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1. Introduction

In an increasingly knowledge-based U.S. economy, measuring intangible assets, including
research and development (R&D) assets, is critical to obtaining a complete picture of the
economy and explaining its sources of growth. Corrado et al. (2007) pointed out that after
1995 intangible assets reached parity with tangible assets as a source of growth. Despite the
increasing impact of intangible assets on economic growth, it is difficult to capitalize
intangible assets in the national income and product accounts (NIPAs) and therefore to
measure their impacts on economic growth. The difficulties arise because the capitalization
involves several critical but difficult measurement issues. One of these is the measurement

of the depreciation rate of intangible assets, including R&D assets.

The depreciation rate of R&D assets is required for capitalizing R&D investments in the
NIPAs for two reasons. First, the depreciation rate is needed to construct knowledge stocks
- it is the only asset-specific element in the commonly adopted user cost formula. This user
cost formula is used to calculate the flow of capital services (Jorgenson, 1963, Hall and
Jorgenson, 1967, Corrado et al, 2007, Aizcorbe et al, 2009), which is important for
examining how R&D capital affects the productivity growth of the U.S. economy (Okubo et
al., 2006). Second, the depreciation rate is required in order to measure the rate of return to

R&D (Hall, 2005).

As Griliches (1996) concludes, the measurement of R&D depreciation is the central
unresolved problem in the measurement of the rate of return to R&D. The problem arises
from the fact that both the price and output of R&D capital are generally unobservable.
Additionally, there is no arms-length market for most R&D assets and the majority of R&D
capital is developed for own use by the firms. Therefore it is difficult to independently
compute the depreciation rate of R&D capital (Hall, 2005; Corrado et al, 2007). Moreover,
unlike tangible capital which depreciates partly due to physical decay or wear and tear,
R&D capital depreciates mainly because its contribution to a firm’s profit declines over time.
The driving forces are obsolescence and competition (Hall, 2005), both of which reflect
individual industry technological and competitive environments. Given that these
environments can vary immensely across industries and over time, the resulting (private)

R&D depreciation rates should also vary across industries and over time.



In response to these measurement difficulties, previous research has adopted four major
approaches to calculate R&D depreciation rates: patent renewal, production function,
amortization, and market valuation (Mead, 2007). As noted by Hall et al. (1986) and
summarized by Mead (2007), all approaches encounter the problem of insufficient variation
in R&D spending over time and thus cannot separately identify R&D depreciation rates
without imposing strong identifying assumptions. As discussed in Mead (2007), estimates
from amortization models (Lev and Sougiannis, 1996; Ballister et al., 2003) are derived
from a more general set of models that attempt to explain the returns on R&D investment.
However, the estimates are subject to concerns related to the strong assumptions such as an
assumed relationship between the amortization rate of R&D capital and its earnings, and

operating income serving as a proxy for R&D benefits (Lev and Sougiannis, 1996).

Given the fact that firms’ propensities to patent vary across industries and technology areas,
the patent renewal approach cannot capture all innovation activities (Hall et al., 2014).
Moreover, innovations may remain valuable even if their patents have expired, given the
other ways in which firms capture returns to R&D (Levin et al, 1987). The patent renewal
approach also suffers from the failure to observe the right hand tail of a very skewed value
distribution due to the relatively low level of renewal fees. The identification problem can
be mitigated by using citation-weighted patent data, but there is a truncation bias problem

arising due to an incomplete observed citation life of patents (Hall et al., 2000).

Using the production function and market value approaches has the advantage of
incorporating all R&D rather than just that which is patented. However, these approaches
generally rely on the assumption that the average realized rate of return is the same as the
expected rate of return (Hall, 2005). This assumption allows one to back out the
depreciation rate which makes the two consistent. We use a similar approach here, in that
we assume a normal rate of return to R&D when computing the profit function, although we

do not explicitly require it to be equal to the realized rate.

An additional complication is the question of a gestation lag for the output of R&D. Most
earlier research has failed to deal with the issue of gestation lags by treating them as zero or
one year to calculate the R&D capital stock (Corrado et al., 2007, but see Hall and Hayashi,
1989 for an exception). Because the product development life cycle varies across industries,

this treatment is questionable for R&D assets so we explore the use of a gestation lag here.



This paper introduces a new approach by developing a forward-looking profit model that
can be used to calculate both constant and time-varying industry-specific R&D depreciation
rates. The model is built on the familiar concept that R&D capital depreciates because its
contribution to a firm’s profit declines over time. Our forward-looking profit model rests on
some relatively simple assumptions that are plausible given the nature of the data and
allows us to estimate R&D depreciation rates by using only data on R&D investment and
sales or industry output, which is often the only data available to statistical agencies for this

purpose.

The model is applied to the BEA-NSF industry-level dataset to calculate constant R&D
depreciation rates for all ten R&D intensive industries identified in BEA’s R&D Satellite
Account (R&DSA). This dataset contains BEA-NSF NAICS-based establishment-level
industry output and R&D investments in ten R&D intensive industries. The estimates show
that the derived R&D depreciation rates are consistent with the conclusion from recent
studies that the rates should be higher than the traditional assumption (15 percent) and
vary across industries. We also apply the model to estimate the industry-specific time-
varying R&D deprecation rates for the ten R&D-intensive industries. The results are in
general consistent with industry observations on the pace of technological change or reflect
the appropriability condition of its intellectual property, although in some cases they are

quite noisy due to the limited number of observations available.

The remainder of this paper is organized as follows. Section 2 sets out our new R&D
investment model. Section 3 presents a firm and industry-level data analysis that assumes
constant depreciation rates over time. Section 4 presents time-varying depreciation rates
for five selected BEA’s R&D intensive industries. Section 5 presents the first cross-country
comparison of R&D depreciation rates between the U.S. and Japan for several key R&D

intensive industries, and concluding remarks are given in Section 6.

2. Model

Our model assumes that business R&D capital depreciates because its contribution to a
firm’s profit declines over time. R&D capital generates privately appropriable returns; thus,
it depreciates when its appropriable return declines over time. This assumption ignores any
spillover benefits that may continue past the life of the R&D assets in generating profits, but

is an appropriate assumption when measuring the private rate of return to R&D
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investments. The expected R&D depreciation rate is a necessary and important component
of a firm’s R&D investment model. A profit-maximizing firm will invest in R&D such that the
expected marginal benefit equals the marginal cost. That is, in each period ¢, a firm will
choose an R&D investment amount to maximize the net present value of the expected

returns to R&D investment:

= 0, gl (R)A=35)’
qt+j+d (Rt)( ) :| (1)

max E [7,]=-R +E _

R Rk ; (L+r)i*
where R; is the R&D investment amount in period ¢, g: is the sales in period ¢, I(R;) is the
profit rate due to R&D investment, § is the R&D depreciation rate, and r is the cost of capital.
The parameter d is the gestation lag and is assumed to be an integer which is no less than

0.1 R&D investment in period t will contribute to the profits in later periods but at a

geometrically declining rate. We assume that the sales g for periods later than ¢ grows at a
constant growth rate, g. That is, g, ; =q, (1+ g)J . This assumption is consistent with the

fact that the output of most R&D intensive industries grows fairly smoothly over time (See

Figure A-1 in the appendices).
Place figure 1 here.

To resolve the issue that the prices of most R&D assets are generally unobservable, we

define I(R) as a concave function:

I(R)=1,, (1—exp{%§D (2)

with I”(R) < 0, I'(R) = %ﬂexp(%) > 0,1'(0) = %“ and limg_o, I(R) = Io. Figure 1 depicts

how the function I gradually increases asymptotically to I, with R, the current-period R&D
investment. This functional form has few parameters but nevertheless shows the desired
concavity with respect to R. In this, our approach is similar to that adopted by Cohen and

Klepper (1996), who show that when there are fixed costs to an R&D program and firms

1 The paper has defined the gestation lag, d, as how long the R&D investment starts contributing the
firm’s profit. This definition follows what is defined in the U.S. National Science Foundation (NSF)

2010 Business R&D and Innovation Survey (BRDIS).
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have multiple projects, the resulting R&D productivity will be heterogeneous across firms
and self-selection will ensure that the observed productivity of R&D will vary negatively
with firm size. Our model incorporates the assumption of diminishing marginal returns to
R&D investment implied by their assumptions, which is more realistic than the traditional
assumption of constant returns to scale (Griliches, 1996). In addition, the model implicitly
assumes that innovation is incremental, which is appropriate for industry aggregate R&D,

most of which is performed by large established firms.

The function I includes a parameter 6 that defines the investment scale for increases in
R&D and acts as a deflator to capture the increasing time trend of R&D investment as a
component of investment in many industries. The value of & can vary from industry to
industry, allowing different R&D investment scales for different industries. In Figure B-2,
the BEA-NSF industry data show that the average R&D investment in most industries
increases greatly over a period of two decades, and therefore we expect that the investment

scale, 6, needed to achieve the same increase in profit rate should grow accordingly.

Using this function for the profitability of R&D, the R&D investment model becomes the

following:

E[m]=—R, +E |3 Jeoee] (R)(1-9)

= (L+r)*
E [0, ..1(2-6)’ )
_ _ _& S t qt+j+d )
_ Rﬁ'n{l exp[ dﬂ; o0

Note that we have assumed that d, r, and 6 are known to the firm at time t. Because 0 varies
. . t .
over time, we model the time-dependent feature of &by 6, =6, (l+ G) , where G is the

growth rate of 0. To estimate G, we assume that the growth pattern of industry’s R&D

investment and its R&D investment scale are similar and we estimate G by fitting the data
for R&D investment to the equation, R, =R, (1+G)t. This approach is justified by the fact

that BEA data on most industry R&D grows somewhat smoothly over time (See Figure B-2),

Using this assumption, Equation (3) becomes:

B ) B R Qt(1+g)d
T = Rﬁ'ﬂ{l exp[ 90(1+G)tﬂ(1+r)d_l(r+5—g+95) (4)




Note that because of our assumptions of constant growth in sales and R&D, there is no
longer any role for uncertainty in this equation, and therefore no error term. Assuming

profit maximization, the optimal choice of R, implies the following first order condition:

o, (1+6)° Ry ] + q:(1+ g)* _
oR,  Iq 0,(1+6)] (1+rd-1r+86—g+gs)

Boexp [ 0 (5

For estimation, we add a disturbance to this equation (reflecting the fact that it will not hold

identically for all industries in all years) and then estimate 8y and the depreciation rate o.

3. Estimation with constant R&D depreciation rates

As a first step in our empirical analysis, we estimate the time-constant R&D depreciation
rates based on the industry-level BEA-NSF dataset from 1987 to 2007. The BEA-NSF data
that we use are designed to measure true industry aggregates (correcting for such things as
firm presence in multiple industries and multiple countries, something we are unable to do
with Compustat data). 2 In addition, unlike the Compustat dataset which contains only the
data of large publicly traded firms, the BEA-NSF data better represent the industry by

including firms with 5 or more employees.3

The model used for estimation, based on equation (5), is shown below:

_ q:.(1+
A+r)a-1r+6—G§+3géo)

(6)

A\t

Where § and G are estimated using the entire time period. In order to estimate, we need

to make assumptions about Iy, r, and d. The value of I, can be inferred from the BEA annual
return rates of all assets for non-financial corporations. As Jorgenson and Griliches (1967)
argue, in equilibrium the rates of return for all assets should be equal to ensure no arbitrage,
and so we can use a common rate of return for both tangibles and intangibles (such as R&D
assets). For simplicity, I, is set to be the average return rates of all assets for non-financial
corporations during 1987-2007, which is 8.9 percent. In addition, in equilibrium the rate of

return should be equal to the cost of capital. Therefore, we use the same value for r. Later in

2 See Hall and Long (1999) for a full discussion of the differences between NSF and Compustat data.

3 The R&D data come from the NSF’s BRDIS. BRDIS is a nationally representative sample of all
companies with 5 or more employees in all industries.
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the paper we perform a sensitivity analysis using time-varying rates of return, based both
on the 3 month T-bill rate plus a risk adjustment of 4 per cent and on the BEA’s own time-

varying rate of return to assets.

We use a 2-year gestation lag d, which is consistent with the finding in Pakes and
Schankerman (1984) who examined 49 manufacturing firms across industries and reported
that gestation lags between 1.2 and 2.5 years were appropriate values to use (see also Hall
and Hayashi, 1989). In addition, according to the recent U.S. R&D survey conducted by BEA,
Census Bureau and National Science Foundation (NSF) in 2010, the average gestation lag is

1.94 years for all industries. + We also report estimates using a gestation lag of zero years.

R: and gq; are taken from the data and also used to compute the average growth rates of
output (G) and of R&D (g), so the only unknown parameters in the equation are J and 6.
Given these assumptions, ¢ and @ are estimated by nonlinear least squares (NLLS) and

nonlinear generalized method of moments (GMM), using equation (6).

3.1 Nonlinear Least Squares Estimates

This section of the paper reports the results of NLLS estimation using our dataset. Table 2
shows the estimated industry-specific constant R&D depreciation rates based on the BEA-
NSF establishment-based data. The depreciation rates are consistent with most industry
observations. For example, the pharmaceutical industry has the lowest R&D depreciation
rates in both sets of estimates, which reflects the long-term nature of pharmaceutical
research and the fact that R&D resources in pharmaceuticals are more appropriable than in
other industries due to effective patent protection and other entry barriers. Because a
higher entry barrier works similarly as patent protection, we expect the R&D depreciation
rate will be lower (De Rassenfosse and Jaffe, 2017). In addition, as mentioned earlier in the
paper, two of the main drivers of R&D depreciation rates are the industry’s pace of

technological progress and its degree of market competition. Therefore, a higher entry

4 The average gestation lag is based on the responses from 6,381 firms across 38 industries in the
NSF 2010 Business R&D and Innovation Survey (BRDIS). Based on the NSF survey in 2010, the
average gestation lag is 1.94 years for 6,381 firms across industries. Only 1.35% of firms have
gestation lags larger than 3 years. The pharmaceutical industry, 0.9% of the population, has the
longest gestation lag, which is 4 years. The majority of firms have gestation lags around or less than 2
years.



barrier, in general, implies a lower degree of market competition, which may drive down
the industry-level R&D depreciation rate. Compared with the pharmaceutical industry, the
various ICT sectors have higher R&D depreciation rates, which is consistent with industry
observations that the industry has adopted a higher degree of global outsourcing to source
from few global suppliers (Li, 2008). Module design and efficient global supply chain
management has made the products introduced in this industry more like commodities,

which have shorter product life cycles.
Place tables 1 and 2 here.

Table 1 showed the time-constant R&D depreciation rates estimated by other recent studies.
Comparing Table 1 with Table 1, we can see several key results from this study. First, the
estimated industry-specific R&D depreciation rates are consistent with those of recent
studies, which indicate that depreciation rates for business R&D are likely to vary across
industries due to the different competition environments and paces of technology change.
Second, most industries have R&D depreciation rates higher than the traditionally assumed
15 percent that has been the benchmark for much of the empirical work (Griliches and
Mairesse, 1984, Bernstein and Mamuneas, 2006, Corrado et al, 2007, Hall, 2007, Huang and
Diewert, 2007, Warusawitharana, 2010). Third, the R&D depreciation rate in the scientific
research and development industry is much higher than that in the pharmaceutical
industry.5 This is consistent with industry observations that in the past two decades, there
has been little innovation in the traditional pharmaceutical industry and
biopharmaceuticals has faster growth rate of innovation. For example, in 1988, only 5
proteins from genetically engineered cells had been approved as drugs by the U.S. FDA, but
the number has skyrocketed to over 125 by the end of 1990s (Colwell, 2002).

Among the R&D depreciation rates in the ten analyzed R&D intensive industries, the values
for the aerospace and auto industries are usually large compared to those for other
industries. For example, the estimated R&D depreciation rate for the auto industry is 73.3
percent. This result is not inconsistent with the result of the UK’s ONS (Office of National

Statistics) survey of the R&D service lives (Haltiwanger et al, 2010). The average R&D

5 According to NSF’s BRDIS in 2009, biotech firms account for over 65% of R&D investments in the
scientific research and development industry. Other firms related to physical, engineering, and life
sciences account for around 34.5% of R&D investments.
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service life for the auto industry in the UK’s ONS survey is 4.3 years, which implies an R&D
depreciation rate over 40 percent. Note that the response rate of the UK’s ONS survey,

however, is reported to be low.¢

In our formulation of the R&D investment model, there is an implicit tradeoff between the
assumed ex ante rate of return and the computed depreciation rate. Essentially the
depreciation rate for private business R&D is determined by the competitive environment
of the firms that do it, and if the rate of return turns out to be lower than expected, the
implication is that the value of the R&D has depreciated. We illustrate this tradeoff by re-
estimating our model for the aerospace and auto industries with an assumed rate of return
to R&D of 1 percent. This is justified by two facts: First, the U.S. auto industry had negative
return rates during the data period.” Second, in its August 2011 report on the Aerospace
and Defense industrial base assessments, the Office of Technology Evaluation at
Department of Commerce reports that the industry’s profit margin is around 1% and may
be only 10% of the performance of high-tech industries in Silicon Valley (Department of

Commerce, 2011).8

Table 2 reports estimates for these two industries that use the lower rates of return in
italics and they are much lower, around 7-15 percent, confirming our intuition about the
tradeoff between rates of return and depreciation. It is also worth noting that the data
quality of R&D expenses in the auto and the aerospace industries are poor and the R&D data

based on 10-K & 10-Q reports do not cover the industry well. For example, in the aerospace

6In 2011 and 2012, the UK’s ONS conducted two back-to-back surveys on 1701 firms and found a
median R&D service life of 6 years for all industries. Compared with 2.1% in the U.S. similar survey in
2010, the two surveys have better response rates at around 43%. However, the survey result has a
very high degree of uncertainty (Kerr, 2014; Li, 2014). For example, the average answer difference
from the same correspondent for the same company is 3.9 years and the average difference from
different correspondents is 4.5 years. The UK’s survey result is consistent with the U.S.’s finding that
most respondents could not answer questions related to the R&D service lives correctly (Li, 2012). In
the end, the UK’s ONS adopts 16% as the R&D depreciation rate for all industries.

7 Private communication with Brian Sliker at BEA, an expert in the return rate of industry assets,
confirmed this negative trend in the auto industry.

8 After using the new modified model, our new estimate is 29% higher than the rate in Huang and
Diewert (2007). However, in the later section of cross-country comparison, the estimates between
the U.S. and Japan in this industry are reasonable. Diewert reports in private communication that
they found computing the optimal rate in this sector difficult.
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industry, some firms clearly report their own investment in R&D, but others report R&D

expenses that combine federally funded and company-funded R&D (Hall and Long, 1999).

Table 3 presents the results of a sensitivity analysis for the gestation lag and ex ante rate of
return. The first two sets of columns compare gestation lags of two and zero years.? In
general, the estimated depreciation rates do not differ a great deal, and those for the zero
lag are slightly higher, except in the software, computer system design, and scientific
research and development. Interestingly, these three sectors are the only service sectors. A
possible interpretation of the general result is the following: if the gestation lag is zero
rather than two, effectively there is a greater stock of R&D over which to spread the same
profits, so it must depreciate more rapidly to explain the same rate of return. The fact that
the service sectors do not follow this pattern is somewhat puzzling but is doubtless due to

the specific trends in R&D and output in those sectors.
Place table 3 here.

The estimates are not sensitive to allowing a variable cost of capital (although as we saw
earlier, they are sensitive to a change in the overall level. The last two sets of columns in
Table 3 show results when the cost of capital/rate of return is set to (1) the risk free 3-
month treasury bill rate plus a risk premium of 4 percent or (2) BEA’s own measured
average rate of return to assets during the year. Figure B-3 displays these time series. There
is little difference in the estimates across these columns. Figure 2 graphs the sensitivity of
the estimated depreciation rate of R&D assets to the assumed cost of capital for each
industry separately. There are clear differences across the industries, with autos, computer
hardware and services, aerospace, and instruments the most sensitive to the assumption,

and the other sectors much less sensitive.

Place figure 2 here.

3.2 Nonlinear GMM

We may be concerned that simultaneity between current output and R&D (due to cash flow

or demand shocks) could bias estimates of the relation in equation (6). To check this

9 BEA adopts a zero gestation lag, on the grounds that when a firm invests in R&D, the R&D
investment should contribute immediately to the firm’s knowledge stock.
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possibility we estimated the equation using nonlinear GMM, choosing lagged values of R&D
and output as instruments. The choice of instrument variables is based on the assumption
that (given a forward-looking profit model) previous R&D investments and output are not

related to any shocks (&) to the optimal R&D plan described by equation (6).
Place table 5 here.

Table 5 compares the estimates based on nonlinear least squares and nonlinear GMM, both
computed with a two-year gestation lag and an expected rate of return equal to 8.9%. In
general, the nonlinear GMM estimates have higher standard errors than those associated
with the nonlinear least squares estimates, although not always. With the exception of the
aerospace sector, where the estimated depreciation rate is much lower, the estimates are
very similar to those obtained using nonlinear least squares. We also report the results of a
test of the over-identifying restriction (degrees of freedom equal to one), which passes only
for the aerospace and motor vehicle sector. If future datasets are larger in size and we are
able to find better instruments, the nonlinear GMM approach might provide a more robust
estimation, but for the current data these results suggest that the nonlinear least squares

estimates are adequate.

4. Estimation with time-varying R&D depreciation rates

Since the technological and competition environments change over time, the R&D
depreciation rates are expected to vary through the 21 years of data studied. Therefore,
there is a need to calculate industry-specific and time-dependent R&D depreciation rates.
We use the same industry output and R&D investment data from the BEA-NSF dataset. The
time-dependent feature of d was obtained by minimizing Equation (6) with subsets of data.
Instead of using all years of data, we performed least squares fitting over a five-year interval
each time, with a step of 2 years in progression. As a result, the data-model fit is carried out
nine times for 21 years of data, and each estimated depreciation rate is assigned to the
center of a time window. The values of d, I, and r are defined in the same manner as before.
Although there are only 5 data points to estimate the two parameters, the estimates
generally converged well and the standard error estimates are not that large, except in a

few cases.

Place figure 3 here.
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Figure 3 shows the best-fit time-varying R&D depreciation rates for all ten industries
together with their standard errors; the figures are plotted on the same scale to facilitate
comparison. The industries differ in their volatility considerably, with software,
pharmaceuticals, semiconductors, motor vehicles and scientific R&D being relatively stable,
whereas the industries strongly affected by hardware-related technical change during this
time period are much more volatile (e.g., computing equipment, aerospace, communication
equipment, computer system design, and scientific instruments). One concern with these
results may be the underlying data: industries like semiconductors and motor vehicles
whose R&D is dominated by very large firms may be somewhat better measured than the

communication equipment or instruments sector.

Figure 3 also reveal some other facts about the industries we studied. First, the
pharmaceutical industry has a somewhat declining depreciation pattern, which implies a
slower pace of technological change. This is consistent with the industry’s consensus that
factors such as stricter FDA approval guidelines have negatively affected the industry’s
productivity growth in R&D in recent years. As a result, the industry has been experiencing
a negative productivity growth in R&D in recent years. For example, during the period of
1990 to 1999, the FDA approved an average of 31 drugs per year, but this number dropped
to 24 during the period of 2000 to 2009 (Rockoff and Winslow, 2011) and further went
down to 21 in 2010 (Lamattina, 2011). However, the scientific R&D industry, which
contains a large share of biotech firms, has a higher level of depreciation rates that has not
declined since 1990. This echoes the fact mentioned previously that, in the past two decades,
there has been little innovation in the traditional pharmaceutical industry and the

biopharmaceuticals industry has faster growth rate of innovation.

Second, the R&D depreciation rate of the semiconductor industry shows a clear declining
trend after 2000. This depreciation pattern is consistent with several research results. For
example, since 2000, the rate of technological change in the microprocessor industry has
slowed (Flamm, 2007). By combining our depreciation pattern with the evidence of a
slower pace of productivity growth in the semiconductor industry after 2000 (Jorgenson et
al, 2012), we find that our result supports Jorgenson’s hypothesis (2001) that the increase
in the pace of technological change in this sector is positively related to faster productivity

growth.

14



Third, the computer and peripherals equipment industry had stable R&D depreciation
before 1995, a decline during the late 1990s, and then increased slowly or stabilized after
2001. It is helpful to recall the result by Hall (2005) who shows a pattern of decreasing
depreciation for the computers, communication equipment, and scientific instrument
industries during the period of 1989 to 2003. Since Hall’s result is based on the data
including two additional high-tech industries, it is not adequate to directly compare the
depreciation patterns between the two studies. Nonetheless, it is well known that since the
late 1990s, the products in the computer and peripherals equipment industry have also
become more like commodities,!0 a trend that implies a shorter product life cycle, a higher
degree of market competition, and possibly a slower pace of technological change,

mirroring that in semiconductors.

Lastly, the R&D depreciation of the software industry also experienced a declining trend
during the period from 1995 to early 2000s. The declining trend reflects the fact that,
compared with the variable technology environment during the period from 1980s to early
1990s, the Wintel system provided a more stable development environment starting from

mid-1990s.

5. Cross-country Comparison: U.S. vs. Japan

The R&D depreciation rate is one of the critical elements in computing R&D stock for the
analysis of a country’s productivity and economic growth. At the present time, however,
there is no consistent methodology to estimate industry-specific R&D depreciation rates
across countries. When no survey and/or research information is available, Eurostat
recommends that a single average service life of 10 years should be retained (Eurostat,
2012). As a result, many OECD countries adopted R&D depreciation rates close to either
Eurostat’s recommendation (a 10 year service life corresponds roughly to a depreciation
rate of 20 percent) or the traditional assumed 15 percent. The lack of variations in R&D
depreciation rates across countries and across industries implies that countries, no matter

in technology frontier or not, have a similar pace of technological progress and degree of

10 Note that in recent years the International Consumer Electronics Show (CES) has become more
important than ever for the computer manufacturers to introduce their new products and prototypes.
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market competition across countries. This result contradicts existing trade and growth

theories.

Our method is an attempt to provide a consistent and reliable way to estimate industry-
specific R&D depreciation rates across countries and to enable cross-country comparisons.
We applied our model to Japanese data on four R&D-intensive industries: drugs and
medicines, electrical machinery, equipment and supplies, information and communication
electronic equipment, and transportation equipment. The estimates were based on a 2-year
gestation lag, and the values of Ipand r are assumed to be 0.06, which is the value provided
by Japan’'s National Accounts Department for the rate of return. Table 5 shows the
estimated R&D depreciation rates for the period 2002-2012. The choice of period is dictated

by data availability limitations.
Place table 5 here.

In general, the estimates in Table 5 are consistent with those in Table 2. Unfortunately, the
electrical and information tech industries are not exactly comparable to the US industries,
although the results do seem in the same range as those for computing equipment,
communication equipment, semiconductors, and instruments in the US. The average
depreciation rate for these four categories of IT hardware in the US is 28%, and the average
for Japan is 34%. In the case of the US, the number is pulled down by the depreciation rate
in the communication equipment sector, where a few US firms are able to sustain relatively

high profits..

The U.S. pharmaceutical industry has a lower R&D depreciation rate, implying that U.S.
pharmaceutical firms have a slight technology edge in this field and can better appropriate
the returns from their investments in R&D assets. This result is consistent with the U.S.
International Trade Commission’s report on the global medical device industry, where it
finds that, in terms of technological advantage, the U.S. is ranked first in the world and Japan
is a close second (USITC, 2007). Second, Japan’s lower R&D depreciation rate in the auto
industry suggests that Japan has a clear technological edge and can better appropriate the
return from its investments in R&D in this sector. Note, however, that we also show results
for the transport equipment sector that use the 1% rate of return we used for the US, and in

this case the depreciation rate for Japan is only slightly lower.
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6. Conclusions

R&D depreciation rates are critical to calculating the rates of return to R&D investments and
capital service costs, which are important for capitalizing R&D investments in the national
income accounts. Although important, measuring R&D depreciation rates is extremely

difficult because both the price and output of R&D capital are generally unobservable.

In this paper, we developed a forward-looking profit model to derive industry-specific R&D
depreciation rates. Our model uses only data on R&D and output together with some
assumptions on the role of R&D in generating profits for the firm. This allows us to calculate
not only industry-specific constant R&D depreciation rates but also time-varying rates. We
used both nonlinear least squares and nonlinear GMM to fit the model to the data. Both gave
similar results, although GMM passed the over-identification test only part of the time and
resulted in fairly large standard errors. Future work would be useful to find better

instruments and to improve the quality of the underlying data.

Our research results highlight several promising features of the new forward-looking profit
model: First, the derived constant industry-specific R&D depreciation rates are consistent
with the conclusions from recent studies that depreciation rates for business R&D are likely
to be more variable due to different competition environments across industries and higher
than traditional 15 percent assumption (Bernstein and Mamuneas, 2006; Corrado et al,,
2007; Hall, 2005; Huang and Diewert, 2007; Warusawitharana 2010). Second, the time-
varying results capture the heterogeneous nature of industry environments in technology
and competition. Third, our method provides a consistent way to perform cross-country
comparisons of R&D depreciation rates, which can inform countries’ relative paces of
technological progress and technological environments as exemplified in the U.S.-Japan

comparison.

Note that when capitalizing R&D investments into the U.S. national accounts, the U.S.
Bureau of Economic Analysis adopts the concept that failed research projects also generate
useful knowledge, so all R&D is included in R&D capital, not just successful R&D. Moreover,
as mentioned earlier, the main drivers of R&D depreciation rates are the industry’s pace of
technological progress and the degree of market competition. To understand whether the
failure of a research project affects the firm-level R&D depreciation rate, Li (2015) studied
U.S. high-tech industries and found that, in each industry, the R&D depreciation rates of
17



market leaders were lower than those of market followers. This pattern is present in all U.S.
high-tech industries, a result consistent with the resource based theory in that market
leaders can better maintain the value of their assets than their followers. The industry level

data we use here aggregates over both leaders and followers.

While this study provides the first complete set of industry-specific business R&D
depreciation rates for all ten R&D intensive industries identified in BEA’s R&D Satellite
Account, future research can make improvements in several areas. First, current estimation
uses nominal R&D and output data. When the industry-specific price index of R&D assets
becomes available, we can improve the estimates by explicitly incorporating the price level
change. Second, the current model assumes the decision maker has a perfect foresight.
Future research can relax this assumption by including uncertainty in the model. Third, the
current model assumes decreasing marginal returns to R&D investments and that
innovations are incremental. This seems appropriate when dealing with National Income
Account data. However, future research could explore these two assumptions and
potentially modify the model to be applicable to the industry with increasing marginal
returns to R&D investments and drastic innovations. Fourth, the current model assumes
that the growth rate of #is equal to that of the R&D investment, but this assumption could
be relaxed if better data are available for the proper estimation of the growth (or decline) of

R&D productivity.11

Lastly, it has been argued that other intangible assets, such as organizational capital, can
also contribute to a firm'’s productivity growth (Lev and Radhakrishnan, 2005; Corrado et
al,, 2009; Eisfeldt and Papanikolaou, 2013). It should be noted that intangibles other than
R&D and software are not included in national accounts, and measuring intangible assets,
including resolving the critical issue of data availability, is still a topic of active research. As
to the investment timing of R&D assets and organizational capital, as reported in Lev and
Radhakrishnan (2005), market leaders tend to invest more in R&D assets and
organizational capital in a recession period. Following Lev and Radhakrishnan (2005) and
Eisfeldt and Papanikolaou (2013), Li (2016) and Li et al. (2017) use the selling and general
administrative (SG&A) expenditure as a proxy for the investment in organizational capital,

and they applied the same methodology to estimating the depreciation of organizational

11 We are grateful to a referee for this insightful suggestion.
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capital across all high-tech industries. The estimated depreciation rates of organizational
capital are very different from those of R&D assets not only at the firm level but also at the
industry level. In general, the firm-level and industry-level depreciation rates of
organizational capital are found to be much smaller than those of R&D assets, implying that
changes in profitability due to competition in the market are not the main drivers. Future
work can enrich the model to allow the flows of other types of intangible investments and

the interactions between the investments, especially when the data is available.
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Table 1: Summary of previous estimates of R&D depreciation rates

Study Industry Estimate Method Data
Chemicals 11%
Lev and Electrical equipment 13% 825 U.S. firms over
Sougiannis (1996) Industrial machinery 14% Amortization the period of 1975-
Scientific instruments 20% 1991
Transportation equipment 14%
Chemicals 14%
Ballester et al. Electrical equipment 13% 652 U.S. firms over
(2003) Industrial machinery 14% Amortization the period of 1985-
Scientific instruments 14% 2001
Transportation equipment 17%
. Production 40 U.S. firms over the
Knott et al. (2003) Pharmaceuticals 88-100% function  period of 1979 -1998
Chemicals 18% i i
Berstein and Electrical equipment 29% Production &2';2?;;?2??8‘572
Mamuneas (2006) Industrial machinery 26% function 2000
Transportation equipment 17%
Computers and scientific
. -5%
instruments
Electrical equipment -3% Production 16750 U.S. firms
Hall (2005) Chemicals -2% function over the period of
Drugs and medical 11% 1974-2003
instruments
Metal and machinery -2%
.Computers and scientific 31%
instruments
Electrical equipment 36% Market 16750 U.S. firms
Hall (2005) Chemicals 19% valuation over the period of
Drugs and medical 15% 1974-2003
instruments
Metal and machinery 32%
Chemicals 1% ) )
Huang and Electrical equipment 14% Production 312;2?:3)552?513‘5’?
Diewert (2007)  Industrial machinery 3% function 2001
Transportation equipment 27%
Semiconudctors 34%
Warusawitharana Computer hardware 28% Market U.S. industries over
(2010) Medical equipment 37% valuation the period of 1987-
Pharmaceuticals 41% 2006
Software 37%

Note: With the exception of Berstein and Mamuneas (2006) and Huang and Diewert (2007), all of the studies
are based on US Computstat data.
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Table 2: Nonlinear Least Squares estimates of the R&D depreciation rate

BEA-NSF Data

Time period 1987-2007
Industry Estimate s.e.
Computers and peripheral equipment 36.3% 3.8%
Software 30.8% 0.5%
Pharmaceutical 11.2% 4.8%
Semiconductor 22.6% 3.7%
Aerospace products and parts 33.9% 6.5%
Aerospace products and parts with ROR = 1% 6.3% 0.6%
Communication equipment 19.2% 3.3%
Computer system design 48.9% 7.9%
Motor vehicles, bodies and trailers, and parts 73.3% 2.9%
Motor vehicles, bodies and trailers, and parts, with ROR = 1% 11.9% 0.4%
Navigational, measuring, electromedical, and control instruments 32.9% 7.4%
Scientific research and development 29.5% 2.6%

Note: Gestation lag is 2 years; assumed interest rate = ex ante rate of return = 8.9%
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Table 3: Sensitivity of the depreciation rate to assumptions

Gestation lag in years 0 2 2 2
Interest rate 8.9% 8.9% Thill + 4% BEA return

Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

Computersand peripheral 00/ 370, 54000 3206 244% 3.7% 235% 4.1%

equipment

Software 373% 07% 40.0% 08% 41.7% 0.6% 40.1% 0.7%
Pharmaceutical 17.4% 17.1% 169% 16.6% 23.5% 64% 204% 6.2%
Semiconductor 314% 13.4% 284% 122% 294% 121% 281% 16.3%
Aerospace 233% 45% 199% 4.0% 21.6% 51% 21.1% 4.7%

Communication equipment 19.5% 3.4% 168% 3.0% 17.0% 2.7% 16.6% 2.3%

Computer system design 255% 51% 264% 53% 27.7% 33% 27.0% 3.7%

Motorvehicles,bodiesand  5) 300§ cor 97700 1495 20506 1.8% 27.8% 1.3%
trailers, and parts

Navigational, measuring,

electromedical, & control 18.1% 39% 158% 3.5% 183% 4.0% 158% 2.5%
instruments

Scientific research and

214% 49% 21.5% 5.0% 31.1% 5.0% 28.0% 3.7%
development

Method of estimation is nonlinear least squares.
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Table 4: Comparing estimation methods

Industry NLLS NL GMM

Estimate s.e. Estimate s.e. Test#
Computers and peripheral 363%  3.8% 369% 2.7% 0057 *
equipment
Software 30.8% 0.5% 30.4% 0.8%  0.052 *
Pharmaceutical 11.2% 4.8% 13.7% 3.9% 0.002 ¥
Semiconductors 22.6% 3.7% 23.7% 55% 0.6%  *+*
Aerospace products and parts 339% 6.5% 9.1% 9.2% 0.543
Communication equipment 192%  3.3% 23.8% 52% 0.000 ***
Computer system design 489% 7.9% 47.6% 21.3% 0.000 ***
Motor vehicles, bodies and 733%  2.9% 63.9% 27.9% 0.192
trailers, and parts
Navigational, measuring,
electromedical, & control 32.9% 7.4% 33.1% 10.1% 0.000  ***
instruments
Scientific research and 295%  2.6% 31.0% 2.6% 0.029 **
development
Notes:

Assumed gestation lag is two years; interest rate is 8.9%.

Estimates shown are for the depreciation rate and its standard error.

# The p-value of a test for overidentifying restrictions is reported in these columns. *, **, *** denote
significance at 10%, 5%, 1% respectively



Table 5: Estimates for Japan

Industry Estimate s.e.
(1) Drugs and medicines 16.4% 5.4%
(2) Ellectrlcal machinery, equipment, and 38.8% 7.6%
supplies

3) Infor.matlo.n and communication 28.4% 1.3%
electronic equipment

(4) Transportation equipment 50.0% 2.0%
(4) Transportation equipment (r=3%) 26.9% 1.0%

Notes:

1. The estimates are based on a 2-year gestation lag, and an interest rate of 6%.

2. The data cover the period 2002 to 2012.



Figure 1: The Concavity of I(RD)

I(R)
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Figure 2: Sensitivity of the depreciation rate of R&D Assets to the Cost of

Capital
Sensitivity of depreciation rate to assumed ex ante rate of return
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Figure 3: Time-varying R&D Depreciation Rates

Estimated Time-varying Depreciation Rate by Sector - BEA-NSF data
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Appendix A: Additional tables and figures
Figure A-1

Output by sector - BEA-NSF data
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Figure A-2

R&D investment by sector - BEA-NSF data
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Figure A-3

Interest rates
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Appendix B: a three parameter model

In the main body of the paper, we estimated the profit model in the following form:

Y RY
€ = —(1 Bl G) Qoegjp Rt —|— df‘it (1 + g)
P 90(1+G) (1+7) (r+6—g+36)

The parameters to be estimated were & and 8o, while G , g , and r = I, were fixed at

plausible values. Thanks to a suggestion from a referee, we found that G, which
corresponds to the growth or decline in R&D productivity in generating profits, was also
identified in our data, at the cost of some additional imprecision. Estimates for this three

parameter model (C;Y , 0 and B¢) are shown in Table B-1, using a gestation lag of 2 and
interest rate of 8.9%. The estimated depreciation rates are somewhat lower than those in
Table 2, but generally similar.

Table B-1: Estimation of the three parameter model

Inflati
Depreciation se (gr;j(‘)l 3};2 rl.ln se Base theta se
(delta) theta) (US$B)
Computers and peripheral equipment 35.4% 4.4% 1.1% 2.0% 7.37 2.42
Software 30.8% 0.6% 9.8% 2.4% 3.46 0.85
Pharmaceutical 6.7% 7.4% 4.9% 4.3% 48.71 39.02
Semiconductor 20.6% 9.3% 1.5% 8.9% 16.98 6.93
Aerospace 30.7% 5.6% 0.6% 1.1% 17.24 4.32
Communication equipment 15.4% 2.8% -0.6% 2.7% 18.43 4.38
Computer system design 45.8% 9.4% 6.4% 2.9% 7.70 2.29
Motor vehicles, bodies and trailers, and parts 72.9% 3.2% 3.3% 0.8% 14.49 2.23
Cer‘l’tlfjltll‘r’l‘;;luEth‘S‘““g electromedical, & 222%  46%  -05%  15% 2070 3.8
Scientific research and development 22.1% 5.1% 10.8% 0.7% 5.34 2.07

The interpretation of the G and 6, estimates are the following: 8¢ varies across industry to
the extent that the profit productivity of R&D varies. The industry with the highest value,
pharmaceuticals, is the industry where the largest amount of R&D is needed to generate an
additional dollar of profit. That is, 8y is related to but not the same as the R&D intensity in
the industry (the correlation is 0.69). G measures how this productivity changes over the
period, with a positive value indicating the R&D is becoming less productive and a negative
value the reverse. The estimates suggest that R&D productivity is increasing in two sectors:
communication equipment and instruments, while declining in others. The industries with
the greatest declines in the ability of R&D to generate profits are semiconductors (the
slowdown of Moore’s Law) and computer system design, followed by pharmaceuticals.
These results seem plausible, and with more data, worth pursuing.
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