
NBER WORKING PAPER SERIES

THE INCIDENCE OF CARBON TAXES IN U.S. MANUFACTURING:
LESSONS FROM ENERGY COST PASS-THROUGH

Sharat Ganapati
Joseph S. Shapiro

Reed Walker

Working Paper 22281
http://www.nber.org/papers/w22281

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
May 2016

Previously circulated as "Energy Prices, Pass-Through, and Incidence in U.S. Manufacturing." 
We thank Joe Altonji, Ernesto dal Bó, Severin Borenstein, Lucas Davis, David Donaldson, Penny 
Goldberg, Kostas Metaxoglou, Jim Poterba, Jim Sallee, Glen Weyl, Danny Yagan and various 
seminar participants for useful comments and discussions. Funding from the Department of 
Energy, the National Science Foundation, and the NBER is gratefully acknowledged. We would 
also like to thank Randy Becker, Cheryl Grim, and Kirk White for sharing code and data. 
Jonathan Kadish and Carla Johnston provided excellent research assistance. The research in this 
paper was conducted while the authors were Special Sworn Status researchers of the U.S. Census 
Bureau at the Berkeley and Yale Census Research Data Center. This paper has been screened to 
insure that no confidential data are revealed.  Research results and conclusions expressed are 
those of the authors and do not necessarily reflect the views of the Census Bureau or the National 
Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2016 by Sharat Ganapati, Joseph S. Shapiro, and Reed Walker. All rights reserved. Short 
sections of text, not to exceed two paragraphs, may be quoted without explicit permission 
provided that full credit, including © notice, is given to the source.



The Incidence of Carbon Taxes in U.S. Manufacturing: Lessons from Energy Cost Pass-Through 
Sharat Ganapati, Joseph S. Shapiro, and Reed Walker
NBER Working Paper No. 22281
May 2016, Revised January 2017
JEL No. H22,H23,L11,Q40,Q54

ABSTRACT

This paper estimates how increases in production costs due to energy inputs affect consumer 
versus producer surplus (i.e., incidence). In doing so, we develop a general methodology to 
measure the incidence of changes in input costs that can account for three first-order issues: factor 
substitution amongst inputs used for production, incomplete pass-through of input costs, and 
industry competitiveness. We apply this methodology to a set of U.S. manufacturing industries 
for which we observe plant-level output prices and input costs. We find that about 70 percent of 
energy price-driven changes in input costs are passed through to consumers. This implies that the 
share of welfare cost borne by consumers is 25-75 percent smaller (and the share borne by 
producers is correspondingly larger) than most existing work assumes.

Sharat Ganapati
Yale University
Department of Economics
PO Box 208268
New Haven, CT 06520-8268
sganapati@gmail.com

Joseph S. Shapiro
Department of Economics
Yale University
P.O. Box 208268
New Haven, CT 06520
and NBER
joseph.shapiro@yale.edu

Reed Walker
Haas School of Business
University of California, Berkeley
2220 Piedmont Ave
Berkeley, CA 94720
and NBER
rwalker@haas.berkeley.edu



1 Introduction

Greenhouse gas emissions are classic environmental externalities that have not faced stringent U.S.

or global policy, even in the face of mounting evidence that the economic costs from climate change

could be severe. The recent Paris Agreement on Climate Change, for example, is only the latest

attempt at voluntary global coordination. Existing and proposed policies designed to address future

climate change implicitly or explicitly place a price on carbon dioxide emissions. Pricing carbon

emissions, by design, will make fossil-fuel based energy consumption more expensive. This has

led to the dual concern by policymakers that increased energy costs will not only make industries

that rely on these energy inputs less competitive but also make consumers of industry products

worse off due to higher output prices.1 Despite these concerns, relatively little is known about how

changes in energy input costs would impact the prices that consumers and producers face, or, more

generally, consumer and producer welfare.2

This paper uses administrative data from the Census Bureau’s Census of Manufactures to esti-

mate the degree to which energy price-driven changes in production costs impact consumers relative

to producers (i.e., incidence). In so doing, this paper offers a general approach to analyzing the inci-

dence of changes in input costs while accounting simultaneously for three important issues that the

existing public finance literature considers in isolation or not at all: substitution among productive

inputs, incomplete pass-through of input costs, and various forms of imperfect competition. For-

mally, we generalize recent theories of incidence to derive a sufficient statistic representation for the

incidence of producer input taxes that depends on two parameters that we estimate: a pass-through

rate and a measure of industry competitiveness. The goal of this paper is to use these statistics to

characterize the change in consumer relative to producer surplus associated with changes in energy

input costs. While we focus on analyzing energy prices, the methodology is flexible enough that it

could be applied to study the product market incidence of a wide array of input cost shocks, such

as minimum wage laws, tariff liberalization for imported intermediate goods, or changes in capital

costs.

The paper has two main empirical findings. First, for the several manufacturing industries

we study, we estimate a pass-through rate of around 0.70; that is, on average a 1 dollar increase

in marginal costs due to higher energy prices translates into a 70 cent increase in output prices.

1For example, the National Association of Manufacturers lamented that a U.S. cap-and-trade program for CO2

would have a “devastating impact to manufacturing” due in part to inability “to adjust the price of their goods and
services quickly enough to match potentially steep energy cost increases” (Streeter, 2009). Similarly, the Heritage
Foundation review of climate regulation argues, “Americans will be hit repeatedly with higher prices as businesses
pass higher costs onto consumers.” They go on to say, “If a company had to absorb the costs, high energy costs
would shrink profit margins” (Loris and Jolevski, 2014).

2The lack of empirical evidence has often been noted in the literature. Bento (2013) comments, “More research
that carefully quantifies the effects of environmental policies on the prices of final goods is also needed. Existing
research typically assumes that firms will have the ability to fully pass along the costs of environmental policies in the
form of higher consumer prices. Under many circumstances, this assumption may not be applicable.” Similarly, Parry,
Sigman, Walls, and Williams (2006) highlight. “Empirical studies on the extent to which the costs of environmental
policies are passed forward into higher prices of consumer products would be extremely valuable; at present, empirical
analyses typically assume 100% pass-through . . . ”
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Pass-through is greatest in the one industry in our study that appears to be the least competitive,

cement. We show that relaxing assumptions pertaining to complete pass-through and perfect

competition leads consumers to bear 25-75 percent less of the welfare burden than conventional

methods assume.3

To help frame ideas, consider a simple example of a manufacturing plant that faces increases in

carbon taxes. Economists have long recognized that the incidence of a tax, defined in this paper

as its impact on the welfare of producers relative to consumers, is independent of who physically

writes the check to pay it (Jenkin, 1872). The same principle applies for shocks to production costs

(e.g., oil supply disruptions arising from political events in oil-producing countries, or fracking).

The reason is that changes in production costs due to taxes or other market forces lead to changes

in prices and quantities of both outputs and inputs. In this example, a carbon tax levied at the

level of a manufacturing plant only physically applies to the plant since the government directly

collects tax revenue from the plant. If the tax causes plants to increase prices, then the tax burden

will shift forward to consumers. If the tax causes plants to invest in energy efficient production

technologies, then producers will have to pay less in energy taxes, minimizing their burden. Thus,

pass-through and input substitution describe means by which the party which physically pays a

tax can either transmit the effects of that tax to others or avoid paying the tax altogether.

The paper proceeds in three steps. First, we formalize a partial equilibrium expression for the

incidence of changes in the costs of a specific input like energy. The recent theory of incidence

focuses primarily on the role of output taxes, highlighting how incidence may differ depending on

industry competitiveness (Weyl and Fabinger, 2013). We begin by showing how the incidence of

input price changes can differ from the incidence of output taxes because, in response to a change

in input prices, firms can substitute across different inputs.

The key parameter determining incidence is the degree to which marginal costs are passed

through to output prices. The paper’s second part focuses on six U.S. manufacturing industries

for which we observe both output prices and input costs: boxes, bread, cement, concrete, gasoline

refining, and plywood.4 We compute plant-level marginal costs using methods originally proposed

by Hall (1986) and further developed by De Loecker and Warzynski (2012). In practice, this

amounts to estimating plant-level markups using production function estimates and backing out

3Most existing work on the incidence of energy costs assumes that the industry supply curve is infinitely elastic
and that producers are perfectly competitive, or equivalently, they assume that pass through is complete and that
consumers bear the entire welfare burden. Ultimately all welfare changes affect households, either through ownership
of firms (producer incidence) or through expenditure patterns (consumer incidence). The question of who owns firms
is beyond the scope of this paper. However, it is well established that capital ownership is not evenly distributed
across the U.S. population, so welfare losses to manufacturing producers and consumers have different incidence.

4The Census Bureau primarily collects quantity data for industries in which quantity data is readily interpretable,
such as those industries that produce homogeneous products. A few additional industries produce homogeneous
products and have Census-collected price/quantity data. However, much of the quantity data in these industries has
been imputed, and the remaining, non-imputed sample sizes preclude the estimation of costs. Outside of industries
that produce homogeneous products, plant-level output price data is less readily available at the plant-level, and
in cases where the data is available (e.g., BLS producer price data), it is often not possible to observe or estimate
changes in input costs. Plant level linkages between the BLS producer price survey and plant-level production surveys
such as the Census of Manufacturers should be a priority for future research.
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marginal costs as the difference between the price and the markup.

The paper’s third part estimates how energy price-driven changes in marginal costs are passed

through to output prices. We do not need to, nor can we, directly observe plant-level energy

input prices.5 Instead, we generate proxies for changes in plant-level energy costs that we use to

instrument our measure of plant-level marginal costs. Both of these instruments interact the shares

of different fuels used for energy with time-series variation in the prices of these fuels (a “shift-share”

approach related to Bartik (1991)). The first instrument relies on the fact that electricity prices

vary over time and space depending on the local fuels used for generation. Specifically, we calculate

the share of a state’s electricity generated by coal, petroleum, and natural gas, and we interact

these (lagged) generation shares with national time-series variation in the prices of these fuels. For

example, when coal prices rise, industrial electricity prices disproportionately rise in areas where

coal-fired power plants generate a large share of electricity. The second instrument for plant-level

marginal costs uses the fact that manufacturing industries rely on a range of different energy inputs

into the production process. Thus, industries whose production process mainly uses coal will see

energy costs increase more when coal prices rise, and industries that rely more on natural gas will

see energy costs increase more when the price of natural gas rises. Specifically, we interact (lagged)

industry fuel input shares with national time-series variation in the prices of these fuels. Both

instruments are strong predictors of changes in marginal costs. Using shocks to energy costs as

instruments for marginal cost delivers a local average treatment effect for how energy price-induced

changes in marginal cost are passed through to product prices. The paper concludes by combining

information on cost pass-through with information on industry competitiveness to characterize the

economic costs of energy price increases for consumers relative to producers, separately by industry.

The paper has two primary contributions. First, we develop and implement a general empirical

methodology for analyzing the incidence of changes in input costs while accounting simultaneously

for three important features that the existing literature considers in isolation or not at all: (i) firms

can substitute away from paying the input tax by changing their input mix, (ii) the industry supply

curve may not be infinitely elastic and pass-through may be incomplete, and (iii) incidence depends

on the competitiveness of an industry. Second, we estimate the incidence of energy cost changes

for several U.S. industries, while relaxing several strong assumptions of previous work.

This paper builds on several literatures. An important literature in public finance studies the

incidence of carbon taxes and energy prices, typically by using general equilibrium models based

on input-output matrices and detailed expenditure data (Bovenberg and Goulder, 2001; Fullerton

and Heutel, 2007; Hassett, Mathur, and Metcalf, 2009; Grainger and Kolstad, 2010; Fullerton

and Heutel, 2010; Williams, Gordon, Burtraw, Carbone, and Morgenstern, 2014). These studies

almost universally assume that firms engage in perfect competition and that the industry supply

curve is infinitely elastic, which implies complete pass-through of energy input price changes to

5The Census of Manufactures reports some plant-level electricity prices (Davis, Grim, Haltiwanger, and Stre-
itwieser, 2013), many of which are imputed. Electricity accounts for only around half of energy costs, as it excludes
primary energy like oil, as, or coal used at the plant. The Census of Manufactures does report total expenditure on
fuels, but not prices or quantities separately.
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consumers. Often, these studies pair this complete pass-through assumption with data on consumer

expenditures to calculate which consumers would be most affected. Our paper departs from this

literature by showing that incomplete pass-through is common in U.S. manufacturing, and many

manufacturing industries look less than perfectly competitive in the data.6 An example of why these

departures matter is the conclusion of this literature that energy taxes are regressive. Estimates

of the regressivity of energy taxes may look quite different if firm owners bear part of the burden

of increases in energy costs. A related benefit of our analysis is that some benefit-cost analyses

depends on a pass-through rate, and our methodology provides data to enhance the accuracy of

such analysis. For example, the USEPA (1995)’s analysis of a Clean Water Act standard regulation

described two sets of possible costs to industry, one based on zero pass-through and another based

on incomplete pass-through; allowing for the greater pass-through number decreased the predicted

number of plant closures by half.

A growing body of research does suggest that welfare and incidence of environmental and energy

policy may differ dramatically for imperfectly competitive industries (Buchanan, 1969; Barnett,

1980; Ryan, 2012; Fowlie, Reguant, and Ryan, 2016), but the empirical literature on imperfect

competition in the context of environmental and energy policy typically studies a single industry

(e.g., cement or electricity). Our finding that cement is quite different from the other industries

we study (in both cost pass-through and competitiveness) underscores that these findings may be

hard to generalize to other industries. This paper’s research questions are particularly important

for U.S. manufacturing, as industry (including manufacturing) accounts for about a third of U.S.

end-use energy consumption or greenhouse gas emissions.

A separate but related literature at the intersection of public finance and industrial organization

uses microdata to analyze the pass-through of gasoline taxes into retail gasoline or diesel prices

(Doyle and Samphantharak, 2008; Marion and Muehlegger, 2011; Kopczuk, Mario, Muehlegger,

and Slemrod, 2016) or European Union Emissions Trading System (ETS) allowance prices to elec-

tricity wholesale prices (Fabra and Reguant, 2014). These analyses typically account for only one

productive input (e.g., coal prices) which makes the methodology difficult to generalize to most

manufacturing industries which use multiple factors of production and whom may be able to sub-

stitute across different inputs when costs of a single input rise. For example, Miller, Osborne, and

Sheu (2015) analyze the pass-through of energy costs in a single manufacturing industry – cement

– though assume a single factor of production, which precludes factor substitution.7 In contrast

to this existing literature, we develop an empirical methodology to measure incidence and pass-

through for any industry in which we observe price data and input choices. The approach is flexible

6One additional, important difference is that our empirical methodology is partial equilibrium in nature, whereas
the papers described above are general equilibrium in nature. An obvious step for future research would be to combine
some of the parsimony and generality developed here to quantitative, general equilibrium models.

7 Miller, Osborne, and Sheu (2015) assume “there are no viable substitutes for fossil fuel in the production process”
(p. 1). One of our motivations is that an essential feature of energy taxes, tariff reforms for intermediate inputs,
minimum wage laws, or other regulation of inputs is that firms can change their use of the regulated input. This
substantially changes the welfare burden, formulas for measuring incidence, and methods required to estimate the
relevant parameters.
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enough to allow for changes in energy prices that lead to factor substitution in production, and

the approach is general enough to calculate incidence in the presence of incomplete pass-through

and/or deviations from perfect competition.

This paper is also related to a set of work analyzing how energy prices differentially affect U.S.

industries. The literature on industry impacts of carbon policies is based largely on simulation

modeling, although a number of statistical analyses also exist (e.g., Kahn and Mansur (2012)

and Aldy and Pizer (2015)). The simulation analyses include both short-term partial equilibrium

assessments as well as long-term computable general equilibrium (CGE) models.8 Davis, Grim,

Haltiwanger, and Streitwieser (2013) document patterns in plant-level electricity input prices for

U.S. manufacturing using some of the same data we use, though their focus is on explaining what

determines patterns of electricity input prices, rather than assessing their consequences. Relative to

existing empirical literature in this area, we examine unexplored outcomes such as how energy prices

affect plant-level marginal costs and output prices for a select group of industries. Relative to the

existing simulation and CGE literature, we provide a framework and methodology for considering

incidence that relies on arguably fewer modeling assumptions.9

Lastly, this project relates to a substantial empirical literature on pass-through of costs other

than energy prices. This literature spans many fields and explores the pass-through of exchange

rates (Goldberg and Hellerstein, 2008; Gopinath, Gourinchas, Hsieh, and Li, 2011; Campa and

Goldberg, 2005), sales taxes (Poterba, 1996; Marion and Muehlegger, 2011), healthcare capitation

payments (Cabral, Geruso, and Mahoney, 2015; Duggan, Starc, and Vabson, 2014), and minimum

wage laws (Harasztosi and Lindner, 2015). Few papers observe and/or estimate marginal cost pass-

through, with recent exceptions including a paper focused on Indian manufacturing (De Loecker,

Goldberg, Khandelwal, and Pavcnik, Forthcoming) and another constructing marginal costs from

fuel data in the Spanish electricity market (Fabra and Reguant, 2014). To the best of our knowledge,

no literature estimates marginal cost pass-through in U.S. manufacturing, a parameter which is a

necessary ingredient for characterizing the incidence of any input tax levied on U.S. manufacturers.

The rest of the paper proceeds as follows. Section 2 describes the role of energy in the output of

U.S. manufacturing products. Section 3 describes a general theory of incidence that motivates our

empirical analysis. Section 4 describes the data, and Section 5 describes the econometric setting.

Section 6 presents results, and Section 7 concludes.

8Ho, Morgenstern, and Shih (2008) review more than a dozen prior U.S. and European analyses using CGE models.
9Existing CGE frameworks must fully specify both the demand side and supply side of the economy as well as

calibrate or estimate a set of demand elasticities and cross-price elasticities for each of the industries in the analysis.
For example, the IGEM model (Goettle, Ho, Jorgenson, Slesnick, Wilcoxen, and EP-W, 2007), which has been used
extensively by the US Environmental Protection Agency and other organizations, features over 2000 equations that
jointly fit together to define an equilibrium in each period.
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2 Energy and U.S. Manufacturing

A brief background on energy use in U.S. manufacturing may clarify this paper’s analysis.10 Man-

ufacturing accounts for a large share of energy demand. Industrial energy consumption (which

includes manufacturing along with agriculture, mining, and construction) accounts for about 30

percent of U.S. end-use energy consumption and also about 30 percent of end-use greenhouse gas

emissions (EIA, 2015; USEPA, 2015). Energy is a limited direct cost for manufacturing on aver-

age, at about two percent of revenues for the entire manufacturing sector, though energy costs are

much greater in some industries (Becker, Gray, and Marvakov, 2013). In alkali and chlorine man-

ufacturing, cement, gasoline refining, lime manufacturing, and primary aluminum production, for

example, energy costs (including energy that is physically formed into the manufactured product,

or “feedstock”) exceed 20 percent of revenues.

Manufacturing generally uses two categories of energy – electricity and primary fuels. Elec-

tricity’s price per British thermal unit (BTU) is two to five times the mean price of other energy

sources (EIA, 2010), partly because much of the raw fuel used to produce electricity is lost as heat.

The main primary fuels used in manufacturing are oil, natural gas, and coal. About 75 percent of

BTUs used for fuel in manufacturing come from natural gas, about 20 percent from coal, and the

remainder from oil and assorted sources (EIA, 2010). Natural gas is increasingly common, partly

because hydraulic fracturing decreased the domestic price of natural gas beginning around 2008

(see e.g., Hausman and Kellogg (2015)), though even in 1990, natural gas provided 75 percent of

BTUs used for fuel.

Manufacturing plants use energy for four general tasks: boiler fuels (about 25 percent of BTUs),

process production (40 percent), other on-site purposes (10 percent), and feedstock (25 percent).

Boiler fuels mainly come from natural gas and coal and are used for combined heat-and power,

cogeneration, or related purposes. Process production includes heating or cooling parts of the

manufacturing product itself, driving manufacturing machines, or electro-chemical processes. Driv-

ing machines almost exclusively use electricity, but other process production tasks use a mix of

natural gas, oil, and coal. Other on-site uses of energy include plant lighting, heating, cooling,

ventilation, and on-site transportation. Industries differ in their use of fuels based on the prevailing

production processes and regional availability of fuel inputs.

Energy is costly to store. Batteries are expensive enough that mass storage of electricity is

economically infeasible, and most electricity is consumed at the instant it is generated. Most

manufacturing plants obtain natural gas from distribution pipelines and do not store it on-site. Oil

and coal can be stored, though their weight and bulk mean they are stored in limited quantities. In

addition, industries differ in their use of different fuels based on the prevailing production processes

and regional availability of fuel inputs.

Different energy sources also have different spatial market structures. Electricity prices vary

both over time and space depending on the fuel mix, efficiency, and scheduling of electricity gen-

10Except where otherwise noted, this section describes data for 2010, the year of the most recent Manufacturing
Energy Consumption Survey.
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erating units. In the years we study (pre-1998), which precede deregulation, an electric utility had

a monopoly over customers in its service territory, so the electricity prices an industrial customer

faced depended heavily on the fuels used by the electric utility serving it. Utilities supply most

electricity used in manufacturing, though additional electricity comes from non-utility generators

(e.g., merchant plants) and from on-site generation.11 Crude oil is traded on a global market. Man-

ufacturing plants generally buy distillate or residual fuel oil, which is processed by refineries. Lack

of spatial integration in refinery markets introduces additional spatial variation in prices of these

petroleum products that is mostly driven by idiosyncratic changes in local supply and demand.12

Natural gas is transported by pipeline within the U.S. from producing to consuming regions. In the

years we study, much natural gas was extracted in Texas and Louisiana, and natural gas prices in-

crease with distance from those areas due to pipeline transportation costs. The price at the location

where an interstate pipeline reaches a population center differs from the price that industrial plants

pay for natural gas due to local distribution costs and to distributor markups. Coal is more costly

than other fuels to transport, so coal prices vary more over space due to local market conditions.

This discussion should make clear that energy prices vary substantially, and they are an impor-

tant input into the production process of many manufactured goods. The goal of this paper is to

better understand how this temporal and spatial variation in energy prices affect both manufactur-

ing producers and their consumers. The next section formalizes these relationships by describing a

general theory of incidence of changes to input costs for production.

3 Theory of Incidence

There exists a body of research at the intersection of public finance and industrial organization

which describes how incidence might vary with industry competitiveness (Katz and Rosen, 1985;

Stern, 1987; Weyl and Fabinger, 2013). We believe this literature is useful because some of the

most energy intensive manufacturing industries, are also industries characterized by very large fixed

costs and/or transportation costs which may lead to varying degrees of market power. (e.g., cement

and oil refining). The existing literature is primarily concerned with the incidence of output taxes,

and we extend this literature to analyze changes in input taxes (or input costs).13 The difference

is that firms must pay an output tax on every dollar of revenue but must only pay an input tax on

each unit of the input purchased. Firms can substitute away from the taxed input.

We first describe incidence assuming firms are either perfectly competitive or have a monopoly.

These polar cases illustrate the basic intuition for how incidence differs with market power. We

then describe a more general setting where firms within an industry are characterized by arbitrary

forms of competition.

11Our empirical analysis counts on-site electricity generation as primary fuel consumption since in this case the
data record the plant buying fuels rather than the plant buying electricity.

12Our analysis refrains from using local price variation in petroleum products to avoid confounding variation in
energy prices with variation in local economic conditions.

13We abstract from the use of potential tax revenue.
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A few assumptions guide the analysis. The following discussion and subsequent analysis is

partial equilibrium. We consider taxes on variable input costs, not fixed costs. We make the

assumption, consistent with most of the literature, that all goods outside the focal industry (in-

cluding markets for the taxed input) are supplied perfectly competitively, and thus that the welfare

of producers arising from consumer substitution to these goods may be ignored.14 Additionally, we

assume the taxed input has perfectly elastic supply.15

Finally, some of our results assume that average variable costs equal marginal costs: AV C =

MC. While average variable costs are the variable of immediate relevance in the theory, marginal

costs are more suitable for empirical analysis, and this assumption ensures they are equivalent.

Some production technologies are sufficient to ensure this assumption; examples include constant

elasticity of substitution (CES) production functions or technologies with constant marginal costs

(e.g., Melitz (2003)). For others like Cobb-Douglas or translog, constant returns to scale implies

that AV C = MC.

We begin with key definitions. Let I denote the incidence of a marginal increase in the tax rate

τ , defined as the ratio of its effects on consumer and producer surplus (CS and PS):

I ≡ dCS/dτ

dPS/dτ

Incidence above one implies that consumers bear a majority of the welfare loss, while incidence

below one implies that producers do. Let ρ denote the pass-through rate of a tax, defined as the

marginal change in the level of output prices P due to a change in input tax rates:

ρ ≡ dP

dτ

Let γ denote the cost-shift rate, defined as the marginal effect of the input tax rate τ on marginal

costs: γ ≡ dMC/dτ . The cost-shift rate γ can be less than or greater than one. Finally, let

dAV C/dτ denote the change in average variable costs (equal to variable costs divided by total

output) due to a marginal increase in the tax rate.

Given these definitions, we now turn to describe the key incidence results.16 Perfect competition

provides a useful baseline since its results are simple and intuitive. In perfectly competitive markets

with input taxation, the pass-through rate and the cost shift rate fully characterize tax incidence.

The incidence simply equals the pass-through rate divided by the cost shift rate minus the pass-

14In principle, relaxing this assumption is possible but would require estimates of cross-price elasticities across
industries, which are difficult to estimate. Future work could combine the insights from Goulder and Williams III
(2003) to derive empirically implementable formulas for incidence in the presence of pre-existing distortions in other
markets.

15Inelastically supplied or imperfectly competitive inputs could be analyzed with similar tools as used here.
16We describe the incidence of infinitesimal changes in tax rates. Characterizing the incidence of discrete changes

in tax rates requires integrating over changes in consumer and producer surplus from the initial tax rate to the new
tax rate. The incidence of a discrete change in tax rates then depends on the average pass-through rate between the
baseline and new tax rate, where the average is weighted by the quantities consumed at each tax rate (Weyl and
Fabinger, 2013).
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through rate:

ICompetitive =
ρ

dAV C/dτ − ρ

=
ρ

γ − ρ

The second equality follows under the assumption AV C = MC.

This result has an intuitive basis that stems directly from an application of the envelope theorem

to the consumer and producer side of the market. A marginal increase in a tax decreases consumer

surplus by the equilibrium quantity consumed, Q∗, times the change in consumer prices, ρ. A

marginal increase in a tax decreases producer surplus by Q∗ times the change in producer prices

relative to average variable costs, dAV C/dτ − ρ. Thus, the incidence of a tax in a competitive

market equals the ratio of these two terms, ρ/(dAV C/dτ − ρ). Describing the incidence of a tax in

a perfectly competitive market only requires knowing the pass-through rate and the effect of tax

on average variable costs (if MC = AV C, the latter is replaced with the cost-shift rate), making

pass-through and cost-shifting parameters “sufficient statistics” for incidence of changes in input

costs.

Figure 1 illustrates incidence under perfect competition, assuming AV C = MC. Panel A

shows a shift in marginal costs, γ, due to an input tax, and Panel B shows the levels of consumer

and producer surpluses in the new equilibrium. As visualized, a small change in marginal costs

causes consumer surplus to decrease by the change in prices, ρ, times the output quantity Q∗.

Producers now receive an additional ρ per unit sold, however this is offset by the change in additional

production costs, γ. An output tax simplifies this analysis, as γ = 1, reflecting how an output tax

cannot be avoided through input factor substitution.

Similar results are available for an input tax faced by a monopolist – the incidence of a tax

on an input for a monopolist is simply IMonopoly = ρ/(dAV C/dτ) = ρ/γ.17 Again the second

equality follows by the assumption AV C = MC. For any standard pass-through rate (greater

than zero), consumers bear a greater share of the burden under perfect competition than under

monopoly. Figure 2 illustrates incidence under monopoly with increasing marginal costs. The

change in consumer surplus is identical to the perfect competition case, and equals the change in

price ρ times quantity Q∗. However, the change in producer surplus is entirely determined by the

change in marginal costs γ, as the change in prices is offset by the additional change in quantity.

We now turn to a more general form of competition that nests both perfect competition and

monopoly. We start by assuming all firms in the market are identical, but we later relax this

assumption. Let εD ≡ −[dQ/dP ][P/Q] denote the elasticity of demand. This elasticity describes

price shocks and quantity decisions for an individual firm. Let L ≡ (P −MC)/P denote the Lerner

(1934) index, a measure of markups, which equals the gap between price and marginal cost, divided

17The consumer side of the market is calculated in the same way as with perfect competition. The producer side of
the market is derived by differentiating producer surplus with respect to the tax rate, then aggregating across firms
(Weyl and Fabinger, 2013).
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by price. In the presence arbitrary forms of competition, the incidence of an input tax depends on

four statistics: the pass-through rate ρ, the cost-shift rate γ, the Lerner index L, and the demand

elasticity εD. Note that perfect competition is a special case where LεD = 0, and monopoly is a

special case where LεD = 1.

Proposition 1 Under generalized oligopoly, with N symmetrical firms and AVC=MC, incidence

takes the form:

I =
ρ

γ − (1− LεD)ρ
(1)

Proof. Each of the N symmetric producers maximizes profits selling Qi units at price P:

π = (P −MC)Qi

Differentiating profits with respect to an input tax τ and substituting in definitions of L, εD, ρ,

and γ produces the following relationship:

dπ

dτ
= Qi [(1− LεD) ρ− γ] .

Consumer surplus is simply given by dCS/dτ = −Qρ. Aggregating across all producer, incidence

can then be written as:

I =
dCS/dτ

dPS/dτ
=

−Qρ
N ·Qi [(1− LεD) ρ− γ]

,

where Q = N · Qi is the total quantity produced by all N symmetrical producers. This term

simplifies to equation (1).

Equation (1) also has an intuitive explanation. The loss to consumers equals the change in

product price, ρ. The loss to producers equals the change in marginal costs, γ, minus the change

in product price, ρ. The firm’s change in product prices depends on the term 1− LεD.

These equations help contrast input and output taxes. For all three cases — perfect competition,

monopoly, and general oligopoly — the incidence of input taxes differs from the incidence of output

taxes. For an output tax, γ = 1 since firms cannot substitute away from the tax on a given product.

For an input tax, the most likely scenario is γ < 1, i.e., marginal costs increase less than 1 for 1

with a tax on a single input. This is because firms can substitute away from a taxed input. Thus,

conditional on the pass-through rate, input taxes are likely to put a greater share of the burden

on consumers (and a smaller share on firms) than output taxes do. Relative to output taxes,

input taxes allow firms to substitute away some of the potential increase in marginal cost, thereby

lessening the cost to profits.

Differentiating I in equation (1) with respect to each of its arguments gives several interesting

comparative statics. The share of the tax burden that consumers bear is decreasing in the cost-

shift rate γ. Conceptually, a higher value of γ means that a firm’s marginal costs change relatively

more with the tax rate, so that firms bear relatively more of the tax burden. Equation (1) also

10



implies that increasing the Lerner index L or demand elasticity εD while holding other parameters

fixed decreases the consumer share of the tax burden. Finally, increasing the pass-through rate ρ

increases the consumer share of the tax burden, since pass-through is a means by which producers

convey the tax burden to consumers.

When taking equation (1) to the data, we use a slightly simpler though analytically equivalent

version. Recall that ρ is the pass-through of the tax rate to product prices. Let ρMC denote the

pass-through of marginal costs to product prices, so ρMC ≡ dP/dMC. Dividing the numerator and

denominator of (1) through by γ and using ρ = γρMC gives

I =
ρMC

1− (1− LεD)ρMC
(2)

This second version requires estimating only three parameters: marginal cost pass-through ρMC ,

the Lerner index L, and the demand elasticity εD.18 In taking equation (2) to the data, we also

report a measure of incidence which is slightly easier to interpret: the change in consumer surplus

as a share of the total change in consumer and producer surplus, or I/(1 + I).

These expressions show that pass-through is a key ingredient in the calculation of incidence,

but it is also useful to clarify what determines pass-through. In perfectly competitive markets,

pass-through is a simple function of demand and supply elasticities εD and εS :

ρCompetitive =
1

1 + (εD/εS)

This leads to the standard rule-of-thumb that the side of the market (producer or consumer) which

is relatively more inelastic bears more of the tax burden. Under imperfect competition, pass-

through depends not only on demand and supply elasticities but also the curvature of demand and

market power.19,20

4 Data

The primary data for our analysis comes from administrative survey records collected by the U.S.

Census Bureau. We supplement this data with information from the Energy Information Agency

(EIA) on energy prices, consumption, and generation.

18We estimate marginal cost pass-through for two reasons. First, for this homogeneous firms case, it avoids the
need to estimate the cost-shift parameter γ. Second, we lack data on plant-level energy input prices.

19Weyl and Fabinger (2013) show that pass-through under symmetric imperfect competition may be written as[
1 +

LεD
εθ

+
εD − LεD

εS
+
LεD
εms

]−1

Pass-through depends on demand and supply elasticities εD and εS , the elasticity of inverse marginal surplus εms ≡
MS/MS′Q, where MS is the marginal consumer surplus MS ≡ −P ′Q, and εθ ≡ θ/[q(dθ/dq)], and where θ ≡ LεD.

20Weyl and Fabinger (2013) describe alternative formulas that apply for asymmetric firms. While such results can
also be derived for input taxes, our small sample precludes us from estimating firm-specific pass-through rates or
firm-specific demand elasticities, so we leave study of this area for future work.
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Census of Manufacturers (CM)

We use administrative data on annual plant-level inputs and outputs from the Census Bureau’s

Census of Manufacturers (CM). We use this data to measure plant level inputs, such as capital,

labor, and materials.21 The CM is conducted quinquennially in years ending with a 2 or 7, and

we draw upon CM years from 1972 through 1997. These sample years are chosen based upon the

availability and quality of physical output data in the CM.22 We measure labor inputs in hours,

capital as plants’ reported book values of equipment and structures, and materials and energy inputs

as the reported expenditures on each. We deflate capital, material, and energy expenditures using

the corresponding industry-specific input price indices from the NBER Productivity Database.

CM output prices, which we calculate as product-level revenue divided by quantity, involve

several challenges. Since output prices can reflect unobserved product quality, we follow Foster,

Haltiwanger, and Syverson (2008, hereafter FHS) in limiting analysis to single-product plants in

six industries that produce homogenous products: Boxes, Bread, Cement, Concrete, Gasoline, and

Plywood.23,24 A minority of firms within these industries have multiple products. For the plants

that satisfy these criteria but still produce other products, we follow FHS and scale the focal product

output by the inverse of the revenue share. This input-adjustment method assumes inputs are used

proportionately to each product’s revenue share. Another challenge is widespread imputation. We

exclude any observation identified as an “administrative record” since many of their values are

imputed, and we also exclude records where any input or output is imputed.25

Since a few observations still appear to be errors, we make additional sample restrictions similar

to those of Roberts and Supina (1996, 2000) and FHS. We exclude a small number of plants

reporting physical quantities that imply prices greater than ten times or less than one-tenth the

median price in a given industry-year. We also exclude observations missing any one of the main

production function variables (i.e., labor, capital, materials, or output quantity). Additionally, we

exclude observations where the plant’s labor or materials cost share is less than one-tenth of the

21Labor inputs are measured as plants’ reported production-worker hours adjusted using the method of Baily,
Hulten, and Campbell (1992) (i.e., multiplying production-worker hours by the ratio of total payroll to payroll for
production workers).

22In more recent years, the amount of quantity data collected in the CM has declined considerably, making analyses
of more recent time periods infeasible for most, if not all, industries.

23Following FHS, we define a plant as single product if it receives over half its revenue from the homogeneous
product of interest. This definition uses revenue and not quantity shares since different products are measured in
different units. When selecting single-product plants, we ignore revenues from product codes for contract work,
miscellaneous receipts, product resales, and balancing codes. The Census Bureau creates balancing codes when
the summed value of shipments for reported individual products does not equal the plant’s reported total value of
shipments.

24This adds cement to the FHS industries but excludes several of FHS’ industries (sugar, carbon black, coffee,
flooring, block and processed ice), for two reasons. Unlike FHS, we exclude observations with imputed quantity, which
substantially reduces sample sizes. Also unlike FHS, we estimate industry-specific coefficients in translog production
functions. To have sufficient sample size, we exclude industries which, after imposing our sample restrictions, have
less than 100 plant-year observations.

25We thank Kirk White for providing the product-level imputation data for the first half of our sample. Many,
if not all, researchers using the census microdata for empirical research in economics drop imputed values such as
administrative records (see e.g., Doms, Dunne, and Troske (1997); Foster, Haltiwanger, and Syverson (2008); Linn
(2008); Atalay, Hortaçsu, and Syverson (2014)).
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corresponding industry’s average cost share for that year or when the cost share is more than one.

Finally, we trim the one-percent tails of a productivity index measure.26 All output prices are

adjusted to a common 1987 basis using the revenue-weighted geometric mean of the product price

in a given year across all of the plants producing the product in our sample.

It is worth commenting a bit further on the six industries that remain the focus of this paper.

Some of these industries are particularly important consumers of energy in U.S. manufacturing. A

fourth of U.S. greenhouse gas emissions come from transportation, and most fuels for the trans-

portation sector pass through oil refineries. Cement is one of the largest sources of greenhouse gas

emissions in the world. We have chosen these industries because they have price/quantity data

and are relatively homogenous, though the relative homogeneity of their products limits product

differentiation as a source of market power.

Manufacturing Energy Consumption Survey (MECS) and Annual Survey of

Manufacturers Fuels Trailer

We supplement the CM with plant-level data on fuels from the Manufacturing Energy Consumption

Survey (MECS), which was collected about every 3 years beginning in 1981, and from the Annual

Survey of Manufacturers (ASM) Fuels Trailer, which accompanied the ASM annually between 1973

and 1979, excluding 1977. These surveys report physical fuel consumption separately for each fuel.

Energy expenditures in these data exclude feedstocks used for production. Since gasoline refining

spends a significant fraction of material costs on energy feedstocks, we augment the energy cost

shares for gasoline refining to include the costs of energy feedstocks, which we get from the ASM

and CM materials input trailers.

Energy Information Association - State Energy Data System (SEDS)

We use data from the EIA’s State Energy Data System (SEDS) to measure the annual national

and state fuel prices for coal, oil, and natural gas. We also use these data to measure the share

of electricity generation in a state generated with each of these fuels. The EIA compiles SEDS

primarily from surveys of energy suppliers. We convert all fuel prices to real 1987 dollars using

the average of the industry-specific energy price deflators for the industries in our sample from the

NBER Productivity Database.

5 Econometrics of Pass-Through

We now turn to describe our methodology in six steps. The goal of the first five steps is to estimate

the pass-through rate of marginal costs into output prices. First, we describe how we recover

marginal costs from production data. Second, we describe how we use production functions to

26The productivity index is constructed using a gross-output, Cobb-Douglas production function with labor, capital,
and materials as inputs. The output elasticities are computed using industry-level cost shares under the assumption
of constant returns to scale, and output is measured using physical quantities.
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recover output elasticities, which are needed to calculate marginal costs. Third, we describe the

two research designs for energy prices. Fourth, we describe the analysis of how energy prices affect

marginal costs and output prices. Fifth, we describe how we estimate pass-through. Finally, we

describe how we estimate demand elasticities.

Before proceeding, we note a general point about our methodology. One alternative way to

estimate pass-through would be to estimate how a plant’s output price changes with respect to a

plant’s input price for energy. Our application does not use this approach for two reasons. First,

the incidence of input cost shocks typically requires estimates of both the pass-through rate and

the cost-shift parameter (γ), but marginal cost pass-through is a sufficient statistic for both input

cost pass through and the cost-shift rate. Second, we do not observe plant-level energy prices.27

5.1 Recovering Marginal Costs

We recover marginal costs by combining plant-level production data with assumptions on firm

cost minimization. As originally shown by Hall (1986) and further developed by De Loecker and

Warzynski (2012), a firm’s first-order condition implies that the plant’s multiplicative markup (i.e.,

its price divided by its marginal cost) equals the output elasticity of a variable input like energy or

materials divided by the revenue share of that input.28 Thus, if we can identify an output elasticity

of a variable input, we can recover a markup. Moreover, if we have price data, we can back out

marginal costs as price divided by the markup.

Formally, let Qit denote the physical output Q of plant i in year t. Output is a function of

variable inputs Vit (i.e., those not subject to adjustment costs) like materials and energy; dynamic

inputs Kit like capital or sticky labor, which are subject to adjustment costs; and plant-specific

productivity Ωit: Qit = Qit(Vit,Kit,Ωit). We assume a firm minimizes the cost of the variable

input(s), conditioning on the dynamic inputs. The firm solves the following Lagrangian:

L(Vit,Kit, λit) = P Vit Vit +RitKit + λit[Qit −Qit(Vit,Kit,Ωit)]

Here P Vit is the price of variable inputs, Rit is the price of dynamic inputs, and λit is the Lagrange

multiplier.

The firm’s first-order condition for a variable input like materials is

∂L
∂Vit

= P Vit − λit
∂Qit(·)
∂Vit

27The closest information is the “cost of fuels,” which represents total expenditure on all fuels, but does not
distinguish each fuel or identify price or quantity. The Manufacturing Energy Consumption Survey does report these
variables for a small sample of plants and is not longitudinal. The Census of Manufacturers does report plant-level
unit prices for a single energy input — electricity. Using variation in these prices is subject to concerns about bulk
discounts (Davis, Grim, Haltiwanger, and Streitwieser, 2013) and endogeneity.

28The output elasticity is defined as the change in a plant’s physical output due to a change in a variable input like
materials; the revenue share of a variable input like materials is defined as the plant’s expenditure on that variable
input divided by the plant’s total revenue. An intuition for why this approach identifies markups is that in an
imperfectly competitive market, input growth must be associated with disproportionate revenue growth.
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Rearranging terms for an optimum where ∂L/∂Vit = 0 and multiplying the right-hand side by

VitQit/VitQit and both sides by Pit shows how we recover markups:

Pit
λit

=

[
∂Qit(·)
∂Vit

Vit
Qit

] [
P Vit Vit
PitQit

]−1
(3)

The left-hand side of this equation is the multiplicative markup µit, which equals prices divided

the Lagrange multiplier. The Lagrange multiplier represents marginal costs, since it reflects the

costs of relaxing the output constraint. The right-hand side is the product of two bracketed terms;

we construct empirical analogues to both. The first is the elasticity of output with respect to

a variable input, or the “output elasticity.” We estimate the output elasticity from production

functions, described in the next subsection. The second bracketed term is the cost of the variable

input divided by the firm’s revenue, or the “revenue share.” Our data report the revenue share of

each input.

We can then compute a markup by using the estimated output elasticity of a variable input and

the revenue share of that input. Since we observe plant-level output prices, we then recover marginal

costs from the accounting identity that price equals markups times marginal costs: MCit = Pit/µit

where MCit is the marginal cost of plant i in year t.

5.2 Output Elasticities and Production Functions

The previous subsection showed that estimating markups requires the output elasticity of a vari-

able plant-level input like materials. We estimate this output elasticity by using proxy methods

to estimate production functions (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg,

Caves, and Frazer, 2015). We focus on production functions with a scalar, Hicks-neutral produc-

tivity term and estimate elasticities separately by industry, assuming common technology across

firms and over time within an industry.29 We show a Cobb-Douglas specification here to simplify

exposition, though our results use a more flexible translog, gross-output production function:30

yit = βkkit + βllit + βmmit + ωit + εit (4)

Throughout the paper, lowercase represents variables in logs. Here yit represents a plant’s output

quantity. We use output quantity rather than revenues here to avoid well-known bias in revenue-

based productivity estimates.31 Firms use three inputs: capital, labor, and materials (kit, lit, and

29Output elasticities could in principle differ by industry and time period. Such flexible output elasticities are
difficult to estimate with our data, however, since we have few years of data, require one lag to construct instruments,
and have few observations for most industries.

30Translog coefficients are the same across firms within an industry. Markups and output elasticities, however,
differ across firms within an industry, because input demands differ across firms. This is an advantage of translog
over Cobb-Douglas production functions, which would have the same output elasticity across firms within an industry.
Under Cobb-Douglas, all variation in markups across firms within an industry would come from revenue shares.

31Output quantity addresses the distinction between revenue and physical total factor productivity (Foster, Halti-
wanger, and Syverson, 2008). Unobserved variation in input prices may also bias production function coefficients (De
Loecker, Goldberg, Khandelwal, and Pavcnik, Forthcoming). The homogeneity of our products potentially gives less
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mit). Materials includes energy inputs in addition to other intermediate inputs used for production.

The parameter vector which we estimate, β ≡ (βk, βl, βm), contains the output elasticities of these

three inputs. The term ωit represents productivity, which is known to the firm when making static

input decisions but unobserved to the econometrician. The residual εit includes measurement error

and unanticipated shocks to output.

Ordinary least squares estimates of equation (4) may suffer from omitted variables bias due

to the unobserved productivity term ωit (Marschak and Andrews, 1944). A firm observes its

productivity, so input choices kit, lit, and mit may depend on it, but productivity directly affects

output, and data do not report it.

To address the possible omitted variable bias associated with OLS estimates of equation (4),

we use control-function or proxy methods to control for the unobserved and omitted productivity

term. Consider a general demand function for materials:32 mit = mt(kit, lit, ωit). Assuming that

mt(·) is strictly monotonic in inputs, we invert this input demand equation to solve for productivity

as a function of the observable inputs:

ωit = m−1t (mit, kit, lit)

This inversion provides a control function for productivity.33

We apply this approach in two steps, following Ackerberg, Caves, and Frazer (2015). The first

step regresses plant output yit on a function φt(·) of observed inputs. This first step is designed to

purge output data of measurement error and unanticipated shocks to output εit:

yit = φt(kit, lit,mit) + εit

We approximate φt(·) using a polynomial expansion. We use estimates from this first step to

scope for input price variation and associated bias (De Loecker and Goldberg, 2014). We have explored specifications
that attempt to control for any remaining input price variation using a polynomial in the output price, and results
are largely similar. Our dataset reports expenditures on inputs though not input quantities; we are unaware of any
production function estimates in any setting using input quantity data for all inputs rather than price-deflated input
expenditures.

32We focus on materials as a variable input into the production function, where materials include both purchased
intermediates as well as energy input expenditures. In theory, we could estimate a separate output elasticity for
energy in the production function. In practice, adding a fourth input into a translog production function substantially
increases the number of parameters to be estimated. With relatively small sample sizes and relatively few degrees of
freedom, output elasticities become more sensitive and less robust. Moreover, many indirect energy input costs are
embodied in material expenditures through feedstock purchases for example.

33Inverting materials demand to recover productivity requires a one-to-one mapping between plant-level produc-
tivity and materials. This assumption fails if unobserved plant-level variables besides productivity drive changes
in materials or if there is measurement error in materials. Alternative production function estimators, such as the
dynamic panel methods developed by Blundell and Bond (2000) are not appropriate in our setting since we have
few time periods to construct differences and lags. Some evidence suggests these may not be first-order concerns.
Syverson (2004) finds robustness among producer TFP measures (and hence output elasticities) for one of our indus-
tries, ready-mixed concrete, with a specification incorporating idiosyncratic demand shocks. Van Biesebroeck (2007)
also finds high TFP correlations across various measurement alternatives. Given the strong assumptions needed to
estimate output elasticities, however, subsequent sections explore alternative methods to characterize incidence in
the absence of information on output elasticities and/or markups and marginal costs.
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calculate εit from

ε̂it = yit − φ̂t(kit, lit,mit) (5)

where φ̂ contains the fitted values from this first step, and ε̂it are the residuals from this regression.

Since εit contains measurement error and unanticipated shocks to production, we can use it to obtain

a measure of output which is purged of both. After this first step, the only missing information

needed to know the output elasticity vector β is the productivity vector ωit. Given any candidate

elasticity vector β̃, we can estimate productivity by manipulating equations (4) and (5) to get

ωit(β̃) = φ̂it − β̃kkit − β̃llit − β̃mmit (6)

The second step selects the coefficient vector that best fits the data by relying on the law of mo-

tion for productivity. We follow Ackerberg, Caves, and Frazer (2015) and assume that productivity

follows a first-order Markov process.34 We define productivity shocks ξit as the difference between

productivity and the expectation of last period’s productivity given last period’s information set

Iit−1:
ξit = ωit − E[ωit|Iit−1]

where E is the expectation operator. Equivalently, ξit represents the component of current produc-

tivity which was unexpected at time t− 1.

The second step estimates the production function coefficients using the assumption that this

productivity innovation must be orthogonal to a set of current and lagged input demands dit. We

summarize these conditions as

E[ξit(β)dit] = 0 (7)

With the translog production function we use for the empirical implementation, the vector dit is

dit = {lit,mit−1, kit, l
2
it,m

2
it−1, k

2
it, litmit−1, litkit,mit−1kit}

These moments above are similar to those suggested by Ackerberg, Caves, and Frazer (2015).

They exploit the fact that capital and labor have adjustment costs, and lagged capital and labor

should not be correlated with the current productivity innovation. We use lagged rather than

current materials to identify the materials coefficients since current material expenditures may

react to contemporaneous productivity innovations. For lagged materials to be a valid instrument

for current materials, input prices must to be correlated over time.

Finally, we use generalized method of moments to choose the production function coefficients

34We use the AR(1) process to derive a plausibly exogenous productivity shock ξit along the lines of Ackerberg,
Caves, and Frazer (2015). We have also allowed for the potential of additional lagged decision variables to affect
current productivity outcomes (in expectation) in order to accommodate the concerns raised by De Loecker (2011)
pertaining to the exogeneity of productivity process. For example, we have allowed productivity to depend on export
status and the nonrandom exit of firms (De Loecker, 2011; Olley and Pakes, 1996). In practice, our output elasticity
estimates are not particularly sensitive to these modifications.
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β which minimize the moment conditions in equation (7). With translog production functions, the

coefficients β combined with input data give the output elasticities θ̂:35

θ̂it = θ(β̂, lit,mit, kit)

5.3 Two Instrumental Variables for Marginal Costs

The previous two subsections show how we estimate output elasticities and marginal costs. These

two objects are theoretically sufficient to identify pass-through from a regression of output prices

on marginal costs. However, marginal costs may be measured with error. To address the possible

endogeneity of marginal costs, we construct two sets of instrumental variables using variation in

energy input prices. Existing research uses other types of instrumental variables for marginal

costs, such as exchange rate shocks for imported intermediate inputs (e.g., De Loecker, Goldberg,

Khandelwal, and Pavcnik (Forthcoming)), though not in the context of U.S. manufacturing.

Our two measures of variation in local energy prices leverage the fact that national changes in the

price of a fuel disproportionately affect regions and industries heavily dependent on that fuel. For

example, when the national price of natural gas rises more than the national price of oil or coal,

energy prices in regions and industries heavily dependent on natural gas will disproportionately

increase. These “shift-share” designs are related to the Bartik (1991) instrument which is widely

used in labor and public economics to study exogenous movements in labor demand (see e.g.,

Blanchard and Katz (1992); Moretti (2011); Notowidigdo (2011)).

We first focus on variation in industrial electricity prices that are driven by regional differences

in electricity generation by fuel type. Figure 3 depicts the share of total state-level electricity

generation that comes from coal, natural gas, and petroleum/oil, respectively. The maps make

clear that the primary fuels used for electricity generation vary considerably over space. Coal

accounts for more than three-fourths of fuel for electricity generation in the Upper Midwest but

practically no electricity generation in the Western coastal states. Natural gas accounts for 15

percent of generation in the South but over 40 percent of generation in California. We interact this

cross-sectional variation in energy input shares (i.e., the shares of fuel costs devoted to electricity

generation in a state) with national trends in fuel prices to generate predicted changes in regional

electricity prices. Figure 4 shows time-series patterns in the real price of the three primary fuel

inputs for electricity — coal, oil, and natural gas. All three fuels had low prices around 1970, a

spike during the OPEC crisis in 1975, a decline in the mid-1980s as the crisis subsided, and lastly

an increase in the 2000s due in part to rapid economic growth in Asia. While the secular trends

are similar among all three fuels, each fuel has independent variation. Coal, for example, was the

most costly fuel in the 1970s but the cheapest in the 2000s. While the 1980s crisis produced abrupt

changes in oil and natural gas prices, it led to only gradual and smooth changes in coal prices. As

fuel prices vary nationally, differences in fuel input shares cause that national fuel price variation

to differentially affect regional electricity prices and/or industries dependent on those fuels.

35The estimated output elasticity for materials, for example, is θ̂it = β̂m + 2β̂mmmit + β̂lmlit + β̂kmkit + β̂lmklitkit.
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We formalize the relationship between regional electricity prices and regional heterogeneity in

fuel inputs used for electricity as follows. We interact (lagged) cross-sectional differences in the

share of fuels used to generate electricity in a state-year with national time-series variation in the

prices of these fuels to generate three instruments summarized in the vector zAst:

zAst =
∑

f∈{coal, gas, oil}

[
eA−s,t,f · σAs,t−k,f

]
(8)

The variable eA−s,t,f represents the unweighted national mean over state-level log mean fuel prices

f in year t, excluding the state s mean. This research design considers three fuels: coal, oil, and

natural gas. The variable σAs,t−k,f represents the cost of fuel f in year t− k, expressed as a share of

total fuel expenditure of these three fuels for electricity generation in state s. We present results

using lags k of zero, two, and five years. We use the leave-out mean and lagged shares to ensure

that energy price variation is independent of local demand for fuels and electricity.

The second source of variation in marginal costs stems from the fact that different industries

use different fuel inputs to produce outputs. Table 1 shows the allocation of energy expenditure

across fuels as a fraction of total input expenditures, by industry. Total input expenditures are

defined as annual expenditures on salary and wages, capital rental rates, materials, electricity, and

fuels. For example, 0.7% of total input costs for box manufacturing come from natural gas, but

13 percent of total input costs in cement come from coal. We formalize the predicted variation in

industrial energy prices by interacting national, leave-out mean energy input prices for industrial

consumers with the (lagged) share of energy input costs in an industry-year devoted to a particular

fuel.

zBit =
∑

f∈{coal, gas, oil, electricity}

[
eB−s,t,f · σBi,t−k,f

]
(9)

Here, the vector zBit contains four instruments, one for each fuel. The variable σBi,t−k,f represents

the share of total expenditures in industry i and year t− k devoted to fuel f . The variable eB−s,t,f
denotes the national, leave-out mean input price of fuel f for industrial consumers.36 This research

design considers four energy inputs: coal, oil, natural gas, and electricity.

There are three main differences between the equations used in the two research designs (8)

and (9). First, the electricity price research design uses national energy input prices for electricity

generation eA−s,t,f , whereas the energy price research design uses national energy input prices for

industrial consumers eB−s,t,f . Second, the energy price research design includes electricity along

with the three primary fuels as energy inputs, while the electricity price research design only uses

the three primary fuels used for electricity generation. Lastly, energy input shares σ are calculated

differently in both equations; equation (8) calculates shares as the fraction of electricity generation

36We calculate energy input expenditure shares at the industry level using the data from MECS and the ASM
fuel trailers. In principle, we could compute energy input expenditure shares by plant or industry×region. Small
sample sizes in both the MECS and the ASM preclude the use of more granular industry energy input expenditure
share definitions, such as eBi,−s,t,f . Industry×region energy input expenditure share definitions deliver similar but less
precise results.
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in a state that comes from fuel f , and equation (9) calculates energy expenditures as a fraction of

total expenditures for a given industry, fuel, and year.

5.4 Effects of Energy Prices on Output Prices, Marginal Costs, and Markups

The goal of these “shift-share” research designs is to use the predicted sources of variation in

energy prices to analyze the pass-through of marginal costs to product prices. However, it is

also informative to understand how these measures of energy prices are related to output prices

and marginal costs. In the context of instrumental variables, one can interpret the relationship

between output prices and these fuel price×fuel share interactions as the reduced form, whereas

the relationship between marginal costs and the fuel price×fuel share interactions as the first stage.

We also examine the relationship between this energy price variation and plant level markups.

We investigate this question with the following fixed effects regression model:

yist = z′istβ +X ′stγ + ηi + πt + νist (10)

Equation (10) describes a regression of outcome y in logs (output prices, marginal costs, or markups)

for plant i in state s and year t. The vector zist represents either the interaction between national

fuel prices and state-level electricity generation shares from zAst (i.e., equation (8)) or the interaction

between national energy prices and industry-level energy input shares from zBit (i.e., equation (9)).

In either case, we include each of the fuels as separate variables in the vector z. The vector Xst

includes the leave-out mean energy/fuel prices e−s,t,f separately for each fuel. It also includes the

either the generation share σAs,t−k,f , measured k years ago in state s, or the industry energy input

share σBi,t−k,f , measured k years ago in industry i. Some specifications also control separately for

differential trends by state, region by year fixed effects, and industry by year fixed effects. The

regression also includes plant fixed effects ηi and year fixed effects πt.

The interpretation of the coefficient vector of interest β differs across the two research designs.

When estimating equation (10) using the electricity price shift-share zAst, the vector β describes the

elasticity of outcome Yist with respect to the national (leave-out mean) fuel price for fuel f for a

state that produces 100 percent of its electricity using fuel f . In practice, no state generates all of

its electricity from a single fuel source, so these coefficients should be evaluated at the mean value

of a fuel’s generation share. During our sample, this is about 20 percent for natural gas. When

estimating equation (10) using the energy price shift-share zBit , the vector β describes the elasticity

of outcome Yist with respect to the national (leave-out mean) fuel price for fuel f in an industry

for which 100 percent of the industry’s total annual expenditures are devoted to energy input f ,

where f is electricity, fuel oil, natural gas, or coal. Again, no industry uses a single fuel input for

production, and so these coefficients should be evaluated at the mean value of respective energy

expenditure share (see Table 1).
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5.5 Pass-Through

We use our observed data on output prices, recovered estimates of marginal costs, and constructed

energy price variation to estimate marginal cost pass-through. We estimate the marginal cost pass-

through elasticity from the following plant-level regression of (log) output price on (log) marginal

costs:

pist = ρMC,εmcit +X ′stγ + ηi + πt + εist (11)

The main coefficient of interest, ρMC,ε, measures the elasticity of output prices with respect to

marginal costs. Note that ρMC,ε differs from the marginal cost pass-through rate ρMC outlined

earlier in that ρMC,ε represents an elasticity whereas ρMC is pass-through in levels. The marginal

cost pass-through rate can be calculated by multiplying the pass-through elasticity by the markup:

ρMC = ρMC,ε × P/MC.

Equation (11) includes the same vector of controls Xst as above, along with plant fixed effects

ηi, year fixed effects πt, and an idiosyncratic error εist.
37 As above, we report additional regression

estimates that control separately for differential trends by state, region by year fixed effects, and

industry by year fixed effects. We instrument for mcit using either zAst or zBit . As mentioned

above, equation (10) describes both the first stage and reduced form from an instrumental variables

regression of price on marginal cost in equation (11).

5.6 Demand Estimation

Finally, in order to consider incidence in markets that are less than perfectly competitive, we need

to estimate industry-specific demand elasticities. We estimate demand for each industry using

methods proposed by FHS. They estimate log-linear demand by regressing log quantity on log

price, instrumenting price with a measure of physical total factor productivity, and controlling for

year fixed effects and the log of county income. As FHS discuss, physical productivity measures

producers’ idiosyncratic technologies (physical production costs), and it strongly predicts prices.

Further, it is unlikely it will be correlated with short-run, plant-specific demand shocks embodied

in the error term of an OLS regression of log quantity on log price. We use the same physical

productivity index used in FHS. We create this index by subtracting log inputs from log outputs,

using industry-level cost shares as proxies for output elasticities. We use capital, materials, labor,

and energy inputs, where capital, materials, and energy are deflated by industry-year input price

deflators, and labor is measured in production hours. The industry specific input price deflators

come from the NBER-CES Productivity database. County income measures come from the BEA

Local Area Employment Statistics.

37In both research designs, the excluded instrument is the interaction of the leave-out mean fuel price with the
share of that fuel used for energy. We also control for both of these variables in levels as exogenous controls X. The
most informative way to interpret the interaction terms is to evaluate them at some share (e.g., what is the effect of
gas price increases in an area that uses gas for 100% of energy). Because these energy prices are approximately the
national value (subject to leaving out the own-state price), the energy price controls in this regression are similar to
flexible year trends.
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This methodology estimates exactly the demand elasticity described in the incidence theory

section. The formulas in that section depend on the demand elasticity for an individual firm, i.e.,

the effect of a change in a specific firm’s price on that firm’s quantity. Because this methodology

uses the physical productivity level for an individual plant and year, it corresponds well with the

theory. Importantly, this is a different elasticity from the change in demand if the entire market

faced a cost shock.

6 Results

Now that we have described the theory, data, and methodology, we turn to describe four sets of

results: mean levels of prices, markups, and marginal costs; the effects of energy input cost shocks

on these variables; marginal cost pass-through; and incidence.

6.1 Average Levels of Marginal Costs, Output Prices, and Markups

Table 2 presents some key summary statistics by industry. Column (1) shows that total annual

expenditures on electricity and fuels comprise a limited fraction of input costs.38 The mean energy

cost share for most industries in our sample is 2 percent of total annual input expenditures, though

cement and gasoline refining are quite different from the others, with 32 and 84 percent of total

expenditures devoted to electricity and fuels.39 While energy is not a large cost share for several

of these industries, it is also a modest cost share of the entire U.S. economy, at 3 to 4 percent of

gross output. Firms and consumers are not concerned that energy is their largest single cost, but

that it is a cost affected substantially by regulation in ways that are politically sensitive.

Columns (2) through (4) show median estimates of output elasticities separately for labor,

materials, and capital. As described in the previous section, we estimate production functions, and

hence output elasticities, separately for each industry using a translog, gross-output production

function, so output elasticities vary by plant. A few properties of the estimated output elasticities

are worth noting. First, median output elasticities for all industries and factors of production are

positive. Second, elasticities vary considerably across industries. The estimated output elasticity

for labor, for example, is 0.04 for boxes but 0.91 for cement. For each of the three factors of

production, cement has the largest estimated output elasticity among all industries. Third, the

output elasticities differ considerably across factors of production. For all industries, materials has

the largest output elasticity, at between 0.6 and 1.1. Capital and labor output elasticities are much

smaller.

Column (5) of Table 2 presents the median of the sum of the three output elasticities, which

is a measure of returns to scale in the industry. The results suggest that, except for cement, all

38Energy cost shares are defined as annual energy and electricity expenditures at a plant divided by salary and
wage payments, rental payments on capital stocks, and expenditures on materials, electricity, and fuels.

39As mentioned earlier, the energy cost share for gasoline is high in large part because much of the crude oil used at
refineries is physically transformed into gasoline (i.e., it is “feedstock”) rather than being combusted at the refinery
for heat or fuel.
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the industries in our study cement have approximately constant returns to scale, with estimated

returns to scale of 0.92 to 1.13. Cement is quite obviously different from the others, with strongly

increasing returns to scale at 2.46. Foster, Haltiwanger, and Syverson (2008) find constant returns

to scale for all of these industries except cement, which they do not analyze. Since cement uses

some of the largest industrial equipment in the world, it may not be surprising that we estimate

cement to have increasing returns to scale. Column (6) shows average markups of ten to fifty

percent across industries except for cement, which is quite different from the others, with markups

of 130 percent. The product with the lowest estimated markup is gasoline, with markups of only

11 percent. These levels of industry markups are largely consistent with the existing literature

that estimates markups using production function methods (Hall, 1986; De Loecker, Goldberg,

Khandelwal, and Pavcnik, Forthcoming; Collard-Wexler and De Loecker, 2015).40

Columns (7) and (8) present mean output prices and marginal costs by industry. Output prices

are constructed by dividing revenue by output quantities, and marginal costs are constructed by

subtracting the log markup from the log output price. Lastly, column (9) presents the share of

materials expenditures as a fraction of total revenue, which is used to construct markups in column

(6).

6.2 Effects of Energy Prices on Marginal Costs, Output Prices, and Markups

Table 3 presents our baseline set of results describing how variation in fuel input costs for electricity

generation differentially affects markups, marginal costs, and output prices for U.S. manufacturing

plants. Table 4 presents similar estimates using industry heterogeneity in energy input cost shares.

These two tables reflect the two research designs in equations (8) and (9), and they stem from

various versions of equation (10) which are estimated using OLS. Standard errors in this table and

all subsequent regression output are clustered by state, unless otherwise mentioned.

Panel A of Table 3 analyzes how variation in fuel prices affects plant-level marginal costs.

We report coefficients on the interactions between fuel prices and (lagged) state-level electricity

generation shares. The regression models also control separately for the levels of fuel prices and for

generation shares. Since both the dependent variable and the fuel variables are measured in logs,

the reported interaction terms represent an elasticity for states in which 100 percent of generation

comes from a given fuel. Each column in the table shows a slightly different specification. Columns

(1) and (4) use the contemporaneous state-level generation mix for each fuel; columns (2) and (5)

use two year lags, and columns (3) and (6) use five-year lags of the generation shares. Columns

(1) through (3) control for plant fixed effects, year fixed effects, and state trends, whereas columns

(4) through (6) control for product-year fixed effects, region-year fixed effects, and state trends.

40 De Loecker, Goldberg, Khandelwal, and Pavcnik (Forthcoming) find industry median markups in Indian manu-
facturing ranging from 1.15 to 2.27. Collard-Wexler and De Loecker (2015) explore markups in the U.S. steel industry
ranging from 1.2 to 1.5 depending on the time period studied. Hall (1986) explores markups using more aggregated
industry definitions (2-digit SIC) but finds results that are largely consistent with our own. For example, Hall (1986)
finds an estimated markup for SIC 34, which consists of both Cement and Ready Mix Concrete, of 1.81. Similarly,
Plywood manufacturing, SIC 24, has an estimated markup above marginal cost of 1.0.
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The identifying variation across all columns comes from within-plant variation in fuel shares and

prices, while adjusting for various forms of time-varying observed and unobserved determinants of

marginal costs that may be correlated with changes in predicted regional fuel prices.

These regressions give expected signs and plausible magnitudes. The coefficients in Panel A

of Table 3 are mostly positive, which is expected since shocks to fuel input prices are likely to

increase electricity prices that firms face and hence increase their marginal costs of production.

The smaller coefficients in columns (4)-(6), those with region-year and product-year fixed effects,

seem to suggest that there may be other correlated unobservables driving costs and prices in the

absence of these controls. Note, however, that the ratio of the coefficients in Panels A and B remain

largely similar across columns. The magnitudes of these coefficients are also reasonable. Recall

that energy is on average 2 percent of production costs for most of these industries, and electricity

expenditures represent an even smaller share. Column (6), which includes a 5-year lag in generation

shares, implies that if natural gas provides 100 percent of in-state electricity generation, then a 1

percent increase in the price of natural gas used for electricity results in a 0.29 percent increase

in the marginal costs of manufacturing production. In practice, natural gas constitutes about

20 percent of electricity generation over this time period.41 Thus, these estimates imply that a 1

percent increase in natural gas prices would cause an 0.06 percent increase in marginal costs.42 The

magnitude of this coefficient varies across fuels. Since this research design only exploits variation

in electricity markets, it is not surprising that the gas coefficient is more precise than the oil or coal

coefficients since oil is used for very little electricity generation, coal is traded in long-term contracts

and has more regional markets (so the leave-out mean is less predictive), and coal’s frequent use

as a baseload technology makes it less often marginal than gas. The response of power plants and

regulators to energy price shocks through fuel substitution, efficiency improvements, or strategic

production decisions, however, may also vary across fuels.

Panel B of Table 3 presents a version of equation (10) which uses log output prices as the

dependent variable. The signs and precision are similar to the marginal cost estimates of Panel A.

The positive and precise estimates in Panel B provide a first piece of evidence that energy price

shocks are passed through to plant-level output prices. The fact that the effects of energy price

shocks on output prices (in Panel B) are smaller than the estimated effects on marginal costs (in

Panel A), however, suggests that these cost shocks are less than fully passed through to prices.

Finally, Panel C of Table 3 presents a version of equation (10) which uses log markups as the

dependent variable. Since markups are defined as the ratio of prices to marginal costs, the effects

of changes in energy prices on markups approximately equal the difference between their effects on

marginal costs and output prices. Thus, the numbers in Panel C can largely be inferred from the

numbers in Panels A and B. The point estimates suggest that increasing the price of fuels used

4120 percent natural gas generation corresponds to the fraction of production that is generated by coal, natural
gas, and oil (i.e., excluding other methods of generation such as nuclear or hydroelectric).

42Note that the results in Table 3 do not control for and/or model industry specific variation in fuel input usage.
Thus, to the extent that national fuel prices affect the marginal cost of production through channels other than
electricity prices (e.g., through increased fuel costs used directly for production), these estimates implicitly incorporate
this variation.
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for electricity causes modest decreases in markups. The more stringent specifications of columns

(4)-(6) imply that increasing the natural gas price by 1 percent for in-state electricity generation

decreases markups by around 0.01 percent.43

Table 4 presents a similar set of results, exploring how markups, marginal costs, and output

prices differentially respond to changes in energy input costs used for production. As before, we

report the coefficients from the interaction between energy input shares, which is defined as the

share of total input costs devoted to a specific energy input, with national energy prices, which are

defined as the leave out mean national industrial energy price, omitting the focal state’s average

industrial energy price. We focus on the four primary energy inputs into manufacturing production:

coal, natural gas, oil, and electricity. Since we use information from MECS and the ASM fuel trailers

to construct energy input shares, and the ASM trailers only begin in 1975, we are not able to lag

these shares more than 2 years without losing an extra year in our analysis sample.

Panel A of Table 4 suggests that increases in the costs of energy used for manufacturing increase

marginal costs. The interaction term represents the elasticity of marginal costs with respect to

energy input prices in a plant for which 100 percent of total expenditures comes from one of the

four energy sources. Thus, if we were able to perfectly measure fuel prices faced by a plant, we

might expect that the coefficient should be close to 100. In practice, there are many reasons that

the coefficients may deviate from 100, not the least of which is that fuel expenditure shares in the

neighborhood of 100 percent are far out of sample. Moreover, we observe average industrial fuel

prices which might be quite different than marginal fuel prices faced by the firms in our sample.

The broad takeaway is that relative fuel input usage interacted with national fuel prices strongly

predicts changes in marginal costs, output prices, and markups. Subsequent sections use these

relationships to quantify by how much fuel and electricity price induced increases in marginal costs

are passed through to consumers in the form of higher output prices.

6.3 Marginal Cost Pass-Through

We now take the estimated relationships between prices, marginal costs, markups, and energy prices

and embed them into a pass-through regression of output prices regressed on marginal costs. Table 5

presents OLS regression estimates corresponding to various versions of equation (11). Column (1)

presents estimates with plant fixed effects, year fixed effects, and state trends. Columns (2) and

(3) add product-year and region-year fixed effects, respectively. Column (4) includes the full set of

product-year and region-year controls to the model from Column (1). Since both the dependent

and independent variables are in logs, the coefficient estimates measure an elasticity. The estimates

across the four columns are broadly similar, suggesting that a 1 percent increase in marginal costs

is associated with a 0.6 percent increase in the output price. In order to convert this pass-through

elasticity into a pass-through rate, we multiply the coefficient by the average markup in the sample

of 1.15, which gives a marginal cost pass-through rate of 0.7.

43This comes from calculating the means across columns (4) through (6), weighting by the inverse standard error,
and then multiplying by the average generation share of natural gas in our sample of 0.2.
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To address the possible endogeneity of marginal costs, Table 6 presents instrumental variable

estimates of equation (11), where marginal costs are instrumented in two separate ways. Panel

A presents pass-through estimates where marginal costs are instrumented using the interactions

between the lagged electricity generation mix in a state and the log of the leave out mean electricity

fuel input prices. Panel B instruments marginal costs with the interaction between an industry’s

share of annual expenditures devoted to one of four energy inputs multiplied by the national, leave-

out mean of that energy input price. As before, columns (1) through (3) include plant fixed effects,

year fixed effects, and state-specific trends. These columns vary the lag in the fuel share component

of the marginal cost instrument between zero, two, and five years. Columns (4) through (6) of Panel

A add region-year fixed effects and product-year fixed effects, whereas Columns (4) through (6) of

Panel B add only region-year fixed effects.44 We present estimates showing zero, two, and five lags

of the fuel share. All columns include the uninteracted log of the fuel prices and the uninteracted,

lagged generation mix (not reported).

Panel A suggests that pass-through elasticities range between 0.62 and 0.72, which translates

into pass-through rates of 0.71 to 0.83. The strength of the identifying variation in the instrument

varies slightly across the specifications, with first stage partial F statistics ranging from 4 to 14.

These first stage F-statistics suggest there may be bias stemming from a weak first stage, where

the bias is towards the OLS counterpart. The results in Panel B are broadly consistent with those

in Panel A, though they are estimated using a different instrument for marginal costs. The energy

price instrument in Panel B is also a stronger predictor of marginal costs than the electricity price

instrument in Panel A, as reflected by the first stage F-statistics of between 66 and 137. The

average pass-through elasticity in Panel B is around 0.51, which translates into a pass-through rate

of 0.59.

This overall pass-through elasticity may hide important cross-industry heterogeneity. Table 7

reports estimates of pass-through rates separately for each of the six industries in our sample.

Panel A presents specifications that instrument marginal costs with our electricity price instrument,

controlling for year fixed effects and state specific linear time trends. Panel B presents estimates

that also include region-year fixed effects. All regressions control for plant fixed effects. Note that

year fixed effects in an industry-level regression correspond to industry-year fixed effects from a

pooled cross-industry regression. These tables reveal substantial cross-industry heterogeneity in the

pass-through of marginal costs into output prices. Pass-through elasticities vary from a high of 0.96

for boxes to a low of 0.33 for gasoline refining. Table 7 also reports the corresponding pass-through

rates, which are calculated by multiplying the elasticity estimate by the industry-specific markup.

These estimates suggest that boxes, cement, and plywood “overshift” changes in marginal costs

into changes in output prices. The pass-through rates for these industries vary between 1.02 and

1.78. Conversely, bread, concrete, and gasoline refining have comparatively low pass-through rates

ranging from 0.36 to 0.82.

How reasonable are these numbers? Some industries exhibit pass-through rates that exceed one,

44Industry expenditure shares for fuel inputs are collinear with product-year fixed effects in Panel B.
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suggesting that producer surplus may actually increase due to a change in tax. Various researchers

have shown the conditions under which overshifting can occur under oligopoly (see e.g., Bulow

and Pfleiderer (1983); Seade (1985); Delipalla and Keen (1992)). The general intuition from this

literature suggests that in the presence of oligopoly, a single firm can raise industry prices by

reducing its own output, but it fails to do so because it is costly for the single firm in terms of

foregone profits. A tax-induced cost increase will necessarily induce output-reductions for all firms,

imposing upon the producers some of the collusion they themselves had been unable to achieve.45

Studies have found pass-through rates ranging from below unity (Goldberg and Hellerstein, 2008;

Gopinath, Gourinchas, Hsieh, and Li, 2011; Campa and Goldberg, 2005), to above unity (Besley

and Rosen, 1999), to equal to unity (Poterba, 1996; Fabra and Reguant, 2014), depending on the

methodology, market, time-period, or data used. Empirically, we observe higher pass-through rates

in industries where we see relatively inelastic demand and higher markups. Conversely, we observe

lower pass-through rates in industries with elastic demand and lower markups. As emphasized

by Seade (1985) and more recently by Weyl and Fabinger (2013), pass-through in imperfectly

competitive product markets is closely related to the curvature of demand — very convex demand

will typically have pass-through rates exceeding one, whereas concave demand will have pass-

through rates below one.

Whether firms actually benefit from the increase in input costs is an empirical question that

turns on whether the pass-through of the tax increases revenues enough to overcome both the lower

demand due to higher prices as well as the direct cost increase due to the tax. We now turn to this

question by computing incidence for each of the six industries in our study.

6.4 Incidence

6.4.1 Symmetric Firms

Table 8 describes the incidence of an energy input tax separately for each of the six industries.

Panel A presents the necessary components for calculating incidence using equation (2). We require

estimates of pass-through rates, demand elasticities, and the Lerner index, by industry. We use

the average industry pass-through rate from Table 7.46 This panel also presents our estimates

of demand elasticities and combines results from previous tables to construct the Lerner index.

Cement has fairly inelastic demand with an elasticity of 1.82, which fits with its high estimated

markup. Gasoline refining has relatively elastic demand of 8.70 percent, which fits with its low

45Seade (1985) describes this as a “public-goods problem” – restraint by any one firm in the industry in question
raises the prices they all face for their outputs, constituting a common benefit. But the cost of this restraint, in
the form of profitable revenue foregone, is borne by that one firm alone. Hence, too little of that good is produced
(i.e., there is too little restraint). A cost increase will necessarily reduce output, thus raising the supply of the public
good “restraint.” In other words, in the absence of explicit collusion, the tax acts as a coordinating device allowing
oligopolists to restrict output and thereby increase profit.

46We average the two pass-through estimates for each industry weighting by the inverse of the standard error of
each estimate.
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markups.47 Appendix Table A1 presents a table of our demand elasticity estimates that contains

both OLS and instrumental variable estimates.

Panel B presents incidence estimates. To simplify exposition, we report the change in consumer

surplus as a share of the total change in surplus between producers and consumers, or I/(I +

1) = (dCS/dτ)
dCS/dτ+dPS/dτ . The results suggest, that even in industries with pass-through rates below 1,

consumers bear a majority of the burden of a change in input costs. Gasoline refining is a notable

exception, with producers bearing 76 percent of the burden of an energy price induced increase in

marginal costs. In general, for industries with lower pass-through rates, consumers bear a smaller

share of the burden of the increase in input costs – 53 percent in the bread industry, 49 percent in

concrete, and about a 25 percent of the burden in gasoline refining. In all industries, consumers

bear substantially less than 100 percent of the burden.

6.4.2 Incidence Bounding

Panels D and E of Table 8 present our estimates of incidence under the assumption that firms engage

in perfect competition or monopoly, respectively. Incidence under monopoly assumes the Lerner

index is the inverse of the demand elasticity, and incidence under perfect competition assumes that

the Lerner index equals zero, since perfectly competitive firms do not charge markups. Therefore,

computing incidence for the polar cases of perfect competition or monopoly only require estimates

of marginal cost pass-through and does not require either demand elasticities or firm markups.

Moreover, if products in an industry are substitutes and there is no collusion, these polar cases will

bound the “true” incidence in the presence of market power. We also note that the pass-through

rate itself may depend on the market structure. The conceptual exercise here is that we have

estimated the pass-through rate given the existing (unknown) market structure. Conditional on

the estimated pass-through rate, the bounding exercise calculates the possible values of incidence

that could be consistent with the estimated pass-through rate.

The results in panel D under monopoly are somewhat similar to those under oligopoly. In

general, under the assumption of monopoly, incidence shifts more towards producers relative to

consumers. The greatest difference occurs in the plywood industry, where consumers go from

facing 67-87% of the burden to only 52% of the burden.

Panel E presents incidence of input costs under the assumption of perfect competition. The

incidence of the increase in input costs under perfect competition are identical to the pass-through

rates. When pass-through rates are greater than .50, consumers face more than 50% of the burden.

In the box, cement, and plywood industries, consumers face more than 100% of the burden as

producers pass through over 100% of marginal cost increases onto the consumer.

47Many studies use time-series data estimate the “demand elasticity for gasoline” as the change in national consumer
gasoline consumption due to a national change in retail gasoline sales. As discussed earlier, our paper analyzes a
different demand elasticity, which represents the change in wholesale gasoline sales from a single refinery due to a
price increase at that single refinery. Because gasoline is homogenous and easily substitutable between refineries, it
is perhaps not surprising that we estimate a somewhat large demand elasticity.
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7 Conclusion

In this paper we develop a methodology for estimating the incidence of input cost shocks that is

able to relax assumptions pertaining to complete pass-through, factor substitution, and industry

competitiveness. The approach leverages the fact that equilibrium prices, and the extent to which

they respond to cost shocks, are sufficient statistics for more primitive demand and supply param-

eters describing a market. With further information on markups and demand elasticities, we are

able to extend this intuition to general forms of imperfect competition.

We consider the specific application of energy cost shocks for U.S. manufacturing, and we assess

the extent to which the welfare consequences of these shocks are borne by manufacturing producers

versus consumers. Standard analyses of the incidence of various types of energy cost shocks, such

as climate change mitigation regulations, typically assume perfect competition and complete pass-

through. Our results suggest that the incidence of a change in input costs, defined as the ratio of

the change in consumer to producer surplus, differs dramatically from these assumptions. In one

industry consumers bear almost 90 percent of the total change in input costs. This result stems

from the ability of producers to more than fully pass through the change in input prices into output

prices. In other industries, especially those with elastic demand, producers bear a greater incidence

of the change in input costs.

This paper also arrives at a few additional conclusions that may be of broader interest. First, the

standard assumptions of complete pass-through and perfect competition in research on the incidence

of commodity price shocks may be overly strong; these assumptions appear to be incorrect for all

the industries we study. This existing research has led to politically sensitive conclusions on the

extent to which greenhouse gas mitigation policies are regressive, and it would be productive to

revisit those conclusions while accounting for industry competiveness and incomplete pass-through.

For example, firm owners may shoulder more of the burden than existing research would suggest.

On the other hand, some industries may actually benefit from increasing energy prices through

a carbon tax. For example, in industries that “overshift” input taxes, the firm-level gains from

reducing output in an economy with market power may exceed the direct detrimental effect of the

tax for the firm. While we do not observe energy price-induced increases in producer surplus in

this setting, more work is needed to understand how these results generalize into other industries

and time periods. The second more general takeaway is the considerable heterogeneity across

industries; the one industry which has been the subject of scrutiny in research on market power

and the environment – cement – seems to differ from the five other industries we study in much of

the analysis.

One productive avenue for future work is to overcome the existing limitations associated with the

paucity of producer price data linked to information on firm input and output decisions in the United

States, which might facilitate estimating firm-specific pass-through rates. Another is to incorporate

our conclusions about incomplete pass-through and industry competitiveness into an economy-wide,

general equilibrium framework that can both account for pre-existing distortions in other markets

while analyzing incidence by different consumer demographics. Lastly, the technology developed
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here is well-suited to think about incidence of other changes in input costs across industries, for

example, stemming from changes in minimum wage laws or increased capital costs. We leave these

avenues for future work.
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Figures

Figure 1: Pass-Through and Incidence under Perfect Competition
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Notes: See text for full description. The top panel shows consumer and producer surplus (denoted CS and PS,

respectively) under general supply and demand curves in a market exhibiting perfect competition. The bottom panel

shows consumer and producer surplus following a tax rate τ that changes marginal costs by γ, prices by ρ, and

quantity sold by ∆Q.
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Figure 2: Pass-Through and Incidence under Monopoly
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Notes: See text for full description. The top panel shows consumer surplus, producer surplus, and the deadweight

loss (denoted CS, PS, and DWL respectively) in a market with a single constant marginal cost monopolist. The MR

line denotes marginal revenue and the MC line reflects an increasing marginal cost production function. The bottom

panel shows consumer and producer surplus, as well as deadweight loss following a tax t that changes marginal costs

by γ, prices by ρ and quantity sold by ∆Q.

37



Figure 3: Electricity Fuel Mix by Region

(a) Coal (b) Natural Gas

(c) Petroleum

Notes: These maps show the spatial distribution of electricity generation by fuel type by state averaged over our sample period, 1972-1997. Panel A shows the

fraction of electricity generation in a state that comes from coal-fired generation; Panel B shows the fraction of electricity generation in a state that comes from

natural gas; Panel C shows the fraction of electricity generation in a state that comes from petroleum.

Source: Energy Information Association, State Energy Data System.
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Figure 4: National Fuel Prices, 1967-2012
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Notes: This figure plots a time series of national fuel prices from 1967 to 2012. Prices have been converted to real

2011 dollars using the consumer price index. Crude oil prices reflect the price of U.S. crude oil net imports in dollars

per barrel. Natural gas prices reflect wellhead prices in dollars per thousand cubic feet. Coal prices reflect dollars

per short ton. Prices for coal and crude oil have been divided by 10 to facilitate a common axis across the 3 fuels.

Source: Energy Information Association, Annual Energy Review.
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Tables

Table 1: Allocation of Energy Input Expenditures Across Fuels, by Industry

Coal Natural Gas Fuel Oil Electricity

Boxes 0.000 0.007 0.002 0.009
Bread 0.000 0.007 0.002 0.011
Cement 0.130 0.049 0.010 0.134
Concrete 0.000 0.002 0.011 0.007
Gasoline 0.000 0.014 0.817 0.007
Plywood 0.000 0.005 0.002 0.012

Notes: This table shows the average energy input percentage by industry for each of the four primary energy inputs

into manufacturing production. These statistics are calculated by dividing the expenditure on each of the four energy

inputs by the total annual expenditures (salary and wages; capital rental rates; materials; electricity; fuels) in the

industry. Expenditures on energy inputs for gasoline refining include energy feedstocks. Source: Manufacturing

Energy Consumption Survey, Census and Annual Survey of Manufacturers.
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Table 2: Summary Statistics

Output Elasticities

Energy Returns Output Marginal Materials Share
Cost Share Labor Materials Capital to Scale Markup Price Costs of Revenue Observations

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Boxes 0.02 0.04 0.95 0.04 1.00 1.47 0.63 0.43 0.65 1414
Bread 0.02 0.28 0.63 0.09 1.13 1.20 0.47 0.39 0.53 248
Cement 0.32 0.91 1.08 0.19 2.46 2.30 0.05 0.02 0.46 229
Concrete 0.02 0.11 0.68 0.16 1.09 1.12 43.82 39.82 0.61 3369
Gasoline 0.84 0.01 0.99 0.03 1.02 1.11 23.08 20.84 0.89 284
Plywood 0.02 0.02 0.95 0.11 0.92 1.48 0.68 0.57 0.62 139

Sample Mean 0.02 0.10 0.70 0.14 1.09 1.15 — — 0.62 5683

Notes: This table shows mean values of energy cost shares, output elasticities, and markups. An observation is a plant-year. Energy cost shares are the sum of

fuel and electricity expenditures divided by total annual expenditures (salary and wages; capital rental rates; materials; electricity; fuels). Plant-level markups

come from estimating production functions by industry using GMM-Proxy methods (Ackerberg, Caves, and Frazer, 2015). Output elasticity estimates come from

a three factor, gross-output, translog production function, where the inputs consist of labor, capital, and materials. Price and costs are measured in 1000s of 1987

dollars. Boxes are measured in short tons; bread is measured in thousands of pounds; cement is measured in cubic yards; concrete is measured in thousands of

cubic yards; gasoline is measured in thousands of barrels; plywood is measured in thousands of square feet surface measure. See text for details. Source: Census

of Manufacturers.
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Table 3: Relationship Between Marginal Costs, Output Prices, Markups and Electricity Input
Prices

(1) (2) (3) (4) (5) (6)
Lag (t-0) Lag (t-2) Lag (t-5) Lag (t-0) Lag (t-2) Lag (t-5)

Panel A: Marginal Costs

Coal Price × Coal Share 0.092 0.156 -0.110 0.357 0.374 0.123
(0.387) (0.363) (0.311) (0.244) (0.293) (0.255)

Gas Price × Gas Share 0.779∗∗∗ 0.788∗∗∗ 0.866∗∗∗ 0.235∗∗∗ 0.225∗∗∗ 0.291∗∗∗

(0.175) (0.140) (0.191) (0.086) (0.084) (0.061)
Oil Price × Oil Share 0.136 0.229 0.013 -0.070 0.047 -0.029

(0.341) (0.290) (0.201) (0.121) (0.118) (0.139)

Panel B: Output Prices

Coal Price × Coal Share 0.081 0.063 -0.061 0.259 0.159 0.065
(0.259) (0.254) (0.197) (0.263) (0.257) (0.223)

Gas Price × Gas Share 0.491∗∗∗ 0.502∗∗∗ 0.532∗∗∗ 0.186∗∗ 0.204∗∗∗ 0.222∗∗∗

(0.109) (0.088) (0.101) (0.074) (0.061) (0.054)
Oil Price × Oil Share 0.101 0.172 0.078 -0.008 0.057 0.079

(0.181) (0.168) (0.131) (0.102) (0.094) (0.108)

Panel C: Markups

Coal Price × Coal Share -0.012 -0.092 0.049 -0.098 -0.215 -0.058
(0.220) (0.183) (0.171) (0.156) (0.172) (0.172)

Gas Price × Gas Share -0.288∗∗∗ -0.286∗∗∗ -0.334∗∗∗ -0.049 -0.021 -0.069∗

(0.080) (0.066) (0.096) (0.045) (0.053) (0.038)
Oil Price × Oil Share -0.035 -0.056 0.065 0.062 0.010 0.107

(0.181) (0.134) (0.097) (0.090) (0.069) (0.077)

N 5892 5892 5892 5892 5892 5892

Plant FE X X X X X X
Year FE X X X
State Trends X X X X X X
Product-Year FE X X X
Region-Year FE X X X

Notes: This table presents regression coefficients from 18 separate regressions, 6 per panel and 1 per column. An

observation is a plant-year. Panel A presents a set of regressions, regressing plant-level marginal costs on national

fuel prices interacted with lagged shares of state-level electricity generation mix. Panels B and C present a similar set

of regressions, using plant-level output prices and plant-level markups as the dependent variable, respectively. The

regression includes the uninteracted fuel prices and generation shares as controls (not reported). Columns (1) and

(4) report results using contemporaneous electricity generation shares, columns (2) and (5) present results lagging

generation shares by 2 years, and columns (3) and (6) present results lagging generation shares by 5 years. Standard

errors are in parentheses and are clustered by state. Regressions are weighted by Census sampling weights. ***,**,*

denotes statistical significance at the 1, 5, and 10 percent levels, respectively. See text for details. Source: Census of

Manufacturers, EIA-SEDS.
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Table 4: Relationship Between Marginal Costs, Output Prices, Markups and Energy Prices

(1) (2) (3) (4)
Lag (t-0) Lag (t-2) Lag (t-0) Lag (t-2)

Panel A: Marginal Costs

Coal Price × Coal Share 38.54∗∗∗ 67.60∗∗∗ 38.69∗∗∗ 66.79∗∗∗

(7.91) (8.90) (7.95) (8.97)
Gas Price × Gas Share 139.60∗∗∗ 100.65∗∗ 136.44∗∗∗ 97.41∗∗

(29.29) (41.61) (29.32) (40.44)
Oil Price × Oil Share 358.58∗∗∗ 427.31∗∗∗ 354.57∗∗∗ 419.99∗∗∗

(23.31) (84.93) (22.63) (83.01)
Electricity Price × Electricity Share -69.48∗∗ 118.43 -70.59∗∗ 112.69

(32.15) (113.81) (32.25) (116.56)

Panel B: Unit Prices

Coal Price × Coal Share 13.95∗∗∗ 31.68∗∗∗ 13.84∗∗∗ 31.06∗∗∗

(4.70) (5.75) (4.67) (5.76)
Gas Price × Gas Share 76.65∗∗∗ 54.92∗∗ 75.80∗∗∗ 53.09∗∗

(22.60) (24.18) (22.71) (23.65)
Oil Price × Oil Share 183.76∗∗∗ 251.67∗∗∗ 181.91∗∗∗ 247.12∗∗∗

(20.47) (53.38) (20.05) (52.57)
Electricity Price × Electricity Share -12.66 81.70 -12.18 78.83

(18.75) (69.18) (19.10) (68.15)

Panel C: Markups

Coal Price × Coal Share -24.59∗∗∗ -35.92∗∗∗ -24.85∗∗∗ -35.73∗∗∗

(4.79) (5.34) (4.83) (5.33)
Gas Price × Gas Share -62.95∗∗ -45.73∗∗ -60.64∗∗ -44.31∗∗

(25.89) (20.41) (25.59) (19.87)
Oil Price × Oil Share -174.82∗∗∗ -175.64∗∗∗ -172.66∗∗∗ -172.87∗∗∗

(17.73) (33.45) (17.15) (32.35)
Electricity Price × Electricity Share 56.88∗∗ -36.72 58.41∗∗ -33.85

(23.70) (47.93) (23.64) (46.82)

N 5683 5683 5683 5683

Plant FE X X X X
Year FE X X
State Trends X X X X
Region-Year FE X X

Notes: This table presents regression coefficients from 12 separate regressions, 4 per panel and 1 per column. An

observation is a plant-year. Panel A presents a set of regressions, regressing plant-level marginal costs on national

energy input prices interacted with lagged industry energy expenditure shares. Panels B and C present a similar

set of regressions, using plant-level output prices and plant-level markups as the dependent variable, respectively.

The regression includes the uninteracted fuel prices and expenditure shares as controls (not reported). Columns (1)

and (3) report results using contemporaneous electricity generation shares, and columns (2) and (4) present results

lagging expenditure shares by 2 years. Standard errors are in parentheses and are clustered by state. Regressions

are weighted by Census sampling weights. ***,**,* denotes statistical significance at the 1, 5, and 10 percent levels,

respectively. See text for details. Source: Census and Annual Survey of Manufacturers, MECS, and EIA-SEDS.
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Table 5: Pass-Through Rate of Marginal Costs into Output Prices: OLS

(1) (2) (3) (4)

Marginal Costs 0.598∗∗∗ 0.680∗∗∗ 0.598∗∗∗ 0.681∗∗∗

(0.018) (0.033) (0.018) (0.032)

N 5892 5892 5892 5892

Plant FE X X X X
State Trends X X X X
Year FE X
Product-Year FE X X
Region-Year FE X X

Notes: This table presents regression coefficients from 4 separate regressions, one per column. An observation is a

plant-year. The dependent variable is the plant-level unit-price, and the independent variable is plant-level marginal

cost. Standard errors are in parentheses and are clustered by state. Regressions are weighted by Census sampling

weights. ***,**,* denotes statistical significance at the 1, 5, and 10 percent levels, respectively. See text for details.

Source: Census of Manufacturers, EIA-SEDS.
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Table 6: Pass-Through Rate of Marginal Costs into Output Prices: Instrumental Variables

(1) (2) (3) (4) (5) (6)
Lag (t-0) Lag (t-2) Lag (t-5) Lag (t-0) Lag (t-2) Lag (t-5)

Panel A: Electricity Shift-Share Instrument

Marginal Costs 0.628∗∗∗ 0.623∗∗∗ 0.625∗∗∗ 0.660∗∗∗ 0.654∗∗∗ 0.715∗∗∗

(0.031) (0.031) (0.029) (0.099) (0.088) (0.086)

N 5892 5892 5892 5892 5892 5892
First Stage F-Statistic 9.53 14.33 6.99 8.89 3.95 12.09

Plant FE X X X X X X
Year FE X X X
State Trends X X X X X X
Product-Year FE X X X
Region-Year FE X X X

Panel B: Fuel Shift-Share Instrument

Marginal Costs 0.511∗∗∗ 0.514∗∗∗ — 0.505∗∗∗ 0.508∗∗∗ —
(0.013) (0.014) — (0.012) (0.014) —

N 5683 5683 — 5683 5683 —
First Stage F-Statistic 137.48 78.68 — 120.74 66.18 —

Plant FE X X X X X X
Year FE X X X
State Trends X X X X X X
Region-Year FE X X X

Notes: This table presents regression coefficients from 10 separate regressions, 6 regressions in Panel A and 4 re-

gressions in Panel B. An observation is a plant-year. The dependent variable is the plant-level unit-price, and the

independent variable is plant-level marginal cost. In Panel A, marginal cost is instrumented by the interactions

between national fuel prices for electricity generation and lagged electricity generation shares. In Panel B, marginal

cost is instrumented by the interactions between national fuel prices for industrial production and lagged industry

energy expenditure shares. Columns (1) and (4) report results using contemporaneous electricity generation shares,

columns (2) and (5) present results lagging generation shares by 2 years, and columns (3) and (6) present results

lagging generation shares by 5 years. Standard errors are in parentheses and are clustered by state. Regressions

are weighted by Census sampling weights. ***,**,* denotes statistical significance at the 1, 5, and 10 percent levels,

respectively. See text for details. Source: Census and Annual Survey of Manufacturers, MECS, EIA-SEDS.
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Table 7: Pass-Through Rate of Marginal Costs into Output Prices, by Product: Instrumental
Variables

(1) (2) (3) (4) (5) (6)
Boxes Bread Cement Concrete Gasoline Plywood

Panel A: Baseline - Electricity Price Instrument

Marginal Costs 0.963∗∗∗ 0.681∗∗∗ 0.775∗∗∗ 0.711∗∗∗ 0.327∗∗ 0.692∗∗∗

(0.038) (0.150) (0.087) (0.082) (0.143) (0.082)

N 1414 308 293 3369 345 163
Pass-Through Rate 1.42 0.82 1.78 0.80 0.36 1.02
First Stage F-Statistic 23.41 1.67 49.29 23.36 2.43 38.55

Plant FE X X X X X X
Year FE X X X X X X
State-Trends FE X X X X X X

Panel B: Region-Year FE - Electricity Price Instrument

Marginal Costs 0.992∗∗∗ 0.458∗∗∗ 0.801∗∗∗ 0.624∗∗∗ 0.242∗∗ 0.758∗∗∗

(0.057) (0.172) (0.100) (0.066) (0.111) (0.068)

N 1414 308 293 3369 345 163
Pass-Through Rate 1.46 0.55 1.84 0.70 0.27 1.12
First Stage F-Statistic 2.04 3.39 22.90 13.5 4.22 30.10

Plant FE X X X X X X
Region×Year FE X X X X X X
State-Trends FE X X X X X X

Notes: This table presents regression coefficients from 14 separate regressions; one per column in each of the two

panels. Each column represents a separate sample, where the sample is indicated in the column headings. An

observation is a plant-year. The dependent variable is the plant-level unit-price, and the independent variable is

plant-level marginal cost. Marginal cost is instrumented by the interactions between national fuel prices for electricity

generation and 5-year lagged electricity generation shares. Standard errors are in parentheses and are clustered by

state. Regressions are weighted by Census sampling weights. ***,**,* denotes statistical significance at the 1, 5, and

10 percent levels, respectively. See text for details. Source: Census and Annual Survey of Manufacturers, MECS,

EIA-SEDS.
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Table 8: Incidence: Change in Consumer Surplus as Share of Change in Total Surplus

(1) (2) (3) (4) (5) (6)
Boxes Bread Cement Concrete Gasoline Plywood

Panel A: Incidence Components

MC Pass-Through (ρMC) 1.43 0.69 1.81 0.74 0.31 1.08
Demand Elasticity (εD) 3.24 2.42 1.82 5.53 8.70 1.39
Mean Lerner Index (L) 0.33 0.18 0.57 0.13 0.12 0.41

Panel B: Consumer Share of Burden (by Market Structure)

Oligopoly 0.57 0.53 0.63 0.49 0.24 0.67

Monopoly 0.59 0.41 0.64 0.43 0.24 0.52
Perfect Competition 1.43 0.69 1.81 0.74 0.31 1.08

Notes: This table presents results for welfare incidence by industry, where incidence is defined as the change in

consumer surplus as a share of the change in consumer and producer surplus. Columns (1) - (6) reflect separate

calculations for industries defined in the column heading. Panel A displays the necessary components for measuring

incidence using equation (2). Marginal cost pass-through (ρMC) is calculated as the average of the industry specific

pass-through rates in Table 7. Panel B displays incidence under different market structures. The first two lines

display incidence under arbitrary forms of oligopoly that next both perfect competition and monopoly. The third

and fourth rows of Panel B display incidence under monopoly and perfect competition using equation (2) where

L = 1/εD and L = 0 respectively. Source: Census and Annual Survey of Manufacturers, MECS, EIA-SEDS.

47



A Appendix Figures and Tables

Table A1: Demand Elasticity Estimates

(1) (2) (3) (4) (5) (6)
Boxes Bread Cement Concrete Gas Plywood

Panel A: OLS

Demand Elasticity (εD) -2.24∗∗∗ -0.11∗∗∗ -0.78∗∗∗ -0.60∗∗∗ -0.59 -1.27∗∗∗

(0.59) (0.12) (0.12) (0.08) (0.76) (0.14)

Panel B: Productivity IV Estimates

Demand Elasticity (εD) -3.24∗∗∗ -2.42∗∗∗ -1.82∗∗∗ -5.53∗∗∗ -8.70∗ -1.39∗∗∗

(0.18) (0.41) (0.47) (0.55) (4.94) (0.15)

N 1414 308 293 3369 345 163
First Stage F-Statistic 816.9 33.9 15.6 174.0 8.4 1180.0

Year FE X X X X X X
ln(County Per Capita Income) X X X X X X

Notes: This table presents 12 separate regressions, 6 per panel. An observation is a plant-year, where the dependent

variable in all regressions is log(quantity). The independent variable is log(output price). Panel A presents OLS

estimates, separately by industry. Panel B presents estimates where price is instrumented with plant total factor

productivity. Total factor productivity is constructed using a quantity-based productivity index. The index is con-

structed by subtracting log inputs from log outputs using industry-level cost shares as proxies for output elasticities.

We use capital, materials, labor, and energy inputs, where capital, materials, and energy are deflated by industry-year

input price deflators, and labor is measured in production hours. Source: Census of Manufacturers, BEA Local Area

Employment Indicators.
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