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1 Introduction

It is widely assumed that randomized peer assignment ensures no correlation between

the ex ante characteristics of individuals and their peers. As a result, any correlation

in outcomes after peer assignment, conditional on common shocks, is attributed to peer

effects (e.g. Sacerdote, 2001). However, as Guryan et al. [2009] first pointed out and

a few others have since re-emphasized (Wang, 2009; Angrist, 2014; Stevenson, 2015a;

Stevenson, 2015b), even with random peer assignment a mechanical negative relationship

exists between people’s ex ante characteristics and those of their peers. This is because

peers are drawn without replacement: individuals cannot be their own peers and therefore

each individual is excluded from the pool of its potential peers. It follows that the expected

value of the pool of someone’s potential peers - and thus any random draw from that pool

- is negatively correlated with the characteristics of that individual. Guryan et al. [2009]

- through Monte Carlo simulatons - and Angrist [2014] - through basic algebra - illustrate

how this correlation yields a downward bias in the ordinary least squares (OLS) estimate

of peer effects.The purpose of this paper is to move beyond the basics on the bias and

to gain important insights into its properties, causes, consequences and solutions, all of

which have largely been ignored to date.

We demonstrate that this bias - henceforth referred to as ‘exclusion bias’ - can se-

riously bias point estimates downwards and thus affect inference when estimating peer

effects. This negative bias is on top of other well-known sources of (positive) bias such

as reflection bias and correlated effects (Manski, 1993; Brock and Durlauf, 2001; Moffitt,

2001). We show: that the negative exclusion bias can be substantial; that it is stronger

when peer groups are large relative to the peer selection pool; that it does not disappear

asymptotically in large samples; that it can dominate the positive reflection bias when

the true peer effect is small; and that it is larger when cluster fixed effects are included

in settings where peer group formation is correlated with cluster formation. We offer a

number of simple statistical solutions to obtain consistent peer effect estimates and to

avoid incorrect inference.

Although exclusion bias is also present in models for which peer selection is non-

random, the focus of this paper is on random peer assignment. This is a deliberate choice

since the random assignment of peers is typically assumed to yield consistent estimates

of peer effects. We show that this is, in general, not true. We evaluate the magnitude of

the exclusion bias without conflating it with sources of bias caused by endogenous peer

group formation.

This paper contributes to the literature in a number of ways. First, we formalize the
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simulation results presented in Guryan et al. [2009] and derive a simple, exact formula

for the magnitude of the exclusion bias in standard linear-in-means tests of random peer

assignment. Unlike top-level expressions of the bias provided for instance in Angrist [2014]

- which main objective merely is to introduce the basic idea behind the bias - all formulas

we present in this paper are a function of the core parameters driving the bias, namely

the size of the peer group and the size of the peer selection pool. As such, these formulas

allow the reader to assess the magnitude of the bias in different settings.

Second, we derive, for groups of size two, an exact formula for the combined exclusion

and reflection bias in standard peer effect estimation models (note that Guryan et al.

[2009] focused on the test of random peer assignment and did not consider the presence

of exclusion bias in the actual peer effect estimation models). We show that, while reflec-

tion bias tends to inflate peer effects estimates, exclusion bias operates in the opposite

direction. We identify conditions under which the exclusion bias dominates the reflection

bias and changes the sign of peer effect estimates. Using simulations, we generalize these

findings to peer groups of size greater than two.

Third, we identify conditions under which the inclusion of cluster fixed effects can

magnify exclusion bias. We show that exclusion bias becomes drastically more severe in

models that include selection pool fixed effects. The same holds for cluster fixed effects

at levels other than the selection pool, whenever peer group formation is correlated with

cluster formation. In such cluster fixed effects models, the bias does not disappear as the

sample size tends to infinity.

Fourth, we offer several possible solutions to the exclusion bias. The applicability of

each solution depends on the objective of the researcher and the type of data available.

Our main focus is on the case where one is interested in the correlation between charac-

teristics of individuals and the equivalent characteristics of their peers. We first discuss

how to obtain a correct test of the null hypothesis of zero peer effect or, equivalently,

random peer assignment. We start by illustrating the various limitations of the methods

suggested by Guryan et al. [2009], Stevenson (Stevenson, 2015b; Stevenson, 2015a), and

Wang [2009]. We propose instead to rely either on a method that combines our formula

with the clustering of standard errors at the level of the peer selection pool; or, more

generally, on a particular type of bootstrapping alternatively called permutation method

or randomization inference. We show that these simple methods provide a way of con-

ducting correct inference in spite of the bias. They do not, however, allow to correct point

estimates of the peer effect. For this purpose, we show how to consistently estimate all the

structural parameters of a general model allowing for a large variety of network structures
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– including partly overlapping peer groups or arbitrary network data. This method does

not require instruments but relies on the assumption of zero correlated shocks between

peers.1

Since the assumption of zero correlated effects does not suit all estimation situations,

we show the conditions under which two-stage least squares (2SLS) estimation procedures

do not suffer from exclusion bias. We note that 2SLS requires the availability of suitable

strong instruments of a particular type. Furthermore the method is consistent only in

large samples (Bound et al., 1995). The various correction methods that we propose do

not require instruments and yield valid inference even in small finite samples. Nonetheless,

if the data allow consistent 2SLS estimation, we show that it has the added advantage,

under certain conditions, of eliminating the exclusion bias. This property can account for

a counter-intuitive yet common finding. Many studies on social interactions obtain 2SLS

estimates of endogenous peer effects that are significantly larger than OLS estimates.

This is counter-intuitive: OLS estimates ought to be biased upwards due to reflection

bias (Manski, 2000), endogenous peer selection, or unobserved correlated effects (Brock

and Durlauf, 2001; Moffitt [2001]). This paper provides a new explanation for this finding:

the negative exclusion bias that affects OLS disappears when a valid 2SLS estimation is

used.

The paper is organized as follows. In Section 2 we start off with exclusion bias in a

standard test of random peer assignment. We provide the intuition for the bias, derive an

exact formula, discuss its properties, and suggest various methods for correct inference.

We conclude Section 2 by discussion the conditions under which the addition of cluster

fixed effects aggravate the bias relative to pooled OLS.

Section 3 moves on to a treatment of the exclusion bias in the estimation of endogenous

peer effects. In a simple model with peer group size equal to two, we derive exact formulas

for the exclusion bias and the reflection bias. These formulas can be used to recover correct

peer effect estimates from naive OLS estimates under the assumption of zero correlated

effects between peers. We then illustrate how the permutation method can be used to

correct p-values, thus allowing for correct inference about the null hypothesis of zero

peer effects. Next, we generalize the treatment of the exclusion bias in the estimation of

endogenous peer effects, first to peer groups of size greater than two and then to network

data. We also discuss possible extensions to more complex settings, such as peer groups or

peer selection pools that differ in size. Section 4 illustrates the practical relevance of our

1But it allows for correlated shocks within selection pools – e.g., classroom fixed effects in models
where all peers are selected within the same classroom.
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findings with a simple empirical application derived from the seminal work of Sacerdote

[2001]. We also discuss which type of empirical studies are expected to be affected. Not all

peer effect studies in the literature are affected by the bias, however. This is discussed in

Section 5, which among other things explains the conditions under which 2SLS estimation

strategies do not suffer from the bias. Section 6 concludes.

2 Testing random peer assignment

2.1 Intuition

We are interested in the properties of a data generating process in which individual units

of observations – which we refer to as ‘individuals’ – are assigned a number of peers. In

this Section we focus on non-overlapping, mutually exclusive peer groups because this is

the most relevant case of random peer assignment in practice (e.g., assignment to a room,

a class, a neighborhood). It is nonetheless possible to extend our results to networks

in general. We revisit this point in Section 3.3 when we generalize our findings to a

generalized network model.

Here we imagine that a researcher has data on peer assignment and wishes to test

whether assignment is random based on an observable pre-treatment characteristic xikl,

where i indexes individuals, k indexes (peer) groups, and l indexes the pool or cluster from

which i’s peers are selected. One such example is the study of Dartmouth college freshmen

by Sacerdote [2001], who exploits the random allocation of students to roommates to study

peer effects. In that study, i denotes an individual student, l is the pool to which the

student is assigned based on her stated housing preferences (‘block’), and k is the room

within pool l to which the student is randomly assigned.

Peer effect studies that rely on random peer assignment typically start off by testing

whether peer assignment is random. The purpose of this test is akin to testing the

‘balancedness’ of random assignment to treatment: it verifies that baseline characteristic

xikl of individual i is not correlated with the average characteristic of its peers (excluding

individual i), which we denote x̄−i,k,l . Specifically, the researcher estimates:

xikl = β0 + β1x̄−i,k,l + δl + εikl (1)

This is, for example, the test for random assignment reported in Sacerdote [2001]. In that

application, model (1) regresses freshman i’s pre-treatment test score (e.g. SAT math)

on the average pre-treatment test score of his/her roommates. In the case of stratified
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randomization, cluster dummies δl are typically added to control for the sub-level at which

randomization is carried out – e.g., block dummies in the case of Sacerdote [2001].

Researchers typically proceed as if random assignment of peers implies that the esti-

mate of the coefficient β1 in regression (1) should be 0. As initially argued by Guryan

et al. [2009], this is incorrect: a mechanical negative relationship exists between i’s char-

acteristics and those of i’s peers prior to treatment. The intuition is as follows. Randomly

allocating people to peer groups of size K is like randomly drawing K − 1 peers for each

individual. Given that individuals cannot be their own peers, they are excluded from the

urn from which peers are drawn. This implies that the mean characteristic of an individ-

ual’s peers selection pool is negatively correlated with the characteristic of the individual

herself. As an example, consider the context of Sacerdote [2001]: If a student has a higher

than average ability relative to other students in the sample, then excluding her from her

pool of potential peers lowers the average ability of the remaining pool. Vice versa, if

the student has a lower than average ability, then excluding her from the urn from which

her peers are drawn yields a pool with an average ability that is higher than the overall

sample mean. This mechanism leads to a negative correlation between an individual’s

characteristic and the average characteristic of their peers. Using Monte Carlo simula-

tions, Guryan et al. [2009] illustrate how this mechanical correlation yields a downward

bias in the OLS estimate of β1. They also show that this bias is decreasing in the size of

the pool from which peers are drawn.

In this section, we formalize the bias in regression (1). We call this bias the ‘exclusion

bias’ given that it is driven by a systematic exclusion of an individual from her peer group.

We derive an exact formula for this bias and we discuss the features of the data generating

process behind it. We then propose a general method for testing random peer assignment.

2.2 Formulas

Let us assume that we have a population Ω of N individuals. Each individual i ∈ Ω

is randomly assigned to a group of K individuals. Let Pi ⊆ Ω be the pool of people

from which individual i’s (K − 1) peers are randomly drawn. The pool Pi can be the

entire sampled network (e.g., the entire grade population in the school), i.e. Pi = Ω.

Alternatively, each pool can be a subset of the network, i.e. Pi = l ⊂ Ω (e.g., a classroom).

The latter is the case, for instance, in Sacerdote [2001], Glaeser et al. [2003], Zimmerman

[2003] and Duflo and Saez [2011], where the population of interest consists of students of

multiple schools and students are randomly assigned to a dormitory or to a work group

within each school.
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Throughout this paper, we make the natural assumption that individual i is excluded

from her own pool, that is, i /∈ Pi. This is equivalent to assuming that individuals are

drawn from the pool without replacement. This implies that i is excluded from being her

own peer. This feature is what causes a bias.

In the first sub-section below, we consider the case where Pi = Ω, i.e., when peers are

drawn from the entire sampled population, with no stratification. In the sub-section that

follows, we introduce stratification into selection pools. In the latter case, we follow best

practice and add pool fixed effects to regression model (1). To keep the exposition simple,

we assume that the size of each pool Pi takes the same value NP for all i ∈ Ω. Similarly,

we assume that all peer groups are of the same size K.2

2.2.1 Without stratification

We first consider the simple case when peers are randomized at the level of the sample

population, i.e. Pi = Ω and NP = N . Regression (1) simplifies to:

xik = β0 + β1x̄−i,k + εik (2)

We formally show that, even with random peer assignment, x̄−i,k is correlated with the

error term εik. To see this, let us expand x̄−i,k in equation (2). Since each individual

i is randomly assigned to a peer group k of size K, i’s peer set consists of a random

sub-set of (K − 1) individuals selected from the population. Let x̄−i be the average

characteristic of the pool of N − 1 individuals, i.e., omitting i. Given random peer

assignment, E (x̄−i,k) = x̄−i. But the actual draw x̄−i,k deviates from x̄−i by a random

component uik:

x̄−i,k = x̄−i + uik (3)

with E (uik) = 0. Inserting equation (3) into equation (2), we obtain:

xik = β0 + β1 (x̄−i + uik) + εik (4)

where, under random peer assignment, we have E(u) = E(ε) = 0, var(u) = σ2
u , var(ε) =

σ2
ε and cov(u, ε) = 0.

There is a close relationship between σ2
u and σ2

ε since i’s peers are drawn from the

same population as i. As demonstrated in Appendix A, for a model without stratification

2Section 3.4 discusses how the results extend to the more general case where selection pools or peer
groups differ in size.
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(i.e., NP = N) this relationship is:

σ2
u =

(N −K)

(N − 1)(K − 1)
σ2
ε (5)

which indicates that σ2
u is decreasing in K – the size of the peer group – and it is increasing

in N – the size of the pool from which peers are drawn in the case of non-stratified

randomization.

We note that x̄−i is nothing but:

x̄−i =

[∑N
K
s=1

∑K
j=1 xjs

]
− xik

N − 1
(6)

Equation (4) can thus be rewritten as:

xik = β0 + β1


[∑N

K
s=1

∑K
j=1 xjs

]
− xik

N − 1
+ uik

+ εik (7)

The presence of dependent variable xik on the right-hand side of equation (7) is what

leads the OLS estimate of β1 to be biased downwards. To derive this correlation more

formally, insert equation (4) into equation (6) to obtain a reduced form for x̄−i:

x̄−i =

[∑N
K
s=1

∑K
j=1 xjs

]
− β0

N − 1 + β1

− β1uik
N − 1 + β1

− εik
N − 1 + β1

(8)

Under random peer assignment (i.e. β1 = 0), this equation reduces to:

x̄−i =

[∑N
K
s=1

∑K
j=1 xjs

]
N − 1

− εik
N − 1

(9)

Comparing equation (4) to equation (9) it is immediately apparent that cov(x̄−i,k, εik) 6=
0 in equation (2) – even though, under random peer assignment, cov(u, ε) = 0. It follows

that OLS estimation of equation (2) leads to a biased estimate of β1:

cov(x̄−i,k, εik) = cov(x̄−i + uik, εik) = cov(x̄−i, εik) =
−σ2

ε

N − 1
< 0 (10)

Using equation (10) together with the expression for var(x̄−i,k) derived in Appendix

B, we obtain a formula for the magnitude of the bias in a test of random peer assignment

without stratification when the true β1 = 0:
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E(β̂OLS1 ) =
cov(x̄−i,k, εik)

var(x̄−i,k)

=

−σ2
ε

(N−1)

(N−1)(N−K)+(K−1)
(N−1)2(K−1)

σ2
ε

= − (N − 1)(K − 1)

(N − 1)(N −K) + (K − 1)
(11)

2.2.2 With stratification

We now generalize this finding to allow for the case when the total population Ω is

stratified into distinct pools from within which peers are selected. This arises, for instance,

when students in a school are first divided into classes, and then assigned a peer group

within their class. In such cases, testing for random peer assignment should control for

pool fixed effects. This is the case we consider in this sub-section.

Suppose that population Ω is divided into N
L

pools of equal size L, indexed by l. We

continue to assume that individuals are assigned to peer groups of size K, but now the

pool Pi from which i’s (K − 1) peers are drawn is a subset l of Ω of size NP = L. Testing

random peer assignment is achieved by estimating regression (1), which we reproduce

here:

xikl = β0 + β1x̄−i,k,l + δl + εikl (12)

Appendix C shows how the pool FE estimate β̂FE1 in (12) is biased downwards according

to the following expression:

E(β̂FE1 ) = − (L− 1)(K − 1)

(L− 1)(L−K) + (K − 1)
(13)

Equation (13) is similar to equation (11), except that the magnitude of the exclusion

bias now depends on L instead of N . In other words, the exclusion bias in a typical test of

random peer assignment depends on the size NP of the pool from which peers are drawn.

This result highlights that the exclusion bias is not a small sample property: when the

size of each selection pool is fixed, the magnitude of the bias does not decrease as N tends

to infinity.
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2.2.3 Proposition 1

Proposition 1 summarizes the results of the previous two sections.

1 Suppose all individuals in a sampled population Ω of N individuals are randomly al-

located to groups of K peers from within a cluster Π ⊆ Ω of size NP , where NP is the

size of the pool from which peers are drawn. Suppose a particular test for random peer

assignment is of the following form

xik = β0 + β1x̄−i,k + εik if Π = Ω , NP = N

xikl = β0 + β1x̄−i,k,l + δl + εikl if Π = l ⊂ Ω , NP = L

where i indexes individuals, k indexes (peer) groups, l indexes selection pools, and δ is a

set of relevant pool dummies. Then the OLS estimate of β1 is downward biased according

to the following expression:

E(β̂1) = − (NP − 1)(K − 1)

(NP − 1)(NP −K) + (K − 1)
(14)

where NP is the size of the pool from which peers are drawn. Specifically, NP = N if peers

are selected from the entire sampled network, or NP = L if peers are selected at the level

of the selection pool l.

Proposition 1 demonstrates that the magnitude of the exclusion bias in the test of

random peer assignment depends on two key parameters: the size of the peer group

K; and the size NP of the pool from which each individual’s (K − 1) peers are drawn.

Specifically we have:

1. 4|bias|4NP
< 0: For a given peer group size K, exclusion bias is less severe in datasets

with a larger pool NP of potential peers. This result is consistent with the simulation

results reported in Guryan et al. [2009].3

3Formally, as shown in equation (5), the larger NP is, the larger is the variance of u. From equation
(3) we know that, when σ2

u is large, more variation in x̄−i,k is explained by the random component ui
rather than by the mean of the pool of potential peers, x̄−i. Intuitively, we recall that the exclusion bias
is driven by the fact that one is excluded from the pool from which one’s peers are drawn. And because
of that, the average of that pool will go up or down depending on whether one is a low or high ability
student. As a result, the larger the number of students in the pool, the less sensitive the average of the
pool will be to an exclusion of oneself and therefore the less severe the bias will be.
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2. 4|bias|4K > 0: Ceteris paribus, exclusion bias is more severe in datasets with larger peer

groups. The magnitude of the bias is not linear in K. If it were, it would indicate

that the bias per additional peer remains constant. In contrast, Proposition 1 shows

that the bias per peer increases with the total number of peers.4 ,5

Exclusion bias is conceptually different from the attenuation bias associated with classical

measurement error (CME). First, exclusion bias is not driven by measurement error – i.e.,

it arises even in the absence of measurement error. Secondly, exclusion bias behaves very

differently from CME. Classical measurement bias is multiplicative in β1. Consequently,

its sign and magnitude depends on the true β1. In particular, CME does not exist if the

true β1 = 0. In contrast, exclusion bias in the test of random peer assignment is additive

instead of multiplicative: it is always negative, and it does not disappear when the true

β1 is zero.

2.3 Simulation results and implications for inference

To illustrate the magnitude of the exclusion bias and its implications for inference in a

typical test of random peer assignment, we conduct a set of Monte Carlo simulations.

The results presented in Table 1 focus on a setting where peers are randomly assigned

and thus the true β1 = 0. Simulations vary in pool size L and peer group size K.

We assume throughout an integer number L/K of groups within each pool. For each

simulation we generate 1000 observations and we randomly assign a normally distributed

i.i.d. characteristic xi ∼ N(1, 1) to each of them. We then randomly assign the N

individuals to N
L

pools of L persons each and we introduce a pool specific shock to xli

to allow for differences across pools.6 Finally, within each pool we randomly allocate

individuals to peer groups of equal size K.

For each dataset generated in this fashion, we estimate the pool fixed effect regression

(1). We repeat this process 100 times for each vector of K and L. Given that our data

generation process randomly assigns individuals to peer groups, the true β1 is equal to

4From Proposition 1 we see that the bias per peer is NP

NP (NP+1−K)+(K−1)
5Formally, as shown above in equation (3), as K becomes larger, the variance σ2

u becomes smaller.
From equation (4) we know that, as σ2

u becomes smaller, less of the variation in x̄−i,k is explained by the
random component ui rather than being governed by the mean of the pool of potential peers x̄−i. This
explains the finding. Intuitively, the larger the number of peers you draw from the pool, the more similar
your peer group will look like the pool itself, and the more closely the average of the peer group will
follow the average of the pool from which you draw the peers rather than being governed by some random
noise. And therefore, the more severe it will be affected by the exclusion bias effect on the expected value
of the pool of potential peers.

6Note that the introduction of a pool specific shock is not required for our results to hold.
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Table 1: Simulation results - exclusion bias in the test for random peer assignment
L = 20 L = 50 L = 100

K = 2 Predicted E(β̂1) -0.06 -0.02 -0.01

Average β̂s
1 -0.05 -0.01 -0.01

% rejected at 1% level 19% 10% 6%

% rejected at 5% level 36% 20% 19%

% rejected at 10% level 44% 26% 27%

K = 5 Predicted E(β̂1) -0.26 -0.09 -0.04

Average β̂s
1 -0.25 -0.09 -0.05

% rejected at 1% level 71% 21% 8%

% rejected at 5% level 85% 37% 26%

% rejected at 10% level 87% 46% 33%

K = 10 Predicted E(β̂1) -0.86 -0.22 -0.10

Average β̂s
1 -0.84 -0.23 -0.13

% rejected at 1% level 95% 35% 16%

% rejected at 5% level 98% 47% 33%

% rejected at 10% level 99% 58% 45%

Note: β1 = 0 ; N = 1000 ; Pool fixed effects added in all regressions; Simulations β̂1 over 100 Monte Carlo

repetitions.

zero. The average of estimated β̂1’s over 100 replications is summarized in Table 1 for

different values of K and L. For purpose of comparison, we also report the theoretical

E(β̂1) summarized in Proposition 1. These results confirm our theoretical predictions:

the exclusion bias is large in magnitude, increases in K, and decreases in L.

Table 1 indicates, for each parameter vector, the proportion of artificially generated

sample for which we reject the (true) null hypothesis at the 1%, 5% and 10% significance

levels. To illustrate the implication for inference graphically using one particular case as

an example (N = 1000 , L = 20 and K = 5), we plot in Figure 1 the rate at which naive

OLS rejects the null hypothesis at various significance levels and we compare this rate to

the rejection rate that we would expect if the test was unbiased (i.e. the 45 degree line).

It is clear that ignoring exclusion bias has a dramatic effect on inference: a researcher

relying on regression (1) to test random peer assignment erroneously rejects the null in a

substantial proportion of cases.

2.4 Inference correction

We now discuss some simple methods that can be used to obtain correct inference when

testing random peer assignment, i.e, the null hypothesis of β1 = 0. It is important to
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Figure 1: Illustration implications for inference - N = 1000, L = 20, K = 5

Note: Pool fixed effects added in all regressions; Simulations under the null (β1 = 0) over 100 Monte Carlo repetitions

recognize that none of these methods is able to provide a correct point estimate of β1. For

that, the reader has to wait for Section 3 where we offer a method that yields a consistent

estimate of β1. Other methods are discussed in Section 5.

2.4.1 GKN method

To correct for exclusion bias in a test of random peer assignment, Guryan, Kroft, and No-

towidigdo [2009] propose to control for differences in mean characteristic across selection

pools. To this effect, they suggest adding to equation (1) the mean characteristic x̄−i,l of

individuals other than i in selection pool l. We denote this method by the GKN method.

The estimating equation they propose is the following:

xikl = β0 + β1x̄−i,k,l + δl + ϕx̄−i,l + εikl (15)

where ϕ is an additional parameter to be estimated.

To see how, under specific conditions, this effectively deals with exclusion bias when

the true β1 = 0, we substitute equation (15) in for equation (3) and rearrange as follows:

13



xikl = β0 + β1x̄−i,k,l + δl + ϕx̄−i,l + εikl

= β0 + β1(x−i,l + uikl) + δl + ϕx̄−i,l + εikl

= β0 + (β1 + ϕ)x−i,l + β1uikl + δl + εikl

We see that the inclusion of the proxy variable x−i,l soaks up the non-random component

of x−i,k,l. As a result, if the true β1 = 0 (and therefore in the absence of reflection bias),

the coefficient estimate β̂1 measures the partial effect of the random component uikl. Since

E(uiklεikl) = 0 under the assumption of random peer selection, E(β̂1) = β1 and OLS yields

consistent estimates of the peer effect β1.

This method has some limitations, however. First, as already noted by Guryan et al.

[2009], parameters β1 and ϕ are separately identified only if there is variation in pool

size. If every selection pool has the same number of individuals L, then xikl = L x̄l −
(L − 1)x̄−i,l and the model is unidentified. Secondly, even when there is some variation

in L across pools, this variation may be limited, leading to multicollinearity and quasi-

underidentification of β1 and ϕ. Thirdly, this method requires precise knowledge of each

selection pool. Such knowledge may be not available, especially when peers form arbitrary

social networks, a point we revisit later in this paper.

2.4.2 Joint F-test

Wang [2009] has suggested an alternative test of random peer assignment. It involves

running an F-test of joint significance of peer group dummies in a model of the form:

xikl = β0 + β1Ck + δl + εikl

where Ck is a set of group dummies (excluding a base category). The authors argue

that, if individuals are randomly assigned to groups, then all group means should be

statistically similar and therefore the coefficients included in vector β1 should jointly not

be significantly different from zero. This method has recently been criticized by Stevenson

[2015a] who argues, based on simulation results, that the method fails to reject the null

hypothesis if peers are negatively correlated.

2.4.3 Split-sample method

Stevenson [2015b] and Stevenson [2015a] propose a ‘split-sample’ method which, as the
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term suggests, involves splitting the original sample to break the mechanical negative

correlation introduced by exclusion bias. The approach recognizes the fact that exclusion

bias manifests itself if and only if (i) individuals are excluded from their own peer groups

and (ii) if they are included in the peer groups of other individuals in the sample. If

each individual in the study sample only appears on one side of the peer effect estimation

equation, then there is no problem.

The split-sample method exploits this feature, as follows:

1. In the first step the researcher randomly selects one observation from each peer

group in the original dataset;

2. Next the researcher calculates the average outcome of the peers of those individuals

selected in Step 1, excluding the selected individuals themselves;

3. Finally, the researcher regresses the outcomes of the sub-sample of the individuals

selected in Step 1 on the average peer group outcomes constructed in Step 2.

Hence, the method effectively creates a dataset - derived from the original dataset of the

study - where (i) individuals are excluded from their own peer group but where (ii) they

are also excluded from the peer groups of other individuals in the sample. This breaks

the source of the exclusion bias.

One obvious downside of this approach is the large loss of efficiency that results from

the reduction in sample size. The efficiency of the split sample can be improved by

performing multiple iterations but this is cumbersome, especially with large datasets.

2.4.4 Transformed model estimation

We propose a new simpler approach that draws on Proposition 1. In particular, we use

the bias formula 13 to derive a transformation of equation 12 that can easily be shown to

yield a consistent point estimate of the true β1 under the null:

x̃ikl = β0 + β1x̄−i,k,l + δl + εikl (16)

where x̃ikl = xikl − bias ∗ x̄−i,k,l.

In practice, the transformed model above can be estimated by estimating regression

(16) instead of regression (1). Testing the null hypothesis of random peer assignment then

proceeds in the usual fashion, using OLS reported standard errors clustered at the pool

level. Clustering is important. As illustrated by simulation results presented in Figure 2,
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Figure 2: Inference when N = 1000, L = 20, K = 5

Note: Pool fixed effects added in all regressions; Simulations under the null (β1 = 0) over 100 Monte Carlo repetitions

transforming the model to correct the point estimate for bias under the null is necessary

but not sufficient to obtain unbiased inference. Only when standard errors are clustered

at the pool level do we obtain correct inference.

2.4.5 Permutation method

The above method requires to be able to calculate the bias using formula 13. It is not

applicable in cases where an algebraic formula cannot be computed – e.g., for network

data or partially overlapping groups. In such cases the permutation method, initially

suggested by Fisher (1925) and applied to network data by Krackhardt, 1988, can be

used to test random peer assignment. The object of this method is to simulate, using

the data at hand, the distribution of β̂1 under the null hypothesis – here, random peer
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assignment.7

Table 2: Illustration permutation method
i k l xikl x̃ikl

1 1 1 x111 x211

2 1 1 x211 x521

3 2 1 x321 x111

4 2 1 x421 x321

5 2 1 x521 x421

6 3 2 x632 x842

7 3 2 x732 x632

8 4 2 x842 x942

9 4 2 x942 x1052

10 5 2 x1052 x732

To illustrate how this method works in the case of mutually exclusive groups, imagine

the researcher has observational data xikl partitioned in groups of varying size Ki coming

from pools of varying size NPi. This is illustrated in Table 2 for the simple case of a

fixed pool size. The object is to test that individuals are randomly assigned to groups

within pools using regression (1). We can simulate the distribution of β̂1 under the null

hypothesis of random assignment by reordering individuals within pools and reassigning

them into groups.

Formally, let us denote the vector of group sizes in pool l as K l ≡ [K l
1, K

l
2, ..., K

l
m]

where m is the number of groups in pool l. Let observations be sorted by group within

each pool, as shown in the xikl column of Table 2. To mimic random assignment within

pools, we create a new variable x̃ikl that is obtained by reordering xikl at random within

pools, as shown in column x̃ikl of Table 2. We then estimate regression (1) using x̃ikl in

lieu of xikl – and ˜̄x−i,k =
∑

j 6=i,j∈k x̃j,k,l in lieu of x̄−i,k.

By repeating this process many times, we can trace the distribution of β̂1 in the data

if the null hypothesis is true. Each repetition yields a separate estimate of β̂s1. The mean

of the distribution of β̂s1 is an estimate of the bias under the null. More importantly,

the empirical distribution of β̂s1 over the simulated samples can be used to obtain a

corrected p-value for the test that β1 = 0. This is accomplished in the same way as

in other bootstrapping procedures, e.g., by taking the proportion of β̂s1 that are above the

7Simulations can also be used to obtain a close approximation of the distribution of β̂1 (and thus of
the bias) under more complicated random assignment processes, e.g., multi-level stratification, and the
like.
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absolute value of β̂1 or below minus the absolute value of β̂1.8

Figure 3: Histogram β̂s1 under null (N = 1000, L = 20)

Note: Pool fixed effects added in all regressions; Simulations over 100 Monte Carlo repetitions.

To illustrate the performance of this procedure, we generate three artificial samples

of 1000 observations under the null hypothesis of random assignment, one for each three

values of K = {2, 5, 10}. As before, we set the size of each pool L = 20 and we posit εik ∼
N(1, 1). Figure 3 shows the distribution of 100 simulated β̂s1 under the null hypothesis

that β1 = 0, for different peer group sizes. The histograms are clearly centered around the

naive estimates for β1 under the null (shown in Table 1), not around the true β1 = 0. The

permutation method corrects p-values by taking this distributional shift into consideration

when calculating the likelihood of observing the naive β̂1 under the null rather than

relying on OLS-reported standard errors. Figure 4 shows how the permutation method

successfully corrects inference for a particular case where N = 1000, L = 20 and K = 5.

2.5 Implication of adding cluster fixed effects

In this section we discuss more in detail the implication of adding cluster fixed effects (FE)

for the magnitude of the exclusion bias. Here, clusters refer to any partition of the sample

8Note that the simulated distribution of β̂s
1 need not be symmetric.
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Figure 4: Inference using permutation method when N = 1000, L = 20, K = 5

Note: Pool fixed effects added in all regressions; Simulations under the null (β1 = 0) over 100 Monte Carlo repetitions.

population Ω into mutually exclusive sets. So far we have focused on the case when fixed

effects are added at the level of the peer selection pool. In that case, assignment to peer

groups happens within each cluster l. Including pool FEs is a reasonable approach when

testing random peer assignment, since pool FEs control for any pool-specific characteristic

on which randomization is conditioned. We have already discussed how the inclusion of

pool FEs affects exclusion bias.

Studies of endogenous peer effects - to which we turn later - often include FEs at

levels other than the selection pool. For instance, common shocks can generate a positive

correlation in outcomes even in the absence of peer effects. FEs may be included to deal

with common shocks introduced after random assignment. Since common shocks need

not occur at the level of the selection pool, the estimated model often includes cluster

FEs other than for selection pools. For instance, students in a school cohort may be

randomly allocated to rooms – in which case the selection pool is the school cohort. But

the researcher adds dormitory fixed effects to control for possible shocks common to those

in the same dormitory. In other cases, FEs are added at a higher level than the selection

pool, or are not included at all, for instance because the selection pool is not clearly

defined in the data.

We compare two estimators: β̂POLS1 which is obtained by estimating equation (2) using

pooled OLS; and β̂FE1 which is obtained by estimating equation (12) with cluster fixed

effects δl added at the level of the cluster l ⊂ Ω. We consider two possibilities: either (i)

peers are selected at the level of the entire population Ω; or (ii) peers are selected within

clusters l ⊂ Ω. For illustration purposes, we focus on the case where all clusters are of
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the same size L. In Appendix D we derive the following proposition:

2 When peers are selected among the entire population Ω:

E(β̂FE1 ) = E(β̂POLS1 )

When peer group formation occurs at the cluster level l ⊂ Ω:

E(β̂FE1 ) < E(β̂POLS1 )

The intuition is as follows. The pooled OLS regression estimate is a weighted average

of the FE estimate and the between group estimate. The FE pool estimator essentially

estimates the extent to which variation in outcomes within a pool is explained by variation

in average peer group outcomes within that same pool. Such variation picks up exclusion

bias, for the reasons we explained earlier: individuals with a higher-than-average expected

outcome are matched with peers that have a lower expected outcome, and vice versa. The

between group estimate, on the other hand, is not affected by exclusion bias - it essentially

measures the extent to which the variation in a pool average outcome is correlated with the

variation in a pool’s average peer group outcome. As long as peers are drawn from within

the pool, the average outcome of a pool is the same as the average of peer group outcomes

within the pool. This yields a strong positive correlation within the two.9 Given that

the pooled OLS estimate is a weighted average of the negatively biased within estimate

and the positive between estimate, the negative exclusion bias is reduced by the positive

between-pool correlation.10

Table 3 demonstrates the effect of adding cluster FE relative to pooled OLS (POLS)

in the case where peers are selected at the level of the cluster l of size L = 20. A

corrolary of the above proposition is that, keeping the size of each selection pool constant,

limN→∞E(β̂FE1 ) is a negative constant that does not vary with N . The value of this

constant is given by formula (14). In contrast, it can be shown that limN→∞E(β̂OLS1 ) =

0. The simulation results in Table 3 clearly illustrate this corrolary. This implies that

9When all peer groups are of equal size, this correlation is perfect.
10For the sake of illustration, imagine the following simple example: People are put in pairs from a

selection pool of size two. Imagine that within each pool of two the difference in outcomes is always 1,
that is, if one person has outcome=100, then the other has outcome=99 or 101. But mean outcomes
differ across pools. If we estimate a pooled OLS regression, variation in mean outcome across pools
introduces a strong positive correlation. But if we include pool FEs, the correlation becomes -1 since
when we demean outcomes, one observation is always -0.5 while the other is +0.5, and hence they are
perfectly negatively correlated.
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omitting cluster FEs when testing random assignment leads to an asymptotic elimination

of the exclusion bias when the null hypothesis of random peer assignment is true.

Table 3: Simulation results - Proposition 2 (L = 20)
N = 500 N = 1000 N = 2000

(1) (2) (3) (4) (5) (6)

FE POLS FE POLS FE POLS

K = 2 -0.05 -0.00 -0.05 -0.00 -0.06 -0.00

K = 5 -0.28 -0.03 -0.26 -0.02 -0.26 -0.01

K = 10 -0.95 -.07 -0.85 -0.04 -0.86 -0.02

Note: β1 = 0 ; Simulations β̂1 over 100 Monte Carlo repetitions

3 Estimating endogenous peer effects

In this section we allow the true β1 to be different from 0 and we illustrate how exclusion

bias and reflection bias interact to jointly affect the estimation of endogenous peer effects.

In addition to the inference correction methods discussed in Section 2.4, we also discuss

methods that can be used to correct point estimates for both exclusion bias and reflection

bias.

To make this illustration as clear as possible, we start by focusing on one pool of

potential peers (thus eliminating the need for pool fixed effects in the presentation of the

model) and we abstract from exogenous peer effects. We generalize the model below. The

linear-in-means peer effects model that we seek to estimate has the following form:

yik = β0 + β1ȳ−i,k + εik (17)

If the true β1 = 0 the results would be exactly the same as those derived in the previous

section and summarized by Proposition 1. Here, we focus on the case where the true

β1 6= 0.

We begin with a simple example in which group size K = 2. For this example, the

exact value of the reflection bias and exclusion bias can be derived algebraically if we

assume away unobserved common shocks and correlated effects within peer groups. We

then generalize the approach to an arbitrary group size and show how non-linear least

squares can be used to obtain an estimate of β1 that is free of both reflection and exclusion

bias.
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3.1 Simple model with group size K = 2

3.1.1 Reflection bias

We start by ignoring exclusion bias so as to derive a precise formula of the reflection bias

in our model. This will allow us to distinguish the exclusion bias from the reflection bias

later on. We focus on a special case in which there are no correlated effects. Ignoring

exclusion bias, this assumption implies i.i.d. errors. We thus have E[εik] = 0, E[ε2ik] = σ2
ε ,

E[εikεjm] = 0 for all i 6= j and all k 6= m, and E[εikεjk] = 0 for all k and all i 6= j. The

E[εikεjm] = 0 equality assumes away correlated effects across groups.11 The E[εikεjk] = 0

equality is far from innocuous since it assumes away the presence of what Manski (1993)

calls correlated effects, that is, correlated εik between individuals belonging to the same

peer group. With this assumption, any correlation in outcomes between members of the

same peer group is interpreted as evidence of endogenous peer effects. This assumption

can thus be used for identification purposes, in spite of the well-known existence of a

reflection bias.

To show this formally, we consider a system of equations similar to that of Moffit

(2001). We ignore control variables, contextual effects and cluster fixed effects, to make

the demonstration easier to follow. In Section 5.1 we discuss an extension of this model

to include other explanatory variables. For now we have, in each group:

y1 = α + βy2 + ε1

y2 = α + βy1 + ε2

where 0 < β < 1, E[ε1] = E[ε2] = 0 and E[ε2] = σ2
ε . Solving this system of simultaneous

linear equations yields the following reduced forms:

y1 =
α(1 + β)

1− β2
+
ε1 + βε2
1− β2

y2 =
α(1 + β)

1− β2
+
ε2 + βε1
1− β2

which shows that y1 and y2 are correlated even if ε1 and ε2 are not. None of the ε’s from

other groups enter this pair of equation since we have assumed no spillovers across groups.

11This model can be generalized to allow for correlated effects at the cluster level, in which case cluster
fixed effects can be added to the model. The same reasoning then applies to the de-meaned model.
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We have:

E[y1] = E[y2] =
α(1 + β)

1− β2
≡ y

If ε1 and ε2 are independent from each other, E[ε1ε2] = 0 and we can write:

E[(y1 − y)2] = E

[(
ε1 + βε2
1− β2

)2
]

= σ2
ε

1 + β2

(1− β2)2

where we have used the fact that E[ε1ε2] = 0. The latter assumption will be relaxed in

the next section, when we introduce exclusion bias. For now, the covariance between y1

and y2 is given by:

E[(y1 − y)(y2 − y)] = E

[(
ε1 + βε2
1− β2

)(
ε2 + βε1
1− β2

)]
=

2βσ2
ε

(1− β2)2

where we have again used the assumption that E[ε1ε2] = 0. The correlation coefficient r

between y1 and y2 is thus:

r =
E[(y1 − y)(y2 − y)]

E[(y1 − y)2]

=
2β

1 + β2
(18)

We can now illustrate the magnitude of the reflection bias on its own. Suppose that

we regress y1 on y2, i.e., we estimate a model of the form:

y1 = a+ by2 + v1 (19)

Since equation 19 is univariate, we have:

b̂ = r̂
σy1

σy2

= r̂ since σy1 = σy2

Hence we have:

E [̂b] =
2β

1 + β2
6= β (20)

This expression gives a closed-form solution for the reflection bias in this simple example
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where we have ignored exclusion bias. We first note that, based on this formula, E [̂b] = 0

iff β = 0. This means we can in principe test whether β = 0 by testing whether b̂ = 0 in

regression (19).

Formula (20) forms a quadratic equation that can be solved to recover an estimate of

β from the naive b̂. We get:12

β̂ =
1−

√
1− b̂2

b̂

This demonstrates that, in this simple example, identification can be achieved solely from

the assumption of independence of ε1 and ε2. In spite of the reflection problem, we have

not had to use any instrument.

3.1.2 Exclusion bias

So far we have assumed that ε1 and ε2 are uncorrelated with each other. This is not,

however, strictly true because of the presence of exclusion bias. To see why, consider a

simple model in which we ex ante assign to each individual i a value yi from an i.i.d.

distribution εi:

yi = εi

We then randomly assign individuals to pairs. As was discussed in Section 2, because

assignment is done without replacement, someone with a high εi is, on average, assigned a

peer with a lower εj – and vice versa if i has a low εi. It follows that errors εi are negatively

correlated within matched pairs. The value of this correlation is given by Proposition

1. Specifically, from Proposition 1 we know that if we regress ε1 on ε2 under the null

hypothesis that they have been randomly assigned to groups, we obtain a regression

coefficient that is on average:

E [̂b] = − NP − 1

N2
P − 3NP + 3

≡ ρ (21)

As per formula (18) above, this is also the correlation coefficient ρ between ε1 on ε2

that is due to exclusion bias since σε1 = σε2 = σε. The sample covariance between ε1 and

ε2 is thus:

Cov[ε1, ε2] = E[ε1ε2] = ρσ2
ε < 0

We can now calculate the covariance between y1 and y2 that results from the combina-

12The other root can be ignored because it is always > 1 and peer effects in a linear-in-means model
cannot exceed 1.
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tion of both the reflection bias and the exclusion bias. We need to recalculate everything

above. The expectation of y is unchanged. The variance of y1 now is:

E[(y1 − y)2] =
σ2
ε (1 + β2 + 2βρ)

(1− β2)2

The covariance is:

E[(y1 − y)(y2 − y)] =
σ2
ε (2β + (1 + β2)ρ)

(1− β2)2

Equipped with the above results, we can now derive an expression for the combined

bias from reflection bias and exclusion bias that would result if we estimate model:

y1 = a+ by2 + v1 (22)

As before, we use the fact that b̂e = r̂. Hence we have:

E [̂b] =
2β + (1 + β2)ρ

1 + β2 + 2βρ
6= 2β

1 + β2
6= β (23)

Table 4: Simulation results - Exclusion bias in estimation of endogenous peer effects
K = 2; NP = 10 ; N = 1000

(1) (2) (3) (4) (5)

True β1 Predicted

reflection bias

Prediction

exclusion bias

Total predicted

bias

Predicted E(β̂1) Simulated E(β̂1)

0.00 0.00 -0.12 -0.12 -0.12 -0.12

0.02 0.02 -0.12 -0.10 -0.08 -0.08

0.04 0.04 -0.12 -0.09 -0.04 -0.04

0.06 0.06 -0.12 -0.064 0.00 0.00

0.08 0.08 -0.12 -0.04 0.04 0.04

0.10 0.10 -0.12 -0.02 0.08 0.08

0.12 0.12 -0.12 -0.00 0.12 0.12

0.14 0.14 -0.12 0.02 0.16 0.16

0.16 0.15 -0.12 0.04 0.20 0.20

0.18 0.17 -0.11 0.06 0.24 0.24

0.20 0.19 -0.11 0.07 0.27 0.28

Note: Pool fixed effects added in all regressions; Simulations β̂1 over 100 Monte Carlo repetitions.

We present in Table 4 simple calculations based on the above formula to illustrate the

magnitude of the reflection and exclusion bias for various values of β. We see that, when

β is zero or is small, the total predicted bias is dominated by the exclusion bias and is thus

negative. As β increases, the reflection bias takes over and leads to coefficient estimates

that over-estimate the true β. What is striking is that the combination of reflection bias
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and exclusion bias produces coefficient estimates that diverge dramatically from the true

β, sometimes under-estimating it and sometimes over-estimating it. The direction of the

bias nonetheless has a clear pattern that can be summarized as follows:

1. If β = 0, we get E [̂b] = ρ < 0 which is the size of the exclusion bias. We cannot

draw correct inference about β = 0 by looking directly at b̂. This is because b̂ can

be negative even when β is positive.

2. It is possible for E [̂b] to be negative even though β > 0. This arises when ρ is large

in absolute value, for instance if Np = 10 and K = 2 as in Table 4.

3. Since the exclusion bias is always negative, b̂ > 0 can only arise if β > 0. It follows

that a positive b̂ is unambiguously indicative of the presence of peer effects.

3.1.3 Correcting point estimates and inference

The inference correction methods we discussed in Section 2.4 allow us to correct p-values

but they are not able to yield a consistent point estimate of β if the true peer effect differs

from zero. Under the assumption of independent errors, we can recover an estimate of β

using formula (23). Taking roots, we obtain a consistent estimate β̂ of the true β using

the value of ρ from (21) and the coefficient estimate b̂ from regression (22):

β̂ =
1− b̂ρ−

√
1 + b̂2ρ2 − b̂2 − ρ2

b̂− ρ
(24)

This formula confirms that the parameter ρ does affect parameter estimates and parameter

recovery. Ignoring exclusion bias leads to incorrect point estimates and biased inference

about endogenous peer effects. While the reflection bias pushes b̂ to exceed β, the exclusion

bias pushes in the other direction. As shown in Table 4, the exclusion bias easily dominates

for reasonably moderate values of β. It is only for very large values of β that the reflection

bias dominates and leads to an over-estimation of β. The rest of the time, regression (22)

is biased towards finding no significantly positive peer effects.

While formula (24) can be used to obtain a corrected estimate of the peer effect

coefficient β, there remains the important question of inference: how can we test whether

β̂ is significantly different from 0. In order to obtain correct inference, we need to correct

p-values for the standard test of significance that β = 0. The solutions are essentially

the same as those discussed in Section 2.4. We suggest using the permutation method

for this purpose to simulate, using the sample data, the distribution of b̂ that would arise
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under the null. This is achieved by replicating the random assignment of peers in the

sample data to form counterfactual pairs. Since these pairs are formed at random, we

expect no correlation in the y’s other than that due to exclusion bias. The variation across

counterfactual samples mimics the variation that would naturally arise in the data, given

the random assignment procedure and other features of the sample.

Table 5: Correction exclusion bias in estimation of endogenous peer effects - K = 2
K = 2; L = 10 ; N = 1000

(1) (2) (3) (4)

β1 Simulated E(b̂) Simulated p-value Corrected E(β̂) Corrected p-value

0.00 -0.12 0.06 0.00 0.47

0.02 -0.08 0.17 0.02 0.38

0.04 -0.04 0.44 0.04 0.21

0.06 0.00 0.36 0.06 0.09

0.08 0.04 0.25 0.08 0.02

0.10 0.08 0.11 0.10 0.00

0.12 0.12 0.04 0.12 0.00

0.14 0.16 0.00 0.14 0.00

0.16 0.20 0.00 0.16 0.00

0.18 0.24 0.00 0.18 0.00

0.20 0.28 0.00 0.20 0.00

Note: Pool fixed effects added in all regressions; Simulations β̂1 over 100 Monte Carlo repetitions;

Column (3) reports the corrected E(β̂1) obtained using equation (24); Column (4) reports the

p-value obtained using the permutation method over 500 replications.

To illustrate, we present the results of a Monte Carlo study in Table 5. We created

random samples of 1000 observations following the data generating process described

above but for different values of β. We then used bootstrapping to obtain correct p-values

using 500 replications per regression. Reported p-values are for two-sided tests. We also

report the simulated distribution of E (̂b) for different values of β. We set K = 2, L = 10

and N = 1000. In columns 1 and 2 we report the estimates of E (̂b) and the corresponding

p-value as reported by OLS. In column 3 we report the corrected estimate β̂ obtained

using formula (24). The last column presents the corrected p-values obtained from 500

bootstrapping replication of the null hypothesis of no peer effect. Results confirm that b̂

is dramatically biased, sometimes yielding a significantly negative estimate of β when the

true β is close to zero, sometimes yielding an inflated estimate of β when reflection bias

dominates. Corrected estimates β̂ do not display this pattern, however: they are centered

on the true β. We also note that using corrected p-values eliminates the risk of incorrectly
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concluding that β < 0. When the true value of β is positive but small, we are unable to

reject that β = 0, an indication that power may not always be sufficient to identify the

presence of peer effects. As a whole, however, the method we propose produces a massive

improvement in inference in this case.

3.2 General group model

We used the K = 2 case to illustrate how reflection and exclusion bias combine to affect

coefficient estimates. In this case, we were able to derive a formula to correct the estimate

of β. Obtaining a closed-form formula becomes more difficult if not impossible once we

generalize to a larger group size K or to groups of varying size. But provided that we

are willing to assume i.i.d. errors conditional on selection pool fixed effects, it remains

possible to obtain an estimate of the true β and to bootstrap its p-value.

To illustrate, we consider a general structural model of the form:

Yi = βGiY + γXi + δGiX + εi (25)

where Y is vector of all Yi, vector Gi identifies all the peers of individual i, Xi is a vector of

individual characteristics that affect Yi directly, and X is the matrix of all Xi. Parameter

γ captures the effect of the characteristics of individual i on Yi, β captures endogenous

peer effects as before, and δ captures so-called exogenous peer effects, that is, the effect of

the characteristics of peers that affect i directly without the need to influence the behavior

of the peers. Matrix G is the matrix of all Gi vectors. In the linear-in-means model (1), Gi

is a vector of 0’s and 1/(K−1) so that GiY is equal to ȳ−i,k,l. But this can be generalized

to other influence models by varying Gi, for instance by letting G be a network adjacency

matrix (see below).

Regression model (25) can be written in matrix form as:

Y = βGY + γX + δGX + ε

Simple algebra yields the following reduced-form model:

Y = (I − βG)−1(γX + δGX + ε)

from which we obtain:
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E[Y Y ′] = E[(I − βG)−1(γX + δGX + ε) (γX + δGX + ε)′(I − βG′)−1]

= (I − βG)−1E[(γX + δGX)(γX + δGX)′](I − βG′)−1

+(I − βG)−1E[ε ε′](I − βG′)−1 (26)

where we have assumed that the G matrix is non-stochastic. The covariance matrix of

the X’s is identified from the data. If the ε’s are i.i.d, we have:

E[ε ε′] = σ2
ε I

as before. With this assumption, expression (26) can be used as starting point for esti-

mation. With exclusion bias,

E[ε ε′] 6= σ2
ε I

Formula (21) can be used to derive the covariance matrix of the ε’s. To illustrate, suppose

that all observations are arranged so that the observations from the first group come first,

then the observations from the second group, etc. In this case E[ε ε′] is a block-diagonal

matrix:

E[εε′] =


B 0 0 0

0 B 0 0

0 0 B 0

0 0 0 B

 (27)

For K = 2, each block B is of the form:

B =

[
E[ε21] E[ε1ε2]

E[ε2ε1] E[ε22]

]
(28)

We have shown earlier that, for two individuals i and j in the same selection pool of size

NP , we have E[εiεj] = ρσ2
ε with ρ = − NP−1

N2
P−3NP+3

for i 6= j. Hence B can be rewritten as:

B = σ2
ε

[
1 ρ

ρ 1

]
≡ σ2

εA (29)

If K > 2, A becomes a K ×K matrix but its form remains the same: 1 on the diagonal

and ρ off the diagonal. The value of ρ is given by formula (21). What is important is that

ρ is known and does not need to be estimated.
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Equation (21), combined with (27) and (29), provides a characterization of the data

generating process that can be used to estimate structural parameters β, γ, δ and σ2.

Identification is achieved from the assumption that, conditional on network (cluster) fixed

effects, errors are independent across observations from the same peer group – except

for exclusion bias. With this assumption, instruments are not required in spite of the

presence of reflection bias. Inference can be conducted in the same way as before, that

is, by simulating the distribution of estimated coefficients under the null hypothesis of no

peer effects.

One approach to estimate (26) is to rely on a method of moments estimation strategy.

That is, we choose the parameter β that provides the best fit to the observed data E[Y Y ′].

This is achieved using a search algorithm. For each guess β(n) that the algorithm makes

about β, we solve for the corresponding values of γ and δ by calculating Y − β(n)GY and

regressing it on X and GX to obtain estimates of γ̂(n) and δ̂(n). This process also yields

an estimate of the variance of errors σ̂
2(n)
ε . Using β(n), γ̂(n), δ̂(n) and σ̂

2(n)
ε we compute the

value of each element of the right hand side of equation (26). Subtracting each value from

the corresponding yiyj, taking squares, and summing over all ij pairs yields the value

of the ‘fit’ for guess β(n). We then search over possible values of β to achieve the best

fit/lowest sum of squared residuals.

Table 6: Correction exclusion bias in estimation of endogenous peer effects - Groups
K = 2 K = 5

(1) (2) (3) (4) (5) (6)

True β1 0.00 0.10 0.20 0.00 0.10 0.20

β̂Naive1 - no corrections -0.05 0.15 0.34 -0.25 -0.02 0.19

Naive p-value 0.21 0.01 0.00 0.07 0.33 0.10

β̂Ref1 - correction for reflection bias only -0.02 0.07 0.18 -0.11 0.00 0.09

β̂Corr1 - correction for reflection bias +

exclusion bias

0.00 0.10 0.20 0.01 0.09 0.20

Corrected p-value (permutation method) 0.54 0.02 0.00 0.45 0.15 0.00

Note: L = 20; N = 1000; Pool fixed effects added in all regressions; Simulations β̂1 over 100

Monte Carlo repetitions. Permutations over 500 replications.

To illustrate the effectiveness of this approach, we estimate model (25) on simulated

data, using 100 Monte Carlo replications, the results of which are shown in Table 6. We

keep the number of observations in each sample constant at N = 1000 but we vary K and

β. Cluster fixed effects are included throughout. In the first row we report the uncorrected

β̂Naive obtained by regressing Yi on GiY and cluster fixed effects. Results confirm that the

uncorrected β is biased. As before this bias combines two sources of bias: reflection and
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exclusion. When β is small, the exclusion bias dominates and the naive β underestimates

the true β. The naive β is more likely to overestimate the true β when exclusion bias

is small, which occurs when the selection pools are large. In the second row in Table

6, we report the β̂Ref estimate corrected for reflection bias but ignoring the exclusion

bias. This is the estimate derived from model (26) with E[ε ε′] = σ2
ε I. In all cases, the

estimate is closer to the true β, but the failure to eliminate exclusion bias results in an

underestimation of the true β on average. The last column reports the average β̂Corr

estimate derived from model (26) with E[ε ε′] given by (29). The β̂Corr is centered around

its true value in all cases.

Table 6 also shows the naive p-values reported with β̂Naive as well as the corrected

p-values obtained using the permutation method described in Section 2.4.5.

3.3 Network data

Until now we have considered situations in which peers form groups, i.e., such that if i

and j are peers and j and k are peers, then i and k are peers as well. Exclusion bias also

arises when peers form more general networks, i.e., such that i and k need not be peers.

To illustrate this, we go back to the canonical case considered in Section 2, namely, let us

assume that individuals in selection pool l are randomly assigned peers within that pool.

The only difference with Section 2 is that we no longer restrict attention to peer groups but

allow links between peers to take an arbitrary (including directed or undirected) network

shape within each pool l. Groups of unequal size are handled in the same manner.

The approach developed to estimate general group models with uncorrelated errors

can be applied to network data virtually unchanged. Equation (26) remains the same.

Formally let gijl = 1 if i and j in cluster l are peers, and 0 otherwise. We follow convention

and set gii = 0 always. The network matrix in cluster l is written Gl = [gijl] and G is a

block diagonal matrix of all Gl matrices. To estimate network models in levels, we use G

directly.

If the model we wish to estimate is linear-in-means, let nil denote the number of peers

(or degree) or i. The value of nil typically differs across individuals. Let us define vector

ĝil as a vector formed by dividing i’s row of Gl by nil, i.e.:

ĝil = [
gi1l
nil

, ...,
giLl
nil

]

where, as before, L denotes the size of the selection pool.13 The average outcome of i’s

13To illustrate, let L = 4 and assume that individual 1 has individuals 2 and 4 as peers. Then
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peers can then be written as ĝilyl where yl is the vector of all outcomes in selection pool

l. The peer effect model that we aim to estimate is:

yikl = β0 + β1ĝilyl + δl + εikl (30)

We define Ĝl as the Ll × Ll matrix obtained by stacking all ĝil in pool l. Similarly

define Ĝ as the block-diagonal matrix of all Ĝl matrices. The linear-in-means network

autoregressive model can thus be written in matrix form as:

Y = βĜY + γX + δĜX + ε (31)

As in the previous section, equation (21) combined with (27) and (29) can be used

to estimate structural parameters β, γ, δ and σ2. The only difference is that G is now a

network matrix rather than a block-diagonal matrix. It is intuitively clear that exclusion

bias affects model (30) as well: individual i is excluded from the selection pool of its own

peers, and this generates a mechanical negative correlation between i’s outcome and that

of its peers. To correct for this in a way that automatically accommodates any network

matrix, we redefine expression E[εε′] to be a block-diagonal matrix Bl of size Ll × Ll

where Ll is the number of individuals in selection pool l. Parameter ρ is computed as

before. Pre- and post-multiplying matrix E[ε ε′] by (I − βG)−1 in expression (26) picks

the relevant off-diagonal elements of B to construct the needed correction for exclusion

bias. Estimation proceeds using the same iterative algorithm described above.

We illustrate this approach for network data in Table 7. We generate each adjacency

matrix Gl as a Poisson random network with linking probability p. In other words, p is

the probability that a link exists between any two individuals i and j within the same

pool. When p = 0.1 and L = 20, each individual has two peers on average; when

p = 0.25 (0.5) each individual has on average 5 (10) peers, respectively. Table 7 provides

simulation results and shows how our suggested method of moments correction method is

able to correct the estimate of β1 to be close to the true β1 even after only 100 simulation

repetitions.

The permutation method can similarly be used to correct p-values. To recall, we want

to simulate the counterfactual distribution of β̂1 under the null hypothesis of zero peer

effects. In contrast with Section 3, peers are no longer selected by randomly partitioning

individuals into groups within clusters, but rather by randomly assigning peers within

clusters. In order to simulate the distribution of β̂1 in regression model (30) under the

ĝil = [0, 12 , 0,
1
2 ].
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null of no peer effect, we keep the network matrices in each selection pool unchanged.

But we change who is linked to whom. To achieve this within a cluster l, we scramble

matrix Gl in the following way. Say the original ordering individual indices in clus-

ter l is {1, ..., i, ..., j, ..., L}. We generate a random reordering (k) of these indices, e.g.,

{j, ..., 1, ..., L, ..., i}. We then reorganize the elements of Gl according to this reordering

to obtain a counter-factual network matrix G
(k)
l . To illustrate, imagine that i has been

mapped into k and j into m. Then element gijl of matrix Gl becomes element gkml in

matrix G
(k)
l . We then use this matrix to compute the average peer variable ĝ

(k)
il yl. This

approach is known in the statistical sociology literature as Quadratic Assignment Proce-

dure or QAP (e.g., Krackhardt, 1988). For each reordering (k) we estimate model (30)

and obtain a counter-factual estimate β̂
(k)
1 . We then use the distribution of the β̂

(k)
1 ’s as

approximation of the distribution of β̂1 under the null of zero peer effects. We compare

in Table 7 the p-values obtained from the naive model and the permutation approach

applied to model 31. The performance of our estimation method in the network case is

comparable to what it was in the peer group case.

Table 7: Correction exclusion bias in estimation of endogenous peer effects - Networks
p = 0.10 p = 0.25

(1) (2) (3) (4) (5) (6)

True β1 0.00 0.10 0.20 0.00 0.10 0.20

β̂Naive1 - no corrections -0.09 0.08 0.25 -0.27 -0.09 0.09

Naive p-value 0.13 0.22 0.001 0.03 0.26 0.29

β̂Ref1 - correction for reflection bias only -0.04 0.02 0.11 -0.09 -0.01 0.02

β̂Corr1 - correction for reflection bias +

exclusion bias

0.00 0.09 0.19 0.01 0.07 0.19

Corrected p-value (permutation method) 0.51 0.06 0.00 0.48 0.24 0.02

Note: p = probability of link between i and j within a cluster ; L = 20; N = 1000; Pool

fixed effects added in all regressions; Simulations β̂1 over 100 Monte Carlo repetitions.

Permutations over 500 replications.

3.4 More complex settings

So far we have assumed that peers are randomly drawn from within a well-specified pool

of fixed size NP . In this section we discuss possible extensions to more complex settings.

1. So far we have assumed that all selection pools are of equal size NP = L. If selection

pools vary in size, it can be shown that in expectation the bias is a weighted average
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of the biases associated with the different cluster sizes:

E(Bias) =
Z∑
l=1

Ll
N
E(Bias|L = Ll) (32)

where Ll denotes the size of selection pool l and Z is the total number of selection

pools.

Similarly, if peer groups differ in size Kk it can be shown that the exclusion bias is

a weighted average of the bias associated with the different Kk. That is:

E(Bias) =
S∑
k=1

Kk

L
E(Bias|k = Kk) (33)

where Kk denotes the size of the peer group k and S is the total number of peer

groups within each selection pool.

2. Peers may not be selected from mutually exclusive selection pools. For instance,

students tend to befriend mostly classmates. But they may also have friends in

other classrooms. To capture this situation, let us now reserve the word ‘cluster’ to

denote the pool from which most but not all friends are selected – so that selection

pool and cluster are no longer synonymous. In this example, membership to a peer

group is correlated with membership to a cluster, but some peers are selected from

outside the cluster. This means that selection pools are not mutually exclusive; they

partially overlap.

To illustrate, consider a specification in which individual i in cluster l selects a pro-

portion θ of her peers from within cluster l and a proportion (1 − θ) from outside

cluster l. In previous sections we have focused on cases where E(ȳ−i,k,l) = ȳ−i,l.

Now E(ȳ−i,k,l) follows:

E(ȳ−i,k,l) = θȳ−i,l + (1− θ)ȳ−l,Ω (34)

where 0≤ θ ≤ 1 and ȳ−l,Ω is the average outcome over the entire population Ω ex-

cluding cluster l. Although a further treatment of this extension is beyond the

scope of this paper, we conjecture that, in a group fixed effects model, the exclu-
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sion bias becomes less severe when at least one peer is selected from outside the

cluster (θ < 1) compared to a situation where all peers are drawn from within the

cluster (θ = 1). This is because a model with cluster fixed effects only considers

the variation in outcomes within the cluster. The exclusion bias is driven by the

negative correlation between i’s outcome and the expected outcome E(ȳ−i,k,l) of i’s

peer group. This correlation should fall whenever θ < 1, hence reducing exclusion

bias.14

In practice, a model of this type can be estimated using the general network approach

outlined above, defining the network matrix G over the entire population to capture

links across clusters. The rest remains unchanged.

3. A third complication is that, in practice, the pool of potential peers is not always

well defined. In some studies on peer effects in educational achievement, survey

respondents are asked to identify peers from the entire school roster, in which case

θ < 1 (e.g. Halliday and Kwak, 2012; Fletcher, 2012).15 In other studies, people

are restricted to identify peers among a list of students in their classroom, thereby

ensuring that θ = 1 (e.g. de Melo, 2014). Fletcher and Ross [2012], in an attempt

to control for correlated effects, construct ‘clusters of observationally equivalent

individuals who face the same friendship opportunity set and make the same type

of friendship choices’ within the school. To the extent that students select peers from

within these clusters, it is the size of these groups that determines the magnitude

of the exclusion bias. The boundaries of the pools from which peers are selected

are seldom well defined, however. It may be impossible to obtain a closed-form

expression for the bias in such cases, but estimation can proceed as in case 2 above.

4. Fourth, even if the pool of potential peers is precisely known, it is often the case

that peers cannot be considered as randomly drawn within the selection pools.

Consequently, the expected value of the outcome of i’s peers may differ from the

net-i-pool-average E(ȳ−i,k,l). In such cases, calculating the size of the exclusion bias

would require simulating the peer assignment process that generated the data. If

the researcher is willing to posit a data generation process for peer assignment, the

exclusion bias can be approximated using the same type of randomization inference

14Note that, whereas an increase in peer group size unambiguously increases the magnitude of the
exclusion bias as long as all peers are drawn from within a cluster, the bias is insensitive to the number
of additional peers drawn from outside the cluster.

15If it is further assumed that peers are as likely to be selected from within the classroom as from
outside the classroom, we would have θ = L

N
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that we described earlier. How difficult this would be in practice depends on the

nature of the posited peer assignment process. Estimation can proceed as before.

But permutation-based inference must be adjusted to correct for non-random peer

assignment. If the researcher is willing to posit a predictive model for the link

formation process, this model can in principle be estimated from the data and

used to simulate counter-factual peer assignment under the null of no peer effects.

Working this case out in detail is beyond the scope of this paper.

4 Exclusion bias in practice

4.1 A basic application

A natural starting point to illustrate the practical relevance of the exclusion bias - and its

interaction with the reflection bias - is to revisit the results reported by Sacerdote [2001] on

estimated peer effects in academic achievement among Darthmouth College roommates.

Sacerdote uses a sample of 1589 graduate students (N = 1589) whose college application

forms are divided into 42 piles (‘blocks’) based on their revealed housing preferences (e.g.

whether they smoke, listen to music while studying, etc.). Within each block students are

randomly allocated to dorms and dorm rooms. Hence, in this example the peer selection

pool is the block. The study does not provide a breakdown of pool sizes so for the purpose

of illustration we assume that pools are of equal size L = 38. The breakdown by room

group size is reported as follows: 53% of students are in double occupancy rooms, 44% of

students in triples, and the remaining 3% of students are in quad rooms.

This gives us all the parameter values that we need to apply equation (1) in order

to estimate the magnitude of the exclusion bias in the standard test of random peer

assignment used by Sacerdote [2001]. Using formulas (14) and (33) we obtain the following

exclusion bias under the null of zero correlation:

Bias = 0.53 ∗ (bias|K = 2) + 0.44 ∗ (bias|K = 3) + 0.03 ∗ (bias|K = 4) = −0.04

The bias in this particular case is fairly small as the peer group size (2-4 peers per

group) is small relative to the peer selection pool size (38); in many other applications

the bias is likely to be larger. It is thus all the more interesting to assess whether a bias

of this relatively small magnitude is able to affect inference.

The first row in Table 8 shows the estimation results for the test of random peer assign-
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ment originally presented in Sacerdote [2001], for four different baseline characteristics of

interest (SATH math score, SAT verbal score, high school academic class index and high

school academic index). In the second row we present the coefficient estimates corrected

for exclusion bias under the null of zero correlation. All coefficient estimates turn positive

and, using the standard errors originally reported by Sacerdote [2001], we now reject the

null of zero correlation for one outcome at the 10% significance level. This result needs

not survive the use of corrected standard errors that are probably larger. Unfortunately

we do not have the information needed to cluster standard errors at the dorm level.

Table 8: Evidence of random assignment of roommates in Darthmouth College [Sacerdote,
2001]

SATH Math SAT verbal High school

Academic class

index

High school

academic index

(1) (2) (3) (4)

β̂Naive1 - Sacerdote [2001] -0.025

(0.028)

-0.009

(0.029)

0.010

(0.028)

-0.032

(0.028)

β̂Corr1 0.015

(0.028)

0.031

(0.029)

0.05*

(0.028)

0.008

(0.028)

Note: Standard errors (in parantheses) are not clustered at the level of the dorm; All regressions

include 41 dummies representing nonempty blocks based on housing preferences.

Next, in the first row of Table 9 we revisit the endogenous peer effect estimation

results that Sacerdote [2001] obtains when running regressions similar to (17) using GPA

test score as the outcome of interest16. Here, the Table in the original study does report

correct standard errors that are clustered at the level of the room. The author of the

study notes that the coefficient estimate of 0.07 - which is significant at the 5% level -

cannot be interpreted as causal given the presence of reflection bias. As we have seen,

this estimate is also affected by exclusion bias.

We do not have the data at hand and therefore cannot use the generalized method

of moments strategy for K > 2 discussed in Section 3.2. To circumvent this difficulty,

we proceed as if there were no students in triple or quad rooms and assume that all

students are in double occupancy rooms. This has the mechanical effect of understating

the exclusion bias but has the advantage of allowing us to apply formula (21) to correct

16Sacerdote also controls for high-school test scores of self and peers in his regression. As discussed
in Section 5.1 this inclusion could potentially reduce the magnitude of the exclusion bias. But given the
small coefficient estimates of these control variables, we do not expect this to affect the magnitude of the
exclusion bias much (as confirmed by simulations - not reported).
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the estimate for reflection bias only and formula (24) to yield an estimate that corrects for

both exclusion bias and reflection bias. As expected, correcting for reflection bias leads

to a reduction in the peer effect estimate, which falls to 0.03 and is no longer statistically

significant. When accounting for both exclusion and reflection bias, we obtain a corrected

peer effect estimate of 0.05, which is statistically significant at the 10% level – but is very

similar in magnitude and significance to that obtained for one of the baseline outcomes

in Table 8.

Table 9: Peer effects in academic outcome - [Sacerdote, 2001]
GPA test score

(1)

β̂Naive1 - Sacerdote (2001) 0.07**(0.029)

β̂Ref1 - Correction for reflection bias only 0.03(0.029)

β̂Corr1 - Correction for reflection bias + exclusion bias 0.05*(0.029)

Note: Standard errors (in parantheses) are clustered at the level of the student room; All regressions include 41

dummies representing nonempty blocks based on housing preferences; The corrected estimates assume K = 2

whereas in the Sacerdote application some students resided in triple or quad rooms (so the corrections are

conservative, although we do not expect this to affect the results much).

The lesson from this exercise is that, even in this illustrative example where the peer

group size is small relative to the peer selection pool, the exclusion and reflection biases

jointly have a non-negligible impact on inference. In applications that rely on larger peer

groups or smaller peer selection pools, the negative exclusion bias would affect findings

even more substantially.

4.2 Caution against peer group comparisons

We have shown that, for a given pool size, exclusion bias becomes more severe as peer

group size increases. It follows that comparisons of estimates between models that vary

in peer group size can be misleading.

For example, Halliday and Kwak [2012] use the Add Health dataset to compare peer

effect estimates on three outcomes (GPA, smoking and drinking) for different definitions

of peer groups used in the education literature. The relevant peer selection pool in their

setting is the school, which has on average 246 to 374 sampled students (the available

sample size depends on the outcome of interest)17. As shown in Table 10, the authors

find that estimated peer effects are significantly smaller when school grade cohort is used

17There are 145 schools in the Add Health dataset. The size of the peer selection pool is calculated by
dividing the relevant sample size by 145.
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as peer group (containing on average K = 144 students) instead of the small circle of

friends reported by students (containing on average K = 5 students). As we do not have

the Add Health dataset at hand we cannot calculate the total bias on the peer effect

estimate caused by a combination of the exclusion bias and the reflection bias. Back-of-

the-envelope calculations suggest however that the exclusion bias under the null of zero

peer effects ranges from -0.01 to -0.02 for friends and -0.62 to -1.25 for school grade cohort

as choice of peer group. Although the total bias is likely to be less negative as a result of

the reflection bias, the stark differences in the magnitude of the exclusion bias for school

grade cohorts as a peer group definition as opposed to that for small circles of friends (for

a given peer selection pool) can very well explain the differences observed between the

peer effect estimates.

Table 10: Peer effect estimates for different peer group sizes - Halliday and Kwak [2012]
GPA Smoking Drinking

(1) (2) (3) (4) (5) (6)

Peer group definition Friends School grade

cohorts

Friends School grade

cohorts

Friends School grade

cohorts

Estimated peer effect 0.45***

(38.12)

0.38***

(8.59)

0.59***

(36.93)

0.25***

(4.13)

0.25***

(16,39)

0.04

(0.58)

N 35,649 37,423 53,854 54,371 53,736 54,269

Number of schools 145 145 145 145 145 145

Average Np 246 258 371 375 371 374

Average K 5 144 5 144 5 144

Average exclusion bias

under the null

-0.02 -1.25 -0.01 -0.62 -0.01 -0.62

Note: Adapted from Halliday and Kwak [2012]. Authors use Add-Health data. All regressions include grade and, when appropriate,

gender dummies. t-statistics are in brackets. Peer selection pool is the school. Given that there are 145 schools in the dataset, average

NP is calculated by dividing sample size N by 145. All standard errors adjust for clustering on schools. All regressions include controls

for health status as well as race dummies and parental education. *** significant at 1% level, ** significant at 5% level, * significant at

10% level.

Our findings also caution against naive comparisons between peer effect models that

include cluster fixed effects and models that do not. Indeed, exclusion bias is aggravated

by the inclusion of cluster fixed effects whenever group formation is correlated with cluster

formation. For example, studies adding classroom effects (e.g. de Melo, 2014 ), dormitory

effects (e.g. Sacerdote, 2001), or school effects (e.g. Fletcher, 2012) are more severely

affected by exclusion bias if peers are selected - partially or completely - from within

theses clusters. When adding cluster fixed effects, the literature tends to interpret a

drop in estimated peer effects as evidence of unobserved covariates at the cluster level.

Although such correlates often matter, the results presented in this paper demonstrate

that such interpretations may be unwarranted since it is confounded by exclusion bias.
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4.3 Peer effects on outcome gains or losses rather than outcome

levels

So far we have focused on models that measure the influence of peers on outcome levels.

Exclusion bias is similarly present in models that measure peer effects on the time varia-

tion of outcomes, as when the researcher introduces individual fixed effects to control for

unobserved effects that may bias the estimation of peer effects.

To illustrate the issue, we abstract from other possible controls and focus on the

comparison between two simple models in which the dependent variable is expressed in

first difference:

∆yikt = β0 + β1∆ȳ−i,k,t + εikt (35)

and

∆yikt = β0 + β1ȳ−i,k,t−1 + εikt (36)

Such models are often used in practice. Hanushek et al. [2003], for instance, examines

the impact of the lagged math test score of peers on the variation in test score between

grades.

Exclusion bias is present in models such as (35) for the same reason that it is present

in levels: a student with a lower-than-average gain in test score is on average matched

with a student with a higher-than-average gain in test score. This creates a mechanical

negative relationship between ∆yikt and ∆ȳ−i,k,t.

The sign and magnitude of the exclusion bias in (36) is less clearcut, but is nonethe-

less a serious consideration. If ∆yikt is uncorrelated with yik,t−1 then (36) should be

unaffected by exclusion bias. However, if individuals with a low baseline yik,t−1 experi-

ence systematically smaller (larger) than average changes in outcome, then a mechanical

negative (positive) relationship arises between ∆yikt and ȳ−i,k,t−1, yielding a downward

(upward) bias in β̂1, respectively. Introducing individual fixed effects thus does not, by

itself, eliminate exclusion bias.

5 Methodologies unaffected by exclusion bias

5.1 Studies adding particular control variables

In some circumstances, it is possible to eliminate the exclusion bias using control variables.

This is best illustrated with an example, namely, the golf tournament studied by Guryan
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et al. [2009]18.

At t + 1 golfers participating to tournament l are assigned to a peer group k with

whom they play throughout the tournament. The performance of golfer i in tournament

l is written as yikl,t+1. The researcher has information on the performance of each golfer

i in past golf tournaments. This information is denoted as yiklt. The researcher wishes to

test whether performance in a tournament depends on who golfers are paired with. The

researcher’s objective is thus to estimate coefficient β1 in a regression of the form:

yikl,t+1 = β0 + β1ȳ−i,klt + δl + εikl,t+1 (37)

A key difference with our earlier models is that here ȳ−i,klt is calculated using the past

performance of peers, before the random assignment of peers. Because random assignment

to peer groups is done without replacement, ȳ−i,klt is negatively correlated with the past

performance yiklt of individual i even though, given the random nature of the assignment

process, there cannot be peer effects. Since past performance is correlated with unobserved

talent, we expect yiklt to be positively correlated with yikl,t+1. This generates a negative

exclusion bias in regression (37): coefficient β1 is biased downward.

This example nonetheless suggests an immediate and easy solution: to include yiklt as

additional regressor, since this automatically eliminates the exclusion bias. The model to

estimate is thus:

yikl,t+1 = β0 + β1ȳ−i,klt + β2yiklt + δl + εikl,t+1

where yiklt serves the role of control variable. This is the approach adopted, for instance,

in Munshi [2004].

A similar reasoning applies if the researcher is interested in the influence of the pre-

existing characteristics of peers x̄−ikl on i’s subsequent outcome yikl,t+1. Here too the pre-

existing characteristic of peers is negatively correlated with i’s pre-existing characteristic

xikl. Hence if the researcher fails to control for xikl and xikl is positively correlated with

yikl,t+1, then estimating a model of the form:

yikl,t+1 = b0 + b1x̄−i,kl + uikl,t+1

will result in a negative exclusion bias.19 This bias is easily corrected by including xikl as

18Many random pairing experiments, such as the random assignment of students to rooms or to classes,
have a similar structure.

19If xikl is negatively correlated with yikl,t+1 then the exclusion bias is positive, i.e., b1 is estimated to
be less negative than it is.
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control, as done for instance in Bayer et al., 2009:

yikl,t+1 = b0 + b1x̄−i,kl + b2xikl + uikl,t+1

If the researcher does not have data on yiklt or xikl, respectively, the exclusion bias

may potentially be reduced by including individual characteristics of i as control variables

to soak up some of the variation in yikl,t+1. How successful this approach will be in

practice depends on how strongly individual characteristics predict yiklt or xikl, as the

case may be. Simulations (not reported here) indicate that the reduction in exclusion

bias is sizable when control variables collectively predict much of the variation in yikl,t+1

(e.g., a correlation of 0.8). The improvement is negligible, however, when the correlation

is small (e.g., 0.2).

5.2 2SLS estimation strategies

The use of instrumental variables can - under certain conditions - eliminate exclusion

bias. One case that is particularly relevant in practice is when the researcher uses the

peer average of a variable z to intrument peer effects, but also includes zi in the regression.

To illustrate this formally, let us assume that the researcher has a suitable instrument z̄−i,kl

for ȳ−i,kl. For instance, z̄−i,kl may be the peer group average of a characteristic z known

not to influence yikl, e.g., because this characteristic has been assigned experimentally. If

z̄−i,kl is informative about ȳ−i,kl, then zikl should be informative about yikl as well. For

this reason, zikl is often included in the estimated regression as well. In this case, the first

and second stages of this 2SLS estimation strategy can be written as follows:

ȳ−i,kl = π0 + π1z̄−i,kl + π2zikl + δl + vikl

yikl = β0 + β1 ˆ̄y−i,kl + β2zikl + δl + εikl

where E(ziklεikl) = 0, E(εikl) = 0 and ˆ̄y−i,kl = π̂0 + π̂1z̄−i,kl + π̂2zikl + δ̂l is the fitted value

from the first-stage regression.

Expanding the second-stage 2SLS equation and replacing the fitted values by the above

expression, it is straightforward to show that cov(ˆ̄y−i,kl, εikl|zikl) = 0 and therefore that

β̂2SLS
1 does not suffer from exclusion bias. Indeed we have:
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yikl = β0 + β1 ˆ̄y−i,k,l + β2zikl + δl + εikl

= β0 + β1(π̂0 + π̂1z̄−i,kl + π̂2zikl + δ̂l) + β2zikl + δl + εikl (38)

If yikl and zikl are correlated (i.e., if β2 6= 0), we expect z̄−i,kl to be mechanically correlated

with yikl because z̄−i,kl =

[∑N
K
s=1

∑K
j=1 zjs

]
−zikl

L−1
+ ũikl, where ũ is defined in the same manner

for z as u was defined for y in equation (3): z−i,k = z−i+ ũik. Since equation (38) controls

for zikl directly, this mechanical relationship is preventing from generating an exclusion

bias, allowing β̂2SLS
1 to be an unbiased estimate of the peer effect.

An important implication of this result is that, in the absence of correlated effects

and other sources of endogeneity such as measurement error, 2SLS strategies of the type

described here yield IV estimates that tend to be larger – i.e., more positive – than

OLS peer-effect estimates since they do not contain the exclusion bias. The finding that

the downward bias present in OLS can be eliminated by 2SLS provides an alternative

explanation for the common but counter-intuitive tendency of peer effects studies to obtain

2SLS estimates that are larger than their OLS counterparts (e.g. Goux and Maurin, 2007;

Halliday and Kwak, 2012; De Giorgi et al., 2010; de Melo, 2011; Brown and Laschever,

2012; Helmers and Patnam, 2012; Krishnan and Patnam, 2012; Naguib, 2012; Collin,

2013). So far, this counter-intuitive finding has either been ignored, or has been attributed

to classical measurement error or to the local average treatment interpretation of 2SLS.

Exclusion bias offers another possible explanation for this often observed pattern.

For 2SLS to effectively eliminate exclusion bias, it is necessary to control for i’s own

value of the instrument zikl in (38). Estimation strategies employed in Bramouille et al.

[2009] and De Giorgi et al. [2010], for instance, satisfy this criterion. Any instrumentation

method that fails to do so suffers from exclusion bias in the same way and for the same

reason as OLS.

6 Concluding remarks

The objective of this study was to conduct an in-depth and formal analysis of a listed

(Guryan et al., 2009) but so far largely undocumented source of downward estimation

bias in standard peer effects models. This negative bias - which we call ‘exclusion bias’

- exists on top of other, well-known sources of bias such as reflection bias and correlated

effects. The paper provides important insights into the cause, consequences and solutions
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of this bias, which has largely been ignored to date.

We have shown that the bias is driven by the exclusion of individuals from the pool

from which their peers are drawn and have demonstrated that this negative bias can

seriously affect point estimates and inference in standard tests of random peer assignment

and in the estimation of endogenous peer effects. The magnitude of the bias is particularly

strong in studies that consider large peer groups relative to the size of the peer selection

pool (e.g. number of peers considered in a classroom) and those that include cluster

fixed effects whenever peers are selected at the level of a sub-cluster (e.g. classroom). A

striking result is that when the true peer effect is small or zero, the negative exclusion

bias dominates the positive reflection bias yielding an overall negative bias on the peer

effect estimate.

Based on this, we suspect that some peer effect studies have never been published –

or even never saw the light of day. In the absence of exclusion bias, researchers normally

expect an upward bias in peer effects due to reflection bias. If application of simple OLS

to data yields an insignificant or even negative peer effect coefficient, a researcher unaware

of exclusion bias is likely to conclude that positive peer effects are absent from their data

– and thus that the issue is not worthy of further investigation. We suspect that many

researchers to date have abandoned research plans to study peer effects because they did

not realize that this small or even negative OLS estimate could have been the result of

exclusion bias.

The ideas presented here also offer an alternative to the estimation of peer effects using

instrumental variables. Valid 2SLS estimation requires the availability of suitable strong

instruments. Moreover, 2SLS is biased in finite samples (Bound et al., 1995). Exogenous

sources of variation are particularly hard to find in settings that control for cluster fixed

effects. Therefore, many studies rely on OLS with cluster fixed effects to identify peer

effects – in spite of the obvious shortcomings, i.e., reflection bias and exclusion bias. We

propose an alternative method to estimate peer effects that deals with these shortcomings

but does not rely on instrumentation. This method comes at a cost, though: it requires

assuming away correlated effects between peers. Whether or not this assumption is war-

ranted depends on the specific context of the study. But even when correlated effects

cannot be ruled out on a priori grounds, researchers can nonetheless use our method to

derive peer effect estimates that are free of reflection and exclusion bias – as an additional

check on their results.
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A Relationship between σ2
u and σ2

ε in model without

cluster FE

We can re-write equation 3 as follows:

uik = x̄−i,k − x̄−i =

(∑K
j=1 xjk

)
− xik

K − 1
−

(∑N
K
s=1

∑K
j=1 xjs

)
− xik

N − 1

=
(N −K)

[(∑K
j=1 xjk

)
− xik

]
(N − 1)(K − 1)

−
∑

s6=k
∑K

j=1 xjs

N − 1

Using var(xik) = σ2
ε and the assumption that xik is i.i.d. (prior to treatment), we

derive:

var(uik) = σ2
u =

(N −K)2(K − 1)

(N − 1)2(K − 1)2
σ2
ε −

(N −K)

(N − 1)2
σ2
ε =

(N −K)

(N − 1)(K − 1)
σ2
ε < ε2ε (39)

B Deriving an expression for var(x̄−i,k) in model with-

out cluster FE

Using the reduced form of x̄−i,k provided in equation 9 , we obtain:

var(x̄−i,k) = var(x̄−i + uik) = var(x̄−i) + 2cov(x̄−i, uik) + var(xik) =
(N − 1)2σ2

u + σ2
ε

(N − 1)2

Using equation (40) and equation (39) we then get:

var(x̄−i,k) =
(N − 1)(N −K) + (K − 1)

(N − 1)2(K − 1)

C Exclusion bias in cluster sampling

The cluster sampling equivalent of equation 7 is

xikl = β0 + β1


[∑ L

K
s=1

∑K
j=1 xjsl

]
− xikl

L− 1
+ uikl

+ εikl (40)
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Averaging equation 40 over all L observations in group l , we obtain the cluster average
outcome:

x̄l = β0+β1


∑L

i=1

[∑ L
K
s=1

∑K
j=1 xjsl

]
−xikl

L−1


L

+ ūl

+ε̄l = β0+β1


[∑ L

K
s=1

∑K
j=1 xjsl

]
− x̄l

L− 1
+ ūl

+ε̄l

(41)
Note that cluster fixed effect equation 1 can be rewritten in terms of deviations of

outcomes from their respective cluster averages, as follows

xikl − x̄l = β1 (x̄−i,k,l − ¯̄x−i,l) + (εikl − ε̄l)

Inserting 40 and 41, we derive the following expression for the cluster fixed effects
model where peers are drawn from the cluster l:

xikl − x̄l = β1


[∑ L

K
s=1

∑K
j=1 xjsl

]
− xikl

L− 1
+ uikl −


[∑ L

K
s=1

∑K
j=1 xjsl

]
− x̄l

L− 1

− ūl
+ εikl − ε̄l

⇔ xikl − x̄l = β1

(
x̄l − xikl
L− 1

+ uikl − ūl
)

+ εikl − ε̄l

Denoting z̈ = xikl − x̄l , for z = x, u, ε , we have:

ẍ = β1

(
−ẍ
L− 1

+ ü

)
+ ε̈ (42)

Using the properties of the covariance and variance operators, we obtain the following
expression for the cluster fixed effects estimate of β1 when the true β1 = 0:

E
(
β̂FE1

)
=
cov
( −ẍ
L−1

+ ü, ε̈
)

var
( −ẍ
L−1

+ ü
) =

cov
( −ẍ
L−1

, ε̈
)

+ cov (ü,ε̈)

var
( −ẍ
L−1

)
+ 2cov

( −ẍ
L−1

, ü
)

+ var (ü)

In order to expand equation 43, we consider:

cov (ü, ε̈) = E (üε̈) = E [(uikl − ul) (εikl − εl)] = E (uiklεikl)−E (ūlεikl)+E (ūlε̄l)−E (uiklε̄l) = 0
(43)

and

var (ü) = var (uikl − ūl) = var (uikl)− 2E (uiklūl) + var (ūl)
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Since uik are self-constructed deviations of x̄−i,k from the pool average x̄−i , by con-
struction ūl = 0. Therefore:{

var(ūl) = 0

E (uiklūl) = 0
⇒ var(ü) = var(uikl) = σ2

u (44)

Furthermore, note that:E (εiklε̄l) =
E(ε2ikl)

L
= σ2

ε

L

var (ε̄l) = var
(∑L

i=1 εikl
L

)
=

∑L
i=1 var(εikl)

L2 = Lσ2
ε

L2 = σ2
ε

L

(45)

⇒ var (ε̈) = σ2
ε − 2

σ2
ε

L
+
σ2
ε

L
=

(L− 1)σ2
ε

L
(46)

Using equation 42 , we derive the reduced form of
(
− ẍ
L−1

)
:

ẍ = β1

(
−ẍ
L− 1

+ ü

)
+ ε̈⇔

[
L− 1 + β1

L− 1

]
ẍ = β1ü+ ε̈

⇔ − ẍ

L− 1
=

−β1ü

L− 1 + β1

− ε̈

L− 1 + β1

(47)

Using E(ε̈) = E(εikl − ε̈l) = 0 , equations 43 , 46, 47 and β1 = 0 (since we consider
the case of random peer assignment), we derive:

cov

(
−ẍ
L− 1

, ε̈

)
= E

[[
−ẍ
L− 1

− E
(
−ẍ
L− 1

)]
ε̈

]
= E

[
−ε̈ε̈
L− 1

]
=
−var(ε̈)
L− 1

= − 1

L− 1

(L− 1)σ2
ε

L

= −σ
2
ε

L
(48)

Similarly,

2cov

(
−ẍ
L− 1

, ü

)
= −2

E(üε̈)

L− 1
= 0 (49)

Again using equation 47 , we have:
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var

(
−ẍ
L− 1

)
= var

(
− ε̈

L− 1

)
=

(L−1)
L

σ2
ε

(L− 1)2

=
σ2
ε

L(L− 1)
(50)

Using equations 43 - 50 we obtain:

cov(
−ẍ
L− 1

+ ü, ε̈) = (−σ
2
ε

L
) (51)

and

var(
−ẍ
L− 1

+ ü) =
σ2
ε

L(L− 1)
+ σ2

u (52)

Similar to the procedure used in Appendix (A) we can derive an expression for σ2
u but

now for a model that includes cluster fixed effects. We obtain:

σ2
u =

(L−K)

(L− 1)(K − 1)
var(ε̈)

Using equation ((46)) we obtain the following relationship between σ2
u and σ2

ε in a
model that includes cluster fixed effects:

σ2
u =

(N −K)(L− 1)

(N − 1)(K − 1)L
σ2
ε (53)

Substituting this into equation (52) we obtain:

var(
−ẍ
L− 1

+ ü) =
σ2
ε

L(L− 1)
+

(N −K)(L− 1)

(N − 1)(K − 1)L
σ2
ε =

(K − 1) + (L−K)(L− 1)

L(L− 1)(K − 1)
σ2
ε

Finally, we can expand equation 43 as follows:

E
(
β̂FE1

)
=
cov
( −ẍ
L−1

+ ü, ε̈
)

var
( −ẍ
L−1

+ ü
) =

(−σ2
ε

L
)

(K−1)+(L−K)(L−1)
L(L−1)(K−1)

σ2
ε

⇒ E
(
β̂FE1

)
= − (L− 1)(K − 1)

(L− 1)(L−K) + (K − 1)
(54)
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D Proof proposition 2

When data are clustered at a sub-level smaller than the total sample size N , the pooled
OLS estimator β̂OLS1 (i.e. OLS in a model omitting cluster fixed effects) is a weighted
average of the cluster fixed effects estimator β̂FE1 (or within estimator) and the between estimator

β̂BE
1 (Raudenbush and Bryk [2002]):

β̂OLS1 = η2β̂BE1 + (1− η2)β̂FE1 (55)

where 0 < η2 < 1 is the ratio of the between sum of squares of the independent
variable of interest, ȳ−i,k,l, to its total sum of squares. The cluster fixed effects estimator

was derived in Appendix C where we found that E
(
β̂FE1

)
< 0. The between estimator

is the OLS estimator from a regression of ȳl on an intercept and ¯̄y−i,l , where ȳl denotes
the average outcome yikl over the individuals in group l and ¯̄y−i,l denotes the average peer
group outcome of the group:

ȳ−i,l = β0 + β1 ¯̄y−i,l + ε̄l (56)

In this Appendix we will derive this estimator and show that E
(
β̂BE1

)
≥ 0. Given

that E
(
β̂FE1

)
< 0 and E

(
β̂BE1

)
≥ 0, equation 55 implies that:

1. When peers are selected from within the cluster l ⊂ Ω, we expect there to be a pos-

itive correlation between the cluster average outcome and the average peer group

outcome in the cluster, that is, β1 > 0 in 56. In this case, E
(
β̂BE1

)
> 0 and the OLS

estimate will lie somewhere in between the negative FE estimate and the positive

between-group estimate and

E(β̂FE1 ) < E(β̂OLS1 )

2. When peers are selected among the entire population Ω, we do not expect there to
be any correlation between the cluster average outcome and the average peer group

outcome in the cluster. In this case, β1 = 0 in 56 and E
(
β̂BE1

)
= 0. This implies:

E(β̂FE1 ) = E(β̂OLS1 )

.

This proves proposition 2.

We will now derive an expression for E
(
β̂BE1

)
and prove that E

(
β̂BE1

)
> 0 when

peers are selected from within the cluster.
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The between-group model equivalent of the reduced form equation given in (8) is:

ȳ−i,l =

[∑ L
K
s=1

∑K
j=1 yjsl

]
− β0

L− 1 + β1

− β1ūl
L− 1 + β1

− ε̄l
L− 1 + β1

=
Lȳl − β0

L− 1 + β1

− β1ūl
L− 1 + β1

− ε̄l
L− 1 + β1

(57)

where ȳ−i,l is the average outcome over the individuals in the group l , excluding
individual i, and ȳl , ūl and ε̄l denote the group averages of y , u and ε , respectively.
Under random peer assignment (i.e. β1 = 0), this equation reduces to:

ȳ−i,l =
Lȳl
L− 1

− ε̄l
L− 1

(58)

Using (58), we have:

cov(¯̄y−i,l, ε̄l) = cov(ȳ−i,l + ūl, ε̄l)

= cov(ȳ−i,l, ε̄l)

= L
E(ε̄2l )

L− 1
− E(ε̄2l )

L− 1

= var(ε̄l)

=
σ2
ε

L
(59)

and
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var (¯̄y−i,l) = var


L∑
i=1

ȳ−i,k,l

L


=

1

L2
var

(
L∑
i=1

(∑L
j=1 yjl − yil
L− 1

)
+

L∑
i=1

uil

)

=
1

L2
var

(
L
∑L

i=1 yil
L− 1

−
∑L

i=1 yil
L− 1

+
L∑
i=1

uil

)

=
1

L2
var

(
L∑
i=1

yil +
L∑
i=1

uil

)

=
σ2
ε + σ2

u

L

=
σ2
ε + L(L−K)

(L−1)2(K−1)
σ2
ε

L

=
(L− 1)2(K − 1) + L(L−K)

L(L− 1)2(K − 1)
σ2
ε (60)

where in the last step we used the result in (5).
Using equation (59) and (60) we obtain:

E
(
β̂BE1

)
=
cov (¯̄y−i,l, ε̄l)

var (¯̄y−i,l)

=
σ2
ε

L
(L−1)2(K−1)+L(L−K)

L(L−1)2(K−1)
σ2
ε

=
(L− 1)2(K − 1)

(L− 1)2(K − 1) + L(L−K)
> 0 (61)

This proves that E
(
β̂BE1

)
> 0 when peers are selected from within the cluster.

We can also use 55 to prove that corrolary that comes with Proposition 2, i.e. that
β̂OLS1 tends to zero for large sample sizes. To proceed, we need expressions for β̂FE1 , β̂BE1

and η2. The within estimator β̂FE1 and the between estimator β̂BE1 are presented in (14)
and 61, respectively. We will now derive an expression for η2.

Weight parameter η2 in equation (62) is the ratio of the between-group sum of squares
of the independent variable of interest, ȳ−i,k,l , to its total sum of squares:
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η2 =
SSBGȳ−i,k,l
SSTotalȳ−i,k,l

=
SSBGȳ−i,k,l

SSBGȳ−i,k,l + SSWithin
ȳ−i,k,l

(62)

Specifically, SSBGȳ−i,k,l is the sum of all the squared differences between each of the cluster
group means and the overall sample mean, multiplied by the number of observations in
the group l. In other words:

SSBGȳ−i,k,l = SSBEȳ−i,k,l × L (63)

where SSBEȳ−i,k,l is the sum of squares of ¯̄y−i,l in the between estimation regression (46)

in Appendix (C). Furthermore, using the definition of the variance operator, we know
that:

var (¯̄y−i,l) =
SSBEȳ−i,k,l(
N
L
− 1
) ⇒ SSBEȳ−i,k,l = var (¯̄y−i,l)×

(
N

L
− 1

)
(64)

Using equations (62) - (64), we obtain:

SSBGȳ−i,k,l = var (¯̄y−i,l)×
(
N

L
− 1

)
× L

Substituting in for the expression of var (¯̄y−i,l) given by equation (60) , we finally have:

SSBGȳ−i,k,l =
(L− 1)2(K − 1)

(L− 1)2(K − 1) + L(L−K)
×
(
N

L
− 1

)
× σ2

ε (65)

Next, SSWithin
ȳ−i,k,l

is the sum of the squared differences between each individual’s average
peer group outcome, ȳ−i,k,l , and its average for the individual’s group ¯̄y−i,l . Similarly to
equation (64), we have:

var (ȳ−i,l − ¯̄y−i,l) =
SSWithin

ȳ−i,k,l

(N − 1)
⇒ SSWithin

ȳ−i,k,l
= var (ȳ−i,l − ¯̄y−i,l)× (N − 1)

From the above we know that var (ȳ−i,k,l − ¯̄y−i,l) = var
( −ÿ
L−1

+ ü
)

. Therefore, we can
substitute in for the expression of var (ȳ−i,k,l − ¯̄y−i,l) by using equations (52):

We have:

SSWithin
ȳ−i,k,l

=
L+ (L−K)(K − 1)

K(K − 1)L
× N − 1

L
σ2
ε (66)

Combining equations (62), (65) and (66) , we obtain:

η2 =
SSBGȳ−i,k,l

SSBGȳ−i,k,l + SSWithin
ȳ−i,k,l
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where {
SSBGȳ−i,k,l = (L−1)2(K−1)

(L−1)2(K−1)+L(L−K)
×
(
N
L
− 1
)
× σ2

ε

SSWithin
ȳ−i,k,l

= L+(L−K)(K−1)
K(K−1)L

× N−1
L
× σ2

ε

Finally, denoting as constants A = (L−1)2(K−1)
(L−1)2(K−1)+L(L−K)

σ2
ε and B = L+(L−K)(K−1)

K(K−1)L
and

taking probability limits, we obtain the following expression for plim(η2) :

plim
(
η2
)

= plim

[
A
(
N
L
− 1
)

A
(
N
L
− 1
)

+B
(
N−1
L

)]
=

A

A+B
(67)

Note that this closed form result only holds in the limit, that is, when sample size N
tends to infinity. Using (55), (14), (61) and (67) we now derive the large sample property
of pooled OLS when peer group formation occurs at group level l and when the true
β = 0:

plim
(
β̂OLS1

)
= plim(η2)plim(β̂BE1 ) +

[
1− plim(η2)

]
plim(β̂FE1 )

=

(
A

A+B

)
1

AL
−
(

1− A

A+B

)
1

BL

= 0

This proves the corollary that comes with Proposition 2 in Section 2.5.
Finally, we explain formally why in smaller sample sizes the exclusion bias is more

present. Note that:

E
(
η2
)

= E

(
SSBGȳ−i,k,l

SSBGȳ−i,k,l + SSWithin
ȳ−i,k,l

)

= E
(
SSBGȳ−i,k,l

)
E

(
1

SSBGȳ−i,k,l + SSWithin
ȳ−i,k,l

)
+ cov

(
SSBGȳ−i,k,l ,

1

SSBGȳ−i,k,l + SSWithin
ȳ−i,k,l

)

=
LK − 2K + 1

L(L− 1)
+ cov

(
SSBGȳ−i,k,l ,

1

SSBGȳ−i,k,l + SSWithin
ȳ−i,k,l

)

= plim
(
η2
)

+ cov

(
SSBGȳ−i,k,l ,

1

SSBGȳ−i,k,l + SSWithin
ȳ−i,k,l

)

It is clear that cov

(
SSBGȳ−i,k,l ,

1
SSBGȳ−i,k,l

+SSWithin
ȳ−i,k,l

)
< 0. Therefore, we obtain:
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0 < E
(
η2
)
< plim

(
η2
)
< 1

This means that, ceteris paribus, the smaller the sample size the more weight is given
to the cluster FE estimator in the estimation of the pooled OLS estimate (see 55) and
therefore the larger the effect of the exclusion bias will be in pooled OLS. Similarly, the
larger the sample size, the more weight is given to the between-group estimator in the
estimation of the pooled OLS estimate and therefore the smaller the effect of the exclusion
bias will be.
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