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“[B]efore the Treasury holds an auction, salespeople at 22 primary dealers field billions of dollars in bids

for government debt. Traders working at some of these financial institutions have the opportunity to learn

specifics of those bids hours ahead of the auctions [and] also have talked with counterparts at other banks via

online chatrooms [...]. Such conversations, both inside banks and among them, could give traders information

useful for making bets on one of the most powerful drivers of global markets [...].” — Bloomberg (2015),

“As U.S. Probes $12.7 Trillion Treasury Market, Trader Talk Is a Good Place to Start.”

Recent financial market misconduct, involving misuse of information about clients’ orders,

cost the firms involved record fines and lost reputation. It also prompted investigations

and calls for curbing dissemination of order flow information, between and within dealers.

Recent investigations reportedly involve U.S. Treasury auctions (Bloomberg, 2015 above).

But the use of order flow information has been central to our understanding of Treasury

auctions (Hortaçsu and Kastl, 2012), to market making theory generally (Kyle, 1985) and

to market practice for decades. In describing Treasury market pre-auction activities in the

1950s, Robert Roosa (1956) noted that “Dealers sometime talk to each other; and they all

talk to their banks and customers; the banks talk to each other.” Furthermore, sharing

order-flow information–or, colloquially, “market color”–with issuers is even mandatory for

primary dealers both in the U.S. and abroad. Of course, if information sharing leads to

collusion, that has well-known welfare costs. But if collusion could be prevented with

separate remedies, is information sharing by itself problematic? The strong conflicting

views on a seemingly long-established practice raise the question of who gains or loses

when order-flow information is shared.1

Measuring the revenue and welfare effects of information sharing directly would require

data with and without sharing. In the absence of such data, we use a calibrated model.

Our setting is an institutionally-detailed model of U.S. Treasury auctions, which we select

because of the available data, the absence of other dealer functions,2 and their enormous

economic importance. In the model, dealers observe client orders and may use that in-

1Thus far actions for misconduct have been successfully brought against participants in the interbank
lending (Libor) and foreign exchange markets. Regulations on information sharing in sovereign auctions
vary and are evolving. As of 2011, the UK Debt Management Office sanctioned that UK primary dealers,
or Gilt-edged Market Makers, “whilst not permitted to charge a fee for this service, may use the infor-
mation content of that bid to its own benefit” (GEMM Guidebook, 2011). The 2015 GEMM Guidebook,
instead, states that “information about trading interests, bids/offers or transactions may be subject to
confidentiality obligations or other legal restrictions on disclosure (including pursuant to competition law).
Improper disclosure or collusive behaviour will fall below the standards expected of GEMMs, and evidence
or allegations of such behaviour will be escalated to the appropriate authority(ies).” We are not aware
of analogous rules in the context of U.S. Treasury auctions. In practice, a financial intermediary’s use of
client information, including sharing such information with other clients or using the information for other
benefit to such intermediary, may violate legal requirements, be they statutory, regulatory or contractual,
market best practices or standards. This paper does not take a view as to whether the described use of
client information with respect to Treasury auction activity is legal or proper. The objective of the paper
is to study the economic effects of alternative information sharing arrangements.

2Dealers in Treasury auctions do not diversify or transform risks, do not locate trading counterparties
and cannot monitor issuers because they cannot influence fiscal policy.
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formation to inform their own strategy, share some of the information with clients, or

exchange information with other dealers. Then all agents submit menu bids to a uniform-

price, common-value auction. To quantify the effects of order flow information sharing and

sign welfare results, we calibrate the model to auction results and allotment data as well as

market pricing information and on-the-run premia. Then we compare the model’s revenue

and utility predictions with varying degrees and types of information sharing. Finally,

we derive two testable predictions from our model and show that both are supported by

auction data.

The model teaches us that the primary beneficiary of information sharing is the U.S. Trea-

sury, who benefits from the higher bids of better-informed buyers. We estimate that moving

from full information sharing benchmark to a “Chinese wall” policy of no information-

sharing between or within dealers would lower Treasury auction revenues by $4.8 billion

annually. While the idea that better-informed investors bid more is not a new finding, the

issue is rarely raised in policy debates, presumably because the magnitude of the effect is

not known.

Our second finding is that dealer information sharing with other dealers and sharing with

clients have opposite effects on investor utility. When all dealers share information with

their clients, it typically makes the clients worse off. This is a form of the well-known

Hirshleifer (1971) effect, which arises here because better-informed clients have more het-

erogeneous beliefs and therefore share risk less efficiently. But surprisingly, when dealers

share information with each other and then transmit the same amount of information to

their clients, investor welfare improves. Our model shows how inter-dealer information

sharing makes beliefs more common, and thereby improves risk-sharing and welfare. In

essence, information sharing with clients is similar to providing more private information,

while inter-dealer sharing functions effectively makes information more public.

Third, since information sharing has been associated with coordinated trades in foreign-

exchange misconduct (for example, to manipulate benchmark rates), we consider a setting

in which dealers who share information also collude. In a collusive equilibrium, dealers

who share information also bid as a group, or coalition, that considers price impact of

the coalition as a whole. We find that dealer information sharing and collusion jointly

suppress auction prices and reduce Treasury revenue. However, if the dealers share enough

information with clients, the revenue costs may disappear.

Fourth, we uncover a new financial accelerator: Only investors with bad news employ

intermediaries, who then share that information with others. Thus the combination of

information sharing and intermediation choice can amplify the effect of negative news and

raise the probability of auction failure.
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These findings are not meant to imply that dealers should have carte blanche in using

information in any way they choose. The model assumes that clients know how dealers use

their information, and that order flow information is aggregated. While we consider the

case of collusive bids by dealers, our setting does not clearly span the range of malpractices

that may have been undertaken. In effect, we ask: If dealers disclose how information is

used, what are the costs and benefits of limiting information sharing?

Treasury auctions are unique in their importance and their complexity. Our model balances

a detailed description with a tractable and transparent model which highlights insights that

are broadly applicable. The basis for the model is a standard, common-value, uniform-

price auction with heterogeneous information, limit orders and market orders. On top

of this foundation, we add five features that distinguish Treasury auctions from other

settings.

Feature 1: Dealers learn and share order flow information. The assumption that

bidders have private signals about future Treasury values and that dealers learn from

observing their order flow is supported by Hortaçsu and Kastl (2012). Using data from

Canadian Treasury auctions, they find that order flow is informative about demand and

asset values. They further show that information about order flow accounts for a significant

fraction of dealers’ surplus. In our setting, dealers not only collect this information but

also share it.

Feature 2: Strategic bidding Bikhchandani and Huang (1993) present evidence that

Treasury auctions are imperfectly competitive (see also Song and Zhu, 2016). Because of

their bidding volume (40 percent of the total), primary dealers, which currently are only 22,

bid strategically by taking into account the price impact of their bids. As in Kyle (1989),

the strategic aspect of primary dealers’ bids is a central feature of our model. Without it,

for example, the choice of intermediated or direct bidding that we discuss below would be

trivial. By including the various types of bidders, our model predicts not only average post-

auction appreciation (as in Lou, Yan, and Zhang, 2013), but also a relationship between

post-auction price appreciation and auction allocations by investor types.

Feature 3: Non-competitive bidding In every auction, a group of bidders, labelled

“non-competitive,” place market orders that are not conditional on the market-clearing

price. Such bidders are an important feature of the model, because they prevent the price

from perfectly aggregating all private information. We assume that competitive bidders

are different in that they submit limit orders (quantity schedules that are conditional on

realized prices). We show in the data that competitive bids incorporate information in

realized prices, just as they do in our model.

Feature 4: Minimum bidding requirements Primary dealers are expected to bid at
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all auctions an amount equal to the pro-rata share of the offered amount, with bids that

are “reasonable” compared to the market. A dealer that consistently fails to bid for a large

enough quantity at a high enough price could lose his primary dealer status.3 We model

this requirement as a shadow cost for low bids.

Feature 5: Direct and indirect bidding U.S. Treasury auctions are mixed auctions,

meaning that investors can choose to bid indirectly, through a dealer, or directly, without

any intermediary. Section 5 examines a large, strategic bidder’s choice of how to bid.

Each of these model features contributes to our understanding of the symbiotic relationship

between investors and intermediaries: it is the process of intermediating trades that reveals

information to dealers and thus empowers them. Information sharing is what induces clients

to use intermediaries and induces large investors to intermediate.

Contribution to the existing literature. Our paper contributes to several strands of

literature. First, it is connected to work in the microstructure literature that studies how

order flow information contributes to price formation. For example, dealers learn from

sequential order flow in Easley, Kiefer, O’Hara, and Paperman (1996) and leverage asym-

metric information and market power in Kyle (1985) and Medrano and Vives (2004). In

Babus and Parlatore (2015), dealers fragment a market. They consider how fragmentation

inhibits risk-sharing, while we consider the effect on information-sharing. What distin-

guishes our model most from previous work is its analysis of information-sharing and its

attention to the institutional features of Treasury auctions. While, as in most models with

exponential utility, the equilibrium price is a linear function of the signals in the economy,

the information sharing changes the linear weights placed on each signal. The institutional

detail we add is not just window-dressing on a standard model. Intermediation choice

and minimum bidding requirements are what make information sharing necessary. When

bidders can choose to bid directly, dealers must share some of their information in order to

attract clients. Conversely, allowing dealers to extract information from order flow is what

induces them to be primary dealers and subject themselves to costly minimum bidding

(underwriting) requirements. Without this both types of information sharing, the primary

dealer system as we know it could not operate.

Primary dealers perform underwriting services, as they do in the initial public offering

(IPO) literature. This literature typically finds that intermediaries lower issuers’ revenues

but also revenue variance (Ritter and Welch, 2002). We show, instead, that when deal-

3Prior to 1992, an active primary dealer had to be a “consistent and meaningful participant” in Treasury
auctions by submitting bids roughly commensurate with the dealer’s capacity. See appendix E in Brady,
Breeden, and Greenspan (1992). In 1997, the New York Fed instituted an explicit counterparty performance
scorecard and dealers were evaluated based on the volume of allotted securities. In 2010 the NY Fed clarified
their primary dealer operating policies and strengthened the requirements. See New York Fed website for
the most recent rules.
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ers share information, the conventional wisdom of underwriting is reversed: information

intermediaries raise expected revenue but also revenue variance.

Work by Hortaçsu and McAdams (2010) and others, who study how auction design af-

fects revenues,4 complements our project. Similarly, He, Krishnamurthy, and Milbradt

(2016) explore why US Treasuries are safe. We fix the auction format to a uniform-price

menu auction, fix the distribution of future Treasury values, and instead focus on how

intermediation and information sharing affect revenue and surplus.

The emergent literature on intermediary asset pricing also explores the idea that interme-

diaries are central to determining the equilibrium price of an asset. In He and Krishna-

murthy (2013) and Brunnermeier and Sannikov (2014), capital-constrained intermediaries

provide households with access to risky asset markets and thus improve economy-wide risk

sharing. In contrast, agents in our model choose optimally whether to invest through an

intermediary, whose role is to improve information sharing among investors. This new

information-sharing role for financial intermediaries helps explain why agents that are not

precluded from accessing markets directly might choose intermediation nonetheless.

1 Baseline Auction Model with Primary Dealers

The auction setting is a simple and familiar one, with a structure similar to Kyle (1989).

The novel feature of the model lies in its rich information structure as determined by how

information is shared between the agents. Figure 1 summarizes the alternative sharing

arrangements that we consider, for a simplified setting with no signal noise and only a

few market participants. Dealers are denoted with the letter “D,” while investors with

the letter “I.” Panel a) shows the case of no information sharing (“Chinese walls”), where

each auction participant only observes his private information si. Competitive bidders can

submit a menu of price-contingent quantities. Auction theory teaches us that each bidder

should avoid the winner’s curse by choosing a quantity for each price that would be optimal

if he observed that market-clearing price and included it in his information set. Thus, the

information set of investor i is effectively {si, p}.

When information is shared between dealers and customers (panel b), an investor’s infor-

mation set now not only includes her private signal but also the dealer’s, and the dealer

4Theoretical work by Chari and Weber (1992), Bikhchandani and Huang (1989), Back and Zender
(1993), and Wilson (1979) considers the merits of uniform-price auctions versus other possible alternatives.
Empirical work by Nyborg and Sundaresan (1996), Malvey, Archibald, and Flynn (1995) and Malvey
and Archibald (1998) compares revenues from 1992-1998 when the U.S. Treasury used both uniform and
discriminatory price auctions. Armantier and Sbäı (2006) use French Treasury auction bids to structurally
estimate the benefits of uniform price auctions.
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Figure 1: Information sets with alternative sharing assumptions. Letter D de-
notes dealers; letters I denotes investors (either large or small) bidding through a dealer or
not (direct bidding); p is the equilibrium price. Dashed lines indicate common information
sets.

(a) No sharing with
customers or dealers
(Chinese Walls)

p

D1 D2

I1 I2

(b) Sharing with cus-
tomers, not with other
dealers

p

D1 D2

I1 I2

(c) Sharing with cus-
tomers and dealers

p

D1 D2

I1 I2

(d) Sharing with cus-
tomers only; one di-
rect bidder

p

D1 I1

I2 I3

also observes an extended information set. This information set is further increased in the

case of cross-dealer information sharing (panel c). In this case, each investor observes the

information set pertaining to its dealer, and also that of the other dealer. Common to case

b) and c) is the fact that information sharing with dealers and customers leads to more

signal pooling. Investors who bid independently from the intermediary keep their signal

private (panel d) resulting in a more dispersed information set both for the direct bidder

and other bidders.

While this simplified setting conveys the essence of information sharing, our model is

richer along many dimensions. We consider four type of bidders to match key features

of Treasury auction participation: small and large limit-order bidders, intermediaries (or

dealers) and non-price contingent bidders. Limit-order bidders and intermediaries place

price-contingent bids, which specify for each clearing price p, a price-quantity pair. Limit-

order bidders can be small (price takers) or large (strategic bidders). We refer to large and
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small limit-order bidders as the investors. Dealers are just like large limit-order bidders

but they also intermediate bids from other limit-order bidders and face minimum bidding

requirements. Dealers place bids directly in the auction while small and other large limit-

order bidders bid indirectly through the dealers. (Section 5 allows direct bidding as well.)

Non-price-contingent bidders are the fourth type of agent that places bids. In contrast to

other investors and dealers, these bidders place market orders that only specify a quantity

but not a price (called noncompetitive bids). In practice, noncompetitive bidders are

small retail investors or foreign central banks who participate at auctions to invest dollar-

denominated foreign reserve balances, for example by rolling expiring securities into newly

issued ones. As opposed to other investors, this foreign official auction demand is not

driven by the security fundamentals but by exchange rate policies, simply placing bids for

a given amount of securities, and injecting noise in auction prices.

Agents, assets and preferences The model economy lasts for one period and agents

can invest in a risky asset (the newly issued Treasury security) and a riskless storage

technology with zero net return. The risky asset is auctioned by Treasury in a fixed

number of shares (normalized to 1) using a uniform-price auction with a market-clearing

price p. The fundamental value of the newly issued asset is unknown to the agents and

normally distributed: f ∼ N(µ, τ−1
f ). By assuming that there is one final value of the asset,

we are describing a common value auction. But this is purely for convenience. Appendix

C describes a private value setup that delivers the same results.

We index investors (small and large) and dealers with i = 1, . . . , N , where N ≡ NL +

NI + ND, NL, NI and ND denote respectively the total number of large investors, small

investors and dealers. Each small investor has initial wealth Wi, and chooses the quantity

of the asset to hold, qi (which can in principle be negative) at price p per share, in order

to maximize his expected utility,5

E[− exp(−ρiWi)], (1)

where ρi denotes agent i’s coefficient of absolute risk aversion. In our data, investors

with larger balance sheets hold larger positions of risky assets. To allow our model to

match these wealth effects, we assign large investors and dealers a smaller absolute risk

aversion. The budget constraint for small and large investors dictates that final wealth is

Wi = W0 + qi(f − p).

Dealer and large investors solve the same problem of small investors but they also internalize

5Technically, the price of each Treasury is fixed at par and auction participants bid coupon payments.
We interpret p as the price per present value dollar of coupons.

7



the effect they have on market prices. They maximize their final utility with risk aversion

ρi subject to the same constraints as well as the market clearing condition. We assume that

all large investors and dealers share the same risk aversion and signal precision, or ρi = ρl

and τε,i = τε,l for i ∈ {NL,ND}, where Nj is the set of agents of type j. Similarly, all small

investors are symmetric: ρi = ρI and τε,i = τε,s for i ∈ NI . The net quantity of market

orders, x, is unknown to other investors and normally distributed x ∼ N(x̄, τ−1
x ).

Minimum Bidding Requirements In the current design of the primary dealer system,

dealers are expected to bid for a pro-rata share of the auction at “reasonable” prices

compared to the market. A dealer may violate the minimum bidding requirement in any

given auction. But over time, if a dealer is consistently allotted an insufficient share, his

primary dealer status could be revoked. To capture the essence of this dynamic requirement

in a static model, we model the bidding requirement as a cost levied on a dealer who

purchases too little. This cost is a stand-in for the shadow cost of a dynamic constraint.

Conversely, a dealer who purchases a large dollar amount of Treasuries faces a relaxed

bidding constraint in the future. We model this benefit as a current transfer. Thus, for a

dealer who purchases a dollar amount qp of Treasuries through the auction, we assume a

low-bid penalty of χ0 − χqp. Thus, a dealer d’s budget constraint is

Wd = W0,d + qd(f − p)− (χ0 − χqdp). (2)

Describing Information Sets and Updating Beliefs with Correlated Signals De-

pending on the information structure, investors and dealers observe three pieces of infor-

mation: 1) their own private signal, 2) signals from others who may share information with

them and 3) the equilibrium price of the asset. We explain each in turn. Before trading,

each investor and dealer gets a signal about the payoff of the asset. These signals are

unbiased, normally distributed and have private noise:

si = f + εi,

where εi ∼ N(0, τ−1
ε,i ). In practice, the fundamental value of a newly-issued Treasury

security depends on the term structure of interest rates, as implied by market prices of

other Treasury securities, and the specific liquidity value of the newly auctioned security

relative to older securities. In the model calibration, we focus on how information sharing

affects the specific liquidity value taking as given the term structure, which is largely driven

by monetary policy as opposed to information sharing at the auction.

Second, by placing orders through dealers, customers reveal their order flow to their dealer,
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which in the model is equivalent to sharing their private signal. Each dealer d receives

orders from an equal number of investors. He observes the orders of νI ≡ NI/ND small

and νl ≡ NL/ND large investors. Since bids will turn out to be linear functions of beliefs,

observing average bids and observing average signals is equivalent. The dealer can construct

s̄d, which is an optimal signal-precision-weighted average of his and his clients’ private

signals as:

s̄d =

∑
i∈Id τisi∑
i∈Id τi

=
τε,s
∑

k∈Isd
sk + τε,l

(∑
j∈Ild

sj + sd

)
νIτε,s + (1 + νl)τε,l

, (3)

where the second equality follows from the fact that signal precision is common within

each bidder type. Dealers, in turn, can share some of this order flow information with

their clients. Dealer information sharing takes the form of a noisy signal about s̄d, which

is the summary statistic for everything the dealer knows about the asset fundamental f .

That noisy signal is s̄ξd = s̄d + ξd where ξd ∼ N(0, τ−1
ξ ) is the noise in the dealers’ advice,

which is iid across dealers d. Our model captures noisy dealer advice, as well as two

extreme cases: perfect information-sharing between dealers and clients (τξ = ∞) and no

information-sharing (τξ = 0). For now, we assume that each dealer discloses s̄ξd to each of

his clients, but not to other dealers (Figure 1, case b). We return to inter-dealer sharing

later.

The final piece of information that all agents observe is the auction-clearing price p. Of

course, the agent does not know this price at the time he bids. However, the agent con-

ditions his bid q(p) on the realized auction price p. Thus, each quantity q demanded at

each price p conditions on the information that would be conveyed if p were the realized

price. Since p contains information about the signals that other investors received, an

investor uses a signal derived from p to form his posterior beliefs about the asset payoff.

Let s(p) denote the unbiased signal constructed from auction-clearing price. We guess and

verify that (s(p) − f) ∼ N(0, τ−1
p ), where τp is a measure of the informativeness of the

auction-clearing settle price.

Thus the vector of signals observed by an investor j assigned to dealer d(j) is Sj =

[sj , s̄ξd(j), s(p)]. This is the same vector for large and small investors. The only differ-

ence for the two investors is that large investors’ private signals sj are more precise and

have a different (higher) covariance with price information. A dealer observes the same

signals, except that he sees the exact order flows, instead of a noisy signal of them. For

dealer d, Sd = [sd, s̄d, s(p)]. For every agent, we use Bayes’ law to update beliefs about

f . Bayesian updating is complicated by correlation in the signal errors. To adjust for this
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correlation, we use the following optimal linear projection formulas:

E [f |Sj ] = (1− β′1m)µ+ β′Sj where (4)

βj ≡ V (XjS)−1 Cov (f, Sj) (5)

V [f |Sj ] = V (f)−Cov (f, Sj)
′V (Sj)

−1 Cov (f, Sj) ≡ τ̂−1
j , (6)

where m is the number of signals in the vector Sj , the covariance vector is Cov (f, Sj) =

1mτ
−1
f and the signal variance-covariance V (Sj), is worked out in the appendix. The vector

βj = [βsj , βξj , βpj ] dictates how much weight an agents puts on his signals [sj , sξd(j), s(p)]

in his posterior expectation. In a Kalman filtering problem, β is like the Kalman gain. In an

econometric forecasting problem, βs are the OLS coefficients that multiply the independent

variables to forecast the dependent variable – in this case, the payoff f .6 We define an

equilibrium in the auction as

Equilibrium. A Nash equilibrium is

1. A menu of price-quantity pairs bid by each small investor i that solves

max
qi(p)

E[− exp(−ρWi)|Si]

s.t. Wi = W0i + qi(f − p).

The optimal bid function is the inverse function: p(qi).

2. A menu of price-quantity pairs bid by each large investor that maximizes

max
qj ,p

E[− exp(−ρlWj)|Sj ] (7)

s.t. Wj = W0,j + qj(f − p), (8)

x+

NI∑
i=1

qi +

ND∑
j=1

qj +

NL∑
k=1

qk = 1. (9)

The second constraint is the market clearing condition and reflects that the strategic

players must choose their quantity taking into account the effect their demand has

on market clearing, and, hence, the realized price.

3. A menu of price-quantity pairs bid by each dealer (dealer and large investor) that

6More precisely, the OLS formulas with known means, variances and covariances. The OLS additive
constant α is (1N − β)′1Nµ. β is the infinite sample version of (X ′X)−1X ′y. The conditional mean
here is analogous to the optimal linear estimate in the OLS problem. This equivalence holds because in
linear-normal systems, both OLS and Bayesian estimators are consistent.
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maximizes

max
qd,p

E[− exp(−ρlWd)|Sd] (10)

s.t. Wd = W0,d + qd(f − p)− χ0 + χqdp, (11)

x+

NI∑
i=1

qi +

ND∑
j=1

qj +

NL∑
k=1

qk = 1. (12)

The dealer’s budget constraint reflects the minimum bidding requirement faced by

the dealers.

4. An auction-clearing (settle) price that equates demand and supply: x +
∑NI

i=1 qi +∑ND
j=1 qj +

∑NL
k=1 qk = 1.

2 Solving the Model

We first solve for optimal bid schedules of large, small investors and dealers. Then, we

work out the auction equilibrium and vary the amount of information being shared either

between investors and dealers or between dealers. We consider three cases as illustrated

in Figure 1: 1) dealers and customers share information; 2) dealers also share information

with other dealers; and 3) no information is shared either with customers or between

dealers.

Since all investors’ posterior beliefs about f are normally distributed, we can use the

properties of a log-normal random variable to evaluate the expectation of each agent’s

objective function. It then follows that the FOC of the small investors’ problem is to

bid

qi(p) =
E[f |Si]− p
ρV[f |Si]

, (13)

which is a standard portfolio expression in an exponential-normal portfolio problem. The

fact that it is an auction setting rather than a financial market doesn’t change how choices

are made. The novelty of the model is in how dealers’ information sharing affects the

conditional mean and variance of the asset payoff.

For large strategic bidders, we substitute the budget constraint in the objective function,

evaluate the expectation and take the log. The strategic investor maximization problem

then simplifies to maxqj ,p qj(E[f |Sj ] − p) − 1
2ρlq

2
jV[f |Sj ] subject to the market clearing

condition (9), where the price is not taken as given.7 The first order condition with respect

7In the baseline model we rule out collusion, and relax this assumption in Section 4.3.
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to qj reveals that dealers and large investors bid

qj (p) =
E[f |Sj ]− p

ρlV[f |Sj ] + dp/dqj
. (14)

Importantly, this expression differs from equation (13) by the term dp/dqj , which measures

the price impact of a strategic investor bid. As the price impact increases, the dealer’s

demand becomes less sensitive to his beliefs about the value of the security.

Dealers are just like large investors, except that in addition to strategic price impact, they

also face minimum bidding requirements. We substitute the dealer’s budget constraint (2)

and the market -clearing expression for equilibrium price (9) in the objective (1), take the

expectation and the first order condition with respect to qD, to obtain

qD (p) =
E[f |XDS]− p(1− χ)

ρlV[f |XDS] + (1− χ)dp/dqD
. (15)

Note that the bidding requirement shows up like a dealer price subsidy, encouraging the

dealer to purchase more of the asset. It also mitigates the effect of dealer market power by

multiplying the dp/dqD term by a number less than one.

2.1 Equilibrium auction-clearing price: 3 cases

In order to understand the effect of client information sharing, dealer information sharing

and no information sharing, we solve for the equilibrium auction outcomes in each of these

three cases.

The no-information-sharing world we consider is one with “Chinese walls,” where dealers

cannot use client information to inform neither their own nor their clients’ purchases. In

recent years, a number of financial firms have implemented such a separation of brokerage

activities and transactions for their own account. Regulators have also recommended that

banks establish and enforce such internal controls to address potential conflicts of interest.8

In our Chinese wall model, each agent sees only their own private signal si and the price

information s(p) which they can condition their bid on, but not any signal from the dealer:

Si = [si, s(p)].

In every version of the model, adding up all investors’ and dealers’ asset demands as

well as the volume of market orders x and equating them with total supply delivers the

equilibrium auction price. As in most models with exponential utility (e.g. Kyle (1989)),

the price turns out to be a linear function of each signal. The innovation in this model is

8For example, the Financial Stability Board (FSB) 2014 report on “Foreign Exchange Benchmarks”
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that information sharing changes the linear weights. To the extent that signals are shared

with more investors, that signal will influence the demand of more investors, and the weight

on those signals in the price function will be greater. In this model, the signals are the

investor’s private signal si or sj (for large investors), in each dealer’s average order flow

signal sd, the volume of market orders x, and the signal noise in each dealer’s signal to his

clients ξd:

Result 1. Suppose all investors bid through dealers. Consider the following three information-

sharing regimes.

1. Dealers share information imperfectly with clients, but not with other dealers.

2. Dealers share information with clients and ψ other dealers.

3. There is no information sharing at all. Dealers cannot use client trades as informa-

tion on which to condition their own bid (Chinese walls).

In all three cases, the auction revenue is a linear function of signals si, market orders x,

and dealer signal noise ξd:

p = A+BI s̄I +BL s̄NL +BD s̄ND + Cx+D ξ̄d (16)

where s̄Nz ≡ N−1
z

∑Nz
i=1 si are the average signals of individuals (z = I), large investors

(z = L) and dealers (z = D); ξ̄d ≡
∑Nd

d=1 ξd is the average dealer’s signal noise. The

equilibrium pricing coefficients A,BI , BL, BD, C and D that solve each model differ by

model and are reported in appendix A.

Standard competitive market models often have simple solutions for the price coefficients.

The complication here is two-fold: 1) there are large strategic agents whose demand is not

linear in the coefficients of the price function and 2) shared signals are correlated with price

information. Both sources of extra complexity are essential to understand how the number

of dealers and their information sharing affects auction revenue.

A primary effect of information sharing in this model is higher auction revenue. The reason

is that sharing information leaves all investors better informed. Investors who perceive an

asset to be less risky will hold it at a lower risk premium, or at a higher price. A lower

risk premium is a less negative A. We see in the solution that this risk premium (−A)

decreases when information is shared and uncertainty is lower. While this type of effect

shows up in many imperfect information asset pricing models, it offers a new perspective

on how restricting sharing of information affects auction revenues. This effect is largely

neglected in the policy discourse on information regulation.

With Chinese walls, when dealers can no longer use the information in their clients’ orders,
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the functional difference between dealers and large investors disappears. The difference

between direct bidding and indirect bidding is similarly eviscerated. In other words, elim-

inating all information sharing effectively eliminates intermediation as well. The finding

that there is no longer any meaningful distinction between a dealer and a non-dealer large

investor is reflected in the fact that in the price formula, if the number of dealers and large

investors is equal and the dealers do not face a minimum bidding requirement, then the

coefficients on the signals of dealers sd and the signal of large investors sj are equal as

well.

Auction Revenue Since we normalized Treasury asset supply to one, price and auction

revenue in this model are the same. Our objective is to determine what the expected

revenue is, what the variance of that revenue is, and how this mean and variance vary with

information sharing. The unconditional expected revenue will be a linear function of the

unconditional mean of the asset payoffs µ and the unconditional mean quantity of market

orders x̄: A+Btotalµ+Cx̄, where Btotal = BI = BL+BD. Unconditional revenue variance

will be B2
I τ
−1
εI /NI +B2

Lτ
−1
εL /NL +B2

Dτ
−1
εD /ND + C2τ−1

x +D2τ−1
ξ /ND.

3 Mapping the Model to the Data

To measure the impact of information sharing on auction revenue and bidders’ welfare, we

calibrate the model parameters using data from two main data sources: Treasury auction

results and market prices. In 2013 alone, Treasury issued nearly $8 trillion direct obligations

in the form of marketable debt as bills, notes, bonds and inflation protected securities

(TIPS), in about 270 separate auctions.9 Our sample starts in September 2004 and ends in

June 2014. To study a comparable sample and estimate yield curves, we restrict attention

to 2-, 3-, 5-, 7- and 10-year notes and exclude bills, bonds and TIPS.

In each auction, competitive bids specify a quantity and a rate, or the nominal yield for note

securities. Non-competitive bids specify a total amount to purchase at the market-clearing

rate. Each bidder can only place a single non-competitive bid with a maximum size of $5

million. Competitive bids can be direct or indirect. To place a direct bid, investors submit

electronic bids to Treasury’s Department of the Public Debt or the Federal Reserve Bank

of New York. Indirect bids are placed on behalf of their clients by depository institutions

(banks that accept demand deposits), or brokers and dealers, which include all institutions

9Treasury bills are auctioned at a discount from par, do not carry a coupon and have terms of not more
than one year. Bonds and notes, instead, pay interest in the form of semi-annual coupons. The maturity
of notes range between 1 and 10 years, while the term of bonds is above 10 year. For TIPS, the coupon is
applied to an inflation-adjusted principal, which also determines the maturity redeemable principal. TIPS
maturities range between 1 and 30 years.

14



registered according to Section 15C(a)(1) of the Securities Exchange Act. Though most

indirect bids are placed through primary dealers, indirects bids also include those placed by

the New York Fed on behalf foreign and international monetary authorities (FIMA) that

hold securities in custody at the Fed. We return to these types of indirect bids below.

On the auction day, bids are received prior to the auction close. The auction clears at a

uniform price, which is determined by first accepting all non-competitive bids, and then

competitive bids in ascending yield or discount rate order. The rate at the auction (or

stop-out rate) is then equal to the interest rate that produces the price closest to, but not

above, par when evaluated at the highest accepted discount rate or yield at which bids

were accepted.

We first discuss the calibration of auction participation by types of bidders using auction

results data, which are made publicly available by the U.S. Treasury. For each maturity,

we compute the mean share of securities allotted to primary dealers, direct and indirect

bidders, after excluding amounts allotted to the Fed’s own portfolio through roll-overs of

maturing securities, which are an add-on to the auction. As discussed above, the def-

inition of indirect bidders from official auction results includes competitive bids placed

by foreign officials through the NY Fed.10 Bids by foreign official investors are driven

by exogenous factors such as foreign exchange strategies and their need to roll-over large

quantities of reserve balances, as opposed to fluctuations in short-term market values. As

a result we apply a simple calculation to reclassify these bids as part of the noise trader

group (non-competitive). Although auction result data do not detail indirect bids from

FIMA customers, we use information on foreign security holdings and on foreign bids from

investment allotment data to reconstruct the amount of these bids at each auction.11

Figure 2 plots Treasury auction participation by type of bids over time and the corre-

sponding target moments (first and second) are reported in Table 1. As shown by the

dark grey area, primary dealers bidding for their own account, are the largest bidder cat-

egory at auctions accounting for about half of all security allotments. Indirect bidders,

excluding estimated FIMA bids, are the second largest at 32 percent (light gray). Direct

bids (medium gray) are about 8 percent and non-competitive bids, as computed above, are

about 11 percent (red areas).

10FIMA customers can place non-competitive bids for up to $100 million per account and $1 billion in
total. Additional bids need to be placed competitively.

11For example, from Treasury International Capital (TIC) data, as of August 2014, about 6 trillion
of securities are held by foreign investors, while from the Fed Board’s H4.1 release, FIMA holdings at
the New York Fed are about $3.4 trillion as of that time. Assuming that the portfolio composition and
bidding strategy of FIMA and non-FIMA are similar then an estimate of FIMA’s share of competitive bids
reported as indirect ones on that date is: 3.3/6× all foreign bids (from investment allotment) less FIMA
non-competitive bids that are reported separately.
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Figure 2: Allotted shares by bidders across all auctions. Market orders (FIMA
other) are constructed from indirect FIMA bids as discussed in Section 3. Source: Treasury
auction results.
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We turn next to the calibration of the security fundamental value. We first note that the

type of uncertainty faced by Treasury bidders is different from the risks faced by corpo-

rate bond investors. Because sovereign secondary markets are deep and liquid, Treasury

investors can hedge issuer-specific risks by shorting already-issued securities. Newly issued

government securities do, however, carry a liquidity premium relative to already-issued

securities. Investors’ demand for specific issues is the key determinant of these liquidity

differences. As a results, key underwriting risks for bidders are issue-specific rather than

issuer-specific. In our model, we assume that each investor observes a signal of the issue-

specific value of the newly issued security, and uses this signal to form an expectation of

the value of the security after the auction.

To calibrate the first and second moments of p and f , it is important to first note that, up

to rounding, the auction price clears at par. The stop-out coupon rate is, instead, uncertain

and will be a function of issue-specific value as well as the term structure of interest rates

at the time of the auction, which depends on factors unrelated to the auction, such as

monetary policy and inflation expectations. We focus on issue-specific fundamentals, or

the “on-the-run” value of the issue, for two reasons. First, an investor can easily hedge

interest rate risk into the auction by shorting a portfolio of currently outstanding securities.

Second, from the issuer perspective, the stop-out rate could be very low because of low

interest rates, but an issue could still be “expensive” relative to the rate environment due

to auction features, which is what we are after. To strip out the aggregate interest-rate

16



effects, we assume that the bidder enters the auction with an interest-rate-neutral portfolio,

which holds one unit of the auctioned security and shorts a replicating portfolio of bonds

trading in the secondary market. This portfolio is equivalent to the excess revenue on the

current issue, relative to outstanding securities. Thus, price p in our model corresponds

to the auction price, minus the present value of the security’s cash-flows, where future

cash flows are discounted using a yield curve. To compute this measure, we estimate a

Svensson yield curve following the implementation details of Gürkaynak, Sack, and Wright

(2007) but using intraday price data as of 1pm, which is when the auction closes (data

from Thomson Reuters TickHistory). The fundamental value f in the model corresponds

to the value of the interest-rate neutral portfolio on the date when the security is delivered

to the winning bidders (close of issue date). The issue date in our sample lags the auction

date by an average of 5.5 days with a standard deviation of about 2.3 days. For example,

in Table 1, the average revenue from selling a new coupon-bearing security is 37.18 basis

points higher than the replicating portfolio formed using outstanding securities. Thus, we

calibrate the model to have this average asset payoff. This excess revenue is positive across

all maturities. This is the well-known “on-the-run” premium (Lou, Yan, and Zhang, 2013;

Amihud and Mendelson, 1991; Krishnamurthy, 2002). Appendix D details exactly how

we calculate payoffs, explores other possible ways of hedging the interest rate risk, and

discusses the role of the when-issued (WI) market.

Table 1: Calibration targets and model-implied values. Prices and excess revenues
are all expressed in basis points.

Data Model

A -17.01 -7.55
Price sensitivity to fundamental 0.97 0.91

C 124.38 73.88
Error Std. Dev. 29.72 23.12

Expected excess revenue 37.18 38.72
Volatility of excess revenue 72.64 70.81

Indirect share 0.25 0.51
Volatility of indirect share 0.09 0.73

Dealer share 0.53 0.43
Volatility of dealer share 0.14 0.19

Direct share 0.10 0.00
Volatility of direct share 0.09 0.01

We fit the parameters of the full model to aggregate moments. The full model differs from

the one presented in the previous section for the inclusion of a direct bidder in the model,

which, as we discuss in Section 5, is a key distinguishing feature of Treasury auctions. The

objective function matches a few moments from the model to their empirical counterparts:
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the pricing coefficients A, B and C in equation (16), the mean and variance of the price of

the interest-rate-risk-neutral portfolio p at auction, the mean and variance of the price of

the portfolio f at issuance, the mean allotted share and variance of non-competitive bids x

(including the FIMA trades, or market orders), the mean allotted share to primary dealers,∑D
d=1 qd, the mean allotted share to indirect bidders (

∑N
i=1 qi), and the mean allotted share

to direct bidders, qL.12 We obtain sample estimates of A, B and C by regressing the stop-

out-price at each auction on a constant, the end-of-day secondary price on the issue date of

the auction security (data from Bloomberg LP) and the non-competitive bids. As shown

in Table 1, consistent with the model, excess revenues are positively correlated to the

fundamental value on issue date (positive B = BI + BL + BD), and it also increases with

the share of securities allocated to market orders (positive C). The model moments are

computed by making 100000 draws of realization of the fundamental f , all the signals in

the economy si and the non-competitive demand x from the model, and calculating the

equilibrium outcomes.

Table 2: Calibrated parameters µ, χ0, τ
− 1

2
f , τ

− 1
2

ε,s and τ
− 1

2
ε,l are all expressed in basis

points.

µ τ
− 1

2
f τ

− 1
2

ε,s τ
− 1

2
ε,l τ

− 1
2

x x̄ ρ ρL χ0 χ NS NL ND

40.8 73.5 529.9 272.3 0.06 0.12 47825 505 0.06 0.05 240 40 20

We set the level of minimum bids χ0 to be equal to the pro-rata share of the issuance at

the expected price in the baseline model, with perfect information sharing with clients and

no information sharing with other dealers. This reflects the spirit of the minimum bidding

requirement: dealers have an effective price concession when they bid for a larger fraction

of the auction or at a higher price.

The final parameter, τξ regulates how much information dealers share with clients. Without

micro data, we cannot infer this value, and assume that τξ = ∞ (perfect sharing) in

calibrating the other parameters. We explore the stability of the calibrated parameters and

of the equilibrium outcomes under different assumptions on information sharing between

clients and dealers and between dealers in appendix E. In reality, different dealers probably

engage in different degrees of information-sharing. Instead, we show results from the whole

spectrum of potential values, from τξ = 0 (no information sharing) to τξ = ∞ (perfect

sharing).

Given these parameters, we solve the model by solving for the equilibrium pricing coef-

ficients in Result 1. This amounts to solving for a fixed point in a set of up to seven

12We use the pricing coefficients A, B and C for calibration, but not D. The reason is that D multiplies
the dealer signal noise ξ, which is not observed. Thus, D is part of the estimation residual.
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non-linear equations (five for pricing coefficients and two for demand elasticities of dealers

and large investors). We iterate to convergence, using the average violation of the mar-

ket clearing condition (9) to ensure that we find the equilibrium pricing coefficients. The

average violation of the market clearing condition at the solution does not exceed 4 basis

points for the models in Result 1. For some models, we have to use multiple starting points

to ensure that the maximum is a global one.

4 Results: Effects of Information Sharing

We examine two forms of information sharing: First, the case in which dealers vary the

degrees of information with their clients but do not communicate with each other. Then, we

hold the precision of client communication fixed and vary the number of dealers that dealers

share information with. In both cases, we find that information sharing increases auction

revenues as well as revenue volatility. The surprising finding is that small investors dislike,

as a group, when dealers share more precise information with them, but benefit when

dealers share information with each other. The intuition for this puzzling finding is that

client information sharing increases information asymmetry and inhibits risk sharing, as

in Hirshleifer (1971), while inter-dealer talk reduces information asymmetry and improves

risk sharing.

Since the quantity of Treasury securities sold is normalized to 1, the auction price and

auction revenues are the same. Therefore, in the plots that follow, we report the expected

price, varying one exogenous parameter at a time. In each exercise, all parameters other

than the one being varied are held at their calibrated values. The one exception is χ, the

minimum bidding penalty. For simplicity, we turn that off (χ = χ0 = 0) to start, and

return to examine its effect in section 4.2.

4.1 Information Sharing and Auction Revenue

The top-left panel of Figure 3 plots expected auction revenues as a function of different

levels of dealer information sharing with clients. The horizontal axis shows the precision

of the dealer signal τξ from zero (no information sharing) to infinity (perfect information

sharing). More information sharing means that dealers reveal their information s̄d with less

noise to their clients. The figure shows that moving from no sharing to perfect information

sharing increases expected revenue by 1.5 basis points.

Information sharing makes investors better informed which in turn makes Treasuries less

risky to investors, eliciting stronger bids and increasing auction revenues. To put this yield
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Figure 3: Dealer Information Sharing. Top row: dealer information sharing with
clients; bottom row: dealer information sharing with other dealers. In the top row, the
horizontal axis shows the precision of the dealer signal τξ from zero (no information sharing)
to infinity (perfect information sharing). Expected utility is plotted as a fraction of the
utility each type gets in the Chinese wall equilibrium.
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effect in perspective, applying this estimated effect to annual Treasury issuance (or about

$8 trillion), the model implies that total auction revenues would increase about $1.2 billion

when going from no dealer sharing with customers to perfect sharing with them.

In unreported results, we also find that sharing information with clients also increases the

variance of auction revenue by about 1.6 basis points. This higher variance arises because

dealers make investors better informed. Absent any information about the future value

of a security, bidders would always bid the same amount and revenue would be constant.

With more precise information, bidders condition their bids on this information. When the

fundamental value of the securities fluctuate, investors learn this information with a high

degree of accuracy, and use this information in their bids leading to more volatile auction

revenues. One parameter that is important for these quantitative results is the variance

of non-competitive bids. When these bids are less predictable, auction clearing prices are

less clear signals about the true value of the asset. The value of information aggregation

increases, which makes dealers more valuable in expected auction revenue terms.

In terms of bidders’ welfare, the top-right panel of Figure 3 shows that dealers’ utility

declines when they share more information. That’s not surprising since they are giving up

some of their information advantage. But it also shows that small and large investors’ utility

declines with information sharing. Information acquisition is like a prisoners’ dilemma in

this setting. Each investor would like more of it. But when they all get more, all are worse

off. One reason is that better-informed investors bid more for the asset. By raising the

price, they transfer more welfare to the issuer (Treasury).

When dealers share information among themselves, as opposed to with customers, auction

revenues also increase (Figure 3, bottom-left panel). As we increase the number of dealers

with which each dealer shares information with auction revenues increase by about 1.5

basis points.13 In doing this exercise, we hold dealer information-sharing with clients fixed

by assuming that all dealers share all information with their clients. In additional analysis,

we find that when prior uncertainty about the future value of the asset is high (precision

τf is low), or the variance of non-competitive bids grow, information sharing raises revenue

by more. The increased auction revenue effect is similar to that resulting from information

sharing with clients. In both cases, additional information makes the average bidder for

the asset less uncertain. Since dealers disclose some of their information to their clients,

all investors have more precise information sets. All else equal, a reduction in risk prompts

bidders to bid more for the asset.

13Since we assume dealers are symmetric, we need the number of dealers in an information-sharing
collective to be a factor of 20, the calibrated number of dealers. Thus, we stop at 9, which implies that two
groups of 10 dealers each are sharing information with each other. Any more information sharing beyond
this level would be perfect inter-dealer sharing.
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4.2 Client vs. Dealer Information Sharing: Utility Effects

A key insight of our model is how client and dealer information sharing differ. While both

types of information sharing reduce uncertainty and increase auction revenue, client and

dealer information sharing have opposite effects on investor utility. The reason for this

opposite effect lies in how each type of information sharing affects information asymmetry

and risk-sharing.

One might expect that when dealers share information with each other, investors are

harmed. In fact, the opposite is true here. When dealers share information with each

other, their information sets become more similar. That is the essence of information

sharing. Since dealers’ beliefs are more similar, the signals that dealers share with their

clients also become more similar. With similar signals, investors’ beliefs become more

similar. As a result, their bids and auction allocations become more symmetric as well.

When allocations are more similar, they are closer to the full-information optimal asset

allocation. Because investor preferences are concave, this reduction in information and in-

vestment asymmetry improves average investor utility. The welfare effects of dealer inter-

and within-dealer information is different.

In contrast, sharing information with clients increases information asymmetry. When deal-

ers share little information with clients, the clients beliefs are not very different. They all

average their priors with a heterogeneous, but imprecise, private signal. Because the pri-

vate information is imprecise, beliefs mostly reflect prior information, which is common to

all investors. But different dealers transmit different signals. When investors get the more

precise dealer’s signal, they weigh it more heavily in their beliefs, which makes investors’

beliefs quite different from each other. This increase in information asymmetry makes

ex-ante similar investors hold different amounts of securities ex-post. Asymmetric infor-

mation pushes the asset allocation further away from the efficient diversified benchmark.

The consequent reduction in risk sharing reduces utility.

Figure 4 shows how the two types of information sharing affect information asymmetry as

measured by the cross-sectional dispersion of investments – the average squared deviation

of each investor’s auction allocation from the average for that investor’s type. The fact

that this dispersion increases with client information sharing and decreases with dealer

information sharing illustrates how client information sharing increases information asym-

metry and dealer information sharing reduces it. This is why the two types of information

sharing affect risk-sharing and welfare in opposite ways.

The result that more informative signals can increase information asymmetry and thereby

reduce utility is the same force that is at work in Hirshleifer (1971). Instead, sharing
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Figure 4: Client information sharing makes allocations more heterogeneous. Dealer
information sharing reduces asymmetry this dispersion. Average squared deviation is a
cross-sectional measure of dispersion of Treasury holdings: (1/Nj)

∑
i∈Nj

(qi − q̄j)2, where

q̄j is the average Treasury allocation of investors of type j: q̄j = (1/Nj)
∑

i∈Nj
qi.
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information between dealers makes agents better informed, but in a way that makes in-

formation more symmetric. This has the opposite effect on utility. Dealer information

sharing is more like giving investors more public information. The results here are the

opposite of the Morris and Shin (2002) result that in a coordination game with nega-

tive coordination externalities, public information is welfare-reducing. In our setting, the

Morris-Shin assumptions are reversed: actions are substitutes instead of complements and

there are positive instead of negative externalities of correlated actions because correlated

investments share risk more efficiently. Thus in our setting, inter-dealer sharing making

information more correlated (more public), which is welfare-improving.

Non-competitive bidder profits Since most of our non-competitive bids come for

foreign monetary authorities, we do not focus our analysis on their profits. Presumably,

the U.S. Treasury will not change policy to ensure that the Chinese central bank faces

low prices. However, we do note that whenever information is shared, resulting in more

informed competitive bidders, the profits of non-competitive bidders declines.

The role of minimum bidding requirements Primary dealers are required to be

consistent, active participants in Treasury auctions. Today, primary dealers are expected

to bid at all auctions an amount equal to the pro-rata share of the offered amount, with bids

that are “reasonable” compared to the market. The inclusion of minimum bidding penalties

in the model is therefore realistic, but also helps to calibrate the model in a sensible way.

Without them, it would be hard to explain why dealers bid for so much of the auction.
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However, removing low bid penalties does not change our main findings. In most cases,

the penalties raise revenue, since dealers are incentivized to bid more aggressively. But

bidding requirements leave the effect of client information-sharing on revenue and utility

unchanged. One difference is that, with bidding requirements, dealer information sharing

has a non-monotonic effect on revenue. The reason is that bidding requirements make

dealers less responsive to changes in price. Therefore prices have to move more to induce

dealers to bid more or less to clear the market. These large swings in price make prices

more informative about dealer’s signals. That leaves less scope for precision improvements

through dealer information-sharing.

4.3 What if Information Sharing Enabled Collusion?

One of the reasons that information-sharing has raised concerns is that dealers who share

information can also collude. Many textbook analyses show the economic losses associated

with collusion. We do not repeat those arguments here. Instead, we look at how information

sharing interacts with the costs of collusion.

Suppose that every time dealers shared information with each other, that group of dealers

colluded, meaning that they bid as one dealer in order to amplify their price impact. How

would this collusion and information sharing jointly affect auction revenue? It turns out

that the answer depends on how much information is shared with clients. Figure 5 shows

that when dealers pass most of their information on to their clients, sharing information

and colluding with other dealers increases revenue. Collusion, by itself, is of course revenue

reducing. But the joint effect of better informed bidders and colluding dealers is a net

positive for revenue. The problem arises when dealers talk, collude and don’t inform their

clients: that reduces revenue. Notice, however, that the proposed “remedy” of imposing

Chinese walls reduces revenue by more than collusion.

5 Mixed Auctions: Choosing Direct or Indirect Bidding

A key distinguishing feature of U.S. Treasury auctions is that they are mixed auctions: Any

investor can either place an intermediated bid through a primary dealer, or bid directly.14

The option to bid directly is important because it amplifies the effect of low signals on

auction revenue.

14While direct bidding has been historically allowed since 1992, electronic bidding systems and the elim-
ination of deposit requirements for all bidders have facilitated direct bids. Direct bidding has grown from
2 percent of all bids in 2003 to about 10 percent in 2014. While auction results do not disclose the number
of direct bidders, public remarks of Treasury officials suggest there were about 1200 direct bidders in 2001,
and 825 in 2004.
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Figure 5: Collusion reduces revenue when client information sharing is too low.
Figure plots average equilibrium auction revenue against the number of other dealers that
share information. We assume here that when dealers share information, they also bid
as one. These results differ from previous ones because here, varying information-sharing
along the x-axis also varies the extent of collusion.
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5.1 A Model with Intermediation Choice

Consider one investor choosing between bidding directly or indirectly through an interme-

diary. Without loss of generality, we assume that this choice is made by one of the large

investors bidding through dealer 1. The large investor’s choice to bid directly or indirectly

affects the information structure of that investor, its dealer, other investors bidding with

that same dealer, and the information content of the price s(p).

When the large investor chooses to bid directly on his own behalf, he observes only his

own signal and the price information: XLS = [sL, s(p)]. His dealer’s signal is the average

of the first νI investors’, the first νl − 1 large investors’ and the dealer’s signal:

s̄1 =
τε,s
∑

k∈Is1
sk + τε,l

(∑
j∈Il1

sj + sd

)
νIτε,s + νlτε,l

As in the previous model, investor i who bids through intermediary d observes signals

XiS = [si, s̄d, s(p)].

Solution: Auction Outcomes Solving this model introduces a technical challenge.

The decision to bid directly or indirectly becomes in itself a signal. We assume that the

dealer who would intermediate this trade observes the large investor’s bidding decision and

transmits this information to clients, with noise. If the large investor bids through the

dealer, the dealer can infer exactly what the large investor’s signal is. But if the large

investor bids directly, the dealer only knows that the investor’s signal is above a threshold.

25



The information that has been revealed is that a normal variable (the large investor’s signal)

lies in two disjoined truncated regions of the distribution. This is problematic because doing

Bayesian updating of beliefs with truncated normals would require involved simulation

methods. Embedding that updating problem in the non-linear fixed point problem we

already have would render the model intractable.

We circumvent this problem by constructing an approximating normal signal. Through

simulation, we first estimate the mean and variance of the large investor’s signal, conditional

on choosing direct bidding. Then, whenever the large investor chooses to bid directly, we

allow the dealer who would have intermediated that trade to make inference from the

direct bidding decision, by observing a normally distributed signal with the same mean

and variance as the true information. This signal is included in the precision-weighted

average signal of dealer 1, s̄1. (See appendix B for details.)

If the large investor bids through the dealer, the problem and the solution are the same

as in the previous section. With direct bidding, the auction price (revenue) is a linear

function of the dealer-level average individual investor signals, s̄d (where s̄1 includes the

information inferred from the large investor’s decision to bid directly), the signal of the

large direct bidder, sL, and of market orders x.

Result 2. With ND dealers and 1 large investor who bids directly, the auction revenue is

p = A+Bd1s̄1 +Bd6=1/(ND − 1)
∑ND

d=2 s̄d +Cx+BLsL, where the coefficient formulas are

in reported appendix B.

5.2 Understanding Intermediation Choice: Why Is Bad News Revealed?

When an investor bids directly, no one observes their order flow and their signal remains

private. When they bid through an intermediary, they reveal their signal realization to the

dealer, but also learn from the dealer’s signal. An investor whose signal indicates a high

future value for the security expects to take a large position, which will make his utility more

sensitive to the auction-clearing price. Sharing his good news with others will increase the

clearing price and negatively affect his expected utility. Thus, an investor with good news

prefers not to share his information and bids directly. Conversely, when the news is bad, the

investor expects to take a small position in the auction making his utility not as sensitive

to the clearing price. With a low signal, the investor is less concerned about sharing his

signal but still benefits from learning new information from other investors. Thus, low-

signal investors are more likely to bid indirectly through the dealer. When negative signals

are shared, they affect bids of many investors and their price impact is amplified. Dealer

information sharing makes the accelerator stronger by making intermediation more costly

26



and direct bidding more likely.

To solve for the large investor’s choice of whether to bid directly or indirectly l ∈ {Ld,Li},
we compute expected utility conditional on signals and a realized price. When the investor

chooses whether to invest through a dealer the only signal that he has seen is his private

signal si. Thus the intermediation choice maximizes expected utility with an additional

expectation over the information that the large investor has not yet observed. Computing

the expectation over possible price realizations and dealer signals, we find that expected

utility is

EU(l) = − exp(ρLWL)(1 + 2θl∆Vl)−
1
2 exp

(
−

µ2
rl

θ−1
l + 2∆Vl

)
. (17)

The intermediation decision affects utility in three ways: through the expected profit per

unit alloted µrl, the sensitivity of demand to expected profit θl, and through the ex-ante

variance of expected profit ∆Vl. These three terms are:15

µrl ≡ E{E[f |XlS]− p|si}, (18)

θl ≡ ρL[ρLV[f |SL] + dp/dqL]−1
(

1− 1

2
ρL[ρLV[f |SL] + dp/dqL]−1V[f |SL]

)
, (19)

∆Vl ≡ V{E[f |XlS]− p|si} = V[f − p|si]− V[f |XlS]. (20)

The first term µrl embodies the main cost of intermediation: It reveals one’s private in-

formation si to others. This effect shows up as a reduction in µrl, the ex-ante expectation

profit per share, after all signals are observed. Information sharing reduces µrl for two rea-

sons. First, since many investors all condition their bids on the shared information Xd1S,

the expectation conditional on that information, E[f |Xd1S], has a large effect (closer to 1)

on the auction-clearing price. Thus the difference E[f |XlS] − p is closer to zero with in-

termediation. Second, improving the precision of other investors’ information lowers their

risk, raises the expected price p, which in turn, lowers µrl (see eq (18)).

Why does the asymmetry appear? In equation (17), a decrease in µ2
rl decreases expected

utility because θl > 0 (see appendix). In principle, a very negative signal could make µrl a

large negative number, which would also trigger direct bidding. However, on average µrl

is positive. That positive mean reflects the positive risk premium. So while it is possible

that a very negative signal triggers direct bidding, it is highly unlikely.

The second term θl captures the main advantage of intermediation: Dealers give their

clients an extra signal, which makes them better informed. Better information allows

the large investor to make better bids, increasing expected utility. In appendix A, we

15See the appendix for derivations of the following three equations and support for the analysis that
follows.
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Figure 6: Mixed auctions: Probability of bidding directly, conditional on signal real-
ization above (solid line) or below (dashed line) its mean.
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show that θl is positive and strictly decreasing in the posterior variance of the asset pay-

off V[f |XlS]. Thus, intermediation improves the investor’s information, which decreases

variance V[f |XlS], increases θ, and (holding all other terms equal) increases expected util-

ity.

The third effect of intermediation, which operates through ex-ante variance ∆Vl, is am-

biguous and turns out to be quantitatively unimportant.16

A zero-profit signal (bad news) is always shared. Note from equation (17) that as

µrl → 0, the first effect disappears and an increase in the ex-ante variance of the profit will

unambiguously increase expected utility. The reason for this is that the strength of the

second effect depends on the mean of the expected profit, µrl. When µrl 6= 0 the increase

in the ex-ante variance ∆Vl increases the probability that the expected profit E[f |XlS]−p
will be close to zero as well as increasing the probability of large observations. So intuitively

the gains from the increase in ex-ante variance are larger when µrl is closer to zero. We

use these three effects to understand the intermediation choice results below.

5.3 Intermediation Choice and the Financial Accelerator

This asymmetry, whereby bad news is shared and good news is not, is a new channel

through which intermediation can amplify shocks. Figure 6 shows that when signals about

16When the large investor trades through a dealer, his uncertainty V[f |XlS] declines. From equation
(20) we can see that this increases the ex-ante variance of the expected profit ∆Vl. This is because more
information makes the investor’s beliefs change more, which means a higher ex-ante variance. This change
in ∆Vl has two opposing effects on expected utility. First, an increase in ∆Vl increases the exponential
term in equation (17), which decreases EU(l). This effect arises because the large investor is risk averse
and higher ∆Vl corresponds to more risk in continuation utility. The second effect is that an increase in

∆Vl reduces (1 + 2θL∆Vl)
− 1

2 , which increases EU(l). The intuition for this is that when the variance of
the expected profit is larger, there are more realizations with large magnitude (more weight in the tails of
the distribution). Since these are the states that generate high profit, this effect increases expected utility.
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the value of a financial asset are negative (dashed line), this information is more likely to be

shared with a dealer and his clients (lower probability of direct bidding). Positive signals

(solid line) are less likely to be shared because an investor who receives a positive signal

then expects to take a large portfolio position in the asset and faces a high expected cost

from sharing his information. But sharing a bad signal places that signal in the information

set of many more investors and leads to a large number of investors to demand less of the

asset. Thus, bad signals may affect the demand of more investors than good signals do

and have a larger effect on asset prices. When bad news is amplified and good news is not,

revenue is negatively skewed, a prediction we test in the next section.

Moving right along the horizontal axis of Figure 6 represents an increase in the precision

of the information dealers share with their clients. Increasing this precision strengthens

the asymmetry. An increase of 250 bps, which is equivalent to doubling the precision of a

large investor’s signal, loses a dealer 20% of his clients with positive information and only

2% of clients with negative information, for an average loss of just over 10% of the dealer’s

clientele.

6 Testing Two Model Predictions

So far, we used the model to make qualitative and quantitative predictions about the effects

of various information-sharing regimes on treasury auction revenues and investor utilities.

But we have not yet shown that the data supports our interpretation of how and what

information is shared. Therefore, our final section compares two central predictions of the

model to the data.

Testable Prediction 1: Informed Traders’ Demand Forecasts Profits. An es-

sential feature of the model is that a subset of agents have private information about the

future resale value of Treasury securities. If they did not, then observing order flow would

not be useful for dealers. The hallmark of informed trading is that such trades, as opposed

to uninformed ones, forecast profits. An uninformed agent cannot systematically buy more

securities when profits (f − p) are high and sell when they are low. Absent information

about the difference between the fundamental and the auction price f − p, such an in-

vestment strategy would not be a measurable one. In other words, Cov(qi, f − p) > 0 is

evidence of informed trading.

The data counterpart to profit f − p is post-auction appreciation, which is the difference

between the resale price of the asset in the secondary market, minus the price paid at

auction. Since we assumed that all competitive bidders have private information and all
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Table 3: Regression of f−p on competitive bidders’ auction share. The dependent
variable is difference between the value of the interest-rate neutral portfolio on issue date
(f) and on auction date (p) expressed in dollar units. Robust standard errors reported in
square brackets. *** significant at 1%, ** significant at 5%, *significant at 10%.

(1) (2) (3)

Competv. Share 0.0115∗∗∗ 0.0147∗∗∗

[0.0031] [0.0043]
Const 0.0003∗∗ 0.0017∗∗∗ 0.0018∗∗∗

[0.0001] [0.0005] [0.0005]

Adj. R2 0.00 0.05 0.23
Obs. 494 494 494
Month FEs? No No Yes
Tenor FEs? No No Yes

non-competitive bidders are uninformed, the data counterpart to qi of an informed trader

is the share of the auction awarded to competitive bidders. We use share of the auction,

rather than face value because the size of auctions varies and this introduces noise in our

regression.

Corollary 1. High competitive share predicts high post-auction appreciation: ∂E[f −
p]/∂q̄ > 0, where q̄ ≡

∫
qidi is the share of the auction awarded to competitive bidders.

We test this prediction, using the auction data. Table 3 reports estimates of a regression

of the price appreciation of the hedged portfolio from the time of the auction close to the

issue date, or f−p. As shown in the first column of the table, the value of the newly issued

security appreciates on average by about 3 basis points between the auction date and the

issue date (column 1), consistent with the findings of Lou, Yan, and Zhang (2013). As

shown in the second column, this appreciation is higher the higher the share of competitive

bids into the auction (column 2) with a highly statistically significant coefficient (t-stat

= 3.5, column 2). This empirical result is robust to the inclusion of month and tenor

fixed effects (column 3). This effect is consistent with non-competitive being noise traders

and competitive bidders being informed. It is not a mechanical result from high demand.

When informed traders demand is high, the price is lower on average, relative to the payoff.

It is that low price relative to fundamental value that induces informed investors to buy

more. We run analogous regressions using data generated from the model and find similar

results. This result does not prove that primary dealers aggregate this information. But

it does support the notion that client order flow contains some private information to be

aggregated.
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Figure 7: Distribution of post-auction price appreciation f − p: Model and Data.
Post-auction appreciation is the difference between the value of the interest-rate neutral
portfolio on issue date (f) and on auction date (p)
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Testable Prediction 2: Positive Skewness in Post-Auction Appreciation The

financial accelerator effect from the intermediation choice shows up as a distribution of

auction-clearing prices that has unconditional negative skewness. Negative skewness in the

price p translates into positive skewness in the post-auction appreciation f − p. Table 4

reveals that the unconditional skewness in p is −.75%. This translates into positive skew-

ness in post-auction appreciation of 5.7%. When shocks are good, they have a moderate

effect on the asset price and the auction revenue. But with a bad realization of the asset’s

value, large investors observe negative signals. These investors choose to share their low

signals with primary dealers, which in turn lowers the demands of other investors and has

a significantly negative effect on auction revenues. Depressed auction revenue corresponds

to high post-auction appreciation.

The sign of the skewness prediction is consistent with the empirical distribution of post-

auction appreciation f−p, (see histogram in Figure 7). However the magnitude of skewness

in the data is much stronger. Our model’s potential to generate skewness is limited by the

fact that we only allow one bidder the choice of bidding directly or indirectly. One agent

alone can only generate limited skewness in aggregate revenue. If we could compute a

model with many agents making an intermediation choice, this skewness would likely be

amplified.
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7 Conclusions

Recent instances of market abuse involving sharing of confidential client information has

led to calls to restrict the use of order flow information by financial intermediaries. While

the need for regulation and sanctions may be evident in the case of collusive behaviour,

in a setting in which all agents are informed about how information is shared, gains and

losses of information sharing are not as apparent. Using data from U.S. Treasury auctions,

we estimate a structural auction model to quantify the costs and benefits of information

sharing both between dealers and between dealers and customers.

We find that, information sharing raises auction revenues, as bidders are better informed.

Investors’ welfare depends on how information is shared. Surprisingly, we find that investors

are worse off when dealers share more information with them, but are better off when

the dealers share information among themselves. The model analysis shows that client

information sharing is like private information, which makes beliefs more different from each

other, while inter-dealer talk is like public information, which makes beliefs more similar.

Once we understand that analogy, the first finding that sharing with clients reduces welfare

looks similar to a Hirshleifer (1971) effect. The second finding shows how Hirschliefer’s

effect can be reversed when information-sharing makes information sets more common.

We also study the choice of investors to bid directly or through dealers, as well as the

effect of minimum bidding requirements on primary dealers, which are an essential part of

Treasury auctions.

While the paper uses the model to study the role of information in Treasury auctions, an

alternative interpretation of the model sheds light on a related policy question: What is

the optimal number of primary dealers? The number of primary dealers has varied over

time. In 1960, there were 18 primary dealers. Amid the rapid rise in federal debt and

interest rate volatility of the 1970’s, the number of primary dealers rose to 46 in the mid-

1980s. Subsequently, the population of primary dealers dwindled to about 22 today. The

experiment in which dealers collude is equivalent to combining pairs of dealers, with half

the resulting number of dealers. When we reinterpret the collusion results as reducing the

number of dealers, we find that restricting the number of dealers improves revenue, but

only if the information sharing with clients is sufficiently high.

The common theme throughout the paper is a reversal of the common wisdom about

dealers as underwriters. The prevailing thinking about underwriters is that they lower

auction revenue, but also revenue risk (for example, Ritter and Welch, 2002). In the

information model that we present, we find the exact opposite: when investors bid through

dealers, both mean and variance of auction revenue increase. The stark difference in these
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predictions highlights how policy prescriptions may be heavily dependent on the exact

role of intermediation in a given market. While many intermediaries perform roles other

than information aggregation, this role is a key one in Treasury auctions and is likely

to be present in some form in other markets as well. The unique features of Treasury

auctions makes them a useful laboratory to isolate, investigate and quantify this new facet

of intermediation.
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A Appendix: Derivations and Proofs

A.1 Result 1

This result has three cases. We prove each separately, reasoning through case 1 in the
most detail and then pointing out similar steps that arise in cases 2 and 3. Each proof is
divided into two parts: The first part takes the linear equilibrium price equation as given
and produces beliefs and asset demands for the case in question. The second part imposes
market clearing, uses coefficient-matching to solve for the price equation coefficients, and
in doing so shows that the linear price hypothesis is an equilibrium outcome.

A.1.1 Case 1: Dealer-Client Sharing, No Dealer-Dealer Sharing

Information Structure In this case, dealers share information about average order flow
with their clients by means of a noisy signal. First, recall the following definitions:

• NI , NL, ND, N ≡ The number of small, large, dealer, and total investors, respectively.

• s̄d ≡ The dealer’s unbiased estimate of average order flow, constructed as a precision-
weighted average of her client’s orders.

First, recall that the information set for non-dealer investor i is a three-dimensional object:
Si = [si, s̄d + ξi, s(p)], where the first entry is i’s private signal, the second is that which i
receives from his dealer, and the third is the information i derives from the price.

These three signals load on the following vector of orthogonal shocks:

Z = [ε1, ..., εN , ξi, ..., ξND
, x]′ (21)

The variance matrix for this vector is:

V(Z) = diag([τ−1
e,s 1NI

, τ−1
e,l 1NL+ND

, τ−1
ξ 1ND

, τ−1
x ]) (22)

Next, we construct the loading matrix Πi for investor i, which maps shocks Z to signals
Si = f + ΠiZ. This requires the construction of some auxiliary objects. Let φi denote the
1×N vector of zeros with a 1 in the i−th position (i.e., an investor identifier), and ψd(i)
the 1×ND vector of zeros with a 1 in the d(i)−th position (i.e., a dealer identifier).

It follows that the first row of the loading matrix is simply [φi, 0 · 1ND
, 0], as this row

simply identifies the investor’s private shock. The next row requires the construction of
the precision-weighted average the dealer uses to construct s̄d. Let t(i) be a type operator
for precision, which returns τs if the investor indexed by i is small, and τl otherwise (recall
that precisions are identical within types). Let 1i(j) be an indicator variable for whether
i and j bid through the same dealer, and |v| be the l1-norm of a vector. Then, ωi is given
as follows, written as a list comprehension over 1, 2, ..., N .

ωi = [t(j)1i(j) for j in 1, 2, ..., N] (23)
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The second row then requires identification of the signal and noise that i receives from his
dealer: i.e., [ ωi

|ωi| , ψd(i), 0].

The third row requires us to extract relevant information from the supply shock. This first
requires rewriting our price assumption such that it represents our unbiased signal about
asset fundamentals:

p = A+BI s̄I +BLs̄L +BDs̄d + Cx+Dξ̄d =⇒ (24)

s(p) =
p−A− Cx

BI +BL +BD
(25)

Writing B̃ = BI +BL+BD, we can express this as s(p) = BI

B̃
·
∑
si

NI
+ BL

B̃
·
∑
sj

NL
+ BD

B̃
·
∑
xd

ND
+

C
B̃

(x− x̄), which means that the third row here is [BI

B̃
·1NI

, BL

B̃
·1NL

, BD

B̃
·1ND

, 0 ·1ND
, C
B̃

],
assuming that the indexes run first through small investors, than to large ones, than to
dealers.

Therefore, we can write:

Πi =

 φi 0 · 1ND
0

ωi
|ωi| ψd(i) 0

BI

B̃
· 1NI

, BL

B̃
· 1NL

BD

B̃
· 1ND

0 · 1ND
C
B̃

 (26)

With this, we can compute the Bayesian updating weights mentioned earlier in the paper,
which came from the projection formulas we used to excise shock covariance from the
problem. These are the entries βsi, βs̄i, βpi of the vector given by:

βi = V(Si)
−113τ

−1
f (27)

Using these weights, and equations (4) and (6), we can express the expectation and variance
of the posterior beliefs f |Si:

E(f |Si) = (1− βs̄i − βpi − βsi)µ+ βsisi + βs̄is̄ξd(i) + βpi
p−A− Cx

B̃
(28)

V(f |Si) = τ−1
f − τ

−1
f (βsi + βs̄i + βpi) (29)

Recall that s̄ξd(i) is the realized signal that a dealer shares with her clients.

All that remains is to do the same thing for dealers, and the information structure will be
explicitly solved. Here, dealers are essentially similar to large investors, except that they
observe s̄d noiselessly (i.e., ξ = 0).

We can then produce an signal vector and shock weighting matrix:
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Sd = [s̄d, s(p)] (30)

Πd =

[
ωi
|ωi| 0 0

BI

B̃
· 1NI

, BL

B̃
· 1NL

BD

B̃
· 1ND

0 · 1ND
C
B̃

]
(31)

From these loadings, we can produce Bayesian updating weights exactly as we did above,
noting that here we’d have a two-dimensional object as opposed to a three-dimensional
one.17

These determine the posterior expectations and variances of all agents in the model whose
behavior is contingent on information, we’ve produced the applicable information struc-
ture.

Coefficient Matching For large investors, let the sensitivity of asset demand to changes
in the expected per-share profit be denoted ML = ρZV(f |SZ) + dp

dqL
.

The asset demand for each small investor is given by the first-order condition solved in
(13), i.e.:

qi(p) =
E(f |Si)− p
ρIV(f |Si)

(32)

The total demand for each large investor is written analogously in (39):

qj(p) =
E(f |Sj)− p

ML
(33)

The dealers’ demand function looks similar, except that dealers are subject to a sharper
budget constraint, in virtue of the shadow costs associated with the minimum bid penalty.
Therefore, we can write the demand function as given in (15):

qd(p) =
E(f |SD)− p(1− χ)

ρlV(f |SD) + (1− χ) dp
dqL

(34)

The next step is to determine dp
dqL

, which we do by applying the market-clearing condition
to the demands of all agents save one large investor:

x+

NI∑
i=1

qi(p) +

NL−1∑
j=1

qj(p) +

ND∑
d=1

qd(p) + qL = 1 (35)

Or:

17This is partly a matter of convenience: separating the dealer’s own signals from her clients’ would
restore a three-dimensional structure.
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x+ρ−1
I τ̂I

NI∑
i=1

(E(f |Si)−p)+M−1
L

NL−1∑
j=1

(E(f |Sj)−p)+M−1
D

ND∑
d=1

(E(f |Sd)− p(1− χ))+qL = 1

(36)

Next, we substitute in for the conditional expectations in terms of our Bayesian updating
weights, and use the implicit function theorem to calculate dp

dqL
, which we need to determine

ML.

1 = x+
τ̂I
ρI

NI∑
i=1

(
(1− βsi − βs̄i − βpi)µ+ βsisi + βs̄is̄ξd(i) + βpi

p−A− Cx̄
B̃

− p
)

+ M−1
L

NL−1∑
j=1

(
(1− βsj − βs̄j − βpj)µ+ βsjsj + βs̄j s̄ξj + βpj

p−A− Cx̄
B̃

− p
)

+ M−1
D

ND∑
d=1

(
(1− βs̄d − βpd)µ+ βs̄ds̄d + βpd

p−A− Cx̄
B̃

− p(1− χ)

)
+ qL (37)

Taking the derivative with respect to qL, we obtain:

0 =

(
NI τ̂Iρ

−1
I

βpi − B̃
B̃

+ (NL − 1)M−1
L

βpL − B̃
B̃

+NDM
−1
D

βpd − B̃(1− χ)

B̃

)
dp

dqL
+ 1

At this point, we can solve for dp
dqL

, and then express M−1
L implicitly, as follows:

ML = ρLτ̂L
−1−

(
NI τ̂Iρ

−1
I

βpi − B̃
B̃

+ (NL − 1)M−1
L

βpL − B̃
B̃

+NDM
−1
D

βpd − B̃(1− χ)

B̃

)−1

To determine the dealers’ demand qd = E(f |Sd)−p(1−χ)
MD

, the solution is identical, except that
the dealers’ signal precision is higher (as she receives a noiseless signal about average order
flow), and therefore her posterior variance τ̂−1 is lower.

Following the same steps, we find that we can express M−1
D as follows:

MD = ρLτ̂
−1
D −

(
NI τ̂Iρ

−1
I

βpi − B̃
B̃

+NLM
−1
L

βpl − B̃
B̃

+ (ND − 1)M−1
D

βpd − B̃(1− χ)

B̃

)−1

Finally, we can express the price coefficients as functions of these M ’s. To do this, we
substitute all the investors’ demands into the market-clearing condition we used before
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(i.e., we sum over all investors, instead of all but one), and then match coefficients to yield
the following results:

A = C
[
NI τ̂Iρ

−1(1− βsI − βs̄I − βpI)µ+NLM
−1
L (1− βsL − βs̄L − βpL)µ

+NDM
−1
D (1− βs̄D − βpD)µ− B̃−1(A+ Cx̄)(βpI + βpL + βpD)− 1

]
(38)

BI = CNI

(
τ̂Iρ
−1βsI +M−1

D βs̄dωI
)

+NIDωI (39)

BL = CNL

(
M−1
L βsL +M−1

D βs̄dωL
)

+NLDωL (40)

BD = CNDM
−1
D βs̄dωD +NDDωD (41)

C = −

(
NI τ̂Iρ

−1βpI − B̃
B̃

+NLM
−1
L

βpL − B̃
B̃

+NDM
−1
D

βpd − B̃(1− χ)

B̃

)−1

(42)

D = C

(
τ̂Iρ
−1 NI

ND
βs̄I +M−1

L

NL

ND
βs̄L

)
(43)

The solution to this model is the set of β’s for each type of agent, price coefficients, and
M coefficients which jointly solve the above, the implicit definitions of ML and MD, and
the definitions of the Bayesian updating weights.

A.1.2 Case 2: Dealer-Client and Dealer-Dealer Information Sharing

In this setup, dealers share information with clients using the same noisy signal as before,
but they also share information with ψ other dealers. Dealer-dealer sharing is symmetric,
which requires that the number of dealers in an information-sharing collective be a factor
of 20. We also require that ψ 6= 19, as that would imply perfect inter-dealer sharing. Thus,
we only consider ψ ∈ {0, 1, 3, 4, 9}.

It would be repetitive to re-derive each part of the preceding analysis when most of it
can be preserved. So, rather than do that, we will wherever possible argue by analogy;
that is, by pointing out that such-and-such term maps to such-and-such combination of
terms.

Perfect Dealer-Dealer Sharing First, observe that if dealers transmit their signals
s̄d to one another noiselessly, then this result follows from the above. This is so because
the effects of dealer-dealer sharing would simply be as if each dealer observed a greater
proportion of the overall order flow. Each dealer’s signal s̄′d, which we define to be their
signal about order flow after dealer-dealer sharing is complete, would be more precise, and
consequently each investor’s signal s̄′d + ξd would be more precise, but no part of the above
machinery would be rendered invalid.
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Imperfect Dealer-Dealer Sharing, Information Structure Define a transmission
signal γD ≡ s̄D + δD, where δD is dealer-dealer transmission noise which is i.i.d. across
dealers. We say that δd ∼ N(0, σ2

γD
).

First, note that from the point of view of non-dealer investor i, all objects are nearly
exactly the same. We need to add another set of orthogonal shocks δ1, ..., δD to identify
those dealers who share with i’s dealer:

Z = [ε1, ..., εN , ξ1, ...., ξD, δ1, ..., δD, x]′ (44)

Agents’ signals load on Z according to the signal loading matrix:

Πi =

 φi 0ND
0ND

0
ωi
|ωi| ψd(i) ζd(i) 0

BI

B̃
· 1NI

, BL

B̃
· 1NL

, BD

B̃
· 1ND

0 · 1ND
0 · 1ND

C
B̃

 (45)

In the above, ωi(j) returns the type-specific precision for investor j if i and j bid through
the same dealer, or if j bids through a dealer who talks with i’s dealer. ψd(i) is the dealer
identifier as before, and we define a new 1×ND vector ζd(i), which is 0 everywhere, except
for those dealers who talk to i’s dealer.

Which in turn entails the following posterior expectations and variances:

E(f |Si) = (1− βs̄′i − βpi − βsi)µ+ βsisi + βs̄′is̄ξd(i) + βpi
p−A− Cx

B̃
(46)

V(f |Si) = τ−1
f − τ

−1
f (βsi + βs̄′i + βpi) (47)

Here, the weights must be re-derived using the formulas introduced in the preceding case.
The main difference will be to the term βs̄i, as dealer-dealer sharing induces agents to
weight the signal more heavily, and dealer-dealer noise induces agents to weight it less
heavily.

The setup for dealer j is slightly different, in that j observes the aggregated dealer signal
s̄′d without ξ noise, and that she observes her clients’ order flow without ζ noise.

So, define the dealer’s signal vector as the 3-dimensional object [s̄, s′, s(p)], where the
first term denotes information received from clients, the second term denotes information
received from other dealers, and the third term denotes information received from the
unobserved price.18

This enables us to write the following loading matrix for dealer j, which in turn entails a
specific set of Bayesian updating weights by the formulas above. Below, define λ to be the
original ω (i.e., the signal aggregator over our dealer’s clients), and ω similarly to the above

18In practice, s′ will be a ψ−dimensional object, as each dealer speaks with ψ others. However, as all
dealer-dealer noise is i.i.d., and all dealers are symmetric, this reduces to a simple average. In our notation,
s′ refers to this averaged signal of all dealer’s messages.
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(i.e., the signal aggregator over clients of other dealers, who talk to our dealer).

Πi =


λi
|λi| 0 · 1ND

0 · 1ND
0

ωi
|ωi| 0 · 1ND

ζd(i) 0
BI

B̃
· 1NI

, BL

B̃
· 1NL

, BD

B̃
· 1ND

0 · 1ND
0 · 1ND

C
B̃

 (48)

Imperfect Dealer-Dealer Sharing, Coefficient Matching We inherit the demand
functions from the previous section. For non-dealer investors, we also inherit the Bayesian
updating weights, with the exception that βs̄ is replaced with βs̄′ , reflecting changes in the
signal the dealer shares with her clients.

For dealers, we have a new set of beliefs:

E(f |Sj) = (1− βs̄d − βpd − βs′ζd)µ+ βs̄ds̄d + βs′ζds
′
ζd + βpd

p−A− Cx̄
B̃

V(f |Sj) = τ−1
f = τ−1

f (βs̄d + βs′ζd + βpd)

In the above, the signal s′ζd is the realized (i.e., noisy) signal that d shares with her clients
after dealer-dealer sharing is complete. The term βs′ζd is the corresponding Bayesian
weight, which is computed using the formula above.

The only difference in the market-clearing condition is that MD now modifies a term with
instances of βs′ds

′
d, i.e.:

1 = x+ ...+M−1
D

(
(1− βs̄d − βpd − βs′ζd) + βs̄ds̄d + βs′ζds

′
ζd + βp

p−A− Cx̄
B̃

− p
)

It’s clear that adding in that constant doesn’t affect our ability to match coefficients — any
terms which aren’t common, like that representing dealer-dealer noise, are simply present
in the constant A. Therefore, we still have linearity in prices under noisy (yet symmetric)
dealer-dealer signal transmission, and the result holds.

A.1.3 Case 3: No Information Sharing (“Chinese Wall”)

In this model, dealers do not use or share any information derived from client order flow.
Practically speaking, it is as if each type of investor submits bids on their own behalf,
rather than through an intermediary. Each investor’s information set is therefore a 2 × 1
vector Si = [si, s(p)], comprised of their private signal si and the counterfactual price signal
s(p).

Since there is no longer a meaningful informational distinction between dealers and large
investors, we refer to both as large investors, i.e.: N ′L ≡ NL +ND.19

19In this regime, the only difference between dealers and non-dealer large investors is that dealers are
subject to a minimum bidding penalty.
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Information Structure As above, the linear form we assume for prices entails a specific
form for s(p):

s(p) =
p−A− Cx

B̃
(49)

The above signal is unbiased, but as we noted, the price signal and the private signals have
correlated errors. The Bayesian updating weights β come from optimal linear projection
formulas that correct for this covariance.

The shock vector is now simply:

Z = [ε1, ..., εN , x]′, (50)

where individuals are ordered by putting small investors first, then large investors, then
dealers. The variance vector of this matrix is:

V(Z) = diag(τ−1
ε,I 1NI

, τ−1
ε,L1N′L

, τ−1
x ) (51)

The loading matrix is given by:

Πi =

[
φi 0

BI

B̃
1NI

, BL

B̃
1N′L

C
B̃

]
(52)

We can then determine the posterior beliefs exactly as previously. Because dealers are
indistiguishable from large investors here, these formulas are true for all agents:

E(f |Sz) = (1− βsz − βpz)µ+ βszsz + βpz
p−A− Cx

B̃
(53)

V(f |Sz) = τ−1
f − τ

−1
f (βsz + βpz), (54)

where z is a type variable z ∈ {I, L}.

Coefficient Matching We can follow exactly the same process as in the above two
proofs to yield the final set of coefficients. For clarity, only those coefficients are reported
here:20

A = −C
(

1 + (NI τ̂IβpI +NLM
−1
L βpL +NDM

−1
D βpd)

A+ Cx̄

B̃

)
+ C

(
NI

τ̂I
ρ

(1− βsI − βpI) +NLM
−1
L (1− βsL − βpL) +NDM

−1
D (1− βsd − βpd)

)
µ

BI = CNIρ
−1βsI

BL = CNLM
−1
D βsL

BD = CNDM
−1
D βsD

C = −B̃
[
NIρ

−1(βpI − B̃) +NLM
−1
L (βsL − B̃) +NDM

−1
D (βsD − B̃(1− χ))

]−1

D = 0

20Recall that once again NL ≡ the number of non-dealer large investors, and ND ≡ the number of dealers.
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The existence of a set of coefficients verifies the price conjecture. Since the supply of the
asset is one, auction revenue is the price of the asset. The solution to this model is a joint
solution to (7)-(11) and (13)-(18)

A.2 Corollary 1

We argue by contradiction here, by showing that noncompetitive shares decreased the
expected profit E(π) = E(f − p). Since the total supply of the asset is 1, which is the sum
of competitive and non-competitive demand, the competitive share must increase E(π).
We can break the partial derivative ∂π

∂x into the two terms, the first of which is zero by
construction, as f and x are exogenous, independent variables.

The second term can be expressed as ∂A+Bf+Cf
∂x . Note that ∂p

∂x > 0 if C is negative.

First, we assume that NI >> NL, ND. This reduces the expression for C to:

C = −NI
βsI − B̃
B̃

(55)

C is positive if B̃ > βsI , or that the price puts more weight on the true payoff f than
individuals do.

A.3 Result 2

Recall that this result states that in an auction with ND dealers, and one large investor
who bids directly, prices follow a particular linear form. We solve the model generally with
a minimum bidding penalty, modeled by a per-period cost χ, after which χ = 0 lets us
evaluate results for the no-penalty model.

This proof is divided into three parts. The first two are the standard sections we have
seen before, and the third considers the case where the dealer incorporates the information
gleaned from the intermediation decision of the large investor into the signal about order
flow that she shares with her clients.

Information Structure

When the first large investor chooses to bid directly on his own behalf, the aggregated
signal for the first dealer d is the precision-weighted average of her proportional share of
small and large investors, less one large investor, i.e.:

s1 =

τε,I
∑
k∈II

sk + τε,l

( ∑
j∈IL

sj + sd

)
τε,INI/ND + τε,l(NL/ND − 1) + τe,l

(56)
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As in the previous model, investor i who bids through dealer d observes signals Si =
[si, s̄d + ξd, s(p)]. The large investor bidding directly observes only his own signal sj , and
the counterfactual price signal s(p), i.e.: Sj = [sj , s(p)].

Variance-Covariance Matrix of Signals The only difference in the signal construction
is that the first large bidder does not trade through the large dealer. Thus, the large bidder’s
signals are only his own private signal and the price. The first dealer’s information (and,
therefore, her clients’) are less precise because they miss the one large investor.21

We can construct loading matrices Π that map shocks into signals as before. Let

Z̄ = [εL1, ε1, ..., εND
, x] (57)

Then:

ΠL =

[
1 0 ... 0
BL

B̃

Bd1

B̃

Bd 6=1

B̃
1ND−1

C
B̃

]
(58)

Πd=1 =

[
0 1 0... 0
BL

B̃

Bd1

B̃

Bd 6=1

B̃
1ND−1

C
B̃

]
(59)

Πd6=1 =

[
1 ψi 0
BL

B̃

Bd1

B̃

Bd 6=1

B̃
1ND−1

C
B̃

]
(60)

where B̃ ≡ Bd1 +Bd6=1 +BL and d 6= 1 stands for all dealers, besides dealer 1.

Then, for all agents j who are clients of dealer d(j), or for the large investor d(j) = L, the
signal variance-covariance is

V(Sj) = τ−1
f + Π̄d(j)V(Z̄)Π̄′d(j) ∀j (61)

Bayesian Updating Weights For each agent who bids through a dealer, there are three
signals — the dealer’s signal ξ̄s, the private signal si, and the counterfactual price signal
s(p). We can compute corresponding Bayesian weights using the machinery introduced
previously. These have precision given by:

τ̂l = τ−1
f (1− βs − βp) (62)

Coefficient Matching We work through the same process as above (i.e., substitute all
but one agent into the market clearing constraint to solve implicitly for ML and MD,
and then go back and match coefficients). This yields the following set of price sensitivi-
ties:

21Note that in the following, the first dealer’s information set — and therefore ε1 — include the informa-
tion encoded in the first large investor’s intermediation decision.
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(
dp

dqL

)−1

= −(νI τ̂Iρ
−1 + (νL − 1)M−1

L(d=1) +M−1
d=1)

βp,d1 − B̃
B̃

− χM−1
d=1 − χ(ND − 1)M−1

d6=1 − (ND − 1)(νI τ̂Lρ
−1
L + νLM

−1
l(d6=1) +M−1

d6=1)
βp,d 6=1 − B̃

B̃

(
dp

dqL(d=1)

)−1

=

(
dp

dqL

)−1

−M−1
L

βpL − B̃
B̃

+M−1
L(d=1)

β − B̃
B̃(

dp

dqL(d 6=1)

)−1

=

(
dp

dqL

)−1

−M−1
L

βpL − B̃
B̃

+M−1
L(d6=1)

β − B̃
B̃(

dp

dq(d=1)

)−1

=

(
dp

dqL

)−1

−M−1
L

βpL − B̃
B̃

+M−1
d=1

(
χ+

βp,d1B̃

B̃

)

This holds true for dealers, recalling their altered demand function:

MD ≡ ρLτ̂L + (1− χ)
dp

dqL(
dp

dq(d=1)

)−1

=

(
dp

dqL

)−1

−M−1
L

βpL − B̃
B̃

+M−1
d=1

(
χ+

βp,d1B̃

B̃

)
(

dp

dq(d6=1)

)−1

=

(
dp

dqL

)−1

−M−1
L

βpL − B̃
B̃

+M−1
d6=1

(
χ+

βp,d1B̃

B̃

)

And the following set of pricing coefficients:

A = C

(
−1 +

(
νI τ̂1ρ

−1 + (νl − 1)M−1
L(d=1) +M−1

d=1

)(
(1− βs̄,d1 − βp,d1)µ−

βp,d1

B̃
(A+ Cx̄)

))
+ C (ND − 1)

(
νI τ̂2ρ

−1 + νlM
−1
L(d 6=1) +M−1

d 6=1

)(
(1− βs̄,d 6=1 − βp,d 6=1)µ−

βp,d 6=1

B̃
(A+ Cx̄)

)
+ CML

(
(1− βsL − βpL)µ− βpL

B̃
(A+ Cx̄)

)
(63)

Bd=1 = C
(
νI τ̂1ρ

−1 + (νl − 1)M−1
L(d=1) +M−1

d=1

)
βs̄,d1 (64)

Bd6=1 = C (ND − 1)
(
νI τ̂2ρ

−1 + νlM
−1
L(d 6=1) +M−1

d 6=1

)
βs̄,d 6=1 (65)

BL = CM−1
L βL(1) (66)
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C−1 = −ML

(
βpL− B̃

B̃

)
−
(
νI τ̂1ρ

−1 + (νl − 1)M−1
L(d=1) +M−1

d=1

)(βp,d1 − B̃
B̃

)
− χM−1

d=1

− (ND − 1)
(
νI τ̂2ρ

−1 + νlM
−1
L(d 6=1) +M−1

d 6=1

)(βp,d 6=1 − B̃
B̃

)
− (ND − 1)χM−1

d6=1. (67)

B Learning from the intermediation decision of the large
investor

In this appendix, we consider the model where dealer 1 incorporates the information that
can be learned from the intermediation choice of the large investor in the average signal
shared with the rest of his clients. When the large investor chooses to bid through the
dealer, the dealer observes the investor’s signal directly and the equilibrium outcomes are
the same as before. We solve this model generally with a minimum bidding penalty. Then
we can set χ = 0 to get the results for the no-penalty model.

Consider now the case when the large investor bids directly in the auction. Recall that the
large investor chooses to bid directly whenever EU (Ld) ≥ EU (Li). Using (17), we can
rewrite this as

(1 + 2θLd∆VLd)−
1
2 exp

(
−

θLdµ
2
r,Ld

1 + 2θLd∆VLd

)
≤ (1 + 2θLi∆VLi)−

1
2 exp

(
−

θLiµ
2
r,Li

1 + 2θLi∆VLi

)
.

Equivalently, the large investor chooses to bid directly when

exp

(
−

θLdµ
2
r,Ld

1 + 2θLd∆VLd
+

θLiµ
2
r,Li

1 + 2θLi∆VLi

)
≤
√

1 + 2θLd∆VLd
1 + 2θLi∆VLi

,

or

θLdµ
2
r,Ld

1 + 2θLd∆VLd
−

θLiµ
2
r,Li

1 + 2θLi∆VLi
≥ −1

2
log (1 + 2θLd∆VLd) +

1

2
log (1 + 2θLi∆VLi) .

The left hand side of the above is a quadratic function of the signal of the large investor,
sNI+1. Let Υl,u be the two solutions to the quadratic equation for the boundaries of the
indirect bidding region, so that the large investor bids indirectly whenever Υl ≤ sNI+1 ≤
Υu; equivalently, the large investor bids directly if sNI+1 ≥ Υu or sNI+1 ≤ Υl.

To solve the model where all agents make rational inferences from the intermediation
decision, we first solve our model without this information and determine the cutoffs υl and
υh. We simulate the model to determine the probability of direct bidding Pr(υ). We also
compute, conditional on choosing to bid directly, what the direct bidder’s average signal
is (sυ) and the variance of that signal (τ−1

υ ). Next, we construct a normally-distributed,
conditionally independent approximating signal with the same mean and variance: sυ =
f+ευ where ευ ∼ N(0, τ−1

υ ) . In cases where the large investor bids directly, we allow dealer
1 to observe sυ and incorporate it in his advice to his clients. When the large investor
bids indirectly, his dealer observes his signal exactly, as in the indirect bidding model
we solved before. The other dealers and their clients do not observe the intermediation
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decision and instead use Pr (υ) to weight the price signal that would be extracted in both
scenarios.

Variance-covariance matrix of signals When the large investor bids directly, the first
dealer’s signal is the average of the first νI investors’, the first νl−1 large investors’, the first
dealer’s signal and the new signal sυ that arises from observing the direct bidding decision.
By Bayes’ law, the posterior expectation, conditional on all these signals is:

s̄1 =
τε,s
∑

k∈Is1
sk + τε,l

(∑
j∈Il1

sj + sd

)
+ τυsυ

νIτε,s + νlτε,l + τυ

Bayes law also tells us that the precision is τ̂d1 = νIτε,s+νlτε,l+τυ. The signals of all other
dealers are the same as before because those dealers are not aware of the large investor’s
intermediation decision.

As in the previous model, investor i who bids through intermediary d observes signals
S̃i = [si, s̄d, s(p)]. Since dealer share information perfectly here, the investor’s own signal
is redundant. Thus, for notational convenience, we continue as if S̃i = [s̄d(i), s(p)], ∀i 6= L.
The large investor bidding directly observes only his own signal and the price information:
S̃L = [sL, s(p)].

We can construct the signals as the true payoff f plus weights Π on orthogonal shocks Z.
Let

Z̄υ =
[
εL ε̄1 ε̄2 . . . ε̄Nd (x− x̄)

]′
where εl ≡ SL − f and ε̄d ≡ s̄d − f are the noise the the signals of the large investors
and the dealer and x is the non-competitive bids. Note that the information from the
intermediation decision of the direct bidder in incorporated in the first dealer’s signal, and
thus in ε̄1. The variances of these shocks are:

V
[
Z̄direct

]
= diag([τ−1

L , τ̂−1
d1 , τ

−1
d 1Nd−1, τ

−1
x ]). (68)

The signals of the large investor L, dealer 1 and his clients d (1) and all others d 6= 1 have
loadings on the orthogonal shocks given by (58), (59) and (60). Then, for all agents j who
are clients of dealer d(j), or for the large investor d(j) = L, the signal variance-covariance

is V(Sj) = τ−1
f + ¯Πd(j)V [Z̄υ] ¯Πd(j)

′ ∀j.

Bayesian updating weights β and posterior precisions τ The posterior expectation
of the asset value is a linear combination of the prior and two signals: (1) the signal sL or
sd(i) provided by the dealer; and (2) the signal conveyed by the price (p−A−Cx̄)/B). βs
and βp are the weights the agent places on the two signals. The weights are given by (5),
the resulting conditional expectation is given by (4), with precision (62).

Equilibrium Price Once we’ve adjusted the Bayesian updating weights β, the rest of the
solution of the direct bidding model follows just as before. The equilibrium price coefficients
are a joint solution to the coefficient equations (63) - (67), the M equation (A.1.1), in
conjunction with the price sensitivities (63) - (A.3) and the β’s (5), which in turn depend
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on the Π’s (58), (59) and (60) and the variances of the orthogonal shocks (61). Setting
χ = 0 yields the solution to the model without the minimum bidding requirement.

C A Private Value Auction Model

The model economy lasts for two periods and agents can invest in a risky asset (the newly
issued Treasury security) and a riskless storage technology with zero net return. The
risky asset is auctioned by Treasury in a fixed number of shares (normalized to 1) using
a uniform-price auction with a market-clearing price p. The value of the newly issued
asset to small investor i is f̃i, which is known only to investor i. The small investors’
valuations are correlated. They have an aggregate and an idiosyncratic component that
are not separately observed: f̃i = f + vi, where f ∼ N(µ, τ−1

f ) and vi ∼ N(0, τ−1
v . Each

investor knows the private component of their valuation (perhaps a heding motive), but
not the common valuation f or the sum f̃i. Large investors’ valuation for the treasury is
f̃i = f , which is also unknown to them.

As before, preferences are exponential,

max
qi(p)

E[− exp(−ρWi)|Si]

s.t. Wi = W0i + qi(f̃i − p).

The timing, information sets, intermediation choices are all as before, except for one twist.
An investor’s order flow no longer perfectly reveals their signal si. The dealer cannot
perfectly disentangle private information si from private valuation vi. So, we assume that
dealers see their clients bids qi, but not that dealers know si directly.

The definition of equilibrium is the same as before, with the adjusted preferences and the
one change to the information set.

Updating Investors who bid through dealers have access to four pieces of information.
They know their priors and their private signal. They get information from their dealer
and the observe the market price. The first two pieces of information are the same as
before. The second two change.

By placing orders through dealers, customers reveal their order flow to their dealer. From
the first order condition for portfolio choice qi, that order is

qi =
E[f |Si] + vi − p
ρV ar[f |Si]

Since risk aversion and conditional variances are known, and price p is observable to all,
observing qi lets a dealer observe E[f |Si] + vi. We can then decomponse E[f |Si] into the
private signal, common prior and the price:

E[f |si, p] =
τfµ+ τssi + τpηp
τf + τs + τp
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Table 4: Descriptive statistics for the calibrated, simulated model with direct and indirect
bidding and low-bid penalty. Revenue is in basis points, and allocations are in percent.

Revenue Dealer allocation Direct allocation Indirect allocation

Mean 38.7236 43.3994 0.4698 50.5758
Std. Dev. 70.8100 19.4523 0.7284 73.1065

Skew -0.0075 -0.0091 1.2365 0.1008
Kurtosis 3.0060 3.0326 3.2103 4.2614

Thus, the dealer can form a signal sqi = [(τf +τs+τp)(E[f |Si]+vi)−(τfµ+τpηp)]/τs. This
yields a signal sqi = si + eqi where eqi = (τf + τs + τp)/τsvi, which is distributed N(0, τ−1

q ),
where the signal variance is τ−1

v (τf + τs + τp)
2/τ2

s . But sqi is a noisy signal about the
underlying noisy signal si. Thus sqi as a signal of f has a conditional variance equal to the
sum of the variance of each of the signal components. Let τ−1

q ≡ τ−1
i +τ−1

v (τf+τs+τp)
2/τ2

s .
Then τq is the precision of sqi as a signal about f .

Thus, if we re-write the dealer’s Bayesian signal-precision-weighted average of his and his
clients’ private signals, it is

s̄d =

∑
i∈Id τqsqi∑
i∈Id τi

=
τq
∑

k∈Isd
sqk + τε,l

(∑
j∈Ild

sj + sd

)
νIτq + (1 + νl)τε,l

, (69)

Once we redefine this signal s̄d and adjust its precision to be τξ = νIτq + (1 + νl)τε,l, we
can then proceed to solve the model, exactly the same as before.

The last piece of the model that could be affected by the presence of private values is the
information extracted from prices. But, it turns out that once we adjust the dealers’ signal
precision, there is not further change needed to price informativeness. The reason is that
the average of private values is known. It’s zero. That’s common knowledge. So, when se
aggregate demand to clear the market, we get∫

E[f |Si] + vi − p
ρV ar[f |Si]

di = 1

=

∫
E[f |Si]− p
ρV ar[f |Si]

di

because
∫
vidi = 0 and vi is uncorrelated with any other variables in the model.

So, while private values affect individuals’ demands, they average out and have no direct
effect on prices. The only aggregate effect of private values is through their effect on the
dealers’ information s̄d and its precision τξ.
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D Measuring Treasury Payoffs

This appendix provides additional detail about how payoffs are calculated. Because of
lags between trade and settlement dates, the appendix also provides detail on funding
costs. The first subsection describes what those terms are and argues that they are small
and stable. The second subsection discusses an alternative hedging strategy, known as a
coupon roll. The third explains why information from the when-issued-market (or WIs) is
not relevant in our setting.

Funding position. In the model, winning bids pay p and the common fundamental
value is f . In Treasury auctions bidders bid a coupon rate rather than a price. The price is
always set to $100 up to rounding, which we rescale to $1 for the purposes of this discussion.
To assess auction results from the issuer perspective we discount future interest payments
using a yield curve estimated on outstanding Treasury securities. Economically this means
that we measure issuance cost relative to other debt outstanding at the time of the auction.
Newly issued Treasury securities are typically valued more than older securities because of
their better liquidity, a phenomenon known as the on-the-run premium (see e.g., Vayanos
and Weill 2008). As a result of the on-the-run premium, the discounted value of Treasury’s
future interest and principal payments is smaller the price at which the security sells ($1),
and we define net auction revenue as the gap between the two:

R̂auction = 1−

(
T∑
t=0

Zauction(t)C + Zauction(T )

)
, (70)

where C is the coupon determined at the auction, T is the maturity, Zauction(i) = exp(−iyauction(i))
is the price at the time of the auction of a zero-coupon bond maturing at i, y(i) is the ith
maturity yield from the yield curve estimated on outstanding securities at the time of the
auction.

Trades in the secondary Treasury market settle on the business day following a trade,
meaning that securities are delivered and cash is paid a day after a transaction is agreed
upon. In Treasury auctions, instead, investors pay bids to Treasury and receive securities
on the issuance date, which occurs one to 14 days following the date of the auction. This
different settlement rule is the source of extra funding cost/income in our setting.

We measure f as the market price of the security on the issuance date, which is when
the security is first available to investors. The value of f depends on the general level of
interest rates and the on-the-run premium. While fluctuations in interest rates between
auction and issuance date create risk for investors, this risk can be hedged with other
outstanding Treasuries. We assume that investors hedge interest rate risk optimally by
selling a replicating portfolio of other Treasury securities. On the auction date, the investor
buys the new security and shorts the replicating portfolio of off-the-run issues. On the
issuance date, the investor reverses by selling the new security and covering the short in
older securities. The per-unit value of the hedged portfolio at auction is equal to −R̂auction,
and to:
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f̂issue =

(
T∑
t=0

Zissue(t)C + Zissue(T )

)
− Pissue, (71)

on the issuance date, where Pissue is the market price of the new security on that date.
Detailed steps in the investment strategy are:

1. Auction date:

(a) Place bid

(b) For each unit of successful bid alloted, sell T zero coupon bond each priced at
Zauction(t) and in amounts equal to C for t < T and 1 + C for t = T. The zero
coupon bonds could either be stripped Treasuries (as in Fleckenstein, Longstaff,
and Lustig, 2014) or proxied with a combination of coupon securities.

2. Post-auction date:

(a) Borrow (to post-issuance date) the amount Zauction =
∑T

t=0 Zauction(t)C +
Zauction(T ) paying the per-diem unsecured rate rb.

(b) Borrow zero-coupon bonds with reverse repos (to post-issuance date) and receive
the per-diem repo rate rrepo. Deliver the T zero coupons to the auction-date
buyer.

3. Issuance date:

(a) Borrow $1 at rate rb. Receive new issue from, and pay $1, to Treasury; sell issue
in the secondary market

(b) Buy portfolio of T zero-coupon bonds at Zissuance

4. Post-issuance date:

(a) Receive payment of pissue and repay the issuance-date loan

(b) Receive T zero-coupon bonds and deliver into the reverse repo;

(c) Receive payment of Zauction from reverse-repo and pay Zissue to settle the issue-
date purchase; Repay post-auction date loan

The cash flows from this position at the post-issue date are:

(Pissue − 1)+(Zauction −Zissue)+
(issue date− auction date)

360
×(rrepo − rborrow)×Zauction−

rborrow
360

×1

(72)

In our calculations we disregard the two funding terms because they are small and don’t
vary much when rrepo ≈ rborrow. The repo rate for old issues, which are being funded
between the post-auction and post-issue date, typically trades within a few basis points to
the unsecured rate rb, so the funding terms are small. Repo rates for new (or first-off-the-
run) securities instead can trade far off from uncollateralized rates and be volatile because
they funding rates balance the supply and demand of new securities, which can be in high
demand to take short position in interest rates (see e.g. Duffie, 1996; Jordan and Jordan,
1997). As per the detailed steps above the new issue is never shorted or funded, as it is
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sold as soon as it is received by the investor. Thus fluctuations in the special-repo rate do
not affect the returns in our position.

Coupon roll An investor could achieve approximately the same hedged position by
shorting only the previously on-the-run (same maturity) security. This strategy is fairly
common around Treasury auctions as discussed by Fleming and Garbade (2007). While
this would be a preferred approach in practice, the paper focuses on a OTR strategy for two
reasons. First, interest hedging with the former on-the-run is imperfect because maturities
are not matched and additional accrued interest calculations would need to be accounted
for. Second, the repo rate for recently issued securities can trade “special”, that is at a
significant gap to the rborrow so that the funding terms would become more important. At
the same time historical special repo rates are not readily available, so we focus on OTR
for which these terms are not important.

Information from the When-Issued Market Days ahead of the auction date, when
details such as amounts and maturities are set, dealers and other market participants
begin to trade the not-yet-available security. Trades on when-issued securities (or WIs),
are quoted in coupon rates that investors are willing to pledge, in advance of the auction, to
pay to receive the treasury on the issuance date. The price at which WIs trade is indeed a
good predictor of what the auction-clearing coupon rate will be. But in the model, investors
can condition their bids on the realized auction price p. Thus all information that is in the
auction is already in their information sets. Pre-auction information from the WI market
is a noisy signal about something they effectively know perfectly already. As such, it is
redundant information and does not affect investors’ bids in our model.

E Calibration Robustness

In Section 3, we calibrated the full model to Treasury auction outcomes assuming that
dealers share fully their average signal with their clients, so that τξ = +∞, and that the
20 dealers do not share information with each other, so that ψ = 0. In this Appendix, we
investigate alternative information sharing assumptions for the calibration. It is important
to note that the parameters of the distribution of the fundamental value of the security,
µ and τf , and the parameters of the non-competitive agent demand, x̄ and τx, remain
fixed over the alternative calibrations as we can directly observe these moments from the
data.

We consider three alternative assumptions for τξ and NP :

1. Full information sharing with clients (τξ = +∞) and information sharing with one
other dealer (ψ = 1).

2. No information sharing with clients (τξ = 0) and no information sharing with the
other dealers (ψ = 0).

3. No information sharing with clients (τξ = 0) and information sharing with one other
dealer (ψ = 1).
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Though this is by no means an exhaustive list of possible assumptions for the true in-
formation sharing structure that occurs in practice, we find the differences in calibration
outcomes to be representative of the changes to the calibrated parameters – and corre-
sponding quantitative implications of the comparative statics conducted in the paper –
under alternative assumptions.

We evaluate the alternative calibration assumptions along several dimensions. First, Ta-
ble 5 reports the calibrated parameters under the baseline assumption used in the main
body of the paper and the three alternatives. Comparing first the baseline calibration with
alternative 1 (τξ = +∞, ψ = 1), we see that the calibrated parameters are nearly identical,
with slightly higher risk aversion for the large investors and dealers, lower signal precision
of private signals, lower risk aversion for the small investors and higher minimum bidding
requirement penalty. Comparing next the baseline calibration to alternative 2 (τξ = 0,
ψ = 0), we see that the risk aversion of large investors and dealers decreases, precision of
the private signals observed by large investors and dealers increases, while the calibration
of the small investors moves in the opposite direction (high risk aversion and lower signal
precision). Finally, alternative 3 (τξ = 0, ψ = 1) moves the calibrated parameters back
toward the baseline calibration.

Table 5: Calibrated parameters µ, χ0, τ
− 1

2
f , τ

− 1
2

ε,s and τ
− 1

2
ε,l are all expressed in basis

points.

µ τ
− 1

2
f τ

− 1
2

ε,s τ
− 1

2
ε,l τ

− 1
2

x x̄ ρ ρL χ NS NL ND

Baseline 40.8 73.5 494.9 295.1 0.06 0.12 49402 1068 0.06 240 40 20
Info share with 1 dealer 40.8 73.5 491.1 295.4 0.06 0.12 49355 1079 0.08 240 40 20
No info sharing with
clients

40.8 73.5 5386.7 107.5 0.06 0.12 99927 20 0.04 240 40 20

Info share with 1 dealer;
no client info sharing

40.8 73.5 414.8 236.4 0.06 0.12 17534 874 0.06 240 40 20

Table 6 evaluates the goodness-of-fit of the four different assumptions on the information
sharing structure. Comparing the four calibrations, we see that, while they all do fairly
well in matching the moments of price (A, price sensitivity to fundamentals, C, and error
standard deviation) and the expected excess revenue and volatility of excess revenue, the
alternatives are less able to match average shares allotted. Indeed, if we compare the
minimized objective of the calibration (the sum of squared deviations), we see that the
baseline calibration achieves the lowest minimized objective.

Finally, in Table 7, we compare the full information sharing outcome and the Chinese
wall outcome for the four calibrations, in terms of expected revenue, revenue volatility,
expected utility of a small investor and expected utility of a dealer (or large investor). The
full information outcome looks very similar for all four calibration alternatives, with the
only exception the revenue volatility and agents’ utility for alternative 2 (τξ = 0, ψ = 0),
corresponding to the much lower risk aversion and much higher signal precision of the large
investors and dealers in this calibration. Comparing the Chinese wall outcomes to the full
information sharing outcomes, we see that alternative 2 has the lowest expected excess
revenue gain from moving from no information sharing to full information sharing but the
largest expected utility gain for both large and small investors. Even in this case, however,
the Treasury would loose 2.7 bps per dollar of security auctioned (or $2.1 billion annually)
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Table 6: Calibration targets and model-implied values. Prices and excess revenues
are all expressed in basis points.

Data Baseline Info share with
1 dealer

No info sharing
with clients

Info share with
1 dealer; No
info sharing
with clients

A -17.01 -7.51 -6.38 -28.54 -25.38
Price sensitivity to fundamental 0.97 0.91 0.91 0.92 0.90

C 124.38 73.57 64.81 240.03 223.46
Error Std. Dev. 29.72 23.12 22.73 17.10 19.29

Expected excess revenue 37.18 38.73 38.65 38.64 39.10
Volatility of excess revenue 72.64 70.81 70.46 70.82 70.10

Indirect share 0.25 0.51 0.70 0.52 0.55
Volatility of indirect share 0.09 0.73 0.65 0.26 0.27

Dealer share 0.53 0.43 0.24 0.35 0.32
Volatility of dealer share 0.14 0.19 0.14 0.25 0.27

Direct share 0.10 0.00 0.01 0.01 0.01
Volatility of direct share 0.09 0.01 0.01 0.01 0.00

Sum of squared errors - 19758.66 90853.26 58752.48 70498.48

in moving from full information sharing to no information sharing.

Table 7: Full information and Chinese Wall outcomes under different calibra-
tion assumptions. Prices and excess revenues are all expressed in basis points.

A. Full information outcomes

Expected revenue Revenue volatility Small client utility Large agent utility

Baseline 39.987 79.881 -0.545 -0.545
Info share with 1 dealer 39.986 79.885 -0.544 -0.544
No info sharing with
clients

40.767 343.439 -0.049 -0.049

Info share with 1 dealer;
no client info sharing

40.367 78.115 -0.545 -0.546

B. Chinese Wall outcomes

Expected revenue Revenue volatility Small client utility Large agent utility

Baseline 32.808 58.237 -1.041 -1.041
Info share with 1 dealer 32.781 58.208 -1.041 -1.041
No info sharing with
clients

38.044 71.020 -1.097 -1.036

Info share with 1 dealer;
no client info sharing

36.976 64.302 -1.085 -1.082

55


	Baseline Auction Model with Primary Dealers
	Solving the Model
	Equilibrium auction-clearing price: 3 cases

	Mapping the Model to the Data
	Results: Effects of Information Sharing
	Information Sharing and Auction Revenue
	Client vs. Dealer Information Sharing: Utility Effects
	What if Information Sharing Enabled Collusion?

	Mixed Auctions: Choosing Direct or Indirect Bidding
	A Model with Intermediation Choice
	Understanding Intermediation Choice: Why Is Bad News Revealed?
	Intermediation Choice and the Financial Accelerator

	Testing Two Model Predictions
	Conclusions
	Appendix: Derivations and Proofs
	Result 1
	Case 1: Dealer-Client Sharing, No Dealer-Dealer Sharing
	Case 2: Dealer-Client and Dealer-Dealer Information Sharing
	Case 3: No Information Sharing (``Chinese Wall'')

	Corollary 1
	Result 2

	Learning from the intermediation decision of the large investor
	A Private Value Auction Model
	Measuring Treasury Payoffs
	Calibration Robustness



