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1 Introduction

Economies tend to consume more abundant resources first, turning to alternatives only after

sufficient depletion has set in (Herfindahl, 1967). However, if consumption of an abundant

resource generates substantial social costs, an earlier transition to alternative resources may

be required. Many environmental challenges are characterized by this problem, and none more

so than anthropogenic climate change. Carbon emissions arise, in part, because the most

abundant fossil fuel, coal, is also the most climate-damaging.1 As a consequence, it is widely

recognized that the global economy must permanently transition away from using coal in order

to address climate change.2

How can a sustained energy transition away from coal be induced? Economic theory offers

two perspectives. In the traditional view, where an economy’s composition of resources is

determined primarily by relative supply, a permanent intervention that lowers coal use (e.g.,

a Pigouvian tax) is needed to offset coal’s supply advantage. If the policy were ever removed,

the forces of relative supply would return, enabling coal consumption and carbon emissions

to resume upward trajectories. This behavior appears in economies exhibiting either no or

weak path dependence in energy transitions. Unfortunately, permanent policy interventions

may be unrealistic when governments have difficulty committing to long-term policies. Indeed,

the history of climate policies to date is filled with examples of policy revisions, reversals, and

withdrawals.3

In contrast, recent structural change models posit that in the presence of certain transitional

dynamics, a large but temporary intervention that exogenously lowers coal use can permanently

overcome coal’s abundant supply (Acemoglu et al., 2012, 2016; Lemoine, 2017; Fried, 2018;

Acemoglu et al., 2019). Under such circumstances, a sustained long-term transition away from

coal could be achieved even after the intervention is lifted. Economies with this feature are

broadly characterized as having strong path dependence in energy transitions. Whether such

dynamics actually govern energy transitions, however, remains an open empirical question.

This paper provides one of the first empirical studies of long-run energy transitions. Specif-

ically, I examine the transitional dynamics of the U.S. electricity sector over the 20th century,

making three contributions. First, I find reduced-form evidence of strong path dependence

1Coal contains over half of energy stored in global fossil fuel deposits (BP, 2017). It is also responsible for
over half of emitted anthropogenic carbon dioxide since the pre-industrial era (Boden and Andres, 2013).

2Local pollution from coal inspired early papers on external costs (Pigou, 1920; Coase, 1960), and continues
to motivate an extensive valuation literature (e.g., Chay and Greenstone (2003, 2005); Barreca, Clay and Tarr
(2014); Clay, Lewis and Severnini (2016); Beach and Hanlon (2018); Hanlon (2016)).

3For example, the U.S. recently withdrew from the U.N. Paris Agreement and announced plans to review
the Clean Power Plan, its domestic climate policy. In 2011, Canada withdrew from the Kyoto Protocol, the
preceding U.N. climate agreement, several years after the Protocol entered into force. Key details of the E.U.
and California carbon trading markets have been revised since their inceptions. See Acemoglu and Rafey (2018)
for other examples.
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in long-run transitions between coal and other fuels, shedding light on the historical circum-

stances that made the U.S. among the most carbon-intensive economies in the world. Second,

I combine additional evidence with a model of structural change for the electricity sector to

recover the long-run elasticity of substitution between coal and other fuels from reduced-form

estimates, an important common parameter found across recent optimal climate policy models

but which remains largely unknown to date. Third, I conduct simulations using my calibrated

model to characterize how climate policies of varying magnitudes and durations could enable

a permanent future U.S. energy transition away from coal.

There are two main empirical challenges in estimating energy transitions in the electricity

sector. First, electricity capital (i.e., power plants) is built for specific fuels and lasts multiple

decades. Detecting significant changes in fuel composition therefore requires sufficiently long

data series spanning multiple capital vintages. Second, estimating path dependence requires

an exogenous and temporary shock to coal supply that subsequently alters the fuel composition

of electricity capital.

To overcome the first challenge, I combine modern and historical power plant records to con-

struct a new dataset of county-level, fuel-specific electricity capital for the U.S. midwest across

the 20th century. This enables an analysis of long-run energy transitions capturing changes in

the fuel composition of electricity capital. To address the identification challenge, I construct

local coal supply shocks using local coal transport distances driven by the changing regional

accessibility of subsurface coal. The introduction of mechanized mining around the early 20th

century allowed extraction over previously inaccessible coal held in deep underground deposits.

Mechanized mining, together with the location and subsurface depth of coal resources, altered

coal transport distances and thus the spatial distribution of delivered coal prices. As such, these

local coal transport distance shocks are driven primarily by two remote regional factors - the

time-invariant spatial structure of subsurface coal geology and time-varying mining technology

- and thus plausibly uncorrelated with unobserved local determinants of fuel composition.

Using an event study design with county-by-decade panel data, I find evidence of strong

path dependence: a negative coal supply shock triggers a declining trajectory of the relative

use of coal in electricity capital that lasts for up to ten decades. Notably, these lagged effects

display discrete jumps at two and seven decades after the event, corresponding to the expected

timing of two subsequent vintages of electricity capital. In support of my parallel trends

assumption, I do not find pre-trends in key covariates or in the outcome variable. A series of

robustness checks addresses further identification, data construction, sample restriction, and

statistical modeling concerns.

Path dependence in energy transitions emerges from a combination of “push” and “pull”

forces. Prior literature highlights various mechanisms that amplify energy transitions. These

include macroeconomic channels such as directed technical change and network externalities
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(David, 1985; Aghion and Howitt, 1992; Acemoglu et al., 2012, 2016; Aghion et al., 2016;

Fouquet, 2016) and microeconomic channels such as increasing returns to scale and local pro-

ductivity effects such as via learning-by-doing that may be more relevant with my county-level

research design (Nerlove, 1963; Christensen and Greene, 1976; Arthur, 1994). The literature

also considers a common dampening force against runaway transitions: imperfect long-run

substitutability between clean and dirty fuels, a key structural parameter found across several

recent optimal climate policy models (Acemoglu et al., 2012; Golosov et al., 2014; Lemoine,

2017; Fried, 2018; Acemoglu et al., 2019). In general, the need for reliable estimates of energy

input substitutability has been a long-standing concern in the energy economics literature.4

Most prior estimates use price variation at the annual or sub-annual levels (Lanzi and Wing,

2010; Aghion et al., 2016; Papageorgiou, Saam and Schulte, 2017; Knittel, Metaxoglou and

Trindade, 2019; Jo, 2020), which may not capture important long-run patterns of substitution

involving changes in energy capital. From the perspective of this analysis, recovery of this

parameter would allow my county-level findings to inform the calibration of a broad set of

optimal climate policy models that feature various macro- and/or microeconomic mechanisms

for generating energy transitions.

To that end, I first develop a model of structural change for the electricity sector at the

county level featuring increasing returns to scale and local productivity effects. Empirical tests

using the structure of this model verify that increasing returns to scale may be driving my

reduced-form estimates. Further tests fail to detect alternative explanations related to local

productivity effects as well as other possible mechanisms such as cost-of-service electricity

regulation, the U.S. Clean Air Act, coal procurement contracts, increasing returns in coal

transportation, and residential household sorting. This additional evidence, together with

the structure of the model enables a mapping between my reduced-form estimate of strong

path dependence and the long-run elasticity of substitution between coal and other fuels. My

recovered value of 3.5 is generally larger than the short-run estimates found in the literature and

may yield qualitatively different optimal climate policy implications. For example, in Acemoglu

et al. (2012)’s macroeconomic model of optimal climate policy with directed technical change,

my recovered elasticity of 3.5 implies that a temporary policy intervention could prevent the

climate from deteriorating to a point beyond recovery.

Finally, I calibrate my model using reduced-form estimates to draw lessons for future U.S.

energy transitions away from coal. Evidence of strong path dependence implies it is possible for

a temporary intervention to induce permanent fuel switching. But under what conditions? To

answer this question, I simulate future electricity sector carbon emissions for the average U.S.

county following temporary relative coal price shocks of varying magnitude and duration. For

4See Atkinson and Halvorsen (1976); Griffin and Gregory (1976); Pindyck (1979); Stern (2012); Papageor-
giou, Saam and Schulte (2017); Fried (2018); Casey (2019).
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a better than 50% chance of achieving a permanent switch away from coal and thus weakly

declining carbon emissions, a temporary shock equal in magnitude to recent high relative

coal prices (e.g., due to natural gas hydraulic fracturing) must last at least five decades.

Alternatively, if the shock can only last one decade, it must then be six times higher than

that of recent prices to trigger sustained fuel switching. Further simulations explore how

requirements for sustained energy transitions change under different elasticity of substitution

and scale parameter values. Altogether, these simulations conclude that in the absence of

climate policy, recent economic conditions are insufficient for sustaining a permanent U.S.

energy transition away from coal.

The remainder of the paper is organized as follows: Section 2 presents motivating evi-

dence on the U.S. electricity sector. Section 3 details statistical challenges and proposes a

solution. Section 4 discusses data construction and verification checks. Section 5 presents

reduced-form evidence of path dependence and related robustness tests. Section 6 introduces

a theoretical framework which informs empirical tests of potential mechanisms. Section 7 uses

this framework to formally define path dependence strength, recover the long-run elasticity of

substitution, and simulate future carbon emissions. Section 8 concludes.

2 Prima facie: Why is the U.S. so dependent on coal?

The United States has one of the most carbon-intensive economies in the world. Figure A.1

plots carbon dioxide (CO2) emissions per capita against GDP per capita for non-OPEC coun-

tries in 2000 using data from Boden and Andres (2013) and World Bank (2014). U.S. emissions

per capita is nearly 2 standard deviations higher than what income would predict. This reflects

the U.S. electricity sector’s heavy reliance on coal, the most carbon-intensive of energy fuels.5

Since the 1960s, roughly 40% of U.S. electricity has been produced from coal (Energy Infor-

mation Administration, 2012). Why is the U.S. electricity sector so dependent on coal? Many

observers point to its world-leading coal resources. However, a casual exploration of historical

patterns of local coal use suggests that a supply-based explanation may be incomplete.

Before turning to these patterns, it is useful to first introduce how coal composition is

measured throughout this paper. In the electricity sector, capital size is usually denoted by

the capacity of a generating unit, or the maximum electricity it can produce in an hour. Thus,

a natural measure of coal composition is the ratio of the capacity of coal-fired generating units

to the capacity of generating units using other fuels. I call this relative coal capital.6

5Bituminous coal, the most common type of coal for electricity, produces 206 lbs of CO2 per million British
Thermal Units (BTU). By contrast, oil and natural gas produces 157 and 117 lbs of CO2 per million BTU,
respectively.

6 Structural change concerns changes in the composition of inputs, and not that of individual inputs.
Because inputs are jointly determined, it is important to examine an outcome variable that is a function of
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Figure 1: Relative coal capital for counties close to and far from Illinois Coal Basin
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Notes: Plot shows log relative coal capital averaged across counties with centroids that are less than 50 miles
(solid black) and between 200 and 250 miles (dashed gray) from the nearest coal resource in the Illinois Coal
Basin for each decade from 1890 to 1990.

Figure 1 examines U.S. relative coal capital at the county-by-decade level (see Section 4.2 for

data construction details).7 It plots average log relative coal capital over 1890-1990 separately

for counties that are close to (between 0 and 50 miles) and further away (between 200 and

250 miles) from coal resources in the Illinois Coal Basin, the basin studied in this paper (for

reasons discussed in Section 4.1). Consistent with a coal supply argument, counties closer to

coal resources exhibit higher relative coal capital throughout the 20th century. However, the

gap between these two sets of counties widens dramatically over this period. Such a pattern

cannot be explained by coal supply alone, which predicts relative coal capital convergence,

not divergence, over time as counties closer to coal resources face higher mine prices as their

supplying mines deplete more rapidly. Instead, these divergent dynamics hint at the presence

of path dependence, under which past relative coal capital has a direct effect on future relative

coal capital.

Unfortunately, Figure 1 does not provide causal evidence of path dependence in energy

transitions. Among other concerns, the dynamics displayed in Figure 1 may reflect the role of

both coal and non-coal electricity capital. Relative coal capital is preferred over coal capital share (i.e., the
ratio of capacity of coal-fired generating units to total capacity of generating units across all fuels), as my main
outcome variable, largely because predictions from standard models of structural change (discussed further in
Sections 6 and 7) are typically expressed as factor input ratios.

7Because electricity capital last multiple decades, I use a decade as the time-step for all empirical analyses.
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unobserved time-invariant and varying characteristics with ongoing influence on relative coal

capital, rather than the direct influence of past relative coal capital. The next section details

this and other statistical considerations.

3 Empirical framework

This section begins by describing the empirical challenges to identifying path dependence in

energy transitions. I then discuss how shocks to local coal transport distance driven by the

changing regional accessibility of subsurface coal may overcome these challenges. To focus

for now on empirical issues, this section considers path dependence and its strength within a

reduced-form setting. Section 7 will offer formal definitions through the lens of a structural

change model.

3.1 Challenges to identifying path dependence

Statistically, path dependence is present when past outcomes have a causal effect on future

outcomes. Path dependence in structural change occurs when the outcome exhibiting such

dynamics is the composition of inputs. I begin with a simple empirical framework to illustrate

the challenges with estimating path dependence in energy transitions. There are two decades,

t ∈ {1, 2}, and two fuel-specific intermediate sectors of electricity production, j ∈ {c, n}.
Sector c produces electricity using coal; sector n produces electricity using other fuels. The

outcome of interest is relative coal capital in county i, K̃it = Kcit
Knit

. wcit is the delivered coal

price. Demand for relative coal capital for each period is

ln K̃i1 =π lnwci1 + ξi1 (1a)

ln K̃i2 =ρ ln K̃i1 + π lnwci2 + ξi2 (1b)

where π is the contemporaneous price effect. ρ is my reduced-form parameter for path de-

pendence. The error term ξit contains unobserved time-varying and -invariant determinants of

relative coal capacity. The presence of the latter, in particular, implies that a component of

ξi2 also appears in K̃i1 such that the autoregressive coefficient obtained by directly estimating

equation (1b) may not distinguish path dependence following a transitory shock from the per-

sistent effects of time-invariant determinants.8 To formalize this concern, insert equation (1a)

into (1b)

ln K̃i2 =ρπ lnwci1 + π lnwci2 + εi2 (1c)

8See a related discussion in Bleakley and Lin (2012).
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where εi2 = ρξi1 + ξi2. Two statistical assumptions are needed for the ratio of lagged to

contemporaneous effects to identify ρ. The first is E[wci2εi2|wci1] = 0, which states that con-

temporaneous coal prices must be exogenous. This exogeneity assumption would be violated

if, for example, relative coal capital and prices were simultaneously determined. The second

identifying assumption is E[wci1εi2|wci2] = 0, which requires that past coal prices be uncorre-

lated with unobserved contemporaneous determinants of relative coal capital. If this “exclusion

restriction” assumption is satisfied, past prices affect current relative capital only through past

relative capital. When both assumptions are satisfied, lagged effects that are larger in mag-

nitude than contemporaneous effects suggest strong path dependence in energy transitions.

Conversely, lagged effects that are smaller in magnitude than contemporaneous effects suggest

weak path dependence.

In practice, another complication arises when estimating equation (1c), which implicitly

assumes that lagged effects can be detected within a single decade. Electricity capital decays

slowly over multiple decades. To detect effects on subsequent new capital investments (and

not just on depreciated existing capital), one needs county-level coal prices across much of the

20th century. Unfortunately, to the best of my knowledge, such historical data were either

never collected or, if collected, are no longer available today (see Appendix B for a summary

of historical data collection and availability).

3.2 Solution: regionally-driven local coal transport distances

To address these empirical challenges, I construct shocks to local coal transport distance that

rely on plausibly weaker identifying assumptions and span a 110-year period. The basic idea

is to construct local shocks using the changing regional accessibility of subsurface coal.

Mechanized mining and access to deep coal resources Prior to the 20th century,

most coal in the U.S. was manually mined which generally limited extraction to coal resources

less than 200 feet from the surface (Fisher, 1910; Speight, 1994). Mechanized mining was

introduced around the turn of the century and eventually came to dominate coal extraction.

As shown in Figure A.2, nearly the entire production increase in bituminous coal - the variety

most used for electricity - between 1890-1930 came from mechanized extraction (U.S. Census

Bureau, 1975). The main benefit of mechanization was the introduction of mechanized drills

that allowed for the excavation of previously inaccessible deep coal resources. The interaction

between this aggregate technology shock and the spatial distribution of deep coal resources

altered local delivered coal prices.
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Using local coal transport distances To illustrate how changing regional coal accessi-

bility from the introduction of mechanized mining can be exploited, I return to the empirical

framework in Section 3.1. Suppose only shallow coal resources below 200 feet could be ex-

tracted in the first decade. In the second decade, technology enables deep coal mining. Denote

the set of operating mines in each period as Mt.

To construct local coal transport distance shocks in this setting, I enlist the Herfindahl

Principle (Herfindahl, 1967), a common result in models of spatial competition. The Herfindahl

Principle states that when a homogeneous resource is costly to transport across space, and

homogeneous suppliers are perfectly competitive, a consumer buys from the physically nearest

supplier at a price that is set, in part, by distance to that supplier.9 For county i in decade t,

distance to the nearest mine is

dit = min
mt∈Mt

{||i−mt||}

where ||i−mt|| is the Euclidean distance between county i and coal mine mt ∈Mt. Delivered

coal price can then be decomposed into

lnwcit = ln dit + ζit (2)

where ζit includes other supply-side factors. Inserting equation (2) into equation (1c) yields

ln K̃i2 = ρπ ln di1 + π ln di2 + µi2 (3)

where µi2 = ρπζi1 + πζi2 + εi2. ln di2 is log distance to the nearest mine when mechanized

mining is available. ln di1 is log distance to the nearest mine before mechanized mining.10 To

ensure ∂lnK̃i2/∂lndi1

∂lnK̃i2/∂lndi2
has a path dependence interpretation, the updated exogeneity and exclusion

restriction assumptions for equation (3) are E[ln di2µi2| ln di1] = 0 and E[ln di1µi2| ln di2] = 0,

respectively. Observe that the coefficient on distance in equation (2) need not be one. As

long as this coefficient is time-invariant11 and the identifying assumptions for equation (3) are

satisfied, ∂lnK̃i2/∂lndi1

∂lnK̃i2/∂lndi2
would cancel out this coefficient and identify ρ. That is, to estimate

path dependence, one only needs the identifying variation - in this case local coal transport

distances - to drive relative coal capital. It need not directly capture coal prices, per se.

9More specifically, the Herfindahl Principle states that under perfect competition, a consumer will buy
resources from the producer with the lowest cost of supplying to that consumer. When producers have ho-
mogeneous resource endowments and extraction costs, and transport costs scale with distance, the lowest cost
producer for a consumer is its physically nearest producer. See Gaudet, Moreaux and Salant (2001) for a gen-
eralized setting with multiple, spatially differentiated, consumers. Robustness checks in Section 5.3 considers
potential complications that arise when coal resources have heterogeneous quality and when coal mines have
market power.

10In this setting, it need not be the case that ln di1 6= ln di2 for all counties. The introduction of mechanized
mining may not lead to the opening of a deep coal mine that is closer to a given county than an existing shallow
coal mine.

11Table A.2 shows there is no trend in the county-level coal price-transport distance correlation from the
1970s to the 1990s, the period in which both variables are observed.
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Compared with directly using coal prices in equation (1c), use of ln dit has two distinct

advantages. First, construction of ln dit requires only historical data on the location, coal

depth, and operating years of coal mines, which, unlike historical coal prices, is available across

the 20th century. Second, observe that outside of county i’s location (addressed below), ln dit is

driven primarily by two regional determinants: (i) the time-invariant spatial distribution of the

depth of subsurface coal resources and (ii) the time-varying introduction of mechanized mining

which made deep coal accessible. As a consequence, use of ln dit is more likely to satisfying my

identifying assumptions.

3.3 Regression specification

Equation (3) from Section 3.1’s simple empirical framework is a cross-sectional regression. In

practice, I use a county-by-decade panel dataset over the 20th century to estimate an event

study specification that generalizes equation (3). This approach affords several additional

advantages. First, identifying assumptions are now in terms of parallel trends, with county-

specific fixed effects removing the potentially confounding influence of time-invariant factors

such as geography and other natural features. Namely, in the absence of shocks to local coal

transport distance, relative coal capital would have followed the same trends in all sample

counties. Second, because each county experiences the event of first switching to deep coal

at different moments in time, lagged effects of distance to the nearest shallow mine in “event

time” can be identified relative to local secular trends through the use of state-by-decade fixed

effects. Third, the presence of multiple decades of data for each county enables estimation of

lead effects and lagged effects over a long time horizon. Lead effects provide an indirect test of

parallel trends. Lagged effects across multiple decades allow sufficient time for capturing new

electricity capital decisions.

Denote h = −2, . . . , 10 as the event-time index. For each county, there are three distinct

periods, each occurring when the distance to its nearest coal mine changes. The focal event

occurs when a county’s nearest mine switches from a shallow to a deep coal mine for the first

time. h > 0 denotes the period after that switch. h = 0 marks the period before the switch

during which a county was closest to a shallow coal mine.12 ln d0i is distance to that shallow

coal mine and represents my local coal transport distance shock. h < 0 indicates an earlier

period when a county’s coal supplier was yet a different shallow coal mine. Using this event

12Note that in our baseline specification, h = 0 can span multiple decades if the shallow coal mine is a
county’s nearest supplier for more than a decade. In a robustness check, we redefine h = 0 as the single last
decade before a county first switches to deep coal to examine whether there are differential pre-trends in the
decades before that switch.
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study setting, I estimate for county i, in state s, during decade t

ln K̃it =
∑

−2≤τ≤10
τ 6=0

βτ [ln d0i × 1(τ = h)] + π ln dit +
∑

−2≤τ≤10
τ 6=0

γτ1(τ = h) +$i + φst + µist (4)

where γτ captures common event-time effects and µist is an error term. County fixed ef-

fects, $i, removes concerns that local coal transport distance shocks may be correlated with

a county’s time-invariant characteristics such as its geography.13 State-by-decade fixed effects,

φst, removes the presence of regional economic conditions that may jointly influence deep coal

mine openings and relative coal capital. In Section 5.1, I show pre-trend tests for key covari-

ates that support the inclusion of these controls. Because ln dit is a county’s contemporaneous

distance to its nearest coal mine, π captures the contemporaneous effect of coal prices. Its

inclusion removes any correlation between past and current coal prices, which supports a path

dependence interpretation for lagged effects of ln d0i .

Our coefficients of interest are βτ . When τ > 0, βτ are lagged effects, with βτ

π
> 1 and

βτ

π
< 1 implying strong and weak path dependence, respectively.14 When τ < 0, βτ are lead

effects and test for the presence of differential pre-trends in relative coal capital. Equation (4)

is my baseline specification. In Section 5.3, I also estimate variants of equation (4) to address

remaining identification concerns.

4 Data

This section first details how spatial data on coal resources and mines are used to construct

shocks to local coal transport distance. I then describe the construction of relative coal capital,

my main outcome variable. For both variables, I present several tests to verify assumptions

used in each construction procedure.

4.1 Local coal transport distance

The USGS National Coal Resource Assessment (NCRA) recently amassed and digitized spatial

data on coal resources and mining that was previously held separately in the archives of state

13Because mines serve multiple counties, county fixed effects also absorbs heterogeneity in the mill price set
by the nearest mine right before the switch to deep coal. Heterogeneity in mill price captures variation in mines’
marginal cost of coal extraction (Hotelling, 1929; C. d’Aspremont, 1979; Salop, 1979; Vogel, 2008), Hotelling
rent associated with the size of its coal resource (Hotelling, 1931; Gaudet, Moreaux and Salant, 2001), and coal
quality, such as heat, ash, and sulfur content, which can alter the amount of coal needed to produce a unit of
electricity.

14In the absence of any path dependence, one may detect βτ

π < 1 if there was gradual capital depreciation
over time.
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geological agencies (East, 2012). As shown in Figure A.3, the NCRA provides GIS shape files

for coal resources of depths greater than and less than 200 ft from the surface for each of the

major U.S. coal basins.15 This paper makes several sample restrictions for data availability

and estimation reasons.

I focus on coal resources found in the Illinois coal basin.16 Of the major basins assessed

by the NCRA, only for the Illinois Basin is there data on the location, area, and opening

and closing years of coal mines.17 This data goes back to 1890. The Illinois Basin is also

advantageous for its geological properties. As Figure 2 shows, it has a dish-like shape with

shallow coal resources in the outer regions and deeper resources near the center.18 Coal across

a single large deposit is less likely to be heterogeneous in quality. Indeed, data from the FERC-

423 coal procurement forms displayed in Table A.1 show that of the five major coal basins, the

Illinois Basin contains coal with the second lowest standard deviation in heat and ash content.

Within the Illinois Basin, I consider only large coal mines whose spatial area exceeds the

95% percentile for that basin. This is done to enable cleaner identification because large coal

resources are more likely to be mined in response to regional, rather than local coal demand.

Indeed FERC-423 forms reveal that counties with at least one of these large mines on average

produce 3 times more coal than other counties in our sample region. Coal is also shipped

further: the average quantity-weighted transport distance from these counties are 10 times

longer. Additionally, larger coal resources have lower Hotelling, or scarcity rents, which may

be an endogenous component of the delivered coal price (Hotelling, 1931). Figure 2 shows

the location of these mines over the Illinois Basin. On the demand side, I restrict my county

sample to those whose distance from centroid to nearest Illinois coal resource is (i) less than

the distance to the nearest Appalachian coal resource and (ii) less than 250 miles. The first

restriction reduces the influence of coal from nearby Appalachian Basin on delivered coal prices.

The second restriction reduces the influence from other coal basins. The resulting sample of

counties located in 11 states is shown in Figure A.4. These coal mine and county sample

restrictions will be subjected to robustness checks.

Using the NCRA spatial data, I identify a county’s distance to its nearest coal mine for

each decade from 1890 to 1990 (see Appendix A for data construction details). Figure A.5

15The NCRA does not provide shape files with finer intervals of coal depth. Fortunately, Fisher (1910) notes
200 ft from the surface as generally the depth limit for manual coal mining prior to the 20th century.

16In the 1990s, the Illinois Coal Basin provided 20% of bituminous coal in the U.S. (Energy Information
Administration, 1994) That share is likely to have been higher earlier in the 20th century before the large scale
extraction of western U.S. coal.

17Historical coal mine data for other basins are still held by state-level natural resource agencies. These
agencies typically possess a coal mine “final map” which dates a mine’s closing, but not opening year.

18While the NCRA provides shape files of modern coal resources, much of the Illinois Basin has been char-
acterized since the start of the 20th century such that one can interpret Figure 2 as indicating the location of
coal resources known across much of the 20th century. For example, the shape of the Illinois Basin shown in
Figure 2 matches closely with that found in Campbell (1908).
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Figure 2: Location of Illinois Basin coal resources and mines

Notes: Green (lighter) shaded area indicates shallow coal resources (<200 ft. underground). Black (darker)
shaded area indicates deep coal resources (>200 ft. underground). Yellow dots show all large coal mines that
operated at any point after 1890. County and state boundaries also shown.

maps county distance to nearest mine from 1890-1950, showing how its spatial distribution

has changed over the 20th century. From this data, I can also determine the decade in which

a county’s nearest mine switches from a shallow to a deep coal mine for the first time. Figure

A.6 shows the timing of this switch for each sample county, stacked according to the decade

when it occurs. Observe that the timing of the switching event differs across counties.

I turn to three pieces of auxiliary evidence to verify my construction of coal transport

distances. First, the use of transport distance assumes that transport costs are an important

component of delivered coal prices. Figure A.7 shows that transport costs were between 40-60%

of national U.S. delivered coal prices over the first half of the 20th century. This is consistent

with previous research emphasizing the high costs of transporting coal, the heaviest fossil fuel

by heat content (Joskow, 1987; Busse and Keohane, 2007; McNerney, Farmer and Trancik,

2011; Preonas, 2018).

Second, my construction procedure relies on the Herfindahl Principle, in which power plants

buy coal from its nearest mine. Using coal procurement data from 1990-1999 FERC-423 forms,

Figure A.8 shows how the share of coal purchased by a county varies according to the rank in
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the transport distance to coal-supplying counties.19 Nearly 50% of purchased coal came from

the nearest coal supplying county. There is a steep and sustained drop in the share of coal

purchased from other counties.

As a final check, I regress observed county-level delivered coal prices obtained from the

FERC-423 forms during the 1970s, 1980s, and 1990s against local coal transport distance for

sample counties. A perfect statistical fit is not expected nor desired as observed prices may

contain endogenous components in addition to transport costs. The correlations shown in

Table A.2 are statistically significant at the 5% level across all three decades and thus provide

confidence that my transport distance shocks is capturing variation in delivered coal prices.

There is also no clear trend in these correlations.

4.2 Electricity capital

Fuel-specific electricity capital, or capacity, at or below the county level throughout the 20th

century is also not directly available (see Appendix B for details). Instead, I turn to modern

EIA-860 forms to construct a county-by-decade panel of relative coal capital from 1890 to

1990. Importantly, this construction of historical data is made possible because EIA-860

collects data on capacity, operating years, and primary fuel input for both active and retired

generating units at power plants that were operating at the time of reporting. The availability

of retired generating units, in particular, enables one to observe historical electricity capital

that is no longer active today (see Appendix A for construction details).

Three assumptions must be satisfied for my constructed relative coal capital to match

historical values. First, all power plants since 1890 must continue to have at least one active

generating unit today. If an entire power plant retires, their generating units would not appear

in modern EIA-860 forms. To test the degree in which my constructed data may be missing

retired power plants, I turn to historical data since 1920 which is only available at the national

level (U.S. Census Bureau, 1975). Panel A of Figure A.9 compares U.S. electricity capacity (in

gigawatt, GW) summed across generating units burning fossil fuels (i.e., coal, oil, and natural

gas) constructed from EIA-860 forms against observed values from the U.S. Historical Census

for the 1920-1970 period. Panel B of Figure A.9 provides a similar comparison but for annual

capacity changes. While my constructed data under reports fossil fuel capacity levels prior

to 1955, the two national data series track closely in terms of annual changes throughout the

1920-1970 period. This suggests that my constructed data may be missing power plants that

began operation prior to 1920 but less likely those operating after 1920. Panels C and D of

Figure A.9 draw a similar conclusion for electricity capital using hydro power.

19Unfortunately, FERC-423 forms provide the county of origin for delivered coal, and not mine. Because I
am unable to directly link power plants with coal mines, Figure A.8 provides a noisy test of the Herfindahl
Principle.
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My second and third assumptions are that a generating unit must not change its capacity

and primary fuel during its lifetime. Section 6.1 discusses engineering reasons for why these

features are likely to be stable over time. Nonetheless, such changes may occur. Table A.3

examines the consistency of key generating unit characteristics across the 1990-2012 EIA-860

forms. For each characteristic across columns of Table A.3, row values indicate the percentage

of 1990-2011 EIA-860 forms with values that differed from that reported in the 2012 EIA-

860 form. 75%, 94%, 97% and 80% of generating units consistently reported using the same

capacity, primary fuel, opening year, and retirement year in 1990-2011 as was reported in 2012.

To examine the consistency of generating unit characteristics over a longer time horizon, I

digitized the 1980 EIA “Inventory of Power Plants in the United States,” the earliest available

comprehensive generating-unit dataset, with data collected during the late 1970s. Figure A.10

plots generating unit capacity reported in 2012 against the capacity reported in the late 1970s,

showing a nearly one-for-one relationship. Table A.4 shows the distribution of reported primary

fuel in 2012 conditional on primary fuel reported in the late 1970s. There has been little fuel

switching since the late 1970s.

The EIA-860 forms have one final limitation: they exclude generating units on power plants

with less than 1 megawatt (MW) of combined electricity capacity. Appendix C discusses how

this censoring may reduce the sample size, decreases the sample mean, and increases the

skewness of relative coal capital. To address this, Appendix C details an imputation procedure

which first predicts the number of missing power plants for each decade at the national level

using a flexible polynomial function, estimated separately for coal and non-coal, and then

distributes these predicted missing plants across electricity-producing counties. Robustness

checks will examine various implementations of this procedure.

Even with imputed missing small power plants, the distribution of relative coal capital

remains right-skewed. This skewness in my outcome variable can be mitigated by the log

transformation applied in equation (4). However, a log transformation is also sensitive to

small values of the untransformed variable, which may depend on my imputation procedure.

To produce estimates that are less sensitive to my imputation method, I estimate equation (4)

using a Poisson model.20 I consider other models as robustness checks.

20Specifically, the Poisson version of equation (4) is

K̃it = exp

 ∑
−2≤τ≤10
τ 6=0

βτ [ln d0i × 1(τ = h)] + π ln dit +
∑

−2≤τ≤10
τ 6=0

γτ1(τ = h) +$i + φst

+ µist (4’)

The Poisson model has the additional benefit of being a member of the linear exponential family such that
even if the density is misspecified, one can still obtain consistent point estimates through quasi-MLE provided
that the conditional mean function is correctly specified.
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5 Reduced-form results

This section presents reduced-form evidence of path dependence in energy transitions. To

guide the specification of my baseline model, I first test for pre-trends in key county covariates

across models with different controls. I then present baseline reduced-form estimates and

various robustness checks.

5.1 Examining pre-trends in county covariates

The baseline specification in equation (4) includes county and state-by-decade fixed effects.

Table 1 verifies the importance of these controls by examining whether a county’s distance to its

nearest shallow mine before its switch to deep coal (i.e., ln d0i ), correlates with contemporaneous

county characteristics that broadly capture coal demand. These covariates were obtained from

Haines (2010) and shown down the rows of Table 1. Total and urban population proxy for

residential coal demand. The number of establishments, employment, capital value, and output

value for the manufacturing sector are indicative of that sector’s coal demand.21

Each column of Table 1 estimates a model with different identifying assumptions. Col-

umn 1 shows the effect of ln d0i on log covariates in levels. Column 2 examines the effect of

ln d0i on log covariates in first-differences, analogous to a panel estimator with county fixed

effects. Column 3 augments column 2 by further including state fixed effects, akin to a panel

estimator with county and state-by-decade fixed effects. Only in column 3 are pre-trends in

these covariates systematically unrelated to ln d0i . This confirms the importance of controlling

for time-invariant county characteristics such as geography through county fixed effects, and

time-varying state-level conditions through state-by-decade fixed effects, both of which are in

the baseline statistical model shown in equation (4).

5.2 Baseline estimates of path dependence

The thick solid red line in Figure 3 shows my baseline point estimates of βτ from equation (4)

estimated using a Poisson model with relative coal capital, K̃it = Kcit
Knit

, as the outcome. These

estimates are also printed in column 1 of Table 2.

Standard Poisson models impose that the first and second moments of the outcome be equal.

Table A.5 shows that the variance of relative coal capital exceeds its mean. To address this

overdispersion issue, my baseline model has standard errors clustered at the county level. This

adjustment relaxes the assumption of equal first and second moments by allowing arbitrary

21A more precise test of pre-trends in manufacturing activity would isolate subsectors that are coal or
electricity intensive. Historically, such data would have been collected by the U.S. Census of Manufacturers
(COM). For our sample counties, pre-trend tests require data during 1880-1960. Unfortunately, as noted by
Vickers and Ziebarth (2018), most COM data from this period has either since been lost or was never collected.
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Table 1: Pre-trends in county covariates

(1) (2) (3)
Outcome Levels Changes

Log population (1890-1990) -0.13 -0.014 -0.016
(0.086) (0.0090) (0.013)

Number of counties 261 261 261

Log urban population (1890-1980) -0.085 -0.013 0.019
(0.17) (0.017) (0.022)

Number of counties 183 171 171

log mgf establishments (1890-1990) -0.20** -0.052 0.046
(0.098) (0.056) (0.064)

Number of counties 260 260 260

log mgf employment (1890-1990) -0.16 0.11** 0.00096
(0.20) (0.052) (0.068)

Number of counties 258 255 255

log mfg capital (1890-1900) 0.071 0.17** 0.093
(0.24) (0.085) (0.15)

Number of counties 106 105 105

log mfg output (1890-1940) -0.44 0.17** 0.044
(0.35) (0.075) (0.16)

Number of counties 114 113 113

State fixed effects No No Yes
Notes: Each coefficient comes from a separate regression of ln d0i on a con-
temporaneous county covariate as outcome. Time coverage for covariates
indicated. County sample shown in Figure A.4. Covariates in column 1 in
log levels. Covariates in columns 2 and 3 in first log differences. Column 3
augments column 2 by including state fixed effects. Robust standard errors
clustered at the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1

forms of within-county heteroskedasticity and serial correlation in the error term. The darker

shaded area of Figure 3 shows baseline 95% point confidence intervals for βτ using county-

level clustered standard errors. It is possible that error terms are spatially correlated across

counties. To accommodate error correlation across a broader spatial scale, the lighter shaded

area shows the 95% point confidence interval when errors are clustered at the state-by-decade

level, which allows arbitrary heteroskedasticity and spatial correlation across counties in the

same state and decade. These two confidence intervals cover similar ranges.22

22I further find very similar confidence intervals when using two-way clustered standard errors at the county
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Table 2: Baseline reduced-form estimates of path dependence

(1) (2)
relative coal relative coal

capital capital investment

ln d0i (βτ )

2 decades lead -1.38 0.60
(1.02) (2.00)

1 decade lead -0.66 -0.33
(0.67) (2.33)

– –
1 decade lag -0.68 -4.47**

(1.25) (1.89)
2 decades lag -4.11*** -3.46

(1.15) (2.17)
3 decades lag -3.75*** -7.75**

(0.67) (3.62)
4 decades lag -3.51*** -5.68

(0.71) (5.22)
5 decades lag -4.58*** -4.46

(0.98) (3.60)
6 decades lag -3.71*** -2.93

(0.75) (3.89)
7 decades lag -6.20*** -10.1**

(1.37) (4.20)
8 decades lag -7.30*** -6.42

(1.59) (4.28)
9 decades lag -7.30*** -3.83

(1.57) (4.56)
10 decades lag -7.01*** -2.77

(1.56) (5.83)

ln dit (π) -1.53*** -3.48***
(0.53) (0.88)

Observations 2,369 2,369
Counties 261 261

Notes: Estimates of βτ and π from equation (4) using Poisson
model. Outcomes variables are at the county-by-decade level. Each
model includes event time, county, and state-by-decade fixed effects.
County sample shown in Figure A.4. Time period is 1890-1990.
Outcome in column 1 is relative coal capital. Outcome in column 2
is relative coal capital investment. Robust standard errors clustered
at the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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I do not detect lead effects (i.e., βτ : τ < 0). The absence of differential pre-trends in my

outcome variable is consistent with the lack of pre-trends in county covariates shown in column

3 of Table 1 and provides even stronger support for a parallel trends assumption.

Next, consistent with a reduced-form definition of strong path dependence, I detect statis-

tically significant negative lagged effects that are larger in magnitude to the contemporaneous

effect (i.e, βτ

π
> 1). These negative lagged effects also intensify over time. Notably, Figure 3

shows lagged effects displaying two distinct jumps after the switching event: a 1% increase in

transport distance discretely lowers relative coal capital by 4.11% and 6.20% two and seven

decades later, respectively. These jumps coincide roughly with the expected construction of

two subsequent vintages of electricity capital.23 It is, however, still possible that the pattern

shown in Figure 3 is due to differential retirement of existing coal and non-coal electricity

capital. Column 2 of Table 2 shows estimates of βτ when the outcome is relative coal capi-

tal investment, X̃it = Xcit
Xnit

, the ratio of new coal to non-coal electricity capital built in each

county i and decade t. Indeed, shocks to local coal transport distance alter relative coal capital

investment over many later decades.

5.3 Robustness checks

I turn now to a series of robustness checks designed to address further identification, data

construction, sample restriction, and statistical modeling concerns. Point estimates for all

robustness checks are shown as thin non-solid blue lines in Figure 3.

Remaining identification concerns Table A.6 explores remaining identification concerns,

with column 1 replicating my baseline estimates. It is possible that distance to the nearest

shallow mine continues to directly influence relative coal capital after the switching event.

While this implies that lagged effects would not have a clean path dependence interpretation,

the resulting bias is likely towards zero, with lagged coefficients understating the true strength

of path dependence. This is because, on its own, increasing mill prices from the ongoing

depletion of the shallow mine would predict weakening, not strengthening, lagged effects over

time.

One particular channel through which a shallow mine may exert direct influence on relative

coal capital after the switching event is if the mine could price discriminate. For example, if

mine A, the initial nearest supplier to a county, becomes the second nearest supplier following

the opening of mine B, mine B could price-discriminate by setting a buyer’s coal price equal to

and decade-levels to account for both serial correlation within a county and spatial correlation across counties
in a decade. Those results are omitted because inference is complicated when there are only 11 decades in the
sample.

23The average generating unit in my sample lasts 4.7 decades.
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Figure 3: Reduced-form estimates of path dependence in relative coal capital
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Notes: Thick solid red line and darker shaded area show baseline point estimates and 95% confidence intervals
for βτ from equation (4) with county-level clustered standard errors. Outcome is relative coal capital at the
county-by-decade level. County sample shown in Figure A.4. Time period is 1890-1990. Estimates also shown
in column 2 of Table 2. Lighter shaded area shows the 95% confidence interval when estimating equation
(4) with state-by-decade clustered standard errors. Thinner non-solid blue lines show point estimates from
various robustness tests displayed in columns 2-5 of Table A.6, columns 2-6 of Table A.7, columns 2-7 of Table
A.8, and columns 2-5 of Table A.9.

its distance to mine A (MacLeod, Norman and Thisse, 1988; Vogel, 2011). Under this form of

market power, distance to mine A would directly determine a county’s subsequent coal price

even if it were no longer supplying coal.24 To remove the possibility of price discrimination

from affecting my results, column 2 estimates my baseline model without the counties for

which the earlier supplying shallow mine becomes the second nearest mine at any point after

the switching event. My results are little affected.

I next examine the possibility that distance to the shallow mine may be correlated with

trends in other determinants of relative coal capital. Both the residential and manufacturing

sectors consume electricity, while the manufacturing sector also consumes coal. In column

24There is evidence from recent years showing price discriminating behavior by railroad companies that sell
coal to power plants (Busse and Keohane, 2007; Preonas, 2018). Little is known, however, about whether such
mark-ups existed across the longer time period considered in this study.

19



3, I augment the baseline model with three county-by-decade covariates available throughout

the 20th century that proxy for the economic activity in these linked sectors: residential and

manufacturing demand population, number of manufacturing establishments, and manufac-

turing employment, all in logs. Similarly, column 4 accounts for trends in transport costs by

adding interaction terms between a linear time trend and two geographical features that affect

transport costs: a county’s distance to the nearest navigable waterway and its ruggedness, as

approximated by its variance in slope, both in logs (see Appendix A for data details). Coef-

ficients in columns 3 and 4 are similar to those of my baseline results. The current omitted

event term marks the period before the initial switch to deep coal, which for some counties can

span multiple decades. There may be differential pre-trends during this period that are not

examined in my benchmark specification. To explore this possibility, column 5 redefines the

focal event as just the single decade before the initial switch to deep coal such that pre-trends

in the decades before this switch can be estimated. I do not detect such pre-trends.

Imputing missing small power plants Table A.7 examines alternative imputations for

missing power plants with less than 1 MW capacity. Column 1 replicates my baseline result

which uses a 4th order flexible polynomial function to fit national size distributions, separately

for new coal and non-coal power plants built each decade, as detailed in Appendix C. Columns

2 and 3 show these results are stable to when 3rd and 5th order polynomial functions are used.

In column 4, I use a simpler, though less data-driven, imputation procedure by simply adding

1 MW capacity to coal and non-coal capital investment. The overall shape and precision of

lagged effects are unchanged. While the magnitude of all coefficients are smaller, the ratio of

lagged to contemporaneous effects, β
τ

π
, is consistently greater than one, indicative of strong path

dependence. Additionally, I consider two tests using unadjusted capital variables to examine

whether baseline results are sensitive to imputation of missing small power plants. Column

5 estimates equation (4) using unadjusted relative coal capital. Despite the smaller sample

size, lagged effects up to six decades have similar magnitudes to baseline results, with 3 to 5

decade lags statistically significant at the 10% level. Furthermore, consistent with strong path

dependence, column 5 shows that average lagged effect over 10 decades is larger in magnitude

than the contemporaneous effect. I detect a similar pattern when modeling unadjusted coal

capital share, or Kcit
Kcit+Knit

, as shown column 6.25

25An alternative modeling approach may be to separately model the extensive margin of coal and non-
coal capital investments via probit or logit models. In addition to having to address the missing small plant
censuring issue, these models also do not account for the joint determination of coal and non-coal capital, which
is essential for examining changes in fuel composition. Standard multinomial discrete choice models also do
not readily account for simultaneous input choices.
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Sample restrictions Table A.8 considers different sample restrictions, with column 1 repro-

ducing my baseline results. On the coal supply side, recall that in order to isolate local coal

transport distance shocks driven by regional conditions, I focused on large mines with areas

above the 95th percentile of Illinois Basin mines. Estimates in columns 2 and 3 use transport

distances constructed from mines with area above the 90th and 97.5th percentiles, respectively.

While the inclusion of smaller mines result in statistically significant lead coefficients, these

coefficients trend in the opposite direction of lagged effects.

On the coal demand side, to lessen the competing effects of other coal basins, my benchmark

sample restricted counties to those within 250 miles of the nearest Illinois Basin coal resource

and are situated closer to the Illinois Basin than to the Appalachian Basin. In column 4, I

further weaken the influence of other coal basins by restricting the sample to counties within

200 miles of the nearest Illinois Basin coal resource. I find similar point estimates and standard

errors. In column 5, I allow more counties into the sample by increasing the distance threshold

to 300 miles. In column 6, I allow counties that are situated closer to the Appalachian Basin

into the sample. For both larger samples, effect sizes are smaller, possibly due to the influence

of other coal resources. However, point estimates are within the confidence intervals of baseline

results. Column 7 examines whether a subsample of counties that experience the switching

event prior to the 1960s exhibits different effects than all counties in the baseline sample. They

do not.

Modeling choices The log-log functional form of equation (4) implicitly assumes that the

relationship between relative coal capital and coal transport distance is an isoelastic function.

While this will be appealing for the theory in Section 6, this functional form may not be

empirically supported. Figure A.12 examines whether the data supports linearity by estimating

a variant of equation (4) that breaks log distance to the nearest mine into discrete bins, allowing

a flexible relationship between distance and relative capital for each event-time period. Figure

A.12 shows log relative coal capital predicted by log distance to the contemporaneous nearest

mine, and by log distance to the earlier shallow mine two and seven decades after the switching

event. These three relationships are approximately linear.

The baseline model in equation (4) includes 10 lag and 2 lead terms. More lag terms

allow effects on new capital investments to be detected and 10 is the largest number of lags

permitted by my 11 decade-long dataset. I vary the number of lead terms in Table A.9. Column

1 replicates the baseline model, column 2 includes 1 lead term, and column 3 includes 3 lead

terms. I do not detect statistically significant lead terms across these models, nor very different

lagged effects.

Finally, I consider two alternatives to the baseline Poisson model. The first alternative

is a log-log linear model. The downside to such an approach is that a log transformation is
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sensitive to small values of an outcome variable, which may arise from how missing small power

plants are imputed. A second alternative is to employ a negative binomial model. In contrast

to a Poisson model which semi-parametrically addresses overdispersion via clustered standard

errors, a negative binomial model parametrically models overdispersion as a function of the

expected outcome.

Column 4 of Table A.9 estimates equation (4) using a log-log linear model, while column

5 uses a negative binomial model. Both alternative models produce statistically significant

lagged effects, mostly at the 5% level. The overall shape of lagged effects from these two

models, including the jumps at two and seven decades later, mirrors baseline results. While

these coefficients are smaller in magnitude, the ratio of lagged to contemporaneous effects

actually imply stronger path dependence.

6 Mechanisms

Section 5’s reduced-form evidence of strong path dependence in energy transition suggests it

is possible for a permanent energy transition to be induced by a temporary intervention. This

section combines theory and additional evidence to understanding the mechanism behind these

results. To that end, I first develop a model of structural change model which incorporates

two mechanisms that could operate at a county-level previously highlighted in the energy eco-

nomics literature: increasing returns to scale and the accumulation of fuel-specific productivity.

Informed by the structure of this model, I then conduct a series of empirical tests designed to

isolate the relevant mechanism. For completeness, I also test for mechanisms not considered by

the model. While these tests by no means exhaust all possible explanations, their results lend

confidence for the particular structural interpretation of my reduced-form results considered

in Section 7.

6.1 A model of structural change for the electricity sector

A typical electricity producer operates several power plants, each consisting of fuel-specific

generating units of different vintages. Generating units, in turn, combine one or more boilers

and an electric generator to convert primary fuel, such as coal, into electricity. Each tier of this

production structure - generating unit, power plant, producer - exhibits distinct features that

have long been recognized in the energy economics literature. I first summarize these features

before introducing them into a model.

F1 “Putty-clay” capital A generating unit consists of a boiler which turns fuel into steam

and a generator which produces electricity from the boiler’s steam. Boilers are typically
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designed to consume a particular fuel at a particular quantity. Sustained use of other

fuels or use of the intended fuel in other quantities can lead to large efficiency losses

(Avallone, Baumeister and Sadegh (2006), p.871). To account for this feature, prior

literature has modeled electricity capital as “putty-clay,” where it is fully utilized once

built (Joskow, 1985, 1987; Atkeson and Kehoe, 1999).

F2 Fuel and capital as perfect complements Fuel is essential for producing electricity

and cannot be substituted with other inputs. At the generating unit level, the combi-

nation of fuel and capital is typically modeled using a Leontief function (Komiya, 1962;

Atkeson and Kehoe, 1999; Fabrizio, Rose and Wolfram, 2007).

F3 Returns to scale At the power plant-level, boilers can be linked to multiple generators.

Thus, when a new boiler is installed, it can serve both new and existing generators,

providing efficiency gains for generating units across multiple vintages of capital. This

spillover effect, together with newer boilers typically being more efficient, provides a

physical basis for increasing returns to scale at the power plant-level. Nerlove (1963) and

Christensen and Greene (1976) provide seminal early estimates of scale economies in the

electricity sector.

F4 Imperfect substitutability across fuel-specific electricity Electricity properties

differ across input fuels. For example, electricity from coal provides “base load” supply

that cannot be easily ramped up or down in response to variable demand, unlike elec-

tricity from natural gas. This imperfect substitutability across fuels is a crucial element

of the directed technical change model developed by Acemoglu et al. (2012).

I incorporate these features into a model of electricity production with vintaged capital. In

order to later map this model onto my reduced-form evidence, I consider a county that acts

as a small open economy and served by a single electricity producer. The index t denotes the

time increment between each capital vintage. At the top tier, the final good, electricity, Yt, is

generated using two intermediate goods, Yct and Ynt, representing electricity from coal and all

other fuels respectively. Specifically, it takes the following Constant Elasticity of Substitution

form

Yt =
(
Y

(ε−1)/ε
ct + Y

(ε−1)/ε
nt

)ε/(ε−1)
(5)

where ε is the long-run elasticity of substitution between electricity produced from the two

intermediate sectors.26 To allow for imperfect substitutability between electricity from different

fuels (i.e., F4), I assume ε ∈ (1,+∞). Final good price is normalized to 1.

26This parameter is long-run in the sense that it reflects changes in capital.
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Fuel-specific electricity, the intermediate good, is produced via middle and lower tiers of the

production structure, corresponding to power plants and generating units respectively. These

two tiers combine to form the following expression

Yjt = (min[AXjtXjt, AEjtEjt])
α(min[AXjt−1(1− δ)Xjt−1, AEjt−1Ejt−1])

α for j∈{c,n} (6)

where δ ∈ (0, 1) is the capital depreciation rate and α ∈ (0, 1) is the fuel-specific electricity

elasticity of input. Returns to scale at the power plant-level (i.e., F3) is reflected in the middle

tier where fuel-specific electricity comes from combining generating units across two vintages

with scale parameter ψ = 2α.27 At the lowest tier, generating units combine fuel, Ejt, and

t-vintaged capital, Xjt as perfect complements in a Leontief function (i.e., F2). AXjt > 0 and

AEjt > 0 indicate capital and fuel productivities, respectively.

To explore how scale and productivity effects could generate path dependence for otherwise

similar intermediate sectors, suppose capital and fuel productivities were the same across the

two intermediate sectors in period t − 1, such that AXct−1 = AXnt−1 and AEct−1 = AEnt−1.

Next, observe that when fuel and capital are perfect complements, efficient allocation in the

lower production tier imply AXjtXjt = AEjtEjt for each intermediate sector j. Furthermore,

“clay” past-vintage capital (i.e., F1) with large efficiency losses implies that it is fully utilized,

set at AXjt−1(1 − δ)Xjt−1 = AEjt−1Ejt−1 for each intermediate sector j.28 Rewriting the first

order conditions in terms of current-vintage relative coal capital investment, X̃t = Xct
Xnt

, yields

(see Appendix D.1 for full derivation)

X̃t = w̃
ε

ϕ−1

t X̃
α(1−ε)
ϕ−1

t−1 Ã
α(1−ε)
ϕ−1

Xt (7)

where w̃t = wct
wnt

is the relative input price index and ÃXt = AXct
AXnt

is the ratio of capital

productivity for coal and non-coal generating units of vintage t. ϕ = (1− α)(1− ε) < 0, from

earlier assumptions.29 Equation (7) provides two channels through which past relative input

prices, w̃t−1, affect current-vintage relative coal capital investment, X̃t. First, after applying

equation (7) recursively, it can shown that past relative input prices affect past-vintage relative

coal capital investment, X̃t−1. This occurs through the scale channel. Second, while not

explicitly modeled here, in the presence of sector-biased technical change, past relative input

prices could also affect current-vintage relative capital productivities, ÃXt. This productivity

channel would occur if there was accumulation over time in fuel-specific capital productivity

such as via learning-by-doing, secular energy efficiency improvements, or if relative input prices

27This allows for diminishing marginal product under varying returns to scale. Otherwise, the relative input
demand curve becomes upward sloping. The assumption that returns to scale is constant for coal and non-coal
electricity production is examined in Table 3.

28Appendix D.2 shows how large efficiency losses when using electricity capital below its designed capacity
lead to full utilization of past-vintage capital.

29I choose this notation to be consistent with that found in Acemoglu et al. (2012).
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direct research towards fuel-biased technological change.

To empirically isolate which of these two channels are relevant for the estimates in Section

5, I turn next to a series of nested empirical tests informed by the tiered structure of the

model. First, I conduct power plant-level cost regressions for plants that only use coal to

recover the plant-level scale parameter. I then turn to generating unit-level regressions to test

for productivity effects.

6.2 Testing for scale effects at the power plant level

To recover the scale parameter, ψ, I follow the approach developed initially by Nerlove (1963)

and implemented by Christensen and Greene (1976) to estimate returns to scale in the electric-

ity sector. Following Fabrizio, Rose and Wolfram (2007), I use power plant-level cost data from

the Utility Data Institute (UDI) from 1981-1999.30 To remove the influence of the elasticity

of substitution parameter, ε, I restrict my sample to power plants p in county i and state s

that exclusively use coal. Cost minimization of equation 6 implies the following regression of

non-fuel cost (see Appendix D.3 for full derivation)

ln non fuel costpis =
1

ψ
lnY pis + θ′Zpis + ηpis (8)

where the bar indicates time-averaged variables over 1981-1999. My parameter of interest is

the scale parameter ψ. Y pis is electricity output in megawatt-hours (MWh). Zpis is a vector of

cross-sectional controls. They include observed log power plant-level delivered coal price from

UDI, state fixed effects, and the latitude and longitude of the county centroid. I also control

for differences across transmission grids by including NERC region fixed effects. Standard

errors, ηpis, are clustered at the county level. Table 3 displays estimates of ψ for coal-only

power plants in my baseline county sample. I estimate a scale parameter of ψ̂ = 1.8 that is

statistically significant at the 1% level.

Potential simultaneity bias in equation (8) has been noted as early as Nerlove (1963). In

particular, electricity prices for electric utilities are historically regulated to cover a plant’s

average costs. As a consequence, electricity output may be correlated with unobserved deter-

minants of non-fuel costs. To address this endogeneity concern, I use past delivered coal prices

as an instrument for current electricity output via an instrumental variables (IV) approach.

Specifically, my instrument is the interaction between county distance to the nearest shallow

mine before the switch to deep coal and the number of decades since that switching event. For

identification to be valid, shocks to local coal transport must affect current non-fuel costs only

through current output. Specifically, my first stage regression is

30Ideally, to be consistent with data on relative coal capital, plant-level cost data should also cover the 20th
century. Unfortunately, cost data prior to 1981 is not readily available.
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lnY pis = κ1 ln doi ∗ sinceEventi + κ2 ln doi + κ3sinceEventi + ϑ′Zpis + νpis (9)

Equation (9) estimates the event time-varying effects of past transport distance shocks and

is the cross-sectional analog to my panel estimator in equation (4). In particular, κ1 captures

the event time-varying effect of past shocks, or the slope of the lagged effects shown in Figure

3 over time. Column 2 of Table 3 shows an IV estimate that is statistically significant at

the 1% level and similar in magnitude to my OLS estimate. Furthermore, this IV estimate is

robust to the potential presence of a weak instrument. The p-value and confidence interval

from a conditional likelihood ratio test strongly reject a null hypothesis that the coefficient on

electricity output in equation (8) is zero (Moreira, 2003), assuaging concerns over a seemingly

low Kleibergen-Paap first-stage F-statistic. Henceforth, my preferred scale parameter estimate

is ψ̂ = 1.66 from column 2.

Table 3: Returns to scale regressions at the power plant-level

(1) (2) (3) (4)
Outcome is ln non-fuel cost

lnY pis (1/ψ) 0.56*** 0.60*** 0.57*** 0.51***
(0.028) (0.087) (0.052) (0.054)

Kleibergen-Paap F-stat 3.250
CLR p-value 0.0081
CLR confidence int (90%) [.54, .89]

Implied scale parameter, ψ 1.78*** 1.66*** 1.75*** 1.96***
(0.090) (0.24) (0.16) (0.21)

Model OLS IV OLS OLS
County sample Baseline Baseline All U.S. All U.S.
Fuel input Only coal Only coal Primary gas Primary oil
Power plants 103 96 32 73

Notes: Estimates of ψ from equation (8) using power plant-level log non-fuel cost as outcome.
All models include observed power plant-level log fuel price, state and NERC region fixed effects,
and county centroid longitude and latitude. Non-fuel cost and fuel price are 1981-1999 averages.
Columns 1 and 2 include coal-only power plants in baseline county sample shown in Figure A.4.
Columns 3 and 4 include all U.S. power plants using natural gas and oil as primary fuels, re-
spectively. Columns 1, 3, and 4 show results from OLS regressions. Column 2 shows the result
from an IV regression with equation (9) as the first stage. Column 2 shows the Kleibergen-Paap
F-statistic (Kleibergen, 2004) as well as the p-value and confidence interval (in brackets) from a
conditional likelihood ratio test against a null hypothesis that 1/ψ is zero (Moreira, 2003). Robust
standard errors clustered at the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.

The production function in Section 6.1 assumes that coal and non-coal electricity exhibit

the same returns to scale. To examine this assumption, I estimate equation (8) for power plants

that consume natural gas and oil in columns 3 and 4 of Table 3. Because the UDI database has
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few plants that only consume natural gas and oil in my county sample, for adequate statistical

power, I expand the sample to the entire U.S. and to plants UDI designates as consuming

natural gas and oil as primary fuels.31 I find scale parameters from gas and oil-fired power

plants that are statistically indistinguishable from that of coal-fired power plants.

6.3 Testing for productivity effects at the generating unit level

Past shocks to local coal transport distance could also directly affect the accumulation of

coal-specific productivity. If so, the IV estimator in Section 6.2 would not satisfy the ex-

clusion restriction needed for identifying the scale parameter. To test whether productivity

effects violate the exclusion restriction assumption, I turn to generating unit-level regressions

where productivity effects can be more cleanly isolated. I employ two standard measures of

generating-unit productivity. Following Davis and Wolfram (2012), capital productivity, AXct,

is the ratio of electricity output to generating unit capacity on an annualized basis. My second

measure is thermal efficiency, or the ratio of heat from electricity produced to heat from fuel

consumed. This measure corresponds to fuel productivity, AEct. To obtain both measures,

I combine the previously mentioned generating unit capacity data from EIA-860 forms with

generating-unit electricity production and boiler-level fuel consumption from EIA-923 forms

(see Appendix A for data details). Averaging generating unit-level data across 2009-2012,32 I

estimate the following regression for generating unit g, in power plant p, located in county i

and state s with both productivity measures as outcomes

lnAgpis = ω1 ln doi × sinceEventi + ω2 ln doi + ω3sinceEventi + λ′Zgpis + υgpis (10)

where the set of controls Zgpis includes state and NERC region fixed effects, and the latitude

and longitude of the county centroid. The standard error, υgpis, is clustered at the county

level. As with equation 9, ω1 in equation 10 captures the event time-varying effects of past

coal transport distance shocks on generating unit productivity.

Results are shown in Table 4 for generating units in coal-only power plants located in my

baseline county sample. Columns 1 and 2 examine log capital productivity. I do not detect

statistically significant effects of past coal prices. Imprecise effects become smaller when I

additionally control for the age of the generating unit in column 2. Columns 3 and 4 replicate

31Federal forms used in compiling the UDI data do not explicitly designate a power plant’s primary or
secondary fuel. For multi-fuel plants, UDI establishes primary fuel by calculating the energy input of each fuel
consumed and then assigning primary fuel to the fuel with the highest energy input.

32Ideally, to be consistent with data on relative coal capital, generating unit-level productivity variables
should also cover the 20th century. Unfortunately, construction of these productivity variables require boiler-
to-generator correspondences which were only made available in 2009. See Appendix A for details. Because
productivity presumably accumulates over time, any lagged effects of past shocks to local coal transport distance
should be stronger and more detectable with more recent productivity data.
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Table 4: Productivity regressions at the generating unit-level

(1) (2) (3) (4)
Outcome is ln

capital productivity fuel productivity

ln doi × sinceEventi (ω1) -0.052 -0.032 0.015 0.034
(0.032) (0.031) (0.047) (0.047)

ln doi (ω2) 0.12 0.078 -0.33 -0.37
(0.17) (0.18) (0.26) (0.27)

sinceEventi (ω3) 0.14 0.034 -0.12 -0.22
(0.12) (0.11) (0.18) (0.16)

age -0.012** -0.011
(0.0048) (0.0072)

Generating units 224 224 224 224
Notes: Estimates from equation 10 using generating unit-level outcomes. All
models includes state and NERC region fixed effects, and county centroid lon-
gitude and latitude. Sample includes generating units in coal-only power plants
located in baseline county sample shown in Figure A.4. Outcome in columns 1
and 2 is the 2009-2012 average ratio of electricity generation to generating unit
capital, which approximates capital productivity, AXct. Outcome in columns 3
and 4 is the 2009-2012 average thermal efficiency, which approximates fuel pro-
ductivity, AEct. Models in columns 2 and 4 add generating unit age. Robust
standard errors clustered at the county level in parentheses. *** p<0.01, **
p<0.05, * p<0.1.

columns 1 and 2 but with log thermal efficiency as the outcome. Again, I do not find that past

shocks affect subsequent fuel productivity.

It is important to note that failing to find local productivity effects from local coal transport

distance shocks does not necessarily imply there are no productivity effects at a more aggregate

level. Induced innovation can spillover across the research sector and is not confined within

counties. Similarly, if productivity improvements occur through human capital accumulation,

there could be spillovers across counties through labor reallocation by firms with multiple

power plants. I return to this issue in Section 7.

6.4 Alternative mechanisms

The model in Section 6.1 necessarily omits other potential mechanisms. While the presence

of other mechanisms would not invalidate Section 5’s reduced-form estimates of strong path

dependence in energy transitions, they would complicate how these results are structurally

interpreted. This subsection tests for the presence of several alternative mechanisms.
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Electricity sector regulation Capital investment responds to regulation. In particular,

two regulations may be pertinent for electricity capital decisions. For much of the 20th cen-

tury, electricity producers faced cost-of-service regulation by state Public Utility Commissions

(PUC) which set output prices to ensure producers recover “prudently incurred” variable costs

plus a regulated rate of return on capital investments. As noted first by Averch and Johnson

(1962), when the allowed rate of return exceeds the cost of capital, electricity producers have

an incentive to inefficiently over invest in capital relative to other inputs.33 Conceptually, the

Averch-Johnson effect is unlikely to drive my reduced-form results in Section 5. Structural

change pertains to the composition of capital across different fuels and not the overall level

of capital. Because cost-of-service regulations for electricity producers do not specify different

rates of return for electricity capital using different fuels, such regulations are unlikely to alter

the relative marginal product of capital across fuels. This is supported empirically by column

2 of Table A.10 which estimates my baseline model in equation (4) but uses only the subset of

observations during which there was no state PUC regulation of electric utilities (see Appendix

A for details). Despite the smaller sample size, I detect statistically significant lagged effects

with magnitudes that are similar to my baseline estimates in column 1 of Table A.10.

A second important regulation is the U.S. Clean Air Act. Beginning with the 1970 U.S.

Clean Air Act Amendments, counties with concentrations of criteria air pollution exceeding

national ambient air quality standards were labeled as being in “nonattainment”. Both existing

and new polluting facilities in nonattainment counties were required to invest in pollution

abatement equipment. Because coal is dirtier than other fuels, it is possible that the 1970 and

later Clean Air Act Amendments altered the fuel composition of electricity capital. Table A.10

provides two empirical tests. In column 3, I restrict the sample to observations during 1890-

1960, the period before the introduction of the 1970 Clean Air Act Amendments. I find lagged

effects that are similar in magnitude to my baseline results. Column 3 also suggests that my

path dependence estimates do not differ across the 20th century. To provide a more direct test,

column 4 restricts my sample to the subset of counties that never received a nonattainment

designation during the 20th century. Again, I do not find lagged effects that differ much from

my baseline estimates.

Upstream and downstream sectors The electricity sector consumes fuel from upstream

extraction and transport sectors and produces electricity for downstream manufacturing and

residential sectors. Features of these up- and down-stream sectors could generate the strong

path dependence detected in Section 5.

33The literature has found some empirical support for the Averch-Johnson effect in the U.S. energy sector.
Joskow and Rose (1989) reviews evidence from the 1960-1980 period. Cicala (2015) finds this effect using more
recent data.
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Power plants typically procure coal through long-term contracts with mines (Joskow, 1987).

As a consequence, plants may continue buying coal from certain producers even as contempo-

raneous circumstances change. Joskow (1987) showed that the average coal contract length in

1979 lasted 12.8 years. More recent work by Kozhevnikova and Lange (2009) and Jha (2015)

find this duration has since decreased to 4.4 years in the 1980s and 1990s. Coal contracts

of such duration are unlikely to generate lagged effects over multiple decades, as detected in

Section 5. Furthermore, even if coal contracts were of longer duration, it is unclear why they

would cause lagged effects to strengthen over time.

Rail and highway networks serve as complementary capital for delivering coal to power

plants. Increasing returns along with sunk costs in the transport sector can also generate path

dependence in the fuel composition of the electricity sector.34 To examine whether past coal

transport distance shocks affect the coal transport sector itself, I turn to a county-level version

of the specification in equation (10). Column 1 of Table A.11 examines whether there are event

time-varying effects of past transport distance shocks on log railroad density in 2010 (in miles

per square mile). I do not find such effects which is unsurprising given that most modern U.S.

railroads lines were already established by the end of the 19th century (Atack, 2013). Column

2 of Table A.11 also fails to detect effects of past transport distance shocks on log highway

density in 2010 (in miles per square mile).

Finally, I consider downstream effects. Previous literature detects long-term effects of his-

torical access to hydropower electricity on local manufacturing sector employment (Kline and

Moretti, 2014) and population density (Severnini, 2014). Indeed, one alternative explanation

for my results involves downstream manufacturing sectors also exhibit increasing returns to

scale and somehow preferring electricity produced from coal over that from other fuels. If so,

one would expect my lagged effects to be altered when I control for local manufacturing sector

demand. Column 3 of Table A.6 shows that is not the case.

Preference sorting by residential households provides another potential downstream mech-

anism (Tiebout, 1956). If households with low valuation for environmental amenities sort into

historically coal-dependent locations, these residents may support more lenient local environ-

mental policies that enable the expansion of coal-fired electricity even as economic circum-

stances that initially favored coal disappear. Using the same specification from columns 1 and

2, columns 3 and 4 explore this sorting mechanism by estimating event time-varying effects of

past coal transport distance shocks on the share of a county’s population belonging to one of

three major environmental NGOs in 1996 and the county share of eligible voters that voted for

the 2000 Republican Presidential candidate (see Appendix A for data details). Neither proxy

for environmental preferences responds to past transport distance shocks.

34Sunk costs alone, however, would not generate path dependence in the long-run as initial capital would
eventually depreciate. See discussion in Bleakley and Lin (2012).
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7 Structural interpretation

Having isolated returns to scale as the relevant mechanism, this section employs the structure

of the model in Section 6.1 to interpret my reduced-form estimates. First, I formally define

path dependence in energy transitions as a function of two parameters: returns to scale, ψ, and

the long-run elasticity of substitution between electricity produced from coal and other fuels, ε.

I then use this definition to recover ε implied by my reduced-form estimates of path dependence

in Section 5 and my estimates of the scale parameter in Section 6.2. Because this parameter

appears across a broad class of structural change models, this exercise enables some external

validity for my reduced-form results. Finally, I explore through calibrated model simulations

the conditions under which temporary interventions to fuel composition can induce sustained

future transitions away from coal at the county-level. Further simulations explore implications

for U.S.-wide energy transitions away from coal.

7.1 Formal definitions of path dependence

I formally defined scale-driven path dependence within the model in Section 6.1. To do this,

I first apply a log transformation to equation (7) and rewrite it recursively. Current-vintage

relative coal capital investment becomes

ln X̃t =
ε

(ϕ− 1)
ln w̃t +

α(1− ε)ε
(ϕ− 1)2

ln w̃t−1 +
α2(1− ε)2ε

(ϕ− 1)3
ln w̃t−2 + ...

+
α(1− ε)
(ϕ− 1)

ln ÃXt +
α2(1− ε)2

(ϕ− 1)2
ln ÃXt−1 +

α3(1− ε)3

(ϕ− 1)3
ln ÃXt−2 + ...

=
t∑

s=0

ε

(ϕ− 1)

[
α(1− ε)
(ϕ− 1)

]s
ln w̃t−s +

t∑
s=0

[
α(1− ε)
(ϕ− 1)

]s+1

ln ÃXt−s (11)

where s is a lagged time index. An increase in relative coal price lowers contemporaneous

relative coal capital investment, ∂ ln X̃t
∂ ln w̃t

< 0, and also lowers future relative coal capital invest-

ment, ∂ ln X̃t
∂ ln w̃t−s

< 0. The relative magnitude of these two effects dictate the strength of path

dependence in energy transitions. Formally,

PROPOSITION 1 Weak path dependence: The effect of past relative coal prices weakens

over time, ∂ ln(X̃t)
∂ ln(w̃t−1)

/∂ ln(X̃t)
∂ ln(w̃t)

= α(1−ε)ε
(ϕ−1)2 /

ε
(ϕ−1) < 1, or when ψ < −ε

1−ε .

PROPOSITION 2 Strong path dependence: The effect of past relative coal prices strength-

ens over time, ∂ ln(X̃t)
∂ ln(w̃t−1)

/∂ ln(X̃t)
∂ ln(w̃t)

= α(1−ε)ε
(ϕ−1)2 /

ε
(ϕ−1) > 1, or when ψ > −ε

1−ε .

Strong path dependence occurs whenever an increase in the relative coal price triggers a down-

ward shift in the relative marginal product of capital investment in subsequent periods. This

shift is the net result of two countervailing forces, each of which I first consider in isolation.
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The first force is increasing returns to scale, captured by ψ. Suppose there is only one

intermediate sector which uses coal for electricity. When ψ > 1, the cross partial derivative of

Yct with respect to past and current capital investment exceeds the second partial derivative

of Yct with respect to current capital investment.35 This “push” enables relative coal prices to

have a stronger effect on future coal capital investment than on current coal capital investment.

However, when there is more than one sector, ψ > 1 alone does not dictate the strength

of path dependence. A countervailing “pull” force comes from the imperfect substitutability

between electricity produced from coal and other fuels, ε ∈ (1,+∞). Suppose there is no

increasing returns to scale. An increase in the relative coal price induces a contemporaneous

decrease in relative coal capital investment. This capital imbalance does not persist in subse-

quent periods. When electricity from coal and other fuels are imperfect substitutes, subsequent

periods experience a relative increase in demand for electricity from coal which induces rela-

tively more investment in coal-specific capital. As a consequence, the capital imbalance across

the two fuels eventually dissipates.

When both forces are at play, Proposition 2 states that strong path dependence can only

be achieved when increasing returns to scale provides a large enough push to overcome the pull

from imperfect substitutability, or when ψ > −ε
1−ε .

36 In the context of the electricity sector, this

occurs whenever the amplifying force of increasing returns to scale in electricity production

offsets the dampening force due to differences in the properties of electricity from different

fuels, such as electricity reliability.

7.2 Recovering the long-run elasticity of substitution

The long-run elasticity of substitution between fuel inputs, ε, appears across a recent class

of optimal climate policy models (Acemoglu et al., 2012; Golosov et al., 2014; Lemoine, 2017;

Fried, 2018; Acemoglu et al., 2019). Because these models exhibit different “push” mechanisms

for path dependence in energy transitions, recovering ε enables this paper to inform other

settings whereby an energy transition is driven by mechanisms besides economies of scale

in electricity production. Specifically, I recover ε using the mapping between the structural

expression in equation (11) and reduced-form coefficients in equations (4) and (8).

35This comes directly from applying Euler’s theorem. Formally, the cross partial derivative of a function
Y (Xct, Xct−1) of homogeneous degree ψ can be written as

∂2Yct
∂Xct∂Xct−1

=

(
ψ − 1

Xct−1

)
∂Yct
∂Xct

−
(

Xct

Xct−1

)
∂2Yct
∂2X2

ct

Setting Xct = Xct−1 so that one can compare the effects of lagged capital investment against current capital

investment, ∂2Yct
∂Xct∂Xct−1

> − ∂2Yct
∂2X2

ct
only when ψ > 1.

36Notice the similarities here with the “market size” and “price” effects found in models of directed technical
change (Acemoglu, 2002; Acemoglu et al., 2012).
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To start, observe that the time index in equation (11) is in terms of capital vintages. The

time index in my empirical results is in decades relative to the switching event. To convert from

event-time to vintage-time, I weight each reduced-form lagged effect, β̂τ , by the probability

of generator retirement, ιτ , from the age distribution of retired generators in my sample.

Specifically, using β̂τ and π̂ from column 2 of Table 2, the ratio of reduced-form lagged to

contemporaneous effect is ρ̂ =
∑5
τ=1 β̂

τ∗ιτ
π̂

= 1.45, with a standard error of 0.72.37 Mapping

this ratio to its structural analog ∂ ln(X̃t)
∂ ln(w̃t−1)

/∂ ln(X̃t)
∂ ln(w̃t)

= α(1−ε)ε
(ϕ−1)2 /

ε
(ϕ−1) and taking the estimated

scale parameter ψ̂ = 1.66 from column 2 of Table 3, one can express the long-run elasticity of

substitution entirely in terms of estimated statistical parameters

ε = 1 +
ρ̂

ψ̂
2
− ρ̂(1− ψ̂

2
)

= 3.5

As an example of how this elasticity value can inform other structural change models, in Ace-

moglu et al. (2012)’s macroeconomic model of optimal climate policy under directed technical

change, ε = 3.5 falls within the parameter space for which a temporary policy intervention is

sufficient to avoid long-term climate disaster, defined as the state of the climate beyond which

recovery is impossible.38

7.3 Simulating future energy transitions away from coal

Evidence of strong path dependence implies it is possible for a temporary shock to fuel com-

position to induce permanent fuel switching. In the context of climate policy, it suggests that

a temporary policy can induce a long-term decline in carbon emissions at the county-level.

But under what conditions? In particular, given the abundance of coal resources in the U.S.,

what is the required magnitude and/or duration of an intervention that can trigger a sustained

energy transition away from coal?

To shed light on these questions, I calibrate my structural model with reduced-form pa-

rameters to simulate future county-level electricity sector CO2 emissions following relative coal

price shocks of varying magnitude and duration. To ground my simulations in recent economic

conditions, the magnitude of the shocks considered are benchmarked to recent average national

relative coal prices following the introduction of natural gas hydraulic fracturing. Figure A.13

shows that as a consequence of hydraulic fracturing, relative U.S. coal prices in 2009 and 2010

was 143% higher than what a quadratic trend estimated over 1985-2008 would have predicted.

My simulations employ several simplifying assumptions (see Appendix E for details). First,

37Since ιτ ∈ {.38, .27, .22, .11, .02}, ρ̂ =
∑5
τ=1 β̂

τ∗ιτ
π̂ = −(4.47∗.38+3.46∗.27+7.75∗.22+5.68∗.11+4.46∗.02)

−3.48 = 1.45.
38A county-level ε may differ from a national-level ε. We explore this consideration in Section 7.3.
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only electricity from coal and natural gas are considered.39 Second, to avoid forecasting trends

in relative productivity, electricity demand, and other economic conditions, I assume that fu-

ture relative productivity, total coal and natural gas capital, capital depreciation, and baseline

relative coal prices in the absence of the shock are held constant at recent average county

values. Third, I assume that the scale and elasticity of substitution parameters are constant

throughout the simulation period. Because of these assumptions, one should not interpret

these simulations as forecasts of county-level electricity sector CO2 emissions but rather as

exercises in understanding the conditions for triggering a sustained future energy transition

away from coal.

Figure 4 shows how CO2 emission trajectories are altered when one varies the magnitude

and duration of the temporary relative coal price shock. Top, middle, and bottom panels use

price shocks that are 1, 2, and 6 times that of recent relative coal prices. Left, middle, and

right panels use price shocks that last 1, 3, and 5 decades. Business-as-usual emissions in the

absence of the shock are shown as dashed gray lines. When shocks are introduced, the thick

solid blue and red lines show CO2 emissions and the coal share of capital investment under

mean values of ψ and ε, respectively. The thin solid blue and red lines show CO2 emissions

and coal capital investment share, respectively, from Monte Carlo draws using the estimated

uncertainty for each structural parameter. Each panel also indicates the percentage of draws

in which CO2 emissions are weakly declining in the long-term.40

In general, the likelihood of achieving weakly declining CO2 emissions in the long-term

increases with larger shocks and/or shocks of longer duration. Examining the top row of

Figure 4, if recent relative coal prices were to last up to 3 decades, CO2 would still rise in

the long-term on average. For a better than 50% chance of weakly declining emissions and a

sustained switch away from new investments in coal-fired electricity capital, recent relative coal

prices must last at least 5 decades. Going down the first column of Figure 4, if an intervention

can only last for 1 decade, it must be at least 6 times that of recent relative coal prices for a

greater than 50% chance of achieving weakly declining long-term emissions.

Figure 4 suggests that given historical parameter values, a sustained energy transition at

the county level would require either a very large and/or long duration intervention. How

would different parameter values alter these requirements? This is of interest for two reasons.

First, future electricity production may exhibit different returns to scale as thermal limits are

reached. Second, expansion of electricity grids may alter the degree of substitutability across

39In 2009, coal- and natural gas-fired generating units constituted 92% of all U.S. generating units burning
fossil fuels.

40Because natural gas still contains carbon, in none of the simulations do CO2 emissions reach zero in the
long term. Instead, emissions converge asymptotically to a steady-state level where all electricity is produced
from natural gas. Thus, these simulations focus on whether temporary policies achieve weakly declining CO2

emissions in the long-term.
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Figure 5: Required duration of temporary shock under different structural parameter values
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fuels.41

Figure 5 explores the energy transition implications of varying push and pull forces within

the structure of my model by considering different values of ε and ψ. For each pair of parameter

values, the heat map in Figure 5 shows the minimum number of decades a shock equal in

magnitude to that of recent relative coal prices must last in order to achieve weakly declining

long-term CO2 emissions. The require length of the intervention falls when values of ε and ψ

are higher than those estimated in this paper.

8 Conclusion

This paper estimates path dependence in energy transitions for the U.S. electricity sector

over the 20th century. Exploiting shocks to local coal supply driven by the changing regional

accessibility of subsurface coal, I find that a negative shock triggers a declining trajectory in

the relative use of coal for electricity lasting for up to ten decades. This suggests that it is

possible for temporary shocks of sufficient magnitude and/or duration to induce permanent

41While renewable energy is not considered in my simulations, storage technology can improve the reliability
of solar and wind-based electricity, making renewable energy sources stronger substitutes for coal.
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switch away from coal in the electricity sector. Additional evidence suggests increasing returns

to scale in electricity production as the underlying mechanism. To interpret these results, I

develop a model of scale-driven structural change for the electricity sector which allows for a

formal definition of strong path dependence and a mapping between my reduced-form estimates

and a key structural parameter, the long-run elasticity of substitution between coal and other

fuels.

This historical evidence is particularly timely given recent developments in the U.S. electric-

ity sector and increasing concerns over climate change impacts. The current spike in relative

coal prices following breakthroughs in natural gas extraction is contributing to a slow-down

in the construction of new coal-fired power plants. However, these circumstances may not be

enough to trigger a sustained transition away from coal in the U.S. electricity sector. Simula-

tions of future energy transitions using this paper’s calibrated structural model demonstrate

that a sustained energy transition away from coal would require either a larger and/or longer

lasting shock to fuel composition. These simulations also show that a sustained energy tran-

sition away from coal can be more easily achieved if investments were made to either increase

scale economies in electricity production or towards stronger substitutability between electric-

ity from coal and other fuels.

The presence of strong path dependence in energy transitions also provides further support

for externality pricing over second-best policies that favor specific technologies or resources. It

is widely argued that technology- and resource-specific policies are inefficient because they may

fail to target cost-effective mitigation strategies. The presence of path dependence amplifies

this cost. Suppose a natural gas-specific subsidy induces a transition from coal to natural gas

but large climate damages ultimately requires a switch to even cleaner fuels. The ensuing path

dependence in natural gas would make the eventual switch to cleaner fuels more costly. A

carbon price would avoid this detour.
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A Data Sources

This section details data used in the paper.

A.1 Coal resources, mining, and delivered prices

USGS National Coal Resource Assessment (NCRA) I use two spatial datasets from the

NCRA (East, 2012). The first dataset contains shape files of Illinois and Appalachian Basin coal

resources that are situated less than and greater than 200 feet below the surface. These shape files

are used to generate Figure A.4 which maps coal resources for the two basins by depth. The second

dataset contains characteristics of all coal mines in the Illinois Basin that has operated since 1890.

Variables include mine location, opening year, closing year, and area.

Construction of local coal transport distances requires several steps. First, I spatially overlay all

large mines in the Illinois Basin that ever existed since 1890 onto shape files of the basin’s shallow

and deep coal resources, as shown in Figure 2. Using the opening and closing years of each mine,

I construct a mine-by-depth-by-decade panel indicating when each shallow or deep coal mine was

in operation.42 Next, for each county and decade, I search for the nearest mine according to the

Euclidean distance between that county’s spatial centroid and the mine, noting whether it is from a

shallow or deep coal resource. This distance is dit in equation (4). Finally, for each county, I find the

first decade in which a county’s nearest mine first switches from shallow coal to deep coal. Distance

to the nearest shallow mine right before the switching event is denoted d0i in equation (4).

FERC-423 forms FERC-423 provides annual data on the quantity, price, heat content, sulfur

content, and ash content of purchased coal for each pair of purchasing power plant and county of

coal origin. This paper uses FERC-423 data in four ways. First, for the 1990-1999 period when

the county of coal origin is more reliable,43 I calculate county-level average annual coal production

and quantity-weighted export distance. I then compare average coal production and export distance

between counties with large mines and those without within my sample region. Second, I use FERC-

423 data on coal heat, sulfur, and heat content, aggregated to the county of origin and averaged across

years, to produce Table A.1 which documents the heterogeneity in coal quality across the five major

U.S. coal basins. Third, data from the 1990-1999 FERC-423 forms are used to test the Herfindahl

Principle, as shown in Figure A.8. Fourth, I use observed delivered coal prices from the entire set of

1972-1999 FERC-423 forms to verify my local coal transport distances in Table A.2.

42Specifically, if the mine was in operation for any year in a decade, I note that it was in operation during
that decade.

43According to the EIA, “The instructions for the FERC Form-423 require the respondent to report the
county in which the coal was mined. However, this data is not always known or reported correctly... It is very
difficult to verify county level data. Users of the data should be aware of this and use the data accordingly.”
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A.2 Electricity capital and production

EIA-860 forms The EIA-860 forms records the capacity (or capital size), opening and closing

years, and primary fuel input at the generating unit level.44 This paper uses data on generating units

from the EIA-860 forms to construct my main outcome variable, relative coal capital at the county-

by-decade level covering decades from 1890 to 1990. There are several steps to this construction.

First, I create a cross-sectional dataset of operating and retired generating units, taking the most

recent data for each generating unit across the 1990-2012 EIA-860 forms. I then expand this cross-

sectional dataset along the time dimension using the opening and closing years of each generating unit

to create a generating unit-by-year panel dataset. Next, I sum all generating units that use coal and

all generating units that use other fuels to the county-by-decade level. Relative coal capital is defined

as the ratio of total capital across generating units that use coal to total capital across generating

units that use other fuels. Besides serving as my main outcome variable, relative coal capital is also

used to generate Figure 1.

Underlying assumptions behind this data construction procedure are examined in Figures A.9,

A.10 and Tables A.3 and A.4, using data from the 1990-2012 EIA-860 forms as well as from the 1980

EIA-860 form, which was digitized for this paper.

Knowing when generating units were built, I can also construct a county-by-decade dataset of

relative coal capital investment. I sum new generating units that use coal and that use other fuels

to the county-by-decade level. Relative coal capital investment is then defined as the ratio of total

capital across newly-built generating units that use coal to total capital across newly-built generating

units that use other fuels.

A.3 Control variables

Residential and manufacturing sector covariates County-by-decade residential and man-

ufacturing covariates from 1890 to 1990 come from historical U.S. censuses, collected by Haines

(2010).45 These variables include total population, urban population, number of manufacturing es-

tablishments, manufacturing employment, manufacturing capital value, and manufacturing output

value. To account for changing U.S. county boundaries from 1890 to 1930, I redraw pre-1930 counties

to their 1930 spatial definitions to produce a county-by-decade panel of covariates that are spatially

consistent over the 20th century. This procedure uses historical GIS county shape files from the

U.S. National Historical Geographical Information System (N.H.G.I.S.)46 and is a modification of the

method used by Hornbeck (2012). The resulting data serve as outcome variables in the pre-trend

tests shown in Table 1 and as control variables in column 3 of Table A.6.

44I only include generating units owned by public utility companies because units owned by non-utilities are
inconsistently reported across EIA-860 forms during the 1990-2012 period.

45Available: http://doi.org/10.3886/ICPSR02896.v3
46Available: https://www.nhgis.org{}/documentation/gis-data
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Geographical covariates County-level variance in slope is constructed using the USGS National

Elevation Dataset. County-level distance to nearest navigable river or canal at the start of the 20th

century combines GIS shape files from Atack (2015) and Atack (2017).47 Both variables are used as

controls in column 4 of Table A.6.

A.4 Testing mechanisms

PLATTS/UDI Power plant-level cost data for 1981-1999 was obtained from PLATTS/UDI. It

provides non-fuel cost, or the difference between total production costs and fuel costs, which serves

as the outcome variable for the return to scale parameter estimates in Table 3.

EIA-923 forms Generating unit-level electricity output and boiler-level coal input data comes

from the 2009-2012 EIA-923 forms. Table 4 uses two generating unit-level productivity measures.

Following Davis and Wolfram (2012), my capital productivity measure is capital operating perfor-

mance, or the ratio of a generating unit’s electricity output to its capacity. For generating unit g, in

power plant p, county i, and state s, 2009-2012 averaged annual capital operating performance is

AXgpis =
Ygpis

Xgpis ∗ 8760

where Ygpis is annual electricity output (in MWh, from EIA-923 forms), Xgpis is capacity (in MW,

from EIA-860 forms), and 8760 is the number of hours in a year. My fuel productivity measure is

thermal efficiency. For generating unit g, in power plant p, county i, and state s, 2009-2012 averaged

annual thermal efficiency is

AEgpis =
Ygpis ∗ 1000 ∗ 3412

Egpis

where Egpis is generating unit-level fuel input (in BTU) and 3412 is the equivalent BTU heat content

of one KWh of electricity.48 Generating unit-level Egpis is not directly observed. Instead, the EIA-

923 forms provide a boiler-to-generator correspondence, which can have many-to-many matches. To

obtain generating unit-level fuel input, I assume that a boiler uniformly divides fuel input across

linked generators. EIA-923 forms prior to 2009 did not include boiler-to-generator correspondences

and therefore are excluded from the analysis.

Public Utility Commissions Column 2 of Table A.10 includes only counties in state and

decades where there was no Public Utility Commission regulation of electric utilities. The following

table summarizes when Public Utility Commission regulation electric utilities was introduced for

states in my baseline sample and the data source

47Available: https://my.vanderbilt.edu/jeremyatack/data-downloads/
48See https://www.eia.gov/tools/faqs/faq.cfm?id=107&t=3 for details.
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First decade of

State PUC regulation Data source

Alabama 1920 Troesken (2006)

Arkansas 1920 State PUC website49

Iowa 1970 State PUC website50

Illinois 1920 Troesken (2006)

Indiana 1920 Troesken (2006)

Kentucky 1940 State PUC website51

Minnesota 1980 State PUC website52

Missouri 1920 Troesken (2006)

Mississippi 1960 State PUC website53

Tennessee 1920 Troesken (2006)

Wisconsin 1910 Troesken (2006)

U.S. Clean Air Act nonattainment status County-by-year nonattainment status during

1978-1999 under the Clean Air Act comes from the U.S. Environmental Protection Agency. A county-

by-decade observation is labeled nonattainment if the county is designated wholly or partially in

nonattainment for any of the six criteria pollutant during any year in that decade.54 This data is

used for the estimates in column 4 of Table A.10.

Transportation density County-level data on highway and railroad network density in 2010

come from the U.S. Department of Transportation’s National Transportation Atlas Database.55 These

variables are used as outcomes in the regressions shown in columns 1 and 2 of Table A.11.

Environmental NGO membership and vote share County-level membership for the Nat-

ural Resources Defense Council, The Nature Conservancy, and The National Wildlife Federation in

1996 comes from Anderson (2011). County membership share divides membership by 2000 county

population from Haines (2010). County-level Republican Presidential vote share in 2000 comes from

Fujiwara, Meng and Vogl (2016). These variables are used as outcomes in the regressions shown in

columns 3 and 4 of Table A.11.

49Available: http://www.apscservices.info/commission-history.asp
50Available: https://iub.iowa.gov/history
51Available: https://psc.ky.gov/Home/About#AbtComm
52Available: https://mn.gov/puc/about-us/
53Available: https://www.psc.state.ms.us/executive/pdfs/2010/2010%20ANNUAL%20REPORT.pdf
54The six regulated criteria pollutants are sulfur dioxide, particulates, nitrogen dioxide, carbon monoxide,

ozone, and lead.
55Available: http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national_

transportation_atlas_database/2012/index.html
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A.5 Other

Cross-country data Figure A.1 uses country-level CO2 emissions per capita and GDP per capita

in 2000 from Boden and Andres (2013) and World Bank (2014), respectively.

National U.S. time series data U.S. Census Bureau (1975) provides total and mechanically

produced U.S. bituminous coal production during 1890-1950 (shown in Figure A.2) and total elec-

tricity capacity, from fossil fuel and hydropower during 1920-1970 (shown in Figure A.9).56 Figure

A.7 plots the transport cost share of national delivered coal prices during 1902-2007 obtained from

McNerney, Farmer and Trancik (2011). Figure A.13 shows national coal and natural gas sales prices

during 1985-2011 obtained from the Energy Information Administration (2012).

B Collection and availability of historical data

Sections 4.1 and 4.2 note that the required historical data were either never collected or, if collected,

may no longer exist. This section summarizes the data that was historically collected, its relevance

for this study, and its known availability today.

B.1 Coal prices

1882-1970

County-level producer coal prices were recorded by the U.S. Geological Survey Bureau of Mine in

“Mineral Resources of the United States 1882-1931” and “Mineral Yearbook 1932-1970.” This data

source, however, does not provide the county-level delivered coal prices needed for this study.

Availability Online.57

B.2 Electricity capital

1902-1917:

The U.S. federal government first collected power plant-level data in 1902 in the inaugural “Central

Electric Light and Power Station Census,” administered at the time by the Department of Commerce

and Labor. This survey was repeated in 1907, 1912, and 1917. Unfortunately, this survey classified

power plants by prime-mover (i.e. steam, hydro, internal combustion) and not by input fuel, which

this paper needs to calculate the fuel composition of electricity capital.

56Electricity capital data from the U.S. Census Bureau (1975) is broken by steam and hydropower. Steam
power typically uses coal, oil, and natural gas as fuel.

57Available: hathitrust.org
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Availability Summaries of these censuses at aggregate data levels are available online.58 However,

power plant-level data could not be located following extensive private conversations with archivists

at the National Archives and Records Administration.59

1920-1970:

The Federal Power Commission (FPC), created in 1920, administered annual surveys to document

electricity production and fuel consumption. The most important of these were the Annual Financial

and Statistical Reports (Form 1) and the Power System Statements (Form 12). Form 1 collects fuel

usage at the power-plant level but has two limitations. First, in order to recover fuel-specific capital,

fuel-specific capacity factors are needed for each generating unit and are not available. Second, power

plant coverage is incomplete. For example, data from the 1948 Form 1 accounts for only 67% of total

U.S. steam-powered electricity capital.

Availability Annual state-level statistics for electricity capital by prime-mover and fuel consump-

tion are available in “Production of Energy and Capacity of Plants and Fuel Consumption of Electric

Power Plants” as well as in “Electric Power Statistics, 1920-1940”.60 The report titled “Steam-Electric

Plant Construction Cost and Annual Production Expenses” has plant-level values from Form 1 and

Form 12 for 1948-1974.61

1977-1989:

In 1977, the Federal Energy Regulatory Commission (FERC) began publishing the “Inventory of

Power Plants in the United States,” which combines data on generating units from the Monthly

Power Plant Report (Form 4), Annual Power System Statement (Form 12), and the Supplemental

Power Statement (Form 12E). This annual inventory includes includes capacity, input fuel, and built

year for all operating generating units and those retired each year. Because data on previously retired

generating units was not collected, this data cannot be used for reconstructing historical electricity

capital.

Availability The 1980 “Inventory of Power Plants in the United States” is available online62. It

was digitized for the data validation exercises discussed in Section 4.2. Reports from other years are

available in microfiche in many research libraries.

58Available: http://hdl.handle.net/2027/mdp.39015028113663
59Typically, only 3% of historical government documents are deemed valuable and retained in NARA’s

permanent collection.
60Available: http://hdl.handle.net/2027/mdp.39015023906806
61Available: http://catalog.hathitrust.org/Record/000904499
62Available: http://hdl.handle.net/2027/umn.31951d02987924n
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1990-:

In 1990, the Energy Information Agency (EIA) began collecting “The Annual Electric Generator

Report,” (Form EIA-860) which replaced earlier FERC Forms 4, 12, and 12E. EIA notes

“The Form EIA-860 is a mandatory annual census of all existing and planned electric

generating facilities in the United States with a total generator nameplate capacity of

1 or more megawatts. The survey is used to collect data on existing power plants and

10 year plans for constructing new plants, as well as generator additions, modifications,

and retirements in existing plants. Data on the survey are collected at the individual

generator level.”

Availability Online.63

C Missing small power plants

Power plants with less than 1 MW of combined capacity (or capital) across generating units do not

appear in EIA-860 forms. Suppose a county’s non-coal electricity only comes from less than 1 MW

power plants. Then my data would erroneously assigned a zero value to non-coal capital, leading

to a missing value for relative coal capital. Such data censoring would result in a smaller sample

and a lower sample mean for relative coal capital. Similarly, if a county’s coal-fired electricity is

produced only with missing small power plants, then both coal capital and relative coal capital would

be incorrectly assigned zero values. This form of censuring increases the skewness of relative coal

capital.

In the absence of historical local data, one can predict the frequency of power plants below the

1MW threshold at the national level and then allocate these missing power plants across electricity-

producing counties. Specifically, for fuel j, county i, decade t, denote the capacity of a new power

plant indexed by pjit as Xpjit . Because power plants with Xpjit < 1 are missing from the EIA-860

data, county total fuel-specific capital investment can be decomposed as

Xjit =
∑

pjit:Xpjit<1

Xpjit +
∑

pjit:Xpjit≥1
Xpjit

= XM
jit︸︷︷︸

Missing

+ XO
jit︸︷︷︸

Observed from EIA-860

Next, I discretize the support of power plant capacities into 1 MW-wide bins starting at 0.5 MW.

Denote f bjit as the number of power plants with capacity Xpjit ∈ [b− .5, b+ .5). The missing county

total fuel-specific capital investment is then XM
jit = 0.5 ∗ f0.5jit . My imputation procedure predicts f0.5jit .

Specifically, to obtain county total fuel-specific capital, Kjit, I implement the following procedure for

each decade t

63Available: http://www.eia.gov/electricity/data/eia860/
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1. Estimate f bt = gt(b) + error ∀b ∈ {1.5, . . . , b̄}, where gt() is a flexible polynomial function

2. Predict f̂0.5t = ĝt(0.5)

3. Downscale national to local capital by using f̂0.5cit =
f̂0.5t st
Nt

, where Nt is the number of counties

with any operating power plants in decade t and st is the national share of electricity capital

using coal, aggregated from observed power plants. Likewise, f̂0.5nit =
f̂0.5t (1−st)

Nt
. This implies

X̂M
jit = 0.5 ∗ f̂0.5jit .

4. Calculate county total fuel-specific capital using Kjit = KO
jit+

∑
τ=0(1− δ)τ X̂M

ji,t−τ , where KO
jit

is the observed county total fuel-specific capital, δ = 0.06 is the decadal depreciation rate set

at 2000s values, and τ is the lagged time index.

Figure A.11 shows the fitted 4th order polynomial function, ĝt(), estimated for new power plants

built in the 1910s (left panel) and in the 1950s (right panel) using observed power plants. The dotted

line shows the predicted national frequency of power plants smaller than 1 MW built each decade,

or ĝt(0.5). Table A.5 shows summary statistics for unadjusted relative coal capital in column 1 and

imputed relative coal capital when using a 3rd, 4th, and 5th order polynomial function to fit gt() in

columns 2-4, respectively. As expected, the imputation procedure increases the sample size, raises

the mean, and reduces the skewness of relative coal capital. In particular, the sample size increases

because observations previously with missing relative coal capital values (i.e., positive coal capital and

zero non-coal capital) and observations previously with zero relative coal capital values (i.e., zero coal

capital and positive non-coal capital) now have strictly positive values. Column 5 displays statistics

for relative coal capital using an alternative, less data-driven, imputation which simply adds 1 MW

to new coal and non-coal capital investment in each county-by-decade observation. This implicitly

assumes that there was a new 1 MW coal-fired power plant and a new 1MW non-coal power plant

built in each county-by-decade observation.

D Theory appendix

D.1 Model

This section solves the model presented in Section 6.1. In period t for each intermediate sector

j ∈ {c, n}, the myopic electricity producer chooses capital, Xjt, and fuel, Ejt, for current-vintage

generating units and fuel, Ejt−1, for past-vintage generating units. “Clay”-like capital for past-vintage

generating units, Xjt−1, is fixed. The producer’s problem is

max
Xct,Xnt,Ect,Ent,Ect−1,Ent−1

Yt − zct(Ect + Ect−1)− znt(Ent + Ent−1)− rt(Xct +Xnt) (A.1)

where zjt is the fuel price and rt is the price of capital. Final good Yt is given by equation (5) and

intermediate good Yjt is given by equation (6). To explore how scale and productivity channels could
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generate path dependence for otherwise similar intermediate sectors, suppose productivities are the

same across intermediate goods during period t− 1, AXct−1 = AXnt−1 and AEct−1 = AEnt−1.

Because fuel and capital are perfect complements, efficiency for current-vintage generating units

implies that the producer need only to choose capital, and not fuel, set at AXjtXjt = AEjtEjt for

j ∈ {c, n}. Clay-like past-vintage capital further implies AEjt−1Ejt−1 = AXjt−1(1 − δ)Xjt−1. The

resulting constrained optimization problem is

max
Xct,Xnt

(
[AXctXctAXct−1(1− δ)Xct−1]

α(ε−1)/ε + [AXntXntAXnt−1(1− δ)Xnt−1]
α(ε−1)/ε

)ε/(ε−1)
− zct(

AXct
AEct

Xct +
AXct−1
AEct−1

(1− δ)Xct−1)− znt(
AXnt
AEnt

Xnt +
AXnt−1
AEnt−1

(1− δ)Xnt−1)− rt(Xct +Xnt)

with optimality condition

αY
1/ε
t (AXjtAXjt−1Xjt−1)

α(ε−1)
ε X

ϕ−1
ε

jt =
AXjt
AEjt

zjt + rt for j ∈ {c, n} (A.2)

where ϕ = (1 − α)(1 − ε). Taking the ratio of equation (A.2) for coal and non-coal subsectors, and

rewriting in terms of current-vintage relative coal capital investment, X̃t = Xct
Xnt

, yields

X̃t = w̃
ε

ϕ−1

t X̃
α(1−ε)
ϕ−1

t−1 Ã
α(1−ε)
ϕ−1

Xt (A.3)

where wjt =
AXjt
AEjt

zjt + rt is the productivity-weighted input price index, w̃ = wct
wnt

is relative input

price, and ÃXt = AXct
AXnt

is relative capital productivity for generating units of vintage t. Equation

(A.3) is equation (7) in the main text.

D.2 Extension: productivity losses and capital under-utilization

Appendix D.1 assumes that past-vintage capital is fully utilized in the current period. This assump-

tion has previously been used in the putty-clay literature to avoid a well-known curse of dimensionality

problem in vintaged capital models (Atkeson and Kehoe, 1999). This section shows how this assump-

tion is justified when there are large efficiency losses associated with using electricity capital below

its designed capacity, as discussed in F1 of Section 6.1.

Suppose a generating unit could operate past-vintage capital below its designed capacity. Because

AEjt−1Ejt−1 > AXjt−1(1−δ)Xjt−1 would lead to wasted inputs, the producer now faces the constraint

AEjt−1Ejt−1 ≤ AXjt−1(1− δ)Xjt−1 for j ∈ {c, n}. The resulting constrained optimization problem is

max
Xct,Xnt,Ect−1,Ent−1

(
[AXctXctAEct−1Ect−1]

α(ε−1)/ε + [AXntXntAEnt−1Ent−1]
α(ε−1)/ε

)ε/(ε−1)
− zct(

AXct
AEct

Xct + Ect−1)− znt(
AXnt
AEnt

Xnt + Ent−1)− rt(Xct +Xnt)

s.t. AEjt−1Ejt−1 ≤ AXjt−1(1− δ)Xjt−1 for j ∈ {c, n}
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with optimality conditions

αY
1/ε
t (AXjtAEjt−1Ejt−1)

α(ε−1)
ε X

ϕ−1
ε

jt =
AXjt
AEjt

zjt + rt for j ∈ {c, n} (A.4)

αY
1/ε
t (AXjtAEjt−1Xjt)

α(ε−1)
ε E

ϕ−1
ε

jt−1 = zjt + λjAEjt−1 for j ∈ {c, n} (A.5)

λj [AEjt−1Ejt−1 −AXjt−1(1− δ)Xjt−1] = 0 for j ∈ {c, n} (A.6)

λj ≥ 0 for j ∈ {c, n} (A.7)

AEjt−1Ejt−1 ≤ AXjt−1(1− δ)Xjt−1 for j ∈ {c, n} (A.8)

where λj is the Lagrange multiplier on each constraint.

Under what conditions would past-vintage capital be underutilized? To answer this, consider each

sector j in isolation and take the ratio of equation (A.4) over (A.5). When the constraint binds (i.e.,

λj > 0) and past-vintage capital is fully utilized, the ratio can be rewritten as

zjt
wjt

=
Xjt

Ejt−1
− λj

AEjt−1
wjt

(A.9)

When the constraint does not bind (i.e., λj = 0), this expression becomes

zjt
wjt

=
X∗jt
E∗jt−1

(A.10)

where the asterisk indicates the non-binding equilibrium. Setting equation (A.9) to equation (A.10)

and substituting in the Leontief equality E∗jt−1 =
AX∗jt−1

AE∗jt−1
(1− δ)X∗jt−1 yields

Axjt−1
λj
wjt

=
1

1− δ

(
Xjt

Xjt−1
−

X∗jt
X∗jt−1

AE∗jt−1/AX∗jt−1
AEjt−1/AXjt−1

)
(A.11)

Next, define the fraction of under-utilization of past-vintage capital in the non-binding base as

%j =
X∗
jt−1

Xjt−1
∈ [0, 1]. Further, denote the ratio of current-vintage capital for the non-binding over the

binding case as ςj =
X∗
jt

Xjt
> 0. Inserting into equation (A.11)

Axjt−1
λj
wjt

=
1

1− δ

(
Xjt

Xjt−1

)(
1− ςj

%j

AE∗jt−1/AX∗jt−1
AEjt−1/AXjt−1

)
(A.12)

which implies λj > 0 if and only if

%j
ςj
>
AE∗jt−1/AX∗jt−1
AEjt−1/AXjt−1

> 0 (A.13)

The right hand side of Equation (A.13) captures the lost in fuel productivity when past-vintage

capital operates below its designed capacity. Vintage capital is more likely to be fully utilized when

fuel productivity losses are large.
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D.3 Recovering the scale parameter

Consider a power plant p that contains only coal-fired generating units. This allows one to ig-

nore the upper tier of electricity production, drop the fuel index j, and only consider intermediate

good production captured by equation (6). Applying efficient allocation for each generating unit,

AXptXjt = AEptEpt and AXpt−1(1 − δ)Xpt−1 = AEpt−1Ept−1, the constrained cost minimization

problem can be written in terms of fuel inputs

C(zpt, rpt, Ypt) = min
Ept

zpt (Ept + Ept−1) + rt(
AEpt
AXpt

Ept)

s.t. Ypt = (AEptEptAEpt−1Ept−1)
α

Rewriting the production function as Ept−1 = Y
1/α
pt (AEptAEpt−1Ept)

−1, one obtains the following

equivalent unconstrained minimization problem

min
Ept

(zpt +
AEpt
AXpt

rt)Ept + zptY
1/α
pt (AEptAEpt−1Ept)

−1 (A.14)

Taking the first order condition of equation (A.14) yields a conditional demand function

E∗pt = (Ypt)
1/2α(

zpt

zpt +
AEpt
AXpt

rt
)1/2(AEptAEpt−1)

−1/2 (A.15)

Inserting equation (A.15) into non-fuel cost at the cost-minimizing input level, non fuel costpt =

C(zpt, rpt, Ypt)− zpt(E∗pt + Ept−1) = rt(
AEpt
AXpt

E∗pt), and applying a log transformation

ln non fuel costpt =
1

ψ
lnYpt +

1

2
ln(

zpt

zpt +
AEpt
AXpt

rt
) + ln rt + ln(A

1/2
EptA

−1/2
Ept−1A

−1
Xpt) (A.16)

where ψ = 2α. Equation (A.16) is the structural analog to the OLS specification in equation (8) from

the main text with one exception. For ease of exposition, labor is omitted as a factor of production

in equation (6) and hence missing from equation (A.16). In practice, the UDI measure of non-fuel

cost modeled in regression equation (8) includes labor costs.

E Simulating future emissions

This section details the procedure for simulating future CO2 emissions following a relative coal price

shock, as shown in Figure 4.

E.1 Parameters

• Reduced-form path dependence parameter: ρ̂ =
1
5

∑5
τ=1 β̂

τ

π̂ = 1.45, with standard error σ̂ρ = 0.72

(from column 2 of Table 2)
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• Returns to scale: ψ̂ = 1.66, with standard error σ̂ψ = 0.24 (from column 2 of Table 3)

• Baseline relative coal prices: w̃ot = 0.4 (based on value in 2000s)

• Relative coal price shock: ∆ = 1.43 (based on Figure A.13)

• Relative productivity: ÃXt = 0.7 (based on value in 2000s)

• Capital depreciation rate: δ = 0.06 (based on value in 2000s)

• Carbon content of coal: Cc = 4931.3 lb CO2/short ton coal64

• Carbon content of natural gas: Cn = 119.9 lb CO2/thousand cubic feet65

E.2 Historical emissions

For each decade t ∈ [1950, 2000], electricity sector CO2 emissions for the average U.S. county is

Mt = EctCc + EntCn

where Ect and Ent is U.S. average county coal (in short tons) and natural gas (in thousand cubic

feet) consumed, respectively, by the electricity sector in decade t.66

E.3 Simulating future emissions

For each combination of shock duration, d ∈ {10, 30, 50}, and shock multiplier, M ∈ {1, 2, 6}, define

the time series of relative coal prices as

w̃t = w̃ot + ∆ ∗M ∗ 1(t ≤ 2000 + d)

Conduct the following Monte Carlo procedure with b = 1...250 draws

• Draw ψ(b) ∼ N(ψ̂, σ̂ψ) and ρ(b) ∼ N(ρ̂, σ̂ρ). Define α(b) = ψ(b)
2

• Obtain ε(b) = 1 + ρ(b)
ψ(b)
2
−ρ(b)

(
1−ψ(b)

2

) and define ϕ(b) = (1− α(b))(1− ε(b))

• For each future decade t ∈ [2010, 2150]

1. Apply equation 11 to obtain relative coal capital investment:

X̃(b)t = exp

( ∞∑
s=0

(
ε(b)

(ψ(b)− 1)

[
α(b)(1− ε(b))

(ϕ(b)− 1)

]s
ln w̃t−s +

[
α(b)(1− ε(b))

(ϕ(b)− 1)

]s+1

ln Ãt−s

))
64Available here: https://www.eia.gov/environment/emissions/co2_vol_mass.cfm
65Available here: https://www.eia.gov/environment/emissions/co2_vol_mass.cfm
66Ect and Ent obtained from the Energy Information Administration (2012).
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2. Obtain coal capital investment while holding total capital fixed

X(b)ct =

 1
1

X̃(b)t
+ 1

 (K(b)ct−1 +K(b)nt−1) δ

3. Obtain natural gas capital investment while holding total capital fixed

X(b)nt =

1− 1
1

X̃(b)t
+ 1

 (K(b)ct−1 +K(b)nt−1) δ

4. Obtain coal capital

K(b)ct = K(b)ct−1(1− δ) +X(b)ct

5. Obtain natural gas capital

K(b)nt = K(b)nt−1(1− δ) +X(b)nt

6. Obtain total CO2 emissions using 2000 emissions intensity

M(b)t = K(b)ct
Ec2000
Kc2000

Cc +K(b)nt
En2000
Kn2000

Cn

Figure 4 plots CO2 emissions, M(b)t, and the coal capital investment share, X(b)ct
X(b)ct+X(b)nt

, for

the 250 Monte Carlo draws across each combination of shock duration, d ∈ {10, 30, 50}, and shock

multiplier, M ∈ {1, 2, 6}. It also shows the percentage of Monte Carlo draws for which long-term

CO2 emissions are weakly declining.

To explore the consequences of different structural parameter values, Figure 5 replicates the above

simulation procedure for different values of ε and ψ with the shock multiplier set at M = 1. The heat

map plotted in Figure 5 shows the minimum shock duration d needed for long-term CO2 emissions

to be weakly declining.
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Appendix Figures

Figure A.1: CO2 emissions intensity and income in 2000
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Notes: Plot shows carbon dioxide emissions (in tons of carbon) per capita against GDP (in nominal USD)
per capita in 2000. Linear regression fit shown with 95% confidence interval. OPEC countries excluded. Data
from Boden and Andres (2013) and World Bank (2014).

Figure A.2: U.S. bituminous coal production and mechanization
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Notes: Annual U.S. bituminous coal production (in mega short tons). Solid black line shows total coal
production. Dashed gray line shows coal production from mechanical extraction. Data from the U.S. Census
Bureau (1975).
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Figure A.3: U.S. coal basins

Notes: Map of major U.S. coal basins. Reproduced from East (2012).

Figure A.4: Location of sample counties and coal basins

Notes: A county is included in the baseline sample (in yellow shading) if its spatial centroid is (i) closer to coal
resources in the Illinois Basin than in the Appalachian Basin and (ii) less than 250 miles from nearest Illinois
coal resource. Shallow (< 200 ft. underground) and deep (> 200 ft. underground) Illinois and Appalachian
Basin coal resources also shown in green and black shading, respectively.
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Figure A.5: County distance to nearest mine by decade
1890 1910

1930 1950

Notes: County distance to nearest coal mine during 1890-1950 over sample counties.

Figure A.6: Timing of shallow to deep coal switching for each sample county
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Notes: The timing of when a sample county’s nearest mine switches from a shallow to a deep coal mine
for the first time. Counties are stacked according to the decade when the switching event occurs. The gray,
yellow, and black shaded areas correspond to event-time periods h < 0, h = 0, and h > 0, respectively. h = 0
can span multiple decades if there are several decades between the initial switch to a deep coal mine and the
previous switch in coal supplier.
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Figure A.7: Share of delivered coal price due to transport costs at the national level
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Notes: Share of transport cost (nominal USD per short ton) in delivered coal price (nominal USD per short
ton) for the U.S. during 1902-2007. Data from McNerney, Farmer and Trancik (2011).

Figure A.8: Testing the Herfindahl Principle
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Notes: Vertical axis shows share of total coal purchase from destination county. Horizontal axis shows the
ranking of bilateral distance between spatial centroids of origin and destination counties. Data averaged over
1990-1999 and all U.S. counties that purchase coal for electricity.
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Figure A.9: Comparing U.S. electricity capacity from EIA-860 vs. historical census
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Notes: Panel (A) compares annual aggregate U.S. electricity capacity (in GW) using fossil fuels constructed
from EIA-860 forms (solid black lines) against values from the U.S. Historical Census (dashed gray lines) over
1920-1970. Panel (B) plots capacity changes. Panels (C) and (D) show the same information as in panels (A)
and (B) but for aggregate U.S. hydropower capacity.

Figure A.10: Comparing generating unit capacity in late 1970s and 2012

slope= 1.01, p-value= 0.00, R2=0.98
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Notes: Scatter shows reported generating unit capacity (in MW) in the 2012 EIA-860 form against reported
generating unit capacity in the late 1970s (in MW). Both axes are truncated at 300 MW. Linear fit in red with
95% confidence interval shown in gray. Coefficient, p-value, and R2 shown from a linear regression using all
matched generating units.
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Figure A.11: Fitted and predicted capacity distribution of power plants by built decade
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Notes: Solid line shows fitted capital frequency distribution of all power plants built during 1910s (left panel)

and 1950s (right panel). Fitted relationship uses a 4th order polynomial function for power plants with capacity

less than 30 MW and greater than 1 MW. Dashed line shows predicted capacity frequency for power plants

with capacity less than 1 MW. See Appendix C for details.

Figure A.12: Testing for nonlinearity in the relative coal capital-distance relationship
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Notes: Plot examines whether log relative coal capital is linear in log distance to the nearest mine using
a version of equation (4) with discretized log distance bins. Log relative coal capital is predicted using log
distance to contemporaneous nearest mine, and log distance to shallow mine two and seven decades after the
switching event. Each log distance variable is broken into 1 log distance wide bins. For each period, the
predicted log relative coal capital is normalized to the value of the omitted log distance bin, defined as log
distances between 0 and 3.5.
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Figure A.13: Ratio of U.S. coal to natural gas sales price
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Notes: Solid black line shows log ratio of U.S. coal sales price to U.S. natural gas sales price (both in
nominal USD per million BTUs) during 1985-2010. Dashed gray line shows quadratic time trend estimated
over 1985-2008.
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Appendix Tables
Table A.1: Coal quality heterogeneity by basin

Std. dev. in
Coal basin No. of counties heat content ash content sulfur content
Appalachian 187 657.24 (1) 2.96 (3) 0.93 (5)
Colorado 79 1159.77 (3) 4.47 (5) 0.15 (1)
Gulf 56 1370.36 (5) 3.71 (4) 0.29 (3)
Illinois 279 807.30 (2) 2.52 (2) 0.84 (4)
Northern Rockies 65 1270.79 (4) 1.79 (1) 0.22 (2)

Notes: Standard deviation in coal heat, ash, and sulfur content across counties that produce coal
in each coal basin. Basin ranking for each characteristic in parentheses (1=least heterogeneous).
County-level values calculated using 1990-1999 averages.

Table A.2: Observed delivered coal prices vs. constructed distance-based measure

(1) (2) (3)
Outcome is log delivered coal price

ln dit 0.381** 0.582*** 0.342***
(0.150) (0.153) (0.113)

Decade 1970s 1980s 1990s
Counties 153 153 133

Notes: Each column is a separate cross-sectional regression of observed log delivered coal price
(in nominal USD per ton) averaged within each decade on log distance to nearest mine and state
fixed effects. County sample shown in Figure A.4. Columns (1), (2), and (3) use data from the
1970s, 1980s, and 1990s, respectively. Robust standard errors in parentheses. *** p<0.01, **
p<0.05, * p<0.1.

Table A.3: Comparing generating unit characteristics across 1990-2012 EIA-860 forms

Percentage of generating units with different reported values
Number of

different values Capacity Primary fuel Opening year Retirement year
0 74.78 94.25 96.88 80.01
1 2.62 1.49 0.52 1.98
2 1.81 0.57 0.44 2.92
3 1.07 0.23 0.08 0.87
4 1.26 0.2 0.08 0.87
5 0.85 0.51 0.19 1.5
6 0.69 0.46 0.24 0.67
7 0.95 0.29 0.29 0.72
8 0.53 0.27 0.22 1.08
9 0.79 0.2 0.14 1.74
10 0.72 0.25 0.24 1.04

Notes: Row indicates the number of values from 1990-2011 EIA-860 forms that was different
from the 2012 EIA-860 form. Column shows generator unit-level characteristics. Each cell shows
the percentage of 1990-2011 EIA-860 forms with a reported value that is different from that
reported in the 2012 EIA-860 form. For example, row 1, column 1 indicates that 76.78% of
generating units reported the same capacity in 1990-2011 as was reported in 2012.
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Table A.4: Comparing generating unit primary fuel in late 1970s and 2012

Primary fuel in 2012
Primary fuel
in 1970s Coal Hydro Nat. gas Nuclear Oil
Coal 92.2 0.0 5.9 0.0 1.1

Hydro 0.0 100.0 0.0 0.0 0.0

Nat. gas 0.8 0.0 77.2 0.0 21.9

Nuclear 0.0 0.0 0.0 100.0 0.0

Oil 1.0 0.0 24.4 0.0 74.6
Notes: Each row shows the distribution of reported primary fuel in
the 2012 EIA-860 forms conditional on the primary fuel reported in
the 1970s. For example, 92.2% of generating units which reported
coal as the primary fuel in the 1970s also reported coal in 2012.

Table A.5: Summary statistics for unadjusted and imputed relative coal capital

(1) (2) (3) (4) (5)
Unadjusted Imputed Imputed Imputed Imputed

3rd order poly. 4th order poly. 5th order poly. add 1 MW

Number of observations
Total 2,369 2,369 2,369 2,369 2,369
Missing 1,246 0 0 0 0
Zero 825 0 0 0 0
Positive 298 2,369 2,369 2,369 2,369

Summary statistics
Obs 1,123 2,369 2,369 2,369 2,369
Mean 9.71 65.01 75.58 65.14 8.54
Median 0 .15 .16 .14 1
SD 53.44 355.37 417.01 356.52 37.3
Skewness 11.51 7.39 7.47 7.41 6.76
Notes: Top panel shows the number of total, missing, zero-valued, and positive-valued observations for
the baseline county-by-decade sample shown in Figure A.4. Bottom panel shows various summary statis-
tics. Column 1 shows unadjusted relative coal capital. Columns 2-4 adds imputed missing power plants
with capacity less than 1 MW using 3rd, 4th, and 5th order polynomial functions for gt(), respectively.
Column 5 adjusts relative coal capital by adding 1 MW to both coal and non-coal capital investment.
See Appendix C for details.
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Table A.6: Robustness: additional identification concerns

(1) (2) (3) (4) (5)
Outcome is relative coal capital

ln d0i (βτ )

2 decades lead -1.38 -1.49 -0.69 -2.09 -1.41
(1.02) (0.96) (1.61) (1.91) (0.92)

1 decade lead -0.66 -1.14 -0.22 -1.29 0.40
(0.67) (0.71) (0.85) (0.82) (0.98)

– – – – –
1 decade lag -0.68 -2.22** -0.72 -1.08 -0.72

(1.25) (1.01) (1.05) (1.41) (1.30)
2 decades lag -4.11*** -4.92*** -3.19*** -5.04*** -4.20***

(1.15) (1.40) (1.08) (1.20) (1.20)
3 decades lag -3.75*** -4.29*** -4.11*** -4.88*** -3.73***

(0.67) (0.62) (1.39) (1.11) (0.74)
4 decades lag -3.51*** -4.33*** -4.11*** -4.87*** -3.52***

(0.71) (0.67) (1.53) (1.23) (0.75)
5 decades lag -4.58*** -5.40*** -5.96*** -5.54*** -4.60***

(0.98) (1.09) (1.69) (1.15) (0.99)
6 decades lag -3.71*** -4.53*** -4.84*** -4.84*** -3.73***

(0.75) (0.67) (1.43) (1.15) (0.79)
7 decades lag -6.20*** -7.12*** -6.99*** -8.11*** -6.21***

(1.37) (1.45) (1.81) (1.52) (1.39)
8 decades lag -7.30*** -8.27*** -8.04*** -9.53*** -7.32***

(1.59) (1.72) (1.93) (1.68) (1.61)
9 decades lag -7.30*** -8.22*** -8.02*** -10.3*** -7.33***

(1.57) (1.69) (2.05) (1.69) (1.58)
10 decades lag -7.01*** -7.86*** -7.95*** -10.6*** -7.03***

(1.56) (1.68) (2.06) (1.84) (1.58)

ln dit (π) -1.53*** -1.69*** -1.56** -1.86*** -1.53***
(0.53) (0.55) (0.62) (0.50) (0.53)

Dropped if mine becomes 2nd closest No Yes No No No
Demand covariates No No Yes No No
Geography covariates No No No Yes No
Single decade period before switch No No No No Yes
Observations 2,369 2,033 2,106 2,369 2,230
Counties 261 219 261 261 261
Notes: Estimates of βτ and π from equation (4) using a Poisson model. Outcome variable is relative
coal capital at the county-by-decade level. County sample shown in Figure A.4. Time period is 1890-1990.
Each model includes event time, county, and state-by-decade fixed effects. Column 1 replicates baseline
estimates. Column 2 estimates baseline model but drops counties for which the shallow mine becomes the
second nearest mine in any decade after the switching event. Column 3 adds county-by-decade population,
number of manufacturing establishments, and manufacturing employment, all in logs. Column 4 adds log
county distance to nearest navigable waterway and log variance in slope, both interacted with a linear time
trend. Column 5 redefines the focal event as just the single decade before the initial switch to deep coal.
Robust standard errors clustered at the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.7: Robustness: imputing missing small power plants

(1) (2) (3) (4) (5) (6)

ln d0i (βτ )

2 decades lead -1.38 -1.31 -1.32 -0.23 -2.66 -0.066
(1.02) (1.01) (1.01) (0.46) (2.24) (0.75)

1 decade lead -0.66 -0.70 -0.69 0.0069 -1.53 0.16
– – – – – –

1 decade lag -0.68 -0.58 -0.59 -0.12 -0.84 -0.21*
(1.25) (1.20) (1.19) (0.33) (0.59) (0.12)

2 decades lag -4.11*** -3.97*** -3.97*** -1.90*** -2.49 -0.47**
(1.15) (1.07) (1.08) (0.44) (2.04) (0.21)

3 decades lag -3.75*** -3.70*** -3.68*** -2.11*** -4.18** -0.62**
(0.67) (0.66) (0.66) (0.41) (2.04) (0.27)

4 decades lag -3.51*** -3.44*** -3.43*** -2.03*** -4.97** -0.69**
(0.71) (0.71) (0.71) (0.37) (1.96) (0.31)

5 decades lag -4.58*** -4.49*** -4.46*** -2.29*** -3.91* -0.97***
(0.98) (0.91) (0.91) (0.37) (2.09) (0.31)

6 decades lag -3.71*** -3.65*** -3.63*** -1.47*** -2.82 -0.91***
(0.75) (0.75) (0.75) (0.48) (2.21) (0.33)

7 decades lag -6.20*** -6.15*** -6.12*** -3.18*** 0.71 -0.66
(1.37) (1.36) (1.36) (0.80) (2.99) (0.40)

8 decades lag -7.30*** -7.24*** -7.22*** -3.90*** -3.33 -0.66
(1.59) (1.58) (1.58) (0.80) (2.66) (0.47)

9 decades lag -7.30*** -7.25*** -7.22*** -3.95*** -2.63 -0.53
(1.57) (1.56) (1.55) (0.78) (2.47) (0.47)

10 decades lag -7.01*** -6.96*** -6.94*** -3.76*** -2.20 -0.55
(1.56) (1.55) (1.55) (0.75) (2.85) (0.51)

ln dit (π) -1.53*** -1.54*** -1.54*** -0.86** -2.41*** -0.16
(0.53) (0.53) (0.53) (0.40) (0.75) (0.15)

Outcome relative relative relative relative relative coal
coal coal coal coal coal share

Small plant imputation 4th ord. poly 3rd ord. poly 5th ord. poly add 1MW none none
Observations 2,369 2,369 2,369 2,369 369 565
Counties 261 261 261 261 65 97
Notes: Estimates of βτ and π from equation (4) using a Poisson model. County sample shown in Figure
A.4. Time period is 1890-1990. Each model includes event time, county, and state-by-decade fixed effects.
Outcome variable in columns 1-5 is relative coal capital at the county-by-decade level. Column 1 replicates
baseline estimates which imputes missing small power plants with a 4th order polynomial function for gt()
to construct relative coal capital (see Appendix C). Column 2 uses a 3rd order polynomial function for
gt(). Column 3 uses a 5th order polynomial function for gt(). Outcome in column 4 adds 1 MW to both
unadjusted coal and non-coal capital investment to construct relative coal capital. Column 5 constructs
relative coal capital using the unadjusted data. Column 6 models coal capital share using the unadjusted
data. Robust standard errors clustered at the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.8: Robustness: sample restrictions

(1) (2) (3) (4) (5) (6) (7)
Outcome is relative coal capital

ln d0i (βτ )

2 decades lead -1.38 -4.28** -0.98 -2.22* -1.21 -1.41 -1.48
(1.02) (1.69) (1.07) (1.27) (1.02) (1.05) (0.99)

1 decade lead -0.66 -2.54** -0.53 -1.27 -0.49 -0.76 -1.03
(0.67) (1.04) (0.66) (0.82) (0.75) (0.66) (0.73)

– – – – – – –
1 decade lag -0.68 -0.94 -0.61 -1.99 -0.24 -0.71 -2.21**

(1.25) (1.41) (1.22) (1.23) (1.17) (1.05) (0.99)
2 decades lag -4.11*** -5.33*** -4.02*** -6.01*** -2.71*** -3.94*** -4.90***

(1.15) (1.02) (1.12) (1.16) (1.03) (1.03) (1.40)
3 decades lag -3.75*** -5.78*** -3.65*** -4.61*** -2.34*** -3.70*** -4.27***

(0.67) (1.14) (0.65) (0.83) (0.90) (0.65) (0.61)
4 decades lag -3.51*** -5.40*** -3.40*** -4.50*** -2.01** -3.49*** -4.35***

(0.71) (1.40) (0.71) (0.93) (0.96) (0.70) (0.65)
5 decades lag -4.58*** -3.79** -4.46*** -7.31*** -1.69 -4.14*** -5.41***

(0.98) (1.64) (0.95) (2.08) (1.12) (0.77) (1.00)
6 decades lag -3.71*** 1.84 -3.63*** -4.49*** -1.59 -3.84*** -4.43***

(0.75) (3.81) (0.74) (0.99) (1.16) (0.73) (0.64)
7 decades lag -6.20*** -6.16** -6.17*** -6.91*** -3.71** -4.56*** -6.92***

(1.37) (3.08) (1.37) (1.37) (1.51) (0.97) (1.31)
8 decades lag -7.30*** -7.85** -7.27*** -8.09*** -4.62*** -5.16*** -8.05***

(1.59) (3.12) (1.59) (1.54) (1.69) (1.21) (1.53)
9 decades lag -7.30*** -7.66** -7.28*** -8.10*** -4.43*** -5.12*** -8.07***

(1.57) (3.10) (1.56) (1.48) (1.66) (1.23) (1.52)
10 decades lag -7.01*** -7.94** -6.98*** -7.76*** -4.18** -5.06*** -7.73***

(1.56) (3.24) (1.56) (1.49) (1.67) (1.23) (1.51)

ln dit (π) -1.53*** 1.89 -1.56*** -1.53*** -1.33** -0.74 -1.54***
(0.53) (1.38) (0.53) (0.53) (0.52) (0.59) (0.53)

Sample Benchmark >90th >97.5th <200 miles <300 miles Incl. closer Switch
pct mines pct mines from Ill. coal from Ill. coal to App. coal before 1960s

Observations 2,369 1,920 2,402 1,927 2,869 3,205 2,149
Counties 261 223 261 207 319 337 229

Notes: Estimates of βτ and π from equation (4) using a Poisson model. Outcome variable is relative coal
capital at the county-by-decade level. Time period is 1890-1990. Each model includes event time, county,
and state-by-decade fixed effects. Column 1 uses baseline county sample shown in Figure A.4. Column 2 uses
transport distance constructed from mines with area above the 90th percentile. Column 3 uses transport
distance constructed from mines with area above the 97.5th percentile. Columns 4 and 5 restricts sample to
counties within 200 and 300 miles from the nearest Illinois Basin coal resource and are closer to Illinois Basin
coal than to Appalachian Basin coal. Column 6 restricts sample to counties within 250 from the nearest
Illinois Basin coal resource but include counties that are closer to Appalachian Basin coal than to Illinois
Basin coal. Column 7 restricts sample to counties that experience the switching event prior to the 1960s.
Robust standard errors clustered at the county level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.9: Robustness: alternative modeling choices

(1) (2) (3) (4) (5)

ln d0i (βτ )

3 decades lead 0.87
(1.49)

2 decades lead -1.38 -1.35 -0.27 0.32
(1.02) (1.00) (0.42) (1.04)

1 decade lead -0.66 -0.72 -0.64 0.27 0.27
(0.67) (0.69) (0.67) (0.40) (0.64)

– – –
1 decade lag -0.68 -0.65 -0.71 -0.42 -0.76*

(1.25) (1.23) (1.28) (0.26) (0.39)
2 decades lag -4.11*** -4.06*** -4.16*** -1.21*** -1.40**

(1.15) (1.14) (1.15) (0.31) (0.60)
3 decades lag -3.75*** -3.70*** -3.82*** -1.71*** -1.93**

(0.67) (0.66) (0.68) (0.49) (0.87)
4 decades lag -3.51*** -3.44*** -3.58*** -1.80*** -2.36**

(0.71) (0.72) (0.72) (0.55) (1.04)
5 decades lag -4.58*** -4.53*** -4.65*** -2.18*** -2.61**

(0.98) (0.97) (0.99) (0.66) (1.06)
6 decades lag -3.71*** -3.65*** -3.78*** -1.79** -2.49**

(0.75) (0.75) (0.75) (0.85) (1.12)
7 decades lag -6.20*** -6.14*** -6.27*** -2.89** -3.23

(1.37) (1.37) (1.38) (1.29) (2.04)
8 decades lag -7.30*** -7.24*** -7.37*** -4.10*** -4.20**

(1.59) (1.59) (1.60) (1.37) (2.02)
9 decades lag -7.30*** -7.24*** -7.37*** -3.71** -3.86*

(1.57) (1.57) (1.57) (1.51) (2.04)
10 decades lag -7.01*** -6.95*** -7.08*** -3.74** -3.55*

(1.56) (1.56) (1.57) (1.70) (2.09)

ln dit (π) -1.53*** -1.53*** -1.53*** -0.18 -0.66
(0.53) (0.53) (0.53) (0.62) (0.90)

Model Poisson Poisson Poisson Linear Neg. bin.
Observations 2,369 2,240 2,498 2,369 2,369
Counties 261 261 261 261 261
Notes: Estimates of βτ and π from equation (4). Outcome variable is at the county-by-
decade level. County sample shown in Figure A.4. Time period is 1890-1990. Each model
includes event time, county, and state-by-decade fixed effects. Column 1 replicates baseline
model using a Poisson model with relative coal capital as the outcome and includes 2 lead
terms. Column 2 is identical to column 1 except for having 1 lead term. Column 3 is
identical to column 1 except for having 3 lead terms. Column 4 uses a log-log linear model
with log relative coal capital as the outcome and includes 2 lead terms. Column 5 uses a
negative binomial model with dispersion parameter that is a function of expected relative
coal capital and includes 2 lead terms. Robust standard errors clustered at the county
level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table A.10: Other mechanisms: cost-of-service and Clean Air Act regulations

(1) (2) (3) (4)
Outcome is relative coal capital

ln d0i (βτ )

2 decades lead -1.38 -0.75 -1.61 0.093
(1.02) (0.92) (1.00) (1.39)

1 decade lead -0.66 -0.71 -1.46 0.53
(0.67) (0.56) (1.00) (1.12)

– – – –
1 decade lag -0.68 -2.80** -1.91** -3.09**

(1.25) (1.10) (0.83) (1.40)
2 decades lag -4.11*** -2.93*** 0.032 -3.26**

(1.15) (1.12) (0.87) (1.29)
3 decades lag -3.75*** -2.93* -3.12*** -4.14***

(0.67) (1.56) (1.08) (0.80)
4 decades lag -3.51*** -6.99* -2.46 -3.70***

(0.71) (3.93) (2.02) (1.13)
5 decades lag -4.58*** -3.11*** -5.56* -2.24*

(0.98) (1.13) (2.91) (1.26)
6 decades lag -3.71*** -3.12*** -4.50 2.11

(0.75) (1.14) (2.95) (2.19)
7 decades lag -6.20*** -4.85* -4.30*

(1.37) (2.57) (2.25)
8 decades lag -7.30*** -5.75**

(1.59) (2.43)
9 decades lag -7.30*** -5.94***

(1.57) (2.15)
10 decades lag -7.01*** -5.31**

(1.56) (2.10)

ln dit (π) -1.53*** 0.36 0.75 -1.76***
(0.53) (1.11) (1.14) (0.68)

Drop PUC? No Yes No No
Drop ever in nonattainment? No No No Yes
Sample period 1890-1990 1890-1970 1890-1960 1890-1990
Observations 2,369 745 1,586 1,683
Counties 261 201 261 185
Notes: Estimates of βτ and π from equation (4) using a Poisson model. Outcome variable
is relative coal capital at the county-by-decade level. County sample shown in Figure A.4.
Each model includes event time, county, and state-by-decade fixed effects. Column 1 replicates
baseline estimates. Column 2 drop county-decade observations when there is a state Public
Utility Commission regulating electric utilities. Column 3 includes only observations during
1890-1960. Column 4 drops counties that were ever designated as nonattainment under the
U.S. Clean Air Act. Robust standard errors clustered at the county level in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.
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Table A.11: Other mechanisms: upstream and downstream sectors

(1) (2) (3) (4)
Outcome is

ln railroad ln highway env. NGO republican vote
density density share share

ln doi × sinceEventi (ω1) -0.048 -0.022 -0.000022 0.0033
(0.031) (0.018) (0.000078) (0.0034)

ln doi (ω2) -0.0019 0.013 -0.00057 -0.0022
(0.17) (0.11) (0.00046) (0.021)

sinceEventi (ω3) 0.23* 0.051 -0.000095 -0.011
(0.14) (0.072) (0.00031) (0.014)

Counties 458 458 458 458
Notes: Estimates from equation 10 using county-level outcomes. All models includes state and
NERC region fixed effects, and county centroid longitude and latitude. County sample shown
in Figure A.4. Outcome in column 1 is log railroad density in 2010 (in miles per square mile).
Outcome in column 2 is log highway density in 2010 (in miles per square mile). Outcome in
column 3 is the population share of individuals who are members of three major environmental
NGOs in 1996 (in %). Outcome in column 4 is the share of eligible voters who voted for the
Republican Presidential candidate in 2000 (in %). Robust standard errors clustered at the county
level in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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