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1 Introduction

Measuring price aggregates is central to international trade and macroeconomics, which depend on being
able to distinguish real and nominal income.1 One of the most in�uential preferences considered in these
literatures is constant elasticity of substitution (CES) preferences. Existing exact CES price indexes assume
constant demand (taste or preference) parameters for each good, whereas existing demand-system estimation
typically requires time-varying demand parameters for each good to rationalize the observed data. In con-
trast, we develop a uni�ed approach to the CES price index and demand system, which incorporates demand
shocks for individual goods (to rationalize micro data), while preserving a money-metric utility function (to
compare the cost of living over time). We develop a new “reverse-weighting” (RW) estimator of the elasticity
of substitution and provide upper and lower bounds to the true parameter value. Although we focus on CES
preferences because of their prominence in international trade and macroeconomics, we also consider a num-
ber of extensions and generalizations of our approach, including non-homothetic CES (indirectly additive),
nested CES, mixed CES, logit and translog preferences. We show that abstracting from demand shocks for
individual goods introduces a “consumer-valuation bias,” which is analogous to the well-known “substitution
bias” from neglecting the response of expenditure shares to price movements, and results in a substantial
overestimate of the increase in the cost of living over time.

Our starting point is the CES expenditure function, which determines the cost of obtaining a given level
of utility as a function of income, prices, and a “demand parameter” for each good (consumer tastes). We show
that we can always de�ne these demand parameters such that they enter the expenditure function inversely
with prices. As a result, the consumer’s cost of living depends on demand-adjusted prices, but only unadjusted
prices are observed in the data. To overcome this challenge, we invert the CES demand system to substitute
for the unobserved time-varying demand parameters in terms of observed prices and expenditure shares. We
use this insight to derive a new exact CES price index for “common” (surviving goods) with time-varying
demand shocks that generalizes the existing Sato (1976) and Vartia (1976) exact price index. We combine our
new common goods price index with the variety correction term from Feenstra (1994) to obtain a new exact
CES price index for the overall change in the cost of living that incorporates the entry and exit of goods.

Although we allow for demand shocks for individual goods, we provide conditions on the stochastic
process for demand under which the mean of these log-demand shocks across common goods converges
to zero as the number of these common goods becomes large. This property allows us to incorporate the
demand shocks for individual goods (so that our model is consistent with the observed price and expenditure
share data), while ensuring that these demand shocks average out across common goods (so that the change
in the cost of living is money-metric in the sense that it depends only on prices and expenditure shares).
Our approach is valid under the same set of assumptions as the existing Sato-Vartia price index (no demand
shocks for each common good), but it also valid under a much weaker set of assumptions (demand shocks for
individual common goods that average out across these goods). To re�ect the fact that our approach treats
the demand system and the price index in a uni�ed way, we term our overall exact price index incorporating

1Recent contributions to the measurement of the cost of living and aggregate productivity across countries and over time include
Bils and Klenow (2001), Hsieh and Klenow (2009), Jones and Klenow (2016), Feenstra (1994), Neary (2004) and Syverson (2016).
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entry/exit the CES uni�ed price index (CUPI).
We show that abstracting from demand shocks for individual goods introduces a substantial bias into con-

ventional price indexes that we term the “consumer-valuation bias.” This bias is related to the well-known
“substitution bias,” which arises when goods are substitutes in consumer preferences, but a researcher mea-
sures changes in the cost of living using a Laspeyres price index that implies no substitution across goods.
This Laspeyres index overestimates the increase in the cost of living over time, because it does not take into
account that when the price of a good rises, the consumer can substitute towards other goods. Our consumer-
valuation bias is related, because the demand parameter for each good enters the expenditure function in-
versely to its price. Hence, if consumer preferences allow substitution towards goods for which demand has
increased, but a researcher uses a price index that rules out such substitution, this price index again over-
estimates the increase in the cost of living. The researcher fails to take into account that an increase in the
relative demand for a good is analogous to a reduction in its relative price and induces consumers to substitute
towards that good. Empirically, we �nd this consumer-valuation bias to be substantial, equal to more than
one percentage point per annum, and around the same magnitude as the bias that would arise from failing to
account for the impact of the entry and exit of goods on the cost of living.

Our results for the uni�ed price index and the consumer valuation bias hold regardless of how the elastic-
ity of substitution between goods is estimated. But we also develop a new estimator for this parameter, which
we term the “reverse-weighting estimator,” because it uses both initial-period and �nal-period expenditure
share weights. The conventional approach to estimating this elasticity involves demand-system estimation
using instruments for demand and supply shocks. However, developing valid instruments for demand and
supply shocks can be challenging in the settings with large numbers of sectors considered in international
trade and macroeconomics. In contrast, our estimator combines the demand system with the unit expendi-
ture function and uses the identifying assumption of money-metric utility: the change in the cost of living
depends solely on prices and expenditure shares. Using this assumption, our baseline “reverse-weighting”
estimator minimizes di�erence between the implied change in the cost of living using the tastes of the initial
or �nal period. We show that this estimator is consistent if price and demand shocks are small or if they are
orthogonal for each good and independently distributed across goods. Our “generalized reverse-weighting”
estimator minimizes the di�erence between the change in the cost of living using initial or �nal period tastes,
after controlling for the component of demand shocks that is correlated with price shocks. We show that that
this estimator is consistent if demand and price shocks are correlated for each good but are independently
distributed across goods. Both estimators belong to the class of M-Estimators, and we show that they perform
well in �nite samples using Monte Carlos. Finally, we use our inversion of the demand system to provide up-
per and lower bounds to the elasticity of substitution that hold regardless of the correlation between demand
and price shocks.

Our paper is related to several strands of existing research. First, we contribute to the “economic ap-
proach” to price measurement following Konüs (1924), in which price indexes are derived from consumer
theory through the expenditure function. This long line of research includes Diewert (1976, 2004), Lau (1979),
Feenstra (1994), Moulton (1996), Balk (1999), Caves, Christensen and Diewert (1982), Neary (2004), Feenstra
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and Reinsdorf (2007, 2010), Białek (2017), and Diewert and Feenstra (2017). As discussed above, Sato (1976)
and Vartia (1976) introduced an exact CES price index for common goods assuming time-invariant demand
for each common good, while Feenstra (1994) generalized this price index to incorporate the entry and exit
of goods over time. Our contribution relative to this research is to allow for time-varying demand shocks for
each common good (to rationalize the micro data) while retaining a money-metric unit expenditure function
(to compare the cost of living over time).

Our study is also related to the voluminous literature in macroeconomics, trade and economic geography
that has used CES preferences. This literature includes, among many others, Anderson and van Wincoop
(2003), Antràs (2003), Arkolakis, Costinot and Rodriguez-Clare (2012), Armington (1969), Bernard, Redding
and Schott (2007, 2011), Blanchard and Kiyotaki (1987), Broda and Weinstein (2006, 2010), Dixit and Stiglitz
(1977), Eaton and Kortum (2002), Feenstra (1994), Helpman, Melitz and Yeaple (2004), Hsieh and Klenow
(2009), Krugman (1980, 1991), Krugman and Venables (1995) and Melitz (2003). We show that our method-
ology also holds for the closely-related logit model, and hence our work also connects with the large body
of applied research using the logit model, as synthesized in Anderson, de Palma and Thisse (1992) and Train
(2009). Increasingly, researchers in international trade and development are turning to barcode data in or-
der to measure the impact of globalization on welfare. Prominent examples of this include Handbury (2013),
Atkin and Donaldson (2015), and Atkin, Faber, and Gonzalez-Navarro (2015), and Fally and Faber (2016). Our
contribution relative to all of these studies is to derive an exact price index that allows for both changes in
demand for individual common goods and entry and exit, while preserving the property of a money-metric
utility function.

More generally, our work relates to a conceptual debate in applied microeconometrics about whether
to incorporate time-varying error terms from the demand system into the utility function, as examined in
Nevo (2003). We distinguish two main interpretations of demand shocks that can be taken when estimating
demand systems and evaluating welfare. First, our interpretation is that the observed choices of consumers
given the observed prices re�ect their true preferences. Under this interpretation, a demand shock that a�ects
expenditure shares should also show up in price indexes and welfare, because it re�ects the true preferences
of consumers. Second, an alternative interpretation is that these observed choices do not re�ect the true pref-
erences of consumers, because of random shocks that lead realized choices to diverge from expected choices,
or because of measurement error or speci�cation error. Under this alternative interpretation, a demand shock
that a�ects expenditure shares need not show up in price indexes and welfare, because it does not re�ect the
true or average preferences of consumers.

Although both approaches are valid, there are several advantages of our interpretation. First, our view is
consistent with classical revealed preference arguments, in the sense that we use observed choices to infer
true preferences. Second, our model exactly rationalizes the observed data without requiring the inclusion
of an extraneous error term, which ensures that we can interpret the data in a self-contained way within the
model. Third, in our view, the distinction between realized and expected choices is most natural for individual
consumers. However, the observed choices in our data are aggregations across thousands of consumers, where
one should expect the law of large numbers to apply, such that these aggregations are informative about
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true preferences. Indeed, there is an isomorphism between the CES preferences of a representative agent
and the aggregation of the idiosyncratic preferences of individual consumers with extreme value distributed
preferences, as shown in Anderson, de Palma and Thisse (1992) and our web appendix.2 Fourth, our use of
barcode scanner data substantially reduces the scope for measurement error, and the log linear functional
form of our common goods price index ensures that it is robust to mean-zero measurement error in log
prices and expenditure shares. Finally, although speci�cation error remains a potential concern, any model is
necessarily an abstraction, and will require a time-varying error term to �t the data. Our approach provides
a systematic treatment of demand system estimation and price index measurement in the presence of such
a time-varying error term. While our baseline speci�cation focuses on CES preferences, we show that our
main insight generalizes to other functional forms below.

Finally, our work connects with research in macroeconomics aimed at measuring the cost of living, real
output, and quality change. Shapiro and Wilcox (1996) sought to back out the elasticity of substitution in
the CES index by equating it to a superlative index. Whereas that superlative index number assumed time-
invariant demand for each good, we explicitly allow for time-varying demand for each good, and derive the
appropriate index number in such a case. Bils and Klenow (2001) quantify quality growth in U.S. prices. We
show how to incorporate changes in quality (or subjective taste) for each good into a uni�ed framework for
computing changes in the aggregate cost of living over time.

The remainder of the paper is structured as follows. Section 2 introduces our baseline speci�cation for
CES preferences, including our new exact price index and reverse-weighting estimator. Section 3 develops a
number of extensions and generalizations, including non-homothetic CES (indirectly additive), nested CES,
mixed CES, logit and translog preferences. Section 4 introduces the detailed barcode data for the U.S. con-
sumer goods sector used in our empirical analysis. Section 5 presents our main empirical results and demon-
strates the quantitative relevance of allowing demand shocks for individual goods for measuring changes in
the aggregate cost of living. Section 6 concludes. A web appendix collects together technical derivations, the
proofs of propositions, additional information about the data, and supplementary empirical results.

2 Demand and Price Indexes with CES Preferences

In this section, we focus on our baseline speci�cation of CES preferences with a single nest (e.g. an economy
consisting a single sector composed of many varieties of goods). We �rst derive our new CES uni�ed price
index (CUPI), before next developing our new reverse-weighting (RW) estimator of the elasticity of substitu-
tion. In a later section, we extend the analysis to accommodate multiple CES nests and allow for more �exible
functional forms (see Section 3 below).

2As the observed choices in our data are aggregations across thousands of individual consumers, our demand shocks correspond to
shifts in a common component of tastes for all consumers, or shifts in a parameter determining the average realization of idiosyncratic
tastes for a good in the extreme value distribution.
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2.1 Preferences and Demand

Under the assumption of homothetic CES preferences, the unit expenditure function (Pt) depends on the price
(pkt) and demand parameter (ϕkt) for each good k at time t:

Pt =

[
∑

k∈Ωt

(
pkt

ϕkt

)1−σ
] 1

1−σ

, σ > 1, (1)

where σ is the constant elasticity of substitution between goods and Ωt is the set of goods supplied at time
t.3 We can always de�ne the demand parameters for each good (ϕkt) so that they enter the unit expenditure
function (1) inversely to price, such that the consumer cares about demand-adjusted prices (pkt/ϕkt). We
assume that the log demand parameter for each good k in each time period t (ln ϕkt) has a time-invariant
component (ln ϕk) and a time-varying component (ln θkt):

ln ϕkt = ln ϕk + ln θkt, ln θkt ∼ F
(
µθ , χ2

θ

)
, (2)

The time-invariant term (ln ϕk) captures di�erences in average levels of expenditure across goods (some
goods are always more popular than others in all time periods). We assume that the idiosyncratic term (ln θkt)
is independently and identically distributed across goods and over time with �nite mean (µθ) and variance
(χ2

θ). We also assume that this idiosyncratic shock to consumer tastes (ln θkt) is realized after goods have
been supplied to the market, which implies that there is no selection of the goods supplied based on this
idiosyncratic shock. But we allow the time-invariant component of consumer tastes (ln ϕk) to be observed
before goods are supplied to the market, which allows for selection into the market based on this time-
invariant component. The overall demand parameter (ln ϕkt), including both the time-invariant and time-
varying components, captures the true preferences of the consumer for each good in each time period.

Using our assumptions that the idiosyncratic shock (ln θkt) is independently and identically distributed
across goods and realized after goods have been supplied to the market, the weak law of large numbers implies
that the mean idiosyncratic shock converges in probability to its population mean of µθ as the number of
goods becomes large. We make these assumptions on the log demand parameters (ln ϕkt) so as to ensure that
the level of the demand parameter (ϕkt) is positive for each good and time period. As CES preferences imply
a marginal utility of consumption that is unbounded at zero consumption, all goods supplied to the market
with positive values of ϕkt are consumed in equilibrium. Therefore, to ensure positive utility given the entry
and exit of goods with positive ϕkt, our model requires σ > 1. Note that the conventional case in which the
demand parameter for each good is constant over time (ln ϕkt = ln ϕk for all k and all t) is simply a special
case of our speci�cation in which the distribution F

(
µθ , χ2

θ

)
is degenerate at µθ with χ2

θ = 0.
Applying Shephard’s Lemma to the unit expenditure function (1), we obtain the demand system in which

the expenditure share (skt) for each good is:

skt ≡
pktckt

∑` p`tc`t
=

(pkt/ϕkt)
1−σ

∑`∈Ωt (p`t/ϕ`t)
1−σ

=
(pkt/ϕkt)

1−σ

P1−σ
t

, k ∈ Ωt, (3)

3We focus on CES preferences as in Dixit and Stiglitz (1977) and abstract from the generalizations of the love of variety properties
of CES in Benassy (1996) and Behrens et al. (2014).
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where ckt denotes consumption of good k at time t.
Two well-known properties of these CES preferences are the independence of irrelevant alternatives

(IIRA) and the symmetry of substitution e�ects. The �rst of these properties implies that the relative ex-
penditure share of any two goods depends solely on the relative price and demand parameter of those goods
and not on the characteristics of any other goods: skt/s`t = [(pkt/ϕkt) / (p`t/ϕ`t)]

1−σ. The second of
these properties implies that that the elasticity of expenditure on any one good (xkt = pktckt) with re-
spect to a change in the price of another good depends solely on the expenditure share of that other good:

(∂xkt/∂p`t) (p`t/xkt) = (σ− 1) s`t. We relax these two assumptions in Section 3, where we consider both
mixed CES preferences with heterogeneous consumers and translog preferences.

Taking logarithms of the CES expenditure share (3), and using equation (2), we obtain the following
demand system for log expenditure shares as a function of log prices:

ln skt = (σ− 1) ln Pt + (1− σ) ln pkt + (σ− 1) ln ϕkt, ϕkt = ln ϕk + ln θkt. (4)

Two points are worthy of mention at this point. First, in general, the demand parameter (ln ϕkt) can be
correlated with prices (ln pkt). Second, the idiosyncratic component of demand (ln θkt) is a structural residual
that ensures that the model exactly �ts the observed log expenditure shares (ln skt) for each good k and time
period t given the observed log prices (ln pkt). Additionally, since the demand system (4) is derived from
the unit expenditure function (1), any time-varying demand parameter (ln θkt) in the demand system also in
general appears in the unit expenditure function. As discussed above, there are a number of potential alterna-
tive interpretations to consumer tastes for this time-varying error term in the demand system (4), including
changes in product quality, measurement error and speci�cation error. Under some of these interpretations,
the time-varying error term in the demand system need not necessarily appear in the unit expenditure func-
tion. However, our use of barcode data in our empirical application rules out changes in product quality,
because �rms have strong incentives of inventory and stock control not to use the same barcode for prod-
ucts with di�erent observable characteristics. Therefore, any change in product characteristics leads to the
introduction of a new barcode, and is re�ected in the entry and exit of barcodes instead of changes in quality
within surviving barcodes. Similarly, our use of barcode data alleviates concerns about measurement error.
Although speci�cation error remains a possibility, any model is necessarily an abstraction and will require a
time-varying error term to �t the data. We show below that our main insight generalizes to other preference
structures, including �exible functional forms such as translog.

2.2 Entry and Exit

An important advantage of CES preferences is that they yield a tractable variety correction term for the
pervasive entry and exit observed in micro data, as shown in Feenstra (1994). To implement this variety
correction, we partition the set of goods in period t (Ωt) into those “common” to t and t − 1 (Ωt,t−1) and
those that enter between t− 1 and t (I+t ), where Ωt = Ωt,t−1 ∪ I+t . Similarly, we partition the set of goods in
period t− 1 (Ωt−1) into those common to t and t− 1 (Ωt,t−1) and those that exit between t− 1 and t (I−t−1),
where Ωt−1 = Ωt,t−1 ∪ I−t−1. We denote the number of goods in period t by Nt = |Ωt| and the number of
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common goods by Nt,t−1 = |Ωt,t−1|.
Using this notation, the change in the cost of living between periods t− 1 and t (Φt−1,t) can be expressed

in terms of the change in the share of expenditure on common goods (λt,t−1/λt−1,t) and the change in the
cost of living for these common goods (P∗t /P∗t−1):

Φt−1,t =
Pt

Pt−1
=

(
λt,t−1

λt−1,t

) 1
σ−1 P∗t

P∗t−1
, (5)

where the derivations are reported in Section A.2 of the web appendix. The terms λt,t−1 and λt−1,t capture
expenditure on common goods as a share of total expenditure in periods t and t− 1 respectively. We use an
asterisk to denote the value of a variable for the common set of goods, such that P∗t and P∗t−1 are the unit
expenditure functions for common goods:

P∗t ≡
[

∑
k∈Ωt,t−1

(
pkt

ϕkt

)1−σ
] 1

1−σ

. (6)

The ratio of the common goods price index in the two periods (P∗t /P∗t−1) in equation (5) equals the change
in the cost of living if the set of goods is not changing. The term multiplying this ratio in equation (5) is
the “variety-adjustment” term ((λt,t−1/λt−1,t)

1/(σ−1)), which captures the impact on the cost of living of the
entry and exit of goods. If new goods are more numerous than exiting goods or have lower demand-adjusted
prices (i.e., lower pkt/ϕkt), then λt,t−1/λt−1,t < 1, and the cost of living will fall due to an increase in variety
or the entering varieties being more appealing given their cost than the exiting varieties.

We can also de�ne the share of individual common good k ∈ Ωt,t−1 in common goods expenditure (s∗kt):

s∗kt ≡
pktckt

∑`∈Ωt,t−1
p`tc`t

=
(pkt/ϕkt)

1−σ

∑`∈Ωt,t−1
(p`t/ϕ`t)

1−σ
=

(pkt/ϕkt)
1−σ

(P∗t )
1−σ

, k ∈ Ωt,t−1, (7)

which takes the same form as the share of each good in total expenditure in equation (3), except that the
summation in the denominator is only over common goods.

2.3 Exact CES Price index for Common Goods

We now derive an exact price index for the change in the cost of living for common goods (ln Φ∗t−1,t =

ln
(

P∗t /P∗t−1
)
) that allows for demand shocks for individual goods and can be expressed in a money-metric

form in terms of observed prices (pkt, pkt−1), expenditure shares (s∗kt, s∗kt−1), and the elasticity of substitution
between goods (σ).

Using the common goods unit expenditure function (6) and the expenditure share (7), we obtain the
following exact price index for the change in the cost of living for common goods:

ln Φ∗t−1,t = ∑
k∈Ωt,t−1

ω∗kt ln
(

pkt

pkt−1

)
− ∑

k∈Ωt,t−1

ω∗kt ln
(

ϕkt

ϕkt−1

)
, (8)

where the weights ω∗kt are the logarithmic mean of common goods expenditure shares (s∗kt) in periods t and
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t− 1 and sum to one,

ω∗kt ≡
s∗kt−s∗kt−1

ln s∗kt−ln s∗kt−1

∑
`∈Ωt,t−1

s∗`t−s∗`t−1
ln s∗`t−ln s∗`t−1

, (9)

and the derivation is reported in Section A.3 of the web appendix.
This exact price index for common goods in equation (8) is a generalization of the Sato-Vartia price index

(Sato 1976 and Vartia 1976), which corresponds to the special case in which demand is assumed to be time
invariant for each individual common good (ϕkt/ϕkt−1 = 1 for all k ∈ Ωt,t−1):

ln Φ∗SV
t−1,t = ∑

k∈Ωt,t−1

ω∗kt ln
(

pkt

pkt−1

)
. (10)

The challenge in implementing the exact price index (8) empirically is that it depends on the log change
in demand-adjusted prices (ln ((pkt/ϕkt) / (pkt−1/ϕkt−1))), whereas only unadjusted prices are observed
in the data (ln (pkt/pkt−1)). We overcome this challenge by inverting the CES demand system to express
the unobserved time-varying demand parameter (ϕkt) in terms of observed prices (pkt) and common goods
expenditure shares (s∗kt). This demand system inversion uses the fact that the CES demand system satis�es
the conditions for “connected substitutes” in Berry, Gandhi and Haile (2013). These conditions rule out the
possibility that some goods are substitutes while others are complements. Taking logarithms in the common
goods expenditure share (7), di�erencing over time, and then di�erencing from the mean across common
goods within each time period, we obtain the following closed-form expression for the log change in the
demand shifter for each common good:

ln
(

ϕkt/ϕ̃t

ϕkt−1/ϕ̃t−1

)
= ln

(
pkt/ p̃t

pkt−1/ p̃t−1

)
+

1
σ− 1

ln

(
s∗kt/s̃∗t

s∗kt−1/s̃∗t−1

)
, (11)

where a tilde over a variable denotes a geometric average across the set of common goods, such that x̃t =(
∏k∈Ωt,t−1

xkt

)1/Nt,t−1
for the variable xkt.

We now use our assumptions on the stochastic process for demand shocks for each good in equation (2).
In particular, applying the weak law of large numbers across common goods, as the number of common goods
becomes large (Nt,t−1 → ∞), the mean of the time-varying component of demand (ln θkt) converges towards
its population mean of zero, which in turn implies that the mean demand shock converges to zero:

lim
Nt,t−1→∞

ln
(

ϕ̃t

ϕ̃t−1

)
= lim

Nt,t−1→∞
ln
(

θ̃t

θ̃t−1

)
= lim

Nt,t−1→∞

1
Nt,t−1

Nt,t−1

∑
k=1

ln
(

θkt
θkt−1

)
= 0. (12)

Using this result, and substituting our closed-form solution for the demand shocks (11) into equation (8),
we obtain our exact CES common-goods price index (CCG):

ln Φ∗CCG
t−1,t =

1
Nt,t−1

∑
k∈Ωt,t−1

ln
(

pkt

pkt−1

)
+

1
σ− 1

1
Nt,t−1

∑
k∈Ωt,t−1

ln

(
s∗kt

s∗kt−1

)
. (13)

The CCG summarizes the e�ect of changes in demand-adjusted prices on a consumer’s cost of living. It
is comprised of two terms. The �rst term is none other than the average of log price changes that serves
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as the basis for lower level of the U.S. Consumer Price Index (the log of the “Jevons” index). Indeed, in the
special case in which varieties are perfect substitutes (σ → ∞), the CCG collapses to this Jevons index,
since the second term in equation (13) converges to zero as σ → ∞. This second term is novel and captures
heterogeneity in expenditure shares across common goods. This term moves with the average of the log
expenditure shares in the two periods. Critically, as the market shares of common goods in a time period
become more uneven, the mean of the log expenditure shares will fall (since the log function is concave).
Therefore, this term implies that the cost of living will fall if expenditure shares become more dispersed.
Intuitively, when varieties are substitutes (σ > 1), consumers value dispersion in demand-adjusted prices
across varieties, because they can substitute consumption towards the varieties with lower demand-adjusted
prices. If demand-adjusted prices (pkt/ϕkt) are constant for all common goods, the change in the cost of
living is necessarily zero. The reason is that the average log change in prices equals the average log change
in demand-adjusted prices (ln ( p̃t/ p̃t−1) = ln (( p̃t/ϕ̃t) / ( p̃t−1/ϕ̃t−1)) = 0 since ln (ϕ̃t/ϕ̃t−1) = 0) and
expenditure shares cannot change if demand-adjusted prices are constant (ln (s̃t/s̃t−1) = 0). However, even
if unadjusted prices (pkt) are constant for all common goods, the cost of living can change, because consumer
welfare depends on demand-adjusted rather than unadjusted prices.

We use the CCG instead of the Sato-Vartia price index for the log change in the cost of living for common
goods (ln Φ∗t−1,t = ln

(
P∗t /P∗t−1

)
). Substituting the CCG (13) into equation (5), we obtain our overall CES

uni�ed price index (CUPI).

Proposition 1. The “CES uni�ed price index” (CUPI), which is exact for CES preferences in the presence of
changes in the set of goods, demand shocks for individual goods, and discrete changes in prices and expenditure
shares for each good, is given by:

ln ΦCUPI
t−1,t =

1
σ− 1

ln
(

λt,t−1

λt−1,t

)
︸ ︷︷ ︸

Variety Adjustment

+
1

Nt,t−1
∑

k∈Ωt,t−1

ln
(

pkt
pkt−1

)
+

1
σ− 1

1
Nt,t−1

∑
k∈Ωt,t−1

ln

(
s∗kt

s∗kt−1

)
︸ ︷︷ ︸

CES Common-Goods Price Index (CCG)

. (14)

Proof. The proposition follows directly from substituting the CCG (13) into equation (5).

In deriving the CUPI using equation (11), we use the log linearity of the common-goods expenditure share
(7), which re�ects the independence of irrelevant alternatives (IIA) property of CES preferences discussed
above. Since this IIA property is speci�c to CES and the closely-related logit preferences discussed below,
our uni�ed price index is only exact for CES or logit preferences. However, in Section 3 below, we show that
our main insight of using the demand system to substitute for the unobserved demand parameter generalizes
to other invertible demand systems. Empirically, we �nd in Section 5 that the di�erences between our exact
CES price index and those for other �exible functional forms are small relative to the di�erences that arise
from the failure to control for demand shocks for individual goods.4

From equations (11)-(14), the CUPI uses unweighted means across common goods, but the log linearity of
the common-goods expenditure share (7) implies that one could instead construct an alternative price index
using weighted means. However, our argument based on the weak law of large numbers and our reverse-
weighting estimator below require that these weights are orthogonal to demand shocks, which restricts the

4Our uni�ed price index (14) di�ers from the expression for the CES price index in Hottman et al. (2016), which did not distinguish
entering and exiting goods from common goods and captured the dispersion of sales across common goods using a di�erent term.
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class of admissible weights. As a robustness test, in Section 5.5 below, we compute price indexes based on
random weights that sum to one and are orthogonal to demand shocks by construction. Given our large
number of products within each sector, we �nd a high correlation between the CUPI based on an unweighted
mean across common goods and these other price indexes based on random weights.

A potential alternative approach to deriving a money-metric price index is to assume that the demand
shock for a single benchmark common good is equal to zero. This alternative is closely related to the as-
sumption of an outside good in empirical research. The problem is �nding such a benchmark good for which
one can be certain that relative demand did not change over time. Furthermore, it is not obvious how one
could test this assumption for the benchmark good without prior knowledge of the parameters of the demand
system. In contrast, our assumption that the demand shocks are mean zero across common goods emerges
naturally from primitive assumptions on the stochastic properties of demand shocks.

More broadly, the CUPI has other attractive economic and statistical properties, First, it is is exact under
the same assumptions as the Sato-Vartia price index (no demand shocks for each common good), but it is also
valid under a much weaker set of assumptions (demand shocks for individual common goods that average
out across common goods). Second, this price index is “time reversible” for any value of σ, thereby permitting
consistent comparisons of the cost of living going forwards and backwards in time. In other words, given any
set of product turnover, price changes, and demand shifts between t− 1 and t, the percent change in prices
between t− 1 and t is the inverse of the change between t and t− 1. Third, the CUPI depends in a simple
and transparent way on the elasticity of substitution. Variation in this elasticity leaves the terms in common
goods prices ( 1

Nt,t−1
∑k∈Ωt,t−1

ln
(

pkt
pkt−1

)
) unchanged and a�ects the variety adjustment ( 1

σ−1 ln
(

λt,t−1
λt−1,t

)
) and

heterogeneity terms ( 1
σ−1

1
Nt,t−1

∑k∈Ωt,t−1
ln
(

s∗kt
s∗kt−1

)
) depending on the extent to which these two expenditure

share ratios are greater than or less than one. Indeed, the relative size of these variety and heterogeneity
corrections in logs is independent of the value of the elasticity of substitution, and depends solely on the
relative values of expenditure share moments in the data.

Finally, as our exact common-goods price index (CCG) depends on the mean of the log prices and expen-
diture shares of common goods, it is invariant to mean-zero, log-additive measurement error in these prices
and expenditure shares. In contrast, the Sato-Vartia price index in equation (10) involves a non-linear trans-
formation of the common goods expenditure shares (s∗kt and s∗kt−1 through ω∗kt) and hence is directly a�ected
by such mean-zero measurement error. One remaining concern about such measurement error is that the
CCG includes an unweighted mean of the log expenditure shares across common goods. Therefore, it could
be a�ected by measurement error for goods with small expenditure shares. To address this concern, we use
the property of CES preferences that the price index for all common goods can be rewritten as equal to the
price index for a subset of common goods times the share of expenditure on this subset in all expenditure on
common goods. We implement this robustness check in Section 5.5 below using the subset of common goods
with above-median expenditure shares. We show that we �nd similar values for the change in the overall
cost of living as in our baseline speci�cation above.
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2.4 Relation to Existing Price Indexes

We now compare our CUPI to existing price indexes and examine the implications of allowing individual
goods to experience demand shocks for the measurement of the cost of living. The existing CES exact price
index combines the Feenstra (1994) variety correction with the Sato-Vartia price index:

ln ΦFE
t−1,t︸ ︷︷ ︸

Feenstra Price Index

=
1

σ− 1
ln
(

λt,t−1

λt−1,t

)
︸ ︷︷ ︸

Variety Adjustment

+ ln Φ∗SV
t−1,t︸ ︷︷ ︸

Sato-Vartia Price Index

. (15)

Comparing equations (14) and (15), the CUPI uses the same variety correlation term as Feenstra (1994), but
uses the CCG from equation (13) instead of the Sato-Vartia price index. Both indexes require the estimation of
σ, but our approach resolves a tension that Feenstra (1994) observed was inherent in his use of the Sato-Vartia
formula. The Sato-Vartia index (ln

(
Φ∗SV

t−1,t

)
) assumes that demand is constant over time for each common

good (ln (ϕkt) = ln (ϕkt−1) = ln (ϕk) for all k ∈ Ωt,t−1 and t), whereas the estimation of σ assumes the
existence of demand shocks (ln (ϕkt/ϕkt−1) = ln (θkt/θkt−1) 6= 0 for some k and t). This tension is more
pernicious than it might appear because the assumption of time-invariant demand is a crucial assumption in
the derivation of the Sato-Vartia index.

In the presence of non-zero demand shocks for some common good k ∈ Ωt,t−1, we show in Section A.3
of the web appendix that the true exact CES common goods price index (Φ∗CCG

t−1,t ) equals the Sato-Vartia price
index (Φ∗SV

t−1,t) minus an additional term that we refer to as the consumer-valuation bias:

ln Φ∗CCG
t−1,t = ln Φ∗SV

t−1,t −
[

∑
k∈Ωt,t−1

ω∗kt ln
(

θkt

θkt−1

)]
︸ ︷︷ ︸

consumer valuation bias

, (16)

where from now onwards we use the fact that the change in the overall demand parameter for each good
(ϕkt/ϕkt−1) is determined by the change in the time-varying component of this parameter (θkt/θkt−1).

This consumer-valuation bias a�ects existing exact CES price indexes for both common goods and the
overall cost of living, because both use the Sato-Vartia price index. This consumer-valuation bias arises be-
cause the Sato-Vartia index in equation (10) is based on the expenditure-share weighted average of observed
price changes, whereas the true exact CES price index for common goods in equation (8) depends on the
expenditure-share weighted average of demand-adjusted price changes. Therefore, the Sato-Vartia index is
only unbiased if the demand shocks (ln (θkt/θkt−1)) are orthogonal to the expenditure-share weights (ω∗kt);
it is upward-biased if they are positively correlated with these weights; and it is downward-biased if they
are negatively correlated with these weights. In principle, either a positive or negative correlation between
the demand shocks (ln (θkt/θkt−1)) and the expenditure-share weights (ω∗kt) is possible, depending on the
underlying correlation between demand and price shocks. However, there is a mechanical force for a posi-
tive correlation, because the expenditure-share weights themselves are functions of the demand shocks. In
particular, a positive demand shock for a good mechanically increases the expenditure-share weight for that
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good and reduces the expenditure-share weight for all other goods:

dω∗kt
dθkt

θkt

ω∗kt
> 0,

dω∗`t
dθkt

θkt

ω∗`t
< 0, ∀` 6= k, (17)

as shown in Section A.4 of the web appendix.
The intuition for this consumer-valuation bias is as follows. An increase in demand for a good (θkt/θkt−1 >

1 and hence ϕkt/ϕkt−1 > 1) is analogous to a reduction in price for that good (pkt/pkt−1 < 1) because con-
sumer preferences depend on demand-adjusted prices (pkt/ϕkt). Other things equal, consumers substitute
towards goods that experience relative increases in demand, which raises consumer welfare relative to the
value it would take if expenditure shares were left unchanged in the face of these di�erent demand-adjusted
prices. A price index that rules out such changes in demand by assumption cannot capture this increase in
welfare, thereby giving rise to the consumer-valuation bias. This bias is analogous to the well-known “sub-
stitution bias,” in which a Laspeyres index that allows for no substitution across goods overstates the increase
in the cost of living because it does not take into account that consumers can substitute towards goods that
experience reductions in relative prices.

A �nal metric for the tension inherent in the Sato-Vartia price index’s assumption of time-invariant de-
mand for each common good is to note that under this assumption the elasticity of substitution can be re-
covered from the observed data on prices and expenditure shares with no estimation (from di�erencing over
time in equation (4) under the assumption that ϕkt = ϕkt−1 = ϕk). Indeed, the model is overidenti�ed, with
an in�nite number of approaches to measuring the elasticity of substitution, each of which uses di�erent
weights for each common good, as shown in Section A.5 of the web appendix. If demand for all common
goods is indeed constant (including no changes in tastes, quality, measurement error or speci�cation error),
all of these approaches will recover the same elasticity of substitution. However, if demand for some com-
mon good changes over time, but a researcher falsely assumes time-invariant demand for all common goods,
these alternative approaches will return di�erent values for the elasticity of substitution, depending on which
weights are used. We use this metric below to provide evidence on the empirical validity of the assumption
of time-invariant demand for all common goods.

2.5 Estimating the Elasticity of Substitution

Our CES uni�ed price index (CUPI) in equation (14) and the existing CES exact price index in equation (15)
both require an estimate of the elasticity of substitution (σ). In Subsection 2.5.1, we review existing approaches
based on demand systems estimation. In Subsection 2.5.2, we introduce our new “reverse-weighting” (RW)
estimator. We show that this estimator is consistent (i) as demand shocks become small or (ii) as the number
of common goods becomes large and demand shocks are uncorrelated with price shocks for each good and
independently and identically distributed across goods. In Subsection 2.5.3, we extend our analysis to develop
a “generalized-reverse-weighting” (GRW) estimator, which retains the assumption that demand shocks are
independently and identically distributed across goods, but allows the demand and price shocks for a given
good to be correlated with one another. In Subsection 2.5.2, we show how use our inversion of the CES
demand system can be used to provide upper and lower bounds for the true elasticity of substitution that
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hold regardless of the correlation between demand and price shocks.

2.5.1 Demand Systems Estimation

Using the common-goods expenditure share in equation (7), dividing by its geometric mean across common
goods, taking logarithms, and di�erencing between a pair of periods t − 1 and t, we obtain the following
structural demand system:

∆ ln s̄∗kt = (1− σ)∆ ln p̄kt − (1− σ)∆ ln θkt, (18)

where ∆ denotes the time-di�erence operator such that ∆ ln p̄kt = ln ( p̄kt/ p̄kt−1); a bar above a variable
indicates that it is normalized by its geometric mean across common goods such that ln ( p̄kt) = ln (pkt/ p̃t);
and the time-invariant component of demand (ϕk) has di�erenced out between the two time periods to leave
only the change in the time-varying component of demand (∆ ln θkt); and we have used our result that demand
shocks average out across common goods (ln

(
θ̃t/θ̃t−1

)
= 0). This structural demand system (18) has the

following reduced-form representation:

∆ ln s̄∗kt = β0 + β1∆ ln p̄kt + ukt, (19)

which is analogous to equation (4) but uses common goods expenditure shares (s∗kt) and di�erences both over
time and relative to the geometric mean; the constant (β0) in equation (19) is necessarily equal to zero, because
of the normalization of common goods expenditure shares and prices by their geometric mean.

The main challenge in estimating the reduced-form demand system (19) is that shocks to prices (∆ ln p̄kt)
can be correlated with shocks to demand (ukt), giving rise to conventional omitted variable bias. The standard
approach to this problem is to specify a supply-side such as:

∆ ln p̄kt = γ0 + γ1∆ ln s̄∗kt + γ2zkt + vkt, (20)

and to search for instruments (zkt) that are both powerfully correlated with the log change in prices
(cov (∆ ln p̄kt, zkt) 6= 0) and have no direct e�ect on expenditure shares (cov (ukt, zkt) = 0). However, �nding
valid instruments in the settings with many industries considered in international trade and macroeconomics
can be challenging.

The main alternative approach to estimating the CES demand system is that of Feenstra (1994). This alter-
native estimator uses the second di�erences of the demand system (19) and supply-system (20) across goods
and over time, and makes the identifying assumption that these double-di�erenced demand and supply shocks
are orthogonal to one another and heteroskedastic.5 The orthogonality assumption de�nes a rectangular hy-
perbola for each good in the space of the demand and supply elasticities. The heteroskedasticity assumption
implies that these rectangular hyperbolas for di�erent goods do not lie on top of another. Therefore, their
intersection separately identi�es the demand and supply elasticities.

5See Section A.8 of the web appendix for further details.
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2.5.2 Reverse-Weighting (RW) Estimator

We now develop an alternative “reverse-weighting” (RW) estimator of the elasticity of substitution, which
combines the demand system with the unit expenditure function, and uses the identifying assumption that
changes in the cost of living are money metric. Although this approach uses di�erent identifying assumptions
from Feenstra (1994), we �nd that in practice our RW estimates in this section and our GRW estimates in the
next section do not di�er greatly from those using the Feenstra (1994) estimator, and all three sets of estimates
lie within the upper and lower bounds derived below.

We begin by augmenting the UPI in equation (14) with two other equivalent expressions for the change
in the cost of living that arise from taking forward and backward di�erences of the CES unit expenditure
function. These forward and backward di�erences were �rst introduced for the case without demand shocks
by Lloyd (1975) and Moulton (1996) and are sometimes referred to as “Lloyd-Moulton” indexes.6 The forward
di�erence evaluates the increase in the price index from t− 1 to t using the expenditure shares of consumers
in period t− 1. Using equations (5), (6) and (7), this forward di�erence can be written in terms of the change
in variety (λt,t−1/λt−1,t), the initial share of each common good in expenditure on all common goods (s∗kt−1),
and changes in prices (pkt/pkt−1) and demand (θkt/θkt−1) for all common goods:

ΦF
t−1,t =

(
λt,t−1

λt−1,t

) 1
σ−1 P∗t

P∗t−1
=

(
λt,t−1

λt−1,t

) 1
σ−1
[

∑
k∈Ωt,t−1

s∗kt−1

(
pkt/θkt

pkt−1/θkt−1

)1−σ
] 1

1−σ

, (21)

as shown in Section A.6 of the web appendix. The backward di�erence uses the expenditure shares of con-
sumers in period t to evaluate the decrease in the price index from t to t− 1. Using equations (5), (6) and (7),
this backward di�erence can be written as:

ΦB
t,t−1 =

(
λt−1,t

λt,t−1

) 1
σ−1 P∗t−1

P∗t
=

(
λt−1,t

λt,t−1

) 1
σ−1
[

∑
k∈Ωt,t−1

s∗kt

(
pkt−1/θkt−1

pkt/θkt

)1−σ
] 1

1−σ

, (22)

where the algebra is again relegated to Section A.6 of the web appendix.
We use these forward and backward di�erences to develop our RW estimator, but they also can be used

to relate our CUPI to most existing economic and statistical price indexes. As shown in Section A.7 of the
web appendix, under our assumption of CES preferences, the CUPI coincides with many of these existing
price indexes (including Laspeyres, Paasche, Fisher and Törnqvist indexes) for speci�c parameter values and
particular assumptions about entry and exit and changes in demand for common goods. For example, under
the assumption of no changes in the set of products (λt−1,t/λ,t,t−1 = 1), no demand shifts (θkt/θkt−1 = 1),
and no substitution across goods (σ = 0), the forward di�erence (21) collapses to the Laspeyres index and
the backward di�erence (22) collapses to the inverse of the Paasche index. Nevertheless, there are of course
other ways of rationalizing these existing price indexes using alternative functional form assumptions (e.g.
the Laspeyres index is exact for Leontief preferences).7

6See, for example, Diewert (2004) and Białek (2015).
7All of these existing economic and statistical price indexes assume no demand shocks for individual goods, as do continuous

time index numbers such as the Divisia index, as also shown in Section A.7 of the web appendix.
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Equating our three expressions for the change in the cost of living in equations (14), (21) and (22), the
common variety correction term ((λt,t−1/λt−1,t)

1
σ−1 ) cancels. Re-arranging terms, we obtain the following

two key equalities between equivalent ways of writing the change in the cost of living for common goods:

ΘF
t−1,t

[
∑

k∈Ωt,t−1

s∗kt−1

(
pkt

pkt−1

)1−σ
] 1

1−σ

=
p̃t

p̃t−1

(
s̃∗t

s̃∗t−1

) 1
σ−1

, (23)

(
ΘB

t,t−1

)−1
[

∑
k∈Ωt,t−1

s∗kt

(
pkt

pkt−1

)−(1−σ)
]− 1

1−σ

=
p̃t

p̃t−1

(
s̃∗t

s̃∗t−1

) 1
σ−1

, (24)

where we have used our result that ϕ̃t/ϕ̃t−1 = 1 and ΘF
t−1,t and ΘB

t,t−1 are forward and backward aggregate
demand shifters that are de�ned respectively as:

ΘF
t−1,t ≡

∑k∈Ωt,t−1
s∗kt−1

(
pkt

pkt−1

)1−σ (
θkt

θkt−1

)σ−1

∑k∈Ωt,t−1
s∗kt−1

(
pkt

pkt−1

)1−σ


1

1−σ

=

[
∑

k∈Ωt,t−1

s∗kt

(
θkt−1

θkt

)σ−1
] 1

σ−1

, (25)

ΘB
t,t−1 ≡

∑k∈Ωt,t−1
s∗kt

(
pkt−1

pkt

)1−σ ( θkt−1
θkt

)σ−1

∑k∈Ωt,t−1
s∗kt

(
pkt−1

pkt

)1−σ


1

1−σ

=

[
∑

k∈Ωt,t−1

s∗kt−1

(
θkt

θkt−1

)σ−1
] 1

σ−1

,

and all derivations for this section are reported in Section A.9 of the web appendix.
The terms in square parentheses that multiply ΘF

t−1,t and
(

ΘB
t,t−1

)−1
in equations (23) and (24) are the

Lloyd-Moulton indexes without demand shocks discussed above. In standard approaches, the assumption of
time-invariant demand for each good implies that these two Lloyd-Moulton indexes should be equal, and the
reason why in practice they do not take the same value in the data is left unexplained (see, for example, Shapiro
and Wilcox 1996). In contrast, our setup makes clear that if one allows for product-level demand shocks, the
various CES price indexes derived under the assumption of time-invariant demand need not take the same
value, and the di�erences between them contain information about the unobserved pattern of demand shocks.
The aggregate demand shifters (ΘF

t−1,t and ΘB
t,t−1) in equation (25) capture di�erences between movements

in demand-adjusted prices (pkt/ϕkt) and unadjusted prices (pkt). If demand and price shocks are positively
correlated, the impact of price increases in raising the cost of living is o�set on average by increases in the
utility obtained from each unit of the good. In contrast, if demand and price shocks are negatively correlated,
the impact of price increases in raising the cost of living is magni�ed by reductions in the utility obtained
from each unit of the good.

Comparing our di�erent expressions for the change in the cost of living on the right and left-hand sides
of equations (23) and (24), the CUPI on the right-hand side is always money-metric for any elasticity of
substitution (σ), because of our result that ϕ̃t/ϕ̃t−1 = 1. In contrast, the forward and backward di�erences
of the unit expenditure function on the left-hand side are not in general money-metric, because they are
directly a�ected by the demand shocks for each common good (θkt/θkt−1) through the aggregate demand
shifters (ΘF

t−1,t and ΘB
t,t−1). These aggregate e�ects depend on the correlation between the demand shocks

for each common good and initial and end-period expenditure shares, as also shown in equation (25). If the
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goods that experience increases in demand account for large shares of expenditure, while the goods that
experience falls in demand account for small shares of expenditure, this will reduce the cost of living in the
forward and backward di�erences of the unit expenditure function, and vice versa. This observation raises
three related questions: (i) are there any circumstances under which all three expressions for the cost of living
are money metric (which requires ΘF

t−1,t =
(

ΘB
t,t−1

)−1
= 1), (ii) could this identifying assumption be used to

construct an estimator of the elasticity of substitution (σ), and (iii) when would this estimator be consistent?
Before turning to these questions, we note that equations (23) and (24) imply that the following relation-

ship between the forward and backward aggregate demand shifters must hold for any elasticity of substitution
and any combination of demand and price shocks:

[
∑

k∈Ωt,t−1

s∗kt−1

(
pkt

pkt−1

)1−σ
]− 1

1−σ
[

∑
k∈Ωt,t−1

s∗kt

(
pkt

pkt−1

)−(1−σ)
]− 1

1−σ

= ΘF
t−1,tΘ

B
t,t−1 = Θ̄. (26)

Using this relationship in equations (23) and (24), we �nd that if the equality between the forward di�erence
of the unit expenditure function and the UPI in equation (23) is satis�ed, the equality between the backward
di�erence of the unit expenditure function and the UPI in equation (24) also must be satis�ed, and vice versa.
Therefore, there is a single value of the elasticity of substitution (σ) that satis�es both of these equations for
any constellation of demand and price shocks.

Our reverse-weighting (RW) estimator estimates the elasticity of substitution (σ) using the identifying
assumption that all three expressions for the change in the cost of living are money metric:

ΘF
t−1,t =

(
ΘB

t,t−1

)−1
= 1, (27)

which requires that the weighted sum of the demand shocks going forward in time ((ϕkt/ϕkt−1)
σ−1) using

initial-period expenditure shares (s∗kt−1) and the weighted sum of the demand shocks going backward in time
((ϕkt−1/ϕkt)

σ−1) using �nal-period expenditure shares (s∗kt) are both equal to one in equation (25).
Using this identifying assumption of money-metric utility in equations (23) and (24), we obtain the fol-

lowing sample moment conditions:

MRW (σ, X) =


1

Nt,t−1
∑k∈Ωt,t−1

[
1

1−σ ln
(

∑`∈Ωt,t−1
s∗`t−1

(
p`t

p`t−1

)1−σ
)
− ln

(
pkt

pkt−1

)
− 1

σ−1 ln
(

s∗kt
s∗kt−1

)]
1

Nt,t−1
∑k∈Ωt,t−1

[
− 1

1−σ ln
(

∑`∈Ωt,t−1
s∗`t

(
p`t

p`t−1

)−(1−σ)
)
− ln

(
pkt

pkt−1

)
− 1

σ−1 ln
(

s∗kt
s∗kt−1

)]
 =

(
0
0

)
, (28)

where X is the matrix formed by the observed data on prices and expenditure shares for each good k for
periods t− 1 and t. The reverse weighting estimator (σ̂RW) solves:

σ̂RW = arg min
{

MRW (σ, X)′ × I×MRW (σ, X)
}

, (29)

where I is the identity matrix.8

This RW estimator is overidenti�ed with two moment conditions to estimate one parameter. If the iden-
tifying assumption of money-metric utility in equation (27) is satis�ed, equations (23) and (24) imply that

8In Section A.10 of the web appendix, we show that the reverse-weighting estimator in equations (28) and (29) generalizes to
allow for a Hicks-neutral shifter of tastes that is common to all goods because, like the variety correction term, this Hicks-neutral
shifter cancels from equations (23)-(24).
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both moment conditions in equation (28) are simultaneously satis�ed at the same value for the elasticity of
substitution. As we use the identity matrix (I) as the weighting matrix in equation (29), the RW estimator
weights the two moment conditions equally, and hence minimizes the sum of squared deviations of the log
aggregate demand shifters from zero (

{
ln ΘF

t−1,t

}2
+
{

ln ΘB
t,t−1

}2
).

Our identifying assumption of money-metric utility in equation (27) has an attractive economic interpre-
tation. The money-metric forward di�erence (the left-hand side of equation (23) with ΘF

t−1,t = 1) corresponds
to the change in the cost of living evaluated using period t− 1 tastes. Similarly, the money-metric backward
di�erence (the left-hand side of equation (24) with

(
ΘB

t,t−1

)−1
= 1) corresponds to the change in the cost

of living evaluated using period t tastes. This property implies that the RW estimator (σ̂RW) minimizes the
sum of squared deviations between (i) the change in the cost of living evaluated using the uni�ed price index
and tastes in each time period (inverting the demand system to substitute for these unobserved tastes using
prices and expenditure share in each period), (ii) the change in the cost of living evaluated using period t− 1

tastes, and (iii) the change in the cost of living using period t tastes, as shown in Section A.11 of the web
appendix. This property relates to the results of Fisher and Shell (1972), which uses the tastes of the initial
or �nal period to bound the change in the cost of living. Here, we show that the elasticity of substitution
itself can be chosen to minimize the di�erence between the implied change in the cost of living using initial
or �nal-period tastes.

In addition to having an intuitive economic interpretation, we now provide conditions under which our
identifying assumption of money metric utility in equation (27) is satis�ed, and the RW estimator consistently
estimates the true elasticity of substitution (σD), where we use the superscript D to indicate the true parameter
value. First, we show that the RW estimator consistently estimates the true elasticity of substitution (σD) as
the demand shocks for each good become small.

Proposition 2. As changes in demand become small ((θkt/θkt−1)→ 1), the reverse-weighting (RW) estimator

consistently estimates the true elasticity of substitution (σ̂RW p→ σD).

Proof. See Section A.12 of the web appendix.

As the demand shocks for each good become small ((θkt/θkt−1)→ 1), the weighted sum of these demand
shocks using either initial or �nal-period expenditure shares converges to one, and hence the forward and
backward aggregate demand shifters in equation (25) converge to one (ΘF

t−1,t
p→ 1 and ΘB

t,t−1
p→ 1). There-

fore, as the demand shocks shocks for each good become small, the identifying assumption of money-metric
utility is satis�ed, and the RW estimator consistently estimates the elasticity of substitution (σ̂RW p→ σD). In
Section A.20 of the web appendix, we report Monte Carlos, in which we show that the mean RW estimate
across Monte Carlo replications lies close to the true parameter even in �nite samples, and the standard de-
viation of the RW estimate across these replications falls with the standard deviation of the demand shocks.
In Section A.13 of the web appendix, we also show that the identifying assumption of money-metric utility
in equation (27) is satis�ed up to a �rst-order approximation, which implies that the RW estimator can be
interpreted as providing a �rst-order approximation to the data.
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Second, we show that the RW estimator consistently estimates the true elasticity of substitution (σD) as
the number of common goods becomes large (Nt,t−1 → ∞) if demand shocks are uncorrelated with price
shocks for each good and independently and identically distributed across goods.

Proposition 3. Assume that demand shocks are uncorrelated with price shocks for a given good and are indepen-

dently and identically distributed across goods, such that (θkt/θkt−1) ∼ i.i.d
(
1, ψ2

θ

)
for (θkt/θkt−1) ∈ (0, ∞).

As the number of common goods becomes large (Nt,t−1 → ∞), the reverse-weighting (RW) estimator consistently

estimates the elasticity of substitution (σ̂RW p→ σD).

Proof. See Section A.14 of the web appendix.

If demand shocks are orthogonal to price shocks and independently and identically distributed across
goods, the demand shock going forward in time ((ϕkt/ϕkt−1)

σ−1) is uncorrelated with the initial-period
expenditure share (s∗kt−1), and the demand shock going backwards in time ((ϕkt−1/ϕkt)

σ−1) is uncorrelated
with the �nal-period expenditure share (s∗kt). In the proof of Proposition 3, we show that this property implies
that the forward and the inverse of the backward aggregate demand shifters in equation (25) converge to a

common probability limit (plim
[
ΘF

t−1,t

]
= plim

[(
ΘB

t,t−1

)−1
]

). If the expected value of the demand shock

for each good is equal to one (E (θkt/θkt−1) = 1), we also show that this common probability limit is equal
to one. Therefore, the identifying assumption of money-metric utility is satis�ed asymptotically, and the
RW estimator again consistently estimates the elasticity of substitution (σ̂RW p→ σD). In Section A.20 of the
web appendix, we report Monte Carlos, in which we show that the mean RW estimate is close to the true
parameter value if the assumptions in Proposition 3 are satis�ed, even in �nite samples with a relatively small
number of common goods.

In Section A.15 of the web appendix, we use the consistency results from Propositions 2 and 3 together
with the fact that the RW estimator belongs to the class of M-estimators (Newey and McFadden 1994 and
Wooldridge 2002) to show that the RW estimates are asymptotically normal.

2.5.3 Generalized-Reverse-Weighting Estimator (GRW)

We now develop our “generalized-reverse-weighting” (GRW) estimator, which retains the assumption of in-
dependence across goods, but allows demand and price shocks for any given good to be correlated with one
another. In particular, we assume that demand shocks can be partitioned into a component that is correlated
prices and an idiosyncratic component that is uncorrelated with prices for each good and independently and
identically distributed across goods:

ln
(

θkt

θkt−1

)
= γ ln

(
pkt/ p̃t

pkt−1/ p̃t−1

)
+ ln

(
εkt

εkt−1

)
; (30)

where γ is the projection coe�cient of demand shocks on price shocks, i.e.,

γ = ρ
χθ

χp
,

(
εkt

εkt−1

)
⊥
(

pkt/ p̃t

pkt−1/ p̃t−1

)
; (31)
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where χθ is the standard deviation of demand shocks (ln (θkt/θkt−1)); χp is the standard deviation of price
shocks (ln ((pkt/ p̃t) / (pkt−1/ p̃t−1))); ρ is the correlation of demand and price shocks; and all derivations
for this section are reported in Section A.16 of the web appendix.

In that section of the web appendix, we show that this speci�cation in equation (30) can be derived from
the assumption that demand and price shocks are joint log-normally distributed with a general variance-
covariance matrix. Therefore, our GRW estimator imposes additional structure on the underlying distribu-
tions of demand and price shocks. So far, we have used our assumption that demand shocks are independently
and identically distributed across goods to derive the property that mean log-demand shocks are zero. Now,
we require that the stochastic processes for demand and price shocks have a joint log-normal distribution.
Under this distributional assumption, the standard deviations (χp, χθ) and correlation (ρ), and hence the
projection coe�cient (γ), are structural parameters in addition to the elasticity of substitution (σ).

Our RW moment conditions in equation (28) are de�ned over price shocks and initial- and end-period
expenditure shares and do not directly include demand shocks. Under the conditions speci�ed in Propo-
sitions 2 and 3 above, these end-period expenditure shares (s∗kt) are not systematically in�uenced by these
demand shocks, either because these demand shocks are close to one (θkt/θkt−1 → 1), or because demand
and price shocks for a given good are uncorrelated with one another (cov [(θkt/θkt−1) , (pkt/pkt−1)] = 0).
However, if demand shocks are large (θkt/θkt−1 6= 1) and correlated with price shocks for a given good
(cov [(θkt/θkt−1) , (pkt/pkt−1)] 6= 0), the true direct e�ect of these price shocks on the end-period expendi-
ture shares through the elasticity of substitution (σ) is obscured by their correlation with demand shocks.

We now characterize the direction of the bias in the RW estimator with large and correlated demand and
price shocks, before developing our GRW estimator below that allows for this correlation.

Proposition 4. If demand and price shocks are positively correlated (γ > 0), the RW estimator is asymptotically

downward biased (plim
(
σ̂RW) < σ), whereas if demand and price shocks are negatively correlated (γ < 0), the

RW estimator is asymptotically upward biased (plim
(
σ̂RW) > σ).

Proof. See Section A.17 of the web appendix.

Intuitively, if demand and price shocks are positively correlated (γ > 0), the impact of an increase in price
for a good is o�set on average by an increase in demand for that good, which reduces the responsiveness of
expenditure shares to changes in prices. If a researcher assumes no demand shocks or that demand shocks are
uncorrelated with price shocks, she will conclude that this unresponsiveness of expenditure shares to price
changes re�ects inelastic demand, whereas in fact it re�ects the positive correlation between demand and
price shocks. Conversely, if demand and price shocks are negatively correlated (γ < 0), she will conclude
that the responsiveness of expenditure shares to price shocks is explained by elastic demand, whereas in
fact it is explained by the negative correlation between demand and price shocks. In the Monte Carlos in
Section A.20 of the web appendix, we illustrate this result in �nite samples, where the mean RW estimate lies
above the true parameter value when demand and price shocks are negatively correlated and below the true
parameter value when demand and price shocks are positively correlated.
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To allow for correlated demand and price shocks, we now use the structure of the model to generate
counterfactual end-period expenditure shares (S∗kt) that are purged of the component of demand shocks that
is correlated with price shocks. Note that if we could observe these demand shocks (θkt/θkt−1), we could
remove their entire e�ect on end-period expenditure shares (s∗kt) by using the CES demand system to construct
counterfactual end-period expenditure shares (S∗kt) as follows:

S∗kt =
(θkt/θkt−1)

−(σ−1) s∗kt

∑`∈Ωt,t−1
(θ`t/θ`t−1)

−(σ−1) s∗`t

, (32)

where we use an upper case S∗kt to denote counterfactual common goods expenditure shares.
Although we do not observe these demand shocks (θkt/θkt−1), we can use equation (30) to remove the

component of demand shocks that is correlated with price shocks. In particular, we �rst combine equations
(30) and (31) with CES demand (7) to obtain the following closed-form solution for the projection coe�cient
(γ) in terms of the elasticity of substitution (σ) and observed moments:

γ = γ (σ) =
1

σ− 1

[
σ− 1 +

χps

χ2
p

]
, (33)

where χps is the covariance of price and sales shocks. In Section A.16 of the web appendix, we show that
we can also solve in closed-form for the standard deviation of demand shocks (χθ (σ)) and the correlation
between demand and price shocks (ρ (σ)) as a function of the elasticity of substitution (σ) and observed
moments, where we require χθ (σ) ≥ 0 and |ρ (σ)| ≤ 1.

We next compute our counterfactual end-period expenditure shares (S∗kt (σ)) purged of the component of
demand that is correlated with price shocks as follows:

S∗kt (σ) =
(pkt/pkt−1)

−γ(σ−1) s∗kt

∑`∈Ωt,t−1
(p`t/p`t−1)

−γ(σ−1) s∗`t

, (34)

where these counterfactual shares (S∗kt (σ)) are expressed solely as a function of σ and observed data, because
γ is a function of σ and observed data from equation (33) immediately above.

Finally, we use these counterfactual end-period expenditure shares (S∗kt (σ)) to construct the following
two moment conditions for our Generalized-Reverse-Weighting (GRW) estimator:

MGRW (σ, X) =


1

Nt,t−1
∑k∈Nt,t−1

[
1

1−σ ln
(

∑`∈Ωt,t−1
s∗`t−1

( p`t
p`t−1

)1−σ
)
− ln

( pkt
pkt−1

)
− 1

σ−1 ln
(

S∗kt (σ)
s∗kt−1

)]
1

Nt,t−1
∑k∈Nt,t−1

[
− 1

1−σ ln

(
∑`∈Ωt,t−1

S∗`t (σ)
( p`t

p`t−1

)−(1−σ)
(

θ`t
θ`t−1

)−(σ−1)
)
− ln

( pkt
pkt−1

)
− 1

σ−1 ln
(

S∗kt (σ)
s∗kt−1

)]
 =

(
0
0

)
. (35)

Our GRW estimator estimates the elasticity of substitution (σ) by solving:

σ̂GRW = arg min
{

MGRW (σ, X)′ × I×MGRW (σ, X)
}

, (36)

where I is again the identity matrix.
The moment conditions for the GRW and RW estimators in equations (28) and (35) take the same form,

except that the GRW moment conditions use the counterfactual �nal-period expenditure shares (S∗kt (σ))
instead of the actual �nal-period expenditure shares (s∗kt). Therefore, the RW estimator makes the identifying

assumption of money-metric utility (ΘF
t−1,t =

(
ΘB

t,t−1

)−1
= 1) using the observed expenditure shares for the
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initial and �nal periods (s∗kt−1, s∗kt), whereas the GRW estimator makes the identifying assumption of money-
metric utility after controlling for the correlation between demand and price shocks. Intuitively, as discussed
in the previous subsection, the RW estimator chooses the elasticity of substitution to minimize the di�erence
in the implied change in the cost of living using the tastes of the initial or �nal period. In contrast, the GRW
estimator chooses the elasticity of substitution to minimize the di�erence between these two measures of the
cost of living after controlling for the correlation between demand and price shocks.

We now show that the GRW estimator consistently estimates the elasticity of substitution (σ) regardless
of the correlation between demand and price shocks for a given good as number of common goods becomes
large (Nt,t−1 → ∞).

Proposition 5. Assume that demand shocks for each good (θkt/θkt−1 ∈ (0, ∞)) can be partitioned into a

component that is correlated with price shocks and an orthogonal component ((εkt/εkt−1) ∼ i.i.d
(
1, ψ2

ε

)
for

εkt/εkt−1 ∈ (0, ∞)), and are independently and identically distributed across goods. As the number of common

goods becomes large (Nt,t−1 → ∞), the Generalized-Reverse-Weighting (GRW) estimator consistently estimates

the elasticity of substitution (σ̂GRW p→ σD).

Proof. See Section A.18 of the web appendix.

In the Monte Carlos in Section A.20 of the web appendix, we show that the mean GRW estimator lies
close to the true parameter value regardless of the correlation between demand and price shocks, although
it is less precisely estimated with larger standard errors than the RW estimator. As for the RW estimator in
Subsection 2.5.2 above, the GRW estimator belongs to the class of M-estimators (Newey and McFadden 1994
and Wooldridge 2002), as shown in Section A.15 of the web appendix. Therefore, the GRW estimator inherits
the same asymptotic normality properties as discussed for the RW estimator above.

2.5.4 Bounding the Elasticity of Substitution

As a check on our RW and GRW estimates, we now use our inversion of the CES demand system and assump-
tion of joint log normality to provide upper and lower bounds for the elasticity of substitution (σ) regardless
of the correlation between demand and price shocks. From the CES demand system (11), we have the fol-
lowing expressions for the covariance between log price shocks (ln ((pkt/ p̃t) / (pkt−1/ p̃t−1))) and log sales
shocks (ln ((skt/s̃t) / (skt−1/s̃t−1))) and the variance of log sales shocks:

χps = (1− σ)
[
χ2

p − χpθ

]
, (37)

χ2
s = (1− σ)2

[
χ2

p + χ2
θ − 2χpθ

]
, (38)

where the de�nitions of the variance and covariance terms (χps, χ2
p, χpθ , χ2

s , χ2
θ) and all other results for

this section are reported in Section A.19 of the web appendix. Under our assumption of joint log normality,
the correlation between price and demand shocks (χpθ) and the variance of demand shocks (χ2

θ) are both
parameters.
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Using equation (37) to substitute for χpθ in equation (38), we obtain the following relationship that im-
plicitly de�nes the elasticity of substitution (σ) as a function of the observed moments (χps, χ2

p, χ2
s ) for each

assumed value for the variance of demand shocks (χ2
θ):

χ2
θ =

χ2
s

(1− σ)2 + χ2
p +

2
σ− 1

χps. (39)

As discussed above, our model requires σ > 1 to ensure positive utility given the entry and exit of goods
with positive demand (ϕkt > 0). Therefore, our lower bound for the elasticity of substitution is one (σ = 1).
In Section A.19 of the web appendix, we show that a necessary and su�cient condition for the elasticity of
substitution (σ) implied by equation (39) to be monotonically decreasing in the assumed variance of demand
shocks (χ2

θ) is that the variance of demand shocks exceeds the variance of price shocks (χ2
θ > χ2

p). Evaluating
equation (39) using our sample moments for (χ2

s , χ2
p, χps) for each of our product groups, we �nd that the

implied value of σ is indeed monotonically decreasing in the assumed value of χ2
θ , which implies that this

necessary and su�cient condition is satis�ed in our data. Using these properties that the variance of demand
shocks exceeds the variance of price shocks (χ2

θ > χ2
p) and the implied elasticity of substitution is decreasing

in the assumed variance of demand shocks (χ2
θ), our upper bound for the elasticity of substitution (σ) is

obtained by solving equation (39) for the lowest possible value for the variance of demand shocks (χ2
θ = χ2

p).
We thus obtain set identi�cation for the elasticity of substitution (σ) using the CES demand system and

joint log normality, given the sample moments for the variances and covariance of price and sales shocks (χ2
p,

χ2
s , χps). Using our assumption that demand and price shocks are independent across goods, as the number of

common goods becomes large (Nt,t−1 → ∞), the sample moments (χps, χ2
p, χ2

s ) converge to their population
counterparts. Therefore, the true elasticity of substitution (σ) necessarily lies within this identi�ed set as the
number of common goods becomes large.

Proposition 6. Assume that demand and price shocks can be correlated with one another for each good but are

independently and identically distributed across goods. As the number of common goods becomes large (Nt,t−1 →
∞), equation (39) identi�es the set of possible values for elasticity of substitution σ ∈ (1, σ) consistent with the

observed data on prices and expenditure shares (pkt, s∗kt) under our assumptions of CES demand and joint log

normality. As the number of common goods becomes large (Nt,t−1 → ∞), the true elasticity of substitution (σ)

necessarily lies within this identi�ed set.

Proof. See Section A.19 of the web appendix.

Intuitively, the observed variances and covariance of price and sales shocks (χps, χ2
p, χ2

s ) contain enough
information for set identi�cation under the structure imposed by CES demand and joint log normality. This
set identi�cation is closely related to the use of forward and reverse regression to bound the extent of mea-
surement error in Klepper and Leamer (1984) and the partial identi�cation through inequality constraints
in Leamer (1981). In contrast to the RW and GRW estimators, this approach does not use the CES unit ex-
penditure function, and hence provides a useful speci�cation check on these other estimators (and any other
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estimate for the elasticity of substitution). We �nd in our empirical results below that the consumer-valuation
bias is larger for lower values of the elasticity of substitution, because the ability to substitute towards goods
for which demand has increased has a greater impact on utility the less substitutable are goods. Therefore,
what matters for obtaining a lower bound on this consumer-valuation bias is the upper bound for the elasticity
of substitution, as discussed further below.

3 Extensions and Generalizations

In this section, we consider a number of extensions and generalizations of our approach, including non-
homothetic CES (indirectly additive), nested CES, mixed CES, logit, and translog preferences. We show that
our main insight that the demand system can be inverted to express unobserved demand shocks for indi-
vidual goods in terms of observed prices and expenditure shares generalizes to each of these speci�cations.
Therefore, in each case, we can use this demand system inversion to derive a money-metric expression for
the change of cost of living, and existing price indexes that assume time-invariant demand for each good are
subject to a consumer-valuation bias.

3.1 Non-homothetic CES

We begin by generalizing our approach to allow for non-homotheticities, as recently emphasized in Fajgel-
baum and Khandelwal (2016). We consider the non-separable class of CES functions in Sato (1975), which
satisfy implicit additivity in Hanoch (1975), as recently used in the macroeconomics literature in Comin,
Lashkari and Mestieri (2015). We suppose that we observe data on households indexed by h ∈ {1, . . . , H}
that di�er in income and total expenditure (Eh

t ). The non-homothetic CES consumption index for household
h (Ch

t ) is de�ned by the following implicit function:

∑
k∈Ωt

(
ϕh

ktc
h
kt(

Ch
t
)(εk−σ)/(1−σ)

) σ−1
σ

= 1, (40)

where ch
kt denotes household h’s consumption of good k at time t; ϕh

kt is household h’s demand parameter
for good k at time t, which evolves according to equation (2); σ is the constant elasticity of substitution
between varieties; εk is the constant elasticity of consumption of good k with respect to the consumption
index (Ch

t ) that allows for non-homotheticity. Assuming that goods are substitutes (σ > 1), we require
εk < σ for the consumption index (40) to be globally monotonically increasing and quasi-concave, and hence
to correspond to a well-de�ned utility function. Our baseline homothetic CES speci�cation from Section 2
above corresponds to the special case of equation (40) in which εk = 1 for all k ∈ Ω.

Solving the household’s expenditure minimization problem, we obtain the following expressions for the
price index (Ph

t ) dual to the consumption index (Ch
t ) and the expenditure share for an individual good k (sh

kt):

Ph
t =

[
∑

k∈Ωt

(
pkt/ϕh

kt

)1−σ (
Ch

t

)εk−1
] 1

1−σ

, (41)
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sh
kt =

(
pkt/ϕh

kt

)1−σ (Ch
t
)εk−1

∑`∈Ωt

(
ph
`t/ϕh

`t

)1−σ (Ch
t
)ε`−1 =

(
pkt/ϕh

kt

)1−σ (Eh
t /Ph

t
)εk−1(

Ph
t
)1−σ

, (42)

where we assume that all households h face the same price for a given good (pkt) and the derivation for all
results in this section is reported in Section A.21 of the web appendix.

As for the homothetic case above, the price index (41) depends on demand-adjusted prices (pkt/ϕh
kt) rather

than observed prices (pkt). One challenge relative to the homothetic CES case is that the overall CES price
index (Ph

t ) enters the numerator of the expenditure share in equation (42). To overcome this challenge, we
work with the share of each good in overall expenditure (sh

kt) rather than the common goods expenditure
share (sh∗

kt in our earlier notation), but we still take averages across the common goods, because only those
common goods are supplied in both time periods. In particular, taking logarithms of the overall expenditure
share in equation (42) for an individual common good, di�erencing between the two time periods, averaging
across the common goods, and exponentiating, we obtain the following generalization of our CES uni�ed
price index to the non-homothetic case for each household h:

Ph
t

Ph
t−1

=

(
p̃t

p̃t−1

) 1
1+ϑ

(
s̃h

t

s̃h
t−1

) 1
(σ−1)(1+ϑ)

(
Eh

t

Eh
t−1

) ϑ
1+ϑ

, (43)

ϑ ≡ 1
Nt,t−1

∑
k∈Ωt,t−1

εk − 1
1− σ

,

where the tilde above a variable denotes a mean across common goods; we have used our result that the
mean log-demand shock across common goods is zero (ln (ϕ̃t/ϕ̃t−1) = 0); the derived parameter ϑ captures
the average across the common goods of the elasticity of expenditure with respect to the consumption index
(εk) relative to the elasticity of substitution (σ); and the change in the household’s cost of living (Ph

t /Ph
t−1)

now depends directly on the change in income (and hence total expenditure) for parameter values for which
preferences are non-homothetic (εk 6= 1 for some k and hence ϑ 6= 0).

Therefore, our uni�ed approach to the demand system and the price index can be extended to accommo-
date non-homotheticity. In Section A.21 of the web appendix, we show that our reverse-weighting estimation
procedure also can be generalized to estimate both the elasticity of substitution between goods (σ) and the
elasticity of consumption of each good with respect to the consumption index (εk).

3.2 Nested CES

In our baseline speci�cation in Section 2, we focus on a single CES tier of utility, which can be interpreted as a
single sector consisting of many goods. In this section, we show that our analysis generalizes to a nested CES
speci�cation with multiple tiers of utility, by adding an additional upper tier of utility that is de�ned across
sectors. For simplicity, we return to our baseline speci�cation of homothetic CES. In particular, we assume
that the aggregate unit expenditure function is de�ned across sectors g ∈ ΩG as follows:

Pt =

 ∑
k∈ΩG

(
PG

gt

ϕG
gt

)1−σG
1

1−σG

, σG > 1, (44)
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where σG is the elasticity of substitution across sectors; PG
gt is the unit expenditure function for each sector,

which is de�ned as in equation (1) across barcodes within that sector; ϕG
gt is the demand parameter for each

sector; we assume for simplicity that the set of sectors is constant over time and denote the number of elements
in this set by NG =

∣∣ΩG
∣∣; and the derivations for this section of the paper are reported in Section A.22 of

the web appendix.
All of the results for entry and exit and the exact CES price index with time-varying demand shocks from

Section 2 continue to hold for this nested demand structure. We assume that demand for each sector (ϕG
gt)

and demand for each good within each sector (ϕK
kt) take the same form as in equation (2). Therefore, as the

number of sectors and the number of goods within each sector become large, the means of these log-demand
shocks converge to zero. Furthermore, our CES common goods price index (CCG) involves taking the mean
of logged variables, where the mean is a linear operator. Hence, we can apply this operator recursively across
tiers of utility, and the change in the aggregate cost of living remains log linear:

ln
(

Pt
Pt−1

)
=

1
NG ∑

g∈ΩG

1
NK

gt,t−1
∑

k∈ΩK
gt,t−1
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where we have used the result that mean log-demand shocks are zero across both sectors
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the share of an individual common good k in expenditure on sector g at time t;
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)
is the variety correction term for the entry and exit of goods within sector g; and sG

gt is the share of sector g

in aggregate expenditure at time t.
Although, for simplicity, we focus on two tiers of utility here, this procedure can be extended from the

highest tier of utility all the way down to the lowest. In general, our RW estimator can be applied recursively
to each of these tiers of utility. However, conventional measures of the overall cost of living often aggregate
categories using expenditure-share weights. Therefore, we assume that the upper tier of utility across sectors
is Cobb-Douglas (σG = 1), and use our RW estimator to estimate the elasticity of substitution across barcodes
within sectors (σK

k ), which yields an estimated elasticity for each sector.

3.3 Mixed CES

The non-homothetic speci�cation in Section 3.1 assumes that the only source of heterogeneity across con-
sumers is di�erences in income and that all consumers have the same elasticity of substitution (σ). In this
section, we introduce a mixed CES speci�cation that allows both the elasticity of substitution and the de-
mand parameters to di�er across groups and does not restrict the ways in which these parameters di�er. This
mixed CES speci�cation relaxes both the independence of irrelevant alternatives and symmetric substitution
assumptions of our baseline CES speci�cation.9 We consider a setting in which there are multiple groups of

9This mixed CES speci�cation is used, for example, in Adao, Costinot and Rodriguez-Clare (2017) and is di�erent from but related
to the random coe�cients model of Berry, Levinsohn and Pakes (1995).
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heterogeneous consumers indexed by h ∈ {1, . . . , H}, which di�er in terms of both their demand parameter
for each good (ϕh

kt) and their substitution elasticities between goods (σh).In particular, we assume that the
unit expenditure function (Ph

t ) and expenditure share (sh
kt) for a household from group h are given by:

Ph
t =

 ∑
k∈Ωt

(
pkt

ϕh
kt

)1−σh
1

1−σh

, (46)

sh
kt =

(
pkt/ϕh

kt

)1−σh

∑`∈Ωt

(
p`t/ϕh

`t

)1−σh =

(
pkt/ϕh

kt

)1−σh

(
Ph

t
)1−σh , (47)

where sh
kt is a share of product k in the expenditure of group h at time t; we assume for simplicity that all

groups face the same prices (pkt); we suppose that demand for each each good for each group (ϕh
kt) takes

the same form as in equation (2) above; we assume that the set of products available (Ωt) is the same for all
groups; but we allow for the possibility that some groups do not consume some products, which we interpret
as corresponding to the limiting case in which the demand parameter converges to zero for that group and
product (lim ϕh

kt → 0); and the derivation for all results in this section is reported in Section A.23 of the web
appendix.

This speci�cation relaxes the independence of irrelevant alternatives (IIRA) of CES, because the di�er-
ences in preferences across groups imply that the relative expenditure shares of two goods in two di�erent
markets depend on the relative size of the groups in those markets. This speci�cation also relaxes the sym-
metric cross-substitution properties of CES, because the elasticity of expenditure on one variety with respect
to a change in the price of another variety in two di�erent markets also depends on group composition:
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)
sh

kts
h
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where skt is the share of product k in total expenditure; sh
kt is the share of product k in total expenditure for

group h; and f h
t is the share of group h in total expenditure.

All of our results from our baseline speci�cation in Section 2 now hold for each group of consumers
separately. Therefore, we can apply these results to calculate the change in the cost of living for each group
separately.10 Following the same analysis as in Section 2.3, the exact CES uni�ed price index for each group,
allowing for entry and exit and demand shocks, takes the same form as in equation (14):
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where
(
1/
(
σh − 1

))
ln
(

λh
t,t−1/λh

t−1,t

)
is the variety correction term for the entry and exit of goods for

group h; sh∗
kt is the share of an individual common good k in all expenditure on common goods for group h;

and we have used our result that demand shocks are mean zero in logs.
10In order to aggregate across groups, we would need to impose additional assumptions in the form of a social welfare function

that speci�es how to weight the preferences of each group.
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We can use our RW estimator to estimate the elasticities of substitution (σh
g ) for each group separately

using the data on prices and expenditure shares for that group. In our empirical analysis in Section 5 below,
we report such a robustness test for high- and low-income households, and compare both the estimated
elasticities of substitution (σh) and changes in the cost of living for each group (Ph

t /Ph
t−1).

3.4 Logit

A well-known result in the discrete choice literature is that CES preferences can be derived as the aggregation
of the choices of individual consumers with extreme-value-distributed idiosyncratic preferences, as shown in
Anderson de Palma and Thisse (1992) and Train (2009). In this section, we brie�y use this result to show that
our uni�ed price index and RW estimator for CES preferences also can be applied for logit preferences, as
widely used in applied microeconometric research. Following McFadden (1974), we suppose that the utility
of an individual consumer i who consumes cik units of product k at time t is given by:

Uit = ln ϕkt + ln cikt + zikt, (50)

where ϕkt captures the component of consumer tastes for each product that is common across consumers; zikt

captures idiosyncratic consumer tastes for each product that are drawn from an independent Type-I Extreme
Value distribution, G (z) = e−e(−z/ν+κ) , where ν is the shape parameter of the extreme value distribution and
κ ≈ 0.577 is the Euler-Mascheroni constant.

Each consumer has the same expenditure Et and chooses their preferred product given the observed
realizations for idiosyncratic tastes. Using the properties of the extreme value distribution, we show in Section
A.24 of the web appendix, that the expenditure share for each product and expected utility take exactly the
same form as in our baseline CES speci�cation in Section 2 of the paper, where 1/ν = σ − 1. Therefore,
all our results for the uni�ed price index and RW estimator can be applied for the logit model. Additionally,
in the same way that our baseline CES speci�cation can be generalized to accommodate mixed CES (as in
Section 3.3 above), the baseline logit model in this section can be generalized to accommodate a mixed logit
speci�cation, as in McFadden and Train (2000).

3.5 Translog

In this �nal generalization, we show that our approach also holds for the �exible functional form of translog
preferences. We focus for simplicity on a homothetic translog speci�cation, which provides an arbitrary
close local approximation to any continuous and twice-di�erentiable homothetic expenditure function.11 In
particular, we consider a translog unit expenditure function de�ned over the price (pkt) and demand parameter
(ϕkt) for a constant set of goods k ∈ Ω with number of elements N = |Ω|:

ln Pt = ln α0 + ∑
k∈Ω

αk ln
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+

1
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)
ln
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p`t
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)
, (51)

11In the same way that our baseline homothetic CES speci�cation can be extended to non-homothetic CES in Section 3.1 above,
so this baseline homothetic translog speci�cation can be extended to non-homothetic translog.
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where the parameters βkl control substitution patterns between goods; symmetry between goods requires
βk` = β`k; symmetry and homotheticity together imply ∑k∈Ω αk = 1 and ∑k∈Ω βk` = ∑`∈Ω β`k = 0.

As for our baseline speci�cation of homothetic CES preferences in Section 2 of the paper, the exact price
index for these translog preferences depends on demand-adjusted prices (pkt/ϕkt):
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2
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(
ϕkt

ϕkt−1

)
, (52)

where the derivation of all results in this section is reported in Section A.25 of the web appendix; the weights
are the arithmetic means of expenditure shares in the two periods ((1/2) (skt + skt−1)).

In the same way that our uni�ed price index for CES is a generalization of the Sato-Vartia price index
to allow for demand shocks for each good, so the translog exact price index (ln ΦTR

t−1,t) in equation (52) is a
generalization of the Törnqvist index (ln ΦTO

t−1,t), which corresponds to the special case of equation (52) in
which demand is assumed to be constant for all goods ((ϕkt/ϕkt−1) = 1 for all k ∈ Ω):
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pkt
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)
. (53)

Comparing equations (52) and (53), the exact translog price index with time-varying demand shocks
(ln ΦTR

t−1,t) di�ers from the conventional Törnqvist index that assumes time-invariant demand (ln ΦTO
t−1,t)

by an additional term that we again refer to as the consumer-valuation bias. Comparing equation (52) for
translog with equation (16) for CES, this consumer-valuation bias takes a similar form as for CES, except that
the demand shock for each good is weighted by the arithmetic mean of expenditure shares in the two time
periods instead of the logarithmic mean of these expenditure shares. The source of the consumer evaluation
bias is again that the true exact price index (ln ΦTR

t−1,t) depends on demand-adjusted price changes, whereas
the Törnqvist index (ln ΦTO

t−1,t) is based on observed price changes. Therefore, the Törnqvist index does not
take into account that an increase in demand for a good is analogous to a reduction in its price. In response
to such a fall in the demand-adjusted price for a good, consumers can obtain a higher level of welfare by
substituting towards that good and away from other goods. A price index that rules out such demand shocks
by assumption cannot capture this substitution in response to changes in demand, in the same way that a
Laspeyres index cannot capture substitution in response to changes in price.

As for our CES speci�cation in Section 2, the challenge in implementing the exact price index (52) em-
pirically is that demand-adjusted prices (pkt/ϕkt) are not directly observed in the data. Again we overcome
this challenge by inverting the demand system to solve for the demand parameters (ϕkt) as a function of the
observed prices and expenditure shares (pkt, skt). Applying Shephard’s Lemma to the unit expenditure func-
tion, and di�erencing over time, we obtain the following expression for the change in the expenditure share
for each product:

∆skt = ∑
`∈Ω

βk` [∆ ln (p`t)− ∆ ln (θ`t)] , (54)

where demand for each good is speci�ed as in equation (2) in the paper with ϕkt = ϕkθkt. We assume that
each good’s expenditure share is decreasing in its own demand-adjusted price (βkk < 0), and increasing in the

29



demand-adjusted price of other goods (βk` > 0 for ` 6= k), which ensures that this demand system satis�es
the “connected substitutes” conditions from Berry, Gandhi and Haile (2013).

We solve for the unobserved demand shocks (∆ ln (θ`t)) by inverting the system of expenditure shares in
equation (54), as shown in Section A.25 of the web appendix. The demand system (54) consists of a system of
equations for the change in the expenditure shares (∆skt) of the N goods that is linear in the change in the log
price (∆ ln pkt) and log demand parameter (∆ ln θkt) for each good. These changes in expenditure shares must
sum to zero across goods, because the expenditure shares sum to one. Furthermore, under our assumptions of
symmetry and homotheticity, the rows and columns of the symmetric matrix formed by the coe�cients {βk`}
for all pairs of goods must each sum to zero. Therefore, without loss of generality, we can omit the equation
for one good. We can nevertheless recover the demand shock for all goods (including the omitted one) using
the property that the demand shocks average out across goods ((1/N)∑k∈N ∆ ln θ`t = 0), as shown in the
web appendix. We thus obtain the unobserved demand shock for each good in terms of observed prices and
expenditure shares: ∆ ln ϕkt = ∆ ln θkt = S−1 (∆st, ∆ lnpt, {βkl}).

Substituting for these unobserved demand shocks in equation (52), we obtain the following exact money-
metric price index in terms of prices and expenditure shares:
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1
2
(skt + skt−1) ln
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)
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1
2
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which corresponds to the analogous common goods price index for translog preferences as our CES common
goods price index (ln ΦCCG

t−1,t) in equation (13) above.
Therefore, our main insight that the demand system can be uni�ed with the unit expenditure function

to construct a price index that allows for time-varying demand shocks for individual goods and yet remains
money metric is not speci�c to CES, but also holds for the �exible functional form of translog preferences.
Furthermore, the consumer-valuation bias is again present for this �exible functional form, because a price
index that rules out demand shocks by assumption cannot capture the potential for consumers to increase
welfare by substituting towards goods for which increases in demand reduce demand-adjusted prices.

4 Data

Our data source is the Nielsen HomeScan database,12 which contains sales and purchase quantity data for
millions of barcodes bought between 2004 and 2014. Nielsen collects its barcode data by providing handheld
scanners to on average 55,000 households a year to scan each good purchased that has a barcode.13 Prices
are either downloaded from the store in which the good was purchased or hand entered, and the household
records any deals used that may a�ect the price. Barcode data have a number of advantages for the purpose
of our analysis. First, product quality does not vary within a barcode, because any change in observable
product characteristics results in the introduction of a new barcode. Barcodes are inexpensive to purchase

12Our results are calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data Center
at The University of Chicago Booth School of Business. Further information on availability and access to the data is available at
http://research.chicagobooth.edu/nielsen

13The data for 2004 through 2006 come from a sample of 40,000 households, and the data for 2007 through 2014 come from a sample
of 60,000 households.
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and manufacturers are discouraged from assigning the same barcode to more than one product, because it can
create problems for store inventory systems that inform stores about how much of each product is available.
Thus, barcodes are typically unique product identi�ers and changes in physical attributes (such as product
quality) manifest themselves through the creation (and destruction) of barcoded goods, not changes in the
characteristics of existing barcoded goods. Thus, a barcode is the closest thing we have empirically to the
theoretical concept of a good.

In the raw Nielsen data, some households with particular demographic characteristics are more likely to
be sampled by design. In order to construct national or regional expenditure shares and purchase quantities
that represent the populations in these regions, Nielsen provides sampling weights that enable us to reweight
the data so that the average expenditures and prices are representative of the actual demography in each
region rather than the Nielsen sample. Therefore, these households represent a demographically-balanced
sample of households in 42 cities in the United States. The set of goods included represents close to the
universe of barcoded goods available in grocery, mass-merchandise, and drug stores, representing around a
third of all goods categories included in the CPI. For our baseline CES speci�cation, we collapse the household
dimension in the data and collapse the weekly purchase frequency to construct a national quarterly database
by barcode on the total value sold, total quantity sold, and average price. In a robustness test for our mixed
CES speci�cation, we construct national datasets on total value sold, total quantity sold, and average price for
high- and low-income households separately. We de�ne low-income households as those with incomes below
the median income bracket in our Nielsen data ($50-59,000 in all but three years) and classify the remaining
households as high-income.

Nielsen organizes goods into product groups, which are based on where goods appear in stores. We
dropped “magnet data,” which corresponds to products that do not use standard barcodes (e.g., non-branded
fruits, vegetables, meats, and in-store baked goods), but kept barcoded goods within these product groups (e.g.,
Perdue Chicken Breasts, Dole Baby Spinach, etc.). The 5 largest of our 104 product groups are carbonated
beverages, pet food, paper products, bread and baked goods, and tobacco. We report a full list of the product
groups and summary statistics for each product group in the web appendix. Output units are common within
a product group: typically volume, weight, area, length, or counts. Importantly, we de�ate by the number of
units in the barcode, so prices are expressed in price per unit (e.g., price per ounce). When the units are in
counts, we also de�ate by the number of goods in a multipack, so for instance, we would measure price per
battery for batteries sold in multipacks. Although about two thirds of these barcoded items correspond to
food items, the data also contain signi�cant amounts of information about nonfood items like medications,
housewares, detergents, and electronics.

In choosing the time frequency with which to use the barcode data, we face a trade-o�. On the one hand,
as we work with higher frequency data, we are closer to observing actual prices paid for barcodes as opposed
to averages of prices. Thus, high-frequency data has the advantage of allowing for a substantial amount of
heterogeneity in price and consumption data. On the other hand, the downside is that the assumption that the
total quantity purchased equals the total quantity consumed breaks down in very high-frequency data (e.g.,
daily or weekly) because households do not consume every item on the same day or even week they purchase
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it. Thus, the choice of data frequency requires a tradeo� between choosing a su�ciently high frequency that
keeps us from averaging out most of the price variation, and a low enough frequency that enables us to be
reasonably con�dent that purchase and consumption quantities are close.14

We resolve this trade-o� using a quarterly frequency in our baseline speci�cation (though we �nd very
similar results in a robustness test using an annual frequency). Four-quarter di�erences were then computed
by comparing values for the fourth quarter of each year relative to the fourth quarter of the previous year. In
Table 1, we report summary statistics for our sample. For each economic variable of interest, we �rst compute
the average of that variable across years for a given product group, before reporting the mean and standard
deviation of this time-average characteristics across product groups, as well as percentiles of its distribution
across product groups. As shown in the �rst row, the median number of price and quantity observations
(“Sector Sample Size”) is 44,552, with the sectors in the �fth percentile of observations only having just short
of 8,269 data points and those in the 95th percentile having over 142,198 observations. The median number
of barcodes per product group is just over 11,000, with 95 percent of these product groups having more than
1,700 unique products, and the largest �ve percent of them encompassing over 45,000 unique products.

We �nd substantial entry and exit of products, with the typical life of a barcoded good being only three to
four years. On average, 31 percent of all products in a given year exit the sample in the following year, while
32 percent of products sold in a year were not available in the previous year. In comparison, the net growth
in the number of barcodes is on average 3 percent across all product groups. These averages mask substantial
heterogeneity in innovation rates across product groups, with the average life of a cottage cheese product
equal to 5.9 years, whereas the average life of an electronics product is only 1.7 years. High rates of product
turnover are re�ected in shares of common goods in total expenditure (λt,t−1 and λt−1,t) of less than one,
although these again vary substantially across product groups from a low of 0.34 to a high of 0.99. Consistent
with entering products being more numerous or more attractive to consumers than exiting products, we �nd
that common products account for a larger share of expenditure in t− 1 than in t (a value of λt,t−1/λt−1,t

of less than one). We also report means and standard deviations for the log change in prices (∆ ln pkt) and
expenditure shares (∆ ln skt), where these expenditure shares are de�ned as a share of expenditure within each
product group. As apparent from the table, we �nd that expenditure shares are substantially more variable
than prices, which in our model is explained by a combination of elastic demand and demand shocks.

5 Empirical Results

We now present our main empirical results. In Section 5.1, we report our estimates of the elasticity of substi-
tution across barcodes within each of the product groups in our data. In Section 5.2, we use these estimated
elasticities of substitution to invert the demand system, and provide evidence on the properties of the re-
sulting demand parameters. In Section 5.3, we show that exact CES price indexes yield similar measures of
the change of the cost of living to superlative price indexes under the same assumption of time-invariant

14Even so, HomeScan data can sometimes contain entry errors. To mitigate this concern, we dropped purchases by households
that reported paying more than three times or less than one third the median price for a good in a quarter or who reported buying
twenty-�ve or more times the median quantity purchased by households buying at least one unit of the good. We also winsorized
the data by dropping observations whose percentage change in price or value were in the top or bottom one percent.
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Table 1: Product Group Descriptive Statistics

N Mean Sd Min P5 P25 P50 P75 P95 Max

Sector Sample Size 104 59,971 50,672 1,999 8,269 24,294 44,552 86,784 142,198 253,668

Number of UPCs 104 15,683 14,852 751 1,706 5,188 11,201 21,711 45,310 79,576

Mean No. Years UPC is in Market 104 3.50 0.97 1.63 2.07 2.91 3.37 4.21 5.33 5.88

Mean λt,t−1 104 0.82 0.12 0.34 0.62 0.78 0.85 0.91 0.96 0.97

Mean λt−1,t 104 0.91 0.07 0.57 0.75 0.90 0.94 0.96 0.98 0.99

Mean λt,t−1
λt−1,t

104 0.90 0.08 0.53 0.73 0.86 0.91 0.95 0.98 0.99

Percent of UPCs that Enter in a Year 104 31.91 10.44 12.98 16.75 24.03 31.51 37.05 50.90 63.27

Percent of UPCs that Exit in a Year 104 30.99 10.09 13.86 16.90 23.47 30.17 36.87 49.54 62.23

Percent Growth Rate in UPCs 104 3.08 14.29 -5.27 -1.48 0.36 1.26 3.40 5.90 145.26

Mean ∆ ln pkt 104 0.01 0.02 -0.08 -0.03 -0.00 0.01 0.02 0.04 0.06

sd(∆ ln pkt) 104 0.21 0.03 0.11 0.17 0.18 0.20 0.22 0.27 0.32

Mean ∆ ln skt 104 -0.20 0.11 -0.65 -0.42 -0.24 -0.17 -0.11 -0.08 -0.05

sd(∆ ln skt) 104 1.40 0.11 1.13 1.21 1.33 1.40 1.47 1.59 1.68

Note: Sample pools all households and aggregates to the national level using sampling weights to construct a nationally-representative quarterly
database by barcode (UPC) on the total value sold, total quantity sold, and average price; λt,t−1 and λt−1,t are the shares of expenditure on common
goods in total expenditure in time t and t− 1 respectively as de�ned in equation (A.57) in the web appendix; N is the number of product groups;
we compute statistics for each product group as the average value across time periods; mean, standard deviation (sd (·)), maximum, minimum and
percentiles p5-p95 are based on the distribution of these time-averaged values across product groups. Calculated based on data from The Nielsen
Company (US), LLC and provided by the Marketing Data Center at The University of Chicago Booth School of Business.

demand for each good. In Section 5.4, we implement our new exact CES uni�ed price index that allows for
time-varying demand shocks for each good. We show that abstracting from these demand shocks leads to a
consumer-valuation bias in existing exact CES price indexes that is around as large as the bias from abstract-
ing from the entry and exit of goods. In Section 5.5, we report a number of robustness tests, including our
mixed CES speci�cation that allows for more �exible substitution patterns between goods.

5.1 Estimates of the Elasticity of Substitution

We estimate the elasticity of substitution across barcodes for each product group separately. We begin by
stacking the moment conditions for all time periods and estimating a single elasticity of substitution for each
product group. In Table 2, we report percentiles of the distribution of these estimates across the product
groups for the RW estimator, the GRW estimator, the Feenstra (1994) estimates and our bounds. As shown
in Column (1), our RW estimates of the elasticity of substitution range from 3.07 at the 5th percentile to 5.66
at the 95th percentile, with a median elasticity of 4.62. These estimated elasticities imply substantially more
substitution between barcodes than implied by an elasticity of zero in conventional Laspeyres price indexes or
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an elasticity of one implied by a conventional Jevons Index using expenditure share sampling weights. These
di�erences are not only economically large but also statistically signi�cant. In Figure 1, we show the RW
estimates (solid black line) and their 95 percent con�dence intervals (gray shading) for each product group.15

We comfortably reject the null hypothesis of an elasticity of substitution of one or zero at conventional levels
of statistical signi�cance for all product groups. Therefore, these estimates suggest that the elasticities implicit
in conventional price indexes substantially understate the degree to which consumers can substitute between
barcodes, con�rming the empirical relevance of the well-known substitution bias.

Table 2: Percentiles of the Distribution of Estimated Elasticities of Substitution (σ) Across Product Groups

Percentile Reverse Generalized Feenstra (1994) Lower Upper
Weighting (RW) Reverse Bound Bound

Weighting (GRW)

Min 2.50 4.51 4.39 1.00 10.51
5th 3.07 5.79 5.11 1.00 11.98
25th 3.92 6.86 5.69 1.00 13.48
50th 4.62 7.51 6.48 1.00 14.52
75th 5.00 8.26 7.25 1.00 16.47
95th 5.66 11.77 8.51 1.00 20.20
Max 6.96 13.07 20.86 1.00 21.49

Note: Percentiles of the distribution of estimated elasticities of substitution across product groups; the reverse-weighting (RW) estimator uses the
moment conditions in equation (28); the generalized-reverse-weighting (GRW) estimator uses the moment conditions in equation (35); the Feenstra
(1994) estimator uses as moment conditions the orthogonality of double-di�erenced demand and supply shocks; the lower bound is 1; the upper
bound is computed as discussed in Section 2.5.4 above; for each estimator, the moment conditions for each pair of time periods are stacked together
over time. Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data Center at The University of Chicago
Booth School of Business.

15We compute the con�dence intervals from 50 bootstrap replications. Each bootstrap replication for a given product group
resamples the observed data on the prices and expenditure shares of goods k in periods t within that product group.
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Figure 1: RW Estimates and 95 percent Con�dence Intervals Across Product Groups
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Note: Estimated reverse-weighting (RW) elasticities of substitution (black line) and 95 percent point con�dence interval (gray shading) for each
product group; product groups are ranked by their estimated RW elasticity; con�dence intervals based on 50 bootstrap replications. Calculated based
on data from The Nielsen Company (US), LLC and provided by the Marketing Data Center at The University of Chicago Booth School of Business.

As shown in Column (2) of Table 2, our GRW estimates are higher for each product group than our RW
estimates, ranging from 5.79 at the 5th percentile to 11.77 at the 95th percentile, with a median elasticity
of 7.51. From Propositions 4 and 5, the GRW estimator is consistent regardless of the correlation between
demand and price shocks, whereas the RW estimator is downward biased when demand and price shocks
are positively correlated and upward biased when they are negatively correlated. Therefore, this pattern
of lower RW estimates than GRW estimates is consistent with the idea that demand and price shocks are
positively correlated with one another. In Figure 2, we show our GRW estimates (black line) and their 95
percent con�dence intervals for each product group (gray shading). Consistent with our earlier Monte Carlo
results, we �nd that the GRW estimates are less precisely estimated than the RW estimates, as re�ected in
the larger con�dence intervals in Figure 2 than in Figure 1.
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Figure 2: GRW Estimates and 95 percent Con�dence Intervals Across Product Groups
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Note: Estimated generalized-reverse-weighting (GRW) elasticities of substitution (black line) and 95 percent point con�dence interval (gray shading)
for each product group; product groups are ranked by their estimated GRW elasticity; con�dence intervals based on 50 bootstrap replications.
Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data Center at The University of Chicago Booth
School of Business.

As a point of comparison, Column (3) of Table 2 reports percentiles of the distribution of the Feenstra
(1994) estimates across product groups. This estimator makes di�erent identifying assumptions (orthogo-
nality and heteroskedasticity of price and demand shocks) from the RW estimator (which drops the het-
eroskedasticity assumption) and the GRW estimator (which drops the orthogonality and heteroskedasticity
assumptions). Therefore, in general, we expect the Feenstra (1994), RW and GRW estimators to di�er from
one another. However, in practice, we �nd that the three sets of estimates do not di�er greatly from one
another, with the Feenstra estimator frequently lying in between our RW and GRW estimators. Therefore,
the CES demand system imposes su�cient structure on the data that the estimated elasticities under these
di�erent identifying assumptions are not greatly di�erent from one another.

As another check on our parameter estimates, the last two columns of Table 2 report our upper and lower
bounds for the elasticity elasticity of substitution. As discussed above and shown in Column (4), our lower
bound for the elasticity of substitution is one, while as shown in Column (5), our upper bound for the elasticity
of substitution is typically around 15. In general, our RW and GRW estimates need not necessarily lie within
these bounds in any �nite sample, because of sampling variation. Furthermore, our three estimators make
somewhat di�erent identifying assumptions, which also could explain di�erences between them. In particu-
lar, the GRW and bounds estimators make the additional assumption of joint log normality, whereas the RW
estimator does not. Additionally, the RW and GRW estimators use the CES unit expenditure function, whereas
the bounds estimator does not. Nevertheless, in practice, we �nd that RW, GRW, and Feenstra estimators all
lie within the bounds for all product groups. Therefore, we �nd that the results of our di�erent estimators
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corroborate one another. More generally, the bounds identify a relatively compact interval of values for the
elasticity of substitution consistent with the observed data and the assumptions of CES demand and joint log
normality. In our robustness checks below, we show that we �nd a substantial consumer-valuation bias for
all parameter values within this interval.

Finally, to provide evidence on the importance of allowing for demand shocks for individual goods, we
now impose the assumption that the demand parameters are time-invariant for each common good (ϕkt =

ϕkt−1 = ϕk for all k ∈ Ωt,t−1). As discussed in Section 2.4 above, in this special case of no demand shocks, we
can directly solve for the elasticity of substitution for each pair of time periods using the Sato-Vartia formula
(see equation (A.84) in Section A.5 of the web appendix). If the assumption of no demand shocks is indeed
satis�ed, we would expect the resulting estimates of the elasticity of substitution to be stable across time
periods. To examine the extent to which this is the case, we compute this Sato-Vartia elasticity of substitution
(σSV

gt ) for each four-quarter di�erence and product group. We expect these estimates to vary by product group,
so we compute the dispersion of these estimates relative to the product group mean, or

(
σSV

gt − 1
T ∑t σSV

gt

)
,

where T is the number of periods. In the absence of demand shocks, we expect this number to be zero.

Table 3: Distribution of Elasticities for Each Year and Product Group

Elasticity Deviation from Time Mean
Mean Median SD p10 p25 p50 p75 p90

Sato-Vartia -1.12 -2.55 177.10 -51.72 -16.64 -0.29 12.54 34.74

Reverse-Weighting 4.14 4.16 1.07 -1.42 -0.62 0.08 0.74 1.23

Generalized Reverse-Weighting 11.53 7.91 10.07 -8.02 -4.75 -1.62 1.09 9.60

Note: Elasticities are estimated for each product group and pair of time periods; Sato-Vartia elasticity is estimated using equation (A.84) in Section
A.5 of the web appendix; mean is the average of these elasticities across product groups and over time ( 1

GT ∑t,g σgt); standard deviation is the average

across product groups of the standard deviation over time in these estimated elasticities normalized by their time mean
(

σgt − 1
T ∑t σgt

)
within each

product group; percentiles are based on the distribution across product groups of the standard deviation over time in these normalized elasticities(
σgt − 1

T ∑t σgt

)
within each product group. For the Sato-Vartia elasticity only, we exclude the top and bottom one-percent market share changes

within each product group to limit the in�uence of outliers (including these observations results in an even higher standard deviation for the Sato-
Vartia elasticity). Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data Center at The University of
Chicago Booth School of Business.

In the top row of Table 3, we report the mean of 1
T ∑t σSV

gt in the �rst column and moments of the dis-
tribution of

(
σSV

gt − 1
T ∑t σSV

gt

)
in the remaining columns. As apparent from the table, we �nd substantial

volatility in these Sato-Vartia elasticities of substitution. The median elasticity of substitution is -2.55, with
a standard deviation of 177, and the mean elasticity is also negative. Over half of the elasticities implied
by the Sato-Vartia formula have the wrong sign, and the estimates obtained for di�erent years within the
same product group vary wildly: half of them are more than 16.6 below the average value for the product
group or 12.5 above it. While there are several possible sources for time-varying demand parameters (includ-
ing consumer tastes, measurement error and speci�cation error), this pattern of results strongly rejects the
Sato-Vartia assumption of no demand shocks for each common good.
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We now examine the extent to which the elasticity of substitution is stable over time once one allows for
time-varying demand for each common good. Our estimates so far pooled pairs of time periods and estimated
a single elasticity of substitution (by assuming σgt = σg). We now estimate separate RW and GRW elasticities
of substitution for each product group and time period separately. In the remaining rows of Table 3, we
report the mean values of these estimates ( 1

T ∑t σRW
gt and 1

T ∑t σGRW
gt ) across product groups and time periods

and the dispersion of these estimates relative to the mean for each product group (
(

σRW
gt − 1

T ∑t σRW
gt

)
and(

σGRW
gt − 1

T ∑t σGRW
gt

)
). As apparent from the table, both sets of estimates are much more tightly distributed

around the product-group mean estimate than the Sato-Vartia elasticities. The median estimates for the RW
and GRW elasticities are close to those commonly found in other studies, ranging from 4.1 for the median
RW estimate and 7.9 for the median GRW estimate. As expected, the RW estimates are particularly tightly
distributed around the product-group mean with 80 percent of the annual estimates lying between -1.4 and
1.2 units larger than the average estimate, but even the GRW estimates have a standard deviation is seventeen
times smaller than that implied by the Sato-Vartia formula.

Taking the results of this section together, our RW, GRW and bounds estimates identify a relatively narrow
range of possible values for the elasticity of substitution consistent with the observed data. We strongly reject
the Sato-Vartia assumption of time-invariant demand for each common good. In contrast, once we allow
for time-varying demand shocks for each common good, we �nd that the data are consistent with a stable
underlying elasticity of substitution for each product group.

5.2 Properties of the Demand Shocks

Using our estimates for the elasticity of substitution (σ) for each product group, we can invert the CES demand
system to solve for the time-varying demand parameter (ln ϕkt) for each product, as in equation (11). In Table
4, we examine the properties of these demand parameters, using our GRW estimated elasticities of substitution
that allow demand and price shocks to be correlated. In Panel A, we report correlations in levels and changes
between (i) sales and price, (ii) sales and demand, and (iii) price and demand. Consistent with the idea that it is
more costly to produce products that are more appealing to consumers, we �nd a strong positive correlation
between the log level of prices and demand, which ranges from 0.78 to close to one. Over time, we also �nd
that log changes in prices and demand are positively correlated, which is consistent with our GRW estimates
typically lying above our RW estimates.
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Table 4: Correlations of Expenditure Shares, Prices and Demand and Variance Decompositions for Expendi-
ture Shares

Panel A: Correlations

Levels Changes

Percentile Sales-Price Sales-Demand Demand-Price Sales-Price Sales-Demand Demand-Price

Min -0.26 0.04 0.78 0.01 0.53 0.48
5th -0.15 0.15 0.84 0.04 0.56 0.62
25th -0.05 0.29 0.89 0.06 0.73 0.68
50th 0.02 0.39 0.94 0.08 0.75 0.71
75th 0.14 0.47 0.98 0.10 0.79 0.74
95th 0.28 0.67 0.99 0.13 0.84 0.90
Max 0.49 0.71 1.00 0.20 0.92 0.90

Panel B: Variance Decomposition

Levels Changes

Variance Variance Covariance Variance Variance Variance Covariance Variance
Percentile Price Demand Share Price Demand Share

Min 1.33 2.64 -2.97 1.00 0.20 1.28 -0.48 1.00
5th 2.05 3.57 -4.62 1.00 0.48 1.61 -1.09 1.00
25th 3.76 4.57 -7.34 1.00 0.70 1.86 -1.55 1.00
50th 7.00 7.89 -13.90 1.00 0.87 1.96 -1.83 1.00
75th 17.06 19.33 -35.39 1.00 1.09 2.31 -2.40 1.00
95th 58.56 61.64 -119.20 1.00 3.62 5.14 -7.76 1.00
Max 107.00 110.63 -216.62 1.00 3.79 5.20 -7.99 1.00

Note: The �rst three columns of Panel A report percentiles across product groups of pairwise correlations between the levels of log sales (log (skt/s̃t)),
log price (log (pkt/ p̃t)) and log demand (log ϕkt) relative to their geometric means; the second three columns of Panel A report analogous results
for changes in these variables; the �rst three columns of Panel B report percentiles across product groups of decompositions of the variance of the
level of log sales shares (var [log (skt/s̃t)]) into the contributions of the variance of log prices (var [(1− σ) log (pkt/ p̃t)]), the variance of log demand
(var [(σ− 1) log ϕkt]) and the covariance (2cov [(1− σ) log (pkt/ p̃t) , (σ− 1) log ϕkt]); the second three columns of Panel B report analogous results
for changes in these variables. In Panel B, to ensure that the components of the variance decomposition add up to one across the columns, we require
that a given row corresponds to the same product group across these columns. To ensure that this is the case, the percentiles in Panel B correspond to
product groups at the relevant percentile of the distribution across product groups of the variance of log prices (var [(1− σ) log (pkt/ p̃t)]) divided
by the variance of log sales shares (var [log (skt/s̃t)]).

In the lower panel of the table, we report percentiles of a variance decomposition for the level and change
of log sales into the contributions of (i) the variance of log prices, (ii) the variance of log demand, and (iii)
the covariance between log prices and demand. We implement this decomposition by using the CES demand
system in equation (3) to express log sales (log (skt/s̃t)) as a function of log price ((1− σ) log (pkt/ p̃t)) and
log demand ((σ− 1) log (ϕkt/ϕ̃t)) terms. The log price term has a median variance that is 87 percent of
the variance of log sales, which implies that prices are quantitatively relevant in accounting for the observed
variation in sales. However, the most striking features of the table are the even larger (in magnitude) contribu-
tions from the demand variance and the covariance terms, highlighting the role of the time-varying demand
shocks in reconciling the choices of the consumer with the observed data on prices and expenditure shares.

Finally, we examine the time-series properties of the demand shocks by running separate regressions for
each product group of the log of the demand parameter for each barcode on a barcode �xed e�ect. Consistent
with there being an important time-invariant component of log demand, we �nd that the average R2 across all
product groups is 0.87, which suggests that much of the variation in demand is time invariant. When we add
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a lag of the log demand parameter to the right-hand side, the average R2 across product groups rises to 0.89,
and the coe�cient on the lagged level of the demand parameter has an average value of 0.21 across product
groups. This pattern of results implies that about 80 percent of any deviation in demand in one year dissipates
in the next, which is consistent with reversion to the mean that in part could be the result of measurement
error. As discussed above, an important advantage of our exact CES price index in equation (14) is that it
allows for mean-zero measurement error in logs for prices and expenditure shares.

5.3 Comparison with Conventional Index Numbers

We now turn to examine the implications of our results for the measurement of changes in the cost of living.
In general, there are three reasons why price indexes can di�er: di�erences in the speci�cation of substitution
patterns, di�erences in the treatment of new goods, and di�erences in assumptions about demand shocks. In
the remainder of this section, we show that exact CES price indexes yield similar measures of the change
of the cost of living to superlative price indexes under the same assumption of time-invariant demand for
each good. Therefore, the di�erences between our new CES uni�ed price index and existing price indexes in
the next section re�ect the treatment of entry and exit and demand shocks for surviving goods rather than
alternative assumptions about substitution patterns between goods.

For each product group and time period, we compute four conventional price indexes that are discussed
in further details in Section A.7 of the web appendix: (i) the Laspeyres index, which assumes a zero elasticity
of substitution and weights goods by initial-period expenditure shares; (ii) the Cobb-Douglas index, which
assumes an elasticity of substitution of one; (iii) the Fisher index, which is a superlative index that equals
the geometric average of the Laspeyres and Paasche indexes, and is exact for quadratic mean of order-r
preferences with time-invariant demand parameters; (iv) the Törnqvist index, which is also superlative and
is exact for translog preferences with time-invariant demand parameters; and (v) the Sato-Vartia price index,
which is exact for CES preferences with time-invariant demand parameters. All these price indexes are de�ned
for common goods that are supplied in both time-periods and hence abstract from entry and exit between
time periods. With ten pairs of time periods and 104 product groups, we have a sample of just over 1,000 price
changes across products and over time.

In Figure 3, we display kernel density estimates of the distribution of four-quarter price changes across
product groups and over time. We express each of the other price indexes as a di�erence from the superla-
tive Fisher index, so a value of zero implies that the price index coincides with the Fisher index. The most
noticeable feature of the graph is that the Törnqvist and Sato-Vartia CES price indexes yield almost exactly
the same change in the cost of living as the Fisher index, with a di�erence between them of less than one
tenth of a percentage point per year. In contrast, assuming an elasticity of substitution of zero (the Laspeyres
index) or one (the Cobb-Douglas index) can result in measures of cost-of-living changes that vary by around
a percentage point.

Since the Sato-Vartia CES index is identical to the CES uni�ed price index under the assumption that there
are no new goods and no demand shifts for any good, these results suggest that assuming a CES functional
form instead of a �exible functional form (as assumed Fisher and Törnqvist price indexes) has relatively little
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Figure 3: Di�erences in Price Indexes from the Fisher Index
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Note: Kernel densities of the distribution across product groups and over time of the di�erence between price indexes and the Fisher Index. Price
indexes are measured as proportional four-quarter changes for each product group for the set of common goods (

(
P∗gt − P∗gt−1

)
/P∗gt−1). SV-CES

is the Sato-Vartia price index (equation (10)). Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data
Center at The University of Chicago Booth School of Business.

impact on the measured change in the cost of living under a common set of assumptions of no entry and exit
and no demand shocks for common goods.

5.4 The CES Uni�ed Price Index

We now maintain the assumption of CES preferences but allow for the entry and exit of goods and demand
shocks for individual common goods. We show that abstracting from these two features of the data introduces
a substantial bias into measures of the change in the standard of living. We �nd that our new consumer-
valuation bias is as around as large as the bias from abstracting from the entry and exit of goods and equal to
more than a percentage point per year.

We start with the variety adjustment term that captures the impact of entry and exit and was �rst in-
troduced by Feenstra (1994). This term depends on both the elasticity of substitution (σg) and relative ex-
penditure shares on common goods (λgt,t−1/λg,t−1,t). It controls both the di�erence between the Feenstra
and Sato-Vartia price indexes in equation (15) and the di�erence between the CUPI in equation (14) and the
CCG in equation (13). In Figure 4, we display a histogram of the relative expenditure shares on common
goods (λgt,t−1/λg,t−1,t) across product groups and over time. If entering barcodes had similar characteristics
to exiting barcodes, the prices and market shares of exiting barcodes would match those of new products,
resulting in a λgt,t−1/λgt−1,t ratio of one. The fact that these ratios are almost always less than one indicates
that new goods tend to be more attractive than disappearing ones in terms of having lower demand-adjusted
(pkt/ϕkt). Moreover, while the occasional λ-ratio in excess of unity indicates that one sometimes observes
a negative new-good bias for a particular product group in a given year, these λ-ratios are less than one for
every product group over the full set of years (as shown in the web appendix). In other words, there is per-
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vasive product upgrading over time. In barcode data, this product upgrading is fully captured in the entry
and exit term, because as discussed above any change in the physical characteristics of a good leads to the
introduction of a new barcode.

Figure 4: Shares of Common Goods in Expenditure in period t relative to period t− 1 (λgt,t−1/λgt−1,t), Four-
Quarter Di�erences by Product Group
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Note: Histogram of relative expenditure shares on common goods (λgt,t−1/λg,t−1,t , as de�ned in equation (A.57) of the web appendix for each product
group g) across product groups and over time. Time periods are four-quarter di�erences. Calculated based on data from The Nielsen Company (US),
LLC and provided by the Marketing Data Center at The University of Chicago Booth School of Business.

We now quantify the relative importance of the biases from abstracting from entry and exit and demand
shocks for common goods. We compare our CES uni�ed price index (CUPI) that incorporates both of these
features of the data to existing price indexes that abstract from one or more of these sources of bias in the
measurement of changes in the cost of living. For each product group and time period, we compute alternative
measures of changes in the cost of living, and then aggregate across product groups using expenditure-share
weights to compute a measure of the change in the aggregate cost of living.

In Figure 5, we plot the resulting measures of the change in the aggregate cost of living using our CUPI
and a range of alternative price indexes. It is well-known that conventional indexes—Fisher, Törnqvist and
Sato-Vartia (CES)—are bounded by the Paasche and Laspeyres indexes. Thus, we can think of conventional
indexes as giving us a band of cost-of-living changes that is determined by assumptions about consumer
substitution patterns, under the assumption of no entry and exit and no shifts in demand for any common
good. Consistent with our results in the previous section, we �nd a relatively small gap between the Laspeyres
and Paasche price indexes, implying that di�erent assumptions about substitution patterns have a relatively
minor impact on the measurement of the cost of living.
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Figure 5: Four-Quarter Proportional Changes in the Aggregate Cost of Living ((Pt − Pt−1) /Pt−1)
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Note: Proportional change in the aggregate cost of living is computed by weighting the four-quarter proportional change in the cost of living for each
of the product groups in our data (

(
Pgt − Pgt−1

)
/Pgt−1) by their expenditure shares. CCG stands for CES common-good price index (equation (13)).

CUPI stands for CES uni�ed price index (equation (14)). The su�xes RW and GRW denote whether the elasticity of substitution was estimated using
the reverse-weighting or generalized reverse weighting procedure. Both the CUPI and Feenstra CES correct for the entry and exit of varieties, but the
CUPI uses our CES common goods price index (equation (14)), whereas Feenstra-CES uses the Sato-Vartia price index for common goods (equation
(15)). Calculated based on data from The Nielsen Company (US), LLC and provided by the Marketing Data Center at The University of Chicago Booth
School of Business.

The bias from abstracting from the entry and exit of goods can be seen in Figure 5 from comparing
either the Feenstra and Sato-Vartia price indexes (from equation (15)) or our CUPI and the CCG price indexes
(from equations (13) and (14)). We compute this comparison using both our baseline RW estimates and our
generalized GRW estimates of the elasticity of substitution between barcodes within each product group. In
either case, we �nd a substantial impact of entry and exit on the measurement of the cost of living, equal
to more than one percentage point per year. This bias falls with the estimated value with the elasticity of
substitution, because the superior characteristics of entering goods relative to exiting goods result in a larger
reduction in the cost of living when goods are less substitutable. Consequently, this bias is somewhat lower
using our GRW estimates than using our RW estimates, but remains substantial. Therefore, if one abstracts
from the fact that new goods tend to be systematically better than disappearing goods (as measured in the
CES demand system by their relative expenditure shares), one systematically overstates the increase in the
cost of living over time.

The consumer-valuation bias from neglecting demand shocks for individual common goods can be dis-
cerned in Figure 5 from comparing our CUPI and the Feenstra price index (from equations (15), (13) and (14)).
Both of these price indexes are exact for CES preferences and allow for the entry and exit of goods. How-
ever, the Feenstra price index uses the Sato-Vartia price index for common goods (assuming time-invariant
demand), whereas the CUPI uses the CCG price index for common goods (allowing for time-varying demand
shocks).16 As shown in the �gure, we �nd that this bias is around as large as that from abstracting from

16Another way of seeing the bias from abstracting from demand shocks is to consider the price indexes for common goods and
compare the CCG (which allows for demand shocks under our assumption of CES preferences) to the band de�ned by the Laspeyres
and Paasche price indexes (which provide upper and lower bounds for the common goods price index for di�erent functional form

43



entry and exit, and more than one percentage point per annum.17 This bias again falls with the elasticity of
substitution, because the ability to substitute towards goods for which demand has risen results in a larger re-
duction in the cost of living when goods are more di�erentiated. As a result, we �nd a somewhat smaller bias
using our GRW estimates than using our RW estimates, but in both cases it is substantial. This bias arises
because consumer welfare depends on demand-adjusted prices, such that increases in demand are directly
analogous to falls in price for a good. Therefore, if one abstracts from the fact that consumers can substitute
towards goods for which demand has risen, and away from goods for which demand has fallen, one again
systematically overstates the increase in the cost of living over time.

Taken together, these results suggest that conventional price indexes are subject to a substantial upward
bias that results from abstracting from two �rst-order features of the data: entry/exit and demand shocks for
individual goods.

5.5 Robustness

We now report a number of robustness checks on our baseline CES speci�cation, including the mixed CES
speci�cation discussed in Section 3.3, the use of alternative values for the elasticity of substitution, a compar-
ison with o�cial CPI categories, sensitivity to measurement error for goods with small expenditure shares,
and the use of alternative weights across common goods to the uniform weights used in the UPI. Across each
of these robustness checks, we show that we continue to �nd a substantial consumer-valuation bias.

5.5.1 High- and Low-Income Households

We begin by implementing the mixed CES speci�cation with heterogeneous groups of consumers discussed
in Section 3.3 above. We use low-income and high-income households as our groups, as de�ned in the data
section above. Although the di�erences in income between these groups are substantial, they are of course
smaller than in other settings, such as in settings comparing developed and developing countries. We allow
both the elasticity of substitution and the demand parameter for each good to di�er between the two groups.
Therefore, this speci�cation incorporates non-homotheticities in a more �exible way than the non-homothetic
CES speci�cation in Section 3.1 above, which imposed a common elasticity of substitution for all consumers.

In Figure 6, we report our estimates of the elasticities of substitution for high- and low-income households
using both the RW and GRW estimators. The black lines correspond to the RW estimates and the gray lines
to the GRW ones. As apparent from the �gure, we �nd that that for any given estimation procedure, the
estimated elasticities for the pooled, high-income, and low-income samples are quite similar, which suggests
that high- and low-income households have similar elasticities of substitution. Unsurprisingly, the GRW
estimates are somewhat noisier than the RW estimates, but nevertheless the correlations between elasticities
for the two groups of households are strong: 0.9 using the RW estimator and 0.6 using the GRW estimator.
Therefore, although this mixed CES speci�cation allows for heterogeneity in the elasticity of substitution, we

assumptions about substitution possibilities including CES preferences).
17The average value from 2005 to 2014 of the Paasche index is 1.1 percent; the Laspeyres, 2.0; the CCG-GRW is -0.2 percent; the

CCG-RW is -1.2 percent; the CUPI-GRW is -1.8 percent; the CUPI-RW is 4.5 percent; the Feenstra-CES-RW is -1.8 percent; and the
Feenstra-CES-GRW is -0.1 percent.
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�nd similar substitution behavior for the high- and low-income households in our data on barcoded goods.

Figure 6: Estimated Elasticities for High- and Low-Income Households

0
2

4
6

8
10

12
14

Es
tim

at
ed

 E
la

st
ic

ity

0 20 40 60 80 100
Sectors (ranked by RW elasticity estimates)

RW RW Low Income RW High Income

GRW GRW Low Income GRW High Income

Note: Estimated elasticities of substitution for each product group. Product groups are ranked by the reverse-weighting (RW) estimated elasticity
for our baseline sample (including both high- and low-income households). GRW denotes generalized-reverse-weighting estimator. High- and low-
income households are de�ned as those with incomes above or below the median income in our Nielsen data. Calculated based on data from The
Nielsen Company (US), LLC and provided by the Marketing Data Center at The University of Chicago Booth School of Business.

In Figure 7, we plot the log demand shifters (ln ϕkt) for each group of households against the average of
those for the two groups for each barcode. We use our RW estimates and pool observations across product
groups, where the demand shifters for each product group are normalized to have a mean in logs of zero. We
use a bin scatter with 100 percentiles and also display the regression relationships between the variables. We
�nd a strong positive and statistically signi�cant correlation between the tastes parameters for the two groups
of households of 0.89, which is re�ected in the �gure in both regression lines lying close to the diagonal.
Therefore, on average, we �nd strong agreement between high- and low-income households about which
products are more or less appealing.

Another feature of Figure 7 is that the slope for low-income households lies below that for high-income
households. This result suggests that high-income households tend to value more appealing barcodes rela-
tively more than low-income households. If average rates of price increase di�er between the goods preferred
by high- and low-income households, this can induce di�erences in the in�ation rate for the two groups. These
di�erences were the main focus of Jaravel (2017), which showed that the average change in the cost of living
for high-income households exceeds that for low-income households by 0.65 percent per year for common
goods and by 0.78 percent per year once the entry and exit of goods is taken into account. We �nd the same
pattern of di�erences in the cost of living between the two groups, as shown in Figure 8 using the RW esti-
mator. On average, the CCG and the CUPI price indexes for low-income households are 0.51 and 0.77 percent
per year higher than those for high-income households. Therefore, our index captures the same properties
of the data as found in other studies.

We now examine the magnitude of the consumer-valuation bias for the two groups of households. As
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Figure 7: Demand Parameters for High- and Low-Income Consumers
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Figure 8: Four-Quarter Proportional Changes in the Aggregate Cost of Living ((Pt − Pt−1) /Pt−1), All House-
holds and High- and Low-Income Households
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Note: Proportional change in the aggregate cost of living is computed by weighting the four-quarter proportional change in the cost of living for each
of the product groups in our data (

(
Pgt − Pgt−1

)
/Pgt−1) by their expenditure shares. CCG is our CES common goods price index (equation (13));

CUPI is our CES uni�ed price index (equation (14)); both are computed using our reverse-weighting (RW) estimator and our baseline sample of all
households. High- and low-income versions of these indexes were computed using only price and expenditure data for households with above and
below the median household income respectively. Change in the aggregate cost of living is computed by weighting the change in the cost of living
for each of the product groups in our data by their expenditure shares. Calculated based on data from The Nielsen Company (US), LLC and provided
by the Marketing Data Center at The University of Chicago Booth School of Business.
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evident from Figure 8, most of the variance in annual changes in the cost of living is due to price changes that
a�ect high- and low-income households similarly. The variance in the di�erence in the cost-of-living between
the two groups is less than one �fth as large as the variance in the change in the cost of living measured on
average for each year. Although our overall price indexes from the previous section need not always lie in
between those for two groups separately, because they are not weighted averages of those for the two groups
separately, we �nd that they do tend to fall in between them in practice. Over the full sample period, the
CCG rose by 0.29 percent per year on average, which was between the CCG for low-income households (0.31
percent per year) and that for high-income households (0.21 percent per year). We see a similar pattern for
the CUPI, which fell by 2.6 percent on average, which was between the 2.5 and 3.2 percent per year declines
for high- and low-income households. Thus, the change in the cost of living that we obtain from our baseline
speci�cation on average lies between those of our two groups.

Taken together these results suggest that while we can �nd evidence of heterogeneity in the demand
parameters for individual goods between high- and low-income households, we �nd similar elasticities of
substitution across goods for these two groups, and this heterogeneity in demand parameters essentially
shifts the cost of living for each group of households separately up or down around our central estimate.

5.5.2 Other Robustness Checks

We also considered a number of other robustness checks. First, we examine the sensitivity of our consumer-
valuation bias to the value of the elasticity of substitution by undertaking a grid search over alternative values
for this elasticity. From Table 2 above, our lower bound for the elasticity of substitution is one, and our upper
bound ranges from around 10 to 20 across product groups. Therefore, we consider a grid of thirty-eight
evenly spaced values for this parameter ranging from 1.5 to 20. For each parameter value on this grid, we
�rst compute our CCG and CUPI for each product group and year. We next compute an overall measure of
the cost of living by aggregating across product groups using expenditure-share weights.

We present a plot of these results in Figure A.5 in Section A.27.1 of the web appendix. Interestingly,
despite the fact that the Laspeyres and Fisher indexes registered average changes of 2.0 and 1.6 percent per
year over this time period, the aggregate change in the cost of living measured by the CUPI is negative for
all values of the elasticity below 20. As one should expect, the change in the cost of living captured by the
CCG tends to be lower when the elasticity of substitution is small, because demand shifts matter more for
welfare if goods are less substitutable. Similarly, smaller values of the elasticity of substitution are associated
with greater gains from variety (and therefore a lower cost of of living) because a low elasticity means that
new varieties are considered more di�erentiated and hence more valuable to households. The results suggest
that both the CCG and the CUPI register substantial price falls over the full time period when the elasticity
of substitution is very small (e.g., less than 3), but the di�erences in average changes in the cost of living
measured by the CUPI vary by only 2.4 percentage points per year if we restrict ourselves to the range of
median elasticities we found in Table 2 (4.5 to 7.5).

Second, as an illustration of the relevance of our results for o�cial measures of the consumer price index
(CPI), we compare conventional price indexes computed using the Nielsen data to o�cial CPI price indexes.
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As discussed further in Section A.27.2 of the web appendix, we were able to map 89 of our 104 product groups
into CPI categories. We again aggregate across these price sub-indexes for each of the 89 product groups
using expenditure-share weights to construct a measure of the overall change in the cost of living. In Figure
A.6 of the web appendix, we compare the resulting aggregate price indexes using the Nielsen data and the
o�cial CPI sub-indexes.

We �nd a strong positive and statistically signi�cant correlation of 0.98 between the Laspeyres (based on
Nielsen data) and the CPI measures of the change in the overall cost of living. Moreover, the average changes
in the cost of living as measured by the Laspeyres index and the CPI are almost identical: 2.30 versus 2.37
percent respectively. The Paasche index (based on Nielsen data) has the same correlation with the CPI, but
has an average change that is only 1.5 percent per year. In other words, annual movements in changes in the
cost of living as measured by the BLS for this set of goods can be closely approximated by using a Laspeyres
index and the Nielsen data, and the di�erence between the Laspeyres and the Paasche indexes in the Nielsen
data is less than one percentage point per year (consistent with the �ndings of the Boskin Commission in
Boskin et al. 1996). In contrast, we �nd a substantial bias from abstracting from entry/exit and changes in
demand for surviving goods, with our CUPI-RW and CUPI-GRW registering average changes in the cost of
living that are more than two percentage points below the CPI.

Third, we examined the sensitivity of our results to measurement error in expenditure shares for goods
that account for small shares of expenditure. In particular, we implemented the robustness test discussed in
Subsection 2.3 above, in which we rewrite the price index for common goods as the product of two terms:
the price index for the subset of common goods with above-median expenditure shares and the share of
expenditure on this subset in all expenditure on common goods. This robustness speci�cation is less sensitive
to measurement error for goods that account for small shares of expenditure, because expenditures on goods
with below-median expenditure shares only enter the denominator of the second term, and even then only
matter through total expenditure on goods with below-median shares. As reported in Section A.27.3 of the
web appendix, the resulting measure of the change in the cost of living tracks closely that in our baseline
speci�cation above.

Fourth, we explored the sensitivity of our results to the use of alternative weights for common goods from
the uniform weights used in the CUPI. Both our weak law of large numbers argument for the demand shocks
averaging out across common goods and our RW estimator require that these weights are uncorrelated with
demand shocks. Therefore, we experimented with constructing price indexes based on random weights that
sum to one and are orthogonal to demand shocks by construction. To do this, we �rst assigned each good
a random number based on a draw from a uniform distribution. We converted these numbers into weights
that summed to one by dividing them by the sum of all of these numbers in each year and product-group
combination and then computed the average change in the CCG over all years using these random weights.
We repeated this exercise 100 times. The median of these randomly weighted CCGs di�ered by less than 0.002
percentage points from the CCG and the 5th and 95th percentiles di�ered by only 0.1 percentage points from
the CCG. Thus, we �nd little di�erence in CUPIs computed based on unweighted averages of products and
those based on randomly weighted averages of products.
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6 Conclusions

Measuring price aggregates is central to international trade and macroeconomics, which depend critically
on being able to distinguish real and nominal income. We make three main contributions to aggregate price
measurement with the constant elasticity of substitution (CES) preferences that dominate these �elds. First,
we develop a new exact price index for CES preferences that treats the demand system and unit expenditure
function in a uni�ed way. We incorporate demand shocks for individual goods (so that our model is consistent
with the observed price and expenditure share data), while ensuring that these demand shocks average out
across common goods (so that the change in the cost of living is money-metric in the sense that it depends
only on prices and expenditure shares). The key insight behind our approach is to invert the demand system
to express the unobserved demand shocks in terms of observed changes in prices and expenditure shares.
Our approach is valid under the same set of assumptions as the existing Sato-Vartia price index (no demand
shocks for each common good), but it also valid under a much weaker set of assumptions (demand shocks for
individual common goods that average out across these goods).

Second, we show that abstracting from demand shocks for individual goods introduces a substantial bias
into conventional price indexes that we term the “consumer-valuation bias.” This bias is analogous to the well-
known substitution bias, and arises because consumer welfare depends on demand-adjusted prices, whereas
only unadjusted prices are observed in the data. If consumer preferences allow substitution towards goods
for which demand has increased, but a researcher assumes a price index that rules out such substitution, this
price index overestimates the increase in the cost of living. The researcher fails to take into account that an
increase in the relative demand for a good is analogous to a reduction in its relative price and consumers can
obtain higher utility by substituting towards that good and way from other goods. Empirically, we �nd this
consumer-valuation bias to be substantial, equal to more than one percentage point per annum, and around
the same magnitude as the bias from abstracting from the entry and exit of goods.

These �rst two contributions hold regardless of how the elasticity of substitution between goods is esti-
mated. Our third main contribution is to develop a new estimator of this parameter that uses the identifying
assumption of money-metric utility. Our baseline “reverse-weighting” estimator minimizes di�erence be-
tween the implied change in the cost of living using the tastes of the initial or �nal period. Our “generalized
reverse-weighting” estimator minimizes the di�erence between the change in the cost of living using initial or
�nal period tastes, after controlling for the component of demand shocks that is correlated with price shocks.
We provide conditions under which these estimators are consistent and show that they perform well in �nite
samples using Monte Carlos. Finally, we use our inversion of the demand system to provide upper and lower
bounds to the elasticity of substitution that hold regardless of the correlation between demand and price
shocks. We show that there is a relatively narrow range of possible values for the elasticity of substitution
that is consistent with the observed data and the assumption of a CES demand system.

Although we focus for most of our analysis on CES preferences because of their dominance in inter-
national trade and macroeconomics, we also consider a number of extensions and generalizations of our
approach, including non-homothetic CES (indirectly additive), nested CES, mixed CES, logit and translog
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preferences. As long as preferences satisfy the property of connected substitutes, the demand system can be
inverted to express the unobserved demand shocks in terms of observed changes in prices and expenditure
shares. As long as consumers can substitute towards good for which demand has risen, conventional price
indexes that abstract from such demand shocks are subject to the consumer-valuation bias. In a robustness
check using mixed CES, which relaxes the independence of irrelevant alternatives and symmetric substitution
assumptions of CES, we show that this consumer-valuation bias remains substantial and is again around as
large as the bias from abstracting from entry and exit.
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