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1 Introduction

The recent financial crisis in the US and the subsequent Euro Crisis are vivid reminders

of the importance of financial frictions in understanding macroeconomic trends and cycles.

While financial markets are self-stabilizing in normal times, economies become vulnerable

to a crisis after a run up of (debt) imbalances and (credit) bubbles. In particular, debt,

leverage, maturity and liquidity mismatch tend to rise when measured volatility is low.

Vulnerability risk tends to build up in the background, and only materializes when crises

erupt, a phenomenon referred to as the “Volatility Paradox.”

Adverse feedback loops can make the market spiral out of balance. The dynamics of an

economy with financial frictions are highly non-linear. Small shocks lead to large economic

dislocations. In situations with multiple equilibria, runs on financial institutions or sudden

stops on countries can occur even absent any fundamental trigger. Empirically, these phe-

nomena show up as fat tails in the distribution of real economic variables and asset price

returns.

Our research proposes a continuous time method to capture the whole endogenous risk

dynamics and hence goes beyond studying simply the persistence and amplification of an

individual adverse shock. Instead of focusing only on levels, the first moments, the second

moments, and movements of risk variables are all an integral part of the analysis, as they drive

agents’ consumption, (precautionary) savings and investment decisions. After a negative

shock, we do not assume that the economy returns to the steady state deterministically,

but rather uncertainty might be heightened making the length of the slump stochastic. As

agents respond to the new situation, they affect both the risk and the risk premia.

Endogenous risk is time-varying and depends on illiquidity. Liquidity comes in three

flavors. Technological illiquidity refers to the irreversibility of physical investment. Instead

of undoing the initial investment, another option is to sell off the investment. This is only

reasonable when market liquidity is sufficiently high. Finally, with sufficient funding liquidity

one can issue claims against the payoffs of the assets. Incentive problems dictate that these

claims are typically short-term debt claims. Debt comes with the drawback that risk is

concentrated in the indebted sector. In addition, short-term debt leads to liquidity risk

exposure. Agents may be forced to fire-sell their assets if they cannot undo the investment,

market liquidity is low and funding is restricted, e.g. very short term. In short, when there

is a liquidity mismatch between technological and market liquidity on the asset side and

funding liquidity on the liability side of the balance sheet, the economy is vulnerable to
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instability.

Models with financial frictions necessarily have to encompass multiple sectors. Finan-

cial frictions prevent funds from flowing to undercapitalized sectors, create debt overhang

problems, and/or preclude optimal ex-ante risk sharing. This is in contrast to a world with

perfect financial markets in which only aggregate risk matters, as all agents’ marginal rate

of substitutions are equalized in equilibrium and consequently aggregation to a single repre-

sentative agent is possible. In models with financial frictions and heterogeneous agents the

wealth distribution matters.

Importantly, financial frictions also give rise to the value of money. Money is a liquid store

of value and safe asset. This approach provides not only a complementary perspective to

New Keynesian models, in which price and wage rigidities are the primary drivers of money

value, but also enables the revival of the traditional literature on “money and banking”.1

Ultimately, economic analysis should guide policy. It is important to go beyond partial

equilibrium analysis since general equilibrium effects can be subtle and counterintuitive.

A model has to be tractable enough to conduct a meaningful welfare analysis to evaluate

various policy instruments. A welfare analysis lends itself to study the interaction of various

policy instruments.

In sum, the goal of this chapter is to put forward a manual for how to set up and

solve a continuous time macro-finance model. The tractability that continuous time offers

allows us to study a host of new properties of fully solved equilibria. This includes the full

characterization of endogenous (1) level and risk dynamics. The latter includes (2) tail risk

and crisis probability as well as (3) the Volatility Paradox. In addition, it should help us

think about (4) illiquidity and liquidity mismatch, (5) endogenous leverage, (6) Paradox of

Prudence, (7) undercapitalized sectors, (8) time-varying risk premia, and (9) the external

funding premium. From a welfare perspective we would like to ask normative questions

about the (10) inefficiencies of financial crises and (11) the effects of policies using various

instruments.

We start with a brief history of macro and finance research since the Great Depression

in the 1930s. We then put forward arguments in favor of continuous time modeling before

surveying the ongoing continuous time literature. The main part of the paper builds up a step

by step outline how to solve continuous time models starting with the simplest benchmark

and enriching the model by adding more building blocks.

1See e.g. Chandler (1948).
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Figure 1: Methods in Macroeconomic and Financial Research since the Great Depression

1.1 A Brief History of Macroeconomics and Finance

Macroeconomics as a field in economics was born during the great depression in the 1930s.

At that time economists like Fisher (1933), Keynes (1936), Gurley and Shaw (1955), Minsky

(1957) and Kindleberger (1978) stressed the importance of the interaction between financial

instability and macroeconomic aggregates. In particular, certain sectors in the economy

including the financial sector can become balance sheet impaired and can drag down parts

of the economy. Patinkin (1956) and Tobin (1969) also emphasized that financial stability

and price stability are intertwined and hence that macroeconomics, monetary economics and

finance are closely linked.

As economics became more analytical and model-based, macroeconomics and finance

went into different directions. See Figure 1. Hicks’s (1937) IS-LM Keynesian macro model is

both static and deterministic. Macroeconomic growth models, most prominently the Solow

(1956) growth model, are dynamic and many of them are in continuous time. However,

they exclude stochastic elements: risk and uncertainty play no role. In contrast, the formal

finance literature starting with Markowitz (1952) portfolio theory focused exclusively on risk.

These models are static models and ignore the time dimension.

In the 1970s and early 1980s macroeconomists introduced stochastic elements into their
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dynamic models. Early “fresh water” models that included time and stochastic elements were

Brock and Mirman’s (1972) Brock and Mirman’s (1972) stochastic growth model and real

business cycle models à la Kydland and Prescott (1982). The influential graduate text book

of Stokey and Lucas (1989) provided the necessary toolkit for a fully microfounded dynamic

and stochastic analysis. The “salt water” New Keynesian branch of macro introduced price

rigidities and studied countercyclical policy in rational expectations models, Taylor (1979)

and Mankiw and Romer (1991). The two branches merged and developed DSGE models

which were both dynamic, the D in DSGE, and stochastic, the S in DSGE. However, unlike in

many of the earlier growth models, time is discrete in real business cycle and New Keynesian

DSGE models à la Woodford (2003). Most DSGE models capture only the log-linearized

dynamics around the steady state. The log-linearized theoretical analysis squared nicely

with its empirical counterpart, the linear Vector Autoregression Regression (VAR) estimation

technique pioneered by Sims (1980).

Finance also experienced great breakthroughs in the 1970s. Stochastic Calculus (Ito

calculus), which underlies the Black and Scholes (1973) option pricing model, revolutionized

finance. Besides option pricing, term structure of interest rate models like Cox et al. (1985)

were developed. More recently, Sannikov (2008) developed continuous time tools for financial

contracting, which allow one to capture contracting frictions in a tractable way.

Our line of research is the next natural step. It essentially merges macroeconomics and

finance using continuous time stochastic models. In terms of financial frictions, it builds on

earlier work by Bernanke et al. (1999) (BGG), Kiyotaki and Moore (1997) (KM), Bianchi

(2011), Mendoza (2010) and others. Our approach replicates two important results from the

linearized versions of classic models of BGG and KM, that (1) temporary macro shocks can

have a persistent effect on economic activity by making borrowers “undercapitalized” and

(2) price movements amplify shocks. In KM, the leverage is limited by an always binding

collateral constraint. In Bianchi (2011) and Mendoza (2010) it is occasionally binding. Our

approach focuses mostly on incomplete market frictions, where the leverage of potentially

undercapitalized borrowers is usually endogenous. In particular, it responds to the magnitude

of fundamental (exogenous) macroeconomic shocks and the level of financial innovations that

enable better risk management. Interestingly, leverage responds to a much lesser extent to the

presence of endogenous tail risk. Equilibrium leverage in normal times is a key determinant

of the probability of crises.
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1.2 The Case for Continuous Time Macro Models

As economists we have no hesitation in assuming a continuous action space in order to

ensure nice first order optimality conditions that are free of integer problems. In the same

vain we typically assume a continuum of agents to guarantee an environment with perfect

competition and (tractable) price taking behavior.

Assuming a continuous time framework has two advantages: it is often more tractable and

might conceptually be a closer representation of reality. In terms of tractability, continuous

time allows one to derive more analytical steps and more closed form characterizations of

the equilibrium before resorting to a numerical analysis. For example, in our case one can

derive explicit closed form expressions for amplification terms. The reason is that only the

slope of the price function, i.e. the (local) derivative w.r.t. state variables, is necessary to

characterize amplification. In contrast, in discrete time settings the whole price function is

needed, as the jump size may vary. Also, instantaneous returns are essentially log-normal,

which makes it easy to take expectations. It is also easy to derive the portfolio choice problem

and to link returns to net worth dynamics via the budget constraint. In discrete-time models

this feature can only be achieved through a (Campbell-Shiller) log-linear approximation. It

is therefore not surprising that the term structure literature uses continuous time models.

Admittedly, some of these features are due to the continuous nature of certain stochastic

processes, like Brownian Motions and other Ito Processes. Hereby, one implicitly assumes

that agents can adjust their consumption or portfolio continuously as their wealth changes.

The feature that their wealth never jumps beyond a specific point, e.g. the insolvency point,

greatly simplifies the exposition.

Conceptually, in certain dimensions a continuous time representation might also square

better with reality. People do not consume only at the end of the quarter, even though data

come in quarterly. Discrete time models implicitly assume linear time aggregation within a

quarter and a non-linear one across quarters. In other words, the intertemporal elasticity of

consumption within a quarter is infinite while across quarters it is given by the curvature of

the utility function. Continuous time models treat every time unit the same. Similarly, it

is well-known that for multivariate models mixing data with different degrees of smoothness

(such as consumption data and financial data) can seriously impair inference.

The biggest advantage of our continuous time approach is that it allows a full char-

acterization of the whole dynamical system including the risk dynamics instead of simply

a log-linearized representation around the steady state. Note that impulse response func-

tions capture only the expected path after a shock that starts at the steady state. Also,
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the stationary distribution can be bi-modal and exhibit large swings, unlike stable normal

distributions that log-linearized models imply.

1.3 The Nascent Continuous Time Macro-finance Literature

This chapter builds on Brunnermeier and Sannikov (2014).2 It extends this work by allowing

for more general utility functions, precautionary savings and for endogenous equity issuance.

Work by Basak and Cuoco (1998) and He and Krishnamurthy (2012), (2013) on intermediary

asset pricing are part of the core papers in this literature. Isohätälä et al. (2014) study a

partial equilibrium model. DiTella (2013) introduces exogenous uncertainty shocks that can

lead to balance sheet recessions even when contracting based on aggregate state variables is

possible.

Phelan (2014) considers a setting in which banks issue equity and leverage can be pro-

cyclical. Adrian and Boyarchenko (2012) achieve procyclical leverage by introducing liquid-

ity preference shocks. Adrian and Boyarchenko (2013) consider the interaction between two

types of intermediaries: banks and non-banks. Huang (2014) studies shadow banks, which

circumvent regulatory constraints but are subject to an endogenous enforcement constraint.

In Moreira and Savov (2016)’s macro model shadow banks issue money-like claims. In down-

turns they scale back their activity. This slows down the recovery and creates a scarcity in

collateral. Klimenko et al. (2015) show that regulation that prohibits dividend payouts is

typicially superior to very tight capital requirements. In Moll (2014) capital is misallocated

since productive agents are limited by collateral constraints to lever up.

Several papers also tried to calibrate continuous time macro-finance models to recent

events. For example, He and Krishnamurthy (2014) do so by including housing as a second

form of capital. Mittnik and Semmler (2013) employ a multi-regime vector autoregression

approach to capture the non-linearity of these models.3

In international economics, these methods are employed in Brunnermeier and Sannikov

(2015b). In a two good, two country model, the overly indebted country is vulnerable to

sudden stops, and hence capital controls might improve welfare. Maggiori (2013) models

risk sharing across countries which are at different stages of financial development.

2For an alternative survey on continuous time macro models, see e.g. Isohätälä et al. (2015).
3Note that in the estimation of DSGE models, Fernandez-Villaverde and Rubio-Ramiro (2010) show

that parameter estimates and the moments generated by the model depend quite sensitively on whether a
linearized DSGE is estimated via Kalman filtering or whether the true DSGE model is estimated via particle
filtering.
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Models with financial frictions also open up an avenue for new models in monetary

economics thereby reviving the field “money and banking”. In “The I Theory of Money”

money is a bubble like in Samuelson (1958) or Bewley (1977). Inside money is created

endogenously by the intermediary sector, and monetary policy and macroprudential policy

interact. Achdou et al. (2015) provide a solution algorithm for Bewley models with uninsur-

able endowment risk in a continuous time setting. In Drechsler et al. (2014) banks are less

risk averse and monetary policy affects risk premia. Werning (2012) studies the zero lower

bound problem in a tractable deterministic continuous time New Keynesian model.

Rappoport and Walsh (2012) set up a discrete time macro model, which has similar eco-

nomic results, and which converges in the continuous-time limit to the model of Brunnermeier

and Sannikov (2014).

2 A Simple Real Economy Model

We start first with a particularly simple model to illustrate how equilibrium conditions -

utility maximization and market clearing - translate into an equilibrium characterization.

This simple model trivializes most of the issues we are after, e.g. the model has no price

effects or endogenous risk. We do get some interesting takeaways, such as that risk premia

spike in crises. After establishing the conceptual framework for what an equilibrium is, we

move on to tackle more complex models.

2.1 Model Setup

This model is a variation of Basak and Cuoco (1998). The economy has a risky asset in

positive net supply and a risk-free asset in zero net supply. There are two types of agents

- experts and households. Only experts can hold the risky asset - households can only lend

to experts at the risk-free rate rt, determined endogenously in equilibrium. The friction is

that experts can finance their holdings of the risky asset only through debt - by selling short

the risk-free asset to households. That is, experts cannot issue equity. We assume that all

agents are small, and behave as price-takers. That is, unlike in microstructure models with

noise traders, agents have no price impact.
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Technology. Net of investment, physical capital, kt, generates consumption output at the

rate of

(a− ιt)kt dt,

where a is a productivity parameter and ιt is the reinvestment rate per unit of capital. The

production technology is constant returns to scale.

The productive asset (capital), kt, evolves according to

dkt
kt

= (Φ(ιt)− δ) dt+ σ dZt, (2.1)

where Φ(ιt) is an investment function with adjustment costs, such that Φ(0) = 0, Φ′ >

0 and Φ′′ ≤ 0. Thus, in the absence of investment, capital simply depreciates at rate δ.

The concavity of Φ(·) reflects decreasing returns to scale, and for negative values of ιt,

corresponds to technological illiquidity - the marginal cost of capital depends on the rate of

investment/disinvestment.

The aggregate amount of capital is denoted by Kt, and qt is the price of capital. Hence,

the aggregate net worth in the economy is qtKt. If Nt is the aggregate net worth of experts,

then the aggregate net worth of households is qtKt −Nt.

Experts’ wealth share is denoted by

ηt =
Nt

qtKt

∈ [0, 1].

Preferences. For tractability, all agents are assumed to have logarithmic utility with dis-

count rate ρ, of the form

E

[∫ ∞
0

e−ρt log ct dt

]
,

where ct is consumption at time t.

2.2 A Step-by-Step Approach

Definition. An equilibrium is a map from histories of macro shocks {Zs, s ≤ t} to the

price of capital qt, risk-free rate rt, as well as asset holdings and consumption choices of all

agents, such that

1. agents behave to maximize utility and
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2. markets clear.

To find an equilibrium, we need to write down equations that the processes qt, rt, etc.

have to satisfy, and that characterize how these processes evolve with the realizations of

shocks Z. It will be convenient to express these relationships using a state variable. Here the

relevant state variable, which describes the distribution of wealth, is the fraction of wealth

owned by the experts, ηt. When ηt drops, experts become more balance sheet constrained.

We solve the equilibrium in three steps. First, we postulate some endogenous processes.

As a second step, we use the equilibrium conditions, i.e. utility maximization and market

clearing, to write down restrictions qt and rt need to satisfy. In this simple model, we will

be able to express qt and rt as functions of ηt in closed form. Third, we need to derive the

law of motion of the state variable, the wealth share ηt.

Step 1: Postulate Equilibrium Processes. The first step is to postulate certain

endogenous price processes. For example, suppose that the price per unit of capital qt

follows an Ito process
dqt
qt

= µqt dt+ σqt dZt, (2.2)

which, of course, is endogenous in equilibrium.

An investment in capital generates, in addition to the dividend rate (a−ι)ktdt, the capital

gains at rate
d(ktqt)

ktqt
.

Ito’s Lemma for the product of two stochastic processes can be used to derive this process.

Ito’s Formula for Product. Suppose two processes Xt and Yt follow

dXt

Xt
= µXt dt+ σXt dZt and

dYt
Yt

= µYt dt+ σYt dZt.

Then the product of two processes follows

d(XtYt)

XtYt
= (µXt + µYt + σXt σ

Y
t ) dt+ (σXt + σYt ) dZt. (2.3)

11



Using Ito’s Lemma, the investment in capital generates capital gains at rate

d(ktqt)

ktqt
= (Φ(ιt)− δ + µqt + σσqt ) dt+ (σ + σqt ) dZt.

Then capital earns the return of

drkt =
a− ιt
qt

dt︸ ︷︷ ︸
dividend yield

+ (Φ(ιt)− δ + µqt + σσqt ) dt+ (σ + σqt ) dZt︸ ︷︷ ︸
d(ktqt)
ktqt

, the capital gains rate

. (2.4)

Thus, generally a part of the risk from holding capital is fundamental, σ dZt, and a part is

endogenous, σqt dZt.

Remarks

• For general utility functions one also has to postulate the stochastic discount factor

process or equivalently a process for the marginal utility or the consumption process

dct/ct. For details see Section 3.1.

• Note that in monetary models like Brunnermeier and Sannikov (2015, 2016) one also

has to postulate a process pt for the value of money which can be stochastic due to

inflation risk. In Section 4 we present a simple monetary model.

Step 2: The Equilibrium Conditions. Equilibrium conditions come in two flavors:

Optimality conditions and market clearing conditions.

Optimal internal investment rate. Note that the rate of internal investment ιt does not

affect the risk of capital. The optimal investment rate that maximizes the expected return

satisfies the first-order condition

Φ′(ιt) =
1

qt
. (2.5)

Optimal consumption rate. Logarithmic utility has two convenient properties, which we

derive formally for a more general case in Section 3.1. These two properties help reduce the

number of equations that characterize equilibrium. First, for agents with log utility

consumption = ρ · net worth (2.6)

that is, they always consume a fixed fraction of wealth (permanent income) regardless of the

risk-free rate or risky investment opportunities. The consumption Euler equation reduces to
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a particularly simple form.

Optimal portfolio choice. The optimal risk exposure of a log-utility agent in the optimal

portfolio choice problem depends on the attractiveness of risky investment, measured by the

Sharpe ratio, defined as expected excess returns divided by the standard deviation. Formally,

the equilibrium condition is

Sharpe ratio of risky investment = volatility of net worth, (2.7)

where the volatility is relative (measured as percentage change per unit of time).4

Goods Market clearing. We use equations (2.6) and (2.7) to formalize equilibrium condi-

tions, and characterize equilibrium. First, from condition (2.6), the aggregate consumption

of all agents is ρqtKt, and aggregate output is (a− ι(qt))Kt, where investment ι is an increas-

ing function of q defined by (2.5). From market clearing for consumption goods, these must

be equal, and so

ρqt = a− ι(qt) (2.8)

is the equilibrium price of the risky capital. The aggregate consumption of experts must

be ρNt = ρηtqtKt, and the aggregate consumption of households is ρ(1− ηt)qtKt. Condition

(2.8) alone leads to a constant value of the price of capital q. That is, µqt = σqt = 0.

Example 1. Suppose the investment function takes the form

Φ(ι) =
log(κι+ 1)

κ
,

where κ is the adjustment cost parameter. Then Φ′(0) = 1. Higher κ makes function Φ more

concave, and as κ→ 0, Φ(ι)→ ι, a fully elastic investment function with no adjustment costs.

Then the optimal investment rate is ι = (q − 1)/κ, and the market-clearing condition (2.8)

leads to the price of

q =
1 + κa

1 + κρ
.

The price converges to 1 as κ → 0, i.e. the investment technology is fully elastic. The price q

converges to a/ρ as κ→∞.

4For example, if the annual volatility of S&P 500 is 15% and the risk premium is 3% (so that the Sharpe
ratio is 3%/15% = 0.2), then a log utility agent wants to hold a portfolio with volatility 0.2 = 20%. This
corresponds to a weight of 1.33 on S&P 500, and -0.33 on the risk-free asset.

13



Second, we can use condition (2.7) for experts to figure out the equilibrium risk-free

rate. We first look at the return on risky and risk-free assets to compute the Sharpe ratio

of risky investments. We then look at balance sheets of experts to compute the volatility of

their wealth. Finally, we use equation (2.7) to get the risk-free rate.

Because q is constant, the risky asset earns a return of

drkt =
a− ι
q

dt︸ ︷︷ ︸
ρ, dividend yield

+ (Φ(ι)− δ) dt+ σ dZt︸ ︷︷ ︸
capital gains rate

,

and the risk-free asset earns rt. Note that the dividend yield equals ρ by the goods market

clearing condition. Hence, the Sharpe ratio of risky investment is

ρ+ Φ(ι)− δ − rt
σ

.

Note that since the price-dividend ratio is constant any change in the risk premium must

come from the variation in the risk free rate rt.

Because experts must hold all the risky capital in the economy, with value qtKt (house-

holds cannot hold capital), and absorb risk through net worth Nt, the volatility of their net

worth is
qtKt

Nt

σ =
σ

ηt
.

Using (2.7),
σ

ηt
=
ρ+ Φ(ι)− δ − rt

σ
⇒ rt = ρ+ Φ(ι)− δ − σ2

ηt
. (2.9)

Step 3: The Law of Motion of ηt. To finish deriving the equilibrium, we need to

describe how shocks Zt affect the state variable ηt = Nt/(qtKt). First, since ηt is a ratio, the

following formula will be helpful for us:

Ito’s Formula for Ratio. Suppose two processes Xt and Yt follow

dXt

Xt
= µXt dt+ σXt dZt and

dYt
Yt

= µYt dt+ σYt dZt.

Then ratio of two processes follows

d(Xt/Yt)

Xt/Yt
= (µXt − µYt + (σYt )2 − σXt σYt ) dt+ (σXt − σYt ) dZt. (2.10)
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Second, it is convenient to express the laws of motion of the numerator and denominator

of ηt in terms of total risk and the Sharpe ratio given by (2.9). Specifically,

dNt

Nt

= rt dt+
σ

ηt︸︷︷︸
risk

σ

ηt︸︷︷︸
Sharpe

dt+
σ

ηt
dZt − ρ dt︸︷︷︸

consumption

and

d(qtKt)

qtKt

= rt dt+ σ︸︷︷︸
risk

σ

ηt︸︷︷︸
Sharpe

dt+ σ dZt − ρ dt︸︷︷︸
dividend yield

.

In the latter equation, we subtract the dividend yield from the total return on capital to

obtain the capital gains rate.

Using the formula for the ratio,

dηt
ηt

= (rt + σ2/η2
t − ρ− rt − σ2/ηt + ρ+ σ2 − σ2/ηt) dt+ (σ/ηt − σ) dZt

=
(1− ηt)2

η2
t

σ2 dt+
1− ηt
ηt

σ dZt. (2.11)

Step 4: Expressing q(η) as a function of η is not necessary in this simple model,

since q is a constant.

2.3 Observations

Several key observations about equilibrium characteristics are worth pointing out. Variable

ηt fluctuates with macro shocks - a positive shock increases the wealth share of experts. This

is because experts are levered. A negative shock erodes ηt, and experts require a higher risk

premium to hold risky assets. Experts must be convinced to keep holding risky assets by

the increasing Sharpe ratio
σ

ηt
=
ρ+ Φ(ι)− δ − rt

σ
,

which goes to ∞ as ηt goes to 0. Strangely, this is achieved due to the risk-free rate rt =

ρ + Φ(ι) − δ − σ2/ηt going to −∞, rather than due to a depressed price of the risky asset,

as illustrated in the top right panel of Figure 2.
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Figure 2: Equilibrium in the simple real model,
a = .11, ρ = 5%, σ = .1, and Φ = log(κι+ 1)/κ with κ = 10.
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Because qt is constant, as illustrated in the top left panel, there is no endogenous risk,

no amplification and no volatility effects. Therefore, in this model, assumptions that allow

for such a simple solution also eliminate any price effects that we are so interested in. We

have to work harder to get those effects.

Besides the absence of price effects, in this model it is also the case that in the long run the

expert sector becomes so large that it overwhelms the whole economy. To see this, note that

the drift of ηt is always positive. This feature is typical of models in which one group of agents

has an advantage over another group - in this case only experts can invest in the risky asset.

It is possible to prevent the expert sector from becoming too large through an additional

assumption. For example, Bernanke et al. (1999) assume that experts are randomly hit by

a shock that makes them households. Alternatively, if experts have a higher discount rate

than households, then a greater consumption rate prevents the expert sector from becoming

too large.

The main purpose of this section was to show how equilibrium conditions can be trans-

lated into formulas that describe the behavior of the economy. Next, we can consider more

complicated models, in which the price of the risky asset qt reacts to shocks. We also de-

velop a methodology that allows for agents to have more complicated preferences and for a

nontrivial distribution of assets among agents.

3 A Model with Price Effects and Instabilities

We now illustrate how our step approach can be used to solve a more complex model, which

we borrow and extend from Brunnermeier and Sannikov (2014). We will be able to get a

number of important takeaways from the model:

1. Equilibrium dynamics are characterized by a relatively stable steady state, where the

system spends most of the time, and a crisis regime. In the steady state, experts are

adequately capitalized and risk premia fall. The experts’ consumption offsets their

earnings - hence the steady state is formed. Experts have the capacity to absorb most

macro shocks, hence prices near the steady state are quite stable. However, an un-

usually long sequence of negative shocks causes experts to suffer significant losses, and

pushes the equilibrium into a crisis regime. In the crisis regime, experts are undercap-

italized and constrained. Shocks affect their demand for assets - market liquidity at

the macro level can dry up -, and thus affect prices of the assets that experts hold.
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This creates feedback effects, which generate fire-sales and endogenous risk. Volatility

is endogenous and also feeds back in agents’ behavior.

2. High volatility during crisis times may push the system into a very depressed region,

where experts’ net worth is close to 0. If that happens, it takes a long time for the

economy to recover. Thus, the system spends a considerable amount of time far away

from the steady state. The stationary distribution may be bimodal.

3. Endogenous risk during crises makes assets more correlated.

4. There is a “Volatility Paradox” , because risk-taking is endogenous. If the aggregate

risk parameter σ becomes smaller, the economy does not become more stable. The

reason is that experts allow greater leverage, and pay out profits sooner, in response

to lower fundamental risk. Due to greater leverage, the economy is prone to crises

even when exogenous shocks are smaller. In fact, endogenous risk during crises may

actually be higher when σ is lower.

5. Financial innovations, such as securitization and derivatives hedging, that allow for

more efficient risk-sharing among experts, may make the system less stable in equilib-

rium. The reason, again, is that risk-taking is endogenous. By diversifying idiosyn-

cratic risks, experts tend to increase leverage, amplifying systemic risks.

Before going into details how we can extend our simple real economy model from section

2 to display these additional features, we take a detour to discuss the classic problem of

optimal consumption and portfolio choice in continuous time.

3.1 Optimal Portfolio Choice with General Utility Functions

We start with a brief description of how to extend the optimal consumption and portfolio

choice conditions (such as (2.6) and (2.7)) to the case of a general utility function. The key

result is that any asset, which an agent can hold, can be priced from the agent’s marginal

utility of wealth θt. The first-order condition for optimal consumption is θt = u′(ct), so the

marginal utility of wealth is also the marginal utility of consumption (unless the agent is “at

the corner”).5

5If the agent is risk-neutral, then his marginal utility of consumption is always 1, but the agent may
choose to not consume if his marginal utility of wealth is greater than 1.
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If the agent has discount rate ρ then ξt = e−ρtθt is the stochastic discount factor (SDF)

to price assets. We can write
dξt
ξt

= −rt dt− ςt dZt, (3.1)

where rt is the (shadow) risk-free rate and ςt is the price of risk dZt.

For any asset A that the agent can invest in, with return

drAt = µAt dt+ σAt dZt,

we must have

µAt = rt + ςtσ
A
t . (3.2)

Equations (3.1) and (3.2) are simple, yet extremely powerful.

Martingale Method. To derive equation (3.2) consider a trading strategy of investing

1 dollar into asset A at time 0 and keep on reinvesting any dividends the asset might pay

out. Denote the value of this strategy at time t by vt (then v0 = 1, obviously). Clearly, its

capital gains rate is
dvt
vt

= drAt .

For an arbitrary s ≤ t consider an investor who can only trade at s and t. That is, he faces

a simple two-period portfolio problem. The Euler equation for the standard two-period

portfolio problem is

vs = Es

[
ξt
ξs
vt

]
⇒ ξsvs = Es[ξtvt].

That is, ξtvt must be a martingale on the time domain {s, t}. For an investor who can trade

continuously ξtvt must be a martingale for any t, since we picked s, t arbitrarily. Next, by

Itô’s formula

d(ξtvt)

ξtvt
= (µξt + µvt + σξtσ

v
t )dt+ (σξt + σvt )dZt = (−rt + µAt − ςtσAt )dt+ (σAt − ςt)dZt.

This is a martingale if and only if the drift vanishes, i.e. equation (3.2) holds.

Derivation via Stochastic Maximum Principle. One can also derive the pricing

equations and consumption rule using the stochastic maximum principle. Let us consider an

agent who maximizes

E

[∫ ∞
0

e−ρtu(ct) dt

]
,
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and whose net worth follows

dnt = nt

(
rt dt+

∑
A

xAt ((µAt − rt) dt+ σAt dZt)

)
− ct dt,

with initial wealth n0 > 0 and where xAt are portfolio weights on various assets A. Investment

opportunities are stochastic and exogenous, i.e. they do not depend on the agent’s strategy.

The stochastic maximum principle allows us to derive first-order conditions for maxi-

mization from the Hamiltonian. Introducing a multiplier ξt on nt (i.e. marginal utility of

wealth) and denoting the volatility of ξt by −ςtξt, the Hamiltonian is written as

H = e−ρtu(c) + ξt{(rt +
∑
A

xA(µAt − rt))nt − c︸ ︷︷ ︸
drift of nt

} − ςtξt
∑
A

xAσAt nt︸ ︷︷ ︸
volatility of nt

.

By differentiating the Hamiltonian with respect to controls, we get the first-order condi-

tions, and by differentiating it with respect to the state nt, we get the law of motion of the

multiplier ξt.

The first-order condition with respect to c is

e−ρtu′(ct) = ξt,

which implies that the multiplier on the agent’s wealth is his discounted marginal utility of

consumption. The first-order condition with respect to the portfolio weight xA is

ξt(µ
A
t − rt)− ςtξtσAt = 0,

which implies (3.2).

In addition, the drift of ξt is

−Hn = −ξtrt,

where we already used the first-order conditions with respect to xA to perform cancellations.

It follows that the law of motion of ξt is

dξt = −ξtrt dt− ςtξt dZt,

which corresponds to (3.1).
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Value Function Derivation for CRRA Utility. Macroeconomists are most familiar

with this method. With CRRA utility, the agent’s value function takes a power form

u(ωtnt)

ρ
. (3.3)

This form comes from the fact that if the agent’s wealth changes by a factor of x, then his

optimal consumption at all future states changes by the same factor - hence ωt is determined

so that u(ωt)/ρ is the value function at unit wealth. Marginal utility of consumption and

marginal utility of wealth are equated if c−γt = ω1−γ
t n−γt /ρ, or

ct
nt

= ρ1/γω
1−1/γ
t . (3.4)

For log utility, γ = 1 and this equation implies that ct/nt = ρ as we claimed in (2.6).

For γ 6= 1, by expressing ωt as a function of the consumption rate ct/nt, we find that the

agent’s continuation utility is
c−γt nt
1− γ

. (3.5)

This remarkable expression shows that the agent’s net worth and consumption rate are

sufficient to compute the agent’s welfare, and no additional information about the agent’s

stochastic investment opportunities is needed.

Given the agent’s (postulated) consumption process of

dct
ct

= µct dt+ σct dZt,

by Ito’s Lemma, marginal utility c−γ follows

d(c−γt )

c−γt
=

(
−γµct +

γ(γ + 1)

2
(σct )

2

)
dt− γσct dZt. (3.6)

Substituting this into (3.2), we obtain the following relationship for the pricing of any risky

asset relative to the risk-free asset:

µAt − rt
σAt

= γσct = ςt. (3.7)

Recall that ξt = e−ρtu′(ct) and hence dξt
ξt

= −ρ − d(c−γt )

c−γt
. Minus the drift of the SDF is the
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risk-free rate, i.e.

rt = ρ+ γµct −
γ(γ + 1)

2
(σct )

2. (3.8)

Two special cases with particularly nice analytical solutions deserve special attention.

Example with CRRA and Constant Investment Opportunities. With constant investment op-

portunities, then ωt is a constant, hence (3.4) implies that σct = σnt , just like in the logarithmic

case. Hence, (3.7) implies that
µAt − r
σAt︸ ︷︷ ︸
ς

= γσnt ,

i.e. the volatility of net worth is the Sharpe ratio divided by the risk aversion coefficient γ. Note

that this property also holds when ωt is not a constant as long as it evolve deterministically.

Now, the agent’s net worth follows

dnt
nt

= r dt+
ς2

γ
dt+

ς

γ
dZt −

ct
nt
dt,

and, since consumption is proportional to net worth, (3.8) implies that

r = ρ+ γ

(
r +

ς2

γ
− ct
nt

)
− γ(γ + 1)

2

ς2

γ2
⇒ ct

nt
= ρ+

γ − 1

γ

(
r − ρ+

ς2

2γ

)
.

Hence, consumption ratio increases with better investment opportunities when γ > 1 and falls

otherwise.

Example with Log Utility. We can verify that the consumption and asset-pricing relationships

for logarithmic utility of equation. Note from (3.4) follows directly (2.6),

ct = ρnt.

Since the SDF is ξt = e−ρt/ct = e−ρt/(ρnt) (for any ωt) it follows that σnt = σct = ςt (i.e. minus

the volatility of ξt). Hence, (3.2) implies that

µAt − rt
σAt

= σnt ,

where the left hand side is the Sharpe ratio, and the right hand side is the volatility of net

worth.
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3.2 Model with Heterogeneous Productivity Levels and Prefer-

ences

In order to study endogenous risk, market illiquidity, fire-sales etc., we now assume that

the household sector can also hold physical capital, but households are assumed to be less

productive. Specifically, their productivity parameter a < a, and hence their willingness to

pay for capital, is lower than that of experts. In this generalized setting, experts now have

only two ways out when they become less capitalized and want to scale back their operation:

fire-sell the capital to households at a possibly large price discount (market illiquidity) or

“uninvest’’ and suffer adjustment costs (technological illiquidity).

Less productive households earn a return of

drkt =
a− ιt
qt

dt︸ ︷︷ ︸
dividend yield

+ (Φ(ιt)− δ + µqt + σσqt ) dt+ (σ + σqt ) dZt︸ ︷︷ ︸
d(qtkt)
qtkt

, the capital gains rate

(3.9)

when they manage the physical capital. The households’ return differs from that of experts,

(2.4), only in the dividend yield that they earn.

We generalize the model in several other ways. (i) We enable experts to issue some

(outside) equity, even though they cannot be 100% equity financed. Specifically, we suppose

that experts must retain at least a fraction χ ∈ (0, 1] of equity. (ii) We generalize the

model by including a force that prevents experts from “saving their way out” away from the

constraints. In particular, we assume that experts could have a higher discount rate ρ than

that of households, ρ. (iii) Equipped with the results derived in Subsection 3.1 we generalize

experts’ and households’ utility functions from log to CRRA with risk aversion coefficient

γ.6

To summarize, experts and households maximize, respectively

E

[∫ ∞
0

e−ρtu(ct)

]
dt, and E

[∫ ∞
0

e−ρtu(ct)

]
dt.

We denote the fraction of capital allocated to experts by ψt ≤ 1 and the fraction of equity

retained by experts by χt ≥ χ.

6Brunnermeier and Sannikov (2014) explicitly consider the case of risk-neutral experts and households.
Experts are constrained to consume nonnegative quantities, but households can consume both positive and
negative amounts. This assumption leads to the simplification that the risk-free rate in the economy rt
always equals the households’ discount rate ρ.
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We want to characterize how any history of shocks {Zs, s ≤ t} maps to equilibrium prices

qt and rt, asset allocations ψt and χt, and consumption so that (1) all agents maximize utility

through optimal consumption and portfolio choices and (2) markets clear. Agents optimize

portfolios subject to constraints (no short-selling of capital and a bound on equity issuance

by experts). For example, households can invest in capital, the risk-free asset, and experts’

equity, and optimize over portfolio weights on these three assets (with a nonnegative weight

on capital). Thus, the solution is based on a classic problem in asset pricing. Note also

that because the required returns are different between households and experts, the experts’

inside equity will generally earn a different return from the equity held by households -

experts will earn “management fees” that households do not earn.7

3.3 The 4-Step Approach

We can solve for the equilibrium in four steps. First, postulate processes for prices and

stochastic discount factor. Second, write down the consumption-portfolio optimization and

market-clearing conditions. These conditions imply a stochastic law of motion of the price

qt, the required risk premia for experts and households ςt and ς
t
, together with variables ψt

and χt. Third, focusing on the experts’ balance sheets we write down the law of motion of

expert’s wealth share

ηt =
Nt

qtKt

,

as a percentage of the whole wealth in the economy. As before, Kt is the total amount

of capital in the economy. Fourth, we look for a Markov equilibrium, and characterize

equations for qt, ψt, etc., as functions of ηt. We solve these equations numerically either as

a system of ordinary differential equations (using the shooting method) or as a system of

partial differential equations in time, via a procedure analogous to value function iteration

in discrete time.

Step 1: Postulating Equilibrium Processes. As before we postulate the equilibrium

prices process for physical capital.

dqt
qt

= µqtdt+ σqt dZt.

7This is not a universal assumption in the literature. For example, He and Krishnamurthy (2013) assume
that returns are equally split between experts and households, so that rationing is required to prevent
households from demanding more expert equity than the total supply of expert equity.
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Furthermore, as experts and household have different investment opportunities, we postulate

two stochastic discount factor (SDF) processes, one for experts and one for households.

dξt
ξt

= −rt dt− ςt dZt, and
dξ

t

ξ
t

= −rt dt− ς t dZt,

respectively. Note that since both can trade the risk-free asset the drift of both SDF processes

has to be the same.

Step 2: Equilibrium Conditions. Note that since both experts and households can

trade the risk-free asset the drift of both SDF processes has to be the same, i.e. rt = rt.

Moreover, (3.2) implies the following asset-pricing relationship for capital held by experts:

a−ιt
qt

+ Φ(ιt)− δ + µqt + σσqt − rt
σ + σqt

= χtςt + (1− χt)ς t, (3.10)

where χt is the inside equity share, i.e. the fraction of risk held by experts.

The required return on capital held by experts depends on the equilibrium capital struc-

ture that experts use. If experts require a higher risk premium than households, then χt = χ,

i.e. experts will issue the maximum equity they can. Thus, we have8

χt = χ if ςt > ς
t
, otherwise ςt = ς

t
.

Under this condition, we can replace χt with χ in (3.10).

An asset-pricing relationship for capital held by households is

a−ιt
qt

+ Φ(ιt)− δ + µqt + σσqt − rt
σ + σqt

≤ ς
t
, (3.11)

with equality if ψt < 1, i.e. households hold capital in positive amounts. Note that house-

holds may choose not to hold any capital, and if so, then the Sharpe ratio they would earn

from capital could fall below that required by the asset-pricing relationship.

It is useful to combine (3.10) and (3.11), eliminating µqt and rt, to obtain

(a− a)/qt
σ + σqt

≥ χ(ςt − ς t), (3.12)

8We can rule out the case that ςt < ςt and χt = 1 : experts cannot face lower risk premia than households
if households hold zero risk.
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with equality if ψt < 1.

The required risk premia can be tied to the agents’ consumption processes via (3.24) in

the CRRA case and to the agents’ net worth processes in the special logarithmic case. Under

the baseline risk-neutrality assumptions of Brunnermeier and Sannikov (2014), ς = 0 when

households are risk-neutral and financially unconstrained - i.e. they can consume negatively.

We will use these conditions to characterize qt, ψt, χt, etc. as functions of ηt. Before we

do that, though, we must derive an equation for the law of motion of ηt = Nt/(qtKt).

Step 3: The Law of Motion of ηt. It is convenient to express the laws of motion of

the numerator and denominator of ηt by focusing on risks and risk premia. Specifically, the

experts’ net worth follows

dNt

Nt

= rt dt+
χtψt
ηt

(σ + σqt )︸ ︷︷ ︸
risk

( ςt︸︷︷︸
risk premium

dt+ dZt)−
Ct
Nt

dt.

To derive the evolution of qtKt, note that the capital gains rate is the same for both type

of agents. Thus, we can just aggregate the individual laws of motion to an aggregate law of

motion. After replacing the term Φ(ιt)− δ + µqt − σσ
q
t − rt using (3.10), we obtain

d(qtKt)

qtKt

= rt dt+ (σ + σqt )
(
(χςt + (1− χ) ς

t
) dt+ dZt

)
− a− ιt

qt
dt.

This is the total return on capital (e.g. that held by experts) minus the dividend yield.

Using the already familiar formula (2.10) for a ratio of two stochastic processes, we have

dηt
ηt

= µηt dt+ σηt dt =

(
a− ιt
qt
− Ct
Nt

)
dt+

χtψt − ηt
ηt

(σ + σqt ) ((ςt − σ − σqt ) dt+ dZt) +

(σ + σqt )(1− χ)(ςt − ς t) dt. (3.13)

Step 4: Converting the Equilibrium Conditions and Laws of Motion (3.13)

into Equations for q(η), θ(η), ψ(η), χ(η) etc. The procedure to convert the equilibrium

conditions and the law of motion of ηt into numerically solvable equations for q(η), ψ(η),

etc., depends on the underlying assumptions on the agents’ preferences. (The log-utility case

is the easiest to solve.) In each case, we have to use Ito’s Lemma, which allows us to replace

terms such as σqt , σ
θ
t , µ

q
t etc. with expressions containing the derivatives of q and θ, in order

to arrive at solvable differential equations for these functions in the end.
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For example, using Ito’s Lemma we can tie the volatility of qt with the first derivative of

q(η) as follows

σqt q(η) = q′(η) (χtψt − ηt)(σ + σqt )︸ ︷︷ ︸
ησηt

. (3.14)

Rewriting equation (3.14) yields a closed form solution for the amplification mechanism.

σηt =

χtψt
ηt
− 1

1− [χtψt
ηt
− 1] q′(ηt)

q(ηt)/ηt

σ (3.15)

The numerator χtψt
ηt
−1 captures the leverage ratio of the expert sector. The amplification

increases with the leverage ratio, the leverage effect. The denominator captures the “loss

spiral”. Mathematically, it reflects an infinite geometric series. The impact of the loss

spiral increases with the product of the leverage ratio and price elasticity, q′

q/η
. The latter

measures “market illiquidity”, the percentage price impact due to a percentage decline in ηt.

Market illiquidity arises from the technological specialization of capital, measured here by

the difference a− a between the experts’ and households’ productivity parameters. Market

illiquidity interacts with technological illiquidity, captured by the curvature of Φ(·).
There are various methods to solve the equilibrium equations. Below, we discuss two

methods that have been used in practice. One method involves ordinary differential equa-

tions (ODE) - we refer to it as the “shooting method” and illustrate it using the risk-neutral

preferences of Brunnermeier and Sannikov (2014). The second method involves partial dif-

ferential equations, and is reminiscent of value function iteration in discrete time.

3.4 Method 1: The Shooting Method

This method involves converting the equations above into a system of ODEs. Before we

dive into this, in order to understand how this can be done, we review a very simple and

well-known model to illustrate the gist of what we have to do. The model illustrates the

pricing of a perpetual American put.
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Example 3. Consider the problem of pricing a perpetual option to abandon an asset for an

amount K. Given a risk-free rate of r and volatility σ, if the asset pays no dividends, its value

follows a geometric Brownian motion

dVt
Vt

= r dt+ σ dZt (3.16)

under the risk-neutral measure.

Under the risk-neutral measure, the expected return of any security must be r. Thus, if the

put value Pt follows dPt = µPt Pt dt+ σPt Pt dZt, then we must have

r = µPt . (3.17)

Suppose we would like to calculate how the put value Pt depends on the value of the assets

Vt. Then we face a problem that is completely analogous to the model with financial frictions

we described in this section. We have a law of motion of the state variable Vt and a relationship

(3.17) that the stochastic evolution of Pt has to satisfy, and we would like to characterize Pt as

a function of Vt.

How can we do this? Easy. Using Ito’s Lemma

µPt Pt = rVtP
′(Vt) +

1

2
σ2V 2

t P
′′(Vt),

and so (3.17) becomes

r =
rV P ′(V ) + 1

2σ
2V 2P ′′(V )

P (V )
. (3.18)

If function P (V ) satisfies this equation, then the process Pt = P (Vt) will satisfy (3.17). We are

able to go from an equation like (3.17) to a differential equation (3.18) by assuming that the

value of the put is a function of the value of the asset.

We can solve the second-order ordinary differential equation (ODE) (3.18) if we have two

boundary conditions. We have P (V ) → 0 as V → ∞ since the put becomes worthless if it is

never exercised. We also have P (V )− (K − V ) ≥ 0, since P (V ) must equal the intrinsic value

at the point where the put is exercised.

Our problem is similar: we have an equation for the stochastic law of motion of the

state variable (3.13), as well as the equilibrium conditions that processes q(ηt), ψ(ηt), etc.

must satisfy. Certainly, the equations are more complicated than those of the put-pricing

problem, and the law of motion of ηt is endogenous. However, the mechanics of solving these
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equations is the same - we have to use Ito’s Lemma.

Here we illustrate the derivation of an appropriate set of ordinary differential equations, as

well as the “shooting” method for solving them, using the risk-neutral model of Brunnermeier

and Sannikov (2014). Assume that experts and households are risk neutral, and while experts

must consume non-negatively, households can have both positive and negative consumption.

Then the required risk premium of households is ς
t

= 0. The required risk premium of experts

is −σθt , where θt is the marginal utility of the experts’ wealth that follows

dθt
θt

= µθt dt+ σθt dZt.

We would like to construct differential equations to solve for the functions q(η), θ(η) and

ψ(η). The equations will be of second order in q(η) and θ(η), i.e. we will design a procedure

to compute q′′(η) and θ′′(η), as well as ψ(η), from η, q(η), q′(η) and θ(η), θ′(η). Note also

that, since households demand no risk premium, i.e. ς
t

= 0, experts will issue the maximum

allowed fraction of equity to households, so χt = χ at all times.

In this case q(η) is an increasing function that satisfies the boundary condition

q(0) = max
ι

a− ι
r − Φ(ι) + δ

,

the Gordon growth formula for the value of capital when it is permanently managed by

households. Any expert can get infinite utility if he can buy capital at the price of q(0), so

lim
η→0

θ(η) =∞. (3.19)

Function θ(η) is decreasing: the marginal value of the experts’ net worth is declining as η

rises, and investment opportunities become less valuable. Experts refrain from consumption

whenever θ(η) > 1, and consume only at point η∗ where θ(η∗) = 1, i.e. the marginal value

of the experts’ net worth is exactly 1. That point becomes the reflecting boundary of the

system. That is, the system does not go beyond the reflecting boundary and is rather thrown

back. In addition, at the reflecting boundary η∗ functions q(η) and θ(η) must satisfy

q′(η∗) = θ′(η∗) = 0.
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Now to the differential equations. Equation (3.14) implies that

σ + σqt =
σ

1− q′(η)
q(η)

(χψt − ηt)
, (3.20)

and by Ito’s Lemma,

σθt =
θ′(η)

θ(η)

(χψt − ηt)σ
1− q′(η)

q(η)
(χψt − ηt)

. (3.21)

Therefore, plugging these expressions into the asset-pricing equation (3.12), we obtain

a− a
q(η)

≥ −χθ
′(η)

θ(η)

(χψ − η)σ2(
1− q′(η)

q(η)
(χψ − η)

)2 . (3.22)

Assuming that q′(η) > 0 and θ′(η) < 0, the right-hand side is increasing from 0 to ∞ as

χψ − η rises from 0 to q(η)/q′(η). Thus, we have to set ψ = 1 whenever it is possible to

do so (i.e. χ − η < q(η)/q′(η)) and this is consistent with inequality (3.22). Otherwise we

determine ψ by solving the quadratic equation (3.22), in which we replace the ≥ sign with

equality.

After that, we can find σqt from (3.20), σθt from (3.21), µηt and σηt from (3.13) (where

we set Ct = 0 since experts consume only at the boundary η∗), µqt from the asset-pricing

condition
a− ιt
qt

+ Φ(ιt)− δ + µqt + σσqt − r = χ(σ + σqt )(−σθt ),

µθt from the pricing condition for the risk-free asset

µθt = ρ− r,

and q′′(η) as well as θ′′(η) from Ito’s formula,

µqtq(η) = µηt ηq
′(η) +

1

2
(σηt )2η2q′′(η) and µθtθ(η) = µηt ηθ

′(η) +
1

2
(σηt )2η2θ′′(η).

Solving the system of ODEs numerically. We can use an ODE solver in Matlab,

such as ode45, to solve the system of equations. We need to perform a search, since our

boundary conditions are defined at two endpoints of [0, η∗], and we also need to deal with

a singularity at η = 0. The following algorithm performs an appropriate search and deals

with the singularity issue, effectively, by solving the system of equations with the boundary
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condition θ(0) = M, for a large constant M, instead of (3.19):9

Algorithm. Set

q(0) = max
ι

a− ι
r − Φ(ι) + δ

, θ(0) = 1 and θ′(0) = −1010.

Perform the following procedure to find an appropriate boundary condition q′(0). Set qL = 0

and qH = 1015. Repeat the following loop 50 times. Guess q′(0) = (qL + qH)/2. Use Matlab

function ode45 to solve for q(η) and θ(η) on the interval [0, ?) until one of the following

events is triggered, either (1) q(η) reaches the upper bound

qmax = max
ι

a− ι
r − Φ(ι) + δ

,

(2) the slope θ′(η) reaches 0 or (3) the slope q′(η) reaches 0. If integration has terminated

for reason (3), we need to increase the initial guess of q′(0) by setting qL = q′(0). Otherwise,

we decrease the initial guess of q′(0), by setting qH = q′(0).

At the end, θ′(0) and q′(0) reach 0 at about the same point, which we denote by η∗.

Divide the entire function θ by θ(η∗).10 Then plot the solutions.

Properties of the Solution. Let us interpret the solution of the risk-neutral model.

Point η∗ plays the role of the steady state of our system. The drift of ηt is positive everywhere

on the interval [0, η∗), because the expert sector, which is more productive than the household

sector, is growing in expectation. Thus, the system is pushed towards η∗ by the drift.

It turns out that the steady state is relatively stable, because volatility is low near η∗. To

see this, recall that the amount of endogenous risk in asset prices, from (3.14), is given by

σqt =
q′(η)

q(η)

(χψt − ηt)σ
1− q′(η)

q(η)
(χψt − ηt)

.

From the boundary conditions, q′(η∗) = 0, so there is no endogenous risk near η∗.

However, below η∗, endogenous risk increases as q′(η) becomes larger. As prices react

to shocks, fundamental risk becomes amplified. As we see from the expression for σqt , this

amplification effect is nonlinear, since q′(η) enters not only the numerator, but also the

9Footnote 10 below explains why it actually does not to matter what exact value one sets for θ(0).
10 We can do this because whenever functions θ and q satisfy our system of equation, so do functions Θθ

and q for any constant Θ. Because of that, also, it is immaterial what we set θ(0) to 1.
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Figure 3: Equilibrium with σ = 25% (black), 10% (blue) and 2.5% (red).

denominator. This happens due to the feedback effect: an initial shock causes ηt to drop,

which leads to a drop in qt, which hurts experts who are holding capital and leads to a

further decrease in ηt, and so on.

Of course, far in the depressed region the volatility of ηt, σ
η
t ηt, becomes low again in this

model. This leads to a bimodal stationary distribution of ηt in equilibrium.11

Volatility paradox refers to the phenomenon that systemic risk can build up in quiet

environments. We can illustrate this phenomenon through comparative statics on σ or the

degree of the experts’ equity constraint χ. One may guess that the system becomes much

more stable as σ or χ decline.

This is not the case, as illustrated in Figure 3 for parameters ρ = 6%, r = 5%, a = 11%,

a = 5%, δ = 3% and an investment function of the form Φ(ι) = 1
κ
(
√

1 + 2κι − 1), κ = 10,

χ = 1 and various values of σ. (The investment technology in this example has quadratic

adjustment costs: an investment of Φ + κΦ2/2 generates new capital at rate Φ.)

The volatility paradox shows itself in a number of metrics. As exogenous risk declines,

11One can prove that the stationary distribution is bimodal analytically by analyzing the asymptotic
properties of the solutions near η = 0 and using the Kolmogorov forward equations that characterize the
stationary density - see Brunnermeier and Sannikov (2014) for details.
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Figure 4: Equilibrium with χ = 1 (red), 0.5 (blue) and 0.25 (black).

• maximal endogenous risk σqt may increase (as σ drops from 25% to 10% in Figure 3)

• the volatility σηt near η = 0 rises (and this result can be proved analytically)

• from the steady state η∗ it takes less time for volatility σ + σqt to double

• from the steady state, it may take less time to reach the peak of the crisis ηψ, where

experts start selling capital to households.12

Figure 4 takes the same parameters and σ = 20%, but varies χ. As χ falls, expert net

worth at the steady state η∗ drops significantly, and the volatility σηt in the crisis regime

rises.

3.5 Method 2: The Iterative Method

Here we describe the iterative method of finding the equilibrium, by solving a system of par-

tial differential equations back in time away from a terminal condition. Specifically, imagine

12As σ declines, the system spends less time in the crisis region, so some measures of stability improve,
but the amount of time spent in crisis does not converge to 0 as σ → 0.
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an economy that lasts for a finite time horizon [0, T ]. Given a set of terminal conditions

at time T, we would like to compute the equilibrium over the time horizon [0, T ]. The it-

erative method is based on the premise that as we let T → ∞, behavior at time 0 should

converge to the equilibrium of the infinite-horizon economy. Computation uses the equilib-

rium conditions that express the drifts of various processes, and uses those drifts to obtain

time derivatives for the corresponding functions of the state space. The iterative method is

analogous to value function iteration in discrete time.

We illustrate the method here based on a model with CRRA utility

u(c) =
c1−γ

1− γ
.

Equilibrium conditions (3.10) and (3.8) provide two equations that express the drift of the

price qt, as well as the drifts of aggregate consumption of experts Ct and households Ct.

We also have another asset-pricing condition (3.12), which does not contain any drift terms.

In the end we have three functions but only two drift conditions. As a result, the time

dimension of our computation involves only two functions - the value functions of experts

and households - and the third function, the price, is found for each time point through a

separate procedure.13

Our procedure is literally the analogue of value function iteration (but with multiple

agents affecting the evolving stochastic state). It is convenient to derive directly the equations

that value functions must satisfy. The value functions of experts and households can be

presented in the form

vt
K1−γ
t

1− γ
=

vt
(ηtqt)1−γ

N1−γ
t

1− γ
and vt

K1−γ
t

1− γ
.

Since the marginal utilities of consumption and wealth must be the same, we have

C−γt =
vt

(ηtqt)1−γN
−γ
t =

vt
ηtqt

K−γt ⇒ Ct = Nt
(ηtqt)

1/γ−1

v
1/γ
t

= Kt
(ηtqt)

1/γ

v
1/γ
t

. (3.23)

13If we used the shooting method to find the equilibrium with CRRA utilities, we would have a system
of second-order differential equations for the value functions, and a first-order differential equation for the
price.
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Hence, the risk premia of households and experts are given by

ςt = γσCt = −σvt + σηt + σqt + γσ and ς
t

= γσCt = −σvt −
ησηt

1− η
+ σqt + γσ. (3.24)

Since ∫ t

0

e−ρs
C1−γ
s

1− γ
ds︸ ︷︷ ︸

utility flow

+e−ρt vt
K1−γ
t

1− γ︸ ︷︷ ︸
continuation utility

is by standard dynamic programming arguments a martingale and

d(K1−γ
t )

K1−γ
t

=

(
(1− γ)(Φ(ιt)− δ)−

γ(1− γ)

2
σ2

)
dt+ (1− γ)σ dZt,

we have

C1−γ
t

1− γ
− ρvt

K1−γ
t

1− γ
+ vt

K1−γ
t

1− γ

(
µvt + (1− γ)(Φ(ιt)− δ)−

γ(1− γ)

2
σ2 + σvt (1− γ)σ

)
= 0.

Using (3.23), we obtain

µvt = ρ− (ηtqt)
1/γ−1

v
1/γ
t

− (1− γ)(Φ(ιt)− δ) +
γ(1− γ)

2
σ2 − σvt (1− γ)σ. (3.25)

Likewise,

µvt = ρ− ((1− ηt)qt)1/γ−1

v
1/γ
t

− (1− γ)(Φ(ιt)− δ) +
γ(1− γ)

2
σ2 − σvt (1− γ)σ. (3.26)

Given µvt and µvt , we obtain partial differential equations for the functions v(η, t) and v(η, t)

using Ito’s Lemma, and they are as follows:

µvt v(η, t) = µηt η vη(η, t) +
(σηt η)2

2
vηη(η, t) + vt(η, t) and (3.27)

µvt v(η, t) = µηt η vη(η, t) +
(σηt η)2

2
vηη(η, t) + vt(η, t). (3.28)

Description of the Procedure
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Below we outline the procedure of how we solve for the equilibrium using equations (3.27)

and (3.28). There are three parts.

• The terminal conditions v(η, T ) and v(η, T )

• The static step: finding capital price q(η), allocations ψ(η) and χ(η), volatilities and

drifts at a given time point t given the value functions v(η, t) and v(η, t), and

• The time step: finding v(η, t−∆t) and v(η, t−∆t) from prices, allocations, volatilities

and drifts at time t.

The terminal conditions. Our terminal conditions specify the utilities of the repre-

sentative expert and household, as functions of the experts’ wealth share ηt. We have not

performed a detailed theoretical study of acceptable terminal conditions, but in practice any

reasonable guess works well for a wide range of parameters.

For example, if we set qT = 1 and CT/KT = aηT , then (3.23) implies that

vT = ηT (aηT )−γ and vT = (1− ηT ) (a(1− ηT ))−γ. (3.29)

The static step. Suppose we know value functions through v(η, t) and v(η, t). Let us

describe how we can compute the price qt and characterize equilibrium dynamics at time t.

There are three regions. When η is close enough to 0, then the experts’ risk premia are so

much higher than those of households that ψt < 1, i.e. households hold capital, and equation

(3.12) holds. In this region experts issue the maximal allowed equity share to households, so

χt = χ, since the households’ risk premia are lower. In the middle region, ψt = 1, i.e. only

experts hold capital, but the experts’ risk premia are still higher than those of households

so χt = χ. Finally, when η ≥ χ, the capital is allocated efficiently to experts (i.e. ψt = 1)

and risk can shared perfectly between households and experts by setting χt = ηt. In the last

region, (3.15) implies that ση = 0, so there is no endogenous risk, and risk premia of experts

and households are both equal to ςt = ς
t

= γσ by (3.24).

In the region where ψt < 1 we solve for q(η), ψ(η) and σ + σqt from a system of the

following three equations, which ultimately gives us a first-order ODE in q(η). We obtain

the first by combining (3.12) and (3.24) together with evolution of η equation (3.13), we
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have
a− a
qt

= χ

(
v′(η)

v(η)
− v′(η)

v(η)
+

1

η(1− η)

)
(χψt − η)(σ + σqt )

2︸ ︷︷ ︸(
σ
v
t−σvt +

σ
η
t

1−η

)
(σ+σqt )

. (3.30)

The second we obtain from (3.14) and Ito’s Lemma,

(σ + σq)

(
1− (χψ − η)

q′(η)

q(η)

)
= σ. (3.31)

Finally, from (3.23) and an analogous condition for households, the market-clearing condition

for output is

(ηtqt)
1/γ

v
1/γ
t

+
((1− ηt)qt)1/γ

v
1/γ
t︸ ︷︷ ︸

(Ct+Ct)/Kt

= aψ + a(1− ψ)− ι(q(η)). (3.32)

Once ψt reaches 1, condition (3.30) is no longer relevant. From then on, we set ψt = 1, find

q(η) from (3.32) and σ + σqt from (3.31). Once ηt reaches χ, we enter the last region. There

we set ψt = 1, χt = ηt, compute q(η) from (3.32) and set σqt = 0.

Once we know function q(η) in all three regions, we can find the volatility of ηt from

(3.13) and the volatilities of vt and vt from Ito’s Lemma, i.e.

σηt =
χtψt − ηt

ηt
(σ + σqt ), σvt =

v′(η)

v(η)
σηt η, and σvt =

v′(η)

v(η)
σηt η. (3.33)

We find the required risk premia ςt and ς
t

from (3.24) and the drift of ηt from (3.13), i.e.

µηt =

(
a− ιt
qt
− (ηtqt)

1/γ−1

v
1/γ
t

)
+ σηt (ςt − σ − σqt )− (σ + σqt )(1− χ)

(
ςt − ς t

)
.

Finally, we solve for the drifts of vt and vt from (3.25).

The time step. Once we have all characteristics of the equilibrium at a given time

point t, we can solve for the value functions at an earlier time step t − ∆t from equations

(3.27) and (3.28). These are parabolic equations, which can be solved using either explicit

or implicit methods.

Summary. Set terminal conditions for value functions v(η, T ) and v(η, T ) according to

(3.29) on a grid over η. Divide the interval [0, T ] into small subintervals. Going backwards
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in time, for each subinterval [t−∆t, t] perform the static step and then the time step. That

is, from value functions v(η, t) and v(η, t) find the drift and volatility of η as well as the

drifts of v and v using the following procedure (static step). Start from an initial condition

near (η = 0, ψ = 0) (perturb the condition to avoid division by 0). Solve (3.30), (3.31) and

(3.32) (as a first-order ordinary differential equation for q(η)) until ψ reaches 1. Then set

ψ = 1 and use (3.32) to find q(η) and (3.31) to find σq. Throughout, use χt = max(χ, η).

With functions (of η) q, σq, ψ and χ obtained in this way, compute volatilities from (3.33),

ςt and ς
t

from (3.24), µηt from (3.13) and the drifts of vt and vt from (3.25). Then (this is

the time step) solve the partial differential equations (3.27) and (3.28) for v and v backward

in time over the interval [t − ∆t, t], using fixed functions µvt , µ
v
t , µ

η
t and σηt of η computed

by the static step. Continue until time 0. We get convergence when T is sufficiently large.

Remark. The static step alone is sufficient to solve for the equilibrium prices, allocations

and dynamics in a model with logarithmic utility (i.e. γ = 1), since in this case we know

that (Ct + Ct)/(qtKt) = ρη + ρ(1− η) and expert and household risk premia are ςt = σNt =

χtψt/ηt(σ + σqt ) and ς
t

= (1 − χtψt)/(1 − ηt)(σ + σqt ). Hence, equations (3.30) and (3.32)

become

a− a
qt

= χ
χψt − η
η(1− η)

(σ + σqt )
2 and (ρη + ρ(1− η))qt = aψ + a(1− ψ)− ι(q(η)). (3.34)

Equation (3.31) remains the same.

For logarithmic utility, however, we do not immediately obtain the agents’ value functions.

Those can be found using an extra step.

3.6 Examples of Solutions: CRRA Utility

In this section, we illustrate solutions generated by our code, using the iterative method, and

what we learn from them. We use baseline parameters ρ = 6%, r = 5%, a = 11%, a = 3%,

δ = 5%, σ = 10%, χ = 0.5, γ = 2 and an investment function of the form Φ(ι) = log(κι+1)/κ

with κ = 10. We then study how several parameters, specifically a, σ, χ and γ affect the

equilibrium.

Figure 5 illustrates the equilibrium for the baseline set of parameters. Notice that capital

price qt has a kink - the kink separates the crisis region near η = 0 where ψt < 1, i.e.

households hold some capital, and the normal region where experts hold all capital in the

economy.
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Figure 5: Equilibrium for the baseline set of parameters.

Here, point η∗ where the drift of ηt becomes 0 plays the role of a steady state of the

system. In the absence of shocks, the system stays still at the steady state and in response

to small shocks, drift pushes the system back to the steady state. Moving away from the

crisis regime, at η∗ risk premia decline sufficiently so that the experts’ earnings are exactly

offset by their slightly higher consumption rates.

Above η = χ = 0.5 is the region of perfect risk sharing, where the volatility of η is zero.

Since the drift in that region is negative, the system never ends up there (and if the initial

condition is η0 > χ, then ηt drifts deterministically down to χ).

Figure 6 shows the effect of σ on the equilibrium dynamics. We bound the horizontal

axis at η = χ = 0.5, since the system never enters the region η > χ. The steady state η∗

declines as σ falls, as risk premia decline in the normal regime, until η∗ coincides with the

boundary of the crisis region for low σ (this happens for σ = 0.01 in Figure 6). We also

observe the volatility paradox: as σ declines, endogenous risk σqt does not have to fall, and

may even rise.

But what happens as σ → 0? Does endogenous risk disappear altogether, and does the

solution converge to first best? It turns out that no: in the limit as σ → 0, the boundary of

the crisis region ηψ converges not to 0 but to a finite number.
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Figure 6: Equilibrium for σ = .1 (blue), .05 (red) and .01 (black).
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Figure 7: Equilibrium for χ = .5 (blue), .2 (red) and .1 (black).
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Figure 8: Equilibrium for a = .03 (blue), -.03 (red) and -.09 (black).

Likewise, what happens if financial frictions become relaxed, and experts are able to hold

capital while retaining a smaller portion of risk? It is tempting to conjecture that as financial

frictions become relaxed, the system becomes more stable. Yet, as the bottom left panel of

Figure 7 demonstrates, endogenous risk σqt rises sharply as χ declines.14

It turns out that a crucial parameter that affects system stability is the household produc-

tivity parameter a. The level of endogenous risk in crises depends strongly on the illiquidity

of capital - the difference between parameter a and a that determines how much less house-

holds value capital, in the event that they have to buy it, relative to experts. Figure 8

illustrates the equilibrium for several values of a. Note that endogenous risk in crises rises

sharply as a drops. However, the dynamics in the normal regime and the level of η∗ have

extremely low sensitivity to a - only dynamics in the crisis regime are extremely sensitive.

This is a surprise. While expert leverage responds endogenously to fundamental risk σ in the

normal regime it does not respond strongly to endogenous tail risk. In fact, for logarithmic

14Of course, there is a discontinuity at both σ = 0 and χ = 0. As financial frictions disappear altogether,
the crisis region disappears.
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Figure 9: Equilibrium for γ = 2 (blue), 5 (red) and 0.5 (black).

utility it is possible to prove analytically that the dynamics in the normal regime do not

depend on a at all (but here we illustrate the dynamics for γ = 2).

Finally, let us consider risk aversion γ. There are several effects. Lower risk aversion leads

to a smaller crisis region (but with greater endogenous risk), and lower steady state η∗ as

the risk premia become lower. In this example, higher risk aversion leads to a higher price

of capital, as risk creates a precautionary savings demand.

4 A Simple Monetary Model

So far we focused on a real model with a single risky asset, physical capital and a risk-free

asset. Now, building on Brunnermeier and Sannikov’s (2015a) “I Theory of Money’’ we

introduce instead of the (real) risk-free asset, another asset, money. In general, money has

three roles: it is a unit of account, it facilitates transactions, and it serves as a store of value

(safe asset). Here, we focus on its role as a store of value, which arises in our setting due to

incomplete markets frictions. Unlike in New Keynesian models, which focus on the role of
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money as a unit of account and rely on price and wage rigidities as the key frictions, prices

are fully flexible in our model.

In this section focuses on the following:

1. Money can have positive value despite the fact that it never pays any dividend. That

is, money is a bubble.

2. Money helps agents to share risks in an economy that is plagued by financial frictions.

Hence, having a nominal store of value instead of a real short-term risk-free bond alters

the equilibrium risk dynamics.

3. The “Paradox of Prudence” coined in Brunnermeier and Sannikov (2015a) arises. Ex-

perts hold money to self-insure against idiosyncratic shocks, an action which is micro-

prudent but macro-imprudent. By selling capital to achieve a greater portfolio weight

on money, experts depress aggregate investment and growth, leading to lower returns

on all assets (including money). The Paradox of Prudence is in the risk space what

Keynes’ Paradox of Thrift is for the consumption-savings decision. The Paradox of

Thrift describes how each person’s attempt to save more paradoxically lowers overall

aggregate savings.

4.1 Model with Idiosyncratic Capital Risk and Money

Let us return to the Basak-Cuoco model of Section 2 with experts holding physical capital

and households who cannot, i.e. a = −∞. We introduce the following two modifications:

(i) Capital has in addition to aggregate risk also idiosyncratic risk. (ii) There is no risk-free

asset, but there is money in fixed supply. Agents can long and short it and want to hold it

to self-insure against idiosyncratic risk.

More formally, we assume as before that each expert operates a linear production tech-

nology, akt, with productivity a, but now they also face idiosyncratic risk σ̃dZ̃t in addition

to aggregate risk σdZt. That is a single expert’s capital kt evolves according to

dkt/kt = (Φ(ιt)− δ)dt+ σdZt + σ̃dZ̃t.

The shock dZt is the same for the whole economy, while the shock dZ̃t is expert-specific and

orthogonal to dZt. Idiosyncratic shocks cancel out in the aggregate.

Since idiosyncratic risk is uninsurable due to markets incompleteness, experts also want

to hold money. Money is an infinitely divisible asset in fixed supply, which can be traded
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without frictions. Since money does not pay off any dividends it has value in equilibrium

only because agents want to self-insure against idiosyncratic shocks to their capital holdings.

In other words, money is a bubble, like in Samuelson (1958) and Bewley (1980). Unlike in

Bewley (1980), our idiosyncratic shocks are not endowment shocks, but investment shocks

like in Angeletos (2007). We assume that idiosyncratic risk of the dividend-paying capital

is large enough, σ̃ >
√
ρ, so that money, which does not pay dividends, still has value in

equilibrium. This is unlike Diamond (1965) who introduces physical capital in Samuelson’s

OLG model and Aiyagari (1994) who introduces capital in Bewley’s incomplete markets

setting. In those models, the presence of capital crowds out money as a store of value.15

Experts can invest in (outside) money and capital, while households like in Section 2

only hold money. We also assume for simplicity that all agents have logarithmic utility with

time preference rate ρ.16

As before let us follow our four step approach to solve the model.

4.2 The 4-Step Approach

Step 1: Postulate Price and SDF Processes. In this monetary setting we now have to

postulate not only a process for the price of capital, but also for the “real price” of money.

We denote (without loss of generality) the value of the total money stock in terms of the

numeraire (the consumption good) by ptKt. We normalize the total value of the money

stock by Kt to emphasize that, everything else being equal, the value of money should be

proportional to the size of the economy.

dqt
qt

= µqtdt+ σqt dZt,

dpt
pt

= µptdt+ σpt dZt,

In addition, like in Section 3 we postulate the processes for individual experts’ and

households’ stochastic discount factors:

dξt
ξt

= −rtdt− ςtdZt − ς̃tdZ̃t and
dξ

t

ξt
= −rtdt− ς tdZt,

15We assume that money is intrinsically worthless, and so along with the equilibrium in which money has
value, there is also an equilibrium in which money has no value. However, in a perturbation of the model,
in which agents get small utility from holding money (e.g. because money facilitates transactions), only the
equilibrium with full value of money survives.

16Solving this model with CRRA models using the results on page 22 in Section 3.1 is a worthwhile exercise.
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where rt and rt are the (real) shadow risk-free interest rates of experts and households,

respectively. Note that shadow risk free rates need not be identical, since no real risk-free

asset is traded. Note also that experts require a risk premium not only for the aggregate

risk ςt but also for the idiosyncratic risk they have to bear ς̃t.

We will show that there exists an equilibrium in which the wealth share ηt evolves deter-

ministically and so do the prices qt and pt. Hence, for simplicity we set σqt = σpt = 0. Under

this conjecture the return on physical capital accruing to experts is

drkt =
a− ιt
qt

dt+ (Φ(ιt)− δ + µqt )dt+ σdZt + σ̃dZ̃t

and world stock of money ptKt earns the (real) return of

drMt = (Φ(ιt)− δ + µpt ) dt+ σdZt,

where ιt is the investment rate in global capital.

Step 2: Equilibrium Conditions. First, note that the optimal investment rate is

determined by qt through Φ′(ιt) = 1/qt. Second, the optimal consumption rate of all agents

is simply ρ times their net worth, since the utility of all agents is logarithmic with time

preference rate ρ. Hence, aggregate demand for the consumption good is ρ(qt + pt)Kt.

Given total supply of consumption goods after investing, we have the following goods market

equilibrium condition:

ρ(qt + pt)Kt = (a− ι)Kt.

Next, we solve the experts’ and households’ portfolio problems. Notice that, given the

returns drMt and drkt on capital and money, the only two assets traded in this economy, all

agents have exposure σ dZt to aggregate risk. At the same time, experts also have exposure

xtσ̃ dZ̃t to their individual idiosyncratic shocks, where xt is the experts’ portfolio weight on

capital. Hence, the required risk premia of these log-utility agents are

ςt = ς
t

= σ and ς̃t = xtσ̃.

The experts’ and households’ asset pricing equations for money, respectively, are

Et[dr
M
t ]

dt
− rt =

Et[dr
M
t ]

dt
− rt = σ2︸︷︷︸

=ςtσ=ς
t
σ

.
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Thus, rt = rt: even though there is no risk-free real asset in this economy, both agent types

would agree on a single real risk-free real interest rate.

The experts’ asset pricing equation for physical capital is

Et[dr
k
t ]

dt
− rt = ςtσ + ς̃tσ̃,

reflecting the fact that experts are also exposed to idiosyncratic risk for which they earn an

extra risk premium. Hence,
Et[dr

k
t ]

dt
− Et[dr

M
t ]

dt
= xtσ̃

2. (4.1)

Capital market clearing implies that

xt =
qtKt

ηt(pt + qt)Kt

=
1

ηt

qt
pt + qt

, (4.2)

Step 3: Evolution of η. Experts’ aggregate net worth Nt evolves according to

dNt

Nt

= rt + σ( σ︸︷︷︸
ςt

dt+ dZt) + xtσ̃ς̃t dt− ρ dt,

given their exposures to aggregate and idiosyncratic risk, and since idiosyncratic risk cancels

out in the aggregate. The law of motion of aggregate wealth is

d((qt + pt)Kt)

(qt + pt)Kt

= rt + σ(σ dt+ dZt) + ηtxtσ̃ς̃t dt− ρ dt,

where ηt = Nt
(qt+pt)Kt

is the experts’ net worth share and ηtxt = qt/(pt + qt) is the exposure to

idiosyncratic risk in the world portfolio. Hence,

dηt
ηt

= x2
t (1− ηt)σ̃2 dt =

(
qt

pt + qt

)2
1− ηt
η2
t

σ̃2dt. (4.3)

Step 4: Derive ODEs for the postulated price processes q and p as a function of the

state variable η. We omit this step as it is similar to the previous section.

4.3 Observations and Limit Case

The increase in experts’ wealth share ηt, or equivalently the decline of households’ wealth

share, 1− ηt, results in part from the fact that experts earn a risk premium from taking on
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idiosyncratic risk. The higher the idiosyncratic risk σ̃2, the faster experts’ wealth share rises

towards 100%. Interestingly, it is the fact that experts are unable to share idiosyncratic risk

which makes them richer over time compared to households.

Money allows for some sharing of idiosyncratic risk, since the experts’ exposure to id-

iosyncratic risk of xtσ̃ is less than what it would have been without money, i.e. σ̃/ηt, as long

as xt < 1/ηt or pt > 0.

Comparison with Real Model. It is instructive to contrast the settings of this section

with that of Section 2, where households hold the real risk-free asset instead of money. The

evolution η follows now (4.3) instead of (2.11). Note that in both settings the experts’

wealth share drifts towards 100%. However, there are crucial differences. In the setting with

nominal money, aggregate risk is shared fully between experts and households. Hence, both

groups receive a risk premium and therefore aggregate risk does not impact the wealth share

in the model with money. In contrast, in the real model experts hold all the aggregate risk

and hence only they earn a risk premium, leading to a positive drift in η. More importantly,

aggregate risk sharing with money makes the evolution of experts’ wealth share deterministic.

In contrast, in the real model that experts’ wealth share is necessarily stochastic, as revealed

by (2.11).

The Only Experts Case. Finally, we are able to derive a closed form solution for the

absorbing state η = 1 to which the system drifts. When the state η = 1 is reached µq(1) =

µp(1) = 0 and thus experts’ asset pricing equation (4.1) and capital market clearing (4.2)

can be combined and simplified as follows

1

σ̃2

a− ι
q

=
E[drk − drM ]/dt

σ̃2
= xt =

q

p+ q
(4.4)

Combining equation (4.4) with the goods market clearing condition

ρ(p+ q)Kt = (a− ι)Kt (4.5)

and the optimal investment rate

ι =
q − 1

κ
, (4.6)
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for the functional form Φ(ι) = 1
κ

log(κι+ 1) one obtains the “money equilibrium,” in which

money is a bubble with

q =
1 + κa

1 + κ
√
ρσ̃

and p =
σ̃ −√ρ
√
ρ

q.

The “money equilibrium” exists as long as σ̃ >
√
ρ.

In addition, there exists a “moneyless equilibrium”, obtained by setting p = 0 and solving

(4.5) with (4.6) to obtain

q0 =
1 + κa

1 + κρ
and p0 = 0.

Equation (4.4) is no longer relevant because money is no longer an asset in which agents can

put their wealth.

Note that the price of capital for the “moneyless” equilibrium is the same as in the

real economy of Section 2. The growth rate of the economy in both equilibria is given by

g = 1
κ

log q − δ. In the money equilibrium, q is lower and so is overall economic growth, but

experts have to bear less risk.

Financial Deepening. Financial deepening or innovation that lower the amount of id-

iosyncratic risk households have to bear also lowers the value of money, p. However, it

increases the price of capital q and with it, the investment rate, ι, and the overall economic

growth rate g. Surprisingly, q + p declines. That is, financial deepening lowers total wealth

in the economy.

The Paradox of Prudence. The Paradox of Prudence arises when experts try to lower

their risk by tilting their portfolio away from real investment and towards safe asset, money.

Scaling back risky asset holding can be micro-prudent, but macro-imprudent. As experts

try to lower their (idiosyncratic) risk exposure, the price of capital falls in Brunnermeier and

Sannikov (2015a). This behavior lowers overall economic growth and with it the real return

on money holdings. Since each individual expert takes prices and rates of return as given,

they do not internalize this pecuniary externality. As shown in Brunnermeier and Sannikov

(2015a), money holdings in this model are inefficiently high if σ̃(1−κρ) > 2
√
ρ. Our Paradox

of Prudence is analogous to Keynes’ Paradox of Thrift, but the former is about changes in

portfolio choice and risk, while the latter refers to the consumption-savings decision.17

17Keynes’ Paradox of Thrift states that an increase in the savings propensity can paradoxically lower
aggregate savings. An increase in savings propensity lowers consumption demand. If the increased savings
are “parked in (bubbly) money” instead of additional real investments, aggregate demand becomes depressed.
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5 Critical Assessment and Outlook

The economy with two types of agents gives rise to a number of general ideas - we describe

these broader ideas in this section. We would like to make the point that continuous time has

the capacity to build upon many ideas present in the literature, with fuller and less stylized

models, and to drive a deeper understanding of financial frictions in the macroeconomy in

new ways. We comment on how the methodology we presented above can be extended,

and used fruitfully, in higher-dimensional state spaces. We also comment on the issues of

uniqueness of equilibria and the characterization of the full set of equilibrium possibilities

when multiple equilibria exist.

One key idea is that the wealth distribution in the economy matters. In the models we

solved in Sections 2 and 3, the wealth distribution is characterized by a single state variable,

the wealth share of experts ηt. When ηt is low, experts become undercapitalized. More

generally, other sectors can become undercapitalized. Mian and Sufi (2009) argue that a big

drag on the economy in the recent financial crisis has been the fact that many households

are undercapitalized. Caballero et al. (2008) discuss how during Japan’s lost decade it was

the corporate sector that became undercapitalized. The general message here is that the

wealth distribution across sectors matters for the level of economic activity - asset allocation

- as well as the rates of earnings and risk exposures of various sectors. These earnings and

risk exposures in turn drive the stochastic evolution of the wealth distribution.

The idea that the wealth distribution drives economic cycles is not new in the literature.

Kiyotaki and Moore (1997) and Bernanke et al. (1999) consider the fluctuations of the wealth

of a class of agents near the steady state. Of course, continuous-time methods facilitate a full

solution of this type of a model. He and Krishnamurthy (2013) consider a model similar to

the ones we presented here, but without asset misallocation and with a somewhat different

assumption of the earnings of the households’ holdings of expert equity.18

More broadly, several papers introduce the idea of intergenerational wealth distribu-

tion. This idea exists already in Bernanke and Gertler (1999), where the wealth of old

entrepreneurs affects wages in the labor market, which in turn impact the accumulation

of wealth by young entrepreneurs. Myerson (2012) builds a model with T generations of

bankers, in which the wealth distribution evolves in cycles, causing cycles in real activities.

This lowers aggregate income. Saving a fraction of now lower income can lower overall dollar savings.
18In that model, households earn more than their required return, and therefore there is rationing of

experts’ shares. Effectively, the alternative assumption gives households some market power, which inter-
mediaries do not have. This leads to a lower intermediary earnings rate and a slower recovery from crisis.
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When the wealth of old bankers is high, risk premia are low, and hence earnings of young

bankers are low. Wealth distribution across sectors also matters. Brunnermeier and San-

nikov (2015b) develop a rather symmetric model, in which there are two sectors that produce

two essential goods, and either one of the sectors can become undercapitalized. Brunner-

meier and Sannikov (2012) discuss the idea that multiple sectors can be undercapitalized,

and that monetary policy can affect “bottlenecks” through its redistributive consequences.

They envision an economy in which multiple assets are traded, and agents within various

sectors hold specific portfolios, backed by a specific capital structure. Brunnermeier and

Sannikov (2015a) provide formal backing of these ideas using a three-sector model, in which

traded assets include capital, money and long-term bonds, and monetary policy can affect

the prices of these assets (and hence affect the sectors that hold theses assets) in various

ways.

This leads us to the obvious question about the capacity of continuous-time models to

develop these complex ideas. Can continuous-time methods successfully handle models with

multiple state variables, which describe e.g. the distribution of wealth across sectors together

with the composition of productive capital? We believe that yes - we are highly optimistic

about the potential of continuous-time models. Certainly, the curse of dimensionality still

exists. However, models with as many as four state variables should be solvable through a

system of partial differential equations in a matter of minutes, if not faster, through the use

of efficient computational methods. The authors of this chapter have some experience with

computation, and on a personal level many possibilities seem feasible now which appeared

out of reach five years ago. To gauge computational speed, DeMarzo and Sannikov (2016)

solve a model with three state variables, using a system of two partial differential equations.

In addition the procedure involves an integration step somewhat reminiscent of the “static

step” of the procedure in subsection 3.5. With 201×51×51 grid points, the procedure using

the explicit(!) method takes only a minute to compute the optimal contract. The implicit

method of solving partial differential equations, which we use to compute the examples in

subsection 3.6 is significantly faster. For example, when solving a partial differential equation

of the parabolic type in two dimensions (all equations for computing the value function using

the iterative method are parabolic), with N grid points in space, one needs O(N2) grid points

in time to ensure that the computational procedure is stable, when using the explicit method.

In contrast, when using the implicit method, stability does not depend on the length of the

time step, i.e. the time step can be kept constant when greater resolution is required along

the space dimension. Hence, we believe that by making a claim that models with four state

50



variables are feasible to solve, we are in fact quite conservative.

We think that the iterative method, based on value function iteration for each type of

agent, should prove quite fruitful. This method is based on backward induction starting

from a terminal condition on the state space. At each new time interval, we start with value

functions computed for the end of the interval. These value functions determine the agents’

incentives through their continuation values from various portfolio choices. As a result, we

can determine at each time point the allocations of assets and risk consistent of equilibrium

- this is the “static step” - and hence we can compute the value function one period earlier.

We see this method as fairly general and suitable for multiple dimensions.

In contrast, the shooting method aims at solving for the fixed point - equilibrium value

functions and allocations in an infinite-horizon economy - up front. The straightforward

extension of this method to multidimensional state spaces may be difficult to implement, as

one would have to guess functions that match boundary conditions on the entire periphery of

the state space, instead of just two endpoints. Nevertheless, procedures that use variations

of policy iteration may lead to an efficient way of solving for a fixed point.

What makes continuous-time models particularly tractable is that transitions are local

(when shocks are Brownian) - hence it is possible to determine the agents’ optimal decisions

and solve for their value functions by evaluating only first and second derivatives. In discrete

time, with discrete transitions, the agents’ decisions at any point may depend on entire value

functions.

What about environments with so many dimensions that the straightforward discretiza-

tion of the state space makes computation infeasible, due to the curse of dimensionality?

Here, we are curious about the idea of describing state variables through certain essential

moments - following the suggestions of Krusell and Smith (1998). We have not processed

this possibility sufficiently to comment on it in the chapter, but generally we are very eager

to know about ways to choose moments that describe the state space in a meaningful way

for a given model. We should say, however, that continuous time can be helpful here as well,

for describing continuation values and prices as functions of moments.

We finish this section by discussing the question of equilibrium uniqueness in the model we

presented and in more complex models we envision. First, consider a finite-horizon economy

that we are solving for via an iterative procedure. The procedure has two steps - the time

step of value function iteration and the static step that determines prices and allocation.

The time step cannot be a source of nonuniqueness - given continuation values, transition

probabilities and payoff flows, the value function one period earlier is fully determined. The
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static step may or may not lead to nonuniqueness. In the model of Section 3 there are

multiple nonstationary equilibria. For example, at any time point, the price of capital qt can

jump. If qt jumps up by 10% then the risk-free asset must have an instantaneous return of

10% as well to ensure that the markets for capital and the risk-free asset clear. Of course,

by the market-clearing condition for output (3.32), the price of capital qt must correspond

to the allocation of capital ψt ∈ [0, 1]. The allocation itself must be justified by the local

volatility of capital, so that all agents have incentives to hold their portfolios. However, the

possibility of jumps opens up room to many possibilities.

We compute the Markov equilibrium, in which prices and allocations are functions of η. If

so, then the price of capital q(ηt) must satisfy the differential equation that follows from (3.30)

and (3.31). Notice that there are two values of σ+σqt consistent with the quadratic equation

(3.30), positive and negative. We select the positive value, since otherwise amplification is

negative, in the sense that a positive fundamental shock would result in a drop in the value

of capital. Hence, the equilibrium we compute is the unique Markov equilibrium, in which

the return on capital is always positively correlated with fundamental shocks to capital.

In more general models, we envision that some of the same forces are present. We also

anticipate that, when there are multiple equilibria, it may be of interest to characterize

the whole set of equilibria via an appropriate recursive structure. To answer this question,

one may need to construct/compute a correspondence from the state space to the vector of

equilibrium payoffs of all agent types. We envision that this correspondence can be found

recursively by solving for the boundaries of attainable equilibrium payoff sets backwards in

time, but the details of this procedure are certainly work in progress.
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