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1 Introduction

Macroeconomists have long recognized the crucial role played by the speed of adjustment of
prices in the amplification and propagation of macroeconomic shocks. In particular, there is
ample evidence that inflation responds only slowly to monetary shocks (e.g. Christiano et al.
(2005)). In an attempt to better understand the price adjustment frictions underpinning
these aggregate findings, numerous studies have turned their attention to micro-level price
datasets and have extracted a variety of additional salient pricing facts. In this paper, we
propose a parsimonious new theory of price rigidity that revolves around a simple reality
faced by firms: the demand for their product is uncertain and potentially complex. Coupled
with ambiguity aversion, this single mechanism endogenously creates a cost of moving to a
new price. Not only does the model naturally generate sticky prices, but its parsimony also
yields a number of overidentifying restrictions that are consistent with pricing facts from
micro data.

One of the earliest documented empirical findings in the micro price literature is that
prices at the product level tend to be sticky, that is do not change for long periods of time (Bils
and Klenow (2004)). Yet, if one plausibly believes that firms are regularly hit by demand
and cost shocks, in turn altering the profit-maximizing price, then firms would be expected

! This robust stylized fact led to the widespread use

to update posted prices more often.
of both time-dependent (e.g. Calvo (1983), Taylor (1980)) and state-dependent (e.g. menu
cost) price rigidity mechanisms. However other facts, such as the surprising coarseness and
stickiness of the set of prices chosen by firms over time (Eichenbaum et al. (2011)), are more
difficult to generate without expanding the standard models.

In our framework, the economy is composed of a continuum of industries, each populated
with monopolistic firms that face Knightian uncertainty about their competitive environ-
ment. In particular, an intermediate good firm does not know the production function of the
final good of its respective industry, which leads to two important implications. First, there
is uncertainty about the shape of the demand function the firm faces, and second, there is
uncertainty about the relevant relative price, and how it relates to the aggregate price index.

Firms understand that the quantity sold is the sum of an unknown, time-invariant
component, and a temporary demand shock. They use their observations of past prices
and quantities to learn about the time-invariant component, but cannot observe the two
components separately, only the total quantity sold, and thus face a signal extraction

problem. Furthermore, firms are not confident that demand belongs to a single parametric

!Eichenbaum et al. (2011), for example, argue that the large fluctuations in quantities sold in weekly
grocery store data in the absence of any price change are indicative of sizable demand shocks.



family, but rather entertain potentially complex demand shapes. Firms use their noisy
signals to reduce uncertainty and build estimates of their demand curves. We thus put the
economic agent on the same footing as an econometrician outside the model that attempts
to estimate demand in a complex environment.?

We assume that the firm has enough prior knowledge to put some loose prior bounds
on the possible demand schedules, but not enough to impose functional form restrictions or
to assign a single probability measure to the space of admissible demand functions. Thus,
the firm faces Knightian uncertainty about the shape of its demand function. The agent
owning the firm is ambiguity averse in the sense that it acts as if the true distribution of the
demand at a given price yields the lowest possible total quantity sold. Ambiguity aversion
is described by recursive multiple priors preferences, axiomatized in Epstein and Schneider
(2003), that capture the agents’ lack of confidence in probability assessments.

Since demand is not restricted to a particular parametric family, uncertainty reduction
is local, not global. Unlike updating beliefs about the parameters of a given function, by
observing a noisy demand signal at a given posted price, the firm primarily reduces demand
uncertainty at that price, but remains uncertain about the quantity it could sell at other
prices. This generates kinks in demand uncertainty at previously observed prices, and an
uncertainty averse price-setter is reluctant to move to a new price since it would lead to a
sharp rise in uncertainty.

For our ambiguity-averse firms, the kinks show up in expected demand. A firm that
entertains switching to a higher price is worried that demand becomes more elastic in the
region above its current information set, maybe because a price increase could trigger an
exodus towards competing products. At the same time, the higher uncertainty at lower
prices generates the opposite fear that demand is in fact more inelastic in that region, and a
price cut might undermine profit margins without increasing sales much. This endogenous
switch in the worst-case scenario about the demand schedule, depending on whether the firm
is considering a price increase or decrease, leads to kinks in expected demand, which in turn
generate price stickiness. The kinks create a cost, in terms of expected profits, associated
with changing the price, which in turn compels the firm to abstain from changing its price,
unless it faces a sufficiently large shock. The higher is the uncertainty in the unexplored
regions of the price space, relative to the uncertainty at previously observed prices, the
steeper are the kinks in expected demand and the stronger is the stickiness.

A corollary implication is that the firm is not only reluctant to change its current price,

2The equal footing between the uncertainty faced by agents inside the model and econometricians outside
the model addresses a desideratum proposed in Hansen (2007) for time-series models and more generally in
Hansen (2014).



but is in general inclined to repeat a price it has already posted in the recent past. These
previously observed prices become ‘reference’ points at which there are kinks in the profit
function. The pricing policy function then includes step-like regions of flatness around the
reference prices. When a shock moves the optimal price within such a flat area, the posted
price will be exactly equal to one of these reference prices. The steps in the policy function
also imply that each of those reference prices is associated with a positive measure of shocks
that map to it. Thus, the model is consistent with the optimal policy having ‘price memory’,
characterized by discrete price changes between a set of previously posted prices.

Moreover, since signals are noisy, the uncertainty across the previously posted prices is
not equal. Prices that have been observed more frequently have accumulated more signals
and thus greater uncertainty reduction. Hence, optimal prices would not necessarily bounce
randomly around the set of ‘reference prices’, but will exhibit a greater propensity to stay
put and return to prices that have been observed more often. Among other things, this has
the implication of endogenously generating a decreasing hazard of price change. Lastly, since
not all kinks are necessarily deep, the policy function is not exclusively a step-function, but
has regions in which the optimal price adjusts flexibly. Thus, the price series of this model
can look both flexible and sticky at the same time, and the unconditional distribution of
price changes features non-trivial density around zero.

Our mechanism has two key modeling ingredients. The first is the uncertainty about
the demand shape, which makes uncertainty reduction local, and the second is some form
of uncertainty aversion — i.e. uncertainty should ultimately matter. We have implemented
these ingredients in a model of learning under ambiguity, but qualitatively similar results
can be obtained in a model where uncertainty is only in the form of risk. As long as the
prior over the admissible demand functions does not rule out non-differentiable functions,
observing noisy signals would generate kinks in the posterior variance of demand, which
would have a similar effect on pricing decisions under risk-aversion. Intuitively, since risk
aversion is a smooth operator, there can be no kinks in the certainty equivalent if the prior
rules out non-differentiability. In contrast, with ambiguity we do not need to allow for non-
differentiability in the set of admissible functions. Instead, the kink in expected demand
arises endogenously, from the switch in the worst-case beliefs.

Fundamentally, this demand uncertainty represents a real rigidity: it does not, in itself,
generate money non-neutrality. Nominal rigidity is the result of the interaction of demand
uncertainty with the uncertainty about the relevant relative price. The firm does not know
the final good technology of its industry, hence it does not know the appropriate industry
price level, nor how it relates to the aggregate price and sees that relationship as ambiguous.

It conducts periodic marketing reviews that reveal the industry price, but in between reviews



the firm updates beliefs using the ambiguous relationship with the observed aggregate prices.
Thus, the firm’s beliefs about the industry prices are anchored by the value of the last review,
and evolve in an ambiguous way with the observed aggregate inflation.

In this context, the firm understands that its demand is uncertain in two dimensions —
both the demand function and its argument, the relative price, are ambiguous. The firm
chooses an action robust to this two-dimensional uncertainty, and acts as if nature draws
the true Data Generating Process (DGP) to be the relationship between aggregate prices
and industry prices that implies the lowest possible demand, given the non-ambiguous choice
of the firm — own nominal price versus the last observed industry price level. The resulting
worst-case relationship is that aggregate prices are not informative about industry prices,
and this defines a worst-case demand schedule as a function of own nominal price relative the
last observed industry price, that the firm can then estimate via the process described above.
Since the review signals arrive periodically, the real rigidity created by the perceived kinks
in demand becomes a nominal one, as in order to keep the relevant relative price constant,
the firm needs to keep nominal prices constant. This results in nominal price paths that are
sticky, and also resemble infrequently updated “price plans”.

Our setup has stark implications about price-setting behavior. The model’s key outcome
is that it endogenously produces a cost of adjusting prices in the form of a higher perceived
uncertainty away from previously posted prices. This is different from standard models where
there is an assumed, exogenous fixed cost of adjustment. Moreover, the single, uncertainty-
based mechanism behind this endogenous cost generates many additional features observed
in micro price data that have proven challenging, if not impossible, for standard price-setting
models to replicate. On one hand, our mechanism is also compatible with the evidence that
firms appear to select from a small set of unique prices, and tend to revisit past price levels.
On another, because the cost of moving away from a price is negatively related to how much
information was gleaned from posting it in the past, it is by nature inherently history and
state dependent. As a result, our mechanism not only predicts a decreasing hazard function
of price changes (i.e. the probability of observing a price change is decreasing in the time
since the last price movement), but it can also rationalize the coexistence of small and large
price changes in the data.

The paper is organized as follows. In Section 2, we discuss its relation to the relevant
literature. In Section 3 we present motivating empirical evidence. Sections 4 describes
a simplified model that studies learning under demand uncertainty, and explains the real
rigidity mechanism. Section 5 derives analytical results. Section 6 introduces the full model,

and the interaction that generates nominal rigidity. Section 7 presents a quantitative version.



2 Relation to literature

By connecting learning under ambiguity to the problem of a firm setting prices, this paper
relates to multiple literature strands. The question of price rigidity has generated a very
large empirical and theoretical literature. On the empirical side, the recent analysis on
micro-datasets, such as Bils and Klenow (2004), Klenow and Kryvtsov (2008), Nakamura
and Steinsson (2008), Klenow and Malin (2010) or Vavra (2014), attempts to uncover stylized
pricing facts whose aim is to act as overidentifying restrictions on theoretical models of price
rigidity. Of particular motivating interest for us are the empirical findings in Eichenbaum
et al. (2011), Kehoe and Midrigan (2014) and Stevens (2014), who find evidence of ‘reference
prices’, i.e. the set of prices chosen by the firm is surprisingly sticky over time.

Our mechanism produces kinks in expected demand and as such is related to theoretical
work on real price rigidity based on kinked demand, such as Stigler (1947), Stiglitz (1979),
Ball and Romer (1990) and Kimball (1995). While in these models the kinks are a feature
of the true demand curve, in our setup they arise only in the beliefs of the firm, as a result
of the uncertainty about demand, and an econometrician would not need to find evidence of
actual kinks in demand. Moreover, in our model the size and the location of the kinks are
endogenous, and are a function of the information accumulated at observed prices.

In terms of theories of nominal stickiness, our mechanism does not rely on any actual
impediment to adjusting prices. This distinguishes our contribution from a large literature
specifying either a fixed length of a price contract (Taylor (1980)), an exogenous chance
of resetting the optimal price (Calvo (1983)), a physical cost of price adjustment (Barro
(1972), Rotemberg (1982))3, or a cost of information acquisition present in more recent
models of rational inattention (Woodford (2009)).* Instead, our model is based on the firm’s
uncertainty about demand as a source of what looks like an endogenous cost of changing
prices. Moreover, the emerging cost is also time-varying, with properties that are state and
history-dependent. It is this dependence that allows our single, parsimonious mechanism

to rationalize a set of otherwise puzzling pricing facts, such as price discreteness, memory,

3The large "menu cost” literature that followed includes recent contributions such as Golosov and Lucas
(2007), Gertler and Leahy (2008), Nakamura and Steinsson (2008, 2010), Alvarez et al. (2011), Midrigan
(2011), and Vavra (2014).

4Imperfect information models, such as Mankiw and Reis (2002), Sims (2003), Woodford (2003), Reis
(2006), Lorenzoni (2009) and Mackowiak and Wiederholt (2009), predict sluggish adjustment to shocks.
However, in order to generate nominal prices that are constant for some periods, as we see in the data, they
typically require additional nominal rigidities. Bonomo and Carvalho (2004), Nimark (2008) and Knotek
and Edward (2010) are early examples of merging information frictions with a physical cost or an exogenous
probability of price adjustment. Our model instead not only generates a partial response of a firm’s price to
a monetary policy shock, but also actual nominal stickiness.



small and large price changes and a decreasing hazard function.®

We also relate to theoretical work on firm pricing under demand uncertainty. The
standard approach has been to study this uncertainty in the context of an expected utility
model and analyze learning about a parametric demand curve. An early contribution is
Rothschild (1974), who frames the learning process as a two-arm bandit problem,5 while
more recent work includes Balvers and Cosimano (1990), Bachmann and Moscarini (2011)
and Willems (2011). Different from our environment, learning about parametric functions,
such as linear demand curves, does not produce kinks from uncertainty reduction since the
latter reflects the estimation risk of the whole function.

Lastly, we connect to the literature on ambiguity aversion. We use the multiple priors
preferences to capture the notion that the firm is not confident in the probability assessments
over various demand curves, and as such we build on previous contributions that include
Gilboa and Schmeidler (1989), Dow and Werlang (1992), Pires (2002) and Epstein and
Schneider (2003). Some recent work analyzes a firm pricing problem under a related
ambiguity-aversion preference, namely maxmin regret (Handel et al. (2013) and Bergemann

and Schlag (2011)), but does not analyze learning about the distributions.

3 Empirical motivation

In response to the marked interest of modelers in identifying the most appropriate way to
model nominal rigidities, a large empirical literature developed around micro level price
datasets. While case studies such as Carlton (1986) and Cecchetti (1986) had given
researchers some insights into the extent of price rigidity, their scope was limited, generally
focusing on very specific products or markets. In their seminal work, Bils and Klenow
(2004) leveraged the broad coverage of the U.S. Bureau of Labor Statistics” consumer price
index (CPI) dataset to gain general insights into the dynamics of prices at the micro level.
Numerous other studies have followed, producing results from CPI (Nakamura and Steinsson
(2008), Klenow and Kryvtsov (2008)) or scanner datasets (Eichenbaum et al. (2011)).
Macroeconomic modelers have made extensive use of the findings from these studies to
calibrate or estimate their models. To do so, they have generally relied on a subset of

moments, most frequently the frequency and average size of price increases and decreases.

SRecent modeling advances address the challenge of obtaining a discrete distribution of prices out of
continuous shocks using a combination of physical adjustment costs to regular and sales price (Kehoe and
Midrigan (2014)) or information costs (Matéjka (2010) and Stevens (2014)). In the latter case, given some
restrictions on the curvature in the objective function and the prior uncertainty, the firm chooses a discrete
price distribution to economize on the costs of acquiring information about the unobserved states.

6See Bergemann and Valimaki (2008) for a survey of related applications of bandit problems studied
under expected utility.



One issue from relying on a small number of moments is that researchers have had a very
difficult time discriminating between the various price-setting mechanisms that have been
put forward in the literature. Yet, there exist a number of robust findings that have received
much less attention and remain a challenge for standard price-setting models. In this section,
we describe some of them using the IRI Marketing Dataset. It consists of scanner data for
the 2001 to 2011 period collected from over 2,000 grocery stores and drugstores in 50 U.S.
markets. The products cover a range of almost thirty categories, mainly food and personal
care products. A more complete description of the dataset is available in Bronnenberg et al.
(2008). For our purposes, we focus on nine markets and six product categories.”

We start by highlighting a finding ubiquitous across price datasets: firms appear to favor
choosing from a sticky, discrete set of prices even when given a chance to pick a brand new
price. For example, the median number of unique prices in a window of 26 weeks (half a
year) is only 3. Another way to describe this empirical property is to look at the degree of
price memory. To do so, we compute the probability that when a firm resets the price of its
product, the new price is one that was visited within the last six months. This statistic is
equal to 62% when we consider all price changes. Arguably such a high degree of memory
may be due to the tendency of retailers to post similar-sized discounts on a frequent basis.
Yet, even when we filter out temporary sales, memory probabilities still range between 31%
and 64% across market/category combinations, with a weighted average of 48%.

Another feature is the declining hazard function found in many micro price datasets:
the probability of a price change decreases with the time since the last price reset. As
highlighted for example by Nakamura and Steinsson (2008) and Campbell and Eden (2014),
this characteristic represents a challenge to many popular price-setting mechanisms. Despite
the fact that declining hazards can be found across numerous datasets, some have argued
that the finding could be a by-product of not taking proper care of heterogeneity: as
noted by Klenow and Kryvtsov (2008), ”[t]he declining pooled hazards could simply reflect
a mix of heterogeneous flat hazards, that is, survivor bias.” We find, however, that the
declining hazard remains a robust finding in our dataset, even once we aggressively control
for heterogeneity. We start by computing the hazard function for each single product in
our sample, pooling across retailers within a specific market. Then, we took the median
probability of a price change across all products for each duration. We find that the resulting
function is clearly downward sloping, as we show in more detail when we compare the data

with a quantitative model in Section 7. This downward slope is not only an artifact of

"The markets are Atlanta, Boston, Chicago, Dallas, Houston, Los Angeles, New York City, Philadelphia
and San Francisco, while the categories are beer, cold cereal, frozen dinner entrees, frozen pizza, salted snacks
and yogurt.



temporary discounts: the hazard declines beyond the first few weeks, and the overall slope
remains negative even if we focus on regular prices.

Standard state-dependent pricing models tend to predict that firms only reprice when
the optimal price change is sufficiently large. Yet, while it is true that the typical price
change tends to be large in absolute value, this statistic masks the pervasive coexistence
of small and large prices in the data, as documented for example by Klenow and Kryvtsov
(2008).8 We document the same phenomenon in our dataset by computing the fraction of
price changes less than 5% and greater than 15% in absolute value, across all products and
markets. We find that price changes smaller than 5% in absolute value account for 14% of
all price changes, and prices changes larger than 15% for 56% of all price changes. Hence,
both small and large price changes are pervasive in the data. Next, we turn to a model

whose predictions are consistent with the empirical regularities described above.

4 Analytical Model

In this section we lay out and analyze the key mechanism in a smaller, analytically tractable
real model. We present the full, explicitly nominal model in Section 6.
We study the problem of a monopolistic firm that each period sells a single good at price

P, expressed in real terms. Denoting logs by lower-case, the firm’s demand is given by:

q(p:) = x(pe) + 21, (1)

It consists of two components, the price sensitive part z(p;), and the price-insensitive z;.

Having posted the price P, the firm’s time ¢ realized profit is:
v = (P — ) e1(Pe) (2)

where we have assumed a linear cost function, with ¢; denoting the time ¢ log marginal cost.
Crucially, the firm does not know the functional form of x(.), and has to learn about it from
past observations of quantity sold.

The decomposition of demand in (1) serves two purposes. First, it generates a motive
for signal extraction. In this respect we assume that the firm only observes total quantity
sold, ¢(p;), but not the underlying z(p;) and z;. Furthermore, we model z; as iid, and thus
past demand realizations ¢(p;) are noisy signals about the unknown function z(p).

The second purpose is to differentiate between risk and ambiguity. We model z; as purely

8See also Midrigan (2011) and Campbell and Eden (2014).



risky, and give the firm full confidence it is iid and drawn from a known Gaussian distribution:
Zr ~ N(O, O'g)

On the other hand, the z(p;) component is ambiguous, meaning that the firm is not fully
confident in the distribution from which it has been drawn, and does not have a unique prior
over it. Instead, the firm entertains a whole set of possible priors, Ty, which is defined on
the general space of measurable functions and is not restricted to a given parametric family.

Each individual prior in the set T is a Gaussian Process distribution, GP(m(p), K (p,p’)),
with mean function m(p) and covariance function K (p,p’). A Gaussian Process distribution
is the generalization of the Gaussian distribution to infinite-sized collections of real-valued
random variables, and is a convenient choice of a prior for doing Bayesian inference on
function spaces. It has the defining feature that any finite subcollection of random variables

9

has a multivariate Gaussian distribution.” Thus, for any finite vector of prices p =

[p1, ..., pn]’, the corresponding vector of demands z(p) is distributed as

m(p1) K(pi,p1) .. K(p1,pn)
z(p) ~ N : : : ' :

m(pn) K(pn,p1) ... K(pn,pn)

where the mean function m(+) controls the average slope of the underlying functions x(p), and
the covariance function K(-,-) controls their smoothness. In other words, this distribution
is a cloud of functions dispersed around m(p), according to the covariance function K(,-).

We model ambiguity by assuming that that all priors have the same covariance function,
but possibly different mean functions. In particular, the set Ty is the collection of all
Gaussian Process with a fixed covariance function K(-,-), and a continuous mean function

that is weakly downward sloping, i.e. m(p;) < m(pg) for any p; > pg, and satisfies

m(p) € [y — bp, v — bp). (3)

Figure 1 provides an illustration of the set of admissible m(p). The overall interpretation
is that the firm has some a-priori information on the true demand, but is not confident in a
single probabilistic weighting of the potential demand schedules (i.e. a single prior), nor is

it able to restrict attention to a particular parametric family of demand functions.

9Intuitively, we can think of a function as an infinite collection of variables, and the GP distribution defines
a measure over such infinite length random vectors by defining the distribution of any finite sub-collection.
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Figure 1: Set of potential m(p) defining the initial set of priors

For the covariance function we specify a simple constant function
K(p,p') = o2

The parameter o2 controls the variance of the GP prior at any given price and thus o2 /02
is the signal-to-noise ratio for the demand signals the firm observes. A constant covariance
function means that an observation at some particular price p, ¢(p), is equally informative
about the demand function at that p or at some other different price p’. We focus on this case
because of its analytical tractability, and because it showcases the minimal complexity of the
learning environment that is needed for our main point. The as if kinked behavior that will
emerge from our analysis does not require kinks in the covariance function or unequal degrees
of informational content of the signals about different points on the demand schedule.”
Finally, we assume that the true DGP is a standard log-linear demand with no kinks

that lies in the middle of the interval for prior mean functions m(p), defined in (3):

aPF (p) =7 — bp (4)

0The assumption of constant K implies that there is no probabilistic uncertainty about the shape of x(p),
so that signals are equally informative about demand at all prices, and hence probabilistic uncertainty (i.e.
the posterior variance) shrinks globally. We shut it down because it is not needed here — the Knightian
uncertainty about the shape of m(p) is sufficient. However, our analysis can be extended to more general
covariance functions where K (p,p) # K (p,p’), which would turn on the probabilistic uncertainty about the
shape of demand. Lastly, note that in that case we could obtain our main results through risk-aversion alone
and without ambiguity, but the mechanism would operate through kinks the posterior variance instead.




with 7 = %T% We also find it useful for analytical and parsimony reasons to parametrize

the lower and upper bound of the prior set relative to the true DGP in (4), as
M= VO Y= Vo, (5)

4.1 Information and Preferences

The timing of choices and revelation of information is the following. We assume that ¢, is
known at the end of period t — 1 and that it follows a Markov process with a conditional
distribution ¢°(¢;|c;—1). The firm enters the beginning of period ¢ with information on the
history of all previously sold quantities ¢'~' = [¢(p1), ...q(p;—1)]" and the corresponding prices
at which those were observed p'~! = [py,...p;_1]’, where a superscript denotes history up to
that time. It updates its beliefs about demand conditional on &= = {¢'~! p'~'}, observes
¢; and posts a price p; that maximizes its objective, which we further specify below. At
the end of period ¢ the idiosyncratic demand shock z; is realized, and the firm updates its

information set with the observed realized quantity sold ¢(p;) and marginal cost ¢;1.

4.1.1 Learning: prior-by-prior Bayesian updating

The firm uses the available data e/~ to update the set of initial priors Y. Learning occurs
through standard Bayesian updating, but measure-by-measure to account for the initial
ambiguity.!! Thus, for each prior in the inital set T, the firm uses the new information
and Bayes’ Rule to obtain a posterior distribution. Given that there is a set of priors, the
Bayesian update results in a set of posteriors. As new data is observed, Bayesian updating
means that the role of each prior decreases in forming the corresponding posterior.

We denote by z;_1(p;) the posterior distribution of z(p;) conditional on end of period

t — 1 information. We denote the conditional mean and variances as:

Tea(psm(p)) = E [x(p)le'™ 5 m(p)] (6)
Gi_1(pe) = Var [z(py)|e"] (7)

where m(p) is one particular prior on z(p), from the set of priors Yo. Thus, conditional on

each prior there is a corresponding time ¢ posterior belief about average demand given by

i-1(pe) ~ N(@-1(pe; m(p)), 571 (p1)) (8)

The evolution of beliefs about average demand, 7, i(p;, m(p)), follow the standard

HSee Jaffray (1994) and Pires (2002) for early axiomatizations of Bayesian updating for multiple priors.
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Bayesian updating formulas, as detailed in the Online Appendix A. The analytical derivation

is standard and is facilitated by the assumption of Gaussian shocks and the linear state space.

4.1.2 Preferences: recursive multiple priors

The monopolist firm is owned by an agent that is ambiguity-averse and has recursive multiple

priors utility!2, so that the value of the firm’s profits is defined by the recursion:

V(e e) = max Iﬂl;l(ipr)l EResm®) [y ¢) + BV (677 e, c041) ] (9)
where v(g, ¢;) is the per-period profit defined in (2), a function of the beginning-of-period
t posted price and end-of-period realized demand ¢(p;). The firm forms its conditional
expectations and evaluates expected profits and continuation utility using the worst-case
conditional expected demand Z;_;(pi; m*(p)), given the available information /=1 and the
prior m*(p) that achieves that worst-case belief. The maximization step is over the action of
what price p; to post, which affects demand and profit today, but also affects the information
set in the future, and hence enters as a state variable for next period’s value function.

There are two aspects worth emphasizing about the min operator in (9). First, the
assumed aversion to ambiguity amounts to minimization over the set of conditional distri-
butions for z;_1(p;). As detailed by equation (8) the set is formed by updating the set of

=1 via Bayes’ rule. Because

initial priors Yy, measure-by-measure, with the available data ¢
the set of posteriors is indexed by the choice of the initial prior m(p), and in turn this
only affects the conditional mean ;1 (p;; m(p)), the minimization problem over the set of
posterior distributions becomes equivalent to selecting the worst-case prior. As such, we
have stated the preference in (9) as directly minimizing over the initial set of priors.
Second, the minimization is conditional on an entertained choice of p;,. We conjecture
that the minimizing belief m*(p) is such that, for a given price p; and history =1, it implies
the lowest possible expected demand Z;_1(p;; m*(p)) at that price p;.'* Thus, for any price
Py, the firm worries that the underlying demand is low, given the data it has seen. The
outcome is that the firm maximizes over p; under the worst-case belief Z;_1 (p;; m*(p)).
After solving for the optimal policy rule, including the value function, we can verify the
conjecture on m*(p). In this case, it is sufficient to establish that the profit function v(gy, ¢;)
and the continuation utility are both increasing in x(p¢). The former is straightforward by
(2). The latter needs to be verified, but it is also intuitive: a higher persistent component

of demand increases not only current profits but also future expected profits.

12Epstein and Schneider (2003) develop axiomatic foundations for the recursive multiple priors utility.
13The worst-case m*(p; p¢) is conditional on p;, however, for notational simplicity we simply use m*(p).
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4.2 Kinks from learning

To build intuition for the updating formulas, suppose that the demand history only contains
observations of demand at a single price pg, that has been seen Ny times. The firm uses the
average signal yo = x(po) + NLO vazol z; to update beliefs about the unknown demand function

x(.). For a given prior m(p), the joint distribution of the signal and z(.) at any price p is:

[w(p)]Nqu(p) [05 o D
Yo m(po) | | 02 o2+02/No

The conditional distribution z(p)|yo is also Normal, and its expectation and variance are

given by the familiar formulas:

E(x(p)lyo; m(p)) = m(p) + a[yo — m(po)] (10)

az02 /N
Var(z(p)lyo) = mv (11)

o2
o3+03/No*
the prior for demand at that price, m(p), with the information revealed by the difference

where a = Thus, the Bayesian update of the conditional expectation combines

between the observed signal yy, and the prior expected demand at that price, m(py).

4.2.1 Worst-case prior

The firm minimizes the conditional expectation of demand over the priors m(p) € Ty. Using
equation (10), and since o € (0, 1), it follows that when updating demand at p = pg the

worst case prior is simply the lowest possible m(pg) — i.e. the lower bound of the set Ty:

m*(po) = v — bpo

When updating demand at a price p’ # py, the firm minimizes over both m(p’) and m(py).
The problem can be represented more intuitively as minimizing over the level of demand at
7/, and the likely change in demand between p’ and the observed py. We can re-write (10)

as:

E(z(p)lyo; m(p)) = (1 —a)m(p) + a(yo + m(p') — m(po))
—_——— ~ ~
Prior demand at p’  Signal at pg + A in Demand between p’ and pg
The firm’s uncertainty about the shape of the demand function implies a lack of confidence
in how the information about the level of demand at p, translates into information about

the level of demand at p’. Clearly, the worst-case prior is that m(p’) =+, — bp/, i.e. demand

12



at the considered price p’ is low overall. However, the worst-case demand shape depends on
whether the firm considers a price or a price decrease.

For a price, p’ > po, m(p') — m(py) < 0 and hence the worst-case is that demand falls a
lot between pg and p’. The largest possible change in demand is restricted by the initial set
of priors Ty, and given that m(p’) is at the lower bound, the solution is to pick m(pg) at the

upper bound and hence:'*

m*(p") = v — bp'; m*(po) = v — bpo (12)

Intuitively, the firm is worried that increasing the price from pg to p’ would lead it into a
particularly elastic part of the demand curve, so that the price increase results in a significant
fall in average quantity demanded.

For a price p’ < pg, on the other hand, m(p’) — m(pg) > 0. The firm understands that
demand is weakly downward sloping, and hence given a price decrease the worst-case prior
is that demand does not change — i.e. the demand curve is inelastic to the left of py and the
price cut does not generate an increase in demand. Given the downward sloping restriction

on m(p) and the prior set Ty, the resulting worst-case prior for p’ < pq is:!?

m*(p') = v — bp'; m*(po) = min(y — bp, v — bpo) (13)

Thus, the worst-case prior when considering a switch to p’ is characterized by two features.
The firm is concerned that demand at p’ is low in general and that it has only changed for
the worst from its previously observed price py. This leads to an endogenous switch in
the worst-case, where the firm worries that demand is relatively elastic when considering
a price increase, but worries about the opposite, an inelastic demand, when considering a
price decrease. As a result, the firm acts as if the prior is locally flat for downward price

movements, and as if the prior is steep for price increases, generating a kink in its beliefs.

4.2.2 As if kinked expected demand

Having characterized the worst-case prior, we can now plug it in equation (10) to obtain
the worst-case conditional expectation at any price p’. Since the worst-case prior changes

depending on whether p’ is above or below pg, as per equations (12) and (13), the conditional

4Because there are no signals observed at other prices, the rest of the prior demand m*(p) does not enter
the conditional mean at p’ and as such is not uniquely determined out of the prior set Y.

15Since Yy is downward sloping, it could be the case that y; — bp’ is bigger than the upper bound of Y
at pg, hence the worst-case prior is defined as the minimum of the two.
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Figure 2: Worst-case Expected Demand

expectation becomes the following piecewise function:

v —bp' + afyo — (yn — bpo)] for p’ <p
E(x(p)|yo;m*(p)) = wm—bp +aly— (v —bp')] for p’ € [p,po] (14)
v —bp 4+ ayo — (v — bpo)] for p’ > po

where the first line shows the case when p’ is sufficiently lower than pg, so that v, — bp’ >
Yn — bpo. The critical value at which this inequality flips is p, defined as v, — bp = v, — bpo.

Thus, the multiple priors endogenously generate a kink in expected demand at the price
Do, even though there is no kink in the DGP. Intuitively, this happens because the worst-case
depends on the considered price p’, and it switches around the observed price py. In the case
of a price increase, the firm worries that demand is elastic, but in case of a price decrease it
worries of that demand is inelastic. In essence, the overall worst-case is the result of splicing
two different priors together — an elastic one to the right of py, and an inelastic one to the
left. Panel (a) in Figure 2 illustrates the resulting, kinked worst-case expected demand,

conditional on seeing a signal equal to the true DGP: yo = 5 — bpy.

Continuous expected demands

The worst-case expected demand in (14) is not only kinked, but also discontinuous.
However the jump is not an integral part of the mechanism, the firm need not consider the
possibility of a drastic change in demand. We have found it most straightforward to impose

only limited restrictions on the set of admissible priors, but we could easily impose further
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restrictions on the smoothness of the possible priors that would ensure expected demand is
continuous, and still obtain the main results.

In particular, we can require that admissible priors m(p) must have a derivative no bigger
than some by,,,. Without this restriction, the worst-case prior is discontinuous to the right

of po due to equation (12). If we impose it, however, the worst-case prior becomes:

m*(po) = min [y, — bpo, Vi — bp + biaz (D — Po)]

As before, the worst-case prior picks m(p’) equal to the lower bound and seeks the
maximal fall in demand between p’ and py. But now there is a restriction on how high m(py)
can be, given the value for m(p) and the understanding that m(p) cannot have an infinite
derivative. As illustrated in panel (b) of Figure 2, this constraint rules out jumps in m(p),
which makes the worst-case demand continuous, but it still has a kink at py.

The kink is the fundamental feature of the mechanism: it is generated by the endogenous
switch in the worst-case elasticity to the left and to the right of pg and does not depend on
discontinuities in the admissible priors. Indeed, the derivative of the worst-case expected
demand is equal to (a — 1)b to the left of pg and equal to (o — 1)b — abyay to its right. When
faced with ambiguity about the shape of the underlying demand, the ambiguity averse firm

acts as if demand is relatively more elastic for price increases than for price decreases.

Updating with more observed prices

The Bayesian update given a vector of signals is standard, and leverages our Gaussian
framework. Online Appendix A describes the general formulas and an analytical approach to
finding the worst-case prior. This involves sorting the observed prices from smallest to largest
and fully characterizing the worst-case prior for all prices recursively. For any entertained
price p’ the worst-case prior is obtained through three steps: (i) the priors on demand signals
at observed prices to the left of that p" are at the upper bound of the prior set; (ii) the prior
at p’ is the lowest bound, and (iii) the priors on demand signals at observed prices to the
right of p’ to be as large as possible, while still respecting a downward sloping m(p). The
intuition is similar as before: the firm worries that demand at price p’ is low, while the
observed signals can be attributed to high prior demand at those other prices.

The main observation is that the switch in the worst-case priors now applies more
generally at all observed prices. For example, Figure 3 shows the worst-case expectation when
the firm has observed demand signals at two distinct prices, both equal to the corresponding
true DGP value. As we show in the next section, the emergence of the two concave kinks at
the previously observed prices in this as if expected demand leads not only to stickiness in

the pricing actions, but also to discreteness and memory of the optimal price.
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Figure 3: Worst-case Expected Demand, 2 previously observed prices

5 Optimal pricing

The firm’s problem is to choose the optimal price that maximizes expected utility as if
the worst-case probability distribution is the true data generating process. The problem is
specified in equation (9). In the previous section we have analyzed how the worst-case prior
endogenously changes, depending on the entertained pricing action.

The pricing problem of the ambiguity averse firm is dynamic. Posting a price today does
not only affect the current profit, but also affects next period’s information set. Solving
fully optimal learning problems while allowing for experimentation is a difficult numerical
task. The main computational burden here is that the state space explodes as the number of
posted prices increases with time. For this reason we focus on studying a two-period model,
where in the second period there are only static profits to be gained and no continuation
utility. We believe that while simple, this two-period model transparently captures the most
important effects of the infinite horizon version of the model.

In the second period, the firm observes the cost shock, ¢y, and the price-quantity history,
!, which includes the first period’s realized quantity sold, q(p;), and some initial information
inherited from period 0. We start by analyzing the static maximization problem in this last
period, and provide analytical results. We then proceed backwards and study numerically
the dynamic problem of the first period, where the firm takes into account the effect of its

optimal price on the information set in the last period.
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5.1 Second period: a static optimization problem

In the second period, the firm chooses a price py to maximize the end-of-period profits under

the worst-case expected demand, conditional on the observed e!:

U(gla 02) = max m(ir)l Eﬁh(pg;m(p)) (Gm — (362) ex(p2)+z2 (15)
pr2 m(p

where the posterior distribution of demand at some price ps is a Normal distribution, as

shown in equation (8).

5.1.1 Price rigidity
Stickiness with one previously observed price

To highlight the analytical mechanics of the model, we start with the case where the firm
has only observed a single price py in the past, for Ny times and with an average realized

quantity sold yy. Evaluating the worst-case expectation, the static problem becomes:

2 ~2 =~ va ¥
0(517 ¢y) = max (eP? — ) e0-5(02+457) %1 (p2;m” (p))
D2

. . ~ 2.2 N,
where the posterior variance evaluates to 7 = 9503 /No_
o2+02/No

worst-case expectation is given by the piece-wise function

and applying equation (14), the

v —bps —vo, +alyo— (v — bpo + vo,)] for p<pandp > pg

T1(p2;m*(p)) = { (1= a)(y — bps — v0.) + g for p € [p, po]

where p = py — 2v0..

Thus, for higher and significantly lower prices than py, the firm acts as if it perceives
a demand curve with a slope b (same as the DGP) that has been shifted from the actual
DGP curve v — bpy by two components. The first, —vo,, is a shift down resulting from
the lower-bound on the set of priors. The second component, « [y — (7 — bpo + vo.)], is the
result of the informative signal 3. On the other hand, for prices p € [Q, po] the firm perceives
a flatter demand curve with a slope —b(1 — «).

There are three potential local maxima that need to be checked: (i) p, = pg since that is

a kink point; (ii) the optimal price for a demand curve with slope —b, given by the standard

expected utility choice ng’b =In (%) + ¢, and (iii) the optimal price for a demand curve
with slope —b(1 — a) or p?E’b(l_a) =In <b(b1(i;§21> + co.

Solving this problem, we can show that there is a positive interval of cost shock realiza-

tions for which it is optimal to stick with the previously posted price pg, making that price
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sticky. We formally establish and characterize the stickiness in Proposition 1.

Proposition 1. If the firm has posted a single price py in the past then,

(i) the price py is sticky. There are values ¢, < €y such that py is the optimal price for all

cost realizations ¢y € [cy, Co

(i1) the inaction region around poy (i.e. stickiness) increases with « (more precise signal)

and vo, (more ambiguity).

Proof. Follows from the kink in & (pa; m*(p)) at po. For details, see Online Appendix C. [J

The proposition showcases several important features of the mechanism. First, this is a
mechanism of rigidity — there is a positive probability that the firm does not change its price,
even if costs change. This is in contrast with the rational expectations firm, which adjusts
the price one-to-one with cost movements. Second, the perceived cost of changing the price
is endogenous and varies with the amount of information the firm has about demand at the
price pg — the more signals the firm has seen, the more confident it is in demand at pgy, and
the more apprehensive about leaving that price. Third, more initial ambiguity makes the

kink more prominent and thus the perceived cost of moving larger.
Stickiness for two previously observed price

The previous analysis can be extended to the case of many observed prices. In our two-
period model we focus on the situation where the firm has seen two distinct prices in the
past, arising potentially from different observations at time 0 and time 1. Similarly to the
case of one observed price, the emergence of kinks in the as if expected demand naturally
lead to inaction around both previously observed prices. As a counterpart to Proposition 1,

we establish the following:

Proposition 2. If the firm has previously posted two distinct prices p1 # po, then

1. there is a kink in the as if expected demand at each p; and each has an associated

inaction region, such that p; is the optimal price for all cost realizations co € [c;, C;]

2. the inaction region around each p; (i.e. stickiness) increases with «; (the precision of

the signal at price p;)

Proof. See Online Appendix C. n
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5.1.2 An endogenous, time-varying cost of price changes from learning

Our theory predicts an endogenous time-varying cost of price changes. New kinks are formed
at newly observed prices, and old kinks change their importance as the firm obtains repeated
observations of certain prices. In this section we go beyond stickiness, and characterize other

important features of the optimal price series. The results are formalized in Proposition 3.

Proposition 3. Optimal prices have the following characteristics:

(i) Discreteness and Memory. If the two previously observed prices are distinct py #
Po, then there is a positive probability that a price change results in a discrete move

within the set of observed prices, exhibiting both discreteness and memory.

(ii) Declining Hazard. Increasing the number of times the firm has observed the price

p1 increases its region of inaction and hence the probability that the firm remains at p;.

(i7i) Large and Small Changes. Optimal price adjustment is characterized by both

discrete jumps and arbitrarily small price movements.

Proof. (i) and (ii) follow from Proposition 2, (iii) obtains because the worst-case expected

demand is continuous to the left at kinks. For details, see Online Appendix C. O]

The proposition establishes several key results. The firm is not only reluctant to change
its current price, but is in general inclined to repeat a price it has already seen in the recent
past. These previously observed past prices become ‘reference’ prices at which there are kinks
in the profit function. The existence of kinks at these prices means that both are associated
with a positive measure of shocks that map to it. Intuitively, the perceived cost of switching
between the two of them is lower than the cost of changing to a wholly new price, thus the
model is consistent with the optimal policy having ‘price memory’, characterized by discrete
price changes between a set of previously posted prices. Moreover, the perceived cost of
changing the price varies with the amount of information about demand at that price — the
more signals the firm has seen about pg, the more confident it is in demand at py, and the
more apprehensive about leaving that price. The endogenous cost of price changes is also
central in generating a price distribution that features both small and large price changes —

this is a model in which prices can simultaneously look both sticky and flexible.

5.2 A dynamic problem

Having solved the last period problem, we now analyze the first period. Here, the firm

observes its marginal cost ¢; and the initial price-quantity history, €°, and chooses p; to
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maximize the worst-case expectation of the discounted sum of this and next period’s profits:

max min 70 P1m(P) [(e" —e) e* P L gyl )]
p1 m(p)
where v(g!, ¢) is the period two profit given by equation (15).

This is a dynamic problem because the next period’s state variable, the price-quantity
history €', includes the quantity sold at the price chosen this period, ¢(p;). That observation
is a noisy signal on demand that the firm would use next period to further update its beliefs.
As a consequence, when the firm chooses its price today it is not only maximizing over this
period’s profit, but also taking into account the effect on the next period’s information set.

We now investigate the optimal policy functions in the context of an illustrative parametriza-
tion. We first note that we are interested in a continuous distribution for the cost shocks as
otherwise that may mechanically generate discreteness in prices even in a standard model.

The Markov process g°(¢;|¢;_1) for the cost shock is
¢t —C¢=p.(c1 —C) + oy

where 7f is white noise. We set b = 6, the constant 7 = 0 and the discount factor § =
0.970/52) We normalize ¢ = (b—1)/b so that P®¥ = 1. We set the cost shock parameters p,.
and o, to values calculated by Eichenbaum et al. (2011), at 0.14 and 0.11, respectively. We
set v = 2, argued in Tlut and Schneider (2014) as a reasonable upper bound on ambiguity,

and illustrate the mechanisms by setting o, = 0.4 and a signal to noise ratio o2 /02 = 0.2.

5.2.1 Static policy functions

For comparison purposes, we begin by illustrating the static problem’s optimal price policy
that we characterized analytically in section 5.1. Using the parametrization above, the left
panel in Figure 4 plots the static problem’s policy under RE in red, and in blue the case
of ambiguity for one previously observed price py. For the latter there is a clear area of
inaction at pg, for which the firm finds it optimal not to change its price. Outside that

EEb(1-a) the RE optimal price when

area the optimal price is: (i) for p < py equal to p
demand elasticity is equal to —b(1 — «); (ii) for p < p or p > py, it is equal to pftEb the
RE optimal price under the true elasticity of —b. The black line shows the case where the
price pg has been observed more often. Importantly, the higher confidence accumulated at
this price leads to a larger inaction area, and it is now the optimal price for a larger mass of
cost shock realizations, i.e. the price is stickier. This panel illustrates the stickiness result

of Proposition 1 and the declining hazard property of Proposition 3.
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Figure 4: Policy Function, Static problem

The right panel of the figure plots the optimal price for the case where the firm has
also seen a second price p; > pg. The two kinks in expected demand manifest themselves as
areas of inaction around these two previously observed prices. This captures the discreteness
of the policy function: previously observed prices become ‘focal points’. Notice that there
is a whole range of cost shocks, that would have previously resulted in setting p®¥, but
now lead to setting p;. There is now a high probability that conditional on a price change
the price adjusts discretely and not proportionally with the cost. This panel illustrates the
inaction result of Proposition 2 and the additional properties analyzed in Proposition 3,

namely discreteness and memory as well as price changes being potentially small or large.

5.2.2 Dynamic policy functions

The dark solid line in the top left panel of Figure 5 plots the period one pricing policy of
the two-period model, where the firm has an initial signal at price py and takes into account
the effect of its current price choice on the future. In comparison to a static optimization,
the dynamic one features even more stickiness, especially for higher cost shocks.
Accounting for active learning has two competing effects. On the one hand, by sticking
to the same price, the firm gets to learn more about it. On the other, by moving to another
price it can expect to learn something new and potentially valuable. Which force dominates
is state-dependent. The left panel is an example of the former effect being stronger, which
leads to more stickiness than the static policy function. This is because the observed price

pp is the optimal price for the mean cost shock ¢. The firm expects future cost shocks to be
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Figure 5: Policy Function, Dynamic problem

close to it, and hence realizes that it is likely to post the price py in the future with a high
probability. Hence, learning more about this part of the demand curve is particularly useful.
In the right panel, we plot the different case where the observed p, is significantly higher
and would generally be optimal only for high cost values. In this case, the experimentation
motive dominates, as it is not very useful to learn about this relatively unusual price py. The
firm is not very likely to revisit such a high price again, and thus finds it optimal to move
earlier away from it and in particular explore prices closer to the more likely region. This
leads to the optimal price featuring less stickiness than the static solution,.

Our results suggest that there is an inherent tension between the incentive to experiment
and that of acquiring further information at a previously observed action. In general, we
find that dynamic learning does not negate the price stickiness results from the static model,
and that it typically further amplifies inaction. The local nature of learning is key for the

result that experimentation may lead to additional stickiness of actions.'%

6 Nominal Rigidity

The model presented so far was one of real rigidity, in which p is interpreted as a real

price, and nothing prevented nominal adjustments. For example, if the firm knew that the

16Consistent with the behavior that our model predicts, Anderson (2012) documents that in laboratory
experiments subjects undervalue information from experimentation but are willing to pay more than the
ambiguity neutral agents to learn the true mean of the payoff distribution.
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aggregate price level had shifted, it could similarly change its nominal price to achieve the
same “safe” real price. In this section we enrich the model so as to make a distinction
between real and nominal prices and show how nominal rigidity arises as a result of the
interaction of demand uncertainty with the uncertainty about the relevant relative price.
The model consists of a continuum of industries populated by monopolistically competi-
tive firms. The firm’s demand is thus a function of the aggregative technology of its industry
and of the relevant relative price, equal to the ratio of its nominal price against the industry
price index. We assume that the monopolistically competitive firm faces ambiguity about
the technology of its industry. This results in the firm not knowing both its demand function
as well as the appropriate relative price argument of this demand function. The ambiguity
averse firm sets an optimal nominal pricing action that is robust to both sources of ambiguity,

and this turns the real rigidity generated in the previous section into nominal rigidity.

6.1 FEconomic Framework

There is a continuum of industries indexed by 7 and a representative household that consumes
a CES basket of the goods produced by the different industries. The final good basket and

the associated aggregate price index are:

N .
c, = ( [ dj) . P= ( / Pﬁ—bdj> (16)

where Pj; are the price indices of the separate industries.!”

Each industry j has a representative final goods firm that produces by aggregating over

intermediate goods ¢ with the technology
C =17 ([ 5iCoustanai) (17)

where z;; is an idiosyncratic demand shock for the good 4, distributed as N(0,02). Each

industry j has potentially different functions f; and v;, and a price index Pj; such that
P Cy = /Pz'tcijtdi

where Cjj; is the amount purchased of good variety ¢ by industry j. Solving the cost

17An equivalent alternative interpretation of our setup is that the economy is composed by a continuum
of households j with different preferences, which share risk and aggregate according to the basket C;.
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minimization problem of the representative firm in industry j yields

_ P; f’ (C' ) Py
o el 2 Jt =H. | = . .
Ozgt f] (_P]t U(Zit) ) = j <P s O]t7 Zzt) (18)

J

The demand of industry j for a given intermediate good ¢ is a function of the relevant

relative price, Z”_’i, overall industry output Cj;, and demand shocks z;. We denote this
J

function by H; and note that it is a transformation of the functions f; and v;. The

intermediate goods consumed by an industry j are produced by a continuum of monopolistic

firms 4. Each firm ¢ sells to only one industry j, hence Yy = Cjj;."®

6.2 Information structure and learning

The information of the intermediate good firms is imperfect in two ways. First, they do not
know the functional forms of the industry-level production technologies f; and v;, and in fact
the uncertainty over the production functions cannot be described by a single probability
measure — firms face Knightian uncertainty (or ambiguity) about their industry structure.
Second, they do not observe all variables every period. They see their own prices and
quantities, P; and Yj;, and the aggregate output and price level, C; and P;, every period.
However, they observe industry level prices and quantities, Cj; and Pj;, infrequently, only

every T periods. Lastly, the firms never see the demand shock z;.

6.2.1 Demand uncertainty

A firm does not know the specific functional form of its demand, but rather needs to estimate
it using its observables. For tractability, we assume the firm understands that the aggregate

industry demand Cj; and the demand shocks z; enter multiplicatively so that'?

b

Iz
Cijt = Hj (—) Cjt exp(zit)

The firm can then use the known structure of aggregate demand

P\
Cjt - <?jt> Ct (19)

18 Ag a result, firms are indexed by both i and j, however, we for ease of notation we drop the j subscript
with the understanding that each firm ¢ is unique to a given industry.

190ur learning framework extends to the case of learning about demand as a function fo multiple variables
without conceptual differences. We make this assumption to transparently focus on the main mechanism.

24



to write its demand schedule as

P (Pi)”
Ciji = H; (P't) (th) Cyexp(zi) (20)
j

Thus, the firm understands how the aggregates affect its individual demand through their

effect on average industry demand Cj;. However it does not have complete information on
the specific competitive environment it faces, and hence does not know the function H;(.).
Taking logs and denoting logged variables as lower-case letters, we obtain a linear expression
in an unknown function, h;, an unknown variable, p;;, known effects, ¢; and bp;, and an

unobserved shock z;:
Yit = hj(pie — pje) + ¢ — b(pje — pe) + 2. (21)

The uncertainty about the unknown function h; is modeled as before - there is a set of
multiple priors Ty, where each prior is a GP distribution with a weakly decreasing mean
function m(r) such that

m(r) € [=y = br,y = br],

Learning about this unknown function proceeds as before, and next we turn our attention

to the uncertainty about pj;.

6.3 Uncertainty about the relationship with aggregate prices

The firm has two sources of information on pj;. First, every 7" periods, it conducts marketing
reviews that reveal the current industry price. The idea is that reviews are costly and time
consuming, but since they are useful, they are done on a regular basis.?® Second, in between
reviews, the firm attempts to filter pj;; out of the aggregate information it observes. Since the
firm’s direct competitors form only a small portion of the overall economy, the firm knows
that p;; # pt, where p; is the aggregate, fully-observable price level.

Even though the industry price pj;; is not equal to the observed aggregate price, the
firm can use the latter to extract information about pj;. Indeed, the firm understands that
prices are cointegrated and that there is a link between industry prices and aggregate prices.

However, since the firm does not know the exact structure of industry demand (i.e. the

20As long as reviews do not happen every period, introducing state-dependent reviews would not
significantly change our analysis. For simplicity we are implicitly assuming that the firm either does not want
to perform reviews more frequently, or there are some technological constraints on the ability to perform
frequent reviews (e.g. the necessary data is not observed every period).
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production functions f;), it does not know the exact functional form of that relationship.*
In fact, the ambiguity about the industry’s production structure transfers to this issue as
well — different industry production functions imply different structural relationships between
aggregate and industry level prices. Due to this ambiguity, the firm is not confident in any

single relationship, and entertains a whole set of potential relationships such that

Djt = Djs + (pe — pjs) + Vjt, (22)

where pj, is the last perfectly revealing signal the firm has seen. Thus, in between reviews
the firm is trying to forecast the industry prices p;; with the aggregate price p;, but is not
certain what is the correct structure of that signal.

Ambiguity is modeled through multiple priors on the co-integrating relationship ¢(.)
and the transitory term v;;,. The priors on v;; are Gaussian white noise, but with different,
possibly time-varying variances. The uncertainty about the cointegrating function is modeled
in a similar fashion to the uncertainty about the demand function h(.). As such, we assume
that the priors on ¢(.) are Gaussian Process distributions that put non-zero probability on
all functions that lay in a set Q, around the true DGP ¢(p; — pjs) = pt — pjs- Lastly,
for tractability, we focus on the limiting case where the variance function of the Gaussian
Processes distributions for the functions ¢(.) goes to zero, so conditional on a prior, one
function ¢(.) has probability 1 and all others probability zero.

The set of potential cointegrating functions allows for a weak relationship between
industry and aggregate inflation in the short-run. We model this by specifying that for

small |p, — p;:|, i.e. small inflationary pressure, the function ¢(.) lies in an interval around 0

o(pe — pjs) € [=Vp, W), for |pe —pjs| < T (23)

This allows for functions that imply weak short-run relationship between aggregate and
industry inflation. The firm realizes, however, that the two are cointegrated in the long-run,

and for that reason, away from zero, the set of potential ¢(.) grows linearly with p, — pj;;

& — pjs) € [pr — Pjs — W + Lot — pjs + v + T, for [p, — pjs| > T

The particular boundaries of €2, are chosen to define an analytically tractable set of priors,
but this is done solely for convenience, and has no bearing on the rest of the argument.

The magnitude of I" is chosen to be high enough so that in between reviews the function

21Tn essence, the firm does not know the functional form of the relevant industry price index, and how it
relates to the aggregate price index.
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¢(.) belongs to the set described by (23). Our empirical evidence discussed in subsection 6.4
supports the notion that it is reasonable for the firm to consider a lack of precise relationship
between aggregate and industry prices for horizons of up to several years.

Note that all admissible priors imply that the price ratio p;; — p; is stationary with
probability 1, but allow for potentially complex, non-linear relationships locally. Intuitively,
the firm understands price levels are co-integrated in the long-run, however, it is not confident
in extrapolating this long-run relation to short-run fluctuations, and entertains functions
¢(.) which allow for a variety of local, possibly time-varying relationships. This is meant to
capture the empirical regularity that estimates of the short-run relationship between disag-
gregated inflation indices and overall inflation are imprecise and appear to be time-varying,
but estimates on long-run inflation series confidently point towards cointegration. The firm
has no advantage over real-world econometricians and cannot eliminate the uncertainty in the
short-run inflation relationship by postulating a single, linear cointegrating relationship with
full certainty. Thus, the set of priors explicitly allows for the possibility that the short-run

relationship is weak, even though in the long-run the firm expects prices to rise in lock-step.

6.3.1 Worst-case beliefs

The unknown portion of the firm’s demand can be written as
h(Pit — d(pe — pjs) — Vie) — b(D(pe — pjs) + Vjt),

where 7 = pi — pjs, and it includes two unknown functions: h(.) and ¢(.). The firm
understands that its demand is ambiguous in two dimensions. First, the functional form
of demand, h(.), is ambiguous, and second the argument of that function itself is also
ambiguous, due to the uncertainty about ¢(.). The firm chooses an optimal pricing action,
74, that is robust to both sources of ambiguity. This amounts to choosing a profit maximizing
price, under the worst-case demand schedule, where worst-case demand is determined price-
by-price, i.e. conditional on any given pricing action 7.

For each admissible demand shape h(.) and pricing action 7, we can find a worst-case

cointegrating relationship ¢(.) that yields the worst demand:*?
R (Pir, vjr) = m(gn h(Fie — ¢(pe — pjs) — vie) — b(O(pe — pjs) + Vjt) (24)

This is the demand level that would prevail if nature draws the worst possible ¢(.), con-

ditional on a particular h(.) and price 7. Since in the short run ¢(p: — pjs) € =V, Vol

22Here we are able to minimize over ¢ directly due the assumption of Delta priors.
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variation in p; does not change the set of possible numerical values that could be realized
through ¢(p; — p;s). Hence we can recast the optimization in terms of minimizing over
a parameter, ¢ € [—7#, Vp), which represents the short-run conditional expectation of pj;.
The solution to the minimization can then be written as ¢*(p; — p;s) = ¢*. Intuitively,
the worst-case cointegrating relationship implies that movements in the aggregate price are
not informative about industry prices in the short-run. This is because when there is no
such informative relationship, nature has the greatest flexibility in choosing the worst-case
expectation of pj;, given a demand function h(.) and a price choice 7.

Since the transitory shocks v;; are not observed, we can take an expectation over them

and define the expected demand under the worst-case cointegrating relationship:
x(Fie) = Ey(R(Fit, vie))

This is the object that the firm can learn about through its past prices and quantities because,
according to the optimal behavior under ambiguity, it believes that nature has minimized
demand in this same fashion at any point in time. For tractability, we assume that the

implied expectational errors follow a normal distribution,
W (Fir, vie) = @(Fa) + €5 a0 ~ N(0,072). (25)

6.3.2 Nominal rigidity from real rigidity

The firm uses past signals to learn about the worst-case demand. Putting together (21) and
(25), the demand facing the firm is

Yir = 2(Tir) + ¢ + b(pr — Djs) + €it + 2t (26)

which is a known function of the observed aggregates, namely price p, and quantity ¢;, an
unknown function z(.) of its perceived relevant relative price and Gaussian noise. This forms
a well-defined learning problem that the firm approaches in the way described in Section 4.

The kinks are formed in the space of relative prices 7;. However the base of this relative
price, i.e. the last review signal pjs, does not change every period. To keep this relative
price constant then, and thus take advantage of the kinks, the firm needs to keep its nominal
price constant. Hence, the model generates both nominal stickiness and memory in nominal
prices. In essence, all results from the analytic section go through, but their effects are now
primarily on nominal prices. In addition, since the firm does update its beliefs about pj
regularly, the stickiness in nominal prices appears as stickiness in “price plans”. The price

series tends to bounce around a few common prices that look like a “price plan”, and then
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when new review signals arrive the firm shifts that price plan accordingly.

6.4 Empirical link between aggregate and industry prices

Here we use US CPI data to show that the relationship between aggregate and industry
prices is time-varying and unstable over short-horizons. In particular, an econometrician
would generally have very little confidence that short-run aggregate inflation is related to
industry-level inflation, even though he can be confident that the two are cointegrated in the
long-run. Thus, our assumption on the uncertainty over ¢(.) above again puts the firm on
an equal footing with an econometrician outside of the model.

Our analysis uses the Bureau of Labor Statistics’ most disaggregated 130 CPI indices as
well as aggregate CPI inflation. The empirical exercise consists of the following regression
method. For a specific industry j, we define its inflation rate between ¢t — k and ¢ as ;5 and

similarly 7/ for aggregate CPI inflation. For each industry j, we run the rolling regressions:

_ a
Ttk = BjktTg + Ut

over three-year windows starting in 1995 and ending in 2010.22> We repeat this exercise for
k equal to 1, 3, 6, 12 and 24 months. Finally, for each of these horizons we compute the
fraction of regression coefficients 3, (across industries and 3-year regression windows) that
are statistically different from zero at the 95% level.

We find that for 1-month inflation rates, only 11.4% of the relationships between sectoral
and aggregate inflation are statistically significant. For longer horizons k, these fractions
generally remain weak but do rise over time: 26.4%, 40.6%, 58.5% and 69.1% for the 3-
, 6-, 12- and 24-month horizons respectively. This supports our assumption that while
disaggregate and aggregate price indices might be cointegrated in the long run, their short-
run relationship is weak.

In fact, not only is the relationship statistically weak in general, but it is highly unstable.
This can be seen in Figure 6 that shows the evolution of the coefficient f3;, for £ = 3 for 3-
year-window regressions starting in each month between 1995 and 2010, for four industries.
Not only are there large fluctuations in the value of this coefficient over our sample, but
sign reversals are common. In general, at any given date, there is little confidence that the
near-future short-horizon industry-level inflation would be highly correlated with aggregate

inflation, even though the data is quite clear that the two are tightly linked over the long-run.

23Results are very similar if we use windows of 2 or 5 years instead.
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Figure 6: 3-year rolling regressions of 3-month industry inflation on 3-month aggregate
inflation for four categories. The solid line plots the point estimate of regression coefficient
on aggregate inflation. The dotted lines plot the 95% confidence intervals.

7 Quantitative model

We build a quantitative version of the model in the previous section, that endogenizes
marginal cost and introduces a law of motion for the aggregate price level. The objective is to
quantitatively study the individual decision problem of a firm that faces demand uncertainty.
A precise way to view the setup proposed here is to consider it as general equilibrium model
with a measure zero of myopic, ambiguity averse firms. This means that the aggregate

variables follow their flexible, rational expectations law of motion.

7.1 Model setup

As described in section 6, there are three layers of production. A representative household
purchases consumption from a competitive final good producer, who buys from a continuum

of industries indexed by j. Each industry itself is composed of a competitive final good
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producer, that aggregates over a continuum of intermediate monopolistic firms index by 1.

The representative household consumes and works according to

ZEt <5t+k {log Cipr — X / Li,t+kdi:|)
k=0

subject to the budget constraint

/Pj,thtdj + Eiqp1bipr = by + Wt/Lz’,tdi + /Uz‘,tdi

where ¢;11 is the stochastic discount factor, b;1, is state contingent claims on aggregate shock,
v; ¢ 1s the profit from the monopolistic intermediaries and consumption integrates over the
varieties produced by competitive industries j with a CES aggregator with elasticity b as
shown in (16). The solution to the cost minimization problem of the representative agent is
to demand from each industry the amount given by (19). The technology and resulting cost
minimization solution of the j-th industry are described by equations (17) and (18).

The demand for the monopolistic firm ¢ comes from the industry j in the form of (18)
which we have further restricted to be described in (20). The firm produces variety i using
the production function:

Y;',t = witAiLi

where w;; and A; are an idiosyncratic and aggregate productivity shock, respectively, and

L;; is hours hired by firm 7 at wage W;. The processes for these shocks are:
log wit = p logwis—1 + 5;}; log Ay = pglog Ay—1 + €f

where 7, is iid N(0,0¢) and €f is iid N(0,07).
Monopolistic firms are owned by the representative agent, and thus they discount profits
using the agent’s stochastic discount factor. The economy-wide price index and aggregate

output are defined as

Ly A N =
B, :/ 37t$di; Y :/ <Yj,tb )b Ldj
0 t 0

Finally, nominal aggregate spending S; = P,C; follows a random walk with drift
log S; = p+log Si—1 + €

where € is iid N(0,02). Using the household’s hours decision W; /P, = xC} to substitute out
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for W, the real flow profits can be written as

P; XSt
o= 22 Y; 2
Uz,t ( Pt it gtpt) Z,t ( 7)

7.2 Demand uncertainty

As in section 6, we assume that the firm observes the aggregate P, and C}, but not its
demand function. The learning process is the same as described in section 6, where equation

(26) gives the demand to be estimated as
Yir = 2(Tit) + ¢ + b(pr — pjs) + 2it + € (28)

and 7;; = pi — pjs is the price relative to the last observed p;; and the set of priors consists

of Gaussian Processes with a weakly decreasing mean function

m(7it) € [V — OFie, Y — OFa,

and a covariance function K (7,7') = o2.

The firm enters period ¢ with knowledge of the history of previous realized demand and
corresponding prices, denoted by €/~!; the current productivity w; and the aggregate state
variables: current productivity A;, nominal spending S; and aggregate price FP;; and an
incomplete history of past P;;, where it has observed the industry price level only once
every T periods. Based on the state variables, the firm chooses its price. Demand shocks
are realized at the end-of-period and the firm fulfills demand at that price. The firm then
updates its information set.

The firm does not observe the distribution of idiosyncratic states, but needs to conjecture
how the aggregate price is formed. Here we use the assumption that there is a measure zero
of ambiguity averse firms while the rest of the economy is populated by flexible price firms
that have full confidence in their knowledge. This is the flexible price, rational expectations
(RE) general equilibrium version of our economy.?*

To characterize the RE version, we assume a simple true DGP: each industry j has the

i
imply the standard demand C;;; = Cjey (Pm/Pjyt)_b. Thus, under the true DGP, the
demand function is simply vix = —bp;s + ¢ + bp, + 2z and the RE firms know that the

b—1
same CES functions f; and v; in (17): f;(Cije) = Cyjf 5 vj(2i) = zilt/b. These aggregators

24A similar approach of a flexible aggregate price level is taken for example by Stevens (2014) in the
context of a rational inattention model. This benchmark provides an upper bound for the degree of price
neutrality compared to the case of a measure one of ambiguity averse firms.
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underlying demand is z(7) = —b7;;.2° The aggregate price solution of this economy is, up

to a log-linear term:

flex

pi " = log + log S; — log A, (29)

b—1
and the optimal price for the RE firms’ price is to subtract log w;; from p{ fex

The ambiguity averse firm has all the knowledge about aggregate equilibrium relation-
ships of a RE economy, except knowing its demand function. For the quantitative model of
this section we solve for decision rules of the firm by assuming that the firm is myopic, so

that it solves a static optimization of end-of-period profit v; ;:2°

max min BTl Dy, (30)

Pit  B(Pi|et—1)
The optimal decision rule is characterized as follows: the ambiguity-averse firm takes as
given the aggregates, and maximizes the objective given by (30), where profits are defined

in (27), subject to the demand uncertainty in (28) and the assumed information structure.

7.3 Results
7.3.1 Calibration

The model period is a week. We calibrate § = 0.97(%/%?) to match an annual interest rate
of 3%. The mean growth rate of nominal spending x = 0.00046 is set to match an annual
inflation of 2.4% and we set the standard deviation o, = 0.0015 to generate an annual
standard deviation of nominal GDP growth of 1.1%. Following the calibration in Vavra
(2014) we set the persistence and standard deviation of aggregate productivity p, = 0.9785
and o, = 0.003 to match the quarterly persistence and standard deviation of average labor
productivity, as measured by non-farm business output per hour.

We are left with seven parameters that refer to the firm’s problem. We choose an elasticity
of substitution of b = 6, implying a markup of 20%. We set the interval between reviews,
given by the parameter T', to be equal to 31 weeks, which is the average duration of a pricing
regime documented by Stevens (2014). For the other parameters we use pricing and quantity
moments based on the IRI Marketing Dataset, as described in section 3.

First, we calibrate the standard deviation of demand shocks o, by using empirical

evidence on the accuracy of predicting one-period-ahead quantity. In particular, using our

25Notice that the whole layer of industry demand has dissapeared in this case. This was done on purpose
for the simplicity of the model. However, the monopolistic firm retains all the uncertainty about the direct
competitors, reflected in the unknown, relevant price p; ;.

26T his simplifying assumption allows us to compute easier a larger model such as this. We have investigated
more forward-looking problems in the exogenous cost section 4, which produce an incentive to experiment.
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dataset we run linear regressions of log(Q)) on a vector of controls X, that include: 2 lags of
log(Q), log(P) plus its own 2 lags, the weighted average of weekly prices in that category and
its 2 lags as well as item and store dummies. We compute the absolute in-sample prediction
error (QQ — X B) /Q, where B are the regression coefficients and @ is the mean quantity.?” We
calibrate the size of noise shocks to o, = 0.5, corresponding to a median forecast error of
0.50 % 0.675 = 0.3375, matching our sample average.?®

We set symmetric bounds on the prior set YTy, such that —y;, = =, = vo,, normalized by
a parameter v, which we set equal to 2 following Tlut and Schneider (2014). We calibrate
the remaining three parameters, the persistence and volatility of idiosyncratic productivity
(pw and oy,), and the signal-to-noise ratio in demand signals (‘;—%), by targeting three salient
pricing moments: the frequency of price changes, the frequencyz of ‘reference price’ changes,

and the fraction of price increases.?? Table 1 presents the whole set of parameters.3°

Table 1: Parameters

E] U O Pa T4 T o0, p, 0o v oi/o?
0.974/52)  0.00046 0.0015 0.9785 0.003 31 0.5 0.9 0.0975 2 0.2

7.3.2 Pricing behavior

Pricing moments

Table 2 presents pricing moments generated by the model against their empirical coun-
terparts. Only the first three moments are targeted by the calibration. As in the data, the
model produces posted prices that look as if they change frequently but at the same time
reference prices that are relatively sticky.

In section 5 we analyzed the potential of our proposed mechanism to be consistent
with a range of stylized pricing facts. We follow the description of price characteristics
in Proposition 3 and report in Table 2 the model implied moments along four dimensions.
The emerging message is that the mechanism operates as if firms face an endogenous, state-
dependent cost of price changes, that is not only consistent with observed stickiness of posted

and reference prices, but also with additional empirical overidentifying restrictions.

2TWe do this across all items within a category/market and also for the item with most sales in its category.
Table B.1 in the Online Appendix reports prediction errors for these various regressions.

28Here we used that ®(—0.6745) = 0.25, with ®(.) denoting the standard normal cdf. In addition, we note
that, with a slight abuse of notation, we use o, to denote the standard deviation of the sum z;; + €;;. From
the firm’s perspective either source of disturbance amounts as noise in the demand equation (28).

29As in Gagnon et al. (2012), a 'reference price’ is the modal price within a rolling window of 13-weeks.

30Moments are based on a simulation of 1000 firms for 5000 periods. For computational purposes, we need
to limit the proliferation of useful past information the firm carries over, which we do by imposing that only
information in the last 200 periods is used in the Bayesian update.
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Table 2: Pricing moments

Moment Data Model
(1) Fraction of price increases 51% 52.6%
(2) Frequency of posted price changes 22.85% 22.93%
(3) Frequency of 'reference price’ changes 5.96%  5.58%
(4) Probability of revisiting a price 62.1%  50.9%
(5) Average number of unique prices (13 weeks) 2.62 2.77
(6) Fraction of price changes < 5% 13.9%  17.3%
(7) Fraction of price changes > 15% 56.3%  55.1%

First, there is strong memory in prices: conditional on a price change, the probability
of selecting the same price in the last 26 weeks is about 51%.3! This in particular is a
challenging moment to match for a benchmark menu cost model, as it typically features no
incentives for firms to revisit prices, conditional on changing. Second, there is discreteness in
prices: a window of 13 weeks experiences a relatively small number of unique prices. Memory
and discreteness arises from the multiple kinks in the as if expected demand, produced by
the lower perceived cost in terms of uncertainty of moving back to previously observed prices.

Third, as in the data, there are both small and large price changes: the model implies
that 17.3% of all price changes are less than 5% in absolute terms, while 55.1% of all changes
are greater than 15% in absolute terms. The existence of kinks in the policy function result
in the potential for frequent, large price changes as the firm switches between the prices at
those kinks. Small price changes arise because the policy function also has parts where the
firm adjusts flexibly, as discussed in the analytical model. On the one hand, this can happen
when the history of shocks is such that kinks in the policy function are small, for instance
because of little accumulated previous information at some prices. On the other hand, the
ambiguity price policy also has regions of flexibility outside the kinks. Thus, because of the
endogeneity of what appears as a cost of changing a price in the ambiguity model, large
and small price changes co-exist. This endogeneity makes the model behave differently than
a model with a fixed cost of a price change which would typically not feature small price
changes, as they are not worth paying that fixed cost.??

Fourth, the model produces a declining hazard function. As the firm accumulates
information at some price, the kink in the expected demand deepens and the cost of changing

that price increases. Figure 7 plots the probability of a price change, given that the price

31Note that if we filter sales out of the data, the probability of revisiting a price seen in the last 26 weeks
is still 48%, which is even closer to the model.

32Midrigan (2011) uses a multiproduct firm and assumes economies of scope in price adjustment to generate
small price changes in a menu cost model. A reduced form is to assume the random possibility of a much
smaller menu cost, as used for example in Vavra (2014).
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Figure 7: Price Change Hazard

has stayed fixed for n periods, with n on the X-axis. We find that the model (left panel)
matches the data very well (right panel).>> The model implies a probability of a price change,
given that the current price has been posted for just one week so far, of about 50%, and the

probability steadily declines to about 7% for prices that have stayed constant for 13 weeks.
Policy functions

Next, we examine the underlying optimal price policy functions. Figure 8 plots the price
policy as a function of idiosyncratic productivity. The left panel shows the case of two
previous prices observed only once each. The resulting kinks are relatively small and the
policy function resembles the flexible price one — it is characterized by large flexibility and
likely small price changes. However, the right panel shows that as the number of observations
at those same prices increases (to five in this case), the kinks become deeper. In this situation
we will mostly observe few and large (discrete) price changes, as the firm switches between
the two kinks. Moreover, even in this situation, the firm may choose small price changes in
the areas further away from the kinks.

Of particular interest is the optimal pricing behavior as a function of monetary policy
shocks. We are specifically interested in the implied degree of monetary non-neutrality,
defined as the effect of the monetary policy shock on the quantity sold, which can be read
off from the deviation of the optimal price from its flexible version. The left panel of Figure
9 plots the price policy when the firm has observed a single signal in the past. The resulting

kink and inaction region are small, and monetary non-neutrality is relatively weak. In the

33The empirical hazard function is computed product by product, pooling over retailers within a single
market, and then we report the median probability across products.
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Figure 8: Optimal Price Policy, idiosyncratic shocks

right panel, we plot the price policy for a firm that has seen the single reference price five
times, and we see a much larger region of inaction and stronger monetary non-neutrality.
Moreover, both policy functions show that even conditional on a price change, the ambiguity
averse firm is likely to deviate from the flexible price, and thus preserve non-neutrality.

Having multiple observed prices leads to different, potentially non-linear effects of mone-
tary shocks, as we illustrate in Figure 10. The left panel plots the case in which two previous
prices have been observed once each. We see that there are two flat areas in the policy
function, corresponding to the two past prices, and consequently there is more total inaction
compared to the case of single past price. Furthermore, we see that in general there is now
a higher probability that the price deviates from the flexible benchmark.

In particular, a monetary policy shocks can have small, large and even negative effects.
Consider for example a contractionary monetary shock, starting at s = —0.1. As we move
to the left, there is strong monetary non-neutrality as prices at first do not change, and then
remain above the flexible price level, even conditional on changing. On the other hand, an
expansionary monetary shock behaves differently. Initially (i.e. for smaller shocks) there is a
significant amount of inaction and thus monetary non-neutrality, but then the optimal price
jumps up to a level above the flexible price. Thus, instead of under-reacting and generating a
positive quantity effect, the price would over-react, and in fact have a negative effect on the
average quantity. For even larger shocks, the price would eventually settle at the other kink,
and the positive quantity effects can be restored, at least for a while. This is an example of

the possibly non-linear monetary shock effects, where small and large shocks can have the
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Figure 9: Optimal Price Policy, monetary shocks

expected positive effects, but moderate shocks might in fact have negative effects.

The right panel plots the policy function in the case where the firm has observed each
of the two past prices five times each. We can again see that this results in deeper kinks
and larger regions of inaction. Moreover, this panel also illustrates that monetary policy
shocks can have asymmetric effects. In general, contractionary shocks might have quite
strong monetary non-neutrality, because of the deepness of the lower kink. However, positive
shocks (starting from s = —0.1 again) would relatively quickly incentivize the firm to change
price to its other kink. This generally bring the price close to the flexible price, and thus
there appears to be less monetary non-neutrality to the right than to the left.

To summarize, monetary policy shocks have effects that are history and size dependent.
History matters because it affects where in the state space the kinks are formed and how large
they are. For example, there may be a history of shocks, either idiosyncratic or aggregate,
that has generated larger kinks, and in that case the firm will behave as if there are significant
costs of changing its nominal price, together with potentially strong memory in its price.
Alternatively, the firm may find itself in a situation where these kinks are much smaller, and
as such monetary non-neutrality is likely to be small. At the same time, for a given history,
the current size of the shock matters through the standard effect of pulling the optimal
price out of an inaction area. However, when there are multiple kinks, the qualitative
and quantitative effect on the sign on the average quantity sold depends on the interaction

between the size of the shock and the history-dependent kink formation.
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Figure 10: Optimal Price Policy, monetary shocks

8 Conclusion

Despite its central role in modern macroeconomic models, a price-setting mechanism that
happens to be both plausible and in line with the numerous pricing facts that have been
documented in the literature remains elusive. In this paper, we model an uncertainty-averse
firm that learns about the demand it faces by observing noisy signals at posted price. The
limited knowledge allows the firm to only characterize likely bounds on the possible demand
schedules. Since the firm is ambiguity-averse, it acts as if the true demand is the one that
yields the lowest possible total quantity sold at a given price. In other words, for a price
decrease the firm is worried that there will be very little expansion in demand; while it fears
a drop in quantity sold if it were to raise its price. This endogenous switch in the worst-case
scenario leads to kinks in the expected profit function. This is akin to acting as if there is
a cost, in terms of expected profits, associated with moving to a new price.

A corollary implication is that because signals are noisy, repeated observations are useful
to learn about demand at a specific price. The firm thus finds it beneficial to stick with
prices that it has less uncertainty about by having repeatedly posted them in the past. This
discrete set of previously observed past prices become ’reference prices’ at which there are
kinks in the profit function. In addition, we show that if publicly available indicators such as
aggregate inflation are ambiguous signals of the price aggregate most relevant for the firm,
then our real rigidity becomes nominal in nature and money shocks can have real effects.

Our model naturally predicts that prices should be sticky, unless shocks are sufficiently
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large. In addition, the proposed mechanism is parsimonious in the sense that it produces
a set of overidentifying restrictions that are consistent with stylized facts from micro data:
prices exhibit 'memory’ as firms find it optimal to stick to a discrete distribution of prices;
the probability of observing a price change is decreasing in the time since the last price

movement; and small and large price changes coexist in the data.
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Online Appendix

A Updating with more observed prices

We can readily expand the updating formulas that we have developed in Section 4.2 for one
observed price. Assume that firm has seen a whole vector of T previous signals, yg, with the
corresponding vectors of prices pg and number of times Ng. The joint distribution with demand

at any price p is again jointly Normal

#(p) ] w([ m(p) ] (o po)>
Yo m(po) 7 ’

with
2 2 2
o (02,...,02)
%(p, po) = [ : i o2 ]
2 2 —
(02,...,02) .+ dzag(N—O)
where (02,...,02) is a 12T vector, and ¥, is a TzT matrix with all entries equal to o2.

The resulting conditional expectation follows from applying the standard formula for condi-

tional Normal expectations:

2

E(x(p)[yo) = m(p) + [02,...,0%|(S, + dz’ag(;—zo))_l(YO — m(p0))

The conditional expectation is again linear in the prior and a weighted sum of the demeaned

signals. Expanding the above formula, we obtain

E(z(p)lyo) = m(p) + ao(yo1 — m(po1)) + -+ + ar(yor — m(por))

where yo; is the i-th element of the vector yo, and «; € (0,1) is the i-th element of the 12T
vector [02,...,02](Z, + diag(g—%))_l.

Without loss of generality, assume the prices in pg are sorted and that the last element is the
largest price. In building the worst case expectation, one can work from right to left and start
with p’ > po . This is the easiest case, since the firm wants m*(p’) to be the lowest possible so it
sets it equal to the lower bound of the prior set, but sets the priors on all observed signals to the

upper bound of the prior set

m(p) _ Yh — bp for p S Po,T
v —bp for p > por

Next consider, p’ € (por—1,por]- As for the case of one observed price, the worst case is when
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m*(p’) is low, but the priors on the observed prices are high. So we set m*(po;) equal to the
upper bound for all ¢ < 7T — 1, and set m*(po.r) to the highest admissible value that satisfies the

downward sloping restriction, so again m*(por;p’) = min(y, — bp’, v, — bpor). As a result

Y — bp for p < p/
m(p;p’) = ¢ min(y, — bp', v, — bp) for p € (¢, por]
v — bp for p > por

We can work recursively to the left (i.e. p’ € (por—2,por| and so on) and fully characterize the
worst-case prior for all possible price choices p’. The general rule is that for any p’, the worst-case
m(p) for all signals to the left of p’ to be at the top of the tunnel, the prior at p’ to be at the
bottom of the tunnel, and priors on signals to the right of p’ to be the highest admissible value

that respects a downward sloping m(p).

B Additional Table: Predicting Demand

Table B.1: Predicting demand

(1) Across all items

Median pl0 p25 p7b p90
Spaghetti sauce | Detroit 0.26 0.05 0.12 0.5 0.95
Beer Boston 0.3 0.05 0.14 0.5 0.87
Frozen pizza Dallas 0.46 0.07 0.2 091 1.63
Peanut butter Seattle 0.45 0.08 0.2 0.83 1.36

(2) Item with most sales in category/market
Salted snacks Seattle 0.3 0.04 0.11 0.65 1.16
Beer NYC 0.46 0.17 0.3 0.71 1.23
Frozen dinner LA 0.48 0.09 0.23 0.84 1.35
Spaghetti sauce | Dallas 0.28 0.05 0.13 0.53 0.9

The dependent variable is log(@®). Independent variables are: 2 lags of log(Q), log(P) + 2

lags; log(P)?; log(P) + 2 lags; log(P)"; item/store and week dummies, where log(P) : weighted
average of weekly prices in category/market. The Table reports the moments on the absolute
in-sample prediction error: (Q — X3)/Q.
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C Proofs

Proposition 1. If the firm has posted a single price py in the past then,

(i) the price py is sticky. There are values ¢, < Ty such that py is the optimal price for all cost

realizations cs € (¢, Co

(ii) the inaction region around py (i.e. stickiness) increases with o (more precise signal) and vo,

(more ambiguity).

Proof. (i) Given the piece-wise form of the worst-case expectation in (14), there are three potential

local maxima that we need to check: py, pf E’b, and pf Eb1=0) \We start by comparing py and pf Eb,
It is useful to define ;
0=1
n(3—)

and also the cost value ¢y such that py would be the optimal price for a RE firm facing a

demand curve with slope —b, i.e. py = pr’b(co):

po =0+ co

We also define the difference between the current cost and ¢y as
Ct = ¢y — Co
Now we can write the expected profit at py as

E*(n(p0)) = (exp(po) — exp(cr)) exp(Lo? + 2 (po))

2 z
1
= (exp(f + co — ¢;) — 1) exp(er + 505 + (1 —a)(y = b(0 + co) — vo.) + ayo)
1
= (exp(0 — &) — 1) exp(c; — b(1 — a)co + =02 + (1 — a)(y — b — vo.,) + ayp)

2 z

and write the expected profit at pf ED as:

* 1 -
E*(r(p;""")) = (exp(p) — exp(er)) exp(50% + 2" (p™"))
1
= (exp(6) — 1) exp(cs + 507 +7 = b(0 + cr) —vo. — aly = b(0 + c) + vo2) + ago)

= (exp(f) — 1) exp((1 — b)ey + bacy + %af + (1 —a)(y—=0b0) — (1 + a)vo, + ayo)

Dividing the two
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E*(7(po)) _ (exp(f — ¢;) — 1) exp(e; — b(1 — a)cy + %02 +(1—a)(y—b0 —vo,) + ayo)
E*(ﬂ(pr’b)) (exp(0) — 1) exp((1 — b)ey + bacy + %02 +(1—=a)(y—=00) — (1 + a)vo, + ay)
_ (exp(6 —¢;) — 1)

(exp(f) — 1)

exp(bé; + 2avo,)

Notice that this is a continuous function of ¢; and that at ¢, =0

E*(m(po))
E*(m(p"")) le=o

Moreover, as ¢; — —oo the ratio grows without bound, and as ¢; — oo the ratio turns negative.

= exp(2avo,) > 0

Since this is a continuous function of ¢, there exist ¢, < € such that

E*(w(po)) > E*(n(p™"))

for all ¢; € [¢, .

Next we compare the profit at pg to the profit at pf Eb1=e)  Thig is straightforward since

pr’b(l_a) could be an optimal price only if pf‘ Bb1=e) o [po — %yaz, po] — the region in which the
demand curve has a slope of b(1 — «). Since this section of the demand curve includes py itself, it

follows that

E(r(p ")) > B (n(po))
<

. 2
P € o — 200, o)

There are two possible cases for pf Eb(l=e) First, if « is so large that

b(l—a) <1

then the slope is less than 1, and hence the optimal price is the maximum admissible price and
hence
REb(1—a)
Py = Do-

In that case, we only need to compare profits at py and pf E’b(c) which we had already done before,

and can conclude that pg is the optimal price for all cost shocks
¢ € ¢, T
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where ¢ = ¢,.

On the other hand, if (1 — a)) > 1, let

_ 1—
0 = 1H(M
b(l—a)—1
and then pr’b(l_a) = 0 + ¢;. Then the condition pr’b(l_a) € [po — %I/(TZ, po) is satisfied if and
only if
. 2 .
¢t € [co—(0—0) — 50z €0 — 0—0))
Notice that since (1 —a) < 1,
0> 0

and hence

CQ_(Q_H))<CD

7o)

Putting this together with the above result comparing E*(7(p)) and E*(7(p , we have

that pg is the optimal price for all cost shocks

¢ € e, 7

where ¢ = max(¢;, co — (§ — 6)), and we have that ¢ < ¢y < ©.
To sum things up, po is the optimal price for all ¢; € [c,¢] where ¢ is defined above as the cutoff

point at which the price pf Eb starts yielding higher profits than py for ¢; > ¢ and,

G for b(1 — ) < 1
c= .
- max(c¢,,co — (0 —60)) for b(1 —a) > 1

E(n(po))  _ 4
E*(x(py ")
Let ¢ = ¢ — ¢y and take logs of the expected profits ratio when cost equals € so that:3*

E*(m(po)) (exp(f —¢) — 1)
E*(n(p ")) (exp(6) — 1)

Applying the implicit function theorem we get

(ii) From the proof above we know that there exist ¢ < ¢y and ¢ > ¢q such that

) = In

)+ bé + 2avo, =0

ac 2vo,
a. . = N exp(0—¢)
Ocx exp(0—é)—1 +0

34Tmplicitly we are assuming ¢ < 6 which is true since at ¢ = § we have E*(7(po)) = 0 and thus is clearly below
the profit at the price pr’b. Hence ¢ < 6.
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exp(efé)
Since 1) —%9()921 = —band 2) =91 < (), it follows that the denominator is negative when

¢ > 0, and positive otherwise:

__exp(f—¢)
exp(f —¢) —1

And since 2vo, > 0 it follows that

+b<0 <= ¢>0

o
s = >0
Ox

Hence increasing o increases ¢ and decreases ¢,, which increases the region over which py

dominates pi™°. If (1 — a) < 1 then we are done, since then ¢ = ¢,. If b(1 — a) > 1, notice that

d(co— (6 —0)) (0 — 0)

Oa Jda
O(In(;A=2ly)

b(l—a)—1
Ja

1
B S TG s S

and hence ¢ = max(c,, ¢o — (6 — 0)) unambiguously decreases with « as well. Thus, we have
shown that the inaction region increases in a.
To prove that the inaction region increases with vo., notice that we can apply the implicit

function theorem in a similar way to get

oc 2vo, R
a(w):— o (6=0) b>0<:>c>0
# " exp(f—é)—1 +
and we can complete the proof following the same steps as above. O

Proposition 2. If the firm has previously posted two distinct prices p1 > po, then

1. there is a kink in the as if expected demand at each p; and each has an associated inaction

region, such that p; is the optimal price for all cost realizations cy € [c;, G

2. the inaction region around each p; (i.e. stickiness) increases with o (the precision of the

signal at price p;)

Proof. Without loss of generality, we assume p; > py.
(i) First, we characterize the worst-case expectation. Let P, =Po — %1/0'2 and p, = p; — %1/02
be the prices such that the lower bound on the prior of p, equals the upper-bound of the prior

tunnel at p;:
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v—bg_oi—yazzy—bpi+l/az
Then, if p L > Do the worst-case expectation is
Y —bpr —vo. +ai(yr — (v — bp1 + voz)) + ao(yo — (v — bpo + vo2)) forp <p,, p € (po,p,), or p>p1
(pe) = ¢ (1 —ao)(y —bpr — vos) + aoyo + a1 (y1 — (v — bpr + vo)) for p € (p,, o)

(1 —aa)(y = bpt — voz) + aayr + ao(yo — (v — bpo + vo2)) for pi € (p,, 1]

and if p | < Do we have

v —bpr —vo. +ai(yr — (v = bpr +vo2)) + ao(yo — (v — bpo +voz)) for p <p,, p € (po,p,), or p > p1

#(pr) = (1 —a1)(y —bps —vo.) + a1y + ao(yo — (v — bpo + v02)) for p; € (po, p1]
;) =

(1 =01 —ap)(y—bpt — vo.) + a1y + aoyo for pr € (p,,po]

(1 = ap)(y = bpe — vo2) + agyo + c1(y1 — (v — bp1 + vo2)) for p; € (py:p,]

In both cases there is a jump and a kink at both p; and pg. As we show below this leads
to regions of inaction around both of those prices. The proof is constructed in a way similar to
Proposition 1.

Case 1: p, > po. We have 5 candidate optima: po, p1, prEY, pREbI=e0) ) REb(=0n)

It is again helpful to define the cost values ¢y and ¢; such that

po =0+ co
pr=0+ca
and
Cit =0C — G
Start by comparing the expected profits at pf Eb— 9+ ¢ and po and p; respectively:

E*(m(po)) _ exp(0 — o) =1
E*(m(pFF)) exp(f) — 1

exp(béo; + 2apv0,) (31)

E*(m(p1)) _ exp( — ¢) — 1
E*(n(pi™")) exp(f) — 1

exp(béy + 201 v0,) (32)

The same analysis as in the proof of Proposition 1 tells us that there exist ¢;; < € such that
E*(n(po)) > E*(m(pfP?)) for all ¢, € [cy, o, and E*(w(py)) > E*(x(pfF?)) for all ¢, € [¢y,, G-
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Similarly, if b(1 — a;) < 1, then plEbI=e) — 0 and otherwise E* (m(ps)) > E*(W(pr’b(lfai)))
if and only if ¢; > ¢; + (91 — 0), where we define

5 b(1 — )
=G ey 1

Next, we need to compare the profits at po and p;. That ratio of expected profits is:

g:ggig% B EEEEZ : 2(1)3 : 1 exp(b(p1 — po) + 2(av — o)vo,)
= 080 =Ly ) 20— o)

exp(f — cor) — 1

B b(c1 — o) + 2(ag — .
exp(f — o + (c1 — ) — 1 exp(bler — co) (ag — an)vo)

Notice that this is a continuous function of ¢y, that equals 0 for ¢y, = 6, which tells us there
are sufficiently high values of ¢; such that E*(m(pg)) < E*(w(p1))) . Next, take logs and derivate

in respect to Cy;:

E*(m(po)) . A
(9111(E*(7r(z(1)))) B exp(6 — ¢ot) exp(f — éo + (c1 — o))
- = - - ~ <0 (33)
OCot exp(f —éo) — 1 exp(f — éor + (1 — ) — 1
exp(6+x)

where the inequality follows from c¢; > ¢y and the fact that is a decreasing function

exp(0+z)—1
of x. Hence the ratio of expected profits is a monotonically decreasing function of ¢y and thus
there can be at most only one crossing point ¢ such that the profits at py exceed the profits at p;.

The limit as ég; — —00 is

. exp(f — éor) — 1
lim -
exp(f —¢éyy) — 1

exp(b(p1 — po) + 2(cvg — al)uaz)> =exp((b—1)(c1 — o) + 2(ag — 1) v0y)

ém*)foo

Which is greater than 1 if and only if
(b—1)(c1 — o) + 2(g — aq)vo, >0
If this condition holds, then there indeed exists a ¢ such that

E*(m(po)) > E*(w(p1)) <= c <¢

otherwise, if (b — 1)(¢1 — co) + 2(ap — a1)ro, < 0 then

E*(m(po)) < E*(m(p1)) for all ¢
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It is possible to be in a situation where pg is never an optimal price, and p; always dominates it.

Next, we compare po with pi =0 and p, with p2* =29 Starting with the first pair, recall
that pi”?07*) is a potential optimum only for ¢, € [c1 — (6, — 6) — 200,01 — (f, — 0)] and thus

if & < ¢y — (6, —0) — 20, then

E*(r(po)) < E*(m(p1)) < E*(n(pf™" V)

REb(1—a1)

for all ¢; for which p, is a potential optimum. Next, consider ¢ > ¢; — (él —-0)-2

V0.

The ratio between the expected profits is

E*(m(po)) _exp(f — o) — 1

= = exp((1—an )b(01—0)+b(1—av ) ég+arb(cr —co)+2v0. (ap—ar
B (r(pFEdi=any) exp(Bn) — 1 (1=0a1)b(01—0)+b(1—0r1 ) o+ b(c1—co) (ao—a1))

The first and second derivatives are:

E*(m
OIn( ey

aé()t B exp(@ - é()t) —1

2 E*(7(po))
a ln(E*(ﬂ_(pr’b(lfal)))) o eXp(9 - é07&) < O

(86075)2 (exp(@ — éOt) — 1)2

Since this is a concave function, we can find it’s maximum by setting the first derivative equal

to zero. This achieved at

b(l — CYl) —1
(b—-1)1—a)
Evaluating the profits ratio at that cost value we get

E*(n(p))
B (r(p™ )

égt:hl( )<O

= exp(ay(b(c1 — ¢o) — 2vo,) + 2vo,a0) > 1

Where the inequality follows from that fact that p | > Po, which implies that

2
O<]_91—p0<cl—co—gyaz

Since this is a convex function with a maximum above zero, it crosses zero at two distinct points,

C1—ap)p a0d C(1—a;)p- And because the maximum is obtained at a cost value below ¢, we know that

Cl1—ay)p < Co, but since pf”E’b(l*al) is a relevant maximum only for ¢; > cl—(él—e)—%yaz > g, then

E* (7T0) < B* (pr’(l_al)b) if and only if Ct > Eb(lfal) and Eb(lfal) S [Cl - (él —9) — %I/O'Z, C1— (él —9)]
To ease notation, we adopt the convention that Cy1—qa,) = 00 if Cya—a,) ¢ [c1 — (91 —0)—2v0,,c; —

(6, — 0)].

52



Similarly, when comparing p; and pr2" ™) we note that pi* =) can only be the optimal

price for ¢, € [cy — (g — 0) — 2vo.,co — (6 — 0)]. If & > ¢y + (6y — 0) then E*(n(p)) <
E* (W(pr’b(l_ao))) for all ¢, € [co — (f — 6) — 200, ¢o — (8 — 0)]. Otherwise, the the ratio of the
expected profits is:

Eripy) _expw—élt)_lex — Do — — )ty — anbler — ¢g) — 2vo, (o — o
B (x (PP ) T exp(By) — 1 p((1 — ag)b(fy — 0) + b(1 — ag)ér; — arb(cy — o) — 2vo,(ag — 1))

which we can again show that is strictly concave in ¢1; (and as a result in ¢;) and thus there
exist at most two points, Ch(1—a) and Cy(1—qay), Where the ratio crosses 1. And adopting a similar
convention as above, that we set ¢;_n.) = —00 if ¢y1_4,) & [co — (6o — 0) — 200, ¢o — (60 — 0)],

and hence

* k ]"?,E7 1—Oé b
E*(m) > E*(py (1=e0) ) = ¢ > Cl1—ag)b

Putting everything together, we conclude that pq is optimal for all

¢t € [¢g, Col

where ¢, = max(cyy, co — (6o — 0)) and Gy = min(cy, & Ty1_ay)). And p; is optimal for all

¢ € [¢y, ¢

where ¢; = max(cy;, c1 — (01 — 0), ¢, Cy1_q)) and T = Ty

Case 2: p < po. Everything is the same except for the fact that we need to re-work the

comparison between py and p; and between py and pr’b(lfa‘)), and also need to compare py and
l—ap—a)

pr with py
We can show that the ratio of expected profits at py and p; yields:

E*(m(po)) _ exp(f — éo) — 1
Ex(m(p1))  exp(f — Cor + (c1 — o)) — 1
which is again a decreasing function of ¢y; and by similar analysis as above, we can conclude
that if (b(1 — ay) — 1)(c1 — co) + 2apvo, < 0 then E*(w(py)) < E*(m(p1)) for all ¢;, and otherwise

there exists a ¢ such that

exp(b(1 — ay)(e1 — co) + 20pr0,)

E*(m(po)) < E*(n(p1)) <= > ¢
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In comparing po to pr= 1207 first notice that pr? 77 ig 4 relevant potential maxi-

mum only for ¢; € [co — (9~01 —0) — %1/02, co — (9~01 — 60)], where we define

b(l — g — 061)

O =1
o1 n(b<]. —Oéo—Oél) —1

)

and we again have that py = pr "7 fo1 ¢, = ¢g — (61 — 0). Then, by a similar analysis

to the above we conclude that

—ao—an ~ 2 ~
E*(w(po)) < B (n(p™"' ")) = i € [ — (B —0) — Svoz.co— (B — 6))

J(b(1—ap—a1

To compare p; and pf E ), we look at the ratio of their expected profit:

E*(m(p1)) _ exp(d — ¢yy) — 1
E*(n(pf® )y exp(fon) — 1

exp((l — Qg — Oél)b(é(n — 9) + b(l — Qo — Oél)élt
— apb(cy — ¢p) — 2vo,ap)

Which is again a concave function of ¢4, and by similar analysis to the above we can show

that at the maximum ¢y, the profits ratio is equal to

E*(n(p1))
REb(1—ap—«
E(r(pfP 0700 ) |y e,

= exp(—apb(c1 — ¢p) — 2vo,ap) < 1

So p; is always dominated by pr=?=20=*) byt that is a relevant comparison only for ¢, €
[co — (ém —0) — %uoz,co — (501 — 0)]. For values of ¢, greater than this interval, the relevant
comparison is between py and p; which we have already addressed above.

Lastly, we turn our attention to comparing py and pr’b(l_a(’). We can express the ratio of

those profits as

E*(m(po)) _ exp(6 - Cot) — 1
B (n(pf™" ) exp(fp) — 1

exp((l — Oé[))b(é() — 9) + b(l — OéQ)éOt — Oélb(Cl — C()) + 21/0'2041)

which is strictly concave in ¢o; and at the maximum:

E*(m(po))

«/_ REb(l-a = exp(a1(2vo, — b(c1 — o)) > 1
E*(m(p; """ 7)) lani=s,

Then, by the strict concavity there can exist at most two values ¢,;_q,) 0 < C(1-ag),0 Such that
the ratio crosses 1, and similarly to above, only the lower value ¢,_,,) ¢ is relevant in comparing

profits, since pr ") ig a potential maximum only for ¢; € [co — (6o — 0) — 200, ¢o — (6o — 6)].
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Thus,

% * RE,b 11—«
E*(n(po)) > E*(n(pf""' ™)) = ¢ > ¢1—ano

Putting everything together, we conclude that py is optimal for all

Ct S [QO?EO]
where ¢, = max(cy, co — (fo1 — 0); Co(1-ag),0) and Co = min(Cp, ¢, Cy(1-a;)). And p; is optimal for
all
¢ € [e, ]
where ¢, = max(c,,, ¢; — (61 — 6), Cy Ch(1—ap),10 CO — (oy — 0)) and & = G,.
Part (ii) Case 1: p, > po- The steps are similar to part (ii) of the proof of Proposition 1.

Using the ratio of profits at py and pf™" (equation (31)) and the Implicit Function Theorem, it
follows that:

d(Cy, — o) 20, 0
dog | )
(0~ (e —c0) 1
¢y, — o) 2vo, 0
8040 - B exp(9—(gb0—co) N ; <
exp(0—(c, —co)—1

. . . . . RE)b . .
Thus the inaction in comparison with p,”~" increases in «y. Moreover,

8(00—1—(50—9))__ 1 <0
(9040 (1 - Oé())(b(l - Oéo) - 1)
. . REb(1-ag) - S
and hence inaction in respect to p; is increasing in «y.
Next, turning to the comparison between py and p;, notice that
01H(E:(7r(po)))
—EEe)) 2vo, >0
8040
6111( g:("(po))
and by equation (33) — 722 < 0 and hence, by the implicit function theorem
o
dag
— = >0
ap  On(EGae)
é

we see that the tipping point at which E*(p;) = E*(po) increases with «p. Lastly, we turn to

%)



comparing py and pf Eb1=01) " Phe derivative of the log of the ratio of expected profits is

E*(m
OIn( ity
Jcor

exp(0 — ¢or)
= — 1 -
exp(f — éor) — 1 Tl —a1) <0

€0t=Cp(1-a)—C0 €0t=Cp(1—a1)—C0

since Cp(1—q,) — co > 0. At the same time,

E*(w
O ey

aao

so, by applying the Implicit Function Theorem again, we see that inaction is increasing in ay.

=2vo, >0

Putting all of this together, we see that

L)
8040

<0; >0

8060

and hence the inaction region around py is increasing in ay. We can show the symmetric result

for p; following the same steps as above.

Case 2: p. < po. Only a few things change. First, the ratio of profits at py and p; is slightly
different,

E*(m(po)) exp(f — o) — 1

E*(W(pl)) N eXp(e — Cor + (Cl — CO)) 1 exp(b(l — Ozl)(cl - CO) + 2a0VUz)

but the derivatives in respect to ¢ and «g remain the same, so the above analysis again implies

that the tipping point is increasing in «g. Next, recall that pf Ebl=e0=01) qyminates po for all

¢; < co — (o1 — 6), and notice that

90, 1
01 _ <0
(7)) 1-— g — (7
and hence inaction increases with «q. Lastly, we need to compare py and pf Eb1=00) " Recall that

the log of the ratio of their expected profits is:

E*(7(po)) I exp(f — éo) — 1
N RE,b(1—ag) - Y
Ex(n(p, ) exp(fp) — 1

)+(1—Oé(])b(é[)—e)+b(1—060)60t—@1b<61—CQ>+21/UZCK1

In(

The derivative in respect to ¢ is

E*(mw
0 ln(E*(W(péE,(ﬁﬂ)J%)))) exp(f — ¢)

oc h Cexp(f—é) — 1

—f- b(l — Oé())
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But since pf Eb1=e0) g 5 potential maximum only for ¢; < ¢g — (9~0 —0), it follows that

é:Ct—CQS—(éO—9)<0

exp(0—¢) -

p(65.1 52 decreasing function of ¢, it follows that

and since

exp(b &) _ exp(d)

= < = =b(1l —
exp(f —¢) =1 7 exp(f) — 1 (1= )
and hence for the relevant cost values:
E*(m(po))
aln(E*(n(pr’b(l_%)))) >0

oc

On the other hand, the derivative in respect to aq is

E*(w ~
0 ln( E*(W(pigE’(’]’D(Ol)*)ao)))) exp(@o) 1ja0
dag — exp(fy) — 1
> —b(fy — ) + b(fy — 0)

>0

—b(By — ) + b — bé

where the first equality follows from the fact that ¢ < —(éo — 0). Applying the inverse function
theorem again, we have that
ICh(1—ap)
Qo

<0
and hence the inaction region is increasing in «y. Putting it all together,

¢
8040

<0; >0

8040
and hence the inaction region around py is increasing in ay. We can again apply symmetric

arguments to obtain the corresponding result that the inaction around p; is increasing in a;.
REb(1—a1—ap)

The only difference is in the comparison between p; and p;, . Recall that p; is always
dominated by pf E’b(l_ao_al), which is a relevant comparison only for ¢; < ¢y — (501 —0), and since

001 is increasing in ay, it follows that the range of cost shocks for which p; might be an optimal

price increases. O

Proposition 3. Optimal prices have the following characteristics:

(i) Discreteness and Memory. If the two previously observed prices are distinct p; # po,
then there is a positive probability that a price change results in a discrete move within the

set of observed prices, exhibiting both discreteness and memory.
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(ii) Declining Hazard. Increasing the number of times the firm has observed the price py

increases its region of inaction and hence the probability that the firm remains at p;.

(i1i)) Large and Small Changes. Optimal price adjustment is characterized by both discrete

Jumps and arbitrarily small price movements.

Proof. Part (i) By Proposition 2, part (i), both past prices have associated intervals of cost
shocks, [¢;,¢] for i € {0, 1}, such that p; is the optimal choice for all cost shocks ¢; € [¢;,E]. Let ¢;
be the particular marginal cost the firm faced at time 1 and g(cz|e¢q) be the conditional pdf of the
marginal cost at time 2. Thus, the probability that at time 2 the firm finds it optimal to switch
form p; back to pg is simply

o(c1)

Prob(ps = polc1) = / g(caler)dey >0

co(er)

where [cy(c1),Co(c1)] is the particular region of inaction associated with po, given that the
firm has faced a cost shock ¢; at time 1. Hence, conditional on a cost value ¢, there is a
positive probability that the optimal price at time 2, pj, switches back to py. In other words,
the distribution of price changes at time 2 features a mass point at py — p;, and price changes
display discrete changes. Moreover, there is memory, since the discrete change reverts back to a
price posted in the past.

This analysis was conditional on a particular cost value ¢y, but it is straightforward to extend

it by integrating over the possible values of ¢;:

Co(c1)
Prob(ps = po) = / / g(ealer)des | g(er)dey >0
(—00,¢9)U(cy,00) co(c1)

where we integrate only over cost values ¢; that would result in p; # pg. But the basic result is
the same — the optimal price at time 2 has a positive probability of reverting back to pg, implying

now that the unconditional distribution of prices at time 2 is discrete and displays memory.

Part (ii) By Proposition 2, part(ii), the regions of inaction associated with the observed prices p;
is increasing in «;. Notice that if N7 is the number of times the firm has observed signals at the
price p; in the past, and Ny is the number of times the firm has observed the price py, then the

resulting signal to noise ratio of the average signal at p; is:

2

Oy

2 2 No 42
O'x—f—O'z/Nl —+ EO'I

a1 =

Clearly, increasing N increases o as it decreases the variance of the error in the average signal.
As a result, by the results in Proposition 2 part (ii), increasing N; increases the inaction region

[c1,¢1], and hence the probability that the firm remains at p.
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Part (iii) The fact the price distribution features discrete jumps follows from (i). To complete
the proof, we’ll show that for any € > 0, there are situations in which the firm finds it optimal to

change its price by less than €. Let p; < pg, and be far enough apart so that
E*(n(p1))
E*(m(po))

for all ¢; < ¢ where ¢ > ¢o — (50 —0) — %IJO'Z. In that case, we know that there is a cost value

> 1

Ch(1—ag) SUch that

E*(m(p1))

> 1
Ex(m(p )

for all ¢; < ¢yq_qy)- Lastly, assuming that ¢, < ¢ — (0; — 0) it follows that there exists a

¢ < ¢; — (A, — 0) such that piEbI=e1) i¢ the optimal price for all ¢; € lc,c1 — (6, — 0)]. As a result,

for any € > 0, we can find a ¢; > ¢ such that
cl—(él—ﬁ)—ct<5
and thus the optimal price switches from p; to

pr,b(kal) _ 51 Yo,

However, notice that

p1— pfﬂb(l_al) =0+4c — (51 +¢)<e

Thus, there are situations in which the optimal price changes by less than an arbitrary e, and

hence the price distribution features arbitrarily small price changes.

]
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