has a χ2(1) distribution. p values for this statistic are in
parentheses. The sample is quarterly and spans the period 1952:Q1 to 2013:Q3.



Long Horizon Forecasting Regressions: Stock Returns

h-period regression:
∑h
i=1(rt+i − rf,t+i) = k + γ zt + εt,t+h

Horizon h (in quarters)

zt = 1 4 8 12 16

Full sample

cayFC 0.60 2.26 4.16 5.68 7.42
(2.00) (2.21) (2.47) (2.73) (3.71)
[0.01] [0.05] [0.10] [0.14] [0.20]

cayMSfilt 1.54 6.38 11.60 13.56 13.61
(4.07) (5.22) (6.53) (6.03) (6.18)
[0.04] [0.18] [0.35] [0.37] [0.34]

cayMS 1.49 6.83 11.88 13.79 13.78
(3.86) (6.08) (6.63) (6.11) (6.25)
[0.04] [0.21] [0.36] [0.38] [0.34]

Sub-sample 1981Q1-2013Q3, recursive

cayFC 0.17 1.00 2.48 3.96 6.39
(0.48) (0.83) (1.04) (1.18) (1.82)
[-0.01] [0.00] [0.03] [0.06] [0.11]

cayFCrec 0.30 1.67 4.04 6.16 8.10
(0.97) (1.65) (2.29) (2.79) (4.17)
[ 0.00] [0.04] [0.16] [0.27] [0.41]

cayMSrec 0.41 2.13 6.01 8.65 10.33
(1.10) (1.92) (2.73) (3.51) (5.17)
[ 0.00] [0.04] [0.21] [0.31] [0.37]

Table 5: This tables reports the results from regressions of of h-period-ahead CRSP-VW returns
in excess of a 3-month Treasury-bill rate, rf,t, on the variable listed in the first column. cayFC is
the fixed-coeffi cient consumption-wealth ratio; cayMSfilt denotes the Markov-switching version
of cay using filtered probabilities and cayMS denotes the benchmark Markov-switching cay using
smoothed probabilities. The bottom panel reports results from regressions using recursively
estimated versions of cay, in which all parameters are estimated using data up to time t rather
than using the full sample. The models are first estimated on data from 1952Q1-1970Q1. We
then recursively add observations and reestimate the cay variables over expanding sub-samples
using data only up to the end of that subsample, continuing in this way until the end of
the sample, 2013:Q3. Results are reported for the subsample since 1980. cayFCrec denotes
the fixed coeffi cient cay estimated recursively, while cayMSrec denotes the Markov-switching
cay estimated recursively using smoothed probabilities. For each regression, the table reports
OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in parentheses), and
adjusted R2 statistics in square brackets. Significant coeffi cients based on a t-test at the 5%
significance level are highlighted in bold face. The full sample is quarterly and spans the period
1952:Q1 to 2013:Q3.



Long Horizon Forecasting Regressions: Stock Returns - PCE cay

h-period regression:
∑h
i=1(rt+i − rf,t+i) = k + γ zt + εt,t+h

Horizon h (in quarters)

zt = 1 4 8 12 16

Full sample

cayFC 0.78 3.34 6.51 8.41 9.45
(3.06) (3.78) (5.32) (6.62) (7.99)
[0.03] [0.14] [0.30] [0.39] [0.44]

cayMSfilt 0.95 4.12 6.55 7.61 8.53
(3.18) (3.36) (3.46) (3.07) (3.31)
[0.03] [0.13] [0.19] [0.19] [0.21]

cayMS 0.96 4.15 6.49 7.80 8.60
(3.15) (3.39) (3.40) (3.17) (3.42)
[0.03] [0.13] [0.18] [0.20] [0.21]

Sub-sample 1981Q1-2013Q3, recursive

cayFC 0.73 3.28 6.99 9.51 10.01
(1.88) (2.44) (3.03) (3.66) (3.86)
[0.01] [0.08] [0.24] [0.31] [0.29]

cayFCrec 0.18 1.08 2.95 4.39 5.28
(0.96) (1.35) (1.98) (2.36) (2.89)
[ 0.00] [0.02] [0.12] [0.20] [0.25]

cayMSrec 1.41 5.75 7.21 7.72 6.72
(2.80) (3.61) (3.96) (3.68) (2.95)
[0.05] [0.23] [0.21] [0.16] [0.10]

Table 6: This tables reports the results from regressions of of h-period-ahead CRSP-VW returns
in excess of a 3-month Treasury-bill rate, rf,t, on the variable listed in the first column. cayFC is
the fixed-coeffi cient consumption-wealth ratio; cayMSfilt denotes the Markov-switching version
of cay using filtered probabilities and cayMS denotes the benchmark Markov-switching cay using
smoothed probabilities. The bottom panel reports results from regressions using recursively
estimated versions of cay, in which all parameters are estimated using data up to time t rather
than using the full sample. The models are first estimated on data from 1952Q1-1970Q1. We
then recursively add observations and reestimate the cay variables over expanding sub-samples
using data only up to the end of that subsample, continuing in this way until the end of
the sample, 2013:Q3. Results are reported for the subsample since 1980. cayFCrec denotes
the fixed coeffi cient cay estimated recursively, while cayMSrec denotes the Markov-switching
cay estimated recursively using smoothed probabilities. For each regression, the table reports
OLS estimates of the regressors, Newey-West (1987) corrected t-statistics (in parentheses), and
adjusted R2 statistics in square brackets. Significant coeffi cients based on a t-test at the 5%
significance level are highlighted in bold face. The full sample is quarterly and spans the period
1952:Q1 to 2013:Q3.



Out-Of-Sample Forecasts
h-period regression:

∑h
i=1(rt+i − rf,t+i) = k + γ zt + εt,t+h

Horizon h (in quarters)

zt = 1 4 8 12 16
Mean-squared errors

const 0.75 3.08 5.48 7.92 9.73
r − rf 0.71 2.99 5.32 7.67 9.36

NDS consumption
cayFC 0.71 2.90 4.67 6.74 7.36
cayMSfilt 0.70 2.47 2.64 3.01 3.72
cayMS 0.70 2.35 2.53 2.92 3.68
cayFCrec 0.72 2.87 4.38 5.72 6.61
cayMSrec 0.71 2.86 4.49 5.75 6.14

PCE consumption
cayFC 0.71 2.63 3.56 4.81 5.82
cayMSfilt 0.68 2.09 3.34 5.54 7.89
cayMS 0.68 2.09 3.34 5.47 7.80
cayFCrec 0.66 2.16 4.43 6.99 9.07
cayMSrec 0.72 2.84 4.29 5.51 6.38

Table 7: This tables reports the mean-squared forecast errors from out-of-sample h-period-
ahead forecasts of CRSP-VW returns in excess of a 3-month Treasury-bill rate using 60-quarter
rolling subsamples. The single predictor variable in each regression is listed in the first column.
The forecasting regression is first estimated on data from 1952Q1-1980Q1, and forecasts are
made over the next h periods. We then repeat this forecasting regression using data from the
next 60 quarters of the sample, continuing in this way until the end of the sample, 2013:Q3.
Mean-square-errors are reported for the subsample since 1980. cayFC is the fixed-coeffi cient
consumption-wealth ratio, cayMSfilt and cayMS are the Markov-switching cay variables using
filtered and smoothed probabilities, respectively, cayFCrec is the recursively estimated cay with
fixed coeffi cients, and cayMSrec is the recursively estimated Markov-switching cay. The recursive
estimates use data only up to time t. The full sample is quarterly and spans the period 1952:Q1
to 2013:Q3.



Summary statistics for the Real Interest Rate and GDP growth
Real Interest Rate GDP growth

Regime 1 Regime 2 Regime 1 Regime 2
Conditional Means 3.5364

(3.5093,3.5631)
0.5932

(0.5745,0.6112)
3.5085

(3.4838,3.5313)
2.9154

(2.8950,2.9363)

Conditional St. Deviations 2.0921
(1.9629,2.2404)

1.5920
(1.5056,1.6863)

1.9693
(1.8642,2.0719)

2.6450
(2.5025,2.8112)

Table 8: This table reports the mean and standard deviation for the real interest rate and GDP
growth based on the VAR estimates conditional on staying in each regime.
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Figure 1: Smoothed probability of high mean regime for the Markov-switching cointegrating
relation. The sample is quarterly and spans the period 1952:Q1 to 2013:Q3.
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Figure 2: The Markov-switching estimated cayMS is plotted without removing the constant.
The red dashed lines are the values of α1 and α2, which correspond to the most likely mean
values in each regime. The sample is quarterly and spans the period 1952:Q1 to 2013:Q3.
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Figure 3: Markov-switching and fixed coeffi cients cay. The sample is quarterly and spans the
period 1952:Q1 to 2013:Q3.
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Figure 4: Low frequency averages of cay. The figure plots the set of averages {fj}kj=1, which
capture the variability in cay for periods greater than 2T/k, where T is the sample size. Thus,
with T = 247 quarters, the k = 12 points plotted summarize the variability in cay for periods
greater than 2 ∗ 247/12 = 41.1667 quarters, approximately 10 years. The sample is quarterly
and spans the period 1952:Q1 to 2013:Q3.
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Figure 5: Low frequency log likelihood values for (1 − L)dcayt. The sample is quarterly and
spans the period 1952:Q1 to 2013:Q3.
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Figure 6: NDS Ratio. Real total PCE (including durable, service and nondurable) is obtained directly

from BEA, measured 2009 chain-weighted dollars with 1999 as base year. NDS expenditures are chain-weighted

together appropriately using the same deflator. The sample spans the period 1952:Q1 to 2014:Q3.
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Figure 7: Projections from MS-VAR. The figure reports the conditional expectations based on the MS-
VAR at different horizons taking into account the possibility of regime changes.
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Figure 8: Uncertainty based on MS-VAR. The figure reports the conditional standard deviations at
different horizons based on the MS-VAR taking into account the possibility of regime changes.
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Figure 9: Wealth Ratio and federal funds rate. The wealth ratio (solid blue line, left axis) is plotted together
with the ten-year-ahead real federal funds rate (black dashed line, right axis). The wealth ratio is obtained as

the inverse of cayMS without removing the Markov-switching constant. The red dashed line represents the

inverse of the regime-probability weighted average of the constants α1 and α2. The ten-year-ahead real federal
funds rate is computed as the ten-year-ahead expected value of the real federal funds fate as implied by the

Markov-switching VAR. The sample is quarterly and spans the period 1955:Q4 to 2013:Q3. With respect to the

estimates for cayMS the sample is adjusted to take into account data availability for the Federal Funds rate.




