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1 Introduction

Changes in the US economy over the past several decades have led to historically high demand

for skilled labor (Autor, Katz and Kearney 2008), which has substantially increased the earnings

premium associated with having a college degree (Autor 2014). These rising returns to college

investment have been met with sluggish increases in postsecondary attainment, particularly

among students from low-income backgrounds (Lovenheim and Reynolds 2013; Bailey and

Dynarski 2011). The postsecondary education investment gap across the income distribution

combined with the large earnings premium associated with collegiate training suggests that

the current higher education system may contribute to, rather than mitigate, growing income

inequality in the US. Indeed, some evidence suggests that changes in the earnings premium

associated with college can explain between 60 and 70 percent of the rise in income inequality

over the past several decades (Goldin and Katz 2007). Developing policies that can support

successful college investment by students from low-income backgrounds is of primary policy

importance.

Differences in postsecondary attainment between low-income and high-income students take

two forms. The first is that students from low-income families are much less likely to attend

college at all (Bailey and Dynarski, 2011; Carneiro and Heckman, 2002).1 The second type

of investment gap, which has received far less attention, is that low-income students tend to

enroll in schools of lower quality than their higher-income counterparts (Hoxby and Avery

2013). In the NLSY97, only 2% of low-income students attended a flagship public school, while

among the highest-income students 16% did.2 The likelihood of attending a private school also

increases with income, and the proportion of students enrolling in a two-year school declines

with income. There is substantial evidence of large impacts of college quality on completion

(Cohodes and Goodman 2014; Bound, Lovenheim and Turner 2010), time to degree (Bound,

Lovenheim and Turner 2012), and subsequent earnings in the labor market (Andrews, Li and

Lovenheim 2016; Hoekstra 2009; Black and Smith 2006, 2004; Brewer, Eide and Ehrenberg

1Tabulations from the 1997 National Longitudinal Survey of Youth (NLSY97) show that while only 13% of students from families
with earnings over $125,000 do not attend college, 56% of students from families with income below $25,000 do not attend college.
As family income increases, the likelihood of attending college increases steeply.

2This is not just a reflection of the differences in enrollment. Among those who enroll in any college, 3.7% of low-income students
enroll in a public flagship university, and 18.4% of high income students enroll in this school type.

1



1999).3 Hence, differences in college quality between low-income and high-income students

could significantly affect gaps in both collegiate attainment and earnings.

To develop policies to address the gaps in postsecondary investment that exist across the

income distribution, it is critical to understand why they are present. There are five main expla-

nations for why students from low-income households tend to graduate from college in general,

and from more elite colleges in particular, at lower rates. First, families with fewer resources

at the time of college usually have fewer resources with which to invest in a child throughout

his or her life. These “long run credit constraints” create differences in academic preparation

for college among high school students (Cameron and Taber 2004; Carneiro and Heckman,

2002). Second, there is increasing evidence that low-income students face information gaps

that often preclude them from applying to and enrolling in more selective schools, even when

they are academically qualified to do so and would pay little to nothing in out-of-pocket costs

(Hoxby and Avery 2013; Hoxby and Turner 2013). A third explanation is that low-income stu-

dents are affected by both academic and social “mismatch” when they enroll in higher-quality

schools. On average, these students have worse academic preparation for college and often are

not part of the dominant cultural majority, particularly at more elite postsecondary institutions

(Aucejo, Arcidiacono and Hotz 2013; Arcidiacono and Koedel, 2014; Arcidiacono et al., 2011;

Dillon and Smith 2013). Mismatch effects could lower academic attainment among low-income

students who enroll in more-selective colleges. Fourth, the complexity of the financial aid appli-

cation may prevent students from applying for aid, and thus attending more expensive schools

(Dynarski and Scott-Clayton, 2013, 2008, 2006; Bettinger, et al., 2012). Finally, resource con-

straints at the time of the college enrollment decision may prevent families from investing in a

higher-quality school (Lovenheim and Reynolds 2013).

Prior research has found at most modest effects on student outcomes of policies designed to

overcome any one of these disadvantages. One explanation for these results is that there are

interactive effects of student disadvantage, making it necessary for programs to address several

of these barriers simultaneously to effectively support postsecondary education among students

from low-income backgrounds. In this paper, we present what is to our knowledge the first

3Dale and Krueger (2013, 2002) find little overall impact of college quality on earnings, but they do find sizable returns to college
quality for low-income students.
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analysis in the literature of interventions aimed at addressing this broad array of disadvantages

faced by low-income students. The Longhorn Opportunity Scholarship (LOS) program at the

University of Texas at Austin (UT ,) and the Century Scholars (CS) program at Texas A&M

University – College Station, which are the two flagship schools of the Texas public higher

education system, began in 1999 and 2000, respectively.4 The programs targeted Texas public

high schools that served low-income students in urban areas and traditionally sent few students

to these institutions. Together, the LOS and CS programs were implemented in 110 high schools

in Texas.

While entirely independent, both programs offered a suite of interventions that attempt

to overcome the multiple disadvantages faced by low-income students in the higher education

system: lack of information about college quality, less academic preparation for college, and

lower financial resources. The programs engage in extensive outreach and recruiting, with

university staff providing information sessions and, for the CS program, students going back

to their high schools to share their experiences. This outreach and recruitment of students

from low-income high schools helps overcome information barriers that may preclude students

from these schools from applying to and enrolling in an elite postsecondary school. Program

participants also are provided scholarships to help alleviate financial strain. Since most of these

students qualified for substantial Federal grants, students in these programs would often have

sufficient grant aid to fully cover tuition and fees.5 Once enrolled, the LOS and CS programs

include multiple but distinct academic support services for students as well as policies that

help foster cohesion among the students. These services can help overcome social and academic

mismatch. Critically, the programs did not provide students with help in the admissions process;

all students who were induced to attend UT-Austin and Texas A&M were academically qualified

to attend those schools in the absence of these interventions.

We use administrative data from the State of Texas that links K-12 education records with

higher education enrollment and performance information as well as earnings records from the

4Details on the Century Scholars program can be found at https://scholarships.tamu.edu/Scholarship-Programs/

Century-Scholars. The Longhorn Scholars Program has since been discontinued though a description can be found in in-
ternet archives at https://web.archive.org/web/20030622194253/http://www.utexas.edu/student/finaid/scholarships/los_

index.html.
5For example, CS scholars currently receive $5,000 per year for four years. Assuming scholarship amounts did not change, this

covered most of the $5,639 cost for tuition and fees in 2004. Similarly, LOS scholars in 2002 received $4,000 per year from the
program. Tuition at UT-Austin in 2005 was $7,286.
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Texas unemployment insurance system. We exploit the roll-out of the LOS and CS programs

to identify their effects on higher education outcomes and post-college earnings in a difference-

in-difference framework. Because these interventions were targeted towards high-performing

students, we first generate a performance index using students’ high school test score infor-

mation. Our analysis focuses on high-achieving students, who we define as the top 30% of

students within each high school on this performance index. The LOS and CS treatments tar-

geted schools serving disadvantaged populations; many untreated high schools (such as those in

wealthy suburban areas) differ substantially from treated schools in both their observed char-

acteristics and outcomes, which makes them poor candidates for inclusion in the control group

to estimate counterfactual trends. We therefore construct “trimmed common support” samples

for each intervention using the rich information we have about the demographics and college-

sending patterns of each high school in Texas prior to 1999 combined with information on the

criteria UT-Austin and Texas A&M say they used to select the schools. Hence, our resulting

analysis samples are comprised of the set of schools that are more observationally-similar across

the treatment and control groups than would be the case if we used all public high schools in

Texas.

Conditional on the observed characteristics of schools, much of the targeting for these pro-

grams was based on geography. This makes it likely that there are equivalent control schools

that did not receive the treatment because of where they were located rather than because

of the populations of students they serve. We estimate difference-in-difference models using

these trimmed common support samples in which we compare changes in outcomes among

high-ability students in treated schools to changes in outcomes for high-ability students in

observationally-similar untreated schools when the LOS/CS programs are implemented. The

main identification assumption in these models is that the trends in enrollment patterns and

outcomes among high-achieving students would have been the same in treated and control high

schools absent the programs. We show extensive evidence of common trends in enrollment be-

havior, postsecondary outcomes, and labor market outcomes prior to the implementation of the

treatments and find little evidence of demographic shifts among students due to the treatments.

These findings strongly support our empirical strategy.
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The results of our analysis differ across programs. The LOS program had a large effect on

the likelihood students enrolled in UT-Austin, increasing the enrollment rate by 2.2 percent-

age points (81% of the pre-treatment mean). These students were drawn predominantly from

“emerging research universities” (ERUs), which are the set of public four-year schools that

are the next quality tier down from the flagships. Six-year graduation rates from UT-Austin

increased substantially among students at LOS high schools: they were 1.7 percentage points

(87% of the pre-treatment mean) more likely to graduate from UT-Austin. While there is no

significant increase in overall graduation rates, we nonetheless find that earnings of high achiev-

ing students who attended LOS high schools increased by 4% twelve or more years after HS

graduation. Given that the treatments are a package that includes an increase in college quality

for some, extra financial aid for most, and support services while enrolled for all who partici-

pate, one can reasonably approximate a treatment on the treated effect by scaling the earnings

effect by the share of students in the treated sample who attend UT after the program begins.

This back-of-the-envelope treatment effect is equivalent to a 70% increase in earnings. While

large, we argue this effect size is reasonable when one considers that the targeted population is

high achieving, low income, and heavily minority. Such groups may be especially sensitive to

an intervention like this. We further note that all of the effects we see are concentrated among

women. There is no impact on either male enrollment or earnings but a 4.0 percentage point

increase in female UT enrollment and a 6.1% increase in female earnings.

In contrast to the LOS results, the CS program does not lead to a change in where students

attend college. In particular, it does not increase the likelihood students attend Texas A&M –

College Station, nor does it reduce UT-Austin enrollment. Consistent with the lack of enroll-

ment effects, our results do not point to any impact of the CS program on postsecondary or

labor market outcomes. It is somewhat surprising that the CS and LOS programs have such

different effects. We argue this difference is likely driven by the fact that the LOS program was

larger in scope and the academic support services were more intensive. All students attending

UT-Austin from an LOS school received the academic support services, in contrast to the CS

program that limited services to scholarship recipients. The LOS support services were much

more academically-focused than in CS as well, and conversations with an LOS program official

5



suggests that the recruitment efforts associated with the LOS program were more intensive.

While the LOS program generates large long-run benefits for exposed students, the CS results

suggest that the design and implementation of these programs matter. Our findings underscore

the promise of the type of comprehensive support strategies we study but also highlight the

need to understand how best to design them in order to maximize their positive effects.

2 The Longhorn Opportunity and Century Scholars Programs

2.1 Program Description

The Longhorn Opportunity Scholars and Century Scholars Programs were first implemented in

1999 and 2000, respectively, to increase enrollment rates for low-income and minority students

at UT-Austin and Texas A&M in the wake of the state’s 1997 affirmative action ban. This ban

made it illegal for schools in the state to consider race as a factor in either admissions or the

provision of financial aid. The pre-existing affirmative action system was replaced by the Texas

Top 10% Rule in 1998, which stipulated that any student in the top 10% of his or her high

school class could attend any Texas public university.6 Post-1997, the vast majority of students

in UT-Austin and Texas A&M were admitted under this rule. As a result of the Top 10% rule,

during the period we study, students ranked outside the top 10 percent of their class at high

schools serving low-income students were very unlikely to enroll in UT-Austin or Texas A&M.

Despite the fact that many students from low-income schools became eligible to attend Texas

A&M and UT-Austin under this rule, minority enrollment at these colleges fell dramatically

(Kain, O’Brien and Jargowsky 2005). In response to these declines, the LOS and CS programs

were developed to try to recruit students from low-SES backgrounds to the state flagships and

to support their academic success while enrolled. The LOS program targeted 70 high schools

in Houston, Dallas, San Antonio, El Paso, Beaumont and Laredo that had high shares of

low-income and minority students and few prior applicants to UT-Austin. The CS program

similarly targeted 70 low-income schools in Houston, Dallas and San Antonio with few prior

applicants to Texas A&M.7 There was some overlap between the two programs, with students

6The ranking is determined by each high school separately, but typically is based on student grade point average.
7Since 2003, the CS program has expanded further and the LOS program has been replaced by the Discovery Scholars Program.

This program has many of the same elements as LOS, but eligibility is individual-based rather than high-school-based and support
services are separated from scholarships. We do not study post-2002 cohorts in this analysis because they are too young to obtain
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from several high schools being eligible for both programs. Over 600 students are admitted

to Texas A&M and UT-Austin under these programs each year. Figures 1 and 2 show the

geographic distribution of LOS and CS schools in our estimation sample, respectively. They

are mostly located in the large urban centers in the state; the focus of these programs is on the

urban poor. That these interventions are isolated to specific cities in Texas allows us to find

similar schools throughout the state that are untreated to form our control group.

Though administered by different universities, the two programs are similar in a number of

ways. First, most students are given additional financial aid if they enroll in the flagship school

running the specific program. Second, there is an active recruiting effort made at targeted high

schools to try and overcome any information barriers about cost, the likelihood of admission,

and the value of attending a higher-quality school that may have existed. Third, once enrolled,

the LOS and CS students are given access to academic support services. Fourth, both pro-

grams establish formal enrolled student and alumni communities that offer support, guidance,

networking and resources.

Despite these similarities, there are two substantive differences across the programs that

could lead them to have different effects on student outcomes. The first is their scope. For

LOS, initially the plan was to only offer services to students who received financial support

from the program, restricted to a maximum number of scholarships per high school. However,

in practice they allowed all enrolled students from targeted schools to receive program services

(but not the scholarship money). Furthermore, an administrator of the LOS program informed

us that students who did not qualify for LOS scholarship money directly usually qualified for

other scholarships. For CS, students from targeted high schools only received the academic

support services if they are awarded the scholarship money. Students also had to maintain a

minimum GPA in order to keep their CS fellowship.

The second difference between the programs is in the type of academic support services

offered. Under the LOS program, students were offered extensive support, including guaranteed

spaces in residence halls, free tutoring, and peer mentoring. In addition, the LOS program had

students enroll in small sections of introductory courses in mathematics, chemistry, biology,

economics and other fields exclusively for LOS students. These courses were widespread across

reliable earnings estimates in our data.
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the university in multiple subject areas providing numerous opportunities for LOS students to

take advantage of the courses. A list of courses with exclusive LOS sections is provided in Online

Appendix Table A1. Instructors for these sections taught the same content but could tailor the

instruction to recognize that the students were coming from disadvantaged backgrounds and

likely had a lower baseline set of skills than the average first-year student. This may have been

particularly useful in difficult courses in math and science where these types of course sections

were popular. The academic support services in the CS program were much less extensive and

entailed faculty mentoring (in lieu of peer mentoring) as well as professional training in public

speaking, interviewing and presentation skills, while also maintaining a community service

requirement.

These interventions could influence several important postsecondary outcomes and earnings

in ambiguous directions that point to the need for an empirical analysis. In particular, we

might expect the LOS/CS programs to have a positive effect on student outcomes because

of the overall positive effects of college quality on educational attainment and earnings (e.g.,

Andrews, Li and Lovenheim, 2016; Bound, Lovenheim and Turner 2010; Hoekstra 2009; Black

and Smith 2004, 2006; Brewer, Eide and Ehrenberg 1999).8 Ex-ante, the LOS/CS programs

should increase the likelihood that students enroll in UT-Austin and Texas A&M. Indeed,

in interviews with ten freshmen recipients of the Longhorn Opportunity Scholarship, Bhagat

(2004) finds that the financial, social, and academic supports offered by LOS were the primary

reasons that students selected the University of Texas at Austin, suggesting that the programs

had positive effects on enrolling. This is consistent with the evidence in Domina (2007) of higher

flagship enrollment after the LOS/CS program implementation and Andrews, Ranchhod and

Sathy (2010) of higher SAT score sending to the flagships - a proxy for intent to apply to

a given school - among students in treated high schools. Outside of the flagships, the other

options for these students typically are worse in terms of the quality and resource levels of the

institution, including attending lower-quality four-year schools, attending a two-year college or

not attending college at all. We examine the enrollment effects of these programs directly below

using richer and more comprehensive data on enrollment than were used in this prior work.

8Another potential mechanism is that increased financial support provided by the programs may help students progress through
the higher education system by relaxing credit constraints. However there is very little evidence that credit constraints or financial
aid have more than a modest impact on students’ paths through college (e.g., Johnson 2013; Stinebrickner and Stinebrickner 2008;
Bettinger 2004).
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Our results suggest a more nuanced story that differs across LOS and CS treatments.

To the extent that the LOS and CS programs increased flagship enrollment, they would

lead to a substantial increase in college quality for treated students. To provide some context,

USNews and World Report ranks UT-Austin as the 58th and TAMU as the 68th best national

universities. The next highest public institutions in the state are UT-Dallas, ranked 145, Texas

Tech, ranked 156, and University of Houston at 186. Table 1 provides information on selectivity

and resources of Texas public institutions. The table compares University of Texas at Austin

and Texas A&M to “emerging research universities” (ERUs) and other four-year schools.9 The

means in the table show that both flagships are substantially more selective than the ERUs

and other 4-year institutions as measured by SAT scores of incoming students. The flagships

also spend substantially more per-student, have lower student-faculty ratios, higher graduation

rates and higher retention rates.

The ambiguity in predicted impacts of the programs from college quality improvements

arises because of potential tension between overall college quality effects and the potential for

academic “mismatch” that can occur when students of lower academic preparation are brought

into a more demanding educational environment.10 The students affected by the LOS and CS

programs tend to be high-achievers in their high schools, but because they come from low-

income schools, they still may be under-prepared for the academic rigor of a flagship university.

Indeed, this is the reason that the programs offer academic support services. If attending a

flagship causes these students to struggle academically, potentially leading to lower graduation,

persistence and earnings, then the LOS/CS programs could be harmful. This could be especially

problematic if the programs were simply recruiting students to attend or providing financial

aid. However, the LOS and CS programs provide a system of social and academic supports

that potentially mitigate, or even completely overcome, the effects of mismatch.

As a result of these conflicting theoretical impacts, a priori, it is not possible to determine the

net effect of the targeted recruitment programs. The success or failure of these programs hence

must be determined empirically. In addition to potentially reducing educational inequities,

9The ERU designation is for institutions that are eligible for a special pool of state funds for increasing research output. These
are sometimes called “Tier 1” schools as part of the goal of the program is to increase the schools’ research and academic reputations
to the top tier of public universities in the US. For our purposes, this is a useful distinction as it provides a “second tier” of public
institutions below the flagships but with better resources than other institutions. This group includes UT Arlington, UT El Paso,
UT Dallas, UT San Antonio, Texas Tech University, University of North Texas, and the University of Houston.

10See Arcidiacono and Lovenheim (2015) for an overview of the “quality-fit” tradeoff in higher education.
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these programs may also help reduce income inequality if there are positive labor market im-

pacts. Hence, it is critical to examine their effects on long-term outcomes such as educational

attainment and earnings. These arguments underscore the importance of conducting a rigorous

analysis that can identify the effects of these targeted recruitment programs on students.

2.2 Prior Literature

No prior work exists that examines the impact of a multifaceted treatment aimed at addressing

the multiple disadvantages faced by students from low-income backgrounds at selective higher

education institutions. However, there are several important studies that have examined pro-

grams containing individual components of the CS and LOS treatments. In particular, prior

work has examined the impacts of college outreach programs and financial aid, with very little

research being done on targeted college services. An important contribution of our analysis

stems from the fact that it may not be enough to merely address one of the disadvantages faced

by low-income students. Instead, to increase the postsecondary attainment of such students,

particularly at highly-selective schools, it may be necessary to provide interventions that simul-

taneously affect a range of student disadvantages. Our study is the first to provide evidence on

this type of broad intervention.

Previous research on college outreach programs has not found strong evidence they improve

student academic outcomes. Using National Education Longitudinal Study of 1988 (NELS:88)

data, Domina (2009) studies the effect of being exposed to a college outreach program that

provides information on the college application process and, in some cases, tutoring support and

college counseling services for high school students. Domina reports that about 5% of students

in the NELS:88 sample are exposed to such a program. Using propensity score matching

techniques, he finds little evidence that exposure to an outreach program influences high school

achievement or college enrollment. In a randomized controlled trial of Upward Bound, Myers

et al. (2004) find largely the same results, except for a positive four-year college enrollment

effect.

These studies do not examine the impact on college quality other than the four-year/2-year

margin. However, a major effect of the type of college outreach embedded in the CS/LOS
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programs might be to influence students to attend a flagship rather than a non-flagship school.

There is some evidence that college outreach can positively influence the quality of schools to

which students apply and enroll. Hoxby and Turner (2013) conduct a randomized controlled

trial in which they send personalized information to high-achieving, low-income students on

college enrollment strategies, expected financial aid, and their likelihood of admission. They

find large increases in the quality of colleges to which students apply. The LOS and CS pro-

grams provide similar information as well as direct, in-person recruiting, and could have large

effects on the college choices made by students in the targeted high schools.11 For academic ser-

vice provision, Angrist, Lang and Oreopoulos (2009) and Clotfelter, Hemelt, and Ladd (2016)

provide the analyses most relevant to our study. In the former, the authors randomly assign

students to receive peer mentoring and other services and/or financial incentives. They find that

the services and incentives combined led to academic gains for women. The latter study looks

at a program at University of North Carolina - Chapel Hill that provides financial assistance

and academic support services to low income students. While they are not able to assess the

impact of the program on sorting across schools (and hence see how it affects college quality) or

labor market outcomes, they find significant increases in grades and graduation rates. Further,

neither program had a recruitment component, which is a key feature of both the LOS and CS

treatments.

Our research also relates to a body of work that examines the effect of financial aid on

student collegiate choices and outcomes. Evidence from state merit aid programs that offer

free or highly-reduced tuition to in-state students who attend a public institution suggest these

programs are successful at altering the college enrollment decisions of high-achieving students

(Cohodes and Goodman 2014; Cornwell, Mustard and Sridhar 2006; Dynarski 2000). However,

these programs do not tend to increase students’ academic performance in college and may

reduce performance because they induce many students to enroll in lower-resource schools than

they otherwise would have (Cohodes and Goodman 2014; Fitzpatrick and Jones 2012; Sjoquist

and Winters 2012). Recent evidence from a randomized private scholarship in Nebraska, how-

ever, suggests aid receipt increases four-year enrollment, persistence and completion (Angrist

11Other work has focused on reducing psychic and financial barriers to the application process. For example, Bettinger et. al.
(2012) find that providing assistance with the FAFSA increases college applications and enrollment amongst low income students
while Pallais (2015) finds that increasing access to free ACT score reports increases the amount of schools low income students
apply to and the quality of the schools they attend.
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et al. 2014).

Importantly, the LOS and CS programs should have the opposite college quality effect to

what has been found in the merit aid literature. The likely alternative for these students is

a less-selective and lower-resource state university, community college or no college at all.12

UT-Austin and Texas A&M-College Station have much higher per-student expenditures, lower

student-faculty ratios and significantly higher 6-year graduation rates (Table 1). In addition,

both flagships have student bodies with higher measured pre-collegiate academic ability relative

to other public colleges and universities in Texas, as measured by the SAT score. Any resulting

peer effects, therefore, may play a role in driving the education differences across these schools

and could have a positive impact on LOS/CS students (Stinebrickner and Stinebrickner 2006;

Zimmerman 2003; Sacerdote 2001).

Finally, much prior research has examined the Texas Top 10% rule, which provides an im-

portant institutional backdrop for our analysis. The Top 10% rule was implemented in 1998

as an alternative to affirmative action. It gave automatic admission to any student in the top

10% of his or her high school class to any public college or university in Texas. There is a

large literature exploring the effect of the Texas Top 10% rule on enrollment and completion

outcomes, especially among minority students. This research tends to find that the plan in-

creases enrollment among high-achieving students at flagship schools (Daugherty, Martorell and

McFarlin 2014; Niu and Tienda 2010; Domina 2007;), especially those who were in high schools

that traditionally did not send many students to these schools (Long and Tienda 2008; Domina

2007). The effects on completion are more ambiguous, with some studies finding a negative

effect (Cortes 2010) and some finding no effect (Daugherty, Martorell and McFarlin 2014). We

discuss in Section 4 how this policy affects our identification strategy.

3 Data

The data we use in this study come from three sources: administrative data from the Texas

Education Agency (TEA), administrative data from the Texas Higher Education Coordinating

12While it is possible that some students would have attended private or out-of-state schools, such behavior is likely rare for the
population targeted by LOS/CS. We cannot directly test for such sorting with our data as we only observe attendance at public
institutions in Texas. However, we find no evidence that the likelihood of attending any postsecondary public institution changed
as a result of the programs.
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Board (THECB), and quarterly earnings data from the Texas Workforce Commission (TWC).

The data are housed at the Texas Schools Project, at the University of Texas at Dallas Education

Research Center (ERC). These data allow one to follow a Texas student from Pre-Kindergarten

through college and into the workforce, provided individuals remain in Texas. We discuss each

of these data sets in turn.

Beginning in 1992, the TEA began collecting administrative data on all students enrolled in

public schools in Texas. These data contain students’ grade level, the school in which he or she

is enrolled, scores from state standardized tests, and a host of demographic and educational

characteristics such as race/ethnicity, gender, special education status, whether the student is

eligible for free or reduced-price lunch, whether the student is at risk of dropping out, and

enrollment in gifted and talented programs. The test score data we use are from the 11th grade

Texas Assessment of Academic Skills (TAAS) exams for reading, writing and mathematics.

The TAAS exams were administered to all students in Texas through 2002, and they were

“high stakes” in the sense that students had to achieve a passing score on them in order to

graduate. Because students can retake them, we use the lowest score for each student, which

typically corresponds to the score from the first time students take the exam. Although the

TEA data begin in 1992, in 1994 Texas redesigned the high school exams. We therefore restrict

to students who graduate in the high school classes of 1996-2002.

The LOS/CS programs targeted only high-ability students at each school. Hence, we focus

our analysis on the top of the within-school achievement distribution. We estimate the students’

academic ability as the first principal component of a factor analysis model that includes 11th

grade TAAS scores on mathematics, reading and writing. As argued by Cunha and Heckman

(2008) and Cunha, Heckman and Schennach (2010), combining test scores in a factor model

provides a stronger proxy for student academic ability than using any one test score alone. Using

this academic ability factor, we rank students in his or her school-specific 11th grade cohort.

Andrews, Li and Lovenheim (2016) present evidence that the within-high school rank on these

exams is highly correlated with whether one is admitted to a flagship university through the

Top 10% Rule,13 which is evidence that the relative rank on these exams is a good proxy for

13Specifically, Andrews, Li and Lovenheim (2016) show that admission through the Top 10% Rule is highly predictive of attending
UT-Austin or Texas A&M, but conditional on the relative rank on the TAAS test scores this variable loses its predictive power.
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relative academic rank in each high school.

Our higher education data from the THECB contain detailed information about college en-

rollment and key collegiate outcomes for all students who enroll in a public college or university

in the State of Texas. For these students, we observe the enrollment decision in every public

college or university in each semester, major choice, and the timing of all degrees received.14

The quarterly earnings data from the TWC are from Q1 2007 through Q1 2015 and contain

earnings for every worker in Texas, with the exception of those working for the Federal Gov-

ernment or US Postal Service. Because the LOS and CS programs are relatively recent, we

are constrained in the length of the post-high school time period over which we can observe

earnings. We construct three measures of earnings to provide insight into the role of timing.

The first is average log quarterly earnings in all quarters in which earnings are observed six or

more years post-high school graduation. The second uses all earnings observations that are at

least ten years after high school graduation and the third uses twelve or more years after high

school.

To construct our earnings measure, we first restrict the sample to individuals with at least

five quarters of $100 or more earnings in the relevant time period (6+, 10+ or 12+ years after

high school graduation) and drop the highest 0.5% of overall earnings quarters due to the

long right tail of the earnings distribution.15 We then demean log quarterly earnings within

year-quarter-cohort bins so that earnings are relative to the mean earnings within a high school

graduating cohort at a given time.16 We then average the demeaned earnings within individuals

to generate an adjusted log earnings measure.

A limitation of our data is that students only are followed if they both attend college in

Texas and work in Texas in an industry covered by unemployment insurance. Biases due to

differential attrition associated with the rollout of LOS and CS therefore can occur both in the
14Ideally we would be able to look at GPA as well but unfortunately collection of GPA data by the state was not universal across

institutions until 1999.
15We provide details on results using alternative sample constructions in Online Appendix Table A-11. Dropping the top 0.5% of

earnings quarters has little affect on the earnings estimates but reduces the standard errors. The 99.5th percentile of the quarterly
earnings distribution is $94,928.

16We also exclude all earnings that occur while an individual is enrolled in a Texas public graduate school as these earnings are
unlikely to be reflective of permanent earnings (we do not observe if the student is enrolled in a private or out-of-state graduate
school). Further, we note that a worker-quarter is only observed if the worker has positive earnings in that quarter. Missing
observations can be due to unemployment, labor force non-participation or leaving the State of Texas. We do not include missing
observations as zeros because we are unsure whether an individual has left the state or is not working and residing in Texas. These
sample restrictions and the way in which we construct our earnings measures are very similar to the methods used by Andrews, Li
and Lovenheim (2014; 2016) with these data.

14



analyses of postsecondary outcomes and earnings. When examining educational outcomes, the

main concern is that the LOS/CS programs could induce students who would have attended an

out-of-state or private school to move to the in-state flagship.17 This will show up as a change

in the extensive margin of college enrollment in our data, whereas in actuality such students

may be switching across postsecondary schools of similar quality. Of course, these students still

would receive the academic services once enrolled as well as the scholarship money. This type

of sorting likely would lead us to overstate program impacts, because the students induced to

switch schools from the private or out of state sectors probably are better academically-prepared

for college and are from less disadvantaged backgrounds than other students at LOS and CS

schools.

We address this potential bias in a few ways. First, we note that in the wider population

affected by LOS and CS, very few students attend out-of-state or private schools. Indeed, in

Texas overall only 18% of first-time 4-year college enrollees who were seniors in high school the

prior year attend an out-of-state school. While similar statistics for in-state private schools are

not available, only 12% of enrollment in Texas degree granting institutions is in private colleges.

Given the low income of students in LOS/CS schools, we would expect these numbers to be far

smaller for our population of interest.

Second, we estimate whether the LOS and CS programs have any impact on attending an in-

state public institution. Thus, the treatment effect is relative to not attending college, attending

a private college, or attending an out-of-state college. As we show below, we find little indication

that students from LOS or CS schools were more likely to be observed in the postsecondary data

after program implementation. Thus, for the programs to induce private/out-of-state students

to move to the flagships, there would have to be an offsetting increase in non-college attendance

by other treated students, which is very unlikely. Furthermore, we show that increases in

enrollment at the flagships are completely offset by an equivalent reduction in attendance in

other in-state public colleges.

Attrition bias also can occur in the earnings data due to migration out of Texas. We find

some evidence that treated students are less likely to be present in our earnings samples. We

17Daugherty, Martorell and McFarlin (2014) show that the Top 10% rule had just such an effect on student college-going in a
low-income district.
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address any biases from such differential attrition in two ways. First, we test whether attending

an LOS or CS school “affects” predetermined student characteristics in the earnings samples

relative to students in comparison high schools. Second, we generate predicted earnings of

students based on their high school characteristics and test whether the LOS and CS programs

change the predicted earnings of those not in the earnings data. We find no evidence that the

targeted recruitment programs generate differences in pretreatment characteristics for students

in the earnings sample. Our results also indicate that those differentially attriting from the

earnings sample due to LOS/CS exposure have higher predicted earnings based on the large

set of pre-collegiate characteristics we observe. These tests indicate that our earnings estimates

likely do not suffer from attrition bias or, at worst, that our estimates are attenuated due to

the differential attrition of those with high predicted earnings.

4 Methodology

Our methodological approach to examining the effect of the LOS/CS programs on student col-

lege choice, academic outcomes and labor market earnings is to estimate difference-in-differences

models in which we compare changes in outcomes among cohorts of students when their school

becomes treated to changes among cohorts of students in observationally-similar schools that

are not treated. As discussed above, the LOS and CS programs are most likely to affect higher-

ability students. We therefore restrict the analysis to students who are in the top 30% of their

high school class in a given year according to the ability index discussed in Section 3. We focus

on the top 30% of students rather than the top 10% because our ability index is an imper-

fect proxy for class rank. The top 30% of students accurately captures the large majority of

groups that are potentially eligible for enrollment in a state flagship from schools in our sample.

This feature of the data is highlighted in Figure 3, which shows enrollment in UT-Austin from

LOS-targeted schools and in TAMU from CS-targeted schools both before and after program

implementation. The vast majority of enrollees in the flagships are in the top three deciles of

the achievement distribution in those schools.

Figure 3 clearly demonstrates that the LOS program positively affected the likelihood of

enrollment at UT-Austin among students in treated high schools. Prior to the program’s im-
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plementation (1996-1998), enrollment at UT-Austin among college attendees from high schools

that would later be treated by the LOS program was below enrollment among students at

observationally-similar untreated schools. After the program is implemented, enrollment in-

creases much more in LOS schools than in the comparison schools, especially in the top three

deciles where we focus our analysis. In the bottom panel, the enrollment patterns at Texas

A&M surrounding the implementation of the CS program are quite different. Here, Texas

A&M enrollment from the schools that will receive the CS treatment differs little from com-

parison schools in the pre-CS period except in the ninth decile, where comparison enrollment

decreases, and the tenth, where it increases relative to treated schools. The drop-off in top

decile enrollment is likely due to students from high schools with both programs preferring

UT-Austin.18

In order to estimate the causal effect of the LOS and CS programs on college and labor

market outcomes, we use a difference-in-differences model that allows us to identify intention-

to-treat effects of the LOS and CS programs. Starting with LOS, we estimate the following

equation using LOS-treated schools and a sample of comparison schools that are similar to

the LOS schools in the observed characteristics used by UT-Austin to determine treatment

eligibility.

Yijt = α + β1LOS Schooljt + β2LOS&CS Schooljt +XijtΓ + φj + θt + εijt, (1)

where Yijt is an educational or labor market outcome of interest for student i from high school

j who graduates from high school in year t, and X is a vector of individual characteristics

such as high school test scores, race, gender, and economic disadvantage status.19 The model

also contains school fixed effects (φj) and year fixed effects (θt). The school fixed-effects make

this equation a difference-in-differences model where the timing of treatment varies by school.

The main treatment variable, LOS School is an indicator for whether the graduating cohort in

school j and year t is eligible for LOS. The variable equals zero for students who graduate from

schools that will join LOS in the future as well as those in never LOS schools and becomes one

when a student’s graduating cohort is eligible for LOS scholarships and services if they attend
18Appendix Figure A-1 shows similar patterns for the sample of high school graduates in the top 30% of their high school.
19Texas considers a student to be economically disadvantaged if he or she is eligible for subsidized school lunches or is enrolled

in another state or Federal anti-poverty program.
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UT-Austin. Hence, β1 gives us our estimate for the impact of attending an LOS high school

on outcomes of interest. A key restriction in this “LOS sample” is that schools that are only

eligible for CS and not eligible for LOS are excluded from the sample. This allows us to include

LOS&CS Schooljt as an interaction between the two programs in the model. Nonetheless, our

focus is on the main LOS effect; we include the interaction term to avoid contamination of the

intention to treat from one program with the effect of the other. Throughout this analysis,

standard errors are clustered at the high school level.

For the CS program we estimate a similar model using a sample (the “CS sample”) that

includes all CS schools as the treatment and a comparison group of schools that are observably

similar to the CS schools but do not include any schools that participated in only the LOS

program. Hence we estimate

Yijt = α + β1CS Schooljt + β2CS&LOS Schooljt +XijtΩ + φj + θt + εijt, (2)

In this case, β1 provides the causal effect of attending a CS participating high school, while β2

removes contamination from the LOS program in schools where both programs operate at the

same time.

In equations (1) and (2), the treatment parameters show how outcomes change among top

30% students in LOS/CS schools relative to top 30% students in untreated schools when the

programs are implemented. Hence, the main assumption under which β1 is identified is that

the trends in outcomes among schools not receiving the treatment are accurately measuring

counterfactual trends among the treated schools. This identification assumption is potentially

strong, especially since the programs are targeted at low-income schools that could have sub-

stantially different trends than non-LOS/CS schools absent the treatment.

To make this identification assumption more plausible in our context, we restrict the set

of untreated schools to those high schools with common support among key observable char-

acteristics that determine treatment. Using data from the 1996-1998 school years (which is

before either program was implemented but includes implementation of the Top 10% rule),

we estimate separate logit regressions of the likelihood a high school becomes an LOS or a

CS school as a function of quadratic polynomials in the following school-level characteristics:
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percent enrolling in the targeted flagship in 1996, 1997 and 1998, percent economically disad-

vantaged, percent black, and percent Hispanic. The first variable accounts for recent trends in

under-representation at the specific flagship institution (UT-Austin or TAMU) by measuring

how many students actually enroll in the pre-treatment period, a key factor in determining

eligibility.20 The last three variables account for the socioeconomic makeup of students in the

schools that also are important determinants of whether a school receives the LOS or CS pro-

gram. We use this model to calculate propensity scores that show the likelihood a given high

school is treated by each program. The logit regression coefficient estimates are shown in Online

Appendix Table A-2.

We first drop all treated schools with a predicted treatment likelihood higher than the highest

control school and then drop all schools that have propensity scores less than 0.2 to generate

a common support sample that will more accurately account for counterfactual trends. We

construct this sample separately for the LOS treatment and for the CS treatment, and the

resulting untreated schools together with the treated schools constitute the LOS sample and

the CS sample, respectively. Thus, our trimmed common support samples are comprised of a

set of schools that have broadly similar likelihoods of being treated based on their observable

characteristics.21 Figure 4 shows the propensity score densities for treated and control schools

by likelihood bin, separately for UT-Austin (LOS) and Texas A&M (CS). In the figure, we have

excluded the large mass of control schools with propensity scores below 0.2 as they dominate

the graph if included. Ostensibly, we are excluding a large set of high schools that serve higher-

SES students and that have no probability of being selected for the LOS/CS treatments. As

the figures demonstrate, there also are several treated schools that have a predicted likelihood

of treatment that is greater than any control school. These schools are excluded from the main

analysis because they are sufficiently different from any comparison school that it makes the

identification assumptions that underly our estimator more difficult to support.

Throughout the study, we focus on samples that restrict to college attendees who are in

the top 30% of their high school class as measured by our achievement index, as these are the

20While the CS program does not specifically state what metrics they use to select schools, they do say in their handbook that
the program is intended to “to increase the number of enrolled and retained students from under-represented Texas high schools.”
The LOS program specifically states that they target high schools where sending of ACT and SAT score reports to UT-Austin are
low. Unfortunately, we do not have data on score reporting and thus we use actual enrollment history as a proxy.

21We have also conducted our analyses using samples that drop control schools below the lowest treated schools and samples that
trim at a propensity score of 0.1. In both cases we get similar results.
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students who are most likely to be impacted by the programs. We show below that there is

no impact on the college attendance margin, so there is little concern that the composition of

our college enrollment sample is endogenous with respect to the LOS or CS treatments. For

the sake of completeness, however we also provide the full set of estimates for a sample of all

high school graduates in the top 30% of their high school class in the online appendix. As

expected, the results for the high school grad sample are attenuated since we are increasing the

number of students who contribute to the intention to treat estimate without actually increasing

treatment propensity. Nonetheless, in most cases, the estimates maintain the same direction

with the same level of statistical significance as the college attendee sample.

Table 2 shows demographic and measured high school academic achievement characteristics

for top 30% students in our trimmed common support samples who attend college. For both

the LOS and CS estimation samples, students in the comparison schools are higher achieving

and more likely to be white. However, in the LOS sample the comparison schools are more

economically disadvantaged. These samples are much more similar to each other than they

are to schools that are not in the common support. Indeed, in both the treated and control

groups, the majority of students are African American or Hispanic, a large proportion are at

risk of dropping out of high school, and they exhibit high rates of economic disadvantage. For

comparison, in the 2000-01 school year, the average economic disadvantage rate in Texas for

high school students was 36%.

Table 3 provides similar comparisons for our outcomes of interest. First, we consider the

student’s initial college of attendance. Within this sample of high-achieving college attendees,

very few students attend the flagships (as was evident in Figure 3). Only 6%-9% of top 30%

graduates from treated schools attend either UT or TAMU. Many attend emerging research

universities or other 4-year schools, and almost half of all the college attendees are observed

first attending a two-year school. Transfer rates are quite high, at almost 40%, and 6-year BA

attainment rates are low at under 25%. Outcomes in comparison schools tend to be slightly

better than in treatment schools, but the differences are not large. Overall, Tables 2 and 3

highlight that the LOS and CS schools are targeting schools that serve a large proportion of

disadvantaged students who have low postsecondary investment rates and poor postsecondary
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outcomes.

The differences in demographic characteristics among the treated and comparison schools

is not a threat to identification as long as they are fixed. A key element to establishing the

validity of a difference-in-differences identification strategy is being able to show that exogenous

observed characteristics are not affected by the treatment. In Table 4, we provide balance tests

using equations (1) and (2) for the college attendee samples in which we exclude all character-

istics in X and use each observable shown in the column header as a dependent variable. Panel

A shows results for LOS while Panel B shows the results for CS. The estimates for the LOS and

CS main effects are universally small and statistically insignificant in both estimation samples

while for the interaction effects only gifted and talented status in the LOS sample is statistically

significant. These results support our difference-in-differences identification strategy as there is

little indication of the program implementations correlating with demographic or performance

changes in high schools.22

Given the targeted nature of these programs, it is important to understand what drives the

assignment of high schools to treatment conditional on the observables. Returning to Figures 1

and 2 that show the geographic distribution of LOS and CS schools, respectively, as well as the

comparison schools, we see that much of the treatment variation is geographic. The LOS and

CS programs were targeted towards urban high schools in the largest cities in Texas.23 Thus,

there are observationally equivalent schools located outside these cities that comprise most of

the control groups. There are some comparison schools in these cities as well but they tend

to be located outside the urban centers and reflect the fact that these programs faced budget

constraints that allowed them only to treat a subset of qualifying schools. Figures 1 and 2

suggest that there is plausibly-exogenous variation in treatment status based on geography

that allows us to identify β1 in equations (1) and (2). While in our main estimates we do not

explicitly take advantage of this, we provide specification checks that restrict our comparison

schools so that they are not in districts or counties with treated schools and find similar results.

While our trimmed common support sample makes the common trends assumption more

likely to hold, it is important to provide direct evidence on the validity of this assumption.

22Estimates for the top 30% high school graduates are very similar and are shown in Appendix Table A-3.
23A former administrator of the LOS program told us that they restricted to schools in close proximity to UT-Austin’s recruitment

centers, which were located only in major cities.
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Thus, we estimate event study models in which we interact indicators for whether a school will

ever be treated by the LOS or CS programs with each calendar year and estimate the impacts

on our outcomes of interest. This allows us to test explicitly for the existence of differential

pre-treatment trends in these outcomes. As we describe in detail below, we find no evidence

such trends exist for any outcome, which strongly supports our empirical strategy.

The second main assumption underlying our difference-in-difference strategy is that there

must not be external shocks in 1999-2002 that affected CS/LOS schools differently from the

control schools. It is difficult to test this assumption with our data. Of particular concern is

the imposition of the Top 10% rule in 1998. As a result of this rule, most admissions to the

flagship schools were from the top 10% of a class. Equations (1) and (2) are identified under the

assumption that the top 30% in the treated and control schools (as measured by achievement)

are similarly affected by the Top 10% rule. This assumption is made more palatable by the

use of the trimmed common support sample, since both treated and control schools serve low-

SES students with low historical flagship enrollment rates. However, our event study estimates

also shed light on any bias from the Top 10% rule as this law went into effect in 1998 while

the LOS/CS treatments were not rolled out until 1999-2000. We therefore should see effects

in 1998 if the Top 10% Rule is driving our estimates, but as shown below the time pattern

of effects much more closely matches the timing of the LOS/CS roll-out than the Top 10%

rule implementation. Furthermore, we show that the LOS program does not positively affect

enrollment in Texas A&M and the CS program does not positively affect enrollment at UT-

Austin. If our results were simply picking up differential flagship enrollment increases due to

the top 10% rule, we would not expect to see such a pattern.

Equations (1) and (2) are designed to identify intent-to-treat (ITT) parameters. That is,

β1 shows the effect of being exposed to the LOS or CS intervention by being in a treated high

school (or by being a high-performing student in a treated high school). This is primarily

out of necessity as there are multiple treatments involved in the programs and it is unclear

which students get which treatment. From a policy perspective, the ITT is an extremely

important parameter because universities cannot compel take-up. In addition, there can be

spillover effects onto students who do not receive a LOS/CS scholarship, particularly from the

22



recruitment part of the programs. Thus, from the policymaker’s standpoint, the ITT is the

most relevant parameter and it is the one our empirical strategy is best designed to estimate.

We therefore focus on the ITT parameter throughout the study. We also provide some context

to the ITT estimates by calculating back of the envelope estimates of the effect of treatment

on the treated under a broad definition of what constitutes treatment in this context.

5 Results

5.1 Enrollment Effects of LOS and CS

Estimates of equations (1) and (2) using college enrollment outcomes as the dependent variable

are shown in Table 5. Panel A contains the results for the LOS program and Panel B shows

the estimates for the CS program. Each set of two estimates in a column is from a separate

regression.

In Panel A of column (1), we show the effect of the LOS and CS treatments on attending

any public college in Texas using the sample of high school graduates. Recall that we only have

data on students who attend public colleges in Texas; if the programs induce students to enter

the public university system from other places - private schools, out-of-state schools, or from

not attending college at all - it would appear as an increase in college enrollment in our data.

The estimates in Panel A show no evidence of a change in enrollment in a public Texas 2-year

or 4-year college or university due to the LOS program (first row). The estimates in the second

row, which represent the differential impact of a school being eligible for CS in addition to LOS,

also show no statistically significant effect. Similarly in Panel (B), the estimates in column (1)

are small and are not statistically insignificant at even the 10% level. From these results, we

conclude that the likelihood of attending any Texas public college is unaffected by the LOS/CS

treatments, which negates worries about selection into the college-going sample. As a result,

we focus on the college attendee sample for the remainder of the analysis. Full results for high

school graduates are provided in the online appendix.24

One of the main goals of the LOS and CS programs is to induce more students from the

targeted low income high schools to enroll in the flagships. Our results show that while the

24These results are included in Online Appendix Tables A-4,A-6, A-7, A-9 and A-10.
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LOS program was very successful in this goal, the CS program had little impact on enrollment.

Columns (2) and (3) of Table 5 provide estimates of the impact of attending an LOS or CS high

school on enrollment at a flagship. We find an increase in attendance of 2.2 percentage points in

UT-Austin due to LOS exposure. In the pre-treatment years, the average UT-Austin enrollment

rate in our sample was 0.027; hence the LOS program increased UT-Austin enrollment by 81%.

However, as column (2) demonstrates, there was no effect of LOS on TAMU enrollment. This

is an important finding for two reasons. First, if the top 10% rule caused these enrollment

increases, we would expect both UT-Austin and Texas A&M enrollment to increase, contrary to

what the data indicate. Second, the LOS program did not simply shift students across flagships

but rather caused a substantial increase in college quality. This point is further highlighted by

the remaining columns of Table 5. Nearly all of the increase in UT-Austin enrollment came

from students who would have enrolled in the emerging research universities (ERUs). While

these students would have attended four-year schools in the absence of the program, they

nonetheless experience a substantial upgrade in college quality. As Table 1 shows, UT-Austin

has more resources, stronger peer quality, and better measured outcomes than the ERUs.25

In contrast to the enrollment effect of the LOS program, Panel (B) indicates that the CS

program did not increase enrollment at Texas A&M. Schools that received both treatments

experienced an increase in enrollment at UT-Austin of 2.2 percentage points, which is in line

with the results in panel (A) indicating that this result is due to the LOS rather than the CS

program.26 There is some indication of resorting among other four-year schools, but given that

it is hard to explain why the CS program would induce such behavior, we believe this result to

be spurious. Hence, it appears that the CS program was ineffective at altering the enrollment

behavior of students in treated schools. The differences across programs is likely due to their

differences in scope and the amount of resources put into recruiting students from these high

schools. However, we lack the data to be able to test these hypotheses directly.

A core identification assumption embedded in equations (1) and (2) is that the treatment

and comparison schools are trending similarly prior to the treatment. In order to provide

evidence in support of this assumption, Figure 5 shows event study estimates of enrolling in

25Appendix Table A-4 contains enrollment estimates for the high school graduate sample. The estimates are qualitatively and
quantitatively similar to those shown in Table 5: the effect on UT-Austin enrollment is 82% of the pre-treatment enrollment rate.

26Recall that the samples in Panels (A) and (B) are different due to different trimmed common support comparison groups, which
is why the estimates for the jointly-treated schools are not the same across panels.
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UT-Austin and Texas A&M for each of the respective top-30% college-going samples. For

both programs, there is no evidence of a differential upward trend in the specified flagship’s

enrollment prior to treatment. Consistent with the results in Table 5, there is a clear increase

in UT-Austin enrollment after 1999, when the LOS program began in some schools, that is not

predictable from pre-treatment trends. However, there is no evidence of an increase in Texas

A&M enrollment after 2000 when the CS implementation begins. Furthermore, these results

suggest that the Top 10% rule is not a serious confounder in this setup, as there is no apparent

increase in enrollment in either flagship in 1998 (the first year of the Top 10% rule). That

is, any differential changes in enrollment between treated and untreated schools start to occur

in 2000 after LOS was implemented, not in 1998 when Texas Top 10% rule was implemented.

Overall, Figure 5 is consistent with the identification assumptions underlying our difference-in-

differences. Appendix Figure A-2 shows event study estimates for enrollment effects of the LOS

program at schools other than UT-Austin. There is little evidence of pre-treatment trends for

any enrollment outcome, and the post-treatment estimates match those in Table 5 closely.

Given that the CS program did not impact college enrollment and both the scope of the

services provided and access to those services was smaller than LOS, ex-ante, one would predict

the CS program would not have large effects on collegiate and labor market outcomes. Indeed,

in our analysis of the CS program, we do not find a statistically significant effect on any outcome

we investigate. These results are sufficiently precise that we conclude the CS program had no

impact on flagship enrollment, graduation rates, major choice, or earnings. As a result, we focus

on the LOS program for the remainder of the analysis, while estimates for the CS program are

provided in the online appendix.27

5.2 Graduation and Major Choice Effects of LOS

Thus far, our results indicate that students in LOS schools experienced a substantial increase in

college quality by shifting from lower-resource public schools to UT-Austin. The prior literature

on the educational returns to college quality suggest that this intervention should lead to higher

BA receipt (Cohodes and Goodman 2014; Bound, Lovenheim and Turner 2010). Further, the

LOS program provides a number of services to students like peer mentoring that also have been

27Online appendix tables A-4, A-5, A-7, A-8 and A-10 contain results for the CS program.
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shown to improve student performance (Angrist, Lang and Oreopolous 2009). In Panel (A) of

Table 6, we examine how the LOS program affected graduation from UT-Austin along with

four-, six-, and eight-year BA completion, attendance at a public Texas graduate school, and

transferring behavior between public TX institutions. In column (1), we show that the LOS

treatment led to a 1.7 percentage point increase in the likelihood of graduating from UT-Austin

within 6 years. This is an 87% increase relative to the pre-treatment mean and the graduation

effects are about 77% of the enrollment effects in Table 5. This suggests that the program was

very effective at getting the marginal attendees to graduate from UT-Austin. However, the

academic support services and scholarship funds may have increased graduation rates among

treated students who would have attended UT-Austin even in the absence of the program,

which means we cannot necessarily attribute the entire increase in UT-Austin graduation to

the marginal attendees. Columns (2)-(6) provide information on collegiate outcomes that shed

additional light on this question. The LOS treatment did not affect four, six, or eight-year

graduation rates overall in Texas nor did the program significantly affect public graduate school

attendance (though we cannot observe any impacts on graduate school enrollment at out-of-

state or private graduate schools). It also did not affect the likelihood of students transferring

between public Texas institutions, which is important because it indicates that marginal UT-

Austin students did not transfer away to other schools after their initial enrollment.

Figure 6 shows event studies of the main graduation outcomes we analyze. We find no

evidence of pre-treatment trends that would bias our results, and in all cases the timing of

the effects line up closely with when the LOS policy was implemented. Again, this provides

evidence that the impacts we estimate are coming from the LOS treatment rather than from

other policies such as the top 10% rule that were in place during this time period.

Table 7 provides a more direct analysis of the effect of the LOS program on the paths students

took through the postsecondary system. We categorize students into mutually exclusive groups

by their first college type attended (UT, TAMU, ERU, Other 4 Year, and 2 Year) and their

eventual collegiate outcome (graduate from a flagship, graduate from a non-flagship public 4-

year school, and do not graduate from a public 4-year institution).28 Each column and panel

28We pool the flagships together when we look at graduation because there is little transferring across flagships in Texas (Andrews,
Li and Lovenheim 2014). We further pool the two non-flagship four-year school types together to keep the number of outcomes we
are analyzing to a manageable size.
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combination comes from a different estimation of equation (1), where the dependent variable

is an indicator for students taking the given path. For example, in the first panel column

(1) shows the effect of the LOS program on the likelihood students begin at UT-Austin and

graduate from a flagship. The estimates in column (2) in the third panel show the effect of LOS

on the likelihood a student first enrolled in an ERU and then graduated from a non-flagship

four-year school. All graduation outcomes are within six years.

The estimates in Table 7 suggest that the LOS program’s main effect on college enrollment

behavior was to increase the proportion of students who both enroll in and graduate from UT-

Austin. These students are mostly drawn from a group that would have enrolled in an ERU,

some of whom would not have graduated within 6 years, as shown in the third panel. There

also is a small subset of students induced to attend UT-Austin who do not obtain a degree

within 6 years, but this effect is less than half the size of the UT graduation effect. Overall,

these results indicate that the LOS program induced many students who otherwise would have

attended a non-flagship research university to both enroll in and graduate from UT-Austin.

The slight increase in the UT-grad path relative to ERU-grad and ERU-non-grad paths reflects

the small and insignificant positive 6-year graduation estimate in Table 6. This finding runs

counter to what one would expect if the students are academically mismatched to the more

demanding educational environment. It is important to emphasize, however, that this is not

a direct test of mismatch as the students attending these colleges also are receiving enhanced

academic services. One policy-relevant interpretation of these results is that these academic

services are sufficient to overcome any academic mismatch faced by the treated students.

Another prediction of mismatch theory is that under-prepared students will gravitate to

easier majors when they are overmatched. In Panel (B) of Table 6, we examine whether the

LOS program induces students to alter their chosen course of study. We focus in this table on

the student’s “final major,” which is either the major at graduation or the last observed major

for students who do not graduate from a public Texas college by the end of our sample period.

LOS treatment increases the proportion of students majoring in social sciences and in arts

and humanities primarily at the expense of students enrolled in “other” unclassified majors.

This other category is comprised of education along with mainly vocational and technical
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support majors. Importantly, there is no statistically (or economically) significant effect on the

proportion of students majoring in STEM. Hence, LOS does not reduce the average difficulty

of the majors students choose. There is growing evidence that mismatch leads students to shift

to easier majors (Arcidiacono, Aucejo and Hotz 2013; Arcidiacono, Aucejo and Spenner 2012).

The results in Table 6 show little evidence to support such mismatch effects for high achievers

in this setting, which possibly is due to the student support services included in the program.29

That students are not majoring in easier subjects but are attending and graduating from more

elite schools suggests the LOS program led to large increases in human capital accumulation.

5.3 Earnings Impacts of LOS

The large returns to college quality (Andrews, Li and Lovenheim 2016; Hoekstra 2009; Black

and Smith 2004, 2006; Brewer, Eide and Ehrenberg 1999) suggest that the LOS intervention

should increase earnings after college. Even so, college quality improvements only affect a subset

of treated students. Many more students are provided assistance through additional financial

aid, which might free up time to focus on their studies instead of working while in college.

Furthermore, all students from an LOS high school who attend UT-Austin receive access to

the suite of academic support, mentoring, and networking services provided by the program.

Hence, there are a number of avenues through which the LOS program could affect students’

earnings.

In Table 8, we examine the effect of the LOS program on earnings using the adjusted log

quarterly earnings measures discussed in Section 3.30 We examine all earnings 6+ years after

high school, 10+ years after high school and 12+ years after high school as long as the worker has

at least 5 quarters of earnings in the relevant time frame.31 Earnings estimates 12+ years after

high school graduation are particularly important as the former students would have typically

reached at least an age of 30 in this group. This is close to the age when cross sectional earnings

29Arcidiacono, Aucejo, Coate and Hotz (2014) argue that a substantial amount - and possibly a majority - of the increase in
minority graduation rates they find after California’s affirmative action ban was due to behavioral responses that include expanded
services.

30Online Appendix Tables A-8 through A-10 contain results for the CS program and for the high school graduate sample for the
LOS program.

31In Online Appendix Table A-11 we provide estimates using different sample restrictions for the earnings sample. While our
primary sample restricts to individuals with at least 5 quarters of at least $100 of earnings in the specified time frames, we also
present estimates that loosen this restriction to 3 quarters, that restrict to calendar years with $100 or more in each quarter, and
that do not restrict to a minimum number of quarters. Estimates in these cases are qualitatively and quantitatively similar to those
provided in Table 8.
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become most predictive of lifetime earnings (Haider and Solon, 2006).

In the even columns, we provide ITT earnings effects from the LOS program. Interestingly,

while the earnings in the 6+ years sample are small and not statistically significantly different

from zero at conventional levels, the estimates grow as we move to later samples. In the

10+ years sample, the estimated earnings impact is a statistically insignificant 2%. Crucially,

however, when we focus on 12+ years earnings, which are more likely to be reflective of lifetime

earnings, we see a large and statistically significant effect of 4%. There are two important

aspects of interpretation of this result. First, the gradual increase in wage returns as the LOS

students age is notable as it suggests that the effects come from actual skill development and

human capital improvements rather than simply better signaling from attending the higher

quality school. If the latter were true, then we would expect the wage returns to show up

immediately. The late development of the earnings returns suggest that the programs make the

students more likely to succeed in their long-run career paths rather than simply getting them

higher paying jobs at the outset. Second, we can use this information to develop a back of the

envelope estimate of the treatment effect. While it is tempting to simply inflate the returns by

the 2.2 percentage point increase in enrollment at UT-Austin, this would not be appropriate

due to the multifaceted nature of the intervention. In fact, every student from an LOS eligible

school who attends UT-Austin receives some treatment in the form of services, and most receive

financial support. Infra-marginal UT-Austin attendees are treated in addition to the students

who are induced to change institutions. Further, students who are on the attendance margin

are not only more likely to attend the flagship but they are also more likely to graduate from

the flagship, increasing the potential returns. With that in mind, we can calculate an implied

treatment effect by dividing the earnings impact by the total UT enrollment rate for top 30%

students from LOS schools after the schools become eligible. With 5.6% of students in this sub-

sample attending UT-Austin, this leads to a treatment effect on the treated of approximately

70%. This is a particularly large earnings effect when compared to prior estimates of the impact

of college quality on earnings. Below, we explain why this is a plausible earnings impact for

the population of high achieving low-income minorities targeted by the LOS program.

In the odd-numbered columns of Table 8, we estimate whether being in an LOS high school
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affects the likelihood that one appears in the earnings data. Across the time frames, there is a

1.5 to 1.9 percentage point reduction in being observed associated with attending an LOS high

school, and these estimates are statistically significant in the 6+ and 12+ earnings samples.

Thus, there appears to be some differential attrition from the sample. While this indicates

that the earnings estimates could be biased, we have good reason to believe that our results

are, at worst, attenuated by any differential attrition. This makes our results conservative

lower bounds. To more closely examine the attrition shown in Table 8, we test for balance of

pre-determined characteristics in the earnings samples as we do for the full sample in Table

4. These results are provided in Online Appendix Table A-12, and like those in Table 4, they

show no statistically significant effects except G&T for the interaction term. The estimates in

Table A-12 provides evidence that there is little attrition bias.

Nonetheless, when we consider the types of workers who are induced to attrit by LOS we

conclude that a worst case scenario is that we underestimate the earnings effect. The first

group includes those induced to attend graduate school. While we do not find a statistically

significant increase in public graduate school attendance, the estimate in Table 6 is 0.008 - about

1/2 of the attrition effect. Further, there could be increases in attendance at private and out-of-

state graduate programs. Nonetheless, in the 12+ year sample even those getting postgraduate

degrees would likely have completed their schooling. Hence, more people probably fall into

the second group, which is comprised of those who take jobs out of state.32 Graduating from

UT-Austin gives students access to a more national labor market, and thus it makes sense that

there is some attrition from the earnings data due to the treatment. Both of these arguments

suggest it will be the most highly-skilled and the highest earnings-potential students who exit

the earnings sample. To test this hypothesis, we estimate whether there is an LOS “effect” on

the predicted earnings of students who do not show up in the earnings sample. Specifically, we

predict earnings for those in the sample by regressing ln(earnings) on high school test scores

and demographics and then estimate model (1) using the predicted earnings as the outcome for

those who are not observed in the earnings data. In Online Appendix Table A-13, we show that

the earnings attriters exposed to LOS have 4% higher potential earnings. This indicates that

32A potential third group is made up of the unemployed. However, it is very unlikely that the differential attrition is due to LOS
increasing unemployment, as the pattern of non-earnings results suggest students will become less likely to be unemployed. The
observed shifts in majors is not expected to increase unemployment, and we do not see any negative impacts on graduation. The
shift towards graduating from higher quality institutions (specifically UT-Austin) in particular is expected to reduce unemployment.
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students who do not have observed earnings due to LOS exposure have higher potential earnings

than comparison attriters and hence any bias in our estimates would lead us to underestimate

earnings effects.

5.4 Specification Checks and Heterogeneous Impacts of LOS

In Table 9, we provide specification checks that address additional potential concerns about the

validity of our estimates. First, in our estimates we do not place geographic restrictions on the

comparison schools. This leaves open the possibility that we include comparison schools from

the same districts as LOS schools. These comparison schools could have been chosen based

on unobserved characteristics that are not accounted for in our propensity scores. Further,

those estimates do not take full advantage of the plausibly exogenous variation generated by

the geographic limitations placed on the programs. Nonetheless, we note that in practice we

have very few comparison schools from the same districts and counties as treated schools and a

substantial number of comparison schools became LOS schools after our analysis period when

the program expanded to other parts of Texas, particularly El Paso and the Rio Grande Valley.

In panels A and B of the table, we explicitly utilize the exogenous geographic variation generated

by the program implementation restrictions by dropping comparison schools in the same school

districts and counties as the LOS treated schools, respectively. In both cases, the results are

nearly identical to our baseline estimates. The third panel of Table 9 checks an opposing concern

which is that, if our comparison schools are not in the same areas as the LOS schools, then

perhaps we are picking up an urban/rural distinction rather than an LOS effect. Since we have

so few comparison schools in the major metropolitan areas of Houston, Dallas and San Antonio

where most LOS schools are located, we cannot test this directly. Instead, we estimate models

that restrict the sample to only include schools in Census designated Metropolitan Statistical

Areas (MSA) with populations greater than 300,000 people to ensure that all of the comparison

schools are in relatively urban areas. Once again, the results are nearly identical to baseline.

Table 10 provides some heterogeneity analyses to look at whether there are differences by

gender and economic status. Since 90% of the students in LOS schools are black or Hispanic

we do not provide results broken down by race. In Panels A and B, we first look at whether the
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LOS impacts differ based on the income of the students by looking specifically at students who

qualify for free or reduced-price lunch. While the LOS program targeted low income schools,

a substantial number of students in these schools came from families with incomes that, while

modest, were not impoverished. This is reflected in the rates of economic disadvantage amongst

high school graduates from LOS schools of 50%.33 Further, while eligible schools were targeted

based on average student income, an individual’s income was not a factor in the receipt of a

scholarship. For most outcomes, the effects differ little by economic status. Students become

more likely to enroll and graduate from UT-Austin at the same rate, while there is no significant

impact on 6-year graduation rates in either case. When we turn to earnings estimates, some

differences emerge. First, both 10+ and 12+ year earnings estimates are larger for economically

disadvantaged students. While the differences are not statistically significantly different, they

nonetheless are consistent with lower income students being particularly well positioned to

benefit from the program in the long run. It is also worth noting that there is no attrition impact

for lower income students, while there is a significant one for higher income students. This is

also consistent with LOS inducing students to move out-of-state, as higher income students

would have more resources and less need to stay at home to, for example, take care of family

members. Hence, the earnings effects for non-disadvantaged students may be underestimated.

When we turn to panels C and D that look at gender heterogeneity, we see marked differences

between men and women. Virtually all of the increases we see in UT-Austin enrollment, UT-

Austin graduation and earnings accrue to women. Enrollment amongst women at UT-Austin

increases by 4 percentage points, a 164% increase relative to the pre-LOS mean for women, and

graduation increases by 2.6 percentage points, a 124% increase relative to the pre-LOS mean for

women. For earnings, we see a 6.1% increase. With a post-LOS enrollment rate in UT-Austin

of 0.058 this suggests that the treatment effect for women’s earnings is 105%. For men, on the

other hand, while all of these estimates are positive, none is statistically significantly different

from zero at even the 10% level and all are small in magnitude.

It is difficult to explain the different effects of the LOS program on men and women, and

unfortunately, our data are not well equipped to do so. However, there is some evidence

33It is likely that this measure understates the true economic disadvantage rate of the school as students in high school are often
reported to be disadvantaged at lower rates than students in elementary schools due to lower take-up.
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from prior research that can provide context to our findings. In an experiment that provided

additional academic support and/or financial incentives to students in college Angrist, Lang

and Oreopoulos (2009) find that women were more likely to take up the academic supports and,

when the supports were combined with incentives, performed better academically while men did

not. This indicates that it is possible that women were more attracted to the supports provided

by LOS and more likely to use them when enrolled. There also is evidence of larger benefits for

women in other education-related interventions. For example, Deming et al. (2014) show that

attending a higher quality high school school leads to substantially larger increases in college

attendance for women but not for men. Women also see improvement in grades and college

preparatory course taking while men do not. As another example, the Moving to Opportunity

housing voucher experiment saw larger improvements for women in terms of crime, health, and

educational attainment (Ludwig et al. 2013; Kling, Liebman, and Katz 2007; Kling, Ludwig,

and Katz 2005). Finally, Anderson (2008) shows that randomized early childhood education

interventions generated large short and long term effects for girls but not for boys.

6 Discussion

Overall our results show that there are large increases in enrollment in and graduation from

UT-Austin from the LOS program and large earnings returns, while there are no effects of the

CS program for Texas A&M University. Two questions that emerge from our findings are: why

was the LOS program more successful than CS and why are the LOS earnings effects so large?

There are a number of reasons why we might expect the CS program to be less effective

than LOS. One key difference is that it appears that the service component of the interven-

tions could be quite important in helping students get through the more academically-rigorous

flagships. The services provided by LOS and CS differed quite substantially. The focus of CS

services was on professional and social development - providing students with interviewing and

job search advice, building communities and networks, and community service. In terms of aca-

demic supports, students were only provided faculty mentors (with whom, according to current

program rules, students are only required to meet twice in their sophomore year) and special

academic advising was only provided if a student’s GPA fell below 2.25. The LOS support
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services, however, while also building a community of similar students, were far more focused

on academic supports. These included free tutoring, peer mentoring, special small sections of

freshman courses, and guaranteed on-campus residence.

However, the difference in service intensity does not explain why LOS was more successful at

attracting new students to UT-Austin than CS was at attracting new students to Texas A&M.

One potential explanation for this is that our sample if urban, heavily minority students may

have been reluctant to attend TAMU, which is located in a rural and less diverse part of the

state than UT-Austin and many other 4-year schools. During the study period, UT-Austin also

had a larger minority student population than Texas A&M.34 Another potential explanation is

that CS targeted inframarginal students. This is particularly likely due to the Top 10% rule

as most, and possibly all, of the students offered CS scholarships were also (at least implicitly)

admitted to UT-Austin as well. Hence, the CS scholarships may have targeted students who

were already set on attending either institution and the program was not effective at changing

their decision.

The second remaining question is whether the large earnings effects for LOS are plausible.

Overall, the treatment effect on the treated from the intervention (including at least one of ser-

vices, scholarship, and/or switching institutions) is an approximately 70% increase in earnings.

While we are not aware of any evidence of how academic supports in college affect later life

earnings, this estimate is larger than estimates of the returns to attending an elite institution

relative to other institutions that range from 20% to 54% (Anelli, 2015; Hoekstra, 2009). The

individuals studied in those papers are quite different from our sample of low income students

who are primarily minorities. Hoekstra (2009) is only able to examine white students and is

not able to break down estimates by income. Anelli (2015) looks at an elite and expensive

private university in Milan, Italy and also does not break down results by income level. Fur-

ther, in both studies identification comes from admission thresholds, which makes the students

academically marginal. In the LOS context, the students are low income, primarily minorities,

and are high ability. The mean test scores of LOS students who enroll in UT are about 0.8

standard deviations above that of the average Texas high school student, while the average

34In 2000, the total population of College Station, TX which houses Texas A&M was just 68,000 with a racial composition of
82% white and 10% Hispanic. Austin, TX which houses UT-Austin had a population of 656,000 with a racial composition that was
68% white and 31% Hispanic. In terms of university racial statistics, in 2000 first-time freshmen at UT-Austin were 4% black and
15% Hispanic, while at TAMU those figures were 3% and 9%, respectively (Kain, O’Brien, Jargowsky 2015).
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for all Texas high school students who enroll in UT is around 0.85 standard deviations. The

average LOS school attendee at UT is well within the 2nd quartile of all UT-Austin enrollees

from Texas in terms of high school test scores. Thus, LOS students are academically better

matched for UT-Austin than the students in RD studies of the returns to college quality. As a

result, we argue that our estimates suggest that low-income, high ability students (particularly

women) are primed to benefit substantially more than other students from increased college

quality and academic support services in college.

In addition, the apparent change in college quality is far larger in our analysis than in

Hoekstra (2009). On average the most likely alternative institutions (Hoekstra cannot observe

actual enrollment in other institutions) had per student spending at 91% of the flagship level and

SAT scores 95 points lower than the flagships. Returning to Table 1 and comparing UT-Austin

to the Emerging Research Universities where LOS students would have attended otherwise,

we see that the ERU’s have instructional spending at 46% of the UT-Austin rate and 75th

percentile SAT Scores 249 points lower.

The time path of the earnings returns also is important to highlight. Our estimates in Table

8 increase as we narrow to years further out in the individual’s life. In fact, the point estimates

more than double when we drop years 6 - 11 after high school graduation. This suggests that

the earnings improvements came from skill development rather than simply better signaling and

networking opportunities, as we would expect the latter to generate earnings returns earlier in

the student’s career whereas the former may take time to become valued in the labor market.

7 Conclusion

Persistent increases in the college wage premium combined with sluggish growth in collegiate

attainment, particularly among students from low-income backgrounds, make it of first-order

importance to understand what policies can reduce attainment gaps in higher education across

the socioeconomic distribution. Given the evidence of the educational and labor market re-

turns to college quality as well as the low enrollment rates among low-income students at elite

schools, policies designed to raise enrollment rates of disadvantaged students at high-quality

colleges have the potential to reduce these disparities. Further, it is likely that students from
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disadvantaged backgrounds would benefit from support services that enhance their experience.

We study two examples of such policies in Texas, the Longhorn Opportunity and Century

Scholars programs, which were designed to address the multitude of disadvantages faced by

low-income students in higher education: information, tuition subsidies, and support services

once enrolled. These programs were targeted at schools that served large numbers of low-income

students and that tended to send few students to University of Texas at Austin (LOS) or Texas

A&M University (CS).

We combine the timing of the implementation of the LOS and CS programs with detailed ad-

ministrative data from K-12 records, higher education records, and earnings as long as workers

remain in Texas and attend a public university. We implement a set of difference-in-difference

estimators using trimmed common support samples of treated and comparison schools that

compare how the enrollment behavior, educational outcomes, and earnings of high-ability stu-

dents change when the programs are implemented in targeted high schools.

Our estimates suggest that this type of bundled intervention can generate better outcomes

among targeted students. The LOS program induced many students to enroll in UT-Austin

instead of lower-resource four-year institutions. This shift towards the flagship provided a large

quality upgrade relative to the schools the students would have attended in the absence of

the program. High-achieving students affected by the LOS program saw large and statistically

significant increases in the likelihood of graduating from UT-Austin, and we find little evidence

of academic mismatch in the form of students switching to “easier” majors. We find that

the combination of academic support services, financial support, and higher college quality

increased the likelihood a student would graduate from UT-Austin and earnings 12 or more

years after a student completes high school. These effects are large - enrollment in UT-Austin

increases by over 80% and earnings of treated students (where treatment applies to all UT-

Austin enrollees from LOS schools, not just those students who change institutions) increases

by 70%. Virtually all of the impacts are concentrated among women. The large returns to the

program indicate that these high ability, low income, and heavily minority students may be

particularly sensitive to improvements in college quality and academic support services.

In contrast to the findings for the LOS program, the CS intervention had no effect on
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enrollment behavior, postsecondary outcomes or labor market outcomes. We argue there are

two likely explanation for the differences in these programs. First, the support services provided

by CS were focused on professional development rather than academic supports, were less

intensive, and were not made as widely available to students from treated high schools. Second,

the relatively low minority populations and rural location of Texas A&M made it an unattractive

choice for the targeted students, particularly given that most were also admitted to UT-Austin.

Our analysis cannot determine how much of the impacts we find are due to the change in

school quality or the provision of academic supports and financial aid. We thus interpret our es-

timates as telling us whether a program that provides a full package of services to high-achieving,

low-income students that addresses the suite of disadvantages they face in the postsecondary

system affects their educational and labor market outcomes. The results suggest that programs

like the Longhorn Opportunity Scholarship hold much promise in promoting better postsec-

ondary and labor market outcomes among these students. Furthermore, while it is unclear if

the students treated by the program are actually “overmatched” for the state flagships, the

results suggest that mismatch problems can be overcome with sufficient support services. Cru-

cially, programs like these and the supports they provide can easily be replicated in any state

flagship institution. The estimates for the Century Scholar program, however, provides a cau-

tious note as it is not automatic that such a program will succeed in attracting new students or

affecting postsecondary and labor market outcomes. More work focusing on the specific ways

in which these programs were implemented and the implications for effectiveness would be of

high value in order to better understand how to structure these programs to maximize their

positive effects on students.
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Figure 1: UT Austin Longhorn Opportunity Scholars and Comparison Schools
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Figure 2: Texas A&M Century Scholars and Comparison Schools
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Figure 3: Flagship Enrollment as a Share of All College Attendees by Within High School
Achievement Decile
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Figure 4: Distribution of LOS and CS Treatment Probabilities by Treatment Status

All schools with estimated propensity scores below 0.2 are dropped from the estimation sample.

45



Figure 5: Flagship Enrollment Impacts by Year - Top 30% College Attendees Sample
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Table 1: Characteristics of Public 4-Year Institutions in Texas

UT-Austin Texas A&M Emerging Other
School Characteristic Research 4-Year
Max USNews Ranking 53 68 145 NA
Graduation Rate 0.79 0.79 0.47 0.37
Retention Rate 0.94 0.91 0.76 0.64
Avg Full Prof Salary $137,871 $128,367 $122,131 $87,352
UG Student/Faculty FTE 14.0 17.0 22.6 21.2
Instr Exp per UG Student $19,320 $13,421 $7,880 $6,491
Acad Support Exp per UG Student $5,633 $3,853 $2,865 $2,229
Student Service Exp per UG Student $1,761 $1,914 $1,572 $1,387
SAT Math 75th Percentile 710 630 588 519
SAT Reading 75th Percentile 680 610 553 537
Institutions 1 1 7 21

Means from Integrated Postsecondary Education Data System (IPEDS) provided by the US Department
of Education. Data is from 2013-14 except expenditure data, which is from the 2012-13 school year.
“Emerging research” universities are institutions declared by the state of Texas to be eligible for special
funds to increase research activity. These include UT-Dallas, UT-Arlington, UT-San Antonio, UT-El
Paso, Texas Tech and University of Houston.
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Table 2: Summary Statistics for Top 30% College Attendees Sample - Student
Characteristics

LOS Sample CS Sample
LOS Schools LOS Comparison CS Schools CS Comparison

TAAS Writing 0.68 0.76 0.73 0.80
(Std Devs) (0.38) (0.36) (0.38) (0.35)
TAAS Reading 0.62 0.69 0.67 0.74
(Std Devs) (0.35) (0.33) (0.34) (0.31)
TAAS Math 0.71 0.79 0.76 0.81
(Std Devs) (0.41) (0.37) (0.40) (0.36)
White 0.08 0.12 0.12 0.27

(0.28) (0.32) (0.33) (0.44)
Black 0.29 0.06 0.35 0.13

(0.45) (0.25) (0.48) (0.34)
Hispanic 0.61 0.81 0.48 0.58

(0.49) (0.39) (0.50) (0.49)
Gifted & Talented 0.21 0.31 0.25 0.32

(0.41) (0.46) (0.43) (0.46)
At Risk 0.27 0.26 0.20 0.18

(0.45) (0.44) (0.40) (0.38)
Male 0.42 0.45 0.41 0.45

(0.49) (0.50) (0.49) (0.50)
Econ. Disadvantaged 0.49 0.57 0.41 0.31

(0.50) (0.50) (0.49) (0.46)

Observations 17,797 12,475 12,265 9,062

Notes: Authors’ tabulations using college attendees from the linked ERC-THECB data for the 1996-
2002 high school graduating cohorts. Restricted to trimmed common support and top 30% of HS class
as defined by TAAS achievement index.
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Table 3: Summary Statistics for Top 30% College Attendees Sample - Outcomes

LOS Sample CS Sample
LOS Schools LOS Comparison CS Schools CS Comparison

Enroll in UT 0.043 0.047 0.048 0.084
(0.202) (0.211) (0.216) (0.277)

Enroll in TAMU 0.023 0.038 0.043 0.053
(0.148) (0.191) (0.203) (0.223)

Enroll in Emerging 0.144 0.074 0.214 0.111
Research U (0.351) (0.262) (0.410) (0.313)
Enroll in Other 0.268 0.397 0.181 0.316
4-Yr (0.443) (0.489) (0.385) (0.465)
Enroll in 2-Yr 0.522 0.443 0.513 0.438

(0.500) (0.497) (0.500) (0.496)
Transfer 0.38 0.38 0.40 0.36

(0.48) (0.48) (0.49) (0.48)
Major in 0.21 0.16 0.21 0.18
Arts & Humanities (0.41) (0.37) (0.41) (0.38)
Major in 0.18 0.16 0.19 0.17
Business (0.38) (0.37) (0.39) (0.38)
Major in 0.08 0.09 0.08 0.10
Social Science (0.27) (0.29) (0.27) (0.30)
Major in 0.10 0.14 0.11 0.14
STEM (0.30) (0.34) (0.31) (0.35)
Graduate UT 0.031 0.036 0.039 0.075
in 6 Yrs (0.174) (0.185) (0.193) (0.263)
Graduate TAMU 0.015 0.032 0.032 0.047
in 6 Yrs (0.122) (0.176) (0.177) (0.212)
Any Public BA 0.209 0.316 0.243 0.343
in 6 Yrs. (0.406) (0.465) (0.429) (0.475)
Has 5 qtrs of Earnings 0.78 0.78 0.81 0.75
(12+ Yrs after HS) (0.41) (0.42) (0.39) (0.44)

Observations 17,797 12,475 12,265 9,062

Resid. Log Earn -0.046 0.022 0.035 0.072
(12+ Yrs after HS) (0.778) (0.758) (0.773) (0.779)

Observations 13,944 9,683 9,963 6,755

Notes: Authors’ tabulations using college attendees from the linked ERC-THECB data for the 1996-2002
high school graduating cohorts. Restricted to trimmed common support and top 30% of HS class as
defined by TAAS achievement index.
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Table 5: The Effect of the Longhorn Opportunity and Century Scholars
Programs on College Enrollment

Attend Any Attend Attend Attend Other Attend Other Attend
TX College UT TAMU Research U 4 Yr 2yr

Treatment (1) (2) (3) (4) (5) (6)

Panel A: Longhorn Opportunity Scholar Program
HS Grads College Attendees

LOS School 0.003 0.022**** -0.009 -0.025** -0.005 0.016
(0.012) (0.005) (0.006) (0.010) (0.013) (0.015)

LOS & CS -0.015 -0.010 0.012** 0.009 -0.010 -0.001
School (0.012) (0.008) (0.006) (0.011) (0.015) (0.018)

Panel B: Century Scholars Program
HS Grads College Attendees

CS School -0.022 0.002 0.001 -0.027** 0.032* -0.008
(0.014) (0.019) (0.009) (0.014) (0.018) (0.016)

CS & LOS -0.006 0.024** -0.003 0.006 -0.036** 0.009
School (0.013) (0.012) (0.011) (0.014) (0.014) (0.017)

Notes: Estimation of equations (1) and (2) in the text using the linked ERC-THECB data for
the 1996-2002 high school graduating cohorts. Each group of two coefficient estimates in each
column comes from the same regression. All models include high school and year fixed effects
as well as the demographic, high school and test score controls discussed in Section 4 of the
text. Restricted to trimmed common support and top 30% of HS class as defined by TAAS
achievement index. Sample sizes for the LOS college attendee and HS grad samples are 30,272
and 41,588, respectively. For CS the sample sizes are 21,327 and 30,027, respectively. Standard
errors clustered at the high school level are in parentheses: ***, **, * indicate significance at
the 1%, 5% and 10% levels, respectively.
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Table 7: Effect of LOS on College Graduation Pathways

Start UT
& Grad Flagship & Grad Non-Flagship & No TX Public BA

(1) (2) (3)
LOS School 0.016**** 0.001 0.005*

(0.004) (0.002) (0.002)
LOS & CS School -0.006 -0.002 -0.002

(0.006) (0.002) (0.003)

Start TAMU
& Grad Flagship & Grad Non-Flagship & No TX Public BA

(1) (2) (3)
LOS School -0.007 -0.000 -0.001

(0.004) (0.002) (0.002)
LOS & CS School 0.008** 0.000 0.004*

(0.004) (0.001) (0.002)

Start Emerging Research U
& Grad Flagship & Grad Non-Flagship & No TX Public BA

(1) (2) (3)
LOS School -0.000 -0.012** -0.012*

(0.001) (0.006) (0.007)
LOS & CS School -0.000 0.008 0.002

(0.001) (0.006) (0.008)

Start Other 4 Yr
& Grad Flagship & Grad Non-Flagship & No TX Public BA

(1) (2) (3)
LOS School 0.002 -0.002 -0.004

(0.001) (0.010) (0.009)
LOS & CS School 0.001 -0.007 -0.005

(0.001) (0.009) (0.010)

Start 2 Yr
& Grad Flagship & Grad Non-Flagship & No TX Public BA

(1) (2) (3)
LOS School 0.002 0.006 0.007

(0.002) (0.007) (0.014)
LOS & CS School 0.001 0.002 -0.004

(0.001) (0.007) (0.017)

Notes: Estimation of equation (1) in the text using the linked ERC-THECB data for
the 1996-2002 high school graduating cohorts. Each group of two coefficient estimates
in each column comes from the same regression. All models include high school and year
fixed effects as well as the demographic, high school and test score controls discussed
in Section 4 of the text. Restricted to trimmed common support for college attendees
and top 30% of HS class as defined by TAAS achievement index. Sample size is 30,272
for all regressions. Standard errors clustered at the high school level are in parentheses:
***, **, * indicate significance at the 1%, 5% and 10% levels, respectively.
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Table 8: The Effect of the Longhorn Opportunity Scholar Program on Earnings – College
Attendees

In 6 Year Ln(Adj Earn) In 10 Year Ln(Adj Earn) In 12 Year Ln(Adj Earn)
Earn Sample 6 Yrs After HS Earn Sample 10 Yrs After HS Earn Sample 12 Yrs After HS

(1) (2) (3) (4) (5) (6)

LOS -0.015** 0.014 -0.015 0.020 -0.019** 0.040**
School (0.007) (0.016) (0.009) (0.017) (0.009) (0.018)
LOS & CS 0.012* 0.003 0.015 -0.014 0.013 -0.021
School (0.007) (0.017) (0.009) (0.018) (0.010) (0.021)

Observations 30,272 26,512 30,272 24,106 30,272 23,627

Notes: Estimation of equation (1) in the text using the linked ERC-THECB data for the 1996-2002 high school
graduating cohorts. Each group of two coefficient estimates in each column comes from the same regression. All
models include high school and year fixed effects as well as the demographic, high school and test score controls
discussed in Section 4 of the text. Restricted to trimmed common support and top 30% of HS class as defined by TAAS
achievement index. Ln(Adj Earn) is calculated as the average residual from a regression of log quarterly earnings on
cohort-by-quarter-year indicators. Only earnings among those with 5 quarters of earnings over $100 in the relevant
time period are included. The highest 0.5% of earnings quarters are excluded from the analysis sample. Standard
errors clustered at the high school level are in parentheses: ***, **, * indicate significance at the 1%, 5% and 10%
levels, respectively.
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