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1 Introduction

“Overall, Waxman-Markey reduces gross domestic product by an average of $393

billion annually between 2012 and 2035...”

-The Heritage Foundation (6/22/2009)1

“...under [Waxman-Markey]... the net annual economy-wide cost of the cap-and-

trade program in 2020 would be $22 billion.”

-Center for American Progress (6/22/2009)2

Decisions over proposed policies rely on forecasting costs and benefits. In some cases,

program evaluation of similar past policies may be informative. However, when the policy

of interest is relatively novel, policymakers often turn to economic models with poorly con-

strained primitive parameters. While recent studies have strengthened our understanding of

climate policy benefits,3 current estimates of climate policy costs are characterized by this

dilemma. This challenge is particularly relevant for the United States which, despite be-

ing the largest cumulative greenhouse gas emitter, has yet to implement a national climate

policy. Instead, recent U.S. climate policy debates have relied on computable general equi-

librium (CGE) models, which have thus far produced a wide range of cost estimates. This

range is captured by the two quotes above, issued on the same day, for the same proposed

policy, but informed by different CGE models.

This paper develops an alternative empirically-driven approach for forecasting the marginal

abatement cost of climate policy based on market expectations. In the combined spirit of

Hayek (1945) and Chetty (2009), my approach acknowledges that while primitive parame-

ters for climate policy may be unknown to the researcher, “local” information may be held

by market participants whose aggregate behavior could reveal a “sufficient statistic” for the

policy’s marginal abatement cost.4 The policy of interest is the Waxman-Markey bill, a

cap-and-trade climate policy that passed the U.S. House of Representatives in 2009, failed

passage in the U.S. Senate in 2010, and is to date the U.S. climate legislation that came

closest to becoming implemented.

I recover the market expected marginal abatement cost of the Waxman-Markey bill by

using three distinct features of the policy. First, under standard theoretical assumptions,

1Available:heritage.org/research/testimony/the-economic-impact-of-the-waxman-markey-cap-
and-trade-bill

2Available:grist.org/politics/cbo-pollution-cuts-cost-little/
3See, for example, Schlenker, Hanemann and Fisher (2005), Deschênes and Greenstone (2007), Schlenker

and Roberts (2009), Feng, Oppenheimer and Schlenker (2012), Graff Zivin and Neidell (2010), Deschênes
and Greenstone (2011), Hsiang, Meng and Cane (2011), Dell, Jones and Olken (2012), and Hsiang, Burke
and Miguel (2013).

4Note that unlike the applications discussed in Chetty (2009), the parameter estimated in this paper
captures only the marginal abatement cost and not marginal benefit of climate policy and thus does not
capture full welfare effects.
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the equilibrium permit price emerging from a cap-and-trade system is equal to the marginal

abatement cost of the policy. Second, written into the Waxman-Markey bill was a cutoff

rule granting certain firms free permits. This allows one to use a regression discontinuity

design (RDD) to examine the difference in stock returns between firms just above and below

the cutoff. Finally, because Waxman-Markey existed only as a probable policy during the

2009-2010 period, I extend the standard RDD approach by normalizing estimates using

market beliefs that Waxman-Markey would be implemented, as captured by price changes

from a prediction market tied to the policy.

Understanding the marginal abatement cost, or permit price, of the Waxman-Markey bill

is important for three reasons. First, under certain conditions, the marginal abatement cost

of complying with a cap-and-trade system with broad emissions coverage such as Waxman-

Markey is equal to the economy-wide U.S. marginal abatement cost.5 This parameter,

together with recent estimates of climate policy benefits, allows for cost-benefit analyses.

Second, cap-and-trade policies with permit auctioning generate government revenue that

could be used to reduce distortionary taxation (Bovenberg and Goulder, 1996). The size

of the potential welfare improvement is determined in part by the permit price. Third, the

permit price of a U.S. cap-and-trade system determines the potential benefits from linkages

with other national cap-and-trade systems (Ranson and Stavins, 2015).

When a policy is uncertain, neither firm value with or without the policy is directly ob-

served. However, if market-held beliefs over the likelihood of cap-and-trade implementation

can be observed via prediction market prices (Snowberg, Wolfers and Zitzewitz, 2012), then

changes in such prices can be combined with stock returns in an event study to recover

the market-expected firm-level effects of the policy. This suggests that the policy’s permit

price may be recovered by taking the difference in estimated effects between firms with and

without free permits.

Unfortunately, such a broad comparison may be invalid as cap-and-trade systems gen-

erally do not allocate free permits randomly. It is, however, possible that some free permits

are allocated in a manner unrelated to other firm characteristics.6 A specific rule under

Waxman-Markey indicated that firms in manufacturing subsectors with historical energy

intensity greater than 5% would receive free permits. This suggests the basis for a regres-

sion discontinuity design (RDD) provided that firm stock returns are continuous at the 5%

threshold under Waxman-Markey if not for the free permit rule. However, Waxman-Markey

was never implemented. In an extension of the standard RDD framework to account for

5The marginal abatement cost of complying with a cap-and-trade system equals the economy-wide
marginal abatement cost under least-cost allocation when the permit price is binding for all sources of U.S.
emissions. Violations of this equivalence occur whenever distortions lower the residual demand for permits.
Examples include the presence of binding auxiliary policies such as renewable portfolio standards and when
firms can easily relocated carbon-intensive operations overseas to unregulated countries.

6Fowlie and Perloff (2013) use a free permit allocation rule in the RECLAIM NOx cap-and-trade program
to identify the effects of free permits on equilibrium emissions.
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policy uncertainty, I formally demonstrate that identification further requires unobserved

determinants of stock returns in the absence of the policy to be continuous at the 5%

threshold.

I show that differential cumulative stock returns for firms above and below the histori-

cal energy intensity threshold closely track Waxman-Markey developments, diverging from

zero at the start of 2009, peaking around the House passage of the bill, and converging

back to zero thereafter during 2010. For graphical analysis, I implement 2-step procedures

illustrating the RD coefficient in both time-series and cross-sectional dimensions. For ro-

bust inference, I estimate a 1-step panel RD model which interacts time-series variation in

prediction market prices with a local cross-sectional polynomial function of the RD treat-

ment. In my preferred panel model, I include a full set of firm and trading date fixed effects.

Inclusion of date fixed effects in particular implies that my identifying assumptions need

only be satisfied in the cross-sectional dimension. I find that firms in sectors with energy

intensity greater than 5% experience a gain of 7 to 9 percentage points relative to firms in

sectors with energy intensity less than 5%. This result is robust across controls for “normal

market performance”, sample bandwidth around the threshold, functional forms fitted to

energy intensity, and various potential biases that may arise from a thinly traded prediction

market. I also do not find discontinuities at placebo thresholds less or greater than 5%

energy intensity.

Several lines of evidence suggest that, given this 5% threshold, sorting was unlikely.

If indeed the free permit rule was unexpected, sorting in 2009 would be impossible as

the energy intensity running variable is defined by data from public government sources

in 2004-2006. It is unlikely that this rule was anticipated prior to 2009 as U.S. climate

legislation preceding the Waxman-Markey bill did not feature a similar free permit rule.

Indeed, average stock returns for manufacturing firms in 2007 and 2008 do not exhibit a

jump at the 5% threshold. Likewise, sector-level lobbying expenditures on climate policy as

well as other covariates do not exhibit a discontinuity at the 5% threshold suggesting that

firm activity did not determine the location of the threshold.

My RDD framework estimates a reduced-form parameter capturing the jump in stock

returns between firms above and below the 5% energy intensity threshold. To map this

estimate onto my structural parameter of interest, the permit price, or marginal abatement

cost, of the Waxman-Markey bill, I consider a standard model of cap-and-trade and two

additional structural assumptions, with supporting statistical and anecdotal evidence. Only

one element of his mapping is neither directly observed or estimated, the cumulative number

of free permits granted to treated firms under Waxman-Markey. In the spirit of Horowitz

and Manski (2000), I consider “worst” and “best” case bounds by assuming that, under

the policy, treated firms uniformly experience future emission decline rates equal to that of

the worst and best performing manufacturing subsectors observed during years prior to the
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expected start of Waxman-Markey. This produces an implied lower and upper bound for the

marginal abatement cost of $5 and $18 per ton of CO2e in 2015, respectively. This range is

narrower in spread and below the mean of CGE estimates of the same policy. Interestingly,

the range of estimates recovered by my method is comparable with estimates from CGE

models funded by academic and governmental institutions. Only under drastic assumptions

of future emissions decline, in the range of -19 to -35% per year for all treated firms, do I

recover marginal abatement costs in the realm produced by CGE models funded by private

institutions.

A forecasting approach based on market expectations may be well-suited for estimating

the marginal abatement cost of climate policy if information on key parameters, such as

those dictating technological change, is largely private. The induced innovation hypothesis

(Hicks, 1932) suggests that climate policy could trigger significant technological advances

(Jaffe, Newell and Stavins, 2003). While this has been explored theoretically (Goulder and

Schneider, 1999; Nordhaus, 2002; Buonanno, Carraro and Galeotti, 2003; Acemoglu et al.,

2012), induced technological change presents modeling difficulties for many CGE models of

climate policy (Jacoby et al., 2006). My approach is agnostic about the structure, direction,

and rate of technological change, and instead rely on the expectations of market participants

to reveal dispersed information over the technological frontier.

Using market expectations have certain drawbacks. While my estimates capture the

expected cost of the implemented policy, I am unable to confirm what markets expected to

be implemented corresponds exactly to the Waxman-Markey bill, especially if future policy

revisions were anticipated. Furthermore, even if one knows the exact policy expected to be

implemented, I could not conduct counterfactual analyses using my approach as I recover the

marginal abatement cost associated with a single emission constraint and not the entire cost

curve along various constraint levels.7 As such, my method informs upon the level but not

the slope of the marginal abatement cost curve and thus should complement counterfactual

analyses performed by CGE models.

To the best of my knowledge, this paper provides the first forecast of the marginal abate-

ment cost under cap-and-trade policy outside CGE models. In doing so, it connects with

several strands of literature, both in substance and methodology. Existing papers use histor-

ical fluctuations in energy prices to inform upon the potential effects of future U.S. climate

policy on employment (Deschênes, 2011), competitiveness (Aldy and Pizer, 2011), and wel-

fare (Cullen, 2013). In each paper, the extension to potential climate policy effects involves

multiplying an estimated energy price elasticity with the expected change in energy prices

under climate policy, with the latter value either assumed or itself obtained from CGE mod-

7This implies that while I am unable to estimate the total abatement cost associated with the Waxman-
Markey policy, I could potentially recover an upper bound on total cost. The product of the permit price
and emissions equals the total abatement cost for a firm that does not engage in any abatement response,
which is greater than the total cost for any firm that does abate. I thank a referee for bringing this to my
attention.
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els. This paper contributes to this literature by providing an empirically estimated permit

price for arguably the most important U.S. climate policy considered to date. Cullen and

Mansur (2014) directly recovers an implied short-run carbon abatement cost in the absence

of technological change using an estimated relationship between recent CO2 emissions and

the ratio of coal to natural gas prices. This recovered abatement cost, however, is specific

only to short-run fuel-switching from coal to natural gas in the electricity sector and may

not equal the marginal abatement cost of a cap-and-trade policy with national coverage over

multiple sectors. Finally, this paper is intellectually similar to Anderson and Sallee (2011)

and Greenstone, List and Syverson (2012) which empirically recover the marginal cost of

realized environmental regulations.

This is also among the first papers to use the prediction market event study presented by

Snowberg, Wolfers and Zitzewitz (2007) and Wolfers and Zitzewitz (2009) in a forecasting

context. There is, however, a long tradition of employing traditional event study methodol-

ogy to evaluate, ex-post, the costs of realized regulation including event studies examining

the cost of realized U.S. (Lange and Linn, 2008; Linn, 2010) and E.U. (Bushnell, Chong and

Mansur, 2013) environmental regulations. Regarding the Waxman-Markey bill, Lemoine

(2013) conducts a traditional event study for events related to the bill but the emphasis is

not on recovering the policy’s marginal abatement cost.

The remainder of the paper is structured as follows. Section 2 provides background

on the Waxman-Markey bill and the use of prediction markets in event studies. Section 3

introduces a reduced-form framework for RDD under policy uncertainty. Section 4 presents

reduced-form results along with robustness checks. Section 5 provides a structural frame-

work mapping the RD parameter onto Waxman-Markey’s marginal abatement cost and

compares my estimates with that of CGE models. Section 6 offers a brief discussion. The

online appendix includes a more detailed model of cap-and-trade, formal derivations for po-

tential bias due to thin trading, an adjustment procedure for prediction market expiration,

a data summary, further background on Waxman-Markey and related bills, and a summary

of CGE models.

2 Background

2.1 The Waxman-Markey cap-and-trade bill

Over the past two decades, emissions trading, known popularly as “cap-and-trade”, has

become an increasingly important regulatory instrument for controlling regional and global

pollutants such as greenhouse gases (Stavins, 1998; Aldy et al., 2010). In a typical cap-

and-trade system, a limit, or cap, on cumulative emissions is set for the lifetime of the

policy with the regulator issuing annual emissions permits under this cap. Regulated firms

are either given or must purchase permits to cover their annual emissions. The primary
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appeal of cap-and-trade is that, under standard theoretical assumptions, the allocation of

emissions across firms after permit trading should achieve the required cap at the lowest

aggregate compliance cost (see Appendix A.1) (Montgomery, 1972; Rubin, 1996). Following

the success of the U.S. SO2 trading system introduced in the Clean Air Act Amendments of

1990 (Carlson et al., 2000; Ellerman et al., 2000), variants of cap-and-trade have been imple-

mented domestically and internationally. Well-known systems currently in operation include

the European Unions Emissions Trading System (EU-ETS), the U.S. Regional Greenhouse

Gas Initiative (RGGI), and the California cap-and-trade system.

This backdrop has made cap-and-trade the centerpiece of U.S. domestic climate policy

efforts over the last two decades. After a series of failed Senate cap-and-trade bills in the

early 2000s, the Democratic-led 111th House of Representatives introduced the American

Clean Energy and Security Act in the spring of 2009. Known informally as the Waxman-

Markey bill after its primary sponsors, the legislation specified a declining annual limit on

emissions beginning in 2012 which would eventually cover 85% of greenhouse gas emitting

sectors.8 Waxman-Markey required that covered emissions be at 83%, 58% and 17% of

2005 levels by 2020, 2030, and 2050 respectively. To smooth costs over time, regulated firms

were allowed unlimited permit banking and permit borrowing with some restrictions over

the lifetime of the policy.9 Importantly, in contrast to earlier periods in which Congress

considered several cap-and-trade bills simultaneously, the 111th Congress only seriously

deliberated over the Waxman-Markey bill and its Senate variant.

Written within the Waxman-Markey bill was a rule which granted free permits to a

particular subset of firms. Specifically, Waxman-Markey considered a firm in a 6-digit

NAICS manufacturing sector (i.e. NAICS 31-33) eligible for free permits if for that sector

recent10 energy intensity11 was over 5% and trade intensity12 exceeded 15%.13 These permits

were granted annually according to firm-level output and industry-wide emissions intensity

from 2012-2025 and phased-out over the 2026-2035 period.14 Importantly, this was the first

8While central Waxman-Markey, cap-and-trade was not the only component of the legislation. There
were also supply-side interventions such as a renewable energy portfolio standard as well as demand-side
interventions such as incentives for electric vehicles. Insofar as other policy components distort incentives
towards cost-minimizing abatement options, the resulting permit price and thus marginal abatement cost
would deviate from that of a hypothetical least-cost policy with the same overall abatement level.

9In particular, borrowing of permits 1-year ahead incurs an 8% interest rate.
10Section 763(b)(2)(D) required an “average of data from as many of the years of 2004, 2005, and 2006

for which such data are available” from the U.S. Census Annual Survey of Manufacturers.
11Defined as “dividing the cost of purchased electricity and fuel costs of the sector by the value of the

shipments of the sector” in Section 763(b)(2)(A)(ii)(II) of H.R.2454.
12Defined as “dividing the value of the total imports and exports of such sector by the value of the

shipments plus the value of imports of such sector” in Section 401(b)(2)(A)(iii) of H.R.2454.
13The policy also granted free permits to local distribution companies of electricity. There was, however,

no cutoff for which firms got free permits and thus could not be used as an identification strategy.
14This is known also as “output-based allocation”. Section 764(b)(2)(A and B) required that for the

period from 2012-2025, annual permits are granted based on the product of output over the past two years
and the most recent sector-level greenhouse gas intensity (measured as ton of emissions per ton output).
Section 764(a)(B) requires a complete phaseout from 2026-2035.
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time a cutoff criteria for free permits appeared in U.S. climate legislation. All prior climate

legislation15 directed government regulators to eventually design a free permit allocation

rule without providing specific guidance. This suggests that it was unlikely for firms to sort

around this specific threshold for years prior to the introduction of the Waxman-Markey

bill in 2009.

Waxman-Markey passed the House of Representatives on June 26, 2009, marking the

first time cap-and-trade legislation had passed either Houses of Congress. Despite President

Obama’s support for a Senate bill with nearly identical features, prospects for cap-and-trade

declined shortly after House passage.16 With the exception of Republican Senator Lindsay

Graham joining Senate cap-and-trade efforts on Nov 4, 2009, the rest of 2009 and 2010

witnessed the gradual demise of cap-and-trade. Prospects for cap-and-trade were affected

by the failure to reach a new binding international agreement at the UNFCCC Copenhagen

negotiations and further declined following Scott Brown’s Senate victory which weakened

the filibuster-proof supermajority needed by the Democrats. On April 23, 2010, Senator

Lindsay Graham withdrew support for cap-and-trade. Three months later, on July 22, 2010,

a little over a year after House passage of Waxman-Markey, the Senate formally dropped

deliberation over a comparable cap-and-trade bill (see Appendix E for a summary of these

events). While the Waxman-Markey was ultimately never implemented, the period between

May 2009 to August 2010 was marked by daily fluctuations in cap-and-trade prospects which

fortunately was captured by an accompanying prediction market.

2.2 Prediction market event studies

The typical prediction market contract is a bet on the realization of a particular event at a

certain date. When that date is reached, holders of a contract receive $1 if the event is real-

ized and zero otherwise with contract prices fluctuating within the unit interval prior to the

termination date.17 Under certain assumptions about prediction market participants,18 the

price of the contract can be interpreted as the average market belief over event realization.

Prediction market prices can be paired with stock returns in a prediction market event

study. This approach provides two important advantages over traditional event study

15Prominent examples are the 2003 McCain-Lieberman (S.R. 139), 2005 McCain-Lieberman (S.R. 1151),
2007 McCain-Liberman (S.R. 280), 2007 Lieberman-Warner (S.R. 2191), and the 2008 Boxer-Lieberman-
Warner (S.R.3036) bills.

16In the bicameral U.S. legislative system, a piece of legislation must pass both Houses of Congress before
being sent to the President. Thus, passage of Waxman-Markey by the House of Representatives needed to
be followed by a similar cap-and-trade bill approved by a Senate filibuster-proof supermajority.

17Actual Intrade contract prices range from $0 - $10. I normalize prices to match probabilities.
18Wolfers and Zitzewitz (2006) show that two assumptions are required in order for prediction market

prices to equal mean beliefs: 1) utility has a log form and 2) trader wealth and beliefs are independent. For
other standard utility functions, the divergence between prediction market prices and mean beliefs is shown
generally to be quite small when 1) traders are risk averse, 2) prices are within the $0.20− $0.80 range, and
3) the distribution of beliefs exhibit relatively low dispersion. In the case where trader wealth and belief are
correlated, the prediction market price reflects the wealth weighted average belief in the trading population.
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methodology. First, in the case of an eventually realized policy, prediction market prices

mitigate concern over “fuzzy information” release. Traditional event studies examine ab-

normal stock returns in response to an unexpected release of information. Isolating the

moment when markets first become aware of this information is a central challenge. This

is typically manifested in the selection of an event window in which one assumes that the

probability of policy realization is 0 prior to the window and 1 when the event occurs. Any

early release of information may violate this assumption and result in estimates that are

sensitive to event window selection (Snowberg, Wolfers and Zitzewitz, 2007).

Second, and perhaps more importantly, prediction market prices allow researchers to

estimate abnormal returns for a probable event even if this event is never realized. In

other words, the availability of prediction markets transforms event studies into a tool for

policy forecasting. This potential was noted by Snowberg, Wolfers and Zitzewitz (2012)

but, to the best of my knowledge, has not been implemented in the literature. In particular,

the availability of prediction markets solves a central empirical challenge: for probable

but unrealized policies, neither firm values under the probable policy nor in its absence

are directly observed. There are, during any legislative period, a number of important

policies that fail to become law but whose costs remain of interest, perhaps to inform future

legislative efforts.19 Such a prediction market was available for cap-and-trade policy during

2009-2010.

2.3 Cap-and-trade prediction market

From May 1, 2009 to Dec 31, 2010,20 the online trading exchange Intrade hosted a prediction

market contract on the prospects of a U.S. cap-and-trade system. This contract was titled:21

“A cap and trade system for emissions trading to be established before midnight

ET on 31 Dec 2010.”

Figure 1 plots the price time series for this contract. A price of $0.50 indicates that market

participants believed, on average, that cap-and-trade had a 50% chance of being realized

before the end of 2010. Each solid red line identifies a political event that affected cap-and-

trade prospects (summarized in Appendix E).

19Prediction markets have been offered for recent efforts to reform immigration, social security, and health
care regulation in the U.S. A list of all Intrade prediction markets is available here:www.intrade.com/v4/
reports/special/all-intrade-markets/all-intrade-markets.xlsx

20Intrade began offering this contract on March 25, 2009. However, trading began only on May 1, 2009,
which marks the start of my sample period.

21 Intrade further defined this contract by noting:

“A cap and trade system will be considered established once federal legislation authorizing the
creation of such a system becomes law, as reported by three independent and reliable media
sources. Emissions trading under the system does not need to begin for the contract to be
expired.”
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Two aspects of this prediction market make it fall short of the ideal. First, the contract

describes a generic cap-and-trade system without explicit mention of the Waxman-Markey

bill. In Section 5.1, I discuss several pieces of statistical and anecdotal evidence suggesting

that market participants were likely reacting to the Waxman-Markey bill. Second, this

prediction market was relatively thinly traded. During the event period, 11,260 contracts

were traded for a total value of $190,000. An average of 30 contracts were transacted every

2 days.22 Transaction-level data acquired privately from Intrade indicates that there were

143 unique traders participating in the market.23 To examine the potential implications of

thin trading, Section 4.3 conducts a series of empirical tests to examine the potential biases

due to thin trading, as formalized in Appendix B.

3 Reduced-form framework: RDD under policy uncer-

tainty

This section develops the econometric framework for conducting a regression discontinuity

design under policy uncertainty. Identifying assumptions for the reduced-form RD param-

eter is first introduced graphically within a simplified setting and then formalized more

generally. Section 5 will introduce the structural assumptions needed to interpret the RD

parameter as the marginal abatement cost of the Waxman-Markey bill.

3.1 Observational challenge: graphical illustration

Figure 2 illustrates this paper’s main observational challenge in its simplest form. There is

one time period. The policy index p indicates whether the Waxman-Markey bill has (p = w)

or has not (p = o) been realized. Firms are indexed by i and are either in sector j ∈ {F,A}.
Under Waxman-Markey, firms in sector j ∈ F with energy intensity EIj > .05 receives free

permits. Conversely, firms in sector j ∈ A with energy intensity EIj < .05 have to purchase

permits. ri(j, p, EIj) is firm-level stock returns (or the percentage change in firm value).

First, consider first the standard RDD setting for the hypothetical case where Waxman-

Markey has been implemented, p = w, as shown in Panel (A) of Figure 2. Solid lines indicate

observed values while dashed lines indicate unobserved values. In this setting, the researcher

observes the stock returns of firms with and without free permits and can estimate their

respective conditional mean functions, E[ri|j ∈ F, p = w,EIj > .05] and E[ri|j ∈ A, p =

w,EIj < .05]. Identification of the discontinuity β requires that E[ri|j ∈ A, p = w,EIj ]

22By comparison, the prediction market used in Snowberg, Wolfers and Zitzewitz (2007) had an average
of 129 trades for every 10-minute interval during election night.

23While Intrade does not provide information on where traders are located, Intrade has said in a public
letter to the U.S. CFTC that “our 82,000 plus membership are predominantly resident in the United States”
and that “78% of traffic to Intrade.com in the period 1 January to 30 June [2008] was from the U.S.” Available
here: http://www.intrade.com/news/misc/CFTC_Intrade_Comment_Reg_Treatment_Event_Mkts.pdf
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be continuous in EIj around the 5% threshold (Hahn, Todd and Klaauw, 2001). That

is, expected stock returns under Waxman-Markey should be continuous at the 5% energy

intensity threshold if not for the assignment of free permits.

Unfortunately, Waxman-Markey was never realized. This means that the researcher

observes neither E[ri|j ∈ F, p = w,EIj ] nor E[ri|j ∈ A, p = w,EIj ] over any energy inten-

sity value. Furthermore, because Waxman-Markey was a probable policy during this time

period, stock returns themselves do not directly reveal returns in the absence of Waxman-

Markey, E[ri|p = o,EIj ]. These three unobserved conditional mean functions are shown as

dashed lines in Panel (B) of Figure 2. Suppose, however, the researcher somehow observes

the change in the probability that Waxman-Markey would be implemented at some future

date. One could then estimate firm-level stock returns under Waxman-Markey relative to

the no-policy scenario, normalize estimates according to the change in Waxman-Markey

probabilities, and examine whether relative returns exhibit a discontinuity at the 5% en-

ergy intensity threshold. Identification of β in this setting requires an additional continuity

assumption. Expected stock returns in the absence of Waxman-Markey, E[ri|p = o,EIj ],

must also be continuous in EIj around the 5% threshold.

3.2 General framework

There are two reasons why, in practice, a more general framework is needed to estimate an

RD parameter under policy uncertainty. First, there are more than two policy states. In

particular, as noted in Section 2.3, the cap-and-trade prediction market did not explicitly

mention the Waxman-Markey bill and thus may cover multiple policies. Second, the cap-

and-trade prediction market existed continuously over many trading days such that one

can gain statistical power by utilizing daily time-series variation in prediction market prices

and stock returns. More broadly, this section formally demonstrates how the observational

challenge presented in Section 3.1 could be overcome using two variables that are observed

on each trading date t: the stock return of firm i in sector j, rijt, and the cap-and-trade

prediction market price, θt.

For a representative trader, define P as the set of all policies that could be implemented

on any date.24 Next, define W ⊂ P as the subset of cap-and-trade policies to be passed

by the end of 2010 covered by the cap-and-trade prediction market. Because the cap-and-

trade prediction market did not specify the Waxman-Markey bill, W may include multiple

policies in addition to Waxman-Markey. The remaining subset of policies not covered by

the cap-and-trade prediction market is denoted by O ⊂ P such that W∪O = P. O includes,

inter alia, any non-cap-and-trade policy expected to be established by the end of 2010 as

well as all policies - cap-and-trade or otherwise - to be established later. Denote vijt(W)

24For example, Waxman-Markey implemented at the end of 2010 would be a different element in P than
the same policy but implemented on a different date.
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and vijt(O) as expected firm value conditional on the set of policies covered and not covered

by the prediction market. Firm value, vijt, is the expected value over the two policy sets:

vijt = θtvijt(W) + (1− θt)vijt(O)

= vijt(O)(1 + γijtθt) (1)

where the second line follows after defining:

γijt =
vijt(W)− vijt(O)

vijt(O)
(2)

or the percentage difference in expected firm value under cap-and-trade policies covered by

the prediction market relative to other policies. I henceforth refer to γijt as the firm-level

cap-and-trade effect. Taking logs and first differences of Equation 1, and noting that for

sufficiently small γijtθt, ln(1 + γijtθt) ≈ γijtθt,25 one can write stock returns, rijt, as:

rijt = γijtθt − γijt−1θt−1 + ∆ ln vijt(O) (3)

where ∆ indicates time differences. An RDD design can exploit the free permit assignment

at the 5% energy intensity threshold. For the econometric objectives of this section, consider

the following decomposition for γijt:

γijt = βDj + ηijt (4)

where Dj = 1{EIj > .05} is an indicator variable which equals one when firm i is in sector

j with energy intensity greater than 5%. β is the reduced-form parameter of interest and

captures the difference in cap-and-trade effect between firms receiving and not receiving free

permits. ηijt denotes all determinants of the cap-and-trade effect besides the free permit

rule. Section 5 will present a structural analog for Eq. 4 under a cap-and-trade program.

Substituting Eq. 4 into Eq. 3 yields:

rijt = βDj∆θt + ηijt∆θt + ∆ηijtθt−1 + ∆ ln vijt(O) (5)

Notice that Eq. 5 differs from a standard RDD setup in that the cross-sectional treatment

variable, Dj , is interacted with a time-series variable ∆θt. This implies that identifica-

tion requires two continuity assumptions, one which follows standard RDD convention and

another because our event of interest was never realized. Formally, Assumption 1 states:

Assumption 1: (Continuity under cap-and-trade policy)

Ei[ηijt|EIj ] is continuous at EIj = .05 for all t.

where the expectation is taken over firm i. This is a variant of the standard RDD continuity

25During the sample period, average θt = 0.24, the average estimated cap-and-trade effect is -0.02.
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assumption under a certain policy. It states that the cap-and-trade effect should be contin-

uous at the 5% energy intensity threshold if not for the allocation of free permits during all

trading days. Next, Assumption 2 states:

Assumption 2: (Continuity under non-cap-and-trade policy)

Ei[ln vijt(O)|EIj ] is continuous at EIj = .05 for all t.

This assumption states that expected stock returns in the absence of cap-and-trade must

also be continuous at the 5% threshold. Under these two assumptions, estimation of Eq. 5

on date t for a cross-section of firms within a narrow bandwidth of the 5% energy intensity

threshold would produce an unbiased estimate of the reduced-form parameter of interest:

β =
limEIj↓.05Ei[rijt|EIj ]− limEIj↑.05Ei[rijt|EIj ]

∆θt
(6)

For statistical power, in practice, I estimate an average β across multiple trading dates

t from May 1, 2009 to Dec 31, 2010 when the prediction market price is observed. This

implicitly requires that β be trading-date invariant. While this is innocuous within the

reduced-form framework of this section, it may not be within a structural setting, which I

return to in Section 5.

4 Reduced-form results

This section presents my reduced-form RDD results in several parts. First, I conduct two

forms of graphical analysis via 2-step procedures that illustrate the RD parameter in the

time-series and cross-sectional dimensions. Second, for my preferred model, I estimate a

1-step panel RD estimator which interacts time-series variation in prediction market prices

with a local semi-parametric function of the cross-sectional RD treatment allowing for cor-

rect inference. Point estimates from this panel estimator are shown to be robust across

different controls for firm value absent cap-and-trade policy, sample bandwidth around the

threshold, and functional form fitted to energy intensity. Third, I consider a series of indi-

rect tests of identifying Assumptions 1 and 2 by examining whether there are discontinuities

at the 5% threshold across various sector-level covariates and average stock returns before

and after 2009-2010. Lastly, I present additional results testing for the presence of placebo

discontinuities at thresholds less and greater than 5%, biases due to thin-trading in the

prediction market, and biases arising from concerns over prediction market expiration.

For all results, I use a panel of 2-day stock returns obtained from the Center of Research

in Security Prices (CRSP)26 during the period from May 1, 2009 to Dec 31, 2010 with all

262-day trading intervals account for Intrade prediction markets having later closing hours than the
primary U.S. stock exchanges as well as the occurrence of after-hours stock trading. In particular, Intrade
closing prices are observed 2am on weekdays and 3am on weekends. If after-hours stock trading were to
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publicly traded firms in the 31-33 NAICS manufacturing sectors.27 In the cross-sectional

dimension, I restrict my sample to firms in sectors that satisfy Waxman-Markey’s rule of

trade intensity exceeding 15% using data from the U.S. International Trade Commission.28

Wolfers and Zitzewitz (2006) show that with certain utility functions, a favorite-longshot

bias and reverse favorite-longshot bias can occur for prediction market prices below $0.20

and exceeding $0.80 respectively. Addressing this concern, I restrict my sample in the

time-series dimension by only including trading days when prediction prices lie between

$0.20-$0.80. Data sources are further detailed in Appendix D.

Table A.1 displays 6-digit NAICS sectors by energy intensity bins.29 For conciseness,

only sectors within a 3% bandwidth around the 5% energy intensity threshold are shown

with bins widths corresponding to the 2%, 2.5%, and 3% bandwidth samples. There does

not appear to be clustering of particular 3-digit manufacturing sectors on either side of

the threshold. Firms in paper (NAICS 322), petroleum and coal products (NAICS 324),

chemical (NAICS 325), plastics and rubber products (NAICS 326), nonmetallic mineral

product (NAICS 327), primary metal (NAICS 331), fabricated metal product (NAICS 332),

and computer and electronic product (NAICS 334) subsectors appear on both sides of the

threshold. Section 4.2 tests for discontinuities in sector-level covariates at the threshold.

4.1 Main RD estimate

In practice, precise estimation of Eq. 5 requires averaging across both trading dates t and

firms i in sector j. As discussed in Section 3.2, averaging across trading dates requires that

the RD parameter be time-invariant. In the cross section, averaging is done across firms

within a certain bandwidth around the 5% threshold. Because stock returns may vary with

energy intensity for firms within the bandwidth, I follow Hahn, Todd and Klaauw (2001)

and consider the following local polynomial regression analog of Eq. 5:

rijt = βDj∆θt + f(EIj)∆θt + ZitΨi + εijt (7)

occur, the effect of information released after 4pm ET on trading days or over weekends would not be picked
up using observed daily returns. Applying the Hadri (2000)’s Lagrange Multiplier test on my sample panel
of stock returns failed to reject a null that all panels are stationary in favor of an alternative where some
panels contain a unit root.

27Only 4 firms in my sample indicate multiple 6-digit NAICS sectors over my sample period. For these
firms, I assign the most recent 6-digit NAICS sector in my sample.

28In theory, one could conduct another RDD analysis along the 15% trade intensity cutoff, conditional
on energy intensity above 5%. However, in practice, there are very few firms within narrow bandwidths of
the trade-intensity cutoff. For example, within a 3% bandwidth of the 15% trade intensity threshold, there
are 8 publicly listed firms in my dataset. By comparison, there are 202 firms within a 3% bandwidth of the
5% energy intensity threshold.

29My energy intensity variable uses data from the 2004-2006 U.S. Census Annual Survey of Manufacturers
(ASM), as required by the Waxman-Markey bill. I prefer this variable to the energy intensity variable
constructed for the Senate requested “Interagency Report on International Competitiveness and Emission
Leakage” (EPA, 2009) because the latter only uses 2006 ASM data. In practice the two variables are highly
correlated with a bivariate linear model producing a coefficient of 0.98 and R2 = 0.92.
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where as with before Dj = 1{EIj > .05} is an indicator variable which equals one when firm

i is in 6-digit NAICS sector j with energy intensity greater than 5%. β is the RD parameter

of interest. f(EIj) is a flexible polynomial function fully interacted with Dj , allowing for

different parameters on either side of the threshold. For example, under a linear specification

f(EIj) = α1 + α2(EIj − .05) + α3Dj(EIj − .05). Continuity of the error term εijt at the

5% threshold is required in order to satisfy identifying Assumptions 1 and 2.

Zit is a set of controls capturing “normal market performance, or stock returns in the

absence of Waxman-Markey. Several alternative sets of controls are consider with the first

three models following standard practice in the finance literature. The first model includes

only firm fixed effects. The second model is the CAPM which includes both a firm fixed

effect and an aggregate market return index multiplied by a firm-specific coefficient. For my

third model, I follow the seminal work of Fama and French (1993) by augmenting the CAPM

model with value-based and size-based portfolios multiplied by a firm-specific coefficient to

account for common risk factors associated with book-to-market ratio and firm size. My

last model, which is my most stringent and preferred, includes a full set of firm and trading

date fixed effects. By removing common trading date shocks, this last model identifies β

through a less restrictive version of Assumptions 1 and 2 by only requiring that εijt be

continuous in the cross-sectional dimension. I now turn to two graphical presentations of β

that correspond to this firm and trading date fixed effects version of Eq. 7.

Graphical analysis: time series Eq. 7 can be estimated via the following two-step

procedure. In the first step, the following cross-sectional local polynomial regression is

estimated for every trading date t:

rijt = γtDj + ft(EIj) + νijt (8)

where γt is the differential abnormal returns between firms on either side of the 5% energy

intensity threshold on each date t. ft(EIj) includes a date fixed effect. γt is the raw

probability unadjusted daily cap-and-trade effect. In the second stage, γt is regressed in the

time-series dimension on the daily prediction market price change:

γ̂t = β∆θt + µt (9)

Results from this 2-step procedure are shown graphically in Figures 3 and 4. To generate

these graphs, I first remove firm fixed effects from the panel of stock returns. Eq. 8 is then

estimated on the ensuing residuals for firms within a 4% bandwidth of the cutoff with a

flexible quadratic function, ft(EIj), in energy intensity. Figure 3 plots the cumulative daily

raw cap-and-trade effect over the 2007-2011 period. Notice that Figure 3 closely tracks the

timing of Waxman-Markey developments discussed in Section 2.1 and captured by cap-and-

trade prediction market prices in Figure 1. The cumulative difference between firms on

either side of the threshold hover around zero during 2007-2009 and dramatically increase
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when the 111th Congress begins at the start of 2009. The cumulative difference peak around

the House passage of the bill at the start of the summer of 2009 and converge back to zero

thereafter towards the end of the 111th Congress as 2010 closes. Figure 4 shows Eq. 9 by

plotting the relationship between the raw probability unadjusted daily cap-and-trade effect

and cap-and-trade prediction market price changes during the May 1, 2009 to Dec 31, 2010

sample period. A linear fit indicates a β of 7%.

Graphical analysis: cross section I reverse the steps of the previous procedure to

provide a more conventional RD graph in the cross section, similar to that illustrated in

Figure 2. First, for every sample firm, I estimate the following time series regression within

the period from May 1, 2009 to Dec 31, 2010:

rijt = γij∆θt + ci + νijt (10)

where γij is the firm-level cap-and-trade effect and ci are firm fixed effects. In the second

stage, I test whether there is a cross-sectional discontinuity in γij by estimating:

γ̂ij = βDj + f(EIj) + µij (11)

Figure 5 follows the RD literature by showing the non-parametric version of Eq. 11 for

firms within a 4% bandwidth of the cutoff. To generate Figure 5, I first remove trading date

fixed effects from the panel of stock returns before estimating Eq. 10. Triangles indicate the

estimated cap-and-trade effect averaged over firms within separate 1% wide energy intensity

bins. The underlying support of sector-level energy intensity, the running variable, is shown

in the gray histogram. The distribution is left-skewed with relatively fewer number of firms

near the 5% energy intensity threshold. While this may be a concern for statistical power,

it need not threaten identification provided that the firm distribution is continuous around

the threshold. A density continuity test using the McCrary (2008) procedure was conducted

and did not detect a discontinuity in the support of the running variable at 5%.30 Solid

lines show linear models fitted over the unbinned data on both sides of the 5% threshold

while dashed lines show a similar fit using a quadratic model. Under both models, there

is a discontinuity β of about 7% percent. Furthermore, it is noteworthy that the overall

shape of the response function is negatively sloped on both sides of the threshold which is

expected as more energy intensive firms would experience larger losses under climate policy.

Panel estimates The previous 2-step RD procedures provide graphical evidence of the

discontinuity at the 5% energy intensity threshold. However, they do not take into account

sampling variability in estimates of γ̂t and γ̂ij and thus may not report correct standard

30The point estimate on a jump at 5% in the distribution of energy intensity is 0.78 with a standard error
of 0.54.
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errors.31 Instead, my preferred procedure is to directly estimate Eq. 7 with standard errors

clustered at the 6-digit NAICS level to allow arbitrary forms of serial and cross-sectional

correlation for firms within a given sector.

Table 1 shows estimates of β for each combination of i) four different normal market

performance controls (panels), ii) local linear and quadratic functional forms for energy

intensity (down rows within a panel), and iii) estimation bandwidths ranging from 2% to

4% in 0.5% intervals around the threshold (across columns). Table 1 shows a statistically

significant estimate of around 7% to 9% across these modeling choices. A few patterns are

worth discussing. First, point estimates are relatively unaffected by the choice of controls

for normal market performance across panels of Table 1 lending support for Assumptions 1

and 2. Second, models using either a linear or quadratic function of energy intensity produce

fairly similar estimates for bandwidths set at 2.5%, 3.5% and 4%. The linear model fails

to detect a discontinuity only within a 3% bandwidth though the point estimate is within

the uncertainty of other models. The quadratic model fails to detect a discontinuity only

within a bandwidth of 2% possibly due to overfitting given the reduced sample size at that

bandwidth. Figures A.2 and A.3 display point estimates and 90% confidence intervals of β

from the firm and date fixed effects model for finer 0.1% increments in bandwidth window

using a linear and quadratic function of energy intensity respectively.

4.2 Indirect tests of Assumptions 1 and 2

This section conducts several indirect tests of identifying Assumptions 1 and 2.

Sector-level covariates Assumption 1 requires that the cap-and-trade effect be contin-

uous at 5% energy intensity if not for the free permit rule. Given the free permit rule,

firm sorting around the 5% threshold is unlikely. First, as noted in Section 2.1, climate

legislation prior to the Waxman-Markey bill did not include the 5% threshold such that it is

unlikely that firms were anticipating this threshold based on prior experience. Second, free

permit assignment is based on 2004-2006, publicly available, government data on sectoral

energy intensity values. It is unlikely that firms in 2009 would rewrite such data. However,

Assumption 1 could still be violated if there was strategic placement of the threshold by

Congressional legislators, perhaps in response to firm activity.

Table 2 examines covariate balance for several 6-digit NAICS sector-level variables that

may influence the placement of the threshold. In particular, Congressional legislators may

want to assign free permits to sectors to reduce labor market effects or in response to

lobbying pressure. For each covariate, I consider both linear and quadratic models of energy

intensity and different estimation bandwidths and apply the cross-sectional specification in

Eq. 11 at the sectoral level. Panel (A) of Table 2 examines whether there is a discontinuity

31This is akin to incorrect standard errors in a generated regressor setting.
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at 5% energy intensity in log average number of production workers for the sector. I do not

detect a statistically significant discontinuity with any of my linear models and only pick

up statistically significant coefficients within a 2% and 2.5% bandwidth using a quadratic

function of energy intensity. Panel (B) models the log average number of establishments

and detects only a marginally significant coefficient using a linear model of energy intensity

within a 4% bandwidth. For neither covariate are the results sufficiently stable across

modeling choices to conclude there is a discontinuity at the threshold.

Panels (C) examine the presence of a jump at 5% energy intensity in log lobbying ex-

penditures on the Waxman-Markey bill (see Appendix D for details on lobbying data con-

struction). I do not detect a statistically significant discontinuity at 5% energy intensity

for any bandwidth and functional form in energy intensity suggesting that there was not

additional lobbying pressure by firms in sectors that would have received free permits. It

is, however, possible that this free permit allocation rule was determined by climate policy

lobbying prior to the Waxman-Markey bill in 2009. In Panel (D), I extract and total lob-

bying expenditures across the full set of official climate legislation considered by Congress

between 2003-2008.32 Again, I do not detect a jump in lobbying expenditures on climate

bills prior to the Waxman-Markey bill at the 5% threshold.

Firm-level stock returns in 2007, 2008, and 2011 Assumption 2 requires that con-

ditional on controls for normal market performance, firm stock returns are continuous at

5% energy intensity in the absence of cap-and-trade policies cover by the prediction market.

An indirect test of Assumption 2 is to examine whether stock returns in 2007 and 2008,

prior to the 111th Congress, and in 2011, after the 111th Congress, exhibit discontinuities at

5% energy intensity. Assumption 2 would be violated if discontinuities at the 5% threshold

existed in any alternative policy not covered by the cap-and-trade prediction market and

markets believed such policy to be probable prior to or after 2009-2010. Detecting a discon-

tinuity in stock returns prior to 2009-2010 could also imply that markets were anticipating

this threshold prior to the 111th Congress.

Figure 3 already shows the discontinuity in cumulative daily stock returns at the 5%

threshold during 2007, 2008, and 2011. Table 3 estimates the discontinuity using the cross-

sectional specification in Eq. 11 for average daily returns in 2007, 2008, and 2011 in Panels

(A), (B), and (C) respectively. Rows in each panel show coefficients from models fitting

a linear and quadratic function of energy intensity. Columns indicate the bandwidth size

around the 5% threshold. I find little evidence of a discontinuity at 5% energy intensity

across the combination of stock returns, polynomial order, and bandwidth window. Nearly

every coefficient and standard error is small in magnitude and not statistically significant.

32These include the 2003 McCain-Lieberman (S.R. 139), 2005 McCain-Lieberman (S.R. 1151), 2007
McCain-Liberman (S.R. 280), 2007 Lieberman-Warner (S.R. 2191), and the 2008 Boxer-Lieberman-Warner
(S.R.3036) bills.
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I only detect a statistically significant effect in 2011 average stock returns using a quadratic

function in energy intensity within a 2% bandwidth. Figure A.1 shows the shape of the

average stock returns in 2007, 2008 and 2011 using local averages within 1% wide energy

intensity side bins along with fitted linear and quadratic models of the unbinned data.

4.3 Additional robustness tests

I turn now to several additional robustness test of my main RD result.

Placebo test at different energy intensity thresholds Table 4 shows estimates of

β from Eq. 7 under alternate placebo free permit thresholds at 3%, 4%, 6%, and 7%

energy intensity, shown across columns. All models include both firm and date fixed effects

estimated within a 4% estimation sample bandwidth on both sides of the treatment threshold

with cluster-robust standard errors at the 6-digit NAICS level. The first row of coefficients

are from models fitting a local linear function of energy intensity while the second row uses a

local quadratic function. For both functional forms, a statistically significant discontinuity

is detected only at the correct 5% threshold.

Possible consequences of thin trading in prediction market Section 2.3 noted

that the Intrade cap-and-trade market was thinly traded. Previous field and experimental

studies have found that prediction market prices are relatively unaffected by thin trading or

manipulation by individual traders (see Appendix B for a brief literature review). Intuitively,

efforts to manipulate a prediction market by some increase arbitrage opportunities for others

such that distortions, if they do exist, are unlikely to last over long periods.

Because bias due to thin trading cannot be fully ruled out, Appendix B formally considers

three possible sources of deviation between the observed prediction market price and the

true unobserved cap-and-trade probability: additive bias, classical measurement error, and

multiplicative bias. First, I show that the inclusion of firm fixed effects in each variant of my

panel specification in Eq. 7 indirectly addresses additive bias. Second, I demonstrate that

in the presence of classical measurement error, the interaction between my cross-sectional

RD treatment variable Dj and the prediction market price change, ∆θt, results in lower

attenuation bias than if the prediction market price change were uninteracted. Third, I

derive the resulting bias in β in the presence of multiplicative bias.

Table A.2 provides indirect tests of whether multiplicative bias in the prediction market

price affects my RD estimate. Each column shows an interacted version of Eq. 7:

rijt = β1Dj∆θt + β2Dj∆θtWt + f(EIj)∆θt + f(EIj)∆θtWt + ZitΨi + εijt (12)

where Wt is a time-series variable that captures the competitiveness of the prediction market
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during date t. β2 is now the coefficient of interest and indicates whether the estimated

discontinuity is affected by the presence of potential distortions in the prediction market.

Table A.2 shows results from models with firm and date fixed effects with both a linear and

quadratic term for energy intensity. Column (1) replicates the main uninteracted coefficient

from Eq. 7. In Column (2) I include an interaction with the total trading volume for the

2-day period. The interacted coefficient is close to zero and statistically insignificant while

the uninteracted coefficient is similar to that in Column (1) for both linear and quadratic

models. Transaction-level data revealed the presence of 2 large traders. One large trader,

a major buyer, was responsible for 38% of all contracts sold before the contract expired.

Another large trader was responsible for 22% of all contracts purchased. In Column (3)

I examine the potential role of the two large volume traders by including an interaction

with trading volume attributed to these two individuals. Again, the interacted coefficient

is nearly zero and statistically insignificant while the uninteracted coefficient is similarly

to that in Column (1). Simply considering the involvement of these two large traders,

however, does not preclude other trading days in which the market was dominated by

relatively few traders. Using transaction-level data with unique trader identifiers, I construct

a daily buyer-based normalized Herfindahl-Hirshman Index (HHI).33 This index captures

the relative competitiveness of the prediction market for any given day and provides my most

stringent test, shown in Column (4). For the linear model, I detect an uninteracted term that

is similar in magnitude to that in Column (1) though it itself is statistically insignificant.

Importantly, I do not detect a statistically significant interaction term. Coefficients for the

quadratic model are also not statistically significant though point estimates are now of larger

magnitude. Finally, in Columns (5) and (6) I split my sample into 2009 and 2010 trading

days. I do not find that estimates of β from each subsample differ much in magnitude from

the full sample estimate in Column (1).

Concerns over prediction market expiration Another source of multiplicative bias

may arise from Intrade contract expiration. The cap-and-trade prediction market used for

this analysis expired on December 31, 2010, regardless of whether cap-and-trade regulation

were to eventually pass Congress. Thus, while the prospects of cap-and-trade realization

might indeed be declining in 2010, a component of the price movements shown in Figure 1

might also reflect expectations that policy realization is unlikely to occur before the end of

2010. In practice this was unlikely, as any legislation, having failed in the current Congress, is

rarely reintroduced with identical features in a subsequent Congress. However, it is difficult

to ascertain whether markets expected Waxman-Markey prospects to exist following the end

of the 111th Congress. If so, a bias is introduced between the prediction market price and

33Formally, for trading day t, there are j = 1...Jt traders each purchasing sjt share of all contracts trans-

acted that day. The normalized Herfindahl-Hirshman Index is H∗
t =

Ht−1/Jt
1−1/Jt

where H is the Herfindahl-

Hirshman Index, Ht =
∑
j s

2
jt.
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average market beliefs which increases as the expiration date nears. In Appendix C, I detail

an adjustment procedure to separate average market beliefs, the true variable of interest,

from concerns over contract expiration. This procedure uses information from a similar

Intrade prediction market with an earlier expiration date at the end of 2009 (see Figure

A.4). Under certain additional assumptions, I can use the period of overlap between the

2009 and 2010 expiring contracts to separate the effects of concerns over contract expiration

with the true market belief in cap-and-trade prospects.

In Table A.3, I find that adjusting for contract expiration yields estimates of β that are

similar to my main result. While these estimates are slightly smaller in magnitude, they fall

well within the uncertainty of my main results shown in Table 1. This is possible because

whereas the adjustment procedure illustrated in Figure A.6 inflates prediction market price

levels to account for concerns of impending contract expiration, much of this adjustment is

already removed from the unadjusted prediction market price after first differencing.

5 Structural interpretation: marginal abatement cost

under Waxman Markey

Sections 3 and 4 provided the estimating framework and results for the reduced-form RD

parameter β, the difference in stock returns for firms on either side of the free permit thresh-

old under cap-and-trade policies covered by the prediction market relative to other policies.

This section discusses the additional steps required for mapping β onto the structural pa-

rameter of interest: the marginal abatement cost under the Waxman-Markey policy. First,

I introduce a benchmark model of cap-and-trade regulation. Next, I consider two assump-

tions, one restricting variation in key features across cap-and-trade policies covered by the

prediction market and another restricting variation in permit prices across trading dates.

Third, I discuss a bounding analysis for the cumulative free permits expected by a treated

firm to recover bounds on the marginal abatements cost under Waxman-Markey. Fourth, I

consider two deviations from the benchmark model that may be relevant for the Waxman-

Markey bill. Finally, I compare my range of implied Waxman-Markey marginal abatement

costs with that estimated by prominent CGE models.

5.1 Mapping reduced-form onto structural parameters

Under standard theoretical assumptions, the equilibrium permit price of a cap-and-trade

policy during any period equals that period’s overall marginal abatement cost of meeting

the policy’s aggregate cap (see Appendix A.1 for full derivation) (Montgomery, 1972). Fur-

thermore, a cap-and-trade policy with unlimited permit borrowing and banking over time

results in permit prices that follow Hotelling’s rule (Hotelling, 1931), rising at the (exoge-
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nous) interest rate. This implies that only knowing the first period permit price, τ0, is

adequate for the time path of the overall marginal abatement cost. Thus, my structural

parameter of interest is τ0(w), the first period permit price under Waxman-Markey, p = w.

I consider a standard model of cap-and-trade regulation which depletes a fixed stock

of aggregate emissions over the lifetime of the policy, y ∈ [0, Y ]. Following Rubin (1996),

output and permit markets are perfectly competitive, free permits are allocated in a lump-

sum manner, and there is unlimited permit banking and borrowing over time. Section 5.3

explores implications when the second and third conditions are violated. For any single

cap-and-trade policy covered by the prediction market, p ∈ W, optimal value for firm i in

sector j during trading date t is (see Appendix A for full derivation):

vijt(p) = τt0(p)Aij(p)1{j ∈ F (p)}

+

∫ Y

0

e−δyπ(x∗ijty(p))dy − τt0(p)

∫ Y

0

x∗ijty(p)dy (13)

where Aij is the cumulative free permits granted to firm i over the lifetime of the policy and,

as in Section 3.1, F denotes the sectors receiving free permits. δ is the exogenous interest

rate, π() is a general concave instantaneous profit function, and x∗ijty is optimal emissions.

Notice that there are two differences between the first period permit price in Eq. 13 and my

structural parameter of interest, the trading date-invariant first period permit price under

Waxman-Markey. First, because the cap-and-trade prediction market did not specify the

Waxman-Markey bill, τt0(p) is indexed by policy p ∈ W, which may contain other policies

besides Waxman-Markey. Second, τt0(p) is indexed by trading date t. To recover τ0(w), I

turn to two additional assumptions.

Assumption 3: (Homogeneity in cap-and-trade policies)

a) F (p) = F (w) ∀p ∈W
b) Aij(p) = Aij(w) ∀i, p ∈W
c) τt0(p) = τt0(w) ∀p ∈W

Assumption 3 states that the various cap-and-trade policies covered by the prediction mar-

ket contract exhibit the same free permit rule, firm-level cumulative free permits, and first

period permit price. While it is impossible to identify each element of the set of cap-and

trade policies, W, believed by market participants to be covered by the prediction market,

two arguments are provided in favor of this assumption. First, the two most notable cap-

and-trade policies considered by the 111th Senate contained key features that were identical

to that found in Waxman-Markey. Specifically, the Kerry-Boxer and Kerry-Lieberman bills

had identical free permit rules, consistent with Assumptions 3a and 3b. Furthermore, these

Senate bills also had similar features that would have affected permit prices such as sectoral

coverage, cap schedules, international offset, and domestic offset provisions, consistent with

Assumption 3c (see Appendix F and Table A.4 for detailed comparison of these bills). The
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similarities between Waxman-Markey and Senate bills were likely due to President Obama’s

explicit support for the Waxman-Markey bill and because a Senate bill that deviated too

much from Waxman-Markey would require the legislative burden of additional House vot-

ing. Second, the placebo tests shown in Table 4 did not detect jumps in energy intensity

thresholds greater or less than 5% energy intensity, consistent with Assumption 3a.34

For firms receiving free permits, Assumption 3 allows the cap-and-trade effect, first

introduced in Eq. 2, to be interpreted as the Waxman-Markey effect. Applying Eq. 13:

γijt =
τt0(w)Aij(w)1{j ∈ F (w)}

vijt(O)
+

∫ Y
0
e−δyπ(x∗ijty(w))dy − τ0t(w)

∫ Y
0
x∗ijty(w)dy

vijt(O)
− 1

(14)

which is the structural analog to the reduced-form expression in Eq. 4. The first term cap-

tures the discounted value of cumulative free permits under Waxman-Markey. The second

and third terms capture all other changes in stock returns under the policy, corresponding

to ηijt in Eq. 4.

The first period permit price in Eq. 14 is indexed by trading date t and reflect the role of

daily aggregate shocks during 2009-2010 that may affect expectations over future abatement

costs. To recover a trading date invariant first period permit price, I further assume that

daily aggregate shocks do not systematically affect both the Waxman-Markey first period

permit price and firm value in the absence of Waxman-Markey. Consider the following

decomposition, τt0(w) = τ0(w) + ξt, with Et(ξt) = 0. Assumption 4 formally states:

Assumption 4: (Uncorrelated permit price) cov(ξt, vijt(O)) = 0

In the context of the schematic in Figure 2, Assumption 4 requires that day-to-day vertical

shifts in the conditional mean function in the absence of cap-and-trade policy, E[ri|p =

o,EIj ], are uncorrelated with vertical shifts in β. In other words, aggregate determinants of

baseline firm value absent cap-and-trade should not be systematically related to the demand

for permits under cap-and-trade.35 The strongest evidence in favor of this assumption comes

from the stability of the RD parameter across different trading date controls, as shown

down each panel of Table 1. In particular, the RD parameter is similar whether one omits

(Panel A) or includes (Panel D) trading-date fixed effects. One can now write the following

mapping between the reduced form RD parameter β, which takes expectations across firms

i and trading date t, and the first period permit price under Waxman-Markey:

34Notice that Assumption 3 is less restrictive than assuming that the cap-and-trade effect be the same
for all policies covered by the prediction market.

35As an example, consider a regulated oil-consuming manufacturing firm facing two types of aggregate
shocks: a drop in oil prices and an increase in aggregate demand. The value of the firm should rise in both
cases but permit prices may change in different directions. If lower oil prices induce fuel-switching away
from coal-fired electricity, permit prices will drop from lower permit demand from the electricity sector.
On the other hand, an increase in aggregate demand would increase emissions and permit demand, raising
permit prices.
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β̂ =Eit

[
τ0t(w)Aij(w)

vijt(O)

]
(15)

=τ0(w)Ei

[
Aij(w)Et

[
1 + γijtθt
vijt

]]
(16)

=τ0(w)

(
Ei

[
Aij(w)Et

[
1

vijt

]]
+ β̂Ei

[
Aij(w)Et

[
θt
νijt

]]
+ Ei

[
Aij(w)Et

[
f̂(EIj)θt
vijt

]])
(17)

where the second line employs Assumption 4 and the definition for vijt in Eq. 1, and the

third line applies the estimating equation for γijt from Eq. 11.36 Finally, rearranging in

terms of τ0(w) and replacing expectations with sample means:

τ0(w) =

β̂

1
N

∑N
i

[
Aij(w) 1

T

∑T
i [ 1
vijt

]
]

+ β̂ 1
N

∑N
i

[
Aij(w) 1

T

∑T
i [ θtvijt ]

]
+ 1

N

∑N
i

[
Aij(w)f̂(EIj)

1
T

∑T
i [ θtvijt ]

]
(18)

where N and T are the number of treated firms and trading days in the estimation sample,

respectively. Observe that every term in Eq. 18 is either directly observed (i.e. vijt, θt) or

estimated (i.e. β̂, f̂(EIj)) with the exception of Aij(w), the firm-level cumulative number

of free permits. I now turn to a bounding procedure for Aij(w).

5.2 Bounding cumulative free permits

There are two broad approaches for obtaining Aij(w). One approach is to explicitly model

firm-level emissions from 2012-2025, the period during which free permits are granted. This

requires knowing the primitive parameters that determine future emissions. An alternative

approach is to provide reasonable bounds for Aij(w) using recent emission trends. I pur-

sue this latter approach by employing “worse” and “best” case scenarios as discussed by

Horowitz and Manski (2000). Specifically, I look to historical data and obtain the highest

and lowest rates of emission decline observed for manufacturing subsectors during 2006-

2010.37 I then apply either of these two rates uniformly to all treated firms in my sample

from 2012-2025 to generate emission paths, and thus cumulative free permits. For this ex-

ercise to be valid, I am implicitly assuming that actual average emissions for sample firms

during 2012-2025 must not decline faster (slower) than the single fastest (slowest) emission

36Technically, arriving at Eq. 17 requires an additional covariance assumption. Suppose ηijt = f(EIj) +

νijt with Et[νijt] = 0, then one needs cov(νijt,
θt
vijt

) = 0 across t. This is plausible from estimates using the

trading-date fixed effects model shown in Panel (D) of Table 1 which removes trading date variation in νijt.
37It is highly unlikely that emission levels should increase on average for manufacturing firms under a

cap-and-trade policy. In theory, under any strictly positive permit price, all firms, regardless of permit
allocation and marginal abatement cost, should weakly decrease emissions relative to business as usual.
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declining subsector during 2006-2010. The first and second columns of Table 5 display rates

of emission decline for available manufacturing subsectors during 2006-2010. During this

recent period, the petroleum refinery sector (NAICS 324110) experienced the lowest drop

at -0.7% while the textiles sector (NAICS 313-316) experience the highest drop at -19.3%

annually. Notice that because Aij appears in the denominator of Eq. 18, a slower rate of

emission decline implies a higher Aij and thus a lower τ0(w).38

Specifically, my bounding analysis follows three steps. First, I obtain average 2011

emissions per firm for all 6-digit NAICS sectors receiving free permits.39 Second, for the

2012-2025 period under Waxman-Markey, I assume that annual emission rates for all treated

firms follow that of the fastest or slowest declining manufacturing subsector during 2006-

2010. Third, for the 2026-2035 period, I impose an annual reduction of 10% in 2026, 20%

in 2027, up to a complete 100% phase-out by 2035, as specified by Waxman-Markey.

To illustrate this procedure, Figure A.7 plots the permits received for an average firm in

the Plastics Material and Resin Manufacturing subsector under a worst-case annual emission

rate of -0.7% (petroleum refinery) and a best-case annual emission rate of -19.3% (textiles).

Also included are the annual permit paths under annual emission rates of -1.5% (all manu-

facturing), -7.6% (aluminum), -13.9% (transport), and -35% for the 2012-2025 period. The

vertical line marks the start of the policy such that the area under each curve represents

cumulative free permits, Aij(w), associated with each assumed emission rate.

Table 5 displays the corresponding implied first period permit price, or marginal abate-

ment cost, using Eq. 18 with β̂ and f̂(EIj)) obtained from the panel data model shown

in Panel (C), Row (1), Column (5) of Table 1.40 The reported 90% confidence interval is

obtained via Monte Carlo draws from the estimated joint variance-covariance matrix of β̂

and f̂(EIj)). The marginal abatement cost, shown in 2009 US dollars, are for 2015 under an

assumed annual interest rate δ of 5%.41 I recover a lower bound marginal abatement cost of

$4.66 when assuming emissions from all treated firms decline under Waxman-Markey at the

recent rate of the worst performing manufacturing subsector. Similarly, I recover an upper

bound of $17.83 when applying the recent rate of the best performing subsector. I recover

38Similarly, it is possible that markets expected future policy revisions to extend the duration of the free
permit rule beyond 2035 such that Aij increases, implying a lower τ0(w). Ideally, such a scenario would not
lead to values below my lower bound for τ0(w).

39Greenhouse gas emission levels for all 6-digit NAICS subsectors are available for 2006 from EPA (2009).
Later data is available from the U.S. D.O.E. for 2010 and covers only emissions for the overall manufacturing
sector (NAICS 31-33) and for a dozen select manufacturing subsectors. Thus, I am unable to observe rates
of emission change for all 6-digit NAICS subsectors after 2006. Instead, I first divide 2006 6-digit NAICS
level emissions by the 2006 number of firms in each sector. I then assume that the annual percentage
emissions change in each sector from 2006-2011 is -1.5%, the rate of change for the overall manufacturing
sector (NAICS 31-33) from 2006-2010. See Appendix D for more data details.

40The panel models using Fama-French factors and trading date fixed effects produce nearly identical
point estimates and uncertainty for β. However, the panel model with date fixed effects does not separately

identify the intercept in ̂f(EIj)) and so cannot be used to recover τ0(w).
41For comparison purposes, an interest rate of 5% is chosen because it is the mean interest rate amongst

the CGE models discussed in Section 5.4.
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marginal abatement costs exceeding $24 per ton of CO2e only when assuming emission

decline rates lower than -25% per year.

5.3 Deviations from the benchmark model

I now turn to potential biases in the recovered Waxman-Markey first period permit price,

τ0(w) from two violations of the benchmark cap-and-trade model in Section 5.1.

Restrictions permit borrowing The benchmark cap-and-trade model assumes unre-

stricted banking and borrowing of permits. While permit banking is unlimited under

Waxman-Markey, there are restrictions on permit borrowing through the use of vintage-

specific permits. In particular, borrowing of permits 1-year ahead incurs a ρ = .08 interest

rate. For example, if in 2015 a firm chooses to use one 2016-vintaged permit for compliance,

it must retire (i.e. not use for compliance) 1.08 2016-vintaged permits in 2016.42

Unfortunately, knowing when the borrowing restriction would bind requires accurate

forecasts of permit demand during the policy. As with Section 5.2, I consider an alternative

bounding approach. If the borrowing restriction never binds, then the permit price rises at

the rate of interest as in the benchmark model. If, however, this restriction were to bind

during any period, the permit price would rise during that period at less than the interest

rate (Rubin, 1996; Schennach, 2000). Thus, assuming that the borrowing restriction binds

in every period would generate an upper bound on the implied first period permit price.

Appendix A.2 formally details the implication of borrowing restrictions in an extended

cap-and-trade model with vintage-specific permits. Define τvyt as the permit price of vintage

v in period y on trading date t. When the borrowing restriction binds in every period, the

relationship between the estimated reduced-form RD and structural parameters, shown in

Eq. 15, becomes:

β̂ = Eit

[
τ00t(w)

vijt(O)

∫ Y

y=0

Aijy(w)

(1 + ρ)y
dy

]
(19)

which, for a given value of β̂, yields a higher first period permit price than if borrowing

was unrestricted. Table A.6 replicates Table 5 in the main text showing the recovered

first period permit price assuming that the borrowing restriction binds in all periods. The

resulting lower and upper bound marginal abatement costs are $7.90 and $23.03 per ton

CO2e in 2015, or $3.24 and $5.20 higher than under unlimited permit borrowing.

42Technically, there are two further restrictions. First, vintaged permits 5 years beyond the current
compliance period cannot be borrowed and at most 15% of total compliance in any year can be met using
borrowed permits. For the sake of simplicity, I do not model these additional restrictions which would result
in higher implied initial period permit prices. However, it is unclear if these additional constraints will ever
bind during the lifetime of the policy.
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Output-based allocation The benchmark cap-and-trade model assumes that permits

are allocated in a lump-sum manner, under which firms face the same marginal incentives

regardless of permit allocation.43 In reality, the Waxman-Markey bill allocates free permits

based on an output-based allocation rule which can affect firm-level output in the short run

as well as exit decisions in the long-run. The rule states that free permits received by firm

i in sector j year y is determined by:

Aijy(w) = qijy
Xjy

Qjy
(20)

where qijy is output of firm i in year y and Xjy and Qjy are total emissions and output in

sector j such that Xjy/Qjy is sector-level emissions intensity.44

Under output-based allocation, the allocation of free permits is no longer exogenous to

the firm as it now faces an additional incentive to increase output. This implies that, all

things equal, firms that receive free permits would also have higher output such that one can

no longer attribute the RD parameter β entirely to the allocation of free permits. However,

while output for firms receiving free permits are now higher, Appendix A.2 formally shows

that it is ambiguous whether stock returns are also higher in the short or long run without

knowing production technology primitives and expectations over future output and input

prices. In the short run the resulting expression for β is augmented by the combined

difference in revenue and costs between firms receiving and not receiving free permits. In

the long run, there is the extra consideration of how output-based allocation lowers long

run average costs and reduces the possibility of exit. In both cases, the direction of the bias

is ambiguous without imposing additional assumptions.

5.4 Comparison with CGE estimates

To date, multi-sector computable general equilibrium (CGE) models are the prevailing tech-

nique for estimating the marginal abatement cost of proposed cap-and-trade policies (see

Appendix G for a summary) and thus serve as a potential benchmark for my estimates.

These models examine the cost of a specific policy through a structural representation of

the economy with various primitive parameters that capture, inter alia, expected future

prices, demand elasticities, and technological change. While one may attribute differences

between my estimates and that of CGE models to varying information sets, it is important

first to note other potential differences between these two methods.

First, the policy of interest may differ. CGE models estimate the marginal abatement

cost of a known policy. The estimates from this paper correspond to the marginal cost of

a policy which markets expected to be implemented. While the presence of a discontinuity

43This is also referred to as the Coase Independence Theorem.
44Technically, Waxman-Markey requires that the average output over the previous two periods be used

to determine current period free permits. I do not consider this for ease of exposition as implications are
unaltered.
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at 5% energy intensity gives confidence that markets expected this unique feature of the

Waxman-Markey bill, I cannot confirm that markets expected the realized policy to adhere

strictly to the Waxman-Markey bill over its 35 year lifetime. If market expected key features

to be altered at any point during implementation, my estimate would correspond to a policy

that is different from Waxman-Markey.

Second, some CGE models analyze the total costs of a stand-alone cap-and-trade policy.

My estimate recovers the permit price from Waxman-Markey’s cap-and-trade system in

conjunction with the suite of auxiliary climate-related policies expected under Waxman-

Markey. If such policies induce carbon abatement options that the cap-and-trade system

alone would not induce, then my estimate corresponds to the marginal abatement cost of

meeting the cap rather than the economy-wide marginal abatement cost generated by CGE

models examining just the cap-and-trade component of Waxman-Markey.

Third, even if the policy of interest were the same, the unit of analysis may differ. My

analysis is conducted at the firm level and thus cannot exclude non-U.S. effects on firms

with international operations nor does it capture dynamics of firm entry within a sector.45

Table A.5 summarizes the 2015 Waxman-Markey marginal abatement cost estimated by

prominent CGE models (see Appendix G for a summary of these models). For each estimate,

I indicate the name and sector of the funding institution, the name and scenario of the

CGE model employed, whether the model allows perfect foresight, and whether the analysis

includes non-cap-and-trade components of Waxman-Markey. The unconditional mean CGE

estimate of the 2015 marginal abatement cost is $21.42 per ton CO2e with a minimum

and maximum of $7.99 and $37.73 respectively. Differences across a few characteristics are

worth noting. First, for models that examine multiple scenarios such as the NEMS and

EPPA models, assuming full usage of offsets yields lower estimates. Second, there does not

seem to be a large difference in estimates between myopic CGE models and those that have

perfect foresight. Third, CGE models that include other components of Waxman-Markey

tend to produce higher estimates. Finally, estimates funded by private institutions are

higher on average than those funded by academic or governmental institutions.

Figure 6 compares the CGE estimated marginal abatement cost shown in Table A.5

with the lower and upper bound estimates generated from my approach. The range of my

estimates falls below the unconditional mean of CGE estimates and substantially overlaps

with the lower estimates generated by CGE models funded by academic and governmental

institutions.46 In order for my method to imply the higher marginal abatement costs esti-

mated by privately funded CGE models, I need to assume annual rates of emission decline

for all treated firms at or above the best performing manufacturing subsector over recent

45Ryan (2011) shows that the latter is particularly relevant for estimating the cost of the 1990 Clean Air
Act Amendments on the US cement industry.

46My method relies heavily on the efficient market hypothesis. One implication is that market participants
may be looking to CGE analyses to inform their trading behavior. Such informational dependence may
explain for the close alignment between my estimates and that of certain CGE models.
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years. The overall comparison is similar when using the higher range of estimates in Table

A.6 under the assumption of fully binding borrowing restrictions.

6 Discussion

This paper develops an empirical method for forecasting the market-expected marginal

abatement cost of a proposed climate policy, a central parameter for cost-benefit analysis.

This method is enabled by three features of the Waxman-Markey climate bill, the most

promising, though ultimately unsuccessful, U.S. climate policy considered to date. First,

the centerpiece of the Waxman-Markey bill was a cap-and-trade system under which the

equilibrium permit price, if observed, would be equal to the marginal abatement cost of

the policy. Second, Waxman-Markey specified an unprecedented rule for allocating certain

firms free permits which can be exploited using a regression discontinuity design. Finally,

the availability of a prediction market tied to the Waxman-Markey policy allows one to

recover the market-expected effect of the policy on stock returns, even if the policy was

never realized. A final bounding analysis produces a range for the market-expected marginal

abatement cost under Waxman-Markey in 2015 between $5 and $18 per ton of CO2e.

To date, nearly all estimates of the marginal abatement cost of climate policy are gen-

erated by computable general equilibrium models. My approach yields a range of estimates

under Waxman-Markey that is both more narrow in spread and below the mean of CGE

analyses of the Waxman-Markey bill. Interestingly, my estimates are within the range of the

lower estimates generated by CGE analyses funded by academic and governmental institu-

tions. This suggests that it is unlikely markets expected the higher range of cost estimates

generated by privately-funded CGE models.

While the method developed in this paper has the advantage of being empirically-driven,

it should not be viewed as a substitute for CGE models. My method recovers the marginal

abatement cost of the policy that markets expected would be implemented, which may not

correspond exactly to the Waxman-Markey bill. Furthermore, while this paper may help

narrow uncertainty regarding the level of the marginal abatement cost curve, it does not

inform upon its slope which is necessary for optimal climate policy design. CGE models,

on the other hand, structurally evaluate cap-and-trade policies for a known policy and can

evaluate counterfactual policies along different abatement levels. It is possible, however,

that these two methods serve complementary roles during future climate policy debates.

For example, one can now conduct model selection by ruling out CGE models or a subset of

the parameter space for a given model that produce estimates which greatly diverge from a

market-based estimate. This opportunity for model validation may lend greater credibility

to CGE-generated counterfactual analyses.
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Figures

Figure 1: Cap-and-trade prediction market prices
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Notes: Vertical lines mark days with events affecting cap-and-trade prospects. (1) 6/26/2009: House passes

Waxman-Markey. (2) 11/4/2009: Graham joins Senate effort. (3) 12/20/2009: Copenhagen negotiations

concluded. (4) 1/19/2010: Scott Brown wins Mass. Senate seat. (5) 1/27/2010: Graham-Kerry-Lieberman

seeks non cap-and-trade alternatives. (6) 3/31/2010: Obama supports offshore drilling. (7) 4/23/2010:

Graham drops support. (8) 6/15/2010: Obama oval office speech. (9) 7/22/2010: Senate drops cap-and-

trade legislation. See Appendix E for further details.
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Figure 2: RDD under realized and unrealized policy

Notes: Panel (A) shows the standard RDD setup under a realized policy. Panel (B) indicates the setup

when policy is never realized. Solid (dashed) lines indicate observed (unobserved) values. See discussion in

Section 3.1.
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Figure 3: Cumulative daily probability unadjusted cap-and-trade effect (2007-2011)
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Notes: Daily probability unadjusted cap-and-trade effect, γt, estimated using Eq. 8 over 2007-2011. Vertical

red lines denote the 2009-2010 period covering the 111th U.S. Congress.

Figure 4: Daily probability unadjusted cap-and-trade effect vs. prediction market price
change (2009-2010)
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Notes: Scatter shows daily probability unadjusted cap-and-trade effect, γt, estimated using Eq. 8 against

daily prediction market price changes within sample period. Linear fit from Eq. 9 shown in solid black line.
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Figure 5: Discontinuity in cap-and-trade effects at 5% energy intensity

Notes: Triangles indicate local averages of firm-level cap-and-trade effects, γij , estimated using Eq. 10

within a 0.01 wide bin of 6-digit NAICS energy intensity. Solid (dashed) line shows a linear (quadratic)

fit over the unbinned data. Distribution of sample firms by 6-digit NAICS energy intensity shown in gray

histogram.
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Tables

Table 1: Discontinuity in Waxman-Markey effects at 5% energy intensity threshold

(1) (2) (3) (4) (5)
Bandwidth

Controls Polynomial order 2% 2.5% 3% 3.5% 4%

Firm fixed effect Panel (A)

1 0.090** 0.070* 0.041 0.065* 0.075**
[0.039] [0.037] [0.040] [0.037] [0.032]

2 -0.031 0.087* 0.100** 0.070** 0.070**
[0.033] [0.048] [0.042] [0.035] [0.035]

CAPM Panel (B)

1 0.092* 0.079* 0.062 0.075* 0.075**
[0.047] [0.045] [0.042] [0.038] [0.031]

2 -0.049 0.069 0.094* 0.080* 0.086*
[0.035] [0.051] [0.050] [0.045] [0.044]

3-factor Fama-French Panel (C)

1 0.093** 0.079* 0.053 0.074* 0.074**
[0.041] [0.044] [0.043] [0.039] [0.033]

2 -0.043 0.073 0.101** 0.080* 0.089**
[0.038] [0.044] [0.045] [0.041] [0.042]

Firm and date fixed effects Panel (D)

1 0.090** 0.070* 0.040 0.064* 0.074**
[0.040] [0.038] [0.040] [0.037] [0.033]

2 -0.031 0.086* 0.101** 0.071** 0.070**
[0.034] [0.048] [0.042] [0.035] [0.035]

Number of firms 45 106 202 264 531

Each coefficient shows a separate regression discontinuity estimate of β from Eq. 7. Controls for
normal market performance vary by panel. Functional forms for energy intensity vary by rows
within a panel. Sample bandwidths around the 5% threshold vary across columns. All models
include 111 2-day intervals from May 1, 2009 to July 31, 2010. Robust standard errors clustered
at 6-digit NAICS level. *** p<0.01, ** p<0.05, * p<0.1
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Table 2: Sector-level covariate balance

(1) (2) (3) (4) (5)
Bandwidth

Outcome Polynomial order 2% 2.5% 3% 3.5% 4%

log avg number Panel (A)

of workers 1 1.051 0.669 0.938 0.377 0.448
[1.025] [1.143] [0.994] [0.921] [0.843]

2 2.576** 1.688* 1.395 1.292 1.240
[0.911] [0.931] [0.876] [0.812] [0.830]

Number of sectors 10 15 25 41 66

log avg number Panel (B)

of establishments 1 0.643 0.487 0.755 1.050 1.105*
[0.881] [0.899] [0.768] [0.659] [0.624]

2 1.476 1.160 0.512 0.485 0.888
[1.058] [0.955] [0.907] [0.885] [0.826]

Number of sectors 21 29 56 87 134

log Waxman-Markey Panel (C)

lobbying (nominal $) 1 3.317 2.481 1.998 1.382 1.449
[2.406] [1.918] [1.469] [1.328] [1.117]

2 -0.473 2.264 3.506 3.215 1.862
[4.506] [3.934] [2.806] [2.269] [1.925]

Number of sectors 11 16 31 46 65

log pre-2009 climate policy Panel (D)

lobbying (nominal $) 1 4.020 3.604 2.267 2.442 2.122
[3.116] [2.524] [1.928] [1.721] [1.490]

2 4.643 2.072 5.110 3.368 2.871
[6.713] [4.815] [3.504] [3.086] [2.549]

Number of sectors 11 15 29 37 48

Each coefficient shows a separate regression discontinuity estimate of β from estimating Eq. 11
at the sector level. Sector-level outcomes vary by panel. Functional forms for energy intensity
vary by rows within a panel. Sample bandwidths around the 5% threshold vary across columns.
All models include firm and date fixed effects. Robust standard errors clustered at 6-digit
NAICS level. *** p<0.01, ** p<0.05, * p<0.1
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Table 3: Firm-level covariate balance

(1) (2) (3) (4) (5)
Bandwidth

Outcome Polynomial order 2% 2.5% 3% 3.5% 4%

2007 avg stock returns Panel (A)

1 0.000 0.000 -0.001 -0.001 0.000
[0.001] [0.001] [0.001] [0.001] [0.001]

2 -0.001 0.000 0.001 0.000 -0.001
[0.001] [0.001] [0.001] [0.000] [0.001]

Number of firms 44 99 192 252 514

2008 avg stock returns Panel (B)

1 -0.001 -0.000 -0.001 0.000 -0.001
[0.001] [0.001] [0.001] [0.001] [0.001]

2 -0.002 -0.001 -0.000 -0.001 -0.000
[0.001] [0.001] [0.001] [0.001] [0.001]

Number of firms 45 105 201 263 530

2011 avg stock returns Panel (C)

1 -0.000 -0.000 -0.001 -0.001 -0.001
[0.001] [0.001] [0.001] [0.001] [0.001]

2 -0.002*** -0.001 -0.000 -0.000 0.001
[0.001] [0.001] [0.001] [0.001] [0.001]

Number of firms 45 105 198 259 517

Each coefficient shows a separate regression discontinuity estimate of β from estimating
Eq. 11 at the firm level. Firm-level outcomes vary by panel. Functional forms for energy
intensity vary by rows within a panel. Sample bandwidths around the 5% threshold vary
across columns. All models include firm and date fixed effects. Robust standard errors
clustered at 6-digit NAICS level. *** p<0.01, ** p<0.05, * p<0.1
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Table 4: Placebo tests at different energy intensity thresholds

(1) (2) (3) (4) (5)
Energy intensity threshold

3% 4% 5% 6% 7%

Polynomial order

1 -0.027 -0.021 0.074** -0.002 0.056
[0.046] [0.038] [0.033] [0.054] [0.046]

2 -0.023 0.029 0.070** -0.011 0.002
[0.071] [0.065] [0.035] [0.095] [0.067]

Number of firms 1445 1485 531 207 91

Each coefficient shows a separate regression discontinuity estimate of
β from Eq. 7. Placement of placebo energy intensity threshold vary
across columns. All models include firm and trading date fixed effects
within a 4% energy intensity bandwidth. All models include 111 2-
day intervals from May 1, 2009 to July 31, 2010. Robust standard
errors clustered at 6-digit NAICS level. *** p<0.01, ** p<0.05, *
p<0.1

Table 5: 2015 marginal abatement cost (in 2009$) implied by RD estimates

Assumed annual Corresponding
emissions rate sector (NAICS) 5th percentile Mean 95th percentile

0 – 0.99 4.39 7.58
-0.70% Petro. refining (324110) 1.05 4.66 8.04
-1.45% All manufacturing (31-33) 1.11 4.97 8.57
-5.20% Forest products (321, 322) 1.51 6.74 11.63
-7.60% Alumina & Aluminum (3313) 1.82 8.12 14
-11.60% Cement (327310) 2.44 10.87 18.74
-12.80% Glass (3272) 2.65 11.81 20.36
-13.90% Transport. Equip. (336) 2.85 12.71 21.92
-19.30% Textiles (313-316) 4 17.83 30.75
-25% – 5.48 24.46 42.17
-30% – 7.03 31.35 54.06
-35% – 8.83 39.38 67.91

First column shows assumed annual emissions rate. Second column shows corresponding man-
ufacturing subsector with 2006-2010 emissions changing at each rate. RD estimates (see Eq.
7) based on Table 1, Panel (C), Row (1), and Column (5)). 90% confidence interval gener-
ated using 250 Monte Carlo draws from estimated parameter and variance-covariance matrix.
Marginal abatement cost recovered using Eq. 18. 5% interest rate assumed.
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Appendix A A model of cap-and-trade policy

This theoretical appendix serves two purposes. First, I introduce a standard model of cap-

and-trade to establish the canonical “equivalence” result following Rubin (1996)’s dynamic

extension of Montgomery (1972). This states that in a perfectly competitive setting, the

least-cost marginal abatement cost of an economy-wide constraint on greenhouse gas emis-

sions is equal to the equilibrium permit price under a cap-and-trade system with the same

constraint. This provides the theoretical basis for how the initial period permit price can

be recovered using my regression discontinuity design. I then consider the potential biases

in the recovered permit price due to two violations of the standard model present in the

Waxman-Markey bill: restrictions on permit borrowing and output-based permit allocation.

Appendix A.1 Marginal abatement cost and permit price equiva-

lence

I first characterize the properties of how a hypothetical regulator could achieve a total level

of emissions abatement over time across heterogeneous firms at least-cost. Because it would

be impractical for any regulator to achieve this allocation, I then demonstrate how a cap-

and-trade system with auctioned or freely allocated permits and unlimited banking and

borrowing of permits can achieve the same allocation. In particular, the equilibrium permit

price from the cap-and-trade system equals the marginal abatement cost of the least-cost

solution to the regulator’s problem.

Regulator’s problem: joint-cost minimization

There are i = 1...N firms in sector j that, in the aggregate, must deplete a fixed known

stock of R emissions over the period y ∈ [0, Y ].47 R is the aggregate emissions constraint,

or cap. Consider an instantaneous profit function, πi(xijy), that is concave and strictly

increasing in emissions with standard Inada conditions. The regulator’s problem with choice

variable xijy and state variable by is to maximize discounted total profit:48

maxxijy

∫ Y

0

e−δy
N∑
i=1

πi(xijy)dy

s.t. ḃy = −
N∑
i=1

xiy

b0 = R, bY ≥ 0, xijy ≥ 0

47I assume that cap-and-trade regulation ends in 2050 as written in Waxman-Markey to avoid explicit
assumptions about both business-as-usual emissions and cap-and-trade regulation beyond 2050.

48This setup differs from the Rubin (1996) model along two dimensions. First, the objective function
is written in terms of firm profits and not the difference between unconstrained and constrained profits.
Second, I write an equation of motion over depletion rather than accumulation. These choices were made
for expository simplicity and are mathematically immaterial.
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where δ is the exogenously determined rate of interest. Solving the current value Hamilto-

nian yields the following first order conditions:

π′i(xijy) = Λy ∀i (A.1)

Λ̇y − δΛy = 0 (A.2)

ΛY bY e
−δY = 0 (A.3)

where Λy is the positive current value shadow price at year y and can be naturally interpreted

as the marginal abatement cost as it corresponds to the marginal profit associated with an

extra unit of allowed emissions under the aggregate cap. Equations A.2-A.3 summarize two

well-established features of this problem. First, a simple rearrangement of Equation A.2

yields Hotelling’s rule (Hotelling, 1931), Λy = Λ0e
δy: the marginal abatement cost rises

at the rate of interest. Second, defining the optimal allocation of emissions for the joint

problem X∗∗t = (x∗∗1jy...x
∗∗
Njy), Hotelling’s rule together with the transversality condition in

Equation A.3 yield
∫ Y

0

∑N
i=1 x

∗∗
ijydy = R. That is, total emissions must equal the cap R by

the end of the policy period.

Cap-and-trade

In practice, implementation of the joint-cost solution requires that the regulator know

a lot of information. In particular, it needs to know the marginal abatement cost curves

of every firm. Alternatively, the regulator can introduce a cap-and-trade system. Here, it’s

role is to create R cumulative permits such that in each period Aijy is given freely to firm

i in sector j ∈ F and Aay is auctioned off.49 Denote dijy as the number of permits sold

(>0) or purchased (<0). Under the cap-and-trade policy, the firm’s dynamic problem is to

choose xijy and dijy with permit banking:

maxxijy,dijy

∫ Y

0

e−δy [πi(xijy) + τydijy] dy (A.4)

s.t. ḃijy = Aijy1{j ∈ F} − xijy − dijy
bij0 = 0, bijY ≥ 0, xijy ≥ 0

where τy is the permit price and bijy is the state variable denoting the number of banked

(> 0) or borrowed (< 0) permits carried into the subsequent period. First order conditions

for the current value Hamiltonian are:

π′i(xijy) = λijy (A.5)

τy = λijy (A.6)

λ̇ijy − δλijy = 0 (A.7)

λijY bY e
−δY = 0 (A.8)

49Observe that Montgomery (1972) and Rubin (1996) assume that all permits are distributed freely, that
is Aay = 0 ∀y. This is inconsistent with Waxman-Markey.
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where λijy is the positive current value shadow price. Defining the market equilibrium as

X∗y = (x∗1jy...x
∗
Njy), D∗y = (d∗1jt...d

∗
Njt), and τ∗y and further imposing market clearing and

terminal conditions: ∑N
i=1 d

∗
ijy +Aay = 0 ∀y (A.9)

τ∗Y

[∫ Y
0

∑N
i=1(Aijy − x∗ijy − d∗ijy)dy

]
= 0 (A.10)

Rubin (1996) shows that the market equilibrium satisfying Equations A.5 - A.10 achieves

X∗∗y = X∗y and Λy = τ∗y for each period y. That is, the decentralized emissions trading

solution yields the same least-cost emissions allocation as the joint cost problem and the

marginal abatement cost obtained from the joint cost problem equals the equilibrium permit

price under cap-and-trade.50

Next, consider specifically the Waxman-Markey cap-and-trade policy, p = w. Optimal

firm value can be written as:

vij(w) =

∫ Y

0

e−δy
[
π(x∗ijy(w))dy − τy[x∗ijy(w) + ḃ∗ijy(w)−Aijy(w)1{j ∈ F (w)}]

]
dy

= τ0(w)Aij(w)1{j ∈ F (w)}+

∫ Y

0

e−δyπ(x∗ijy(w))dy − τ0(w)

∫ Y

0

x∗ijy(w)dy

(A.11)

where Aij(w) =
∫ Y

0
Aijy(w)dy is the cumulative number of free permits granted to firm

i over the lifetime of the policy. The second line follows by applying Hotelling’s rule,

τy(w) = τ0(w)eδy and noting that the boundary conditions on banked emissions imply∫ Y
0
ḃ∗ijy(w)dy = 0. Writing now in terms of firm value relative to expected firm value under

all non-Waxman-Markey policies, we have:

γij =
τ0(w)Aij(w)1{j ∈ F (w)}

vij(O)
+

∫ Y
0
e−δyπ(x∗ijy(w))dy − τ0(w)

∫ Y
0
x∗ijy(w)dy

vij(O)
− 1

(A.12)

which is the trading date-invariant, structural version of Eq. 4 in the main text. In partic-

ular, the reduced-form RD parameter is:

β =
τ0(w)Aij(w)

vij(O)
(A.13)

50Observe that the Coase independence property, whereby the equilibrium permit prices are unaffected
by the initial distribution of free permits, holds throughout this framework (Coase, 1960; Montgomery, 1972;
Hahn and Stavins, 2010).
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Appendix A.2 Deviations from the benchmark model

Restrictions to permit borrowing

The benchmark model allows unlimited permit banking and borrowing over time. While

permit banking is unlimited in Waxman-Markey, there are restrictions on permit borrowing

through the use of vintage-specific permits. In particular, borrowing of permits 1-year ahead

incurs a ρ = .08 interest rate. While it is unclear whether this borrowing restriction would

ever bind during the lifetime of the policy, one could assume that the borrowing restriction

binds in every period to generate an upper bound on the recovered initial period permit

price.

Formally, define τvy as the permit price of vintage v permit in period y. Then τv′y(1+ρ) =

τvy whenever v+1 = v′. For example, the relationship between permit prices across vintages

v = 0 and v = 1 during year y = 1 is τ11(1 + ρ) = τ01 = τ00e
δ. Solving the permit price

across the lifetime of the policy yields the following expression for the price of a v vintaged

permit when it is issued, or y = v:

τyy =
τ00e

δy

(1 + ρ)y
(A.14)

which, consistent with the prior literature on borrowing restrictions, rises over time below

the interest rate (Rubin, 1996; Schennach, 2000). The resulting expression for the reduced-

form parameter β becomes:

β =
τ00(w)

vij(O)

∫ Y

y=0

Aijy(w)

(1 + ρ)y
dy (A.15)

which for a given value of β implies a higher initial period permit price τ00(w).

Output-based permit allocation

The benchmark model assumes that permits are allocated in a lump-sum manner. In

reality, the Waxman-Markey bill allocates free permits based on an output-based allocation

rule. This section demonstrates that an output-based allocation impacts firm-level output

in the short run as well as exit decisions in the long-run. The rule states that the free

permits received by firm i in sector j year y is:

Aijy(w) = qijy
Xjy

Qjy
(A.16)

where qijy is output of firm i in year y and Xjy and Qjy are total emissions and output in

sector j such that Xjy/Qjy is sector-level emissions intensity.51 For simplicity, I maintain

51Technically, Waxman-Markey requires average output over the previous two periods be used to deter-
mine current period free permits. I do not consider this for ease of exposition as implications are unaltered.
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the benchmark assumption that sector j is perfectly competitive such that Xjy/Qjy is

exogenous to the firm. Under output-based allocation, the allocation of free permits is no

longer exogenous to the firm as the firm faces an additional incentive to increase output.

This implies that all things equal, firms that receive free permits also have higher output

levels than firms that do not receive free permits such that one can no longer attribute the

RD parameter β entirely to the allocation of free permits.

To see how output based allocation affects firm decisions in the short and long run,

consider the following instantaneous profit function:

πijy = pyq(xijy)− zyxijy (A.17)

where q() is an increasing, concave production function. zy is unit cost for a carbon intensive

input that results in one ton of emission for each unit used for production. In the short

run, an operating firm cannot exit the industry. Inserting Eqs. A.16 and A.17 into the

optimization problem in Eq. A.4 yields the following modified version of Eq. A.5:

π′i(xijy)

1− q′i(xijy)
Xjy

Qjy
1{j ∈ F (w)}

= λOijy (A.18)

There are two implications of Eq. A.18, one for the cost of the policy overall and another

for the distribution of optimal emissions across firms. First, because of the denominator in

Eq. A.18, the marginal abatement cost under output-based allocation is higher than under

lump-sum allocation at every emission level for a firm receiving free permits. And since

marginal abatement costs must be equalized across firms in equilibrium, the permit price

must also be higher, resulting in a higher overall cost of compliance. Second, Eq. A.18

together with the concavity of the profit function imply that all else equal, emissions, and

hence output, of a firm receiving free permits is higher than that of a firm not receiving free

permits during every period of the policy. This implies that the structural expression for

the RD parameter β from Eq. A.13 becomes:

β =
τ0(w)Aij(w)

vijt(O)

+

∫ Y
0
e−δypy[q(x∗i,j∈F (w),y)− q(x∗i,j∈A(w),y)]dy

vijt(O)︸ ︷︷ ︸
>0

−
∫ Y

0
e−δy[zy + τy(w)][x∗i,j∈F (w),y − x

∗
i,j∈A(w),y]dy

vijt(O)︸ ︷︷ ︸
<0

(A.19)

where the second term and third terms, which previously was zero under lump-sum free

permit allocation, now capture the difference in firm revenue and costs respectively for
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firms receiving and not receiving free permits. Thus, for a given value of β, the sign and

magnitude of the bias in τ0(w) is ambiguous without further assumptions on the concavity

of the production function and expectations over future output and input prices.

The output based allocation under Waxman-Markey is conditional on ongoing operation.

In the long-run, this acts as an operating subsidy which distorts firm exit decisions by

lowering long-run average costs, allowing a firm to operate longer than it would in the

absence of free permits. To see this, suppose without the free permits, future input and

output prices are such that a firm would exit the industry in period y = ȳ < Y or x∗ijy = 0

for y > ȳ. If instead, the output-based allocation allows the firm to operate longer until

y = ỹ > ȳ, Eq. A.13 becomes:

β =
τ0(w)Aij(w)

vijt(O)

+

∫ ȳ
0
e−δypy[q(x∗i,j∈F (w),y)− q(x∗i,j∈A(w),y)]dy

vijt(O)︸ ︷︷ ︸
>0

−
∫ ȳ

0
e−δy[zy + τy(w)][x∗i,j∈F (w),y − x

∗
i,j∈A(w),y]dy

vijt(O)︸ ︷︷ ︸
<0

+

∫ ỹ
ȳ
e−δypyq(x

∗
ij∈F (w)y)− [zy + τy(w)]x∗ij∈F (w)ydy

vijt(O)︸ ︷︷ ︸
>0

(A.20)

The term in the fourth line of Eq. A.20 is unambiguously positive. However, as with Eq.

A.19, the sum of the terms in the second and third lines of Eq. A.20 have an ambiguous

sign such that there is no clear direction in the resulting bias in τ0(w) for a given β.

Appendix B Potential consequences of a thinly traded

prediction market

To understand how thin trading may effect estimates of β, I consider three possible sources

of deviation between the observed change in prediction market price, ∆θt and the true

unobserved change in cap-and-trade probabilities, ∆qt:

∆θt = α1 + α2∆qt + ωt (B.1)

where α1 is additive bias, α2 is multiplicative bias, and ωt ∼ (0, σ2
ω) is an error term which

is uncorrelated with ∆qt as in the classical measurement error setup. I now consider the

consequences of each term in isolation.
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Additive bias Suppose only additive bias existed such that α2 = 1 and ωt = 0. Eq. 5

becomes:

rijt = β1{j = F}∆θt + ZitΨi + ηij∆θt − α1(β1{j = F}+ ηij) + νijt

where the error term is now augmented by α1(β1{j = F} + ηij). Observe that this extra

term is absorbed by the inclusion of a firm fixed effect in Zit, which is present in all my

regression models.

Multiplicative bias Suppose only multiplicative bias existed such that α1 = 0 and ωt =

0. Then Eq. 5 becomes:

rijt =
β

α2
1{j = F}∆θt + ZitΨi +

ηij∆θt
α2

+ νijt

where now the estimated coefficient of interest is no longer an unbiased estimate of β.

Measurement error Suppose now only classical measurement existed such that α1 = 0

and α2 = 0. Eq. B.1 becomes ∆θt = ∆qt + ωt. I consider the consequences of classical

measurement error in prediction market prices when the mismeasured variable is interacted

with a Bernoulli variable which is the treatment under my regression discontinuity design.52

As a benchmark, consider the following true uninteracted model:

rjt = βouninteract∆qt + εjt (B.2)

where εjt is a mean zero error term. I make an additional standard assumption that

cov(∆θt, εjt) = 0. Using the mismeasured prediction market price ∆θt instead of the

true probability ∆qt, produces in the limit an estimate plim β̂uninteract = βouninteract ∗
biasuninteract where biasuninteract is the attenuation bias multiplier:

biasuninteract = 1− 1/(1 + S) (B.3)

where σ2
∆q is the variance of ∆qt and S is the signal-to-noise ratio

σ2
∆q

σ2
ω

.

Consider now the following interacted model which is a simplified version of my regression

discontinuity specification in Eq. 7:

rijt = βointeractDj∆qt + εjt (B.4)

where Dj ∼ Bernoulli(p) is the RD treatment variable. Because Dj is indexed by j, I

make the additional assumption that the Dj is independent of (∆qt, ωt). If then one uses

mismeasured prediction market price ∆θt instead of the true probability ∆qt, the OLS

52I am grateful to Doug Steigerwald for this particular formulation.
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estimate is plim β̂interact = βointeract ∗ biasinteract where biasinteract is the attenuation bias

multiplier:

biasinteract = 1− 1/(1 + S̃) (B.5)

where S̃ =
var(Dj∆qt)
var(Djωt)

. Considering each component of S̃ separately:

var(Dj∆qt) = E(D2
j∆q

2
t )− (E(Dj∆qt))

2

= E(D2
j )E(∆q2

t )− (E(Dj)E(∆qt))
2

= pE(∆q2
t )− p2E(∆qt)

2 (B.6)

where the second line follows by independence between Dj and ∆qt and the third line follows

by applying the mean and variance of a Bernoulli random variable. Similarly:

var(Djωt) = E(D2
jω

2
t )− (E(Djωt))

2

= E(D2
j )E(ω2

t )− (E(Dj)E(ωt))
2

= pσ2
ω (B.7)

where the second line follows by independence between Dj and ωt and the third line follows

by the earlier assumption that ωt ∼ (0, σ2
ω). Plugging Eqs. B.6 and B.7 into B.5 yields:

biasinteract = 1− 1/
(

1 + S + (1−p)(E[∆qt])
2

σ2
ω

)
(B.8)

Because (1−p)(E[∆qt])
2

σ2
ω

> 0, observe that biasuninteract > biasinteract for any signal-to-noise

ratio, S, such that my interacted regression discontinuity estimate will always be closer

to the true estimate than if one were to directly estimate the effects of prediction market

prices. That is, attenuation bias is always smaller in the interacted model. The degree in

which attenuation bias is lessened depends on both the probability of treatment p and on

the expected true change in policy probabilities, E[∆qt].

Prior field and experimental evidence on the influence of thin trading Prior

experimental and field research show that prediction market prices are relatively unaffected

by thin trading or manipulation by individual traders. Intuitively, efforts to manipulate

a prediction market by some should increase arbitrage opportunities for others such that

distortions, if they do exist, is unlikely to last for long periods. Camerer (1998) places tempo-

rary bets designed to manipulate racetrack markets and concludes that successful long-term

manipulation was unlikely even when considering efforts to distort relatively thinly traded

markets. A similar conclusion is reached for both historical presidential betting markets

(Rhode and Strumpf, 2004) and recent presidential prediction markets (Rhode and Strumpf,

2008). In particular, Rhode and Strumpf (2008) find that experimental efforts to manip-
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ulate the 2000 Iowa Electronic Market during thinly traded moments and observed efforts

to manipulate the 2004 Tradesport market had effects that dissipated hours afterwards.

Similarly, recent experimental work shows that price manipulators in prediction markets

were unable to distort price accuracy (Robin, Oprea and Porter, 2006) nor influence the

beliefs of third party observers (Hanson et al., 2011). A notable exception is Rothschild and

Sethi (2013) who find evidence of possible manipulation in the 2012 Intrade presidential

prediction market.

Appendix C Adjusting for contract expiration

Intrade prediction markets are traded up to a certain date upon which contract holders are

paid $1 if the event is realized for each contract held. For the cap-and-trade prediction

market, that expiration date was December 31, 2010, coinciding with the end of the 111th

Congress. Because it is rare that a piece of legislation, having failed passage in the current

Congress, is reintroduced with identical features in a subsequent Congress, this expiration

date should coincide with the expected final possible date of Waxman-Markey approval.

However, it is difficult to ascertain whether markets expected Waxman-Markey prospects

to exist following the end of the 111th Congress. If so, this introduces a bias between the

prediction market price and average market beliefs which would increase as the expiration

date nears. To remove this bias, one would like to weight prediction price levels using a

kernel that varies with the number of remaining trading days.

Formally, the true variable of interest is qt(T ) where T = 12/31/2011, the date in which

the cap-and-trade system begins under the policy. I do not observe qt(T ). Instead, I observe

a prediction market price for a contract expiring on date T 1 = 12/31/2010 < T . I now

define this as θt(d, T
1), where d = T 1 − t, the number of remaining days until expiration.

Specifically, it has the following piece-wise form:

θt(d, T
1) =

k(d)qt(T ), if d < D̂

qt(T ), otherwise
(C.1)

where k(d) is a weighting kernel which is a function of d and exists only when the remaining

number of days is less than some threshold D̂. In other words, k(d) captures any concerns

about an impending contract expiration. Importantly for this exercise, I assume k(d) to

be discontinuous such that prediction market participants only become concerned about

contract expiration after a certain point when there are fewer than D̂ days remaining.

The problem lies in estimating k(d). Fortunately, the availability of additional Intrade

data allows for an empirical estimate of k(d). The prediction market contract shown in

Figure 1 was not the first cap-and-trade contract offered by Intrade. Around the same time

that the 2010-expiring contract begin trading, InTrade offered an identical contract with

51



an earlier expiration date set for T 2 = 12/31/2009 < T 1 < T . This contract, with prices

denoted as θt(d, T
2), lasted only eight months and is shown as a dashed line in Figure A.4.

Estimating k(d) requires the following assumption: for all trading days when both

contracts exist, d ≥ D̂ for θt(d, T
1) and d < D̂ for θt(d, T

2). That is during 5/1/2009-

12/31/2009, prices from the 2010-expiring contract were unaffected by concerns over expi-

ration while prices from the 2009-expiring contract incorporated such concerns. Thus:

k(d) =
θt(d, T

2)

θt(d, T 1)
∀t ∈ [5/1/2009, 12/31/2009] (C.2)

The solid line in Figure A.5 plots k(d) and appears trend stationary. To remove noise in

k(d), the following linear regression is performed:

k(d) = α0 + α1d+ εd (C.3)

where εd is a mean zero disturbance. The predicted kernel, k̂(d), is shown as the dashed

line in Figure A.5. The threshold D̂ is defined as the point at which k̂(d) = 1. To recover

qt, I simply rewrite Equation C.1 to obtain:

qt(T ) = adjusted θt(d, T
1) =


θt(d,T

1)

k̂(d)
, if d < D̂

θt(d, T
1), otherwise

(C.4)

Figure A.6 plots the original θt(d, T
1) against the adjusted θt(d, T

1) using the predicted

kernel from Equation C.3. Observe that the two time series begin diverging at the beginning

of 2010 when d < D̂. This divergence, which increases until the end of the 2010, inflates

the original price series to remove any concerns about contract expiration. Thus, while the

prospects for cap-and-trade indeed collapsed when the Senate formally withdrew cap-and-

trade legislation on July 23, 2010, market beliefs over cap-and-trade prospects were actually

higher than what the original prediction market indicated.

Table A.3 replicates Table 1 using the adjusted Intrade prices. Resulting estimates are

slightly smaller but are not statistically different than those presented in Table 1.

Appendix D Data summary

Prediction market prices Intrade publicly provides daily closing prices and trading

volume for the contract “A cap and trade system for emissions trading to be established

before midnight ET on 31 Dec 2010”. Intrade publicly provides a similar contract ending in

31 Dec 2009 used for constructing the expiration-adjusted prediction market prices discussed

in Appendix C. Transaction-level data for the 2010-expiring contract was acquired privately

from Intrade and was used to identify large individual traders and to construct a daily
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buyer-based normalized Herfindahl-Hirshman Index.

Stock returns and market indices Daily stock prices for U.S. publicly listed from 2007-

2011 obtained from the Center for Research in Security Prices (CRSP). 2-day returns were

constructed for the 2009-2010 period for my main RD specification. 2-day Fama-French

factors were constructed out of variables downloaded from Kenneth French’s website.53

Sector-level energy intensity, trade intensity, and covariates Average 2004-2006

energy and trade intensity at the 6-digit NAICS level for manufacturing sectors (NAICS

31-33) was constructed based on data from the U.S. Census Bureau’s Annual Survey of

Manufacturers (ASM)54 and the U.S. International Trade Commission (USITC).55

Manufacturing greenhouse gas emissions Total U.S. manufacturing greenhouse gas

emissions and for specific subsectors 56 in 2006 and 2010 was obtained from the U.S. DOE

Manufacturing Energy and Carbon Footprints analysis of the Manufacturing Energy and

Consumption Surveys.57 Number of firms at the 6-digit NAICS level provided by the U.S.

Census Bureau’s Statistics of U.S. Businesses.

Lobbying expenditures Since the passage of the Lobbying and Disclosure Act of 1995,

all individuals engaged in lobbying members of the federal government are required to

register with the Clerk of the House of Representatives and the Senate Office of Public

Records (SOPR).58 Each lobbying record indicates lobbyist name (or names in the case

of a team of lobbyists), the name of the firm hiring lobbying services, the amount spent,

and in some cases the specific issue or legislation that is the target of lobbying efforts (see

Blanes i Vidal, Draca and Fons-Rosen (2012) for further background on reports). Lobbying

records were were obtained from the Center for Responsible Politics (CPR) who maintains

and organizes this data.

To extract all lobbying records related to the Waxman-Markey bill, I search the “Spe-

cific Lobbying Issues” variable for records that contain any of the following strings: i)

53Available: www.mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
54Available: census.gov/manufacturing/asm/
55Available: dataweb.usitc.gov/
56Specifically, Petroleum Refining (324110), Food and Beverage (311;312), Iron and Steel (3311; 3312),

Computers, Electronics and Electrical Equipment (334; 335), Forest Products (321;322), Fabricated Metals
(332), Plastics (326), Alumina and Aluminum (3313), Machinery (333), Cement (327310), Glass (3272),
Transportation Equipment (336), Foundries (3315), Textiles (313-316)

57Available: energy.gov/eere/amo/downloads/us-manufacturing-energy-use-and-greenhouse-gas-

emissions-analysis
58The Lobbying and Disclosure Act defines a lobbyist “any individual who is employed or retained by a

client for financial or other compensation for services that include more than one lobbying contact, other
than an individual whose lobbying activities constitute less than 20 percent of the time engaged in the
services provided by such individual to that client over a six month period.” From 1998-2006, lobbyists were
required to file reports on a semi-annual basis. Since the Honest Leadership and Open Government Act of
2007, reports are required every quarter.
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H.R.2454 or H.RES.2454 (Waxman-Markey), ii) H.R.587 or H.RES.587 (House bill ac-

companying Waxman-Markey), iii) H.R.2998 or H.RES. 2998 (House bill accompanying

Waxman-Markey), and iv) S.1733 or S.RES.1733 (Senate bill related to Waxman-Markey

sponsored by John Kerry).

To extract all lobbying records related to climate policy prior to the Waxman-Markey bill,

I search the “Specific Lobbying Issues” variable for records that contain any of the following

strings: i) S.R.139 or S.RES.139 (2003 McCain-Lieberman Bill), ii) S.R.1151 or S.RES.1151

(2005 McCain-Lieberman Bill), iii) S.R.280 or S.RES.280 (2007 McCain-Liberman Bill), iv)

S.2191 or S.RES.2191 (2007 Lieberman-Warner Bill), and v) S.R.3036 or S.RES.3036 (2008

Boxer-Lieberman-Warner Bill).

CPR codes firms according to their own sectoral definitions which is generally coarser

than 6-digit NAIC definitions. To aggregate lobbying expenditures to the 6-digit NAICS

level, I use the CPR-provided crosswalk from their own sectoral definition to 6-digit NAICS.

In cases where 1 CRP sector is assigned to multiples 6-digit NAICS sectors, I divide the

lobbying expenditure evenly across the linked 6-digit NAICS sectors.

Appendix E Specific cap-and-trade related events

The period between the passage of Waxman-Markey on June 26, 2009 and the withdrawal

of cap-and-trade from the Senate on July 23, 2010 marked the peak and decline of U.S.

cap-and-trade prospects. This section provides a short summary of several critical events

during this period along with a news link. As shown by the vertical lines in Figure 1, these

events were well captured by prediction market price movements.

(1) June 26, 2009: House passes Waxman-Markey

Initial hearings on draft legislation were held on the week of April 20, 2009 with the full

bill introduced into the House shortly thereafter on May 15, 2009. The bill was approved

on June 26, 2009 by a vote of 219-212 with 8 supporting Republicans and 44 Democrats

opposed.59

(2) November 4, 2009: Lindsay Graham joins Senate climate effort

After passage of Waxman-Markey, efforts to pass legislation in the Senate were lead by Sen-

ators Lieberman, an independent, and Kerry, a Democrat. The arrival of Lindsay Graham,

a Republican Senator from South Carolina buoyed cap-and-trade prospects.60

(3) December 20, 2009: UNFCCC Copenhagen negotiations concluded

With the Kyoto Protocol expiring in 2012, countries were expected to negotiate a new

59Article:http://www.nytimes.com/2009/06/27/us/politics/27climate.html
60Article:abcnews.go.com/blogs/politics/2009/11/graham-joins-dems-wh-to-write-new-climate-

change-bill/
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international climate treaty at Copenhagen. While a general agreement was reached in the

final hour, the agreement was non-binding and was generally regarded as not substantial

enough to succeed the Kyoto Protocol.61

(4) January, 19, 2010: Scott Brown wins Mass Senate seat

The Democrat’s tenuous supermajority in the Senate was lost when Scott Brown won Ed-

ward Kennedy’s Massachusetts Senate seat in a special election.62

(5) January 27, 2010: Graham, Kerry, Lieberman seek cap-and-trade alterna-

tives

With cap-and-trade looking unlikely, Senate sponsors look for alternative policy ideas.63

(6) March 31, 2010: Obama supports offshore drilling

After months of political pressure, President Obama agrees to expand domestic oil produc-

tion.64

(7) April 23, 2010: Lindsay Graham drops support of Senate bill

After political pressure from his constituents and party, Senator Graham criticizes Senate

Democratic Leadership over disagreements regarding immigration reform on April 23, 2010.

Graham formally withdrew from Senate climate efforts on April 24, 2010.65

(8) June 15, 2010: Obama oval office speech

President Obama focuses on energy issues in his first oval office speech.66

(9) July 22, 2010: Senate drops cap-and-trade legislation

Without a filibuster-proof supermajority, Senate democrats drop consideration of cap-and-

trade bill.67

Appendix F Comparing Waxman-Markey with later Sen-

ate climate bills

In the bicameral U.S. legislative system, a piece of legislation must pass both Houses of

Congress before being sent to the President for ratification. Thus, passage of Waxman-

Markey by the House of Representatives needed to be followed by a similar cap-and-trade

61Article:nytimes.com/cwire/2009/12/21/21climatewire-obama-negotiates-copenhagen-accord-
with-senat-6121.html

62Article:www.denverpost.com/latin/ci_14337907
63Article:nytimes.com/cwire/2010/01/27/27climatewire-got-ideas-about-a-climate-bill-kerry-

graham-64375.html
64Article:nytimes.com/gwire/2010/03/31/31greenwire-obama-proposes-opening-vast-offshore-

areas-to-74696.html
65Article: nytimes.com/2010/04/25/us/politics/25graham.html
66Article: nytimes.com/2010/06/16/us/politics/16obama.html
67Article: www.nytimes.com/2010/07/23/us/politics/23cong.html
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bill approved by a Senate filibuster-proof supermajority. There were two prominent Senate

bills considered during the Fall of 2009 and into 2010. Critical to my use of prediction

markets from 2009-2010 is the assumption that the Senate variant of the bill was similar

along key features such that the expected permit price for those bills was similar to that

of Waxman-Markey (WM). In Table A.4, I compare the Waxman-Markey bill with the two

most prominent Senate climate bills, the Kerry-Boxer (KB) and Kerry-Lieberman (KL)

bills along four key features that may affect the equilibrium permit price: i) cap schedule,

ii) sectoral coverage, iii) permit allocation rule, and iv) domestic and international offset

provisions.

Table A.4 shows that KB and KL had the same sectoral coverage and permit allocation

rule as WM and only a slightly altered cap schedule. In particular KB required slightly

greater abatement in 2020 while KL required slightly greater abatement in 2013. This

difference implies that KB and KL may result in slightly higher permit prices.

The overall limit from domestic agriculture and international offsets was the same across

the three bills. For domestic agricultural offsets, KB allowed five additional types of offsets

not permitted under WM.68 Compared to WM, KL added two new practices and eliminated

one.69 For international offsets KB and KL bills lowered the annual limit on international

offsets from 1 to 0.5 billion tons. However, both Senate bills increased the threshold under

the “exceedance policy” whereby if the annual domestic offsets amount is below 0.9 (KB) or

1.5 (KL) billion tons, the regulator can increase international offsets by up to an addition

0.75 (KB) or 1 billion (KL) tons. Because of uncertainty regarding both domestic and

international offset markets, it is unclear whether these differences had a major effect on

the expected permit price.

Appendix G CGE models of cap-and-trade policy

This section summarizes the most prominent CGE analyses of the Waxman-Markey bill

during 2009 as well as the time when each analysis was first publicized.

During deliberations for Waxman-Markey, several CGE modeling groups were contracted

by organizations and government agencies. The Environmental Protection Agency hired RTI

and Dale W. Jorgenson Associates to run the ADAGE and IGEM models respectively. The

EPA analyses were first released on April 20, 2009.70 Kolstad et al. (2010) provide a detailed

68Specifically, they were: i) planting and cultivation of permanent tree crops; ii) greenhouse gas emission
reductions from improvements and upgrades to mobile or stationary equipment (including engines); iii)
practices to reduce and eliminate soil tillage; iv) reductions in greenhouse gas emissions through restoration
of wetlands, forestland, and grassland; and v) sequestration of greenhouse gases through management of
tree crops

69Specifically, KL added i) resource-conserving crop rotations of at least 3 years; and ii) practices that
will increase the sequestration of carbon in soils on cropland, hayfields, native and planted grazing land,
grassland, or rangeland; and removed i) reduction in greenhouse gas emissions from manure and effluent

70Final report: www.epa.gov/climatechange/economics/economicanalyses.html
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peer review of ADAGE and IGEM commissioned by the EPA. With the exception of IGEM

which estimates parameters econometrically, parameters within CGE models are calibrated

to match observed macroeconomic activity. The offset usage assumptions adopted in this

paper were based on EPA analysis (EPA, 2009). The Department of Energy’s Energy

Information Agency (EIA) model the policy using its National Energy Modeling System

(NEMS) model with results released in August 2009.71 The EPPA model is run by the

Joint Program on the Science and Policy of Climate Change at MIT.72 The EPPA model

results were first released in April 2009. Model runs were also commissioned by several

advocacy organizations. The American Council for Capital Formation (ACCF) and National

Association for Manufacturers (NAM) hired SAIC to run the EIA’s NEMS model with

results released on August 12, 2009.73 The National Black Chamber of Commerce hired

CRA international to run the MRN-NEEM model with results first released on May 21,

2009.74 The Heritage foundation hired Global Insight to run its IHS model with results first

reported via a Congressional testimony on June 22, 2009.75

These models differ along many dimensions (see Fawcett, Calvin and de la Chesnaye

(2009) for a review). One important distinction pertinent for this analysis is whether agents

in the models are myopic or exhibit perfect foresight. Myopic CGE models are solved

iteratively at each time step while in models with perfect foresight agents optimize simulta-

neously over the entire policy time-horizon. The Hotelling model introduced in Appendix A

exhibits perfect foresight. Of the CGE models analyzing Waxman-Markey, IGEM, ADAGE,

and MRN-NEEM have perfect foresight whereas EPPA, NEMS, and IHS are myopic.

Another important area of distinction is whether the CGE models incorporated non-

cap-and-trade components of the Waxman-Markey bill. ADAGE, NEMS, and MRN-NEEM

models include many non-cap-and-trade provisions. IGEM and EPPA do not model those

provisions. It is not clear from available IHS documentation whether non-cap-and-trade

provisions are modeled.

71Final report: http://www.eia.gov/analysis/requests/2009/hr2454/pdf/sroiaf(2009)05.pdf
72Final report: globalchange.mit.edu/files/document/MITJPSPGC_Rpt173_AppendixC.pdf
73Initial press release: http://accf.org/accfnam-study-on-waxman-markey-bill/. Final report: http:

//instituteforenergyresearch.org/analysis/the-accfnam-estimate-of-waxman-markey/
74Initial press release: http://www.prnewswire.com/news-releases/nbcc-study-finds-waxman-

markey-reduces-gdp-by-350-billion-61941032.html Final report: www.nationalbcc.org/images/

stories/documents/CRA_Waxman-Markey_Aug2008_Update_Final.pdf
75Initial testimony: http://www.heritage.org/research/testimony/the-economic-impact-of-the-

waxman-markey-cap-and-trade-bill. Final report: www.heritage.org/research/reports/2009/08/the-

economic-consequences-of-waxman-markey-an-analysis-of-the-american-clean-energy-and-

security-act-of-2009
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Appendix Figures

Figure A.1: Average stock returns in 2007, 2008, and 2011 at 5% energy intensity
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Notes: Triangles indicate local averages of firm-level average stock returns in 2007, 2008 and 2011 within a

0.01 wide bin of 6-digit NAICS energy intensity. Solid (dashed) line shows a linear (quadratic) fit over the

unbinned data. Distribution of sample firms by 6-digit NAICS energy intensity shown in gray histogram.
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Figure A.2: RD estimates from a linear model at 0.1% incremental bandwidths
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Notes: All RD estimates of β from a version of Eq. 7 with a linear function in energy intensity and firm

and trading date fixed effects. 90% confidence interval shown.

Figure A.3: RD estimates from a quadratic model at 0.1% incremental bandwidths
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Notes: All RD estimates of β from a version of Eq. 7 with a quadratic function in energy intensity and firm

and trading date fixed effects. 90% confidence interval shown.
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Figure A.4: Price for Intrade 2009-expiring and 2010-expiring cap-and-trade contracts
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Notes: Time series of daily prices for Intrade cap-and-trade contracts expiring at end of 2009 (dashed) and

2010 (solid). Red vertical line marks start of 2010.

Figure A.5: Empirical and estimated weighting kernel for expiring cap-and-trade contracts
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Notes: Time series of empirical (solid, blue) and predicted (dashed, red) weighting kernel, k̂(D) as a function

of D days remaining until contract expiration.
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Figure A.6: Price for Intrade 2010-expiring contract with termination date adjustment
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Notes: Time series of daily prices for Intrade cap-and-trade contracts expiring in 2010 (solid) and with

adjustment for termination date using predicted weighting kernel in Figure A.5.

Figure A.7: Assumed free permits for firm in Plastics Material & Resin Manufacturing
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from 2012-2025. Solid line assumes -1.5% annual decline, the 2006-2010 average decline in emissions for all

U.S. manufacturing firms. Dashed gray lines assumes annual declines associated with various manufacturing

subsectors in 2006-2010. Permits are gradually phased out from 2026-2035 according to Waxman-Markey

(see Section 2.1). 61



Appendix Tables

Table A.1: 6-digit NAICS sectors by energy intensity bins

Energy Intensity ∈ [.02, .025)
Soybean Processing (311222)
Cane Sugar Refining (311312)
Frozen Fruit, Juice, and Vegetable Manufacturing (311411)
Frozen Specialty Food Manufacturing (311412)
Fruit and Vegetable Canning (311421)
Other Hosiery and Sock Mills (315119)
Sawmills (321113)
Hardwood Veneer and Plywood Manufacturing (321211)
Coated and Laminated Packaging Paper and Plastics Film Manufacturing (322221)
Coated and Laminated Paper Manufacturing (322222)
Sanitary Paper Product Manufacturing (322291)
Asphalt Shingle and Coating Materials Manufacturing (324122)
Medicinal and Botanical Manufacturing (325411)
Plastics Bag Manufacturing (326111)
Plastics Packaging Film and Sheet (including Laminated) Manufacturing (326112)
Resilient Floor Covering Manufacturing (326192)
All Other Plastics Product Manufacturing (326199)
Tire Manufacturing (except Retreading) (326211)
Rubber and Plastics Hoses and Belting Manufacturing (326220)
Glass Product Manufacturing Made of Purchased Glass (327215)
Ball and Roller Bearing Manufacturing (332991)
Ammunition (except Small Arms) Manufacturing (332993)
Bare Printed Circuit Board Manufacturing (334412)

Energy Intensity ∈ [.025, .03)
Petroleum Refineries (324110)
Rolled Steel Shape Manufacturing (331221)
Steel Wire Drawing (331222)
Nonferrous Metal (except Copper and Aluminum) Rolling, Drawing, and Extruding (331491)
Electron Tube Manufacturing (334411)
Storage Battery Manufacturing (335911)

Energy Intensity ∈ [.03, .05)
Yarn Texturizing, Throwing, and Twisting Mills (313112)
Broadwoven Fabric Mills (313210)
All Other Petroleum and Coal Products Manufacturing (324199)
Inorganic Dye and Pigment Manufacturing (325131)
Synthetic Organic Dye and Pigment Manufacturing (325132)
Phosphatic Fertilizer Manufacturing (325312)
Unlaminated Plastics Film and Sheet (except Packaging) Manufacturing (326113)
Polystyrene Foam Product Manufacturing (326140)
Vitreous China, Fine Earthenware, and Other Pottery Product Manufacturing (327112)
Other Aluminum Rolling and Drawing (331319)
Aluminum Foundries (except Die-Casting) (331524)
Iron and Steel Forging (332111)
Nonferrous Forging (332112)

Energy Intensity ∈ (.05, .07]
Gum and Wood Chemical Manufacturing (325191)
Ethyl Alcohol Manufacturing (325193)
All Other Basic Organic Chemical Manufacturing (325199)
Plastics Material and Resin Manufacturing (325211)
Ceramic Wall and Floor Tile Manufacturing (327122)
Primary Smelting and Refining of Nonferrous Metal (except Copper and Aluminum) (331419)
Steel Investment Foundries (331512)
Carbon and Graphite Product Manufacturing (335991)

Energy Intensity ∈ (.07, .075]
Carbon Black Manufacturing (325182)
All Other Basic Inorganic Chemical Manufacturing (325188)

Energy Intensity ∈ (.075, .08]
Paper (except Newsprint) Mills (322121)
Newsprint Mills (322122)
Iron and Steel Mills (331111)
Electrometallurgical Ferroalloy Product Manufacturing (331112)
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Table A.2: Examining potential multiplicative bias in prediction market prices

(1) (2) (3) (4) (5) (6)
Trading Big trader Herfindahl Only Only

Poly. order Main volume volume index 2009 2010

1 Uninteracted 0.074** 0.081*** 0.079** 0.072 0.089** 0.060
[0.033] [0.030] [0.031] [0.145] [0.035] [0.066]

Interacted -0.000 -0.000 0.004
[0.000] [0.000] [0.195]

2 Uninteracted 0.070** 0.072** 0.072** 0.230 0.070 0.095**
[0.035] [0.034] [0.034] [0.150] [0.044] [0.039]

Interacted -0.000 -0.000 -0.232
[0.000] [0.000] [0.224]

Firms 531 531 531 531 531 531
Periods 111 111 111 111 84 27

Estimates from interacted model in Eq. 12 with firm and date fixed effects within 4% bandwidth.
Robust standard errors clustered at 6-digit NAICS level. *** p<0.01, ** p<0.05, * p<0.1

Table A.3: RD estimate using expiration date adjusted prediction market prices

(1) (2) (3) (4) (5)
Bandwidth

Controls Polynomial order 2% 2.5% 3% 3.5% 4%

Firm fixed effect Panel (A)

1 0.073** 0.063** 0.044 0.057* 0.063**
[0.031] [0.030] [0.032] [0.029] [0.026]

2 -0.011 0.071* 0.080** 0.064** 0.061**
[0.028] [0.038] [0.033] [0.029] [0.028]

CAPM Panel (B)

1 0.074* 0.072* 0.065* 0.067** 0.063**
[0.038] [0.037] [0.034] [0.030] [0.024]

2 -0.029 0.053 0.074* 0.074* 0.077**
[0.031] [0.041] [0.040] [0.039] [0.038]

3-factor Fama-French Panel (C)

1 0.075** 0.072* 0.058 0.067** 0.062**
[0.034] [0.036] [0.035] [0.031] [0.026]

2 -0.023 0.057 0.080** 0.074** 0.080**
[0.033] [0.036] [0.037] [0.035] [0.036]

Firm and date fixed effects Panel (D)

1 0.073** 0.063** 0.043 0.056* 0.062**
[0.031] [0.030] [0.032] [0.029] [0.026]

2 -0.011 0.071* 0.080** 0.065** 0.061**
[0.028] [0.039] [0.033] [0.029] [0.029]

Number of firms 45 106 202 264 531

Each coefficient shows a separate estimate of β from Eq. 7 using expiration date adjusted prediction
market prices (see Appendix C). Controls for normal market performance vary by panel. Functional
forms for energy intensity vary by rows within a panel. Sample bandwidths around the 5% threshold
vary across columns. All models include 111 2-day intervals from May 1, 2009 to July 31, 2010.
Robust standard errors clustered at 6-digit NAICS level. *** p<0.01, ** p<0.05, * p<0.1
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Table A.4: Comparing key features between Waxman-Markey and Senate climate bills

Climate bills
Feature Criteria Waxman-Markey Kerry-Boxer Kerry-Lieberman

Cap schedule Baseline Year 2005 2005 2005
2012(WM/KB) /2013(KL) 97% 97% 95.25%

2020 83% 80% 83%
2030 58% 58% 58%
2050 17% 17% 17%

Coverage Number of sectors 10 same as W-M same as W-M

Free permit rule Threshold ≥5% EI same as W-M same as W-M
≥15% TI

All Offsets Annual max (tons) 2 billion same as W-M same as W-M
Domestic Ag. Number of eligible practices* 7 12 8
International Annual max (tons) 1 billion .5 billion .5 billion

Exceedence policy* .5 billion .75 billion 1 billion

* See details in Appendix F

Table A.5: CGE estimates of 2015 marginal abatement cost (in 2009$)

CGE model Perfect Other W-M Marginal abatement
Institution Sector (scenario) foresight? components? cost (2009$)

ACCF Private NEMS (high cost) No YES 37.73
ACCF Private NEMS (low cost) No YES 31.18
EIA Government NEMS (full offset) No YES 14.86
EIA Government NEMS (med offset) No YES 22.99
EPA Government ADAGE Yes YES 17.33
EPA Government IGEM Yes NO 17.12
Heritage Private IHS No YES 17.59
MIT Academic EPPA (full offset) No NO 7.99
MIT Academic EPPA (med offset) No NO 23.41
NBCC Private NEEMS Yes YES 24.02

Mean 21.42
Min 7.99
Max 37.73

CGE estimates of 2015 marginal abatement cost (in 2009$) under Waxman-Markey. See Ap-
pendix G for summary of CGE models.
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Table A.6: 2015 marginal abatement cost (in 2009$) implied by RD estimates under full
borrowing restriction

Assumed annual Corresponding
emissions rate sector (NAICS) 5th percentile Mean 95th percentile

0 – 1.69 7.53 12.99
-0.70% Petro. refining (324110) 1.77 7.9 13.63
-1.45% All manufacturing (31-33) 1.86 8.32 14.34
-5.20% Forest products (321, 322) 2.38 10.62 18.31
-7.60% Alumina & Aluminum (3313) 2.76 12.31 21.23
-11.60% Cement (327310) 3.48 15.51 26.74
-12.80% Glass (3272) 3.71 16.56 28.55
-13.90% Transport. Equip. (336) 3.94 17.56 30.28
-19.30% Textiles (313-316) 5.16 23.03 39.71
-25% – 6.69 29.83 51.44
-30% – 8.25 36.78 63.43
-35% – 10.05 44.83 77.3

First column shows assumed annual emissions rate. Second column shows corresponding man-
ufacturing subsector with 2006-2010 emissions changing at each rate. RD estimates (see Eq. 7)
based on Table 1, Panel (C), Row (1), and Column (5)). 90% confidence interval generated us-
ing 250 Monte Carlo draws from estimated parameter and variance-covariance matrix. Marginal
abatement cost recovered using Eq. 18. 5% interest rate assumed. Marginal abatement cost
recovered using Eq. 18 but assuming permit borrowing restriction binds during duration of
policy (see Appendix A.2 for details). 5% interest rate assumed.
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