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1 Introduction

The wide dispersion of measured human capital in children and its strong correlation
with later life outcomes has prompted a renewed interest in understanding the de-
terminants of skill formation among children (for a recent review, see Heckman and
Mosso, 2014). However, the empirical challenges in estimating the skill formation
process, principally the technology of child development, is hampered by the likely
imperfect measures of children’s skills we have available. While measurement issues
exist in many areas of empirical research, they may be particularly salient in research
about child development. There exists a number of different measures of children’s
skills, and each measure can be arbitrarily located and scaled, and provide widely
differing levels of informativeness about the underlying latent skills of the child.1

In the presence of these measurement issues, identification of the underlying latent
process of skill development is particularly challenging, but nonetheless essential,
because ignoring the measurement issues through ad hoc simplifying assumptions
could bias the empirical conclusions.

This paper makes two contributions. First, building on the results in (Cunha and
Heckman, 2007; Cunha et al., 2010; Cunha and Heckman, 2008) we show identifica-
tion of a general dynamic skill production function when the skills are unobserved
and there exists only imperfect and arbitrarily scaled and located measures. Second,
we develop a simple multiple step estimator for this skill development process and
estimate this model using data on the child development process for the US.

Our identification results start by formulating the production function as a non-
parametric model with mis-measured dependent and independent variables. We lean
on recent advances in the econometrics literature, combining identification concepts
for non-parametric regression and measurement error models, for identification of
a general function combining skill production function primitives and measurement
parameters. We then show that researchers face a key identification trade-off: sep-
arate point identification of the production function and measurement models can
only be achieved with some combination of restrictions on the production function
and measurement model. One simple way to understand this trade-off is that when
observing that average test scores are increasing with child age, one cannot tell
whether older children are learning more or the tests are getting easier. Rather than
simply offering a “one-size-fits-all” generic assumption, we analyze various classes of
assumptions that we show are sufficient for identification. We then evaluate the em-
pirical relevance of these classes of restrictions, and provide guidance to researchers

1For a recent analysis of how measurement issues can be particularly salient, see Bond and Lang
(see 2013, 2018) who analyze the black-white test score gap.
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to evaluate whether their model and the measures available to them in their datasets
satisfy these assumptions.

One of our key insights is to show that several prior studies already implicitly
restrict the production technology, making further restrictions on the measurement
system unnecessary. We introduce the concept of production technologies that have
a known location and scale, technologies which are implicitly restricted so that the
location and scale is already known. These known location and scale (KLS) tech-
nologies include the CES production technologies considered in a number of previous
papers. 2 Starting with this class of technologies, we show that standard assump-
tions non-parametrically identify the production function, up to a normalization on
the initial conditions only, without requiring further restrictions on the measurement
process or latent variables in subsequent periods. In this way, we show that the iden-
tification concepts in this dynamic context differ substantially from simply applying
techniques developed for cross-sectional latent factor models (Anderson and Rubin,
1956; Jöreskog and Goldberger, 1975; Goldberger, 1972; Chamberlain and Griliches,
1975; Chamberlain, 1977a,b; Carneiro et al., 2003; Hagglund, 1982) to each period
or age of the development process, that is “re-normalizing” the model each period.

We also show that identification can be achieved with assumptions on the mea-
surement system only, without KLS restrictions on the production technology. We
introduce additional restrictions on the measurement process which are sufficient
for identification of more general production technologies, including those exhibiting
Hicks neutral total factor productivity (TFP) dynamics and free returns to scale,
which much of the prior literature has not considered.3 Using standard assumptions,
these more general technologies cannot be identified because the location and scale
of the technology cannot be separately identified from the location and scale of the
measures. These more general aspects of the skill development formation process
are nonetheless potentially important as imposing restrictions on the technology can
reduce the permissible skill dynamics and investment productivities, substantially
changing our inferences about the child development process and our evaluation of
policies.

Our paper is the first to provide identification results for these more general
production function models. We introduce the concept of “age-invariant” measures,
measures that allow the comparison of skill development as children age. These
assumptions are certainly not appropriate for all measures, but at least some skill
measures are purposely designed by psychometricians and education experts for this

2see for example (Cunha and Heckman, 2007; Cunha et al., 2010; Cunha and Heckman, 2008)
3One recent exception to this is (Pavan, 2015), where the author estimates a linear non-KLS

technology of skill formation.
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purpose. Indicating the inherent trade-off in this type research, we show that if these
types of measures are available, then more general skill technologies can be identified.

In the second part of our paper, we estimate a flexible parametric version of
our model using data from the US National Longitudinal Survey of Youth (NLSY).
We examine the development of cognitive skills in children from age 5 to age 14,
and estimate a model of cognitive skill development allowing for complementarties
between parental investment and children’s skills; endogenous parental investment
responding to the stock of children’s skills, maternal skills, and family income; Hicks
neutral dynamics in TFP; free returns to scale; and unobserved shocks to the in-
vestment process and skill production. Following Cunha et al. (2010), our empirical
framework treats not only the child’s cognitive skills as measured with error, but
investment and maternal skills as well.

We develop an estimator for both of the two cases considered in the identification
analysis, with restrictions on the production technology (assuming a known location
and scale technology) or restrictions on the measurement process (assuming age-
invariant measures), and present estimation results for both types of models. Con-
structively derived from our identification analysis, we form a method of moments
estimator. Our estimator is not only relatively simple and tractable, but also robust
to parametric distributional assumptions on the distribution of latent variables and
measurement errors, as is commonly imposed in the past empirical literature. We
jointly estimate the technology of skill formation, the process of parental investments
in children, and the adult distribution of completed schooling and earnings, allowing
the parameters of the production technology and investment process to freely vary as
the child ages. Because we use measures in the NLSY dataset (PIAT scores) which
are designed to account for developmental changes in children’s skills, we argue that
our estimates of the more general technology imposing age-invariance are preferred.
Our estimates in this model of high TFP and increasing returns to scale at early
ages indicate that investments are particularly productive early in the development
period. We also find that the marginal productivity of early investments is substan-
tially higher for children with lower existing skills, suggesting the optimal targeting
of interventions to disadvantaged children. This conclusion is quite different from
some existing estimates which find that the marginal productivity of investment is
increasing in the existing stock children’s skills.

Our estimates of the dynamic process of investment and skill development allow
us to estimate the heterogeneous treatment effects of some simple policy interven-
tions. We show that even a modest transfer of family income to families at age 5
would substantially increase children’s skills and completed schooling, with the ef-
fects larger for low income families. When we compare these estimates to those using
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models which restrict the technology or ignore measurement error, we estimate pol-
icy effects which are substantially smaller, indicating that the generalities we allow
are important quantitatively to answering key policy questions.

The paper is organized as follows. In the next section, we develop the model of
skill development and measurement analyze the identification of this model. In the
remainder of the paper we develop our estimator, we discuss our estimates and our
counterfactual results, and we conclude.

2 Model and Identification

In this section, we lay out our simple stylized model of skill development and analyze
the identification of the model.

2.1 Child Development Production Technology

Child development takes place over a discrete and finite period, t = 0, 1, . . . , T , where
t = 0 is the initial period (say birth) and t = T is the final period of childhood (say age
18). There is a population of children and each child in the population is indexed i.
For each period, each child is characterized by a skill stock θi,t and a flow investment
Ii,t. In what follows, we consider only a single scalar skill and scalar investment,
but the Appendix analyzes the multiple skill and multiple investment case. For each
child, the current stock of skills and current flow of investments produce next period’s
stock of skill according to the skill formation production technology:

θi,t+1 = ht(θi,t, Ii,t, ηi,t) for t = 0, 1, . . . , T − 1 (1)

where ηi,t is a production shock. Equation (1) can be viewed as a dynamic state
space model with θi,t the state variable for each child i. The production technology
ht(·) is indexed with t to emphasize that the technology can vary over the child
development period. According to this technology, the sequence of investments and
shocks and the initial stock of child skills θi,0 produce the sequence of skill stocks for
each child i: θi,0, θi,1, . . . , θi,T .

There are several features of the technology which have particular relevance both
to understanding the process of child development and in evaluating policy inter-
ventions to improve children’s skills. First, a key question is the productivity of
investments at various child ages. At what ages are investments in children par-
ticularly productive in producing future skills (“critical periods”) and, conversely,
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at what ages is it difficult to re-mediate deficits in skill? Second, how does het-
erogeneity in children’s skills, at any given period, affect the productivity of new
investments in children? Complementarity in the production technology between
current skill stocks and investments implies heterogeneity in the productivity of in-
vestments across children. Third, how do investments in children persist over time
and affect adult outcomes? Do early investments have a high return because they in-
crease the productivity of later investments (dynamic complementarities) or do early
investments “fade-out” over time? These features of the technology of skill develop-
ment then directly inform the optimal timing of policy interventions – the optimal
investment portfolio across early and late childhood – and the optimal targeting of
policy – to which children should scarce resources be allocated to, with the goal of
using childhood interventions to affect eventual adult outcomes.

2.2 Measurement Model

The focus of this paper is estimating the technology determining child skill devel-
opment (1), while accommodating the reality that researchers have at hand various
arbitrarily constructed and imperfect measures of children’s skills. Our framework
follows the approach in the literature (see for example Cunha and Heckman, 2007;
Cunha et al., 2010; Cunha and Heckman, 2008), and it recognizes that children’s
skills are not directly measured by a single measure, but there exists multiple mea-
sures which we hypothesize can have some relationship to the unobserved latent skill
stock θt.

Each measure m for child i skills in period (age) t is given by

Zi,t,m = gt,m(θi,t, εi,t,m), (2)

For period t, we haveMt ∈ {1, 2, . . .}measures for latent skills ln θi,t: m = 1, 2, . . . ,Mt.
Zi,t,m are the measures. εi,t,m are the individual measurement errors. To focus atten-
tion on the critical identification trade-offs considered next, throughout the identifi-
cation analysis in this Section we assume investment Ii,t is measured without error
and is independent of both the production shock and the measurement errors for la-
tent skills. In several important respects, we relax these assumptions in the empirical
model we estimate in the next section.

2.3 Identification Trade-offs

In this sub-section we discuss the trade-offs for the identification of the dynamics of
a child’s latent skills. Our analysis of identification proceeds in the following way.
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We first state some results on the identification of the initial period skill distribution
and measurement parameters. In particular, we identify the distribution of latent
skills and investments in the initial period, together with the associated measurement
parameters. Our identification of the initial conditions follows standard arguments
used in the current literature (e.g.: Cunha et al., 2010), but for completeness we
fully specify this first step of the identification analysis. We then provide some
negative results for the general identification of the dynamics of children’s skills if
no restrictions are imposed on the model. Finally, we provide new identification
results under various forms of assumptions/restrictions. We conclude by discussing
the relevance of each of the different assumptions for the various empirical situations
researchers could face.

We specify our framework based on the general model in (1)-(2). We main-
tain a general non-parametric specification of the technology of skill formation (with
additive separable shocks), while we consider a linear factor model for the skill mea-
surements as in the empirical model of Cunha and Heckman (2007); Cunha et al.
(2010).4 The model is as follows:

ln θi,t+1 = ln ft(θi,t, Ii,t) + ηi,t for t = 0, 1, . . . , T − 1 (3)

Zi,t,m = µt,m + λt,m ln θi,t + εi,t,m for t = 0, 1, . . . , T (4)

and m = 1, . . . ,Mt.

where, without loss of generality, we assume that E(ηi,t) = 0 for all t and E(εi,t,m) = 0
for all t and m. The measurement parameters µt,m and λt,m represent the location
and scale of the measures, respectively. For the remainder of the analysis we drop
the i subscript.

The main identification trade-off comes from separately identifying the location
and scale of the measurement model in equation (4) from the location and scale of
the technology ft(θi,t, Ii,t) in equation (3). Put more intuitively, from some change
in average scores between t + 1 and t, E(Zi,t+1,m) − E(Zi,t,m), we cannot identify
whether this change is due to a change in the measurements or an actual change in
average latent skills:

E(Zi,t+!,m)− E(Zi,t+1) = (µt+1,m − µt,m) + λt+1,mE(ln θi,t+1)− λt,mE(ln θi,t)

where changes in the measurements are represented by changes in the measurement

4In the empirical exercise we consider a parametric translog technology of skill formation.
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intercepts µ or loadings λ, and for example (µt+1,m−µt,m) > 0 would imply that the
measures have become “easier.”

2.3.1 Identification of Initial Conditions

Latent skill stocks θt have no natural scale and location. A normalization is then
required to fix the scale and location of the latent skill stocks to a particular measure.
We normalize the latent skill stock to one of the measures of initial period skills:

Normalization 1 Initial period normalizations

(i) E(ln θ0) = 0

(ii) λ0,1 = 1

This normalization fixes the location and scale of latent skills θ0 to a particular
measure, Z0,1, where the labeling of the normalizing measure as measure m = 1 is
arbitrary. For the normalizing measure, we then have the following:

Z0,1 = µ0,1 + ln θ0 + ε0,1,

where µ0,1 = E(Z0,1) given the normalization E(ln θ0) = 0.
The first set of assumptions restricts the measurement model for initial period

skills:

Assumption 1 Initial Period Measurement Assumptions:
(i) Cov (ε0,m, ε0,m′) = 0 for all m 6= m′

(ii) Cov (ε0,m, ln θ0) = 0 for all m.

Assumption 1 (i) is that measurement errors are uncorrelated contemporaneously
across measures. Assumption 1 (ii) is that measurement errors are uncorrelated with
the latent skill variable. Although these assumptions are strong in some sense, they
are common in the current literature.

Under Normalization 1, Assumption 1, and with at least 3 measures in the first
period, M0 ≥ 3, we identify the λ0,2, λ0,3, . . . , λ0,M0 factor loadings from ratios of
measurement covariances:

λ0,m =
Cov(Z0,m, Z0,m′)

Cov(Z0,1, Z0,m′)
, (5)

for m 6= m′, m 6= 1, m′ 6= 1, where measure m = 1 is the normalizing measure.
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Further, under the normalization that E(ln θ0) = 0 (Normalization 1), we identify
the µ0,1, µ0,2, . . . , µ0,M0 intercepts from

µ0,m = E(Z0,m)for all m. (6)

We then construct the following “residual” skill measures from the original raw mea-
sures:

Z̃0,m =
Z0,m − µ0,m

λ0,m

≡ ln θ0 + ε̃0,m, (7)

where ε̃0,m = ε0,m
λ0,m

, a scaled version of the original measurement error. The measures

Z̃0,m can be thought as “error-contaminated” measurements of the latent skills.

2.3.2 Identification of the Technology (Period 1)

We now express a measure of the latent skill in period 1 Z1,m as a function of both
the measurement parameters and the technology by substituting equation (3) into
equation (4):

Z1,m = µ1,m + λ1,m ln f0(θ0, I0) + (η0 + λ1,mε1,m)

= q0(θ0, I0) + u0,m (8)

where the combined residual u0,m = η0 + λ1,mε1,m is mean-zero. The period 0
child’s skill (θ0) on the RHS is unobserved, but we have some “error-contaminated”

measurements (Z̃0,m) derived from the previous identification step (see equation 7):

Z̃0,m = ln θ0 + ε̃0,m.
Equation (8) can be thought as a non-parametric regression equation relating an

observed measure of period 1 skills to a non-parametric function of unobserved period
0 skills and investment. The new error term in this equation u0,m has two parts: the
production shock η0 and the measurement error ε1,m. There are two identification
challenges here: (i) the unobservability of the RHS skills (θ0); and (ii) the potential
endogeneity of these skills: the error term u0,m being correlated with ln θ0. As noted
in a recent paper by Adusumilli and Otsu (2018), estimating the model given in (8)
relies on two long-standing and largely parallel econometric research programs on
non-parametric IV models and models with errors-in-variables (e.g. Hausman et al.,
1991; Schennach, 2004). Sufficient conditions for identification of q0 are given in
Adusumilli and Otsu (2018), and they rely on the existence of a relevant instrumental
variable W0 which satisfies two key conditions: (i) E(u0,m|W0) = 0 and (ii) ε̃0,m ⊥
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W0. In addition, a third requirement is (iii) ε̃0,m ⊥ θ0, a stronger assumption than
the no correlation condition Assumption 1.5 Below we discuss possible candidate
instruments for our child skill formation application.6

Given the non-parametric identification of the function q0, the next step is un-
packing the components of this function to provide identification for the dynamics
of the next period skills. Without loss of generality, we write the first term of the
production technology in (3) as

ln f0(θ0, I0) = lnA0 + ψ0 lnK0(θ0, I0), (9)

where lnA0 and ψ0 are the location and scale of the technology, and K0(θ0, I0) is a
Known Location and Scale (KLS) function, which we define as follows:

Definition 1 A production function Kt(θt, It) has Known Location and Scale (KLS)
if for two non-zero input vectors (θ′t, I

′
t) and (θ′′t , I

′′
t ), where the input vectors are

distinct, the outputs Kt(θ
′
t, I
′
t) and Kt(θ

′′
t , I
′′
t ) are both known (do not depend on

unknown parameters), finite, and non-zero.

A production technology with known location and scale implies that, for a change
in inputs from (θ′t, I

′
t) to (θ′′t , I

′′
t ), the change in output Kt(θ

′
t, I
′
t)−Kt(θ

′′
t , I
′′
t ) is known.

Other points in the production possibilities set may be unknown, i.e. they depend
on free parameters to be estimated. Writing the technology as in (9), we have
intuitively separated out two parameters representing location and scale from the
general function f0, the parameters lnA0 and ψ0. A leading example of a KLS
function is the CES function:

θt+1 = (γtθ
σt
t + (1− γt)Iσtt )1/σt

5Note that in our framework we have mis-measured dependent and independent variables, but
using the measurement model, we can re-arrange the estimating equation so that there is only
measurement error in the RHS variables.

6One candidate instrument is an alternative measure (Z0,m′) of initial skills (θ0), and we discuss
conditions under which this is a valid instrument below. In addition, there are many other potential
instruments which researchers could use (e.g. Cunha et al. (2010) assume some exclusion restric-
tions that makes lagged household income a valid instrument). See Section 2.5 for an example of
identification and estimation using a parametric form for q0. Note that we previously assumed, and
maintain throughout this Section, that investment is observed and independent of the production
shock and measurement errors, hence E(u0,m|I0) = 0 and ε̃0,m ⊥ I0. We relax this assumption in
the empirical model we take to data.
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with γt ∈ (0, 1) and σt ∈ (−∞, 1]. In this case it is easy to show that, for all pairs
(θt, It) such that θt = It, the output is known: θt+1 = θt = It.

7

Next, substituting equation (9) into the main equation (8), we have

Z1,m = (µ1,m + lnA0λ1,m) + (λ1,mψ0) lnK0(θ0, I0) + u0,m (10)

At this point, we cannot separately identify the period 1 measurement parameters
(µ1,m, λ1,m) from production function parameters (lnA0, ψ0). That is, we cannot
separately identify the location and scale of the measurement function from the
location and scale of the production function. We consider identification under one
of two prototypical restrictions:

Assumption 2 Measurement Function Restriction µt,m = µ0,m and λt,m = λ0,m for

all t > 0 and this m

Assumption 3 Production Function Restriction lnAt = 0 and ψt = 1 for all t

Under either set of restrictions, we identify all of the parameters of interest. Let
(θ′0, I

′
0) and (θ′′0 , I

′′
0 ) be the two input vectors for which K0 is, by definition, known

and non-zero. Then we have a system of two equations:

q0(θ′0, I
′
0) = (µ1,m + lnA0λ1,m) + (λ1,mψ0) lnK0(θ′0, I

′
0)

q0(θ′′0 , I
′′
0 ) = (µ1,m + lnA0λ1,m) + (λ1,mψ0) lnK0(θ′′0 , I

′′
0 )

where the q0 function (defined in equation 8) is identified given the arguments above.
The two parameters β0 = (µ1,m + lnA0λ1,m) and β1 = (λ1,mψ0) are just-identified.
Under the measurement function restriction Assumption 2, we identify lnA0 and ψ0,
in addition to the other parameters. Or, under the production function restriction
Assumption 3, we identify µ1,m and λ1,m, in addition to the other parameters.

Importantly, one does not need to assume both a production function and mea-
surement function restriction. Either assumption is sufficient for identification, and

7This result follows from the constant return to scale property of the CES. Suppose θt = It =
a, we then have:

(γtθ
σt
t + (1− γt)Iσt

t )1/σt = (γta
σt + (1− γt)aσt)1/σt = (aσt)1/σt = a .
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imposing both is over-identifying. In fact, imposing one, allows testing of the other.
There are other types of restrictions that would be sufficient for identification, but
these two broad classes of restrictions help clarify the range of options.8

2.4 Sequential Identification

We can continue the identification for remaining periods sequentially. As shown
above, using either Assumption 2 or Assumption 3, we recover the measurement
parameters for period 1, (µ1,m, λ1,m). Just as we did for period 0, this allows us to
form an error-contaminated measure for period 1:

Z̃1,m =
Z1,m − µ1,m

λ1,m

≡ ln θ1 + ε̃1,m,

Note that here, unlike with the period 0 initial period, we do not need multiple mea-
sures to identify the measurement parameters: these parameters are identified from
the restrictions imposed on the previous period t=0 relationships. We continue as
above, and using the analysis above, the existence of a sequence of valid instruments
{W0,W1, . . . ,WT−1} and Assumption 2 or Assumption 3, we identify the sequence
of production technologies ft(θt, It) for t = 0, 1, . . . , T − 1 and the measurement
parameters µt,m and λt,m for t = 1, . . . , T .

2.5 Example: Cobb-Douglas Production Function

In this section we provide one example that highlights the trade-offs for the iden-
tification of the technology of skill formation. Because the production function we
consider here is a simple parametric one, we do not need to rely on the non-parametric
results from Adusumilli and Otsu (2018). We consider a Cobb-Douglas production
function as an example:

ln θ1 = lnA0 + ψ0(γ0 ln θ0 + (1− γ0) ln I0) + η0 (11)

with γ0 ∈ (0, 1). Note that the function K0(θ0, I0) = γ0 ln θ0 + (1 − γ0) ln I0 is KLS
(Definition 1).

8Restrictions on latent variables directly can be understood as either restrictions on the tech-
nology or the measurement system. For example, assuming E(ln θt) = 0 for all t (not just for
the initial period t = 0) implies that skill formation process is mean (log) stationary. If, for ex-
ample, in addition one assumed the KLS CES production technology, this restriction (implying
E(ln θt) = E(ln θt−1) for all t > 0) restricts the technology to the Cobb-Douglas special case
(σt → 0). See Agostinelli and Wiswall (2016).
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Using the initial normalization and Assumption 1, we identify the set of measure-
ment parameters {µ0,m, λ0,m}m for the initial period (t = 0). We then proceed as
above, and by using the measurement system, we define the “error-contaminated”
measures for the initial period and the next period measures as:

Z̃0,m = ln θ0 + ε̃0,m

Z1,m = µ1,m + λ1,m ln θ1 + ε1,m

As in all of our analysis above, the measurement parameters µ1,m and λ1,m are
treated as free parameters. Substituting the production technology into the period
1 measurement equation, we have

Z1,m = (lnA0 + λ1,mµ1,m) + λ1,mψ0(γ0 ln θ0 + (1− γ0) ln I0) + u0,m

= (lnA0 + λ1,mµ1,m) + λ1,mψ0(γ0(Z̃0,m − ε̃0,m) + (1− γ0) ln I0) + u0,m

= β0,0 + β0,1Z̃0,m + β0,2 ln I0 + π0,m (12)

where equation (12) is a reduced-form equation of the original technology, with π0,m =
u0,m − λ1,mψ0γ0ε̃0,m. Each reduced-form parameter maps into a combination of the
original technological parameters and the measurement parameters as follows:

β0,0 = lnA0 + λ1,mµ1,m,

β0,1 = λ1,mψ0γ0,

β0,2 = λ1,mψ0(1− γ0)

As we discuss before, we now face an identification trade-off. In particular, the
reduced-form parameters β0,0, β0,1, β0,2 are combinations of unknown measurement
parameters µ1,m, λ1,m and unknown production function parameters lnA0, ψ0, γ0.

Identification takes two steps. First, the identification of the reduced-form pa-
rameters (βs) faces the standard error-in-variables problem. In this case, the OLS
estimand does not identify β0,0, β0,1, β0,2. We can solve this problem using standard
IV techniques with the existence of a valid and relevant instrument W0.9

Second, even with β0,0, β0,1, β0,2 identified, we are still faced with an under-
identification problem as there are 5 unknown primitive parameters lnA0, ψ0, γ0, µ0,m,

9Here a valid instrument satisfies E(π0,m|W0) = 0. Given that the combined residual π0,m is an
additively separable function of the random variables ε0,m, ε1,m, and η0,m, the instrument is valid
if the instrument is mean-independent of each of these separably.
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λ1,m, and there are only 3 identified reduced form parameters in (12). As previously
discussed, some restriction is needed to achieve point identification. Sufficient con-
ditions come from either imposing assumptions on the measurement function (As-
sumption 2) or assumptions on the production function (Assumption 3).

Under the measurement function restriction (Assumption 2), we have an exactly
identified system given by:

β0,0 = lnA0 + λ0,mµ0,m ,

β0,1 = λ0,mψ0γ0 ,

β0,2 = λ0,mψ0(1− γ0) ,

where the identified parameters are:

ψ0 = β0,1+β0,2
λ0,m

,

γ0 = β0,1
λ0,mψ0

,

lnA0 = β0,0 − λ0,mµ0,m .

Under the production function restriction (Assumption 3), we have a different
exactly identified system:

β0,0 = λ1,mµ1,m,

β0,1 = λ1,mγ0,

β0,2 = λ1,m(1− γ0)

where the solution is

λ1,m = β0,1 + β0,2,

γ0 = β0,1
λ1,m

,

µ1,m = β0,0
λ1,m

.

The production function restriction here can also be understood as a restriction in
a traditional “reduced form” error-in-variables model (Chamberlain, 1977a). In this
literature, identification is often achieved by proportionality restriction (e.g. linear

13



regression parameters are assumed proportional to each other), that is restrictions
imposed on the β parameters directly. In our case, the restrictions we consider come
from restrictions on the primitive production function, which is intuitively appealing
because we can understand the consequences of these restrictions on the primitive
production relationships.

Moving to the next period, given the period 1 measurement parameters µ1,m and
λ1,m are identified, we construct the period 1 contaminated measure:

Z̃1,m =
Z1,m − µ1,m

λ1,m

≡ ln θ1 + ε̃1,m.

We can then continue to identify the production technology for period 2, which
written in reduced form is given by

Z2,m = β1,0 + β1,1Z̃1,m + β1,2 ln I1 + π2,m.

As for the period 1 function, identification requires a relevant and valid instru-
ment, and an assumption on the measurement or production function. We continue
in this way to period t = T .

2.6 Age-Invariant Measures

We conclude this section with a discussion of measures which would satisfy these aux-
iliary assumptions. Unless the researcher has strong reasons to impose restrictions on
the production function, it would be desirable to leave the production function gen-
eral and look for measures which would satisfy the measurement restriction, allowing
identification of the most general skill process. An extensive literature, principally in
psychometrics and education, is concerned with designing skill measures that can be
“equated” across children of different ages so that the development of children can
be tracked using a single measure. Outside economics these are often referred to as
“vertical scales.” These types of measures primarily consist of tests that are designed
to be applicable for children of various ages, and include a range of test items which
show meaningful variation for both younger and older children. An example is a
vocabulary test in which children are asked to define words of increasing difficulty.
To the extent that one could administer this same test to children in a range of
ages, the raw count of words defined correctly could be considered an age-invariant
measure of latent skill in this domain.

In our framework, we formalize this idea by defining age-invariant measures:

Definition 2 A pair of measures Zt and Zt+1 is age-invariant if E(Zt,m|θt = p) =
E(Zt+1,m|θt+1 = p) for all p ∈ R++.
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Age-invariant measures imply that two children of different ages t and t + 1 would
nonetheless have the same expected level of measured skill if the children have
the same latent level of skill: θt = θt+1 = p.10 In this case, the younger child,
aged t, could be considered “ahead” of her age group, and the older child, aged
t + 1, could be considered “behind” her age group. The age invariant measures
Zt,m and Zt+1,m would report the same score (in expectation) for these two children.
Definition 2 implies that age-invariant measures would satisfy Assumption 2, allowing
identification of general technologies.11

Whether a given pair of measures is age-invariant depends on the measures and
data available, and must be evaluated on a case-by-case basis. Using pairs of unre-
lated measures, such as counts of body parts a toddler can identify to measure skills
at age 1 and SAT scores to measures skills at age 18, would not seem to constitute a
pair of age-invariant measures as there is no reason to believe these measures would
have a common location and scale. Other measures may be age-invariant, such as
certain test score measures developed specifically to track development as children
age.12 Examples of these types of measures for the cognitive skill domain include
the Peabody Individual Achievement Test (PIAT) and the Woodcock-Johnson tests,
both of which are specifically designed to track child development over a wide range
of child ages. These measures have have been used in a numerous studies, both in

10Age-invariant measures should not be confused with “age-standardized” measures, which are
measures the researcher constructs to be mean 0 and standard deviation 1 at all ages for the par-
ticular sample at hand. The concept of age-invariant measures concerns the underlying unobserved
primitive parameters of the measurement equations. Age-standardized measures would in fact not
represent any growth in average skills or changes in the dispersion of skills as children age.

11Age-invariance implies the following restrictions on measurement parameters: µt+1 +
λt+1 ln p = µt + λt ln p for all p. Re-arranging, we have (µt+1 − µt) = ln p (λt − λt+1) for all
p. This is the case if and only if µt = µt+1 and λt = λt+1. For our theoretical and empirical results,
the necessary condition is that a particular measure is age-invariant at least for two consecutive
periods.

12In practice, these types of age-invariant tests are often administered such that the questions are
endogenously determined by the previous answers of the child. Therefore, while not all children are
in fact answering the exact same test questions, their scores are determined in an age comparable
way. The typical test includes a number of test items ranging from low difficulty to high difficulty
questions. Testing begins by first establishing a baseline test item for each child. While the baseline
is initially based on the child’s age, the baseline adjusts downward (to less difficult questions) as
the child is unable to answer questions correctly. Once the baseline is established, the test then
progressively asks more difficult questions. Testing stops when the child makes a certain number
of mistakes. The score is then determined as the number of correct answers before testing stops.
Included in this number of correct answers are the lower difficulty test items prior to the baseline
item because it is assumed the child would have answered these items correctly (given she was able
to answer more the difficult items).
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and outside economics. In our empirical application, we use the PIAT measures and
discuss in more detail why we believe these measures are age-invariant.13

Our concept of age-invariance should not be confused with “age-standardized”
or “age-equivalent” measures. The latter are two transformations of the raw data:
age-standardized measures are constructed to be mean 0 and standard deviation 1 at
each age, and age-equivalent measures are constructed to express raw scores relative
to the typical development pattern using mean or median scores by age.14 Neither
transformation of the data guarantees that the resulting transformed measures are
age-invariant. Age-invariant measures cannot be automatically constructed using ex
post data transformations because the age-invariance property concerns the relation-
ship between data and unobserved latent skills. It is possible however that certain
transformations may result in measures which are age invariant whereas the raw
measures are not, and vice versa. A leading example is age-standardized measures.
If the raw measures Z are age-invariant and average latent skills are increasing by
age, then necessarily the age-standardized measures Z̃ = (Z − Z̄)/σ are not age-
invariant. To see this, notice that the age-invariance condition for age-standardized
measures states that the following difference is 0 (at all p):

E(Z̃t+1|θt+1 = p)− E(Z̃t|θt = p) =
E(Zt+1|θt+1 = p)− Z̄t+1

σt+1

− E(Zt|θt = p)− Z̄t
σt

.

While the age-invariant condition on the raw measures guarantees that E(Zt+1|θt+1 =
p) = E(Zt|θt = p) = 0, the rest of the right-hand side of the above equation can differ
from zero because latent skills are increasing with age (Z̄t+1 > Z̄t). Therefore the
age-standardizing transformation of the age-invariant raw scores produces measures
which are no longer age-invariant.15

13Several recent papers explicitly invoke age-invariance assumptions regarding their particular
measures. Attanasio et al. (forthcoming) argue that the raw count of number of tasks completed
from the Bayley cognitive scale is age-invariant. Using the same data, Attanasio et al. (2019a) argue
that a transformed age-equivalent version of the Bayley is age-invariant. Attanasio et al. (2019b)
use the Peabody Picture Vocabulary Test (PPVT) as an age-invariant measure. These studies also
assume age-invariance for certain non-cognitive and health measures.

14Consider a simple example. The average score for 8 year olds on some test is 37, and 43 for
9 year olds. The standard deviation of raw scores for both ages is 10. If a 8 year old child has
a raw score of 37, then this child’s age-equivalent score is 8, and age-standardized score is (37 -
37)/10 = 0. On the other hand, if a 9 year old child has a raw score of 37, then this child’s age-
equivalent score is 8, and age-standardized score is (37 - 43)/10 = -0.6. The age-equivalent score
can be alternatively calculated by using the regression of the child’s age at the time of the test on
the raw score of the test. The predicted outcome from this regression represents the age-equivalent
converted test score.

15Note also that our concept of age-invariance is unrelated to the concept of “anchoring” (Cunha
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3 Estimation

In this section we discuss the empirical model we take to the data, the estimation
algorithm we develop based on the identification analysis of the preceding section,
and briefly describe the data. Additional details about the data and sample are left
for the Appendix.

3.1 Empirical Model

There are five parts to the empirical model: 1) a model of skill development where
skills in the next period are produced by the stocks of existing skills and parental in-
vestments; 2) a model of parental investment where investment depends on household
characteristics and the existing stock of skills; 3) a distribution of initial conditions of
household characteristics and child skills; 4) a model of the relationship between final
childhood skills and adult outcomes (schooling and earnings); and 5) a measurement
model relating each of the latent model elements to observed data measures. Be-
sides specifying particular functional forms for the production technology, the major
distinction between the empirical model and the preceding identification analysis is
that we assume parental investment is also measured with error and allow parental
investment to be endogenously related to the stock of existing children’s skill.

The timing of the model is as follows. There are five biannual periods of child
development: ages 5-6 (t = 0), 7-8 (t = 1), 9-10 (t = 2), 11-12 (t = 3), 13-14 (t = 4).
While it would be ideal to extend the model to even earlier ages (to birth or even to
pre-natal periods), we face the common trade-off of assuming “too much” relative to
the data we have available. We have chosen here to focus on the childhood period
from age 5 to 14 where we have more skill measures, and plausibly age-invariant
measures, and can judge the performance of the model and estimator in closer to
ideal conditions.

3.1.1 Skill Production Technology

At each age t the current level of latent cognitive skills and investment produce the
next period’s (t+ 1) skills. The technology takes a stochastic translog form:

ln θt+1 = lnAt + γ1,t ln θt + γ2,t ln It + γ3,t ln It · ln θt + ηθ,t, (13)

et al., 2010). Anchoring in that paper is a transformation of the latent variables in terms of adult
outcomes (e.g. earnings), to allow an interpretation of primitive production function parameters
in terms of these outcomes. Age-invariance and the related measurement parameter assumptions
concern the relationship between skill measure data and latent variables.
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where lnAt is the TFP term, and ηθ,t is the stochastic production shock, which is
assumed i.i.d. ∼ N(0, σ2

θ,t) for all t, and is assumed independent of the current stock
of skills and investment. The translog specification is a generalization of the Cobb-
Douglas specification, where the special case γ3,t = 0 is the typical Cobb-Douglas
specification (with the addition of a TFP term and a stochastic shock). We use the
translog specification because of its flexibility relative to the Cobb-Douglas and other
CES functions. The translog function allows a non-constant elasticity of substitution
between inputs, and it can be expanded with the inclusion of additional terms to
provide a close approximation of any unknown production technology. The log-linear
form of the function is also convenient, because it allows us to derive the estimator in
closed-form expression, as detailed below. Our general translog function also allows
free returns to scale. And, with γ3 6= 0, the elasticity of skill production with respect
to investment depends on the current level of children’s skills:

∂ ln θt+1

∂ ln It
= γ2,t + γ3,t ln θt,

where γ3,t > 0 implies a higher return to investment for children with currently high
levels of skill than for children with low levels of skill, a dynamic complementarity
where past skills (and past investments which produced those skills) increase the
productivity of current investments. A negative value for γ3,t implies a higher return
on investment for the lower skill children, and would generally imply a higher return
to targeting investments to low skill children.

3.1.2 Parental Investment

We specify a parametric policy function for parental investment. The parametric
policy function depends upon the state variables, such as the current stock of the
child’s skills, mother’s skills, and family income:

ln It = α1,t ln θt + α2,t ln θMC + α3,t ln θMN + α4,t lnYt + ηI,t (14)

where
∑

j αj,t = 1 for all t, θMC is the mother’s stock of cognitive skills, θMN is
the mother’s stock of non-cognitive skills, Yt is household income, and ηI,t is the
investment shock, where ηI,t i.i.d. ∼ N(0, σ2

I,t) for all t, and is assumed independent
of latent skills and income. Our concept of investment represents both quantity
and quality aspects, where we use measures of investments which capture quantity
aspects of investment (time parents spent reading to children) and quality aspects
(whether children are “praised” by their parents).

18



This specification of investment is an approximation of the parental behavior
which is not derived from an explicit economic model of the household behavior.
This approach follows Cunha et al. (2010); Attanasio et al. (2015a,b). The advan-
tages of this approach are twofold. First, it provides a simple and tractable model
of the investment process, which avoids the computational burden of solving and
estimating a formal model of household behavior. Second, this approach has the
potential to allow for some generality as our specification of the investment process
can be consistent with multiple models of the households. Other recent work de-
rives parental endogenous behavior from explicit models of the household, including
explicit representations of household preferences, decision making, beliefs, and con-
straints (see for example Bernal, 2008; Del Boca et al., 2014a,b; Cunha, 2013; Cunha
et al., 2013; Doepke and Zilibotti, 2017; Agostinelli, 2019; Doepke et al., 2019). The
advantage of these latter approaches is that the counterfactual policy analysis incor-
porates well defined household responses to policy, see Del Boca et al. (2014b) for
some discussion.

Given the investment function does not derive from an explicit model, we in-
terpret the parameters in a more “reduced-form” way. The parameter α1,t can be
interpreted as reflecting whether parents “reinforce” existing skill stocks (α1,t > 0) or
“compensate” for low skill stocks (α1,t < 0). The parameters α2,t and α3,t reflect the
extent to which the mother’s skills relate to the quantity and quality of her parental
investment as in the case where more skilled mothers read to their children more
or provide higher quality interactions. Finally, the parameter α4,t reflects the influ-
ences that household resources have on the extent of parental investments, and it
includes the combined effects of constraints the household faces (such as credit mar-
ket constraints), as well as the household’s preferences for investing scarce resources
in children (see Caucutt et al., 2015).

Finally, to close the investment model, we assume that log family income (lnYt)
follows an AR(1) process which allows for life-cycle trends in income:

lnYt+1 = µY + δY · t+ ρY lnYt + ηY,t (15)

where the innovation is ηY,t i.i.d. ∼ N(0, σ2
Y ) and is assumed independent of all

latent variables. Initial family income Y0 is allowed to be correlated with mother’s
and children’s initial skills, and hence our model captures important correlations
between household resources and the skills of parents and children.
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3.1.3 Initial Conditions

The initial conditions consist of the child’s initial (at age 5-6) stock of skills θC,0, the
mother’s cognitive and non-cognitive skills (θMC and θMN), which are assumed to be
time invariant over the child development period, and the level of family income at
birth (Y0).16 Define the vector of initial conditions as

Ω = (ln θ0, ln θMC , ln θMN , lnY0)

We assume a parametric distribution for the initial conditions:

Ω ∼ N(µΩ,ΣΩ)

where µΩ = [0, 0, 0, 0, µ0,lnY ]. µ0,lnY is the mean of log household income when
children are 5-6 years old. The means of the remaining variables are set to zero as a
normalization. ΣΩ is the variance-covariance matrix for the initial conditions.

3.1.4 Adult Outcome

In order to provide a more meaningful metric to evaluate policy interventions in our
model, we relate adult outcomes to the stock of children’s skills in the final period
of the child development process (period T = 4 or age 13-14). Each adult outcome
Q is determined by

Q = µQ + αQ ln θT + ηQ, (16)

where ηQ is independent of ln θT . We use years of schooling measured at age 23 and
log earnings at age 29 as adult outcomes. Schooling is an attractive adult outcome
to use because it explains a large fraction of adult earnings and consumptions, is
largely determined at an early point in adulthood and, unlike realized labor market
earnings, does not suffer from a censoring issue due to endogenous labor supply.

3.1.5 Measurement

The final piece of our model is the model of measurement relating latent variables to
observed data. Children’s skills, parental investment, and mother’s skills are all as-
sumed to be measured with error. There are 4 latent variables: ω ∈ {θ, θMC , θMN , I}.

16We assume mother’s cognitive and non-cognitive skills to be time invariant only because of
data limitation. During the first waves of interviews, different measures were collected as part of
the original NLSY79 dataset, such as the Armed Services Vocational Aptitude Battery (ASVAB),
the Rotter-Locus of Control Scale, as well as the Rosenberg Self-Esteem index.
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There are in general multiple measures for each latent variable. As in the preceding
Section, each measure is assumed to take the following form:

Zω,t,m = µω,t,m + λω,t,m lnωt + εω,t,m

where m indexes the measures for each latent variable.
We assume a generalized version of Assumption 1 appropriate for this more gen-

eral empirical model. All measurement errors are assumed independent of each
other (across measures and over time), and all measurement errors are assumed in-
dependent of the latent variables, household income, and the “structural” shocks
(ηI,t, ηθ,t, ηQ). These assumptions are strong, and weaker assumptions, for example
of mean-independence, are sufficient for identification of the parametric model. On
the other hand, we make no other restrictions on the distribution of measurement
error (e.g. we do not assume εω,t,m is distributed Normal), as is common in previous
approaches in the literature. Our sequential estimator, described below, is therefore
robust to misspecification of the marginal distributions of measurement errors.

3.2 Estimation Algorithm

Our estimation algorithm is formed from the identification results presented above.
Before describing the steps of the algorithm, consider several estimation options.
One approach – a “brute force” approach – is to implement a simulation-based
estimator, where we would simulate the full sequence of latent variables and measures
from some guessed primitive parameters based on explicit assumptions about the
distribution of measurement errors (e.g. assume they are Normally distributed). The
simulated empirical distribution will be used to compute a likelihood function or a
set of moments to form the basis of an estimator. We do not prefer this approach
because it requires additional assumptions about the distribution of measurement
errors which are not required for identification. Moreover, this approach may also
involve a tremendous amount of computationally costly simulation given the non-
linear nature of the model.

A second alternative estimation approach is to use the measures directly to simu-
late the distribution of model’s variables by assuming a particular distribution for the
latent variables. One then could estimate the production function in a second step
from the simulated distribution of latent variables. This approach used in Cunha
et al. (2010) and Attanasio et al. (2015a,b) assumes that the latent variables are dis-
tributed according to a mixture of two Normal distributions. Below, we describe our
estimation method, which is robust to misspecification of the assumed parametric
distributions for latent skills and measurement noises.
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Our estimation approach directly follows our identification approach in treating
the measurement parameters as nuisance parameters which can be computed sequen-
tially along with the primitive parameters of the model generating the latent vari-
ables. Following the estimation of the initial conditions using standard techniques, we
sequentially estimate for each age the investment and production functions, followed
by the measurement parameters for the measures used for that age. The sequential
algorithm we develop has the advantage of tractability because our estimator does
not require the simulation of the full model; the primitives of the production tech-
nology and investment functions can be estimated directly from data. In addition,
another advantage of our approach over a joint estimation approach is by breaking
the estimator into steps, we make the identification assumptions as transparent as
possible. Of course, the disadvantage of our approach is a potential loss of efficiency
from not estimating the parameters jointly and exploiting “cross-step” restrictions.17

We present the estimation algorithm for two different models based on either
Assumption 2 or Assumption 3.

Model 1 (Measurement Function Restrictions: Age-Invariance): As-
sume that Assumption 2 holds, we let lnAt be free and

∑3
j=1 γj,t be free.

Model 2 (Production Function Restrictions: Known Location and Scale):
Assume that Assumption 3 holds, we fix lnAt = 0 for all t (no TFP dynamics) and∑3

j=1 γj,t = 1 for all t (restricted returns to scale).

For exposition, we start by presenting the estimation algorithm for the second
version of the model, using the restricted technology. The estimator for the more
general technology (Model 1) is described second.

3.2.1 Estimation using Production Function Restrictions (Model 2)

Step 0 (Estimate Initial Conditions and Initial Measurement Parameter)

First, we estimate the measurement parameters at the initial period (age 5-6),
λω,0,m, µω,0,m for all measures m, for both children’s and mother’s skills. To esti-
mate these measurement parameters, we use ratios of covariances and measurement

17It should be noted that to compute counterfactual simulations, we do simulate the full model
forward from the estimated initial conditions, using the estimated model primitives. Simulating
counterfactuals does not require assuming anything about the marginal distribution of measurement
errors or latent variables.
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means as outlined above (5) and (6). We choose one measure for children’s cognitive
skills, mother’s cognitive skills, and mother’s non-cognitive skills as the normalizing
measure (which we label m = 1, without loss of generality) and normalize the factor
loading for this measure to be 1: λθ,0,1 = 1, λMC,0,1 = 1, λMN,0,1 = 1.18 We estimate
the remaining factor loadings using the average of the covariances between all of the
remaining measures, where each factor loading is computed from

λω,0,m =
Cov(Zω,0,m, Zω,0,m′)

Cov(Z0,ω,1, Zω,0,m′)
∀m 6= m′ and ∀ω ∈ {θ,MC,MN}.

Given the normalization that log skills are mean 0 in the initial period, we compute
the initial measurement intercepts as

µω,0,m = E(Zω,0,m) ∀m and ∀ω ∈ {θ,MC,MN}

With the factor loading estimates in hand, we then estimate the initial period
variance-covariance matrix ΣΩ using variances and covariances in measures of skills
and family income (assumed measured without error). This step provides estimates
of the initial joint distribution of children’s skills, mother’s skills, and family income.
In this initial step, we also estimate the parameters of the income process (15) using
a regression of log family on lagged log family income and an age trend.

Finally, given the estimates of the measurement parameters for children and
mother skills, we form the following “residual” measures:

Z̃ω,0,m =
Zω,0,m − µω,0,m

λω,0,m
∀m and ∀ω ∈ {θ,MC,MN}

We are now ready to estimate the investment function for period t = 0, where
the investment in this first period depends on the initial child’s skills and household
characteristics (mother’s skills and family income).

Step 1 (Estimate Investment Function Parameters):

Following the errors-in-variables formulation described above, substitute a “raw”
measure for investment ZI,0,m and a “residual” measure for each of the latent skills

(Z̃θ,0,m, Z̃MC,0,m, Z̃MN,0,m) into the model of investment defined in terms of primitives
(14):

18Note that while investment is a latent variable as well, we do not need to normalize the scale
and location of latent investment because investment already has a scale and location specified by
the KLS investment equation (14).
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ZI,0,m − µI,0,m − εI,0,m
λI,0,m

= α1,0(Z̃θ,0,m − ε̃θ,0,m) + α2,0(Z̃MC,m − ε̃MC,m)

+α3,0(Z̃MN,m − ε̃MN,m) + α4,0 lnY0 + η0

Re-arranging, we have

ZI,0,m = µI,0,m + λI,0,mα1,0Z̃θ,0,m + λI,0,mα2,0Z̃MC,m + λI,0,mα3,0Z̃MN,m + λI,0,mα4,0 lnY0

+ εI,0,m + λI,0,m(η0 − ε̃θ,0,m − ε̃MC,m − ε̃MN,m)

= β0,0,m + β1,0,mZ̃θ,0,m + β2,0,mZ̃MC,m + β3,0,mZ̃MN,m + β4,0,m lnY0 + π0,m (17)

where βj,0,m = λI,0,mαj,0 for all j and

π0,m = εI,0,m + λI,0,m(η0 − α1,0ε̃θ,0,m − α2,0ε̃MC,m − α3,0ε̃MN,m).

Estimation of (17) by OLS would yield inconsistent estimates of the βj,0,m coeffi-
cients because the measures are correlated with their measurement errors (included
in the residual term π0,m). Here the structure of the model affords the researcher
several possible strategies to consistently estimate the βj,0,m coefficients. We use an
instrumental variable estimator with the vector of excluded instruments composed
of alternative measures of skills: [Zθ,0,m′ , ZMC,0,m′ , ZNC,0,m′ ]. Under our previous
assumptions about the measurement error, these instruments are valid because the
alternative measures are uncorrelated with all of the components of π0,m. Using this
IV strategy, we obtain consistent estimators for the βj,t,m coefficients. The primitive
parameters of the investment function are then recovered from

αj,0 =
βj,0,m∑4
j=1 βj,0,m

∀j ∈ {1, . . . , 4}

Step 2 (Compute Measurement Parameters for Latent Investment):

After estimating the primitive parameters of the investment function, we recover
the scale and location for the investment equation without further re-normalizations
on the measurement equation parameters. The intercept and factor loading for the
investment measure are given by
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µ0,m = β0,0,m ,

and

λ0,m =
4∑
j=1

βj,0,m .

With these consistent estimates for the measurement parameters for investment,
we form the “residual” measures for investment in period t = 0:

Z̃I,0,m =
ZI,0,m − µI,0,m

λI,0,m
≡ ln I0 + ε̃I,0,m .

Step 3 (Estimate Skill Production Technology)

Next, we use a similar technique to estimate the production technology. Substi-
tuting the residual measures into the production technology (13), we have

Zθ,1,m − µθ,1,m − εθ,1,m
λθ,1,m

= γ1,0(Z̃θ,0,m − ε̃θ,0,m) + γ2,0(Z̃I,0,m − ε̃I,0,m)

+ γ3,0(Z̃θ,0,m − ε̃θ,0,m)(Z̃I,0,m − ε̃I,0,m) + ηθ,0 .

With some algebra, we can re-write this as:

Zθ,1,m = δ0,0,m + δ1,0,mZ̃θ,0,m + δ2,0,mZ̃I,0,m + δ3,0,mZ̃θ,0,m · Z̃I,0,m + πθ,0,m , (18)

where the new error term πθ,0,m is:

πθ,0,m = εθ,1,m+λθ,1,m[ηθ,0−γ1,0εθ,0,m−γ2,0εI,0,m−γ3,0(Z̃θ,0,mεI,0,m+Z̃I,0,mεθ,0,m−εθ,0,mεI,0,m)] ,

while the rest of the reduced-form parameters (δs) are: δ0,0,m = µθ,0,m, δj,0,m =
λθ,1,mγj,0 for any j ∈ {1, 2, 3}.

As with the investment function, estimation of 18 using OLS would lead to incon-
sistent estimates. We use the same IV approach as above using instruments formed
from alternative measures [Zθ,0,m′ , ZI,0,m′ , Zθ,0,m′ ·ZI,0,m′ ]. Under our measurement
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assumptions these instruments are uncorrelated the residual error term πθ,0,m.19 With
consistent estimates of δs in hand, we can then recover the structural parameters and
for the production technology as:

γj,0 =
δj,0,m∑3
j=1 δj,0,m

∀ j ∈ {1, 2, 3} .

Step 4 (Compute Measurement Parameters for Latent Skill):

The measurement parameters for the latent skill measure in period t = 1 (Zθ,1,m)
can then be recovered from

µθ,1,m = δ0,0,m,

λθ,1,m =
3∑
j=1

δj,0,0.

We then form the residual measure for latent skill as

Z̃θ,1,m =
Zθ,1,m − µθ,1,m

λθ,1,m
.

Step 5 (Estimate variance of Investment and Production Function Shocks):

The variances of both the investment shocks (σ2
I,0) and of the production function

shocks (σ2
θ,0) remain to be estimated. In order to estimate σI,0, we use the covariance

between the residual term (π0,m) in (17), and an alternative residual measure of

investment Z̃I,0,m′ = ln I0 + ε̃I,0,m′ as follows:

Cov(π0,m/λI,0,m, Z̃I,0,m′) = V (ηI,0) = σ2
I,0 .

To compute the residual measure Z̃I,0,m, we need to compute the measurement
parameters for this measure. We do this by following the procedure explained in

19Perhaps the less obvious terms are terms such as this E(Z̃θ,0,mεI,0,m|Zθ,0,m′ · ZI,0,m′). Under
the assumption of independence of the errors, we have

E(Z̃θ,0,mεI,0,m|Zθ,0,m′ · ZI,0,m′) = E(Z̃θ,0,m|Zθ,0,m′ · ZI,0,m′)E(εI,0,m|Zθ,0,m′ · ZI,0,m′)

given εI,0,m is independent of Z̃θ,0,m. Given the independence assumption, the latter term is

E(εI,0,m|Zθ,0,m′ · ZI,0,m′) = E(εI,0,m) = 0. Therefore, E(Z̃θ,0,mεI,0,m|Zθ,0,m′ · ZI,0,m′) = 0.
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the Steps 1 and 2 above, with the alternative measure ZI,0,m′ . The variance of
the production shock is estimated in the same way using an alternative measure of
children’s skills in period t = 1:

Cov(πθ,1,m/λ1,m, Z̃θ,1,m′) = V (ηθ,0) = σ2
θ,0 .

Remaining Steps

We repeat Steps 1-5 for the remaining periods until the final period of child
development T . This algorithm produces estimates of the parameters for all child
ages.

3.2.2 Estimation using Measurement Function Restrictions (Model 1)

The preceding algorithm restricted the production technology to have no TFP dy-
namics and restricted the returns to scale (Model 2). Following our previous results,
identification of the more general technology can instead be accomplished with re-
strictions on the measurement parameters. We assume we have available at least
one child skill measure which is age-invariant. Label the age-invariant measure to be
measure m, and for this measure we have µθ,t,m = µθ,0,m for all t and λθ,t,m = λθ,0,m
for all t.

With this age invariant measure, we repeat Step 3 (Estimate Production Tech-
nology). The “reduced-form” equation (18) and estimation of the δj,0,m parameters
remains the same. To allow for free returns to scale we do not restrict the structural
γj,0 parameters to sum to 1. The structural parameters are computed as

γj,0 =
δj,0,m
λθ,1,m

∀ j ∈ {1, 2, 3} ,

where λθ,1,m is now known.
With the inclusion of the TFP term lnA0, the δ0,0,m intercept from the reduced-

form equation (18) is now

δ0,0,m = µθ,1,m + λθ,1,m lnA0 .

Given the age-invariance assumption, both measurement parameters µθ,1,m and λθ,1,m
are known, and we can estimate lnA0.

With the addition of these computations to Step 3, the other steps in the al-
gorithm remain the same. We can use this extended algorithm to compute the full
sequence of parameters for the investment and production functions for all child ages.
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3.2.3 Estimating the Adult Outcome Equation

Finally, after we have computed the full path of primitive parameters for the invest-
ment and production functions, we are able to estimate the adult outcome process
(16). We focus on both final years of education at age 23 and log earnings at age
29. We use the same IV method as before to solve the measurement error issue.
Substituting the measures for skills at age 13-14 (t = 4) in equation (16), we have:

Q = µQ + αQZ̃θ,4,m + (ηQ − αQε̃θ,4,m) (19)

We use a second measure for skills at age 13-14 as an IV to identify αQ.

3.3 Data

We estimate the model using information about children and their families obtained
from the National Longitudinal Study of Youth 1979 (NLSY). Descriptive statistics
for the sample and additional data construction details are left for the Appendix.

The NLSY dataset is constructed by matching female respondents of the original
dataset with their children who were part of the Children and Young Adults surveys,
from 1986 to 2012. The dataset provides observations of the first period of the model
(age 5-6) through adulthood. The total number of children in our sample is 11,509.

The NLSY dataset contains multiple measures of children’s skills, mother’s skills,
and parental investments. The complete set of measures, their ranges and descrip-
tive statistics for our sample are included in the Appendix. For children’s skills we
rely on different sub-scales of the Peabody Individual Achievement Test (PIAT) in
Mathematics, Reading and Recognition, and the Peabody Picture Vocabulary Test
(PPVT). Finally, we use information for children when they become young adults to
link the children skills into a more meaningful metric to evaluate policy intervention:
we use children’s highest grade completed at age 23 or older and their earnings at age
29. The information about the educational attainment is measured as the highest
grade completed as of date of last interview. We considered schooling information
only for those young adults who were at least 23 years old or older in the last 2012
interview. Age 29 earnings is in real 2012 dollars.

For mother’s cognitive skills we use sub-scales of the Armed Services Vocational
Aptitude Battery (ASVAB), and for mother’s non-cognitive skills we use the Rotter
and Rosenberg indexes. For parental investments, we use the various HOME score
measures from direct observation and interview with the mother. Family income
includes all sources of income for the parents, including mother’s and father’s labor
income, and any sources of non-labor income.
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4 Results

In this section we discuss our parameter estimates, simulate the estimated model
to describe the development of children’s skills, and compute the effects of simple
interventions to improve skills and adult outcomes. We begin by presenting estimates
of Model 1 in which we allow for TFP dynamics and free returns to scale. For this
case, we assume that child skill measures are age-invariant. Given the structure of
the longitudinal aspect of PIAT tests, which administer the same test to children
of various ages (given their ability level), we believe it is appropriate to assume the
measurement intercepts and factor loadings for these measures of cognitive skills are
age-invariant (Definition 2).

Throughout this section, we also discuss results using the alternative Model 2
(restricted production function), and we also show the model’s estimates when we
do not correct for measurement error. We briefly discuss the policy predictions of
these models below, but, for brevity, we report estimates of these several alternative
models in the Appendix.

Finally, because the parameter estimates of the production technology and in-
vestment equations are relative to the initial skill normalizations, the magnitudes
of many of the parameters estimates are not directly interpretable in isolation. We
conclude this section with a series of policy counterfactual experiments using the es-
timated model. These exercises provide necessary metrics to interpret the estimates
with respect to adult outcomes, schooling and earnings.

4.1 Parameter Estimates

4.1.1 Initial Conditions

Table 2 reports estimates of the initial conditions variance-covariance matrix ΣΩ

and the associated correlation matrix. We normalize children’s cognitive skills to
the PIAT-Mathematics test, mother’s cognitive skills to the ASVAB2 (Arithmetics
reasoning) and mother’s non-cognitive skills to the Self-Esteem 1 (Rosenberg Self-
Esteem: “I am a person of worth”) measure. The variances and covariances of the
latent skills, and the investment and production function parameters, are interpreted
relative to these normalizations. As expected, we estimate that children’s skills,
mother’s cognitive and non-cognitive skills, and family income are all highly posi-
tively correlated. For space considerations, estimates of the dynamic family income
process can be found in the Appendix.
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4.1.2 Investment Function

Table 3 reports the estimates of the investment function specified in Section 3.1.2.
At ages 5-6, we find that investment is increasing in children’s skills, mother’s skills,
and family income. Because of the log-log form of the investment equation, we can
interpret parameter estimates as elasticities. The parameter estimate of 0.230 on
the log children’s skills variable indicates that a 1 percent increase in children’s skills
raises investment by 0.23 percent, an inelastic response. The positive coefficient sug-
gests that parents are “reinforcing” existing skills with further investments: children
with higher skills are receiving even more investment than children with lower skills.
Mother’s cognitive skills and non-cognitive skills also increase investment at ages
5-6, with non-cognitive skills of the mother estimated to have a substantially higher
elasticity than cognitive skills. These coefficients indicate that mothers with higher
skills are providing higher quantities and qualities of investments in children. Turn-
ing to the importance of income to parental investments, we find that a 1 percent
increase in family income raises investment by 0.34 percent. The response of invest-
ment with respect to mother’s skills and family income reflects the combination of
parental preferences and household constraints, which we cannot unfortunately sep-
arately distinguish using this reduced-form model of investment. Given that positive
correlation between mother’s initial skills, child’s initial skills, and household income,
taken together, these estimates of the investment function indicate that endogenous
investment increases inequality in children’s skills. The estimated variance on the in-
vestment shock reveals how much of the remaining variation in parental investments
remains unexplained by this model, such as investments from schools, peers, and the
child herself.

Comparing parameter estimates of the investment function over the development
period reveals that the influence of the child’s prior skills on investments becomes
much smaller at later ages, indicating that parental investments become less reinforc-
ing of existing skill stocks at older ages. As the child develops, we find that mother’s
non-cognitive skills becomes the dominant influence on investment. However, while
the importance of family income falls somewhat from an elasticity of 0.34 at age 5-6
to 0.275 at age 11-12, income is still a significant and positive factor for parental
investment even at later ages.

4.1.3 Production Function

Table 4 reports the parameter estimates for the technology of skill formation, as
described in Section 3.1.1. We present measurement error corrected estimates of the
two versions of the model: Model 1 (restricted measurement function) and Model
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2 (restricted production function). Our preferred estimates are the measurement
error corrected estimates of Model 1, which imposes the age-invariance restriction
but allows for TFP dynamics and free returns to scale. We argue this age-invariance
restriction is appropriate for the particular skill measures we use in the NLSY dataset.
Unless otherwise specified, we present results using measurement error corrected
estimates from Model 1.

At all ages, we find that skills are “self-productive” (next period’s skills are in-
creasing in existing skill stocks) and that skills are positively increasing in invest-
ment. For age 5-6 skill production, we estimate a significant negative complemen-
tarity between the stock of a child’s skills and parental investments (the interaction
term ln θt ln It). This result highlights the importance of departing from the Cobb-
Douglas/CES specifications.

The elasticities of skill production with respect to investment are heterogeneous,
and we graph the skill elasticity for the age 5-6 production function in Figure 1 with
respect to the existing stock of children’s skill. The estimated negative coefficient on
the interaction term indicates that the elasticity of skill production with respect to
investment is decreasing in the child’s current skill level. For low skill children, the
elasticity approaches 1.4, indicating a that 1 percent increase in investment increases
next period’s skills by 1.4 percent. For already high skill children, the elasticity
approaches 0.2, indicating that a 1 percent increase in investment raises future skills
by only 0.2 percent.

The heterogeneous investment elasticities suggest that targeting interventions to
improve children’s skills would have the largest effect on skill disadvantage children.
This result stands in contrast to the estimates from previous works in the litera-
ture, which were based on CES (or linear) technologies. These technology specifica-
tions restrict the heterogeneity of the investment productivity by assuming that the
marginal productivity of investment must be increasing (or constant) with respect
to a child’s skills. Note also that unlike the CES (constant returns to scale) case,
our unrestricted model allows investment elasticities to be larger than 1. Indeed, our
estimates suggest that, at least for some children, skill production is relatively highly
elastic with respect to investment.

The high TFP estimate for age 5-6 and the increasing returns to scale indicate
that existing skills and investments at this initial age are very productive relative
to later ages. These estimates of high returns to early investment will underlie the
policy experiment results we discuss next. As children age, Table 4 indicates that
skills and investment become generally less productive and skills less “malleable.”
We graph the estimated TFP at each age in Figure 2. Our estimate of TFP at
age 11-12 falls to 1/6 the level at age 5-6, indicating a dramatic slowdown in the
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productivity of existing skills and investments in producing new skills. This feature
of the technology is largely consistent with the evidence that cognitive skills are
difficult to change as children after age 10.

Comparing these estimates for Model 1, which imposes age-invariance in the
measures but leaves the production technology free, to the restricted production
function estimates of Model 2 in Table 4 reveals that we clearly reject the restricted
technology of Model 2. The estimated sum of the input coefficients far exceeds 1, with
a value of 2.66 at age 5-6 that declines to 1.3 at older ages. In addition, the estimate
of high positive TFP term also indicates that we clearly reject the assumption of a
0 log TFP imposed in Model 2. As discussed below, these differences in production
function estimates imply very different investment and policy effects, with Model 2
estimates implying a much smaller effect of an income transfer on children’s skill
development than in Model 1 with an unrestricted technology.20

4.1.4 Adult Outcomes

Table 5 presents our estimates of the completed schooling outcome equation and log
earnings equation. We estimate that a change of 1 standard deviation (with respect
to log-skills at age 5-6) in children skills at age 13-14 leads to an increase of 0.15 years
of school and an approximately 2.1 percent change in earnings at age 29. Below, we
use these estimates to “anchor” our policy estimates to a meaningful adult outcome
metric.

4.2 Estimated Child Development Path

We analyze the quantitative implications of the estimated model by simulating the
dynamic model. Simulation of the model proceeds by drawing 100,000 children from
the estimated initial conditions distribution and, for each child, forward simulating
the path of income, investments, children’s skills, and adult outcomes.

Figure 3 shows the estimated development path of mean log latent cognitive skills.
Figures 4 and 5 show the dynamics in the distribution of latent skills. And, Figure 6
provides the estimated dynamics in the distribution of latent investment.

Perhaps not surprisingly, we find that children’s mean latent skills grow substan-
tially over this development period, from age 5 to 14, with the most rapid growth
at early ages and growth slowing somewhat in the later period. As discussed above,
key to the identification of the non-stationary change in children’s skills is the use of

20In the Appendix, we report estimates of the technology using alternative sample definitions
and adding additional covariates. The results are qualitatively similar.
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age-invariant measures of children’s skills. In addition to growth in mean skills, we
estimate that the latent distribution of cognitive skills becomes more dispersed as
children age (Figure 4). Inequality rises substantially as there are different rates of
skill growth for children at different percentiles of the initial skill distribution. Figure
5 shows that skills for high skill children at the 90th percentile grow 20% from age
5-6 to age 9-10 and grow 9% during the rest of the childhood. For low initial skill
children at the 5th percentile, growth is slower, with a 6 % growth rate from age 5-6
to age 7-8 and a 3 % growth rate from age 11-12 to age 13-14.

4.3 Policy Experiments

In this section, we explore implications of the estimated model by using the estimated
model to predict the effect of income transfers on childhood skill development and
adult outcomes. Although we do not have a fully micro-funded model of household
choices, we argue that the experiments do at the very least provide a meaningful
metric to understand the magnitude of the parameter estimates, and allow us to
meaningfully compare the importance of various model features, such as restrictions
on the skill production technology and measurement error correction.

4.3.1 Short and Long-Term Effects

Before we analyze the quantitative results for our particular counterfactuals, we
first present a brief discussion of the effects of income transfers in our model. To
allow for the possibility that an income transfer could have heterogeneous effects
across households, we examine policy effects conditional on a vector of current state
variables Ωt = [θt, θMC , θMN , Yt], which includes the child’s initial skills, the mother’s
skills, and initial family income. First, consider the expected short-term marginal
effect of an increase in household income Yt on the log of childhood skills in period
t+ 1:

∆t+1,t(Ωt) =
∂ ln θt+1

∂Yt

=
∂ ln It
∂Yt

∂ ln θt+1

∂ ln It
,

∆t+1,t(Ωt) is the product of the marginal change in parental investment and the
marginal change in skill production. With our parametrization, this is given by

∆t+1,t(Ωt) =
α4,t

Yt
(γ2,t + γ3,t ln θt).
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This short-term effect is heterogeneous by the level of family income and the existing
stock of the child’s skills. The marginal increase in investment is decreasing in the
current level of income, as would be expected given the log form of the investment
equation. The key parameter for the heterogeneity of the short-term effect is γ3,t,
with γ3,t > 0 implying a higher return to investment for children with higher existing
stocks of skills.

The dynamic model of skill development we estimate also allows us to consider
the long-term effect of an income transfer at age t on outcomes beyond the immediate
next period. The expected long-term effect of a marginal increase in income at period
t on children’s skills in period t+ 2 is given by

∆t+2,t(Ωt) =
∂ ln θt+2

∂Yt

= ∆t+1,t(Ωt)
∂ ln θt+2

∂ ln θt+1

(1 +
∂ ln It+1

∂ ln θt+1

)

Note that we are analyzing the long-term effect of a one-time change in income at
period t; income remains at baseline levels for all subsequent periods. With our
parametrization, the long-term effect becomes

∆t+2,t(Ωt) =
α4,t

Yt
(γ2,t + γ3,t ln θt)(γ1,t+1 + γ3,t ln It)(1 + α4,t+1).

The short-term effect (∆t+1,t(Ωt)) and the long-term effect (∆t+2,t(Ωt)) can differ in
general. Our model of skill and investment dynamics allows for the possibility that
either short-term effects are higher than long-term effects (the effect of the policy
“fades-out” as the child ages) or that long-term effects can exceed short-term effects
(early interventions have a “multiplier effect” on later skill development).

4.3.2 Effects on Final Skills

We first consider a simple exercise designed to assess the optimal timing of the income
transfer. In Figure 7 we show the average change in the latent children’s log-skills
at age 13-14 by the different timing (age) of income transfer:

E[ln θ
′

T (a)− ln θT ],

where θ
′
T (a) is level of skill at age t = T (age 13-14) with an income transfer of $1,000

dollars (in 2012 $) provided to the family at age a, and θT is level of skill at age 13-14
in the baseline model (no income transfer). The transfer is a one-time transfer and
does not affect the future levels of income. The figure shows that a $1,000 transfer
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given at age 5-6 increase the average stock of age 13-14 skills by about 1 percent.
Providing the same transfer later in the childhood period has a smaller average effect.
Providing a $1,000 transfer at age 11-12 would increase the average skill stocks at
age 13-14 by less than 0.4 percent. We estimate that providing transfers early in the
development period would have a long-term effect that exceeds the short-term effect
of providing a transfer in later childhood. This result reflects the high productivity
of investment in the early periods and the high level of productivity of existing stocks
of skill in producing future skills (limited fade-out).

4.3.3 Effects on Completed Schooling

Figure 8 displays the results of the same set of policy experiments as in Figure 7
but using completed schooling at age 23 as the outcome. In this Figure, we plot
E(S

′
(a)−S), where S

′
(a) is the number of months of completed schooling at age 13-

14 with an income transfer of $1,000 given at age a, and S is the number of months of
completed schooling at age 13-14 in the baseline model (no income transfer). These
estimates provide a meaningful metric to evaluate the magnitude of the policy effects.
We find that a $1,000 transfer given at age 5-6 would increase the number of average
months of completed schooling by about 1.80 months. Providing the same transfer
at a later period would increase completed schooling by only 0.55 months.

4.3.4 Heterogeneous Treatment Effects

The previous results showed the average effect of policies providing transfers at dif-
ferent stages of the development process. Our modeling framework allows potentially
important sources of heterogeneity by the child’s initial skills, mother’s skills, and
initial family income levels; all of which could affect the individual level treatment
effect. The model estimates allow us to directly estimate this heterogeneity in the
policy treatment effects.

Figure 9 plots the heterogeneous effect of a $1,000 income transfer at age 5-6 on
completed months of schooling by the percentile of initial (age 5-6) family income.
This figure also plots the average treatment effect (ATE), the average effect over
the income distribution; the same effect as reported above. While the ATE is about
1.8 months, the effect varies considerably depending on the child’s initial level of
income. For the children from poor households in the 9-10th income percentiles,
the effect of the income transfer is to increase completed schooling by around 4
months, and for the children from the richest households, the effect is near 0. The
large heterogeneous effects by family income stem from the estimated importance of
family income in producing child investments and the estimated positive correlation
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of income with maternal skills and the child’s initial skills. This heterogeneity in
the effects by income mirrors the heterogeneity in income effects found in previous
papers using alternative sources of identification (see Dahl and Lochner, 2012; Loken
et al., 2012; Agostinelli and Sorrenti, 2018). Using the varied effects of the Norwegian
oil boom to instrument for family income, Loken et al. (2012) report estimates on
completed schooling which are smaller in magnitude than those reported here, but
similar qualitatively in finding that the effects are substantially larger for low income
Norwegian families

Figure 10 plots the heterogeneous effect of the same policy by the level of the
child’s initial (age 5-6) skill. The ATE plotted in this Figure is the same as in the
previous figure as it is simply the effect averaged over the initial skill distribution. In
this Figure, we also find evidence of heterogeneous treatment effects with low initial
skill children benefiting more (about 3 months of additional schooling) from the
policy intervention than high initial skill children (near 0 effect). But the importance
of heterogeneity by initial skill is substantially less than by family income. This
suggests that it is better to target the policy to low income households than low skill
households, but of course it cannot be worse to target based on both criteria.

4.4 Comparing Model Predictions: Quantifying the Impor-
tance of Model Generality and Measurement Error

Our results presented thus far have been focused on the model with unrestricted pro-
duction function (Model 1) and measurement error correction, estimated using what
we believe are skill measures in the NLSY that are age-invariant. We next briefly
discuss how the estimates of the primitive production technology would differ if we
were to instead estimate the restricted model (Model 2) or ignore the measurement
error issues. This analysis allows us to quantify how important measurement error
and model generality are to our findings, using policy predictions on adult schooling
as a meaningful metric for comparison.

Table 6 presents estimates for four versions of the model: Models 1 and 2, using
both measurement error corrected and not corrected estimators. For each model
and estimator, we re-estimate all parts of the model: the investment and technology
process equations at each age and the final adult outcome equation. The estimates
of the primitive parameters for these equations can be found in the Appendix; we
present here only the implied policy effects.

In Panel A of Table 6, we present the average treatment effects (ATE) on adult
schooling of the $1,000 income transfer at various ages. The first row shows the
estimates for the model with unrestricted technology (Model 1): we estimate that
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$1,000 income transfer at age 5-6 would increase average schooling by about 1.8
additional months. In comparison, using the restricted Model 2 (assuming restricted
returns to scale and no TFP dynamics) would imply an estimated increase in average
schooling of about one-quarter this effect, at 0.40 additional months. This shows that
restrictions on the TFP dynamics and on the returns to scale would severely bias
downward the implied effects of income transfers on children’s skill development.

The next panel of Table 6 presents the estimated ATE using the same models
but not correcting for measurement error. There is no clear theoretical prediction
about the sign of the measurement error bias, given that our models are dynamic,
non-linear, and consist of inter-related multiple equations. Using these uncorrected
estimates, we estimate policy effects less than half the size of the measurement error
corrected estimates of Model 1; a substantial reduction in the estimated effect of an
income transfer. On the other hand, we find that the measurement error bias doubles
the estimated impact of an income transfer for Model 2, although the results are still
attenuated relative to the measurement error corrected estimates of Model 1.

Panel B of Table 6 repeats the analysis but focusing on the heterogeneity in
the treatment effect at different parts of the family income distribution. Similar
conclusions are evident here: restricting the returns to scale and the TFP dynamics,
or ignoring measurement error, would substantially reduce the estimated policy effect
of the income transfer. We see that ignoring measurement error would bias the
estimated policy effect on low income families at the 9-10th percentile from an effect
size of about 4 months to only 1.4 - 1.8 months.

4.5 Cost-Benefit Analysis

We have thus far shown that the estimated model implies that a policy intervention
of providing income transfers to family would produce modest but positive gains
in children’s skills, with larger effects for poorer households. Would these gains be
justified given the cost? We next present a simple cost-benefit analysis to answer
this question.

Table 7 shows the effects of the income transfer policy, by children’s age, on
the present value of earnings. The Table also provides the associated cost of that
policy, including the cost of additional schooling. In this analysis, we consider a
median earner worker. The expected present value of her lifetime earnings when
she is age 5-6 is calculated to be approximately $260,000 (in 2012 dollars).21 The
benefit of this policy is the comparison between the present value of worker’s earnings

21The baseline present value of earnings is computed using data from the Bureau of Labor
Statistics (BLS) for the fourth quarter of 2012 with a discount rate of 4 %.
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with and without that policy during the childhood. In other words, we compute
the counterfactual present value of earnings if the worker’s family had received the
income transfer when the worker was a child. The effect of the family income transfer
to the growth in children earnings are computed using estimates in Table 5 under
the assumption that the change in the growth rate due to the policy intervention is
constant over the life-cycle. Table 7 suggests that, considering both the cost of the
income transfer and the cost of additional education, the net benefit of the policy
is positive for any age, and the effect is largest when implemented at age 5-6. The
additional present value for the policy intervention at age 5-6 is slightly more than
$5,500 and the net benefit is around $2,700.

5 Conclusion

This paper develops new identification concepts and associated estimators for the
process of skill development in children. One of the key empirical challenges in this
context is that the various measures of children’s skills are in general imperfect and
arbitrarily located and scaled. We introduce the concept of known location and
scale production technologies, which are the class of technologies actually estimated
in many previous papers, and show that for these technologies, standard measure-
ment assumptions non-parametrically identify the production technology, up to the
normalization of initial period skills. Importantly, we show non-parametric identifi-
cation for these cases without re-normalizing latent skills each period, which when
imposed can bias the production technology. For production functions which do
not have a known location or scale, additional assumptions are necessary, and we
provide empirically grounded assumptions which are sufficient for identification of
these more general technologies. Our paper provides the first analysis of these crucial
identification trade-offs, and hopefully will serve as a useful guide for future work.

Based on our identification results, we develop a robust method of moments
estimator and show that it can be implemented using a sequential algorithm. Our
estimator does not require strong assumptions about the marginal distribution of
measurement errors or the latent factors. We estimate the skill production process
using data for the United States and a flexible parametric model of skill development
allowing for free returns to scale, dynamics in TFP, and for parental investment to
endogenously depend on unobserved children’s skills.

Our parameter estimates reveal that investments are more productive at early
ages and in particular for disadvantaged children. Our findings of a positive return to
income transfers at early ages, especially for poorer households, is largely consistent
with prior evidence of a positive effect of income on a number of child outcomes (see
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Dahl and Lochner, 2012; Loken et al., 2012; Agostinelli and Sorrenti, 2018) using
different sources of identification. Our results suggest that family income is a better
“target” than initial children’s skills for children’s skills. Lastly, our finding that the
estimated policy effects would be substantially smaller if one estimated a restricted
technology or ignored measurement error demonstrates the critical importance of
allowing for general technologies and correcting estimates for measurement error.
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Table 1: Sample Descriptive Statistics

Mean Std

N Obs 19,070
N of Mothers 3,199
N of Children 4,941
% Male Children 51.32
% Female Children 48.68
% Hispanic Children 21.44
% Black Children 30.44
% Other races 48.12
Mom Education 12.59 2.63
Family Income 61,657.88 47,527.85
Children Final Years of Education 13.30 2.36

Notes: This table shows the main descriptive statistics of the CNLSY79 sample we use to estimate
the model. Children’s Completed Education is the child’s completed years of education at age
23. The variable ”other races” represents all children which are not black neither Hispanic (i.e. it
includes white, non-Hispanic children). Income is in $2012 USD.
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Table 2: Estimates for Initial Conditions

Log Child Skills Log Mother Log Mother Log Family
at age 5 Cognitive Skills Noncognitive Skills Income

Variance-Covariance Matrix

Log Child Skills 4.947 6.254 0.122 0.668
at age 5 ( 0.471) ( 0.479) ( 0.031) ( 0.065)

Log Mother 6.254 30.190 0.593 2.588
Cognitive Skills ( 0.479) ( 1.032) ( 0.137) ( 0.099)

Log Mother 0.122 0.593 0.046 0.058
Noncognitive Skills ( 0.031) ( 0.137) ( 0.017) ( 0.012)

Log Family 0.668 2.588 0.058 0.780
Income ( 0.065) ( 0.099) ( 0.012) ( 0.018)

Correlation Matrix

Log Child Skills 1.000 0.512 0.256 0.340
at age 5 (-) ( 0.026) ( 0.029) ( 0.027)

Log Mother 0.512 1.000 0.504 0.533
Cognitive Skills ( 0.026) (-) ( 0.025) ( 0.015)

Log Mother 0.256 0.504 1.000 0.307
Noncognitive Skills ( 0.029) ( 0.025) (-) ( 0.022)

Log Family 0.340 0.533 0.307 1.000
Income ( 0.027) ( 0.015) ( 0.022) (-)

Notes: This table shows the estimated variance-covariance matrix (ΣΩ) and associate correlation
matrix of the initial conditions at age 5-6. The initial conditions estimates do not depend on the
modeling assumptions for the skill production technology or any other remaining parts of the model.
Standard errors in parenthesis are computed using a clustered bootstrap at the family level.
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Table 3: Estimates for Investment (Model 1: Age-Invariance)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.027 0.020 0.018
( 0.059) ( 0.009) ( 0.009) ( 0.009)

[ 0.14, 0.33] [ 0.01, 0.04] [ 0.01, 0.04] [ 0.01, 0.03]

Log Mother Cognitive Skills 0.071 0.004 0.012 -0.005
( 0.022) ( 0.009) ( 0.015) ( 0.013)

[ 0.04, 0.12] [-0.01, 0.02] [-0.01, 0.04] [-0.02, 0.02]

Log Mother Noncognitive Skills 0.359 0.742 0.694 0.712
( 0.131) ( 0.060) ( 0.084) ( 0.088)

[ 0.11, 0.54] [ 0.64, 0.82] [ 0.52, 0.81] [ 0.54, 0.82]

Log Family Income 0.341 0.227 0.274 0.275
( 0.076) ( 0.056) ( 0.076) ( 0.087)

[ 0.25, 0.48] [ 0.15, 0.33] [ 0.17, 0.43] [ 0.17, 0.44]

Variance Shocks 1.186 1.019 0.868 1.087
( 0.232) ( 0.148) ( 0.236) ( 0.296)

[ 0.96, 1.53] [ 0.83, 1.29] [ 0.66, 1.33] [ 0.82, 1.64]

Notes: This table shows the measurement error corrected estimates for the investment equation for
Model 1 (Measurement Function Restriction: Age-Invariance). Each column shows the coefficients
of the investment equation at the given ages. The dependent variable is (log) investment in period t,
determined by the RHS variables at time t. For example, the first column shows the coefficients at
age 5-6 parental investments determined by age 5-6 child’s skill and family income. Both standard
errors in parenthesis and the 90% confidence interval in square brackets are computed using a
clustered bootstrap at the family level.
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Table 4: Estimates for Skill Technology (Model 1 and Model 2)

Model 1 Model 2
(Measurement Function Restrictions) (Production Function Restrictions)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.966 1.086 0.897 1.065 0.739 0.816 0.833 0.910
( 0.153) ( 0.036) ( 0.027) ( 0.029) ( 0.087) ( 0.072) ( 0.105) ( 0.096)

[ 1.69, 2.21] [ 1.03, 1.15] [ 0.84, 0.93] [ 1.01, 1.11] [ 0.61, 0.88] [ 0.69, 0.93] [ 0.71, 1.02] [ 0.76, 1.07]

Log Investment 0.799 0.695 0.713 0.252 0.300 0.187 0.170 0.087
( 0.262) ( 0.339) ( 0.404) ( 0.541) ( 0.077) ( 0.069) ( 0.097) ( 0.095)

[ 0.41, 1.23] [ 0.15, 1.24] [-0.10, 1.25] [-0.53, 1.20] [ 0.18, 0.42] [ 0.08, 0.32] [-0.01, 0.30] [-0.07, 0.23]

( Log Skills * -0.105 -0.005 -0.003 0.003 -0.040 -0.004 -0.003 0.003
Log Investment ) ( 0.066) ( 0.019) ( 0.013) ( 0.010) ( 0.026) ( 0.015) ( 0.014) ( 0.009)

[-0.22,-0.03] [-0.04, 0.03] [-0.02, 0.02] [-0.02, 0.02] [-0.09,-0.01] [-0.03, 0.02] [-0.03, 0.02] [-0.02, 0.01]

Return to scale 2.660 1.776 1.606 1.320 1.000 1.000 1.000 1.000
( 0.225) ( 0.317) ( 0.398) ( 0.535) (-) (-) (-) (-)

[ 2.30, 3.02] [ 1.25, 2.31] [ 0.79, 2.14] [ 0.58, 2.25] [-,-] [-,-] [-,-] [-,-]

Variance shocks 5.612 4.519 3.585 4.019 2.110 1.279 0.944 0.903
( 0.174) ( 0.184) ( 0.181) ( 0.247) ( 0.178) ( 0.144) ( 0.163) ( 0.165)

[ 5.37, 5.93] [ 4.27, 4.89] [ 3.27, 3.88] [ 3.70, 4.46] [ 1.88, 2.44] [ 1.09, 1.57] [ 0.78, 1.32] [ 0.74, 1.33]

Log TFP 13.067 14.747 11.881 2.927 0.000 0.000 0.000 0.000
( 0.295) ( 0.367) ( 0.541) ( 0.957) (-) (-) (-) (-)

[12.67,13.61] [14.22,15.47] [11.17,13.00] [ 1.38, 4.65] [-,-] [-,-] [-,-] [-,-]

Notes: This table shows the measurement error corrected estimates for the technology of skill
formation for both Model 1 (Measurement Function Restriction: Age-Invariance) and Model 2
(Production Function Restriction: Known Location and Scale). Each column shows the coefficients
of the technology of skill formations at the given age. The dependent variable is log skills in the
next period t+1, and the covariates (inputs) are at time t. For example, the first column shows the
coefficients for the skills inputs at age 5-6 which lead to log skills at age 7-8. Both standard errors
in parenthesis and the 90% confidence interval in square brackets are computed using a clustered
bootstrap at the family level.
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Table 5: Estimates for Adult Outcome Equation (Model 1)

Schooling Log Wage

Constant 7.088 9.444
( 0.399) ( 0.121)

[ 6.56, 7.71] [ 9.26, 9.64]

Log Children Skills 0.151 0.021
at age 13-14 ( 0.010) ( 0.003)

[ 0.14, 0.16] [ 0.02, 0.03]

Variance Shock 4.333 0.246
( 0.143) ( 0.012)

[ 4.07, 4.56] [ 0.22, 0.26]

Notes: This table shows the estimates for two adult outcome equation specifications: schooling
and log earnings. In both cases the estimates are for Model 1 (Measurement Function Restriction:
Age-Invariance) and they are corrected for measurement error. The dependent variable is either the
years of completed education for the child at age 23 or log earnings at age 29. Both standard errors
in parenthesis and the 90% confidence interval in square brackets are computed using a clustered
bootstrap at the family level.
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Table 6: Estimated Policy Effects under Different Modeling Assumptions

Panel A: ATE by Age of Income Transfer

Measurement Error Corrected

Age of Income Transfer ($ 1000)

Model Age 5-6 Age 7-8 Age 9-10 Age 11-12

Model 1 1.818 0.799 1.025 0.574
[ 0.93, 2.56] [ 0.29, 1.33] [-0.05, 2.15] [-0.39, 1.74]

Model 2 0.404 0.179 0.229 0.128
[ 0.22, 0.64] [ 0.07, 0.32] [-0.02, 0.42] [-0.10, 0.36]

Not Corrected for Measurement Error

Age of Income Transfer ($ 1000)

Model Age 5-6 Age 7-8 Age 9-10 Age 11-12

Model 1 0.687 0.220 0.210 0.251
[ 0.48, 0.90] [ 0.09, 0.36] [ 0.07, 0.34] [ 0.06, 0.47]

Model 2 0.846 0.271 0.259 0.309
[ 0.62, 1.06] [ 0.12, 0.44] [ 0.09, 0.41] [ 0.08, 0.55]

Panel B: ATE at age 5-6 by Family Income

Measurement Error Corrected

Low Income Families High Income Families
(10th Income Percentile) (90th Income Percentile)

Model 1 4.11 Model 1 0.313
Model 2 0.91 Model 2 0.070

Not Corrected for Measurement Error

Low Income Families High Income Families
(10th Income Percentile) (90th Income Percentile)

Model 1 1.465 Model 1 0.158
Model 2 1.806 Model 2 0.194

Notes: Panel A shows the average treatment effects on additional months of completed education
by age of policy intervention ($ 1000 income transfer) for different model specifications – Model 1
(Measurement Function Restriction: Age-Invariance) and Model 2 (Production Function Restric-
tion: Known Location and Scale – and different estimators – controlling for measurement error or
not. The 90% confidence interval in square brackets are computed using a clustered bootstrap at the
family level. Panel B shows the ATE respect to family income for the different model specifications
and different estimators.



Table 7: Average Effect of an Income Transfer by Age of Transfer (Outcome: PV of
Earnings)

Panel A: Benefit-Cost Analysis by Age

Age of Benefit on Direct Cost Cost of Education Net Benefit
Intervention PV Earnings (Income Transfer)

($) ($) ($) ($)

Age 5-6 5549 1000 1818 2730

Age 7-8 2437 1000 799 638

Age 9-10 3128 1000 1025 1103

Age 11-12 1750 1000 574 177

Notes: This table shows the benefit-cost analysis for a 1000 dollars transfer to family of a future
median earner workers with 12 years of completed education. The benefit on the PV of earnings
is the difference between the present value of earnings with and without that transfer when worker
was age 5-6. The effect of family income transfer on earnings growth is computed adjusting for the
increased earning growth implied by estimates in Table 5. The cost of that policy takes into account
both the direct transfer and the discounted cost of additional education that the policy induces. We
use a yearly cost of school of 12,000 dollars as approximately estimated from the National Center
for Education Statistics.
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Figure 1: Estimates of Skill Production Elasticity with Respect to Investment at
Age 5-6 (Model 1)

Notes: This figure shows the measurement error corrected estimates of the elasticity of children’s
skills at age 7-8 (θ1) with respect to parental investments at age 5-6 (I0) for Model 1 (Measurement
Function Restriction: Age-Invariance): ∂ ln θ1

∂ ln I0
= γ2,0 + γ3,0 ln θ0.
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Figure 2: Total Factor Productivity (TFP) Estimates (Model 1)

Notes: This figure shows the estimated log TFP (correcting for measurement error) for Model 1
(Measurement Function Restriction: Age-Invariance). The x-axis shows children age. Child age of
5 is age 5-6, 7 is age 7-8, and so on.
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Figure 3: Estimated Mean of Log Latent Skills (Model 1)

Notes: This figure provides the mean log latent skills (E(ln θt)) predicted by the estimated Model
1 (Measurement Function Restriction: Age-Invariance), controlling for measurement error . The
x-axis shows children age. Child age of 5 is age 5-6, 7 is age 7-8, and so on. Log latent skills at age
5-6 are normalized to be mean 0.
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Figure 4: Estimated Distribution of Log Cognitive Latent Skills at Age 5-6 and Age
13-14 (Model 1)

Notes: This figure shows the distribution of log latent skills at age 5-6 and at age 13-14 simulated
from the estimated Model 1 (Measurement Function Restriction: Age-Invariance), controlling for
measurement error. Log latent skills at age 5-6 are normalized to be mean 0.
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Figure 5: Estimated Dynamics in the Latent Skills Distribution (Model 1)

Notes: This figure shows the dynamics in the distribution of the log latent skill distribution for the
estimated Model 1 (Measurement Function Restriction: Age-Invariance), controlling for measure-
ment error. Log latent skills at age 5-6 are normalized to be mean 0.
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Figure 6: Estimated Distribution of Log Investments at Age 5-6 and Age 13-14
(Model 1)

Notes: This figure shows the distribution of log latent investments at age 5-6 and at age 13-
14 simulated from the estimated Model 1 (Measurement Function Restriction: Age-Invariance),
controlling for measurement error.
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Figure 7: Average Effect of Income Transfer by Age of Transfer (Outcome: Final
Period θT Skills)

Notes: This figure shows the average percent change in the level of latent children’s skills at age
13-14 by the different timing (age) of income transfer for the estimated Model 1 (Measurement
Function Restriction: Age-Invariance), controlling for measurement error. The transfer is $1,000 in

family income at some age t. We report 100 ·E(
θ
′
T (a)−θT
θT

), where θ
′

T (a) is level of skill at age 13-14
with an income transfer of $1,000 dollars provide to the family at age a and θT is level of skill at
age 13-14 in the baseline model (no income transfer).
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Figure 8: Average Effect of an Income Transfer by Age of Transfer (Outcome: School-
ing at Age 23)

Notes: This figure shows the average change in the number of months of completed schooling at age
23 by different timing (age) of income transfer for the estimated Model 1 (Measurement Function

Restriction: Age-Invariance), controlling for measurement error. We report E
[
S

′
(a)− S

]
, where

S
′
(a) is the number of months of completed schooling at age 23 with an income transfer of $1,000

given at age a while S is the number of months of completed schooling in baseline model (no
income transfer). This figure reports the results of the same policy experiment as Figure 7 but with
a different outcome measure.
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Figure 9: Heterogeneity in Policy Effects by Age 5-6 Household Income (Outcome:
Schooling at Age 23)

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age 5-6 on completed
months of schooling by the percentile of initial (age 5-6) family income for the estimated Model
1 (Measurement Function Restriction: Age-Invariance), controlling for measurement error. Each
income category is defined as the people contained between nth and the n − 1th of the percentiles
of the income distribution. For example, Income category 10 in the graph means the people who
belong between the 9th and 10th percentile of the income distribution. In the estimated income
distribution for our sample, income categories 10, 50, and 90 contain families with about $14,000,
$45,000, and $145,000 of annual family income. This figure also plots the average effect over the
income distribution.
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Figure 10: Heterogeneity in Policy Effects by Age 5-6 Children’s Skills (Outcome:
Schooling at Age 23)

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age 5-6 on completed
months of schooling by the percentile of the child’s initial (age 5-6) skill for the estimated Model
1 (Measurement Function Restriction: Age-Invariance), controlling for measurement error. Each
initial skills category includes the children contained between nth and the n− 1th of the percentiles
of the skills distribution. For example, skill category 10 is the children between the 9th and 10th

percentile of the initial skills distribution. This figure also plots the average effect over the initial
skill distribution.

59



ONLINE APPENDIX
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A Technologies and Output Elasticities

One rationale for the choice of a technology specification with free returns to scale
is the flexibility this specification offers with respect to the implied output elasticity.
We consider the output elasticity with respect to investment defined as

εI ≡
∂ ln θt+1

∂ ln It

This elasticity is key to quantifying the effects of policy interventions.
In the general CES case, with technology given by

θt+1 =
[
γtθ

φt
t + (1− γt)Iφtt

]ψt
φt ,

the output elasticity is given by

εI =
ψt
φt

[
γθφtt + (1− γt)Iφtt

]ψt
φt
−1

φ(1− γt)Iφt−1
t · It[

γtθ
φt
t + (1− γt)Iφtt

]ψt
φt

=
ψt(1− γt)Iφtt

γtθ
φt
t + (1− γt)Iφtt

∈ [0,∞)

In the special case of constant returns to scale (CRS), ψt = 1, and εI ∈ (0, 1). CRS
implies this elasticity is bounded from above by 1. The general free returns to scale
case allows a larger than unit elastic response.

Similarly, the general translog technology,

ln θt+1 = α1t ln θt + α2t ln It + α3t ln θt ln It

with elasticity

εI = α1t + α3t ln θt

also allows higher than unit elastic elasticities.
The main insight we want to underline is that the CES technology with constant

returns to scale restricts the output elasticity to be between 0 and 1: a one percent
change in investment leads to a less than one percent change in next period skills.
This prediction is independent of data, hence it can potentially be very restrictive in
the context of child development and skill formation.
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B Multiple Skills and Multiple Investments

In this Appendix, we generalize the model to the case where there are multiple
skills and investments. The identification results from the scalar case carry through
essentially unchanged to this case where the skills and investments are vectors.

B.1 Model

Let Θi,t = {θi,t,1, . . . , θi,t,K} be a vector K skills. Let Ii,t = {Ii,t,1, . . . , Ii,t,L} be a
vector of L investments. The skill formation technology for each of the k = 1, . . . , K
skills is then

θi,t+1,k = ht(Θi,t, Ii,t, ηi,t,k) (B-1)

All K skill stocks and all L investments potentially produce next period’s k skills.
Each measure m for child i’s skills in k in period (age) t is given by

Zi,t,m,k = gt,m,k(θi,t,k, εi,t,m,k) (B-2)

That is, there is a dedicated measure for each skill.
Substituting as in the main text, we have

ln θi,t+1,k = ln ft,k(Θi,t, Ii,t) + ηi,t,k (B-3)

Zi,t,m,k = µt,m,k + λt,m,k ln θi,t,k + εi,t,m,k .

with all of the associated conditions.

B.2 Initial Conditions

Dropping the i subscript, as in the main text. The generalized normalization for the
initial period is that for each k = 1, . . . , K, we have

Normalization B-1 Initial period normalizations

(i) E(ln θ0,k) = 0

(ii) λ0,1,k = 1

The generalized measurement assumption is that for each k = 1, . . . , K, we have
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Assumption B-1 Initial Period Measurement Assumptions:
(i) Cov (ε0,m,k, ε0,m′,k) = 0 for all m 6= m′

(ii) Cov (ε0,m,k, ln θ0,k) = 0 for all m.

As above, we can use these conditions to identify the joint distribution of initial
latent skills and the initial period measurement parameters.

B.3 Identification of the Technology

As in the scalar case, we have for each k = 1, . . . , K

Z1,m,k = µ1,m,k + λ1,m,k ln f0,k(Θ0, I0) + (η0,k + λ1,m,kε1,m,k)

= q0,k(Θ0, I0) + u0,m,k (B-4)

where the combined residual u0,m,k = η0,k + λ1,m,kε1,m,k is mean-zero.
Following the results from the scalar case, a sufficient condition for identification

of each q0,k is (a) an instrument W0,k which satisfies (i) E(u0,m,k|W0,k) = 0 and (ii)
ε̃0,m,k ⊥ W0,k, and (b) ε̃0,m,k ⊥ θ0,k, for all k.

Without loss of generality, we write the first term of the production technology
as

ln f0,k(Θ0, I0) = lnA0,k + ψ0,k lnK0,k(Θ0, I0), (B-5)

K0,k(Θ0, I0) is a Known Location and Scale (KLS) function, which we define for the
multiple skills and multiple investment case as follows:

Definition B-1 A production function Kt,k(Θt, It) has Known Location and Scale
(KLS) if for two non-zero input vectors (Θ′t, I

′
t) and (Θ′′t , I

′′
t ), where the input vectors

are distinct, the outputs Kt,k(Θ
′
t, I
′
t) and Kt,k(Θ

′′
t , I
′′
t ) are both known (do not depend

on unknown parameters), finite, and non-zero.

Next, substituting we have for each k:

Z1,m,k = (µ1,m,k + lnA0,kλ1,m,k) + (λ1,m,kψ0,k) lnK0,k(Θ0, I0) + u0,m,k (B-6)

Generalizing to the multiple skills and investment case, we consider identification
under one of two prototypical restrictions applied to each k = 1, . . . , K skills
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Assumption B-2 Measurement Function Restriction µt,m,k = µ0,m,k and λt,m,k =

λ0,m,k for all t > 0 and this m

Assumption B-3 Production Function Restriction lnAt,k = 0 and ψt,k = 1 for all

t

Under either set of restrictions, we identify all of the parameters of interest,
following the same proof as in the scalar case.
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C Additional Tables and Figures

C.1 Additional Tables for Model 1 Corrected for Measure-
ment Error
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Table C.1-1: Estimates for Income Process

Constant 0.377
( 0.013)

Log Family Income t-1 0.753
( 0.008)

Variance Innovation 0.579
( 0.008)

Notes: This table shows the estimates for the income process. The dependent variable is log family
income at time t. Log Family Income t− 1 is log family income two years prior. Standard errors in
parenthesis are computed using a clustered bootstrap at the family level.
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Figure C.1-1: Distribution of Elasticity of Next Period Skills with respect to Invest-
ment by Age

Notes: This figure shows the box plot for the elasticity of next period skills with respect to invest-
ment by different ages in the estimated Model 1 controlling for measurement error. The box plot
is constructed as follow: the “central box” represents the central 50% of the data. Its lower and
upper boundary lines are at the 25th and 75th quantile of the data. The central line indicates the
median of the data while the two extreme lines (the top and the bottom ones) represents the 5th

and 95th percentiles.
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Figure C.1-2: Distribution of Technology Return to Scale by Age

Notes: This figure shows the box plot for the technology “return to scale” by different ages in the
estimated Model 1 controlling for measurement error. The box plot is constructed as follow: the
“central box” represents the central 50% of the data. Its lower and upper boundary lines are at the
25th and 75th quantile of the data. The central line indicates the median of the data while the two
extreme lines (the top and the bottom ones) represents the 5th and 95th percentiles.
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C.2 Descriptive Statistics
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Table C.2-1: Children’s Skills Measures

Measures Range Values Age Range Scoring Order

(The Peabody Individual Achievement Test):
Math 0-84 5-14 Positive
Recognition 0-84 5-14 Positive
Comprehensive 0-84 5-14 Positive

Notes: This table shows the features of children cognitive measures. The first column indicate
each type of children skills measure we use to estimate our model. The second column shows the
minimum and maximum value that each measure takes. The third column shows the minimum and
maximum children age at which each measure is available. The last column indicates whether the
measure is ordered positively (the higher score tend to reveal higher skills) or negatively (the lower
score tend to reveal higher skills).
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Table C.2-2: Mothers Cognitive Skills Measures

Measures Range Values Scoring Order

Arithmetics 0-30 Positive
Word Knowledge 0-35 Positive
Paragraph Composition 0-15 Positive
Numeric Operations 0-50 Positive
Coding Speed 0-84 Positive
Math Knowledge 0-25 Positive

Notes: This table shows the features of mother cognitive measures. The first column indicate each
type of mother cognitive skills measure we use to estimate our model. The second column shows
the minimum and maximum value that each measure takes. The last column indicates whether the
measure is ordered positively (the higher score tend to reveal higher skills) or negatively (the lower
score tend to reveal higher skills).
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Table C.2-3: Mothers Noncognitive Skills Measures

Type of variables Range Values Label Scoring Order

Mother Noncognitive Measures

(Rosenberg indexes):
I am a person of worth

1-4

1= Strongly agree

Negative
I have a number of good qualities 2= Agree
I am able to do things as well as most other people 3= Disagree
I take a positive attitude toward myself 4= Strongly disagree

I am inclined to feel that I am a failure

1-4 Positive
I felt I do not have much to be proud of 1= Strongly agree
I wish I could have more respect for myself 2= Agree
I certainly feel useless at times 3= Disagree
At times I think I am no good at all 4= Strongly disagree

(Rotter Indexes):

Rotter 1 ( Life is in control or not) 1-4

1= In Control and closer to my opinion

Negative
2= In control but slightly closer to my opinion
3= Not in control but slightly closer to my opinion
4= Not in control and closer to my opinion

Rotter 2 (Plans work vs Matter of Luck) 1-4

1= Plans work and closer to my opinion

Negative
2= Plans work but slightly closer to my opinion
3= Matter of Luck but slightly closer to my opinion
4= Matter of Luck and closer to my opinion

Rotter 3 (Luck not a factor vs Flip a coin) 1-4

1= Luck not a factor and closer to my opinion

Negative
2= Luck not a factor but slightly closer to my opinion
3= Flip a coin but slightly closer to my opinion
4= Flip a coin and closer to my opinion

Rotter 4 (Luck big role vs Luck no role) 1-4

1= Luck big role and closer to my opinion

Positive
2= Luck big role but slightly closer to my opinion
3= Luck no role but slightly closer to my opinion
4= Luck no role and closer to my opinion

Notes: This table shows the features of mother noncognitive measures. The first column indicate
each type of mother cognitive skills measure we use to estimate our model. The second column
shows the minimum and maximum value that each measure takes. The third column shows the type
of answers associated with each measure value. The last column indicates whether the measure is
ordered positively (the higher score tend to reveal higher skills) or negatively (the lower score tend
to reveal higher skills).
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Table C.2-4: Descriptive Statistics about Children’s Cognitive Skills Measures

Number
of

Measures Mean Std Min Max Values

Age 5-6

PIAT Math 11.858 4.278 0.000 37.000 32.000
PIAT Recognition 12.864 5.048 0.000 57.000 35.000
PIAT Comprehensive 12.770 4.930 0.000 49.000 35.000

Age 7-8

PIAT Math 23.016 8.681 0.000 74.000 58.000
PIAT Recognition 25.748 8.774 0.000 80.000 67.000
PIAT Comprehensive 24.099 8.142 0.000 69.000 60.000

Age 9-10

PIAT Math 38.720 10.832 0.000 84.000 71.000
PIAT Recognition 40.825 11.487 0.000 84.000 76.000
PIAT Comprehensive 37.540 10.231 0.000 78.000 64.000

Age 11-12

PIAT Math 48.184 10.543 0.000 84.000 78.000
PIAT Recognition 51.079 13.278 0.000 84.000 74.000
PIAT Comprehensive 45.732 11.272 0.000 84.000 72.000

Age 13-14

PIAT Math 53.767 11.387 0.000 84.000 78.000
PIAT Recognition 58.670 14.262 0.000 84.000 74.000
PIAT Comprehensive 51.015 12.229 0.000 84.000 74.000

Notes: This table shows main sample statistics of children cognitive skills measures by children
age.
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Table C.2-5: Descriptive Statistics of Mother Cognitive and Noncognitive Skills Mea-
sures

Mother Cognitive Skills
Number

of
Measures Mean Std Min Max Values

Mom‘s Arithmetic Reasoning Test Score 13.946 6.603 0.000 30.000 31.000

Mom‘s Word Knowledge Test Score 21.773 8.562 0.000 35.000 36.000

Mom‘s Paragraph Composition Test Score 9.620 3.778 0.000 15.000 16.000

Mom‘s Numerical Operations Test Score 31.044 11.831 0.000 50.000 51.000

Mom‘s Coding Speed Test Score 42.953 17.468 0.000 84.000 85.000

Mom‘s Mathematical Knowledge Test Score 10.853 5.867 0.000 25.000 26.000

Mother Non Cognitive Skills

Mom‘s Self-Esteem: ”I am a person of worth” 2.461 0.549 0.000 3.000 4.000

Mom‘s Self-Esteem: ” I have good qualities” 2.338 0.539 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I am a failure” 3.379 0.618 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I am as capable as others” 2.291 0.567 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I have nothing to be proud of” 3.360 0.669 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I have a positive attitude” 2.183 0.619 0.000 3.000 4.000

Mom‘s Self-Esteem: ”I wish I had more self-respect” 2.796 0.817 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I feel useless at times” 2.650 0.770 1.000 4.000 4.000

Mom‘s Self-Esteem: ”I sometimes think I am no good” 3.039 0.802 1.000 4.000 4.000

Mom‘s Rotter Score:”I have no control” 2.863 1.058 1.000 4.000 4.000

Mom‘s Rotter Score: ”I make no plans for the future” 2.386 1.192 1.000 4.000 4.000

Mom‘s Rotter Score: ”Luck is big factor in life” 3.205 0.856 1.000 4.000 4.000

Mom‘s Rotter Score: ”Luck plays big role in my life” 2.594 1.024 1.000 4.000 4.000

Notes: This table shows main sample statistics of mother cognitive and non-cognitive skills mea-
sures.

74



Figure C.2-1: Descriptive Statistics: Mean of PIATs over the Childhood

Notes: This figure shows the mean Piat Math, Recognition and Comprehensive test scores by age.
The x-axis shows children age. Child age of 5 is age 5-6, 7 is age 7-8, and so on.
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C.3 Measurement Parameter Estimates
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Table C.3-1: Measurement Parameter Estimates for Children’s Cognitive Measures

Measures µ λ Signal Noise

Age 5-6

PIAT Math 11.858 1.000 0.270 0.730
PIAT Recognition 12.864 2.238 0.972 0.028
PIAT Comprehensive 12.770 2.159 0.948 0.052

Age 7-8

PIAT Math 11.858 1.000 0.757 0.243
PIAT Recognition 15.592 0.906 0.608 0.392
PIAT Comprehensive 15.014 0.802 0.554 0.446

Age 9-10

PIAT Math 11.858 1.000 0.779 0.221
PIAT Recognition 10.297 1.136 0.894 0.106
PIAT Comprehensive 12.273 0.936 0.765 0.235

Age 11-12

PIAT Math 11.858 1.000 0.803 0.197
PIAT Recognition 2.107 1.347 0.918 0.082
PIAT Comprehensive 6.129 1.089 0.833 0.167

Age 13-14

PIAT Math 11.858 1.000 0.927 0.073
PIAT Recognition 8.556 1.195 0.845 0.155
PIAT Comprehensive 9.041 1.002 0.806 0.194

Notes: This table shows the measurement error parameters and associated statistics for children
cognitive measures. The first two columns shows the measurement parameters (µ and λ) while
the last two columns shows the signal and noise variance decomposition for the children cognitive
measures.
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Table C.3-2: Measurement Parameter Estimates for Mother Cognitive and Noncog-
nitive Measures

Mother Cognitive Skills
Measures µ λ Signal Noise

Mom‘s Arithmetic Reasoning Test Score 13.946 1.000 0.692 0.308

Mom‘s Word Knowledge Test Score 21.773 1.345 0.745 0.255

Mom‘s Paragraph Composition Test Score 9.620 0.584 0.722 0.278

Mom‘s Numerical Operations Test Score 31.044 1.720 0.638 0.362

Mom‘s Coding Speed Test Score 42.953 2.308 0.527 0.473

Mom‘s Mathematical Knowledge Test Score 10.853 0.854 0.639 0.361

Mother Non Cognitive Skills

Mom‘s Self-Esteem: ”I am a person of worth” 2.461 1.000 0.152 0.848

Mom‘s Self-Esteem: ” I have good qualities” 2.338 1.263 0.252 0.748

Mom‘s Self-Esteem: ”I am a failure” 3.379 1.612 0.311 0.689

Mom‘s Self-Esteem: ”I am as capable as others” 2.291 1.127 0.181 0.819

Mom‘s Self-Esteem: ”I have nothing to be proud of” 3.360 1.746 0.312 0.688

Mom‘s Self-Esteem: ”I have a positive attitude” 2.183 1.474 0.260 0.740

Mom‘s Self-Esteem: ”I wish I had more self-respect” 2.796 2.080 0.297 0.703

Mom‘s Self-Esteem: ”I feel useless at times” 2.650 1.861 0.268 0.732

Mom‘s Self-Esteem: ”I sometimes think I am no good” 3.039 2.096 0.313 0.687

Mom‘s Rotter Score:”I have no control” 2.461 1.000 0.092 0.908

Mom‘s Rotter Score: ”I make no plans for the future” 2.338 1.263 0.140 0.860

Mom‘s Rotter Score: ”Luck is big factor in life” 3.379 1.612 0.118 0.882

Mom‘s Rotter Score: ”Luck plays big role in my life” 2.291 1.127 0.044 0.956

Notes: This table shows the measurement error parameters and associated statistics for mother
cognitive and noncognitive measures. The first two columns show the measurement parameters (µ
and λ) while the last two columns show the signal and noise variance decomposition for the mother
measures.
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C.4 Estimates and Results for Model 2 with Measurement
Error Corrected Estimator
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Table C.4-1: Estimates for Investment (Model 2)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.069 0.068 0.065
( 0.059) ( 0.021) ( 0.029) ( 0.030)

Log Mother Cognitive Skills 0.071 0.004 0.011 -0.005
( 0.022) ( 0.009) ( 0.014) ( 0.012)

Log Mother Noncognitive Skills 0.359 0.711 0.660 0.678
( 0.131) ( 0.059) ( 0.084) ( 0.084)

Log Family Income 0.341 0.217 0.261 0.262
( 0.076) ( 0.054) ( 0.072) ( 0.082)

Variance Shocks 1.186 0.969 0.831 1.028
( 0.232) ( 0.134) ( 0.211) ( 0.259)

Notes: This table shows the measurement error corrected estimates for the investment equation for
Model 2. Each column shows the coefficients of the investment equation at the given ages. The
dependent variable is investment in period t which is determined by the covariates at time t . For
example, the first column shows the coefficients at age 5-6 for parental investments and child’s skill
and family income at age 5-6 as well. Standard errors in parenthesis are computed using a clustered
bootstrap at the family level.
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Figure C.4-1: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23)

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age 5-6 on completed
months of schooling by the percentile of initial (age 5-6) family income for the estimated Model 2,
controlling for measurement error. Each income category is defined as the people contained between
nth and the n − 1th of the percentiles of the income distribution. For example, Income category
10 in the graph means the people who belong between the 9th and 10th percentile of the income
distribution. In the estimated income distribution for our sample, income categories 10, 50, and 90
contain families with about $14,000, $45,000, and $145,000 of annual family income. This figure
also plots the average effect over the income distribution.
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C.5 Estimates and Results without Measurement Error Cor-
rection (Model 1 and Model 2)

82



Table C.5-1: Estimates for Investment (Model 1 and Model 2)

Model 1 Model 2
(Measurement Function Restrictions) (Production Function Restrictions)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.083 0.032 0.024 0.015 0.083 0.045 0.030 0.014
( 0.023) ( 0.009) ( 0.009) ( 0.007) ( 0.023) ( 0.012) ( 0.011) ( 0.007)

Log Mother Cognitive Skills 0.082 0.010 0.010 -0.002 0.082 0.010 0.010 -0.002
( 0.019) ( 0.011) ( 0.014) ( 0.011) ( 0.019) ( 0.011) ( 0.014) ( 0.011)

Log Mother Noncognitive Skills 0.248 0.454 0.442 0.553 0.248 0.448 0.440 0.553
( 0.093) ( 0.073) ( 0.098) ( 0.074) ( 0.093) ( 0.073) ( 0.098) ( 0.074)

Log Family Income 0.587 0.504 0.524 0.434 0.587 0.498 0.521 0.435
( 0.074) ( 0.070) ( 0.095) ( 0.077) ( 0.074) ( 0.069) ( 0.095) ( 0.078)

Variance Shocks 1.635 1.522 1.537 1.535 1.635 1.504 1.529 1.537
( 0.224) ( 0.172) ( 0.364) ( 0.327) ( 0.224) ( 0.168) ( 0.360) ( 0.329)

Notes: This table shows the estimates (not corrected for measurement error) for the investment
equation for both Model 1 and Model 2. Each column shows the coefficients of the investment
equation at the given ages. The dependent variable is investment in period t which is determined
by the covariates at time t . For example, the first column shows the coefficients at age 5-6 for
parental investments and child’s skill and family income at age 5-6 as well. Standard errors in
parenthesis are computed using a clustered bootstrap at the family level.
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Table C.5-2: Estimates for Skill Technology (Model 1 and Model 2)

Model 1 Model 2
(Measurement Function Restrictions) (Production Function Restrictions)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.875 0.771 0.669 0.770 0.625 0.868 0.897 0.880
( 0.057) ( 0.022) ( 0.017) ( 0.018) ( 0.047) ( 0.039) ( 0.039) ( 0.052)

Log Investment 0.518 0.069 0.042 0.325 0.370 0.125 0.101 0.127
( 0.089) ( 0.066) ( 0.061) ( 0.099) ( 0.045) ( 0.038) ( 0.039) ( 0.052)

( Log Skills * 0.006 0.007 0.002 -0.006 0.005 0.008 0.002 -0.007
Log Investment ) ( 0.012) ( 0.003) ( 0.002) ( 0.002) ( 0.009) ( 0.004) ( 0.002) ( 0.003)

Return to scale 1.399 0.846 0.713 1.089 1.000 1.000 1.000 1.000
( 0.098) ( 0.072) ( 0.063) ( 0.096) (-) (-) (-) (-)

Variance shocks 7.490 7.673 6.716 7.382 5.354 6.155 7.211 9.092
( 0.127) ( 0.145) ( 0.192) ( 0.220) ( 0.386) ( 0.565) ( 0.769) ( 0.980)

Log TFP 12.789 18.491 18.477 14.011 0.000 0.000 0.000 0.000
( 0.215) ( 0.299) ( 0.444) ( 0.690) (-) (-) (-) (-)

Notes: This table shows the estimates (not corrected for measurement error) for the technology of
skills formation of both Model 1 and Model 2. Each column shows the coefficients of the technology
of skills formations at the given age. The dependent variable is log skills in the next period t+1
while the covariates (inputs) are at time t. For example, the first column shows the coefficients for
the skills inputs at age 5-6 which lead to log skills at age 7-8. Standard errors in parenthesis are
computed using a clustered bootstrap at the family level.
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Figure C.5-1: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23, Model 1 )

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age 5-6 on completed
months of schooling by the percentile of initial (age 5-6) family income for the estimated Model
1, not controlling for measurement error. Each income category is defined as the people contained
between nth and the n − 1th of the percentiles of the income distribution. For example, Income
category 10 in the graph means the people who belong between the 9th and 10th percentile of the
income distribution. In the estimated income distribution for our sample, income categories 10, 50,
and 90 contain families with about $14,000, $45,000, and $145,000 of annual family income. This
figure also plots the average effect over the income distribution.
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Figure C.5-2: Heterogeneity in Policy Effects by Age 5 Household Income (Outcome:
Schooling at Age 23, Model 2 )

Notes: This figure plots the heterogeneous effect of a $1,000 income transfer at age 5-6 on completed
months of schooling by the percentile of initial (age 5-6) family income for the estimated Model
2, not controlling for measurement error. Each income category is defined as the people contained
between nth and the n − 1th of the percentiles of the income distribution. For example, Income
category 10 in the graph means the people who belong between the 9th and 10th percentile of the
income distribution. In the estimated income distribution for our sample, income categories 10, 50,
and 90 contain families with about $14,000, $45,000, and $145,000 of annual family income. This
figure also plots the average effect over the income distribution.
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Table C.5-3: Estimates for Skill Technology (Model 1 and Model 2) with CHS Sample

Model 1 Model 2
(Measurement Function Restrictions) (Production Function Restrictions)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.638 0.879 0.866 0.988 0.606 0.956 0.857 1.040
( 0.262) ( 0.056) ( 0.072) ( 0.056) ( 0.170) ( 0.092) ( 0.144) ( 0.248)

[ 1.17, 1.99] [ 0.76, 0.94] [ 0.73, 0.98] [ 0.88, 1.08] [ 0.35, 0.87] [ 0.81, 1.09] [ 0.64, 1.13] [ 0.83, 1.52]

Log Investment 1.120 -0.141 -0.476 -0.602 0.415 0.026 0.117 -0.053
( 0.605) ( 0.285) ( 0.650) ( 0.593) ( 0.133) ( 0.092) ( 0.140) ( 0.248)

[ 0.40, 2.23] [-0.67, 0.32] [-1.26, 0.29] [-1.44, 0.51] [ 0.18, 0.62] [-0.12, 0.17] [-0.15, 0.35] [-0.54, 0.17]

( Log Skills * -0.057 0.014 0.025 0.012 -0.021 0.017 0.026 0.013
Log Investment ) ( 0.153) ( 0.015) ( 0.022) ( 0.014) ( 0.057) ( 0.017) ( 0.021) ( 0.016)

[-0.27, 0.24] [-0.00, 0.04] [-0.00, 0.06] [-0.01, 0.03] [-0.13, 0.07] [-0.00, 0.05] [-0.00, 0.05] [-0.01, 0.03]

Return to scale 2.701 0.753 0.415 0.398 1.000 1.000 1.000 1.000
( 0.588) ( 0.277) ( 0.655) ( 0.599) (-) (-) (-) (-)

[ 2.04, 3.77] [ 0.22, 1.18] [-0.43, 1.22] [-0.49, 1.47] [-,-] [-,-] [-,-] [-,-]

Variance shocks 5.459 3.684 3.536 3.624 2.021 1.453 1.312 1.386
( 0.303) ( 0.332) ( 0.359) ( 0.365) ( 0.413) ( 0.321) ( 0.362) ( 0.628)

[ 5.05, 6.04] [ 3.27, 4.46] [ 3.09, 4.29] [ 3.33, 4.45] [ 1.45, 2.81] [ 1.06, 2.11] [ 1.01, 2.09] [ 0.97, 3.05]

Log TFP 14.057 17.928 12.825 7.214 0.000 0.000 0.000 0.000
( 0.665) ( 0.726) ( 1.916) ( 1.891) (-) (-) (-) (-)

[12.84,14.97] [17.15,19.42] [10.18,17.09] [ 3.93,11.32] [-,-] [-,-] [-,-] [-,-]

Notes: This table shows the measurement error corrected estimates for the technology of skills
formation for both Model 1 (Measurement Function Restriction: Age-Invariance) and Model 2
(Production Function Restriction: Known Location and Scale). Each column shows the coefficients
of the technology of skills formations at the given age. The dependent variable is log skills in the
next period t + 1, and the covariates (inputs) are at time t. For example, the first column shows
the coefficients for the skills inputs at age 5-6 which lead to log skills at age 7-8. Both standard
errors in parenthesis and the 90% confidence interval in square brackets are computed using a
clustered bootstrap at the family level. We use the same estimating sample as in Cunha et al.
(2010): firstborn white children.
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Table C.5-4: Estimates for Skill Technology (Model 1 and Model 2) with Additional
Controls

Model 1 Model 2
(Measurement Function Restrictions) (Production Function Restrictions)

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.920 1.084 0.896 1.067 0.748 0.816 0.829 0.901
( 0.139) ( 0.036) ( 0.025) ( 0.027) ( 0.085) ( 0.072) ( 0.109) ( 0.103)

[ 1.67, 2.15] [ 1.02, 1.15] [ 0.85, 0.93] [ 1.02, 1.11] [ 0.60, 0.89] [ 0.70, 0.94] [ 0.71, 1.02] [ 0.76, 1.08]

Log Investment 0.745 0.673 0.713 0.270 0.290 0.187 0.174 0.096
( 0.252) ( 0.334) ( 0.392) ( 0.560) ( 0.075) ( 0.069) ( 0.100) ( 0.102)

[ 0.39, 1.14] [ 0.15, 1.28] [-0.09, 1.18] [-0.55, 1.25] [ 0.17, 0.42] [ 0.07, 0.31] [-0.01, 0.29] [-0.08, 0.25]

( Log Skills * -0.098 -0.004 -0.003 0.003 -0.038 -0.004 -0.003 0.003
Log Investment ) ( 0.062) ( 0.019) ( 0.013) ( 0.010) ( 0.026) ( 0.015) ( 0.014) ( 0.009)

[-0.21,-0.03] [-0.04, 0.03] [-0.02, 0.02] [-0.02, 0.02] [-0.09,-0.01] [-0.03, 0.02] [-0.03, 0.02] [-0.02, 0.01]

Return to scale 2.566 1.753 1.606 1.340 1.000 1.000 1.000 1.000
( 0.232) ( 0.308) ( 0.383) ( 0.549) (-) (-) (-) (-)

[ 2.22, 2.94] [ 1.26, 2.33] [ 0.80, 2.05] [ 0.56, 2.30] [-,-] [-,-] [-,-] [-,-]

Variance shocks 5.612 4.519 3.585 4.019 2.187 1.328 0.977 0.923
( 0.174) ( 0.184) ( 0.181) ( 0.247) ( 0.195) ( 0.154) ( 0.171) ( 0.175)

[ 5.37, 5.93] [ 4.27, 4.89] [ 3.27, 3.88] [ 3.70, 4.46] [ 1.91, 2.53] [ 1.12, 1.61] [ 0.83, 1.33] [ 0.75, 1.36]

Log TFP 13.420 15.060 12.105 3.133 0.000 0.000 0.000 0.000
( 0.304) ( 0.433) ( 0.570) ( 0.947) (-) (-) (-) (-)

[12.95,13.97] [14.34,15.83] [11.33,13.22] [ 1.46, 4.72] [-,-] [-,-] [-,-] [-,-]

Notes: This table shows the measurement error corrected estimates for the technology of skills
formation for both Model 1 (Measurement Function Restriction: Age-Invariance) and Model 2
(Production Function Restriction: Known Location and Scale) once we add additional controls in
the investment equation in (14). In particular, we control for: a set of dummies for the maximum
number of children ever observed in the household, a set of dummies for the mother’s marital status,
maternal hours worked, maternal hourly wage and a dummy for employment status (employed/non-
employed). Each column shows the coefficients of the technology of skills formations at the given
age. The dependent variable is log skills in the next period t+ 1, and the covariates (inputs) are at
time t. For example, the first column shows the coefficients for the skills inputs at age 5-6 which
lead to log skills at age 7-8. Both standard errors in parenthesis and the 90% confidence interval
in square brackets are computed using a clustered bootstrap at the family level.
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Table C.5-5: Estimates for Investment (Model 1) with Additional Controls

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.225 0.025 0.017 0.017
( 0.055) ( 0.009) ( 0.009) ( 0.008)

[ 0.13, 0.31] [ 0.01, 0.04] [ 0.01, 0.03] [ 0.00, 0.03]

Log Mother Cognitive Skills 0.067 0.001 0.010 -0.006
( 0.024) ( 0.009) ( 0.016) ( 0.012)

[ 0.04, 0.12] [-0.01, 0.02] [-0.01, 0.04] [-0.02, 0.02]

Log Mother Noncognitive Skills 0.353 0.707 0.667 0.697
( 0.147) ( 0.070) ( 0.100) ( 0.088)

[ 0.08, 0.55] [ 0.54, 0.80] [ 0.47, 0.80] [ 0.54, 0.86]

Log Family Income 0.355 0.267 0.305 0.292
( 0.098) ( 0.066) ( 0.092) ( 0.087)

[ 0.23, 0.54] [ 0.18, 0.42] [ 0.18, 0.48] [ 0.13, 0.45]

Variance Shocks 1.233 1.142 0.929 1.205
( 0.241) ( 0.204) ( 0.355) ( 0.975)

[ 0.99, 1.57] [ 0.91, 1.49] [ 0.69, 1.58] [ 0.86, 1.93]

Notes: This table shows the measurement error corrected estimates for the investment equation
for Model 1 (restricted measurement function) once we add additional controls in the investment
equation. In particular, we control for: a set of dummies for the maximum number of children
ever observed in the household, a set of dummies for the mother’s marital status, maternal hours
worked, maternal hourly wage and a dummy for employment status (employed/non-employed).
Each column shows the coefficients of the investment equation at the given ages. The dependent
variable is investment in period t which is determined by the covariates at time t . For example,
the first column shows the coefficients at age 5-6 for both contemporaneous parental investments
and contemporaneous child’s skill and contemporaneous family income. Both standard errors in
parenthesis and the 90% confidence interval in square brackets are computed using a clustered
bootstrap at the family level.
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C.6 Skills measures in CNLSY79

Measures for Cognitive Skills

• Peabody Picture Vocabulary Test

The Peabody Picture Vocabulary Test, revised edition (PPVT-R) ”measures
an individual’s receptive (hearing) vocabulary for Standard American English
and provides, at the same time, a quick estimate of verbal ability or scholastic
aptitude” (see Dunn and Dunn, 1981). The PPVT was designed for use with
individuals aged 3 to 40 years. The English language version of the PPVT-R
consists of 175 vocabulary items of generally increasing difficulty. The child
listens to a word uttered by the interviewer and then selects one of four pictures
that best describes the word’s meaning. The PPVT-R has been administered,
with some exceptions, to NLSY79 children between the ages of 3-18 years of
age until 1994, when children 15 and older moved into the Young Adult survey.
In the current survey round, the PPVT was administered to children aged 4-5
and 10-11 years of age, as well as to some children with no previous valid PPVT
score.

The first item, or starting point, is determined based on the child’s PPVT age.
Starting at an age-specific level of difficulty is intended to reduce the number
of items that are too easy or too difficult, in order to minimize boredom or
frustration. The suggested starting points for each age can be found in the
PPVT manual (see Dunn and Dunn, 1981).

Testing begins with the starting point and proceeds forward until the child
makes an incorrect response. If the child has made 8 or more correct responses
before the first error, a “basal” is established. The basal is defined as the last
item in the highest series of 8 consecutive correct answers. Once the basal is
established, testing proceeds forwards, until the child makes six errors in eight
consecutive items. If, however, the child gives an incorrect response before
8 consecutive correct answers have been made, testing proceeds backwards,
beginning at the item just before the starting point, until 8 consecutive correct
responses have been made. If a child does not make eight consecutive responses
even after administering all of the items, he or she is given a basal of one. If
a child has more than one series of 8 consecutive correct answers, the highest
basal is used to compute the raw score.

A “ceiling” is established when a child incorrectly identifies six of eight con-
secutive items. The ceiling is defined as the last item in the lowest series of
eight consecutive items with six incorrect responses. If more than one ceiling is
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identified, the lowest ceiling is used to compute the raw score. The assessment
is complete once both a basal and a ceiling have been established. The ceiling
is set to 175 if the child never makes six errors in eight consecutive items.

A child’s raw score is the number of correct answers below the ceiling. Note
that all answers below the highest basal are counted as correct, even if the child
answered some of these items incorrectly. The raw score can be calculated by
subtracting the number of errors between the highest basal and lowest ceiling
from the item number of the lowest ceiling.

• The Peabody Individual Achievement Test (PIAT): Math

The PIAT Mathematics assessment protocol used in the field is described in
the documentation for the Child Supplement (available on the Questionnaires
page). This subscale measures a child’s attainment in mathematics as taught
in mainstream education. It consists of 84 multiple-choice items of increasing
difficulty. It begins with such early skills as recognizing numerals and progresses
to measuring advanced concepts in geometry and trigonometry. The child looks
at each problem on an easel page and then chooses an answer by pointing to
or naming one of four answer options.

Administration of this assessment is relatively straightforward. Children enter
the assessment at an age-appropriate item (although this is not essential to
the scoring) and establish a ”basal” by attaining five consecutive correct re-
sponses. If no basal is achieved then a basal of ”1” is assigned (see PPVT).
A ”ceiling” is reached when five of seven items are answered incorrectly. The
non-normalized raw score is equivalent to the ceiling item minus the number
of incorrect responses between the basal and the ceiling scores.

• The Peabody Individual Achievement Test (PIAT): Reading Recog-
nition

The Peabody Individual Achievement Test (PIAT) Reading Recognition sub-
test, one of five in the PIAT series, measures word recognition and pronuncia-
tion ability, essential components of reading achievement. Children read a word
silently, then say it aloud. PIAT Reading Recognition contains 84 items, each
with four options, which increase in difficulty from preschool to high school
levels. Skills assessed include matching letters, naming names, and reading
single words aloud.

The only difference in the implementation procedures between the PIAT Math-
ematics and PIAT Reading Recognition assessments is that the entry point into
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the Reading Recognition assessment is based on the child’s score in the Math-
ematics assessment, although entering at the correct point is not essential to
the scoring.

The scoring decisions and procedures are identical to those described for the
PIAT Mathematics assessment.

• The Peabody Individual Achievement Test (PIAT): Reading Com-
prehension

The Peabody Individual Achievement Test (PIAT) Reading Comprehension
subtest measures a child’s ability to derive meaning from sentences that are
read silently. For each of 66 items of increasing difficulty, the child silently
reads a sentence once and then selects one of four pictures that best portrays
the meaning of the sentence.

Children who score less than 19 on Reading Recognition are assigned their
Reading Recognition score as their Reading Comprehension score. If they score
at least 19 on the Reading Recognition assessment, their Reading Recognition
score determines the entry point to Reading Comprehension. Entering at the
correct location is, however, not essential to the scoring.

Basals and ceilings on PIAT Reading Comprehension and an overall nonnormed
raw score are determined in a manner identical to the other PIAT procedures.
The only difference is that children for whom a basal could not be computed
(but who otherwise completed the comprehension assessment) are automati-
cally assigned a basal of 19. Administration instructions can be found in the
assessment section of the Child Supplement.
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D Alternative Measures

One of the characteristics of the data used to study child development is the rich
variety skill measures. The previous sections considered identification where the skill
measures are in a “raw” form: each measure is a linear function of the latent log
skill. This measurement system, while commonly assumed in the prior literature, is
in some respects a “best case.”

In this section, we consider alternative forms of measures and re-examine whether
we can identify the same types of production technologies using these alternative
measures. We consider four classes of measures which are frequently encountered
empirically: (i) age-standardized measures where the raw measures are transformed
ex post to have mean 0 and standard deviation 1 for the sample at hand; (ii) relative
measures where the measures reflect not the level of a child’s skill but the child’s
skill relative to the population mean; (iii) ordinal measures which provide a dis-
crete ranking of children’s skills; and (iv) censored measures where the measures are
truncated with a “floor” (finite minimum value) and/or a “ceiling” (finite maximum
value). For each type of measure, we discuss which of our prior identification results
still hold, if any, and what auxiliary assumptions would be sufficient to restore our
identification results.

D.1 Age-Standardized Measures

Age-standardized measures are defined as the following transformation of raw mea-
sures Zt,m:

ZS
t,m =

Zt,m − E(Zt,m)

V (Zt,m)1/2
. (D-1)

By construction, these measures are mean 0 and standard deviation 1 for all child
ages.

Our identification results using standardized measures continues to hold if the
technology of skill formation has known scale and location functions (KLS, Definition
1). To show this, we can re-write the standardized measures as a linear function of
the latent variable:

ZS
t,m = µSt,m + λSt,m ln θt + εSt,m

where the measurement parameters and measurement error are

µSt,m = −λSt,m(V (ln θt)) · E(ln θt)
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λSt,m =
λt,m

V (Zt,m)1/2
=

λt,m
(λ2

t,mV (ln θt) + V (εt))1/2

εSt,m =
εt,m

V (Zt,m)1/2
=

εt,m
(λ2

t,mV (ln θt) + V (εt))1/2

These expressions show that the standardized measurement parameters are linear
functions of the underlying moments of the latent skill distribution.

It is important to recognize that the use of standardized measures does not nec-
essarily imply that any particular restriction on the underlying latent variables such
as E(ln θt) = 0 or V (ln θt) = 1. The standardizations are necessarily in terms of the
observed measures, not the unobserved latent variables. In addition, identification of
the KLS production technologies is invariant to any increasing linear transformation
of the original raw measures, say Z ′t,m = a+ bZt,m for a ∈ R and b ∈ R+.

One caveat deserves mention. Recall that because the initial conditions are nor-
malized to a particular measure, using standardized rather than raw measures can
affect the normalized location and scale of the latent skills, and in general affect the
values of the production parameters which are identified up to the normalized initial
period measure.

It is important to note that the use of age-standardized measures may not be
cost free in the sense that age-standardized measures, which are constructed to be
age-stationary in their first and second moments, contain no information about skill
dynamics in these moments. For example, standardizing age-invariant measures, as
defined in the previous section, so that the mean and variance of these measures is
equal at all ages, would essentially “throw away” information regarding the average
skill development of children across ages. This loss of information prevents the
identification of the broader classes of technology of skills formation discussed above.

To see this point, recall that the identification of TFP or scaling parameter are
based on additional information of the dynamics of measurement parameters. In
the case of raw measures, those parameters are fully free parameters. On the other
hand, when we use standardized measures, the new measurement parameters (µSt,m
and λSt,m) are no longer free parameters but functions of the moments of the latent
distribution. Hence, restricting the dynamics of the measurement parameters in this
case is equivalent to restricting the dynamics of the latent skills, and can restrict
the possible classes of technologies. While age-standardizing measures may provide
some descriptive value, in the context of identifying dynamic production technologies,
there is simply no point to transforming the measures in this way and throwing away
potentially important identifying information.
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D.2 Relative Measures

Some of the proxies used to measure children outcomes come from surveys where
observers (often mothers, fathers, or other caregivers) provide assessments of the
child. It can be plausible then that these observers are actually evaluating the child
with respect to their perceptions of the average in the population. We call this type
of measure a relative measures. In this case, these measures can be written as:

ZR
t,m = µRt,m + λRt,m(ln θt − E(ln θt)) + εRt,m. (D-2)

where (ln θt−E(ln θt) is the latent variable being measured by ZR
t,m, which we model

as the deviation of the actual level of the child’s skill ln θt relative to the mean value in
the population E(ln θt). Relative measures are not ordinal ranking measures (which
we discuss below) but a continuous measure of skills relative to the population mean.
As with the age-standardized measures, the relative measures are an increasing linear
function of the underlying latent variable, and therefore our identification result
continues to hold.

D.3 Ordinal Measures

We define ordinal measures the measures which are based on children rankings: this
child has higher skills than another child. Let’s assume that we observe in data
children’s skill rank. Let Zt = {1, 2, . . . , J} be the child’s human capital rank, with 1
highest level, and J lowest level. The observer (or us forming ranks from test scores)
forms rank according to this ordinal model:

ZO
t,m =



J if λOt,m ln θt + εOt,m < κJ,t,m
J − 1 if κJ,t,m < λOt,m ln θt + εOt,m < κJ−1,t,m
...
2 if κ3,t,m < λOt,m ln θt + εOt,m < κ2,t,m

1 if λOt,m ln θt + εOt,m > κ2,t,m

(D-3)

where the κ2, . . . , κJ , with κ2 > κ3, . . . , κJ , are measurement parameters which pro-
vide the mapping from latent skills ln θt and measurement error εOt,m to the observed
ordinal ranking values ZO

t,m. The probability a child is ranked first (j = 1) is then

pr(ZO
t,m = 1) = pr(λOt,m ln θt + εOt,m > κ2,t,m)

= Fε(λ
O
t,m ln θt − κ2,t,m)

where Fε is the distribution function for the measurement error εOt,m.
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With ordinal ranking measures the non-parametric identification result no longer
holds. There is no longer a one-to-one mapping between a child’s latent skills θt
and expected measures, as multiple values of θt are consistent with a child having
a certain rank. Without additional assumptions, ordinal measures of skills do not
allow non-parametric identification of the continuous skill production function.

If the researcher were to assume a particular known distribution for the measure-
ment errors Fε, then under this assumption for an ordinal measure of t+ 1 skills we
would have:

F−1
ε (pr(ZO

t+1,m = 1| ln θt, ln It)) = λt+1,mft(It, θt)− κ2,t+1,m

where pr(ZO
t+1,m = 1| ln θt, ln It) is the probability the child receives rank 1 at age t+1

given inputs θt, It at age t. This expression shows that with a known distribution
for measurement errors, we can then apply our previous results to identify a KLS
technology ft(It, θt) up to this assumed distribution.

D.4 Censored Measures

Censored measures are defined as

ZC
t,m =


Z if Zt,m ≥ Z
Zt,m if Z < Zt,m < Z
Z if Zt,m < Z

(D-4)

where Zt,m = µt,m + λt,m ln θt + εt,m is the “latent” measure, and Z (“ceiling”) and
Z (“floor”), with Z > Z, are the truncation points. Censoring occurs, for example,
when a test score used as the measure has a maximum score (answering all questions
correctly) and a minimum score (say answering none of the questions correctly). In
practice, researchers can ascertain whether censoring is an important issue empiri-
cally by investigating what proportion of the sample actually has measured skills at
the floor or ceiling points of the measure. Because censored measures do not have full
support, our previous non-parametric identification results appear no longer to hold.
As with the ordinal measures, auxiliary assumptions could be used to achieve identi-
fication up these additional assumptions (for a complete analyze of the problem, see
Wang et al., 2009; Koedel and Betts, 2010).

96



E Monte Carlo Exercise for Model 1 and Mea-

surement Error Correction

We implement a Monte Carlo exercise to examine the properties of our estimator.
The true data generating process is assumed to be the estimated (measurement error
corrected) Model 1 with some additional parametric assumptions about the measure-
ment error process. In order to simulate the dataset, we use both the estimated mea-
surement parameters and the joint distribution of children skills and investments. In
addition, we assume that all the measurement noises are Normally distributed. We
assume that the standard deviation of the error terms for all the skills measures are
0.5 (children and mothers) while we fix to 0.1 the standard deviation of the error
terms for all the investment measures.

We generate a simulated longitudinal dataset of 10,000 children ranging from age
5-6 to age 13-14. In particular, the Monte Carlo analysis is performed estimating
the model on 200 simulated data sets. In the following tables we show the mean
estimates over the 200 estimates of the coefficients.

We focus only on estimates of skills technology, investment process and children’s
skills measurement parameters. Tables E-1-E-3 show true and mean estimated pa-
rameters. Overall, the estimator is able to recover the true parameters with minimal
bias.
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Table E-1: Monte Carlo Estimates for Investment Process

True Parameters Monte Carlo Estimates
Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 0.230 0.027 0.020 0.018 0.249 0.026 0.020 0.018

Log Mother Cognitive Skills 0.071 0.004 0.012 -0.005 0.077 0.002 0.008 -0.011

Log Mother Noncognitive Skills 0.359 0.742 0.694 0.712 0.322 0.748 0.700 0.700

Log Family Income 0.341 0.227 0.274 0.275 0.352 0.224 0.272 0.292

Variance Shocks 1.186 1.019 0.868 1.087 1.263 0.993 0.827 1.103

Notes: This table shows both the true estimates (reported also in Table 3) and the mean Monte
Carlo estimates for the investment equation. Each column shows the coefficients of the investment
equation at the given ages. The dependent variable is investment in period t which is determined
by the covariates at time t . For example, the first column shows the coefficients at age 5-6 for
parental investments and child’s skill and family income at age 5-6 as well.

98



Table E-2: Monte Carlo Estimates for Skill Technology

True Parameters Monte Carlo Estimates
Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 5-6 Age 7-8 Age 9-10 Age 11-12

Log Skills 1.966 1.086 0.897 1.065 1.955 1.091 0.897 1.071

Log Investment 0.799 0.695 0.713 0.252 0.759 0.700 0.839 0.502

( Log Skills * -0.105 -0.005 -0.003 0.003 -0.092 -0.005 -0.005 -0.002

Log Investment )

Return to scale 2.660 1.776 1.606 1.320 2.623 1.786 1.731 1.571

Variance shocks 5.612 4.519 3.585 4.019 5.613 4.520 3.586 4.018

Log TFP 13.067 14.747 11.881 2.927 13.060 14.689 11.801 2.594

Notes: This table shows both the true estimates (reported also in Table 4) and the mean Monte
Carlo estimates for the technology of skills formation. Each column shows the coefficients of the
technology of skills formations at the given age. The dependent variable is log skills in the next
period t+1 while the covariates (inputs) are at time t. For example, the first column shows the
coefficients for the skills inputs at age 5-6 which lead to log skills at age 7-8.
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Table E-3: Monte Carlo Estimates for Measurement Parameters

True Constant (µ) Monte Carlo Constant (µ) Estimates

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14 Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14

PIAT Math 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858 11.858

PIAT Recognition 12.864 15.592 10.297 2.107 8.556 12.864 15.592 10.298 2.110 8.555

PIAT Comprehensive 12.770 15.014 12.273 6.129 9.041 12.770 15.013 12.270 6.132 9.040

True Factor Loadings (λ) Monte Carlo Factor Loadings (λ) Estimates

Parameter Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14 Age 5-6 Age 7-8 Age 9-10 Age 11-12 Age 13-14

PIAT Math 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

PIAT Recognition 2.238 0.906 1.136 1.347 1.195 2.238 0.905 1.136 1.347 1.196

PIAT Comprehensive 2.159 0.802 0.936 1.089 1.002 2.159 0.802 0.936 1.089 1.002

Notes: This table shows both the true estimates (reported also in Table C.3-1) and the mean Monte
Carlo estimates for the measurement parameters of children skills measures equation. Each column
shows the parameters at the given ages for each test score.
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