
NBER WORKING PAPER SERIES

THE RACE BETWEEN MACHINE AND MAN:
IMPLICATIONS OF TECHNOLOGY FOR GROWTH, FACTOR SHARES AND EMPLOYMENT

Daron Acemoglu
Pascual Restrepo

Working Paper 22252
http://www.nber.org/papers/w22252

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
May 2016

We thank Philippe Aghion, David Autor, Erik Brynjolfsson, Chad Jones, and seminar participants 
at the AEA 2015, Harvard, UCLA, MIT economics, the MIT Initiative on the Digital Economy, 
and the NBER 2015 Economic Growth Group for their valuable comments. We also gratefully 
acknowledge financial support from the Bradley Foundation. The views expressed herein are 
those of the authors and do not necessarily reflect the views of the National Bureau of Economic 
Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2016 by Daron Acemoglu and Pascual Restrepo. All rights reserved. Short sections of text, not 
to exceed two paragraphs, may be quoted without explicit permission provided that full credit, 
including © notice, is given to the source.



The Race Between Machine and Man: Implications of Technology for Growth, Factor Shares
and Employment
Daron Acemoglu and Pascual Restrepo
NBER Working Paper No. 22252
May 2016
JEL No. J23,J24,O14,O31,O33

ABSTRACT

The advent of automation and the simultaneous decline in the labor share and employment among 
advanced economies raise concerns that labor will be marginalized and made redundant by new 
technologies. We examine this proposition using a task-based framework in which tasks 
previously performed by labor can be automated and more complex versions of existing tasks, in 
which labor has a comparative advantage, can be created. We characterize the equilibrium in this 
model and establish how the available technologies and the choices of firms between producing 
with capital or labor determine factor prices and the allocation of factors to tasks. In a static 
version of our model where capital is fixed and technology is exogenous, automation reduces 
employment and the share of labor in national income and may even reduce wages, while the 
creation of more complex tasks has the opposite effects. Our full model endogenizes capital 
accumulation and the direction of research towards automation and the creation of new complex 
tasks. Under reasonable conditions, there exists a stable balanced growth path in which the two 
types of innovations go hand-in-hand. An increase in automation reduces the cost of producing 
using labor, and thus discourages further automation and encourages the faster creation of new 
complex tasks. The endogenous response of technology restores the labor share and 
employment back to their initial level. Although the economy contains powerful self correcting 
forces, the equilibrium generates too much automation. Finally, we extend the model to include 
workers of different skills. We find that inequality increases during transitions, but the self-
correcting forces in our model also limit the increase in inequality over the long-run.

Daron Acemoglu
Department of Economics, E52-446
MIT
77 Massachusetts Avenue
Cambridge, MA  02139
and CIFAR
and also NBER
daron@mit.edu

Pascual Restrepo
Department of Economics, E18-776H
MIT
77 Massachusetts Avenue
Cambridge, MA 02139
pascual@mit.edu



1 Introduction

The accelerated automation of tasks performed by labor raises concerns that new technologies will make

labor redundant (e.g., Brynjolfsson and McAfee, 2012, Akst, 2014, Autor, 2015). The recent declines

in the share of labor in national income and the employment to population ratio in the U.S. (e.g.,

Karabarbounis and Neiman, 2014, and Oberfield and Raval, 2014) are often interpreted to support the

claims that, as digital technologies, robotics and artificial intelligence penetrate the economy, workers

will find it increasingly difficult to compete against machines, and their compensation will experience

a relative or even absolute decline. Yet, we lack a comprehensive framework incorporating such effects,

as well as potential countervailing forces.

The need for such a framework stems not only from the importance of understanding how and

when automation will transform the labor market, but also from the fact that similar claims have been

made, but have not always come true, about previous waves of new technologies. Keynes famously

foresaw the steady increase in per capita income during the 20th century from the introduction of new

technologies, but incorrectly predicted that this would create widespread technological unemployment

as machines replaced human labor (Keynes, 1930). In 1965, economic historian Robert Heilbroner con-

fidently stated that “as machines continue to invade society, duplicating greater and greater numbers

of social tasks, it is human labor itself—at least, as we now think of ‘labor’—that is gradually rendered

redundant”(quoted in Akst, 2014). Wassily Leontief was equally pessimistic about the implications

of new machines. By drawing an analogy with the technologies of the early 20th century that made

horses redundant, he speculated that “Labor will become less and less important. . .More and more

workers will be replaced by machines. I do not see that new industries can employ everybody who

wants a job”(Leontief, 1952).

This paper is a first step in developing a conceptual framework to study how machines replace

human labor and why this might (or might not) lead to lower employment and stagnant wages. Our

main conceptual innovation is to propose a unified framework in which tasks previously performed

by labor are automated, while at the same time more complex versions of existing tasks in which

labor has a comparative advantage are created.1 The importance of these new complex tasks is well

illustrated by the technological and organizational changes during the Second Industrial Revolution,

which not only involved the replacement of the stagecoach by the railroad, sailboats by steamboats,

and of manual dock workers by cranes, but also the creation of new labor-intensive tasks. These new

tasks generated jobs for a new class of engineers, machinists, repairmen, and conductors as well as

of modern managers and financiers involved with the introduction and operation of new technologies

(e.g., Landes, 1969, Chandler, 1977, and Mokyr, 1990).

Today, while industrial robots, digital technologies and computer-controlled machines replace labor,

we are once again simultaneously witnessing the emergence of new tasks ranging from engineering

and programming functions to those performed by audio-visual specialists, executive assistants, data

1Herein lies our answer to Leontief’s analogy: the difference between human labor and horses is that humans have a

comparative advantage in new and more complex tasks. Horses did not.
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administrators and analysts, meeting planners or computer support specialists. Indeed, during the

last 30 years, new tasks and new job titles account for a large fraction of U.S. employment growth. To

document this fact, we use data from Lin (2011) that measures the share of new job titles—in which

workers perform newer tasks than those employed in more traditional jobs—within each occupation. In

2000, about 70% of the workers employed as computer software developers (an occupation employing

one million people at the time) held new job titles. Similarly, in 1990 a radiology technician and

in 1980 a management analyst were new job titles. Figure 1 shows that for each decade since 1980,

employment growth has been greater in occupations with more new job titles. The regression line shows

that occupations with 10 percentage points more new job titles at the beginning of each decade grow

5.05% faster over the next 10 years (standard error=1.3%). From 1980 to 2007, total employment in

the U.S. grew by 17.5%. About half (8.84%) of this growth is explained by the additional employment

growth in occupations with new job titles relative to a benchmark category with no new job titles.2
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Figure 1: Employment growth by decade plotted against the share of new job titles at the beginning of each decade for

330 occupations. Data from 1980 to 1990 (in dark blue), 1990 to 2000 (in blue) and 2000 to 2007 (in light blue, re-scaled

to a 10-year change). Data source: See Appendix B.

We start with a static model in which capital is fixed and technology is exogenous. There are

two types of technological changes: the automation of existing tasks and new complex tasks in which

labor has a comparative advantage. Our static model provides a rich but tractable framework to study

how automation and the creation of new complex tasks impact factor prices, factor shares in national

income and employment. Automation allows firms to produce tasks previously performed by labor

2The data for 1980, 1990 and 2000 are from the U.S. Census. The data for 2007 are from the American Community

Survey. Additional information on the data and our sample is provided in Appendix B, where we also document in detail

the robustness of the relationship depicted in Figure 1.
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with capital, while the creation of new complex tasks allow firms to replace old tasks by new variants

in which labor has a higher productivity. In contrast to the more commonly-used models featuring

factor-augmenting technologies, here automation always reduces the share of labor in national income

and employment, and may even reduce wages. Conversely, the creation of new complex tasks always

increases wages, employment and the share of labor, and may even reduce the rate of return to capital.

These comparative statics follow because factor prices are determined by the range of tasks performed

by capital and labor, and exogenous shifts in technology alter the range of tasks performed by each

factor (see also Acemoglu and Autor, 2011).

We then embed this framework in a dynamic economy in which capital accumulation is endogenous,

and we characterize restrictions under which the model delivers balanced growth—which we take to

be a good approximation to economic growth in the United States and the United Kingdom over the

last two centuries. The key restrictions are that there is exponential productivity growth from the

creation of new tasks and that the two types of technological changes—automation and the creation

of new complex tasks—advance at equal paces. A critical difference from our static model is that

capital accumulation responds to permanent shifts in technology in order to keep the interest rate

constant. Thus, the dynamic effects of technology on factor prices depend on the response of capital

accumulation as well. We show that the response of capital ensures that the productivity gains from

both automation and the introduction of new complex tasks fully accrue to labor (the relatively

inelastic factor) and increase overall wages in the long run—a feature we refer to as the productivity

effect. Although real wages increase due to the productivity effect, automation always reduces the

labor share.

Our full model endogenizes the rates of improvement of these two types of technologies by marrying

our task-based framework with a directed technological change setup. This full version of the model

remains tractable, and under natural assumptions, generates asymptotically stable balanced growth

with equal advancement of the two types of technologies. If automation runs ahead of the creation

of new complex tasks, market forces induce a slowdown of subsequent automation and countervailing

advances in the creation of new complex tasks. As a result, in the long run, the share of labor in national

income and employment return to their initial levels. The economics of these self-correcting forces are

instructive and highlight a crucial new force: a wave of automation pushes down the effective cost of

producing with labor. When technology is endogenous, this discourages further efforts to automate

additional tasks and pushes the economy to redirect its research efforts towards the creation of new

(labor-intensive) tasks.3

In our model, the stability of the balanced growth path implies that periods in which automation

runs ahead of the creation of new complex tasks tend to self-correct. Contrary to the increasingly

widespread concerns discussed above, our model raises the (theoretical) possibility that rapid automa-

tion need not signal the demise of labor, but might simply be a prelude to a phase of new technologies

favoring labor. In addition, our analysis clarifies the long-run implications of different types of tech-

3Stability in addition requires that the productivity effect is not too strong; otherwise, automation would have a large

impact on wages and could potentially discourage the creation of new tasks.
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nological shocks. For example, if a wave of automation is triggered by a change in the innovation

possibilities frontier (that is, in the technology for creating new technologies) that makes it easier to

automate tasks, the economy will settle in a new balanced growth path with a greater share of tasks

performed by capital, lower employment and lower labor share.

The final implication of our full model concerns the efficiency of the market equilibrium. In addition

to the standard inefficiencies due to monopoly markups and appropriability problems in endogenous

technological change models, our analysis identifies a new source of inefficiency that pushes towards too

much automation and too few new tasks being created. This inefficiency arises because automation,

which enables firms to economize on wage payments, responds to high wages; when some of the wage

payments accruing to workers are rents (e.g., efficiency wages or quasi-rents created by labor market

frictions), there will be more automation than what the social planner would desire, and technology

becomes inefficiently biased towards replacing labor.

We also consider two extensions of our model. First, we introduce heterogeneity in skills, and

assume that skilled labor has a comparative advantage in new complex tasks, which we view as a

natural assumption.4 Because of the comparative advantage of skilled workers relative to the unskilled

in higher-index tasks, automation directly takes jobs from unskilled labor and thus increases inequality.

Similarly, because skilled workers have a comparative advantage in new complex tasks, the creation of

such tasks at first increase inequality as well. However, inequality increases tend to reverse themselves

over longer periods as new tasks are standardized and can employ unskilled labor more productively.

This extension formalizes the intuitive idea that both automation and the creation of new complex

tasks increase inequality in the short run, but also points out that, over the long run, the self-correcting

forces in our economy limit the increase in inequality. Our second extension modifies our baseline

patent structure and reintroduces the creative destruction of the profits of previous innovators, which

was absent in our main model but is often assumed in the endogenous growth literature. The results

in this case are similar, but the conditions for uniqueness and stability of the balanced growth path

are more demanding.

Our paper relates to several literatures. It can be viewed as a combination of task-based models

of the labor market with directed technological change models.5 Task-based models have been devel-

oped both in the economic growth and labor literatures, dating back at least to Roy’s seminal work

(1955). The first important recent contribution is Zeira (1998), which proposed a model of economic

growth based on capital-labor substitution and constitutes a special case of our model. Acemoglu

and Zilibotti (2000) developed a simple task-based model with endogenous technology and applied it

to the study of productivity differences across countries, illustrating the potential mismatch between

new technologies and the skills of developing economies (see also Zeira, 2006, Acemoglu, 2010). Autor,

Levy and Murnane (2003) suggested that the increase in inequality in the U.S. labor market reflects the

4This assumption builds on Schultz (1965) (see also Greenwood and Yorukoglu, 1997, Caselli, 1999, Galor and Moav,

2000, Acemoglu, Gancia and Zilibotti, 2010, and Beaudry, Green and Sand, 2013).
5On directed technological change and related models, see Acemoglu (1998, 2002, 2003a, 2003b, 2007), Kiley (1999),

Caselli and Coleman (2006), Gancia (2003), Thoenig and Verdier (2003) and Gancia and Zilibotti (2010).
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automation and computerization of routine, labor-intensive tasks.6 Our static model is most similar to

Acemoglu and Autor (2011). Our full framework extends this model not only because of the dynamic

equilibrium incorporating directed technological change, but also because tasks are combined with a

general elasticity of substitution, and because the equilibrium allocation of tasks critically depends

both on factor prices and the state of technology.7

Three papers from the economic growth literature that are particularly related to our work are

Acemoglu (2003), Jones (2005), and Hemous and Olson (2015). The first two papers develop growth

models in which the aggregate production function is endogenous and, in the long run, adapts to make

balanced growth possible. In Jones (2005), this occurs because of endogenous choices about different

combinations of activities/technologies being used. In Acemoglu (2003), this long-run behavior is

a consequence of directed technological change in a model of factor-augmenting technologies. Our

task-based framework here is a significant departure from this model, especially since it enables us to

address questions related to automation, its impact on factor prices and its endogenous evolution. In

addition, our framework provides a more robust economic force ensuring the stability of the balanced

growth path: while in models with factor-augmenting technologies stability requires an elasticity of

substitution between capital and labor that is less than 1 (so that the more abundant factor commands

a lower share of national income), we do not need such a condition in this framework.8 Finally,

Hemous and Olson (2015) develop a model of automation and horizontal innovation with endogenous

technology, and use it to study consequences of different types of technologies on inequality. High wages

(in their model for low-skill workers) encourage automation. But unlike our model, the unbalanced

dynamics that this generates are not countered by other types of innovations in the long run.9

The rest of the paper is organized as follows. Section 2 presents our task-based framework in the

context of a static economy. Section 3 introduces capital accumulation and clarifies the conditions

for balanced growth in this economy. Section 4 presents our full model with endogenous technology

and establishes, under some plausible conditions, the existence, uniqueness and stability of a balanced

growth path with two types of technologies advancing simultaneously. Section 5 examines the efficiency

of equilibrium composition of new technologies. Section 6 considers the two extensions mentioned

above. Section 7 concludes. Appendix A contains the proofs of some of the proofs omitted in the text,

6Acemoglu and Autor (2011), Autor and Dorn (2013), Jaimovich and Siu (2014), Foote and Ryan (2014), Burstein

and Vogel (2012), and Burstein, Morales and Vogel (2014) provide various pieces of empirical evidence and quantitative

evaluations on the importance of the endogenous allocation of tasks to factors in recent labor market dynamics.
7Acemoglu and Autor’s model, like ours, is one in which a discrete number of labor types are allocated to a continuum

of tasks. Costinot and Vogel (2010) develop a complementary model in which there is a continuum of skills and a

continuum of tasks. See also the recent paper by Hawkins, Ryan and Oh (2015), which shows how a task-based model

is more successful than standard models in matching the co-movement of investment and employment at the firm level.
8The role of technologies replacing tasks in this result can be seen by noting that with factor-augmenting technological

changes, the impact on relative factor prices is ambiguous and the direction of innovation may be dominated by a strong

market size effect (e.g., Acemoglu, 2002). Instead, in our model, the difference between factor prices regulates the future

path of technological change and thus generates a powerful force that ensures stability.
9Kotlikoff and Sachs (2012) develop an overlapping generation model in which automation may have long-lasting

effects because it reduces the wages of current workers, and via this channel, also depresses their savings and capital

accumulation.
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while Appendix B, which is not for publication, contains the remaining proofs, some additional results

and the details of the empirical analysis presented above.

2 Static Model

We start with a static version of our model with exogenous technology, which will enable us to introduce

our main setup in the simplest fashion and characterize the impact of different types of technological

change on factor prices.

2.1 Environment

The economy contains a unique final good Y , produced by combining a continuum of tasks, y(i), of

unit measure with an elasticity of substitution σ ∈ (0,∞). Namely,

Y =

(∫ N

N−1
y(i)

σ−1
σ di

) σ
σ−1

. (1)

All tasks and the final good are produced competitively. This formulation will enable us to model the

upgrading of the quality (productivity) of the unit measure of tasks as an increase in N . The fact

that the limits of integration run between N −1 and N also imposes that the measure of tasks used in

production always remains at 1, and a new more complex task replaces or upgrades the lowest-index

task.10

Each task is produced combining labor or capital with a task-specific intermediate q(i), which

embodies the technology used both for production and for the possible automation of tasks. In

preparation for our full model in Section 4, we assume that property rights to each intermediate are

held by a technology monopolist which can produce it at the marginal cost µψ in terms of the final

good, where µ ∈ (0, 1) and ψ > 0. The technology for each intermediate can be copied by a fringe of

competitive firms, which can replicate the intermediate at a higher marginal cost of ψ. We assume

that µ is such that the unconstrained monopoly price of an intermediate is greater than ψ, ensuring

that the unique equilibrium price for all types of intermediates in the presence of the competitive

fringe will be a limit price at ψ.

All tasks can be produced by labor. On the other hand, we model the technological constraints

on automation by assuming that there exists I ∈ [N − 1, N ] such that tasks i ≤ I are technologically

automated in the sense that they can feasibly be produced by capital as well. Though tasks i ≤ I

are technologically automated, in equilibrium they do not need to be produced with capital. Whether

they will or not depends on relative factor prices as we describe below. Conversely, tasks i > I are not

10This formulation imposes that once a new task is created at N , it will automatically be utilized and as a consequence,

will replace the lowest available task located at N − 1. In Section 3, we provide conditions under which firms will indeed

prefer to utilize such tasks immediately (see footnote 13). The reason why, once adopted, they replace older tasks is

technological: as already noted, there is a unit measure of tasks, so newly created tasks are simply higher productivity

versions of already existing tasks; moreover, we are also assuming that task i is not compatible and will not be used

together with tasks i′ < i− 1 (see also footnote 18).
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technologically automated. Independently of factor prices, they cannot be produced by capital and

must be produced with labor.

Tasks i > I can only be produced using labor, and their production function takes the form

y(i) = B
[
ηq(i)

ζ−1
ζ + (1− η) (γ(i)l(i))

ζ−1
ζ

] ζ
ζ−1

, (2)

where γ(i) denotes the productivity of labor in task i, ζ ∈ (0,∞) is the elasticity of substitution

between intermediates and labor, η ∈ (0, 1) is the distribution parameter of this constant elasticity of

substitution production function, and finally, B is a normalizing constant set as B ≡ (1− η)ζ/(1−ζ) to

simplify the algebra.

Tasks i ≤ I can be produced using labor or capital, and their production function takes the form

y(i) = B
[
ηq(i)

ζ−1
ζ + (1− η) (k(i) + γ(i)l(i))

ζ−1
ζ

] ζ
ζ−1

. (3)

All of the parameters are thus common between the production function of tasks above and below

the threshold I, with the only difference being that those with i ≤ I can be produced by capital as

well as labor. This feature is embedded in (3) via the assumption that capital and labor are perfect

substitutes in the production of these tasks.11

Throughout, we assume that γ(i) is strictly increasing, so that labor has strict comparative ad-

vantage in tasks with a high index. In the next section, we strengthen this assumption by imposing a

parametric form for γ(i), which will ensure that the productivity gains from the creation of new tasks

generate balanced growth (see in particular, equation (12)). The key implication of the strict com-

parative advantage of labor in high-index tasks is that, in equilibrium, there will exist some threshold

task I∗ ≤ I such that all tasks i ≤ I∗ are produced with capital, while all tasks i > I∗ are produced

with labor (see below).12

Figure 1 depicts the resulting allocation of tasks to factors and also shows how, as already noted,

the creation of new complex tasks replaces existing tasks from the bottom of the distribution.

In the static model, we take the capital stock to be fixed at K (we will endogenize it via household

saving decisions in Section 3). In addition, since we wish to study the impact of new technologies not

just on factor prices but also on employment, we assume that the employment level is given by a quasi-

labor supply taken to be an increasing function of the wage rate W relative to capital payments RK,

i.e., Ls
(

W
RK

)
. This quasi-labor supply curve thus implies that as the wage rate increases relative to

payments to capital, the employment level increases as well. As we show in Section 3, the assumption

that the level of employment depends on the ratio W
RK and not simply on wages ensures that this

11A simplifying feature of the technology described in equation (3) is that capital has the same productivity in all

tasks, while labor has a different productivity. This assumption could be relaxed at the cost of additional complexity in

our notation.

Another, perhaps more important simplifying assumption is that high-index tasks can be produced with just labor.

Having these tasks combine labor and capital would have no impact on our main results, and in Appendix B, we show

how adding an additional layer of capital-labor substitution in (2) and (3) has no substantive impact on our results.
12Without loss of generality, we impose that when indifferent firms use capital. This explains our convention of writing

that all tasks i ≤ I∗ (rather than i < I∗) are produced using capital.
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Figure 2: The task space and a representation of the effect of introducing new complex tasks (middle panel) and

automating existing tasks (bottom panel).

quasi-labor supply will be consistent with balanced growth (see Acemoglu 2003). Though we impose

this as a reduced-form in the text, it is straightforward to derive it from various micro foundations as

we do in Appendix B.

With this specification of the supply of factors, capital and labor market clearing imply the con-

ditions ∫ N

N−1
k(i)di = K, and

∫ N

N−1
l(i)di = Ls

(
W

RK

)
.

2.2 Equilibrium in the Static Model

We now characterize the equilibrium in the static model, which can be summarized by the wage rate,

W , the rental rate of capital (rental rate for short), R, and the equilibrium threshold I∗.

We proceed by characterizing the unit cost of producing each task as a function of factor prices

and the automation possibilities represented by I. Because tasks are produced competitively, their

price, p(i), will be equal to the minimum unit cost of production:

p(i) =





cu
(
min

{
R,

W

γ(i)

})
≡

[(
η

1−η

)ζ
ψ1−ζ +min

{
R, W

γ(i)

}1−ζ
] 1

1−ζ

if i ≤ I,

cu
(
W

γ(i)

)
≡

[(
η

1−η

)ζ
ψ1−ζ +

(
W
γ(i)

)1−ζ
] 1

1−ζ

if i > I.

(4)

Here cu(·) is the unit cost of production for task i, derived from the task production functions, (2) and

(3). This unit cost also depends on the price of intermediates, ψ, but we suppress this dependence to

simplify the notation. The unit cost for tasks i ≤ I is written as a function of min
{
R, W

γ(i)

}
to reflect

8



the fact that capital and labor are perfect substitutes in the production of automated tasks. In these

tasks, firms will choose whichever factor has a lower effective cost—where the effective cost for labor

is W/γ(i) in view of the fact that the productivity of labor in task i is γ(i).

The expression for p(i) immediately implies that, given strict comparative advantage, there is a

threshold Ĩ such that tasks below I∗ = min{I, Ĩ} will be produced using capital and the remaining

more complex tasks will be produced using labor. Specifically, whenever R > W/γ(i) and i ≤ I, the

relevant task is produced using capital, and otherwise it is produced using labor.13 Since γ(i) is strictly

increasing, this implies that there exists a threshold Ĩ at which, if technologically feasible, firms would

be indifferent between using capital and labor. Namely, at task Ĩ , we have that R =W/γ(Ĩ), or

W

R
= γ(Ĩ). (5)

This threshold represents the task for which the costs of producing with capital or labor are equal.

Without any other constraints, the cost-minimizing allocation of factors is to produce all tasks i < Ĩ

with capital. However, if Ĩ > I, firms will not be able to use capital all the way up to task Ĩ because

of the constraint imposed by the available automation technology. For this reason, the equilibrium

threshold below which tasks are produced using capital is given by

I∗ = min{I, Ĩ}.

To fully characterize the static equilibrium, we next derive the demand for factors in terms of

the (endogenous) threshold I∗. We choose the final good as the numeraire, which from (1) gives the

demand for task i as

y(i) = Y p(i)−σ. (6)

From equations (4) and (6), equilibrium levels of task production can be written as

y(i) =





Y cu
(
min

{
R,

W

γ(i)

})−σ

if i ≤ I,

Y cu
(
W

γ(i)

)−σ

if i > I.

From the technologies in equations (2) and (3), it follows that the demand for capital and labor in

each task is given by:

k(i) =

{
Y cu(R)ζ−σR−ζ if i ≤ I∗,

0 if i > I∗.

and

l(i) =





0 if i ≤ I∗,

Y γ(i)ζ−1cu
(
W

γ(i)

)ζ−σ

W−ζ if i > I∗.

13This discussion reveals an asymmetry in our treatment of automation and new labor-intensive tasks. As already

noted in footnote 10, we have assumed that the latter type of technology is always used when it is created (and hence

we have not distinguished N , N∗ and Ñ). This is because, as we show in Proposition 3, in the interesting part of the

parameter space, where the interest rate is not too small (which in turn results from the discount rate in our full model, ρ,

being above some threshold ρ), all new labor-intensive technologies will be used immediately, whereas all new automation

technologies may or may not be utilized immediately depending on the relative state of the two types of technologies.
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Thus, capital and labor market clearing yield the following equilibrium conditions:

Y (I∗ −N + 1)cu(R)ζ−σR−ζ = K, (7)

and

Y

∫ N

I∗
γ(i)ζ−1cu

(
W

γ(i)

)ζ−σ

W−ζdi = Ls

(
W

RK

)
. (8)

Though the set of equations characterizing an equilibrium are relatively straightforward, the sub-

stitution between factors (capital or labor) and intermediates (the q(i)’s) makes the relative demands

for factors non-homothetic, opening the way to counterintuitive results. For instance, automation,

which increases the productivity of capital, may end up raising the demand for labor more than the

demand for capital. In what follows, we focus on the economically relevant case in which, at given

factor proportions, automation reduces the relative demand for labor. The next assumption ensures

this by limiting the extent of departures from homotheticity.

Assumption 1: One of the following three conditions holds:

1.
(
γ(N−1)
γ(N)

)2+σ+η
> |σ − ζ|, or

2. ζ → 1, or

3. η → 0.

When σ = ζ, the elasticities of substitution between tasks and between factors in the production

of tasks are equal, ensuring homotheticity. Thus the first option in Assumption 1 requires that this

departure from homotheticity is small relative to the inverse of the productivity gains from new tasks

(where γ(N)/γ(N −1) measures these productivity gains). The second option corresponds to the case

where the task production function becomes Cobb-Douglas, which implies that intermediates account

for a constant share of costs and also ensures homotheticity. Finally, the third option guarantees

homotheticity as well because it makes the share of intermediates in the task production function

small. The next proposition completes the characterization of the equilibrium under Assumption 1.

Proposition 1 (Equilibrium in the static model) Suppose that Assumption 1 holds. Then, given

a range of tasks [N − 1, N ], automation technology I ∈ (N − 1, N ], and capital stock K, there exists a

unique equilibrium characterized by factor prices, W and R, and threshold tasks, Ĩ and I∗, such that:

(i) Ĩ is determined by equation (5) and I∗ = min{I, Ĩ}; (ii) all tasks i ≤ I∗ are produced using capital

and all tasks i > I∗ are produced using labor; (iii) the capital and labor market clearing conditions,

equations (7) and (8), are satisfied; and (iv) factor prices satisfy the ideal price index condition:

(I∗ −N + 1)cu(R)1−σ +

∫ N

I∗
cu
(
W

γ(i)

)1−σ

di = 1. (9)

Proof. All of the expressions in this proposition follow from the preceding derivations. Existence and

uniqueness are proved in Appendix A.
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Figure 3 illustrates the unique equilibrium described in Proposition 1. The equilibrium is rep-

resented by the intersection of an upward and downward-sloping curve in the (ω, I) space, which

determines ω ≡ W
RK and I∗. The downward-sloping curve, ω(I∗, N,K), corresponds to the relative

demand for labor, which we obtain by combining the market clearing conditions for capital and la-

bor, (7) and (8), together with the ideal price index condition, given in equation (9). Assumption 1

ensures that the relative demand curve ω(I∗, N,K) is decreasing in I∗—that is, automation reduces

the relative demand for labor. The upward-sloping curve represents the cost-minimizing allocation of

capital and labor to tasks represented by equation (5), with the constraint that the equilibrium level

of automation can never exceed I.

Figure 3: Static equilibrium. The left panel depicts the case in which I∗ = I < Ĩ so that the allocation of factors is

constrained by technology. The right panel depicts the case in which I∗ = Ĩ < I so that the allocation of factors is not

constrained by technology.

The figure distinguishes between the two cases highlighted above. In the left panel, we have

I∗ = I < Ĩ and the allocation of factors is constrained by technology, while the right panel plots the

case in which I∗ = Ĩ < I and firms choose the cost-minimizing allocation given factor prices.

The next proposition gives a complete characterization of comparative statics. In what follows,
∂ω
∂I∗ ,

∂ω
∂N and ∂ω

∂K denote the partial derivatives of ω(I∗, N,K).

Proposition 2 (Comparative statics) Suppose that Assumption 1 holds.14

• If I∗ = I < Ĩ—so that the allocation of tasks to factors is constrained by technology—then:

– the impact of technological change on relative factor prices is given by

d ln(W/R)

dI
=
d lnω

dI
=

1

ω

∂ω

∂I∗
< 0,

d ln(W/R)

dN
=
d lnω

dN
=

1

ω

∂ω

∂N
> 0

– the impact of capital on relative factor prices is given by

d ln(W/R)

d lnK
=
d lnω

d lnK
+ 1 =

1 + εL
σSR + εL

> 0,

14In this proposition, we do not explicitly treat the case in which I∗ = I = Ĩ in order to save on space and notation,

since in this case left and right derivatives with respect to I are different.
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where σSR ∈ (0,∞) is the short-run elasticity of substitution between labor and capital

holding the allocation of factors to tasks fixed, and is given by a weighted average of σ and

ζ.

– Moreover, if σ is sufficiently large, d lnW
dI , d lnR

dN < 0. Otherwise, d lnW
dI , d lnR

dN ≥ 0.

• If I∗ = Ĩ < I—so that tasks are allocated to factors in the unconstrained cost minimizing

fashion—then

– the impact of technological change on relative factor prices is given by

d ln(W/R)

dI
=
d lnω

dI
= 0,

d ln(W/R)

dN
=
d lnω

dN
=

1
ω

∂ω
∂N

1− 1
ω

∂ω
∂I∗

1
εγ

> 0 and

– the impact of capital on relative factor prices is given by

d ln(W/R)

d lnK
=
d lnω

d lnK
+ 1 =

(
1 + εL
σSR + εL

)
1

1− 1
ω

∂ω
∂I∗

1
εγ

> 0,

where εγ = d ln γ(I)
dI > 0 is the semi-elasticity of the comparative advantage schedule.

Here, the medium run elasticity of substitution σMR ∈ (0,∞) is

σMR = (σSR + εL)

(
1−

1

ω

∂ω

∂I∗
1

εγ

)
− εL > σSR.

– Moreover, if σ is sufficiently large, d lnR
dN < 0. Otherwise, d lnR

dN ≥ 0.

• Finally, in both parts of the proposition, the labor share and employment move in the same

direction as ω.

Proof. See Appendix A.

The main implication of Proposition 2 is that the two types of technological changes—automation

and the creation of new complex tasks—have polar implications. Automation, corresponding to an

increase in I, reduces W/R, the labor share and employment (unless I∗ = Ĩ < I and firms are not

constrained by technology in their automation choice), while the creation of new tasks, corresponding

to an increase in N , raises W/R, the labor share and employment.

These comparative static results are illustrated in Figure 3: automation moves us along the relative

labor demand curve in the technology-constrained case shown in the left panel (and has no impact in

the right panel), while the creation of new tasks shifts out the relative labor demand curve in both

cases.

Another important implication of Proposition 2 is that when I∗ = I, automation—an increase in

I— can reduce real wages. This happens because automation expands the range of tasks performed

by capital and contracts the set of tasks performed by labor. This last feature, combined with the

diminishing returns to the quantity of a task in the aggregate production function, (1), puts downward

12



pressure on the wage, but is counteracted by a positive effect coming from the fact that tasks are q-

complements in (1). This positive effect is weaker when σ is greater, explaining why the overall impact

of automation on the wage rate is negative when σ is large.15 Likewise, when σ is large the creation

of new complex tasks—that is, an increase in N—can reduce the rental rate.

These results are major consequences of the task-based framework developed here. With factor-

augmenting technologies, technological improvements always increase the price of both capital and

labor, but this is no longer the case when technological change alters the range of tasks performed by

both factors (see also Acemoglu and Autor, 2011).16 Furthermore, as it is well known, with factor-

augmenting technologies, whether different types of technological improvements are biased towards

one factor or the other depends on the elasticity of substitution. But this too is different in our

task-based framework, where automation is always capital-biased (that is, it reduces W/R ), while

the creation of new complex tasks is always labor-biased (that is, it increases W/R ).

A final implication of Proposition 2 is that the short-run elasticity of substitution between capital

and labor differs from the “medium-run” elasticity. The short-run elasticity, σSR, applies when the

range of tasks allocated to capital and labor is held fixed (as in the case where I∗ = I). The medium-

run elasticity, σMR, applies when the allocation of factors to different tasks responds to changes in

factor prices (as in the case where I∗ = Ĩ).17

Though Proposition 2 provides a complete characterization of the responses of relative factor prices,

factor shares and employment to automation and the creation of new complex tasks, the results are

qualitative and the explicit expressions for the partial derivatives are complicated. This problem

arises because of the aforementioned non-homotheticity in the demand for capital and labor. In two

of the special cases mentioned above, when η → 0 (the share of intermediates goes to zero), and when

ζ → 1 (intermediates represent a constant share of the production of tasks), we can provide an explicit

characterization of the equilibrium and the comparative statics. We further simplify the presentation

of these results by taking L(ω) = L (and εL = 0), so that the quasi-labor supply coincides with the

inelastic labor supply in the economy.

15We could have a negative impact of automation on wages even for moderate values of σ. For example, if σ = ζ = 1

and K/Y < 2.72, automation reduces the marginal product of labor.
16For instance, with a constant returns to scale production function and two factors, capital and labor are

q−complements. Thus, capital-augmenting technologies always increases the marginal product of labor . To see this, let

F (AKK,ALL) be such a production function. Then W = FL, and
dW
dAK

= KFLK = −LFLL > 0 (because of constant

returns to scale).
17Another noteworthy corollary of this proposition is that a long-run negative association between capital accumulation

and the labor share is not sufficient to conclude that σ—the elasticity of substitution between labor and capital—is above 1

(e.g., as argued by Karabarbounis and Neiman, 2014). This reasoning is valid only when technology is factor-augmenting,

but not when the allocation of tasks to factors is endogenous. In particular, when automation responds to an increase in

the capital stock, we could have a situation in which capital accumulation reduces the labor share, regardless of whether

σ ≶ 1. For example, when σ = ζ = 1 and I∗ = I , as we show in Corollary 1, factor shares in our model are entirely

independent of σ, and just depend on the extent of automation and the creation of new tasks.
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In both of these special cases we obtain a revealing expression for aggregate output:

Y =


(I∗ −N + 1)

1
σ̂K

σ̂−1
σ̂ +

(∫ N

I∗
γ(i)σ̂−1di

) 1
σ̂

L
σ̂−1
σ̂




σ̂
σ̂−1

, (10)

where σ̂ ≡ η + (1− η)σ (which also implies that when η → 0, we have σ̂ = σ).

This expression emphasizes that, in these special cases, output is a constant elasticity of substi-

tution aggregate of capital and labor (with the short-run elasticity of substitution between capital

and labor, σSR, simply being equal to σ̂). Critically, the distribution parameters are endogenous and

depend on the state of the two types of technologies in the economy. Indeed, automation increases

the share of capital and reduces the share of labor in this aggregate production function, while the

creation of new complex tasks does the opposite.

In these cases, the relative demand for labor can be obtained directly by differentiating (10):

lnω =

(
1

σ̂
− 1

)
lnK +

1

σ̂
ln

(∫ N
I∗ γ(i)

σ̂−1di

I∗ −N + 1

)
. (11)

In these two special cases, equation (11) provides a more explicit characterization of the compar-

ative statics derived in Proposition 2.

Corollary 1 Suppose η → 0 or ζ → 1. Then, there exists a unique equilibrium, and

• If I∗ = I < Ĩ:

d lnω =

(
1

σ̂
− 1

)
d lnK +

1

σ̂

[
γ(N)σ̂−1

∫ N

I∗
γ(i)σ̂−1di

+
1

I∗ −N + 1

]
dN −

1

σ̂

[
γ(I∗)σ̂−1

∫ N

I∗
γ(i)σ̂−1di

+
1

I∗ −N + 1

]
dI.

• If I∗ = Ĩ < I:

d lnω =

(
1

σ̂ + Λ/εγ
− 1

)
d lnK +

1

σ̂ + Λ/εγ

[
γ(N)σ̂−1

∫ N
I∗ γ(i)

σ̂−1di
+

1

I∗ −N + 1

]
dN,

where

Λ ≡
γ(I∗)σ̂−1

∫ N
I∗ γ(i)

σ̂−1di
+

1

I∗ −N + 1
> 0,

and σ̂ ≡ η + (1− η)σ.

In this corollary, the difference between the short-run and the medium-run elasticity of substitution

can be seen quite clearly: σSR = σ̂, and σMR = σ̂+Λ/εγ . Moreover, the effect of shifts in technology

are the same as in Proposition 2.
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3 Dynamics, Balanced Growth and the Productivity Effect

In this section, we extend our model to a dynamic economy in which the evolution of the capital stock

is determined by the saving decisions of a representative household. We then investigate the conditions

under which the economy admits a balanced growth path (BGP), where output, the capital stock and

wages grow at a constant rate. We conclude by discussing the long-run effects of automation on wages,

the labor share and employment, and by highlighting an important “productivity effect,” which stems

from capital accumulation and creates a force from automation towards higher wages.

3.1 Balanced Growth

In order to ensure balanced growth, we need to put more structure on the comparative advantage

schedule. Specifically, because balanced growth is driven by technology, and in this model sustained

technological change comes from the creation of new complex tasks, constant growth requires the

productivity gains from new tasks to be exponential:

γ(i) = eAi with A > 0. (12)

We impose this functional form in the remainder of the paper.18 We also impose a simplified version

of Assumption 1 under this functional form:

Assumption 1′: One of the following three conditions are satisfied:

1. e−(2+2σ+η)A > |σ − ζ|, or

2. ζ → 1, or

3. η → 0.

We start by assuming exogenous paths for technological change, given by {I(t), N(t)}, and we

define

n(t) ≡ N(t)− I(t)

as a summary measure of the state of technology. Automation reduces n(t), and conversely, as more

new complex tasks are created, n(t) increases. We simplify the discussion and notation by assuming

that I∗(t) = I(t), so that newly automated tasks are immediately produced with capital. We discuss

the conditions that ensure I∗(t) = I(t) in Proposition 3 below.

Let {I(t), N(t),K(t)} denote the path of the state variables: technology and capital. Also, let

{R(t),W (t), Y (t), C(t)} denote the path of factor prices, the equilibrium output, and the representative

18As usual we could have imposed this functional form only asymptotically, but we simplify the analysis and exposition

by imposing it at all times.

Notice also that in this dynamic economy, as in our static model, the productivity of capital is the same in all automated

tasks. This does not, however, imply that any of the previously automated tasks can be used regardless of N . As N

increases, as emphasized by equation (1) and in footnote 10, the set of feasible tasks shifts to the right, and only tasks

above N − 1 remain compatible with and can be combined with those currently in use.
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household’s consumption at each period. We assume that the representative household’s preferences

over consumption paths, {C(t)}, are given by
∫ ∞

0
e−ρtC(t)1−θ − 1

1− θ
dt. (13)

The resource constraint of the economy takes the form

K̇(t) = Y (t)− C(t)− δK(t)− ψµ

∫ N

N−1
q(i, t)di,

where Y (t) continues to be given by (1), and δ is the depreciation rate of capital. Recall also that ψµ,

with µ ∈ [0, 1], parametrizes the marginal cost of producing intermediates (we maintain an exogenous

markup of 1− µ ≥ 0 for intermediate goods, which plays no important role until the next section).

We characterize the equilibrium in terms of the normalized variables y(t) ≡ Y (t)/γ(I(t)), k(t) ≡

K(t)/γ(I(t)), and c(t) ≡ C(t)/γ(I(t)). We also define two relevant normalizations for wages: wI(t) ≡

W (t)/γ(I(t)), which is the effective wage at the least complex task that has not yet been automated,

and wN (t) ≡W (t)/γ(N(t)), which is the effective wage at the newest, most complex task. Finally, as

in our static model, R(t) denotes the rental rate, and the interest rate on savings is r(t) = R(t)− δ.

At each point in time, technology and capital, n(t) and k(t), fully determine output and factor

prices as in the static equilibrium. Specifically, the market clearing conditions for capital and labor,

(7) and (8), and the ideal price index condition, (9), give the following equilibrium conditions:

y(t)(1− n(t))cu(R(t))ζ−σR(t)−ζ = k(t),

y(t)

∫ n(t)

0
γ(i)ζ−1cu

(
wI(t)

γ(i)

)ζ−σ

wI(t)
−ζdi = Ls

(
wI(t)

R(t)k(t)

)
,

(1− n(t))cu(R(t))1−σ +

∫ n(t)

0
cu
(
wI(t)

γ(i)

)1−σ

di = 1

Proposition 1 coupled with Assumption 1′ guarantees that the equilibrium rental rate can be

uniquely written as R(t) = R(n(t), k(t)). We also denote the normalized output net of intermediate

costs by fE(n(t), k(t)) and the growth rate of γ(I(t)) by g(t).

Using this notation, we can describe the dynamic equilibrium of our model as paths for c(t) and

k(t) that satisfy the Euler equation,

ċ(t)

c(t)
=

1

θ
(RE(n(t), k(t)) − δ − ρ)− g(t), (14)

the resource constraint,

k̇(t) = fE(n(t), k(t)) − c(t)− (δ + g(t))k(t), (15)

and the household’s transversality condition,

lim
t→∞

(k(t) + Π(t))e−
∫ t
0 (ρ−(1−θ)g(s))ds = 0, (16)

where Π(t) denotes the (normalized) net present value of corporate profits, which results from the

presence of the monopoly markup. The dynamic equilibrium is defined for any exogenous path for

technology, which is fully summarized by {n, g}.
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Consider an exogenous path for technology in which İ = Ṅ = ∆ so that both automation and

the creation of new complex tasks advance in tandem. Along such a path n(t) → n and g(t) → A∆.

Figure 4 presents the phase diagram for the system of differential equations (14) and (15) in this case,

which fully determines the structure of the dynamic equilibrium. The structure of the above system

resembles the standard neoclassical growth model, except that we use a different normalization and

the exogenous markups on intermediate goods introduce a wedge between R and ∂fE/∂k.

Figure 4: Balanced growth path and dynamic equilibrium when technology is exogenous and satisfies n(t) → n and

g(t) → A∆.

We define a BGP as an allocation in which Y (t), C(t),K(t) and W (t) grow at a constant rate

and R(t) is constant. The next proposition characterizes the conditions under which the asymptotic

behavior of this economy converges to a BGP.

Proposition 3 (Dynamic equilibrium with exogenous technological change) Suppose that As-

sumption 1′ holds. There exists a threshold ρ such that for ρ > ρ, we have:

1. There exists n such that for n(t) < n, we have I∗(t) < I(t), while for n(t) ≥ n, I∗(t) = I(t).

2. Suppose that there exists T such that for t ≥ T , n(t) ∈ [n, 1]. Then a BGP exists (and is unique)

if and only if asymptotically Ṅ = İ = ∆, so that limt→∞ n(t) = n. In this BGP, I∗(t) = I(t);

Y (t), C(t),K(t) and W (t) grow at a constant rate g = A∆; and R is constant.

3. Suppose instead that there exists T such that for t ≥ T , n(t) < n. Then a BGP exists (and is

unique) if and only if asymptotically Ṅ = ∆. In this BGP I∗(t) < I(t) and N(t) − I∗(t) → n;

Y (t), C(t),K(t) and W (t) grow at a constant rate g = A∆; and R is constant.

4. Moreover, given such a path of technological change (with n(t) ∈ [n, 1] or n(t) ≤ n for all t ≥ T ),

the dynamic equilibrium is unique. Starting from any level of capital the economy converges to

the unique BGP.
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Proof. See Appendix A.

The key implication of Proposition 3 is that balanced growth results from the simultaneous process

of automation and the creation of new complex tasks. But the proposition also highlights that this

process needs to be “balanced” itself: the two types of technologies need to advance at the same rate

so that limt→∞ n(t) = n ≥ n (in the more interesting case where automated tasks are immediately

produced with capital). Concerns about automation we cited in the Introduction notwithstanding,

the proposition shows that a process of continuous automation is compatible with balanced growth.

The additional requirement in Proposition 3, that ρ > ρ, ensures that the long-run equilibrium

interest rate is not too close to 0. Provided that this is case, newly created complex tasks will be

immediately utilized and produced with labor. If, instead, ρ were close to zero, capital would be so

cheap that new complex tasks might remain unutilized (at least for a while) in a BGP. Thus, the

condition ρ > ρ defines the relevant range of parameters for our investigation (and it is in this range

that n is well-defined). Appendix A also characterizes the equilibrium when ρ < ρ.19

Proposition 3 can be further illustrated and strengthened in the two special cases considered in

the previous section; η → 0 or ζ → 1. Suppose that, as required in part 2 of the proposition,

we have Ṅ = İ = ∆. The aggregate production function in equation (10) can be simplified to

Y (t) = f(K(t), B(t)L), with

B(t) =

(∫ N(t)

I(t)
γ(i)σ̂−1di

) 1
σ̂−1

= eAI(t)

(
eA(σ̂−1)n(t) − 1

Aσ̂ − 1

) 1
σ̂−1

,

so that B(t) grows at a rate A∆. This example shows that the net effect of balanced automation and

the creation of new technologies is to augment labor. Intuitively, technology becomes purely labor

augmenting on net because labor and capital perform a fixed share of tasks, and the creation of new

tasks directly increases the productivity of labor. This special case of our model also provides a direct

connection between Proposition 3 and Uzawa’s Theorem, which implies that balanced growth requires

a representation of the production function with purely labor-augmenting technological change (e.g.,

Acemoglu, 2009, or Grossman, Helpman and Oberfield, 2016).

3.2 The Productivity Effect

We now study the dynamic implications of a permanent decline in n(t), which in this dynamic setup

corresponds to automation running ahead of the creation of new tasks. Because in the short run capital

is fixed, the short-run implications of this change in technology are the same as in our static analysis

in the previous section. However, over the long run, capital accumulation responds to the shift in

technology in such a way as to keep the interest rate constant at its initial level, and in consequence,

all the productivity gains from automation will accrue to the relatively inelastic factor, labor. Thus,

19The conditions ρ > ρ and limt→∞ n(t) ≥ n are not restrictive. Focusing on a standard annual parametrization of our

model with θ = 1, δ = 0.06, g = 0.016, σ = 0.5, ζ = 0.2 (so that the elasticity of substitution between capital and labor

lies between 0.5 and 0.2), A = 2, η = 0.5 and ψ = 0.9, we obtain ρ = 0.012, so that the standard value of the discount

rate, ρ = 0.05, is comfortably above this threshold. These parameters also imply n = 0.56.
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the dynamic economy underscores the role of another economic force, which we call the productivity

effect : automation, by enabling the substitution of the cheaper capital for labor, increases productivity

and thus the demand for labor and wages.20 The productivity effect has been present in our analysis

so far (in particular, it is because of this effect that automation need not reduce real wages in the

short run), but as we show next, due to the induced capital accumulation, it becomes more powerful

in the long run.

The next proposition characterizes the long-run impact of automation on factor prices and shares.

Proposition 4 (Long-run comparative statics) Suppose that technology evolves exogenously and

satisfies limt→∞ n(t) = n, Assumption 1′ holds, and ρ > ρ (where ρ was introduced in Proposition 3).

Also, let n be the threshold introduced in Proposition 3. Then we have:

1. For n < n, small changes in n do not affect the asymptotic behavior of the economy.

2. For n > n, we have that:

• The long-run rental rate R = limt→∞R(t) is equal to ρ+ δ + θg, and is thus independent

of the extent of automation given by n. The capital stock adjusts in the long run so that

RE(n, k) = ρ+ δ + θg.

• Long-run effective wages, wI(n) = limt→∞wI and wN (n) = limt→∞wN , depend only on n.

Moreover, wI(n) is increasing and wN (n) is decreasing in n.

• The long-run labor share, ω, and the employment rate are increasing in n.

Proof. See Appendix A.

This proposition illustrates the role of the productivity effect, and why this effect becomes more

important in the long run. In the BGP, capital adjusts to keep the rental rate fixed at R = ρ+ δ+ θg,

and thus independent of the extent of automation summarized by n. In consequence, although in the

short run the productivity gains from both technologies accrue to both factors, in the long run they

only accrue to the inelastic factor—labor.

More specifically, the long-run behavior of wages is fully determined by the ideal price index

condition, (9), which we can rewrite as

1 = (1−n)cu(ρ+ δ+ θg)+

∫ n

0
cu
(
wI

γ(i)

)1−σ

di = (1−n)cu(ρ+ δ+ θg)+

∫ n

0
cu (wNγ(i))

1−σ di. (17)

Taking derivatives, we obtain

w′
I(n) =AwI(n)

cu(ρ+ δ + θg)1−σ − cu(wN (n))1−σ

cu(wI(n))1−σ − cu(wN (n))1−σ
> 0, and

w′
N (n) =AwN (n)

cu(ρ+ δ + θg)1−σ − cu(wI(n))
1−σ

cu(wI(n))1−σ − cu(wN (n))1−σ
< 0. (18)

20This is similar to the productivity or efficiency effect in models of offshoring such as Grossman and Rossi-Hansberg

(2008), Rodriguez-Clare (2010) and Acemoglu, Gancia and Zilibotti (2015), which results from the substitution of cheaper

foreign labor for domestic labor in certain tasks.
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The signs of w′
I(n) and w′

N (n) can be derived from the following observations: since we are in the

region in which ρ > ρ and n > n, we have wI(n) > ρ + δ + θg > wN (n) (which is equivalent to both

types of technologies being immediately utilized). These inequalities then imply that w′
I(n) > 0 and

w′
N (n) < 0.

The behavior of the effective wages also implies that, following a permanent increase in I(t) (to

I(t) + ν with ν > 0 for all t ≥ T ), W (t) will eventually rise above its initial trajectory. Likewise,

the creation of new complex tasks increases wages in the sense that a permanent increase in N(t) (to

N(t) + ν with ν > 0 for all t ≥ T ) will increase W (t) above its initial path.21

Figure 5: Dynamic behavior of wages following a permanent increase in automation.

In summary, although the results from the static model continue to apply in the short run when

capital does not adjust, because of the productivity effect, the potential negative impact of automation

on the equilibrium wage level disappears in the long run. This is illustrated in Figure 5, which plots

the dynamic behavior of the equilibrium wage, W , following a permanent decline in n. Even though

the equilibrium wage may fall in the short run following a surge in automation (if σ is sufficiently large,

as established in Proposition 2), it necessarily increases in the long run because of the induced capital

accumulation and the productivity effect.22 The duration of the period with stagnant or depressed

wages depends on θ, which determines the speed of capital adjustment.23

21The first claim follows because W (t) → wN(n)γ(N(t)), and due to the productivity effect, automation raises wN (n).

The second claim follows because W (t) → wI(n)γ(I(t)), and again due to the productivity effect, the creation of new

complex tasks raises wI(n).
22The expression for wI(n) also shows that when wI(n) ≈ R—which corresponds the case where productivity gains from

automation are modest—an increase in automation always reduces wages in the short run and leaves them approximately

unchanged in the long run. This is because, in this case, productivity gains from automation are limited, and thus the

long-run benefit of the inelastic factor, labor, is also limited.
23This comparative static serves as an alternative explanation for what historian Robert C. Allen termed the “Engel’s

pause;” the period covering the first half of the 19th century in Britain (see Allen, 2009). During this period, real wages

stagnated while output per worker and capital profits increased. Wages started increasing in the second half of the 19th

century. These patterns are consistent with the dynamic predictions of our model following a wave of automation.
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Importantly, Proposition 4 also establishes that, while the wage rate increases in the long run with

automation (a decrease in n), the long-run labor share and employment decrease with automation.

In fact, Appendix B shows that, following a wave of automation, if σSR < 1, capital accumulation

mitigates the short-run response of the labor share but does not fully offset it; while, if σSR > 1, capital

accumulation further depresses the labor share. In light of these results, the recent decline in the labor

share and the employment to population ratio can be interpreted as a consequence of automation

outpacing the creation of new labor-intensive tasks over the last two decades. This phenomenon could

be accompanied by stagnant or lower wages in the short-run while capital adjusts to its new BGP

level.

4 Full Model: Tasks and Endogenous Technologies

The previous section established the existence of a BGP under the assumption that Ṅ = İ = ∆. But

why should these two types of technologies advance at the same rate? This is the question at the

center of our paper, and to answer it, we now develop our full model, which endogenizes the pace at

which automation and the creation of new complex tasks proceeds.

4.1 Endogenous and Directed Technological Change

We endogenize technological change by allowing new intermediates, which embody the technologies

that automate existing tasks or create new complex tasks, to be introduced by technology monopolists.

We assume that successful innovations always achieve automation or the creation of new tasks in the

order of the intermediate indices, i ∈ [0,∞). As a consequence, automation and the creation of new

complex tasks correspond, respectively, to an increase in I and to an increase in N . We continue to

assume that all intermediates, including those that have just been invented, can be produced at the

fixed marginal cost of µψ, and that the fringe of competitive firms forces the technology monopolists

to price intermediates at ψ, which implies an exogenous per-unit profit of (1− µ)ψ.

In this section, we adopt a structure of intellectual property rights whereby automating or replacing

an existing task is viewed as an infringement of the patent of the technology previously used to produce

that task. Consequently, a firm automating a task must license or buy the relevant patent from the

technology monopolist that supplied the intermediate good used in combination with labor to produce

this task. Similarly, a firm introducing a new complex task, which is creating a new more complex

version of an existing task, will have to obtain the relevant patent from the previous technology

monopolist of that task. We finally assume that both purchases take place with the new inventors

making a take-it-or-leave-it offer to the holder of the existing patent.

This game form ensures that each technology monopolist will receive the same flow of revenues

regardless of whether its own intermediate is replaced or not—either as profits when he is operating

or as payments for its patent when he is replaced. Moreover, because new entrants must compensate

the incumbent technology monopolists that they replace, our patent structure removes the creative

destruction of profits, which is present in other models of quality improvements under the alternative
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assumption that new firms do not have to respect the intellectual property rights of the technology on

which they are building (e.g., Aghion and Howitt, 1992; Grossman and Helpman, 1991). In Section

6, we explore how our main results change when the intellectual property rights regime allows for the

creative destruction of profits.

We assume that innovation of both types requires scientists.24 There is a fixed supply of S scientists,

which will be allocated to automation (SI(t) ≥ 0) or the creation of new tasks (SN (t) ≥ 0),

SI(t) + SN (t) ≤ S.

When a scientist is employed in automation, she automates κI tasks per unit of time, and receives

a wage W S
I . When she is employed in the creation of new tasks, she creates κN new tasks per unit

of time, and receives a wage W S
N . However, there is also a comparative advantage structure to the

allocation of scientists in that the cost of effort for scientists depends on their exact skills and the

type of technology on which they are working. More specifically, we assume that when working in

automation, scientist i incurs a cost of χi
IY (t)/λ, and when working in the creation of new tasks,

she incurs a cost of χi
NY (t)/λ. These costs are multiplied with aggregate output in the economy to

ensure balanced growth,25 while λ > 0 parameterizes the importance of wage income for scientists

relative to the effort cost. We assume that the distribution of χi
N − χi

I among scientists is given by a

continuous and strictly increasing distribution function G over a support containing 0 as an interior

point. For notational convenience, we also adopt the normalization G(0) = κN

κI+κN
. This formulation

ensures that the allocation of scientists responds to the relative profitability of innovation in the two

sectors in a “smooth” fashion, avoiding discontinuous shifts which otherwise complicate the analysis of

dynamics. As λ→ ∞, we recover these discontinuous shifts, while in the case where λ = 0, a constant

fraction κN

κI+κN
of scientists will work on automation regardless of the profitabilities of the two types

of innovation (thus making technological change “undirected”).

The productivity of scientists into two types of innovations, together with their comparative ad-

vantages, determine their wages in these two sectors, W S
I and W S

N . Since comparative advantage only

affects the costs of effort and all scientists have the same productivity in the two sectors, the innovation

possibility frontier of the economy can be summarized as

İ(t) = κISI(t), and Ṅ(t) = κNSN (t). (19)

4.2 Equilibrium with Endogenous Technological Change

To characterize the equilibrium with endogenous technological change, we need to compute the value

functions that determine the net present discounted value accruing to monopolists from automation

24Focusing on an innovation possibilities frontier using just scientists, rather than variable factors such as in the lab-

equipment specifications (see Acemoglu 2009), is convenient because it enables us to focus on the direction of technological

change—and not on the overall amount of technological change—especially when we turn to the welfare analysis in the

next section.
25Alternatively, these costs could be in terms of the scientists’ wage with very similar implications.

Throughout we also assume that the costs of effort are sufficiently low that all scientists will work either in automation

or the creation of new tasks.
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and the creation of new complex tasks. We denote these value functions by VI(t) and VN (t), respec-

tively. More specifically, VI(t) is the value of automating the task at i = I(t)+ (i.e., the highest-indexed

task that has not yet been automated, or more formally i = I(t)+ε for ε arbitrarily small and positive).

Likewise, VN (t) is the value of a new technology creating a more complex task at i = N(t)+.

An equilibrium with endogenous technology is given by paths {K(t), N(t), I(t)} for capital and

technology (starting from initial values K(0), N(0), I(0)) paths {R(t) ,W (t),W S
I (t),W

S
N (t)} for factor

prices, paths {VN (t), VI(t)} for the value functions of technology monopolists, and paths {SN (t), SI(t)}

for the allocation of scientists such that all markets clear, all firms, including prospective technology

monopolists, maximize profits, the representative household maximizes its utility, and N(t) and I(t)

evolve endogenously according to equation (19).

We start by characterizing the value functions for technology monopolists. Suppose that in this

equilibrium n(t) > n̄, so that I∗(t) = I(t) and new automated tasks start being produced with capital

immediately. The flow profits accruing to a technology monopolists selling an intermediate good q(i)

for an automated task i are

πI(t, i) = (1− µ)

(
η

1− η

)ζ

ψ1−ζY (t)cu(R(t))ζ−σ. (20)

Intuitively, these profits come from the ability of firms to produce task i using capital, which is em-

bodied in the intermediate good provided by the technology monopolist. Similarly, the flow profits

accruing to a technology monopolist that sells an intermediate good q(i) for a non-automated tech-

nology (for labor with productivity productivity γ(i) in the corresponding task) are

πN (t, i) = (1− µ)

(
η

1− η

)ζ

ψ1−ζY (t)cu
(
W (t)

γ(i)

)ζ−σ

. (21)

It is then straightforward to compute the offer that a monopolist with a new technology (embodied

in its intermediate good) automating task I+ at time t needs to make to the firm currently holding

the patent for the (labor-intensive) technology of that intermediate. This offer will be given by the

net present discounted value of the profit streams, discounted using the path of future interest rates,

that the existing patent-holder would obtain

(1 − µ)

(
η

1− η

)ζ

ψ1−ζ

∫ ∞

t
e−
∫ τ
0 (R(s)−δ)dsY (τ )cu

(
W (τ)

γ(I)

)ζ−σ

dτ.

Similarly, the offer that a monopolist with a new technology (embodied in its intermediate good)

allowing the creation of a new complex task N+ at time t needs to make to the firm currently holding

the patent for the old technology for task N − 1 (which is necessarily being produced with capital) is

(1− µ)

(
η

1− η

)ζ

ψ1−ζ

∫ ∞

t
e−
∫ τ
0 (R(s)−δ)dsY (τ)cu (R(τ))ζ−σ dτ.

Since these are take-it-or-leave-it offers, the best response of the patent-holders is to accept them.26

26This expression is written by assuming that the patent-holder will also turn down subsequent less generous offers

in the future. Writing it using dynamic programming and the one-step ahead deviation principle leads to the same

conclusion.
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Thus, we can compute the values of innovating and becoming a technology monopolist as:

VI(t) =MY (t)

∫ ∞

t
e−
∫ τ
t
(R(s)−δ−g(s))ds

(
cu (R(τ))ζ−σ − cu

(
wI(τ )e

∫ τ
t
g(s)ds

)ζ−σ
)
dτ , (22)

and

VN (t) =MY (t)

∫ ∞

t
e−
∫ τ
t
(R(s)−δ−g(s))ds

(
cu
(
wN (τ)

γ(n(τ ))

γ(n(t))
e
∫ τ
t
g(s)ds

)ζ−σ

− cu (R(τ))ζ−σ

)
dτ , (23)

withM = (1−µ)
(

η
1−η

)ζ
ψ1−ζ . In what follows, define the normalized value functions vI ≡ VI(t)/Y (t)

and vN ≡ VN (t)/Y (t), which will be convenient to work with, especially since as t→ ∞ they will only

depend on n.27

The expressions for the value functions, VI(t) and VN (t), share a common form: they subtract

the lower cost of producing a task with the factor for which the new technology is designed from the

higher cost of producing the same task with the older technology. Because our structure of intellectual

property rights removes the creative destruction effects, the profits from introducing new intermediates

always depend on the alternative cost of producing a task with the older technology.

Competition among prospective technology monopolists to hire scientists implies that, when em-

ployed in automating existing tasks, a scientist earns a wage of W S
I (t) = κIVI(t). Likewise, when

employed in creating new complex tasks, a scientist earns a wage of W S
N (t) = κNVN (t). These com-

bined with the costs of effort specified above imply that the numbers of scientists working in automation

and the creation of new tasks are

SI(t) = SG

(
κIvI − κNvN

λ

)
∈ [0, S], SN (t) = S

[
1−G

(
κIvI − κNvN

λ

)]
∈ [0, S]. (24)

Intuitively, whenever one of the two types of innovation is more profitable, more scientists will be

allocated to that activity. Our formulation further implies that the allocation of scientists to the

two different types of innovation is independent of the level of aggregate output, and guarantees that

ṅ(t) > 0 if and only if κNvN > κIvI , and ṅ(t) < 0 if and only if κNvN < κIvI .

Using the same normalizations as in the previous section, we can represent the equilibrium with

endogenous technology by a time path of the tuple {c, k, n, SI , vI , vN} such that:

• Consumption satisfies the Euler equation (14) coupled with the transversality condition in equa-

tion (16) (where in addition we can note that the net present value of corporate profits in equation

(16) is simply Π(t) = IvI +NvN ).

• Capital satisfies the resource constraint in equation (15).

• The gap between automation and the creation of new tasks, n(t) = N(t)− I(t), satisfies:

ṅ(t) = κNS − (κI + κN )G

(
κIvI − κNvN

λ

)
S.

This implies that ṅ = 0 if and only if κIvI = κNvN .

27To avoid confusion, and with a slight abuse of notation, we always write vI and vN as functions of n (and never

explicitly as functions of time).
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• The allocation of scientists satisfies the allocation rule in equation (24).

• The growth rate of γ(I(t)) and of aggregate variables is g(t) = AκISI(t).

• The value functions that determine the allocation of scientists, vI(t), vN (t), are given by (22)

and (23).

A BGP is defined as in Proposition 3, as an allocation in which the normalized variables c(t), k(t), n(t)

and the rental rate R(t) are constant—except that now n will be determined endogenously. The next

proposition gives another one of the main results of the paper. It establishes conditions for the exis-

tence, uniqueness and asymptotic stability of a BGP in which there are both types of technological

changes.

Proposition 5 (Equilibrium with endogenous technological change) Suppose that σ > ζ and

Assumption 1′ holds. Then there exist ρ and A such that for ρ > ρ and A < A (where ρ is as defined

in Proposition 3), the following are true:

1. There exists κ such that for κI

κN
> κ, there is a BGP, where Ṅ = İ = κIκN

κI+κN
S, and Y,C,K

and W grow at the constant rate g = A κIκN

κI+κN
S, and the rental rate, R, the labor share and

employment are constant. Along this path, we have N(t) − I(t) = nD, with nD determined

endogenously from the condition κNvN = κIvI , and satisfying nD ∈ (n̄, 1), where n̄ is as defined

in Proposition 3. In addition, there exists ρ ≥ ρ such that if ρ > ρ, the BGP is unique.

2. Suppose that κI

κN
> κ and ρ > ρ so that the BGP is unique. When θ = 0, the dynamic equi-

librium is globally (saddle-path) stable. Moreover, there exists A ≤ A such that when A < A,

for any value of θ, the dynamic equilibrium is unique in the neighborhood of the BGP and is

asymptotically (saddle-path) stable.

3. If, on the other hand, κI

κN
< κ, we have κNvN > κIvI and there exists a globally stable BGP

where all scientists are allocated to create new labor-intensive tasks. Therefore, asymptotically

n→ 1, and the economy converges to a BGP in which all tasks are produced by labor and long-run

growth is driven by the creation of new tasks.

4. For ρ < ρ, there exists an asymptotically stable BGP where κNvN < κIvI , all tasks are produced

with capital, and long-run growth is propelled by capital accumulation.

Proof. See Appendix A.

The first important result contained in this proposition (part 1) is the existence of a BGP and its

uniqueness (when ρ > ρ). The second critical result, established in part 2 of the proposition, is that

this BGP is asymptotically stable and also globally stable when θ = 0 (so that preferences have an

infinite elasticity of intertemporal substitution). This result implies that there are powerful market

forces pushing the economy towards the BGP.
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These results are established under several conditions. First, we require σ > ζ. This condition en-

sures that innovations are directed towards technologies that allow firms to produce tasks by using the

cheaper (or more productive) factors. The profitability of introducing an intermediate that embodies

a new technology will depend on the demand for the intermediate good. As the factor that needs

to be combined with the intermediate to produce a given task (labor or capital) becomes cheaper,

two effects come into play. First, the decline in costs allows firms to scale up their production, which

increases the demand for the intermediate good. The extent of this positive scale effect is regulated by

the elasticity of substitution σ: the greater is σ, the more powerful is this effect directing innovation

towards technologies that work with cheaper factors. However, there is a countervailing force as well:

as a factor becomes cheaper, it is substituted for the intermediate it is combined with, reducing the

demand for the intermediate good that embodies the new technology. This countervailing substitution

effect is regulated by the elasticity of substitution ζ: the greater is ζ, the more powerful is this effect

discouraging innovations towards technologies that work with cheaper factors. The condition σ > ζ

guarantees that the former, positive effect dominates, so that prospective technology monopolists have

an incentive to introduce technologies that allow firms to produce tasks more cheaply. When the op-

posite holds and ζ > σ, we could have a situation in which technologies that work with more costly

factors are more profitable. Pathologically, in this case the net present discounted values from innova-

tion would be negative.28 The condition σ > ζ is not only theoretically necessary in our model but is

also empirically plausible. Because intermediates embody the technology that allows firms to produce

with certain factors, we expect the elasticity of substitution between factors and intermediates, ζ, to

be very low, so that they are highly complementary. The condition σ > ζ thus ensures that, quite

intuitively, intermediates are gross complements to factors they work with.

Second, we require that A < A to guarantee that the growth rate of the economy is not too high.

If the growth rate is above the threshold implied by A, the creation of new tasks is discouraged (even

if current wages are low) because firms anticipate that wages will grow very rapidly, which will reduce

the future profitability of these labor-intensive tasks. This requirement is strengthened to A < A in

the second part of the proposition when we consider local stability, which allows us to use Taylor

approximations of the value functions.29

Third, as in Proposition 3, parts 1-3 of the proposition require ρ > ρ. As discussed in that context,

this assumption ensures that the interest rate is not too close to 0, which in turn guarantees that newly

created complex tasks will immediately start being used with labor. The proposition further shows

that when ρ > ρ, and the other conditions in the proposition are satisfied, the long-run equilibrium

endogenously involves n > n̄. In this region there are productivity gains from automating tasks, and

therefore a demand for automation. Instead, when n < n̄, prospective monopolists have no incentives

28Take, for example, (22). Becaus a task performed by labor is being automated, cu (R(τ)) < cu
(

w(τ)
γ(I(t))

)
, and hence

if we had ζ > σ, the profit stream would be negative. Thus, in order to ensure positive incentives for innovation, the

condition σ > ζ is imposed even for the existence result in part 1 of the proposition.
29The restriction that A < A also ensures that the net present discounted value of the representative household is

finite and thus the transversality condition is satisfied. Moreover, this restriction also guarantees that the condition from

Assumption 1′, e−(2+2σ+ζ)A > |σ − ζ|, holds.
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to automate tasks.

The economic forces ensuring the stability of the BGP in parts 1 and 2 of the proposition are intu-

itive. In a BGP, the normalized value of different types of innovations converges to vI(n) = limt→∞
VI (t)
Y (t)

and vN (n) = limt→∞
VN (t)
Y (t) . These limiting functions, vI(n) and vN (n), are fully determined by the

technology gap n, as can be can be seen from equations (22) and (23). Moreover, in a BGP we must

have κIvI(n
D) = κNvN (nD) so that ṅ = 0, which implies that both technologies should advance in

parallel. When κIvI(n) > κNvN (n), we instead have ṅ < 0, and when κIvI(n) < κNvN (n), we have

ṅ > 0. Neither of these possibilities is consistent with balanced growth.

Figure 6 draws the net present discounted value (normalized by output) of allocating scientists

to creating new complex tasks or to automation when σ > ζ, ρ > ρ and A < A. The figure shows

that, in the region where n > n̄, as more tasks are automated (as n decreases), the value of additional

automation, vI(n), decreases. This is the key economic force that generates stability in our model:

greater automation reduces the effective wage in the next task to be automated, wI(n), relative to the

interest rate (which is fixed and independent of technology). Consequently, the (normalized) long-run

value of automating additional tasks declines with automation.

Figure 6: Determination of nD in steady state.

Nevertheless, this property is not sufficient for the stability or uniqueness of a BGP. Figure 6

also shows that, asymptotically, an increase in automation (a decrease in n) reduces the value of

creating new complex tasks, vN (n): because of the productivity effect, the effective wage paid in the

most complex tasks, wN (n), also increases with automation. As a result, the (normalized) value of

creating new complex tasks declines with automation, which generates a force towards instability and

multiplicity.30 The condition ρ > ρ guarantees that the productivity effect of automation on the wage

wN (n) is small, or equivalently, that the induced capital accumulation does not reverse the direction in

30The intuition for the productivity effect can be alternatively viewed as follows: automation induces the accumulation

of capital, which by raising wages in the long run makes the creation of new labor-intensive tasks less profitable. Thus,

the induced capital accumulation crowds out some of the self-correcting forces that stem from the response of technology

to changes in factor prices. The condition ρ > ρ ensures that this indirect capital accumulation effect does not dominate
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which subsequent technological improvements respond to a wave of automation. In contrast, when this

condition fails and ρ ≤ ρ, we could have situations in which, asymptotically, an increase in automation

raises the wage wN (n) so much that it discourages the introduction of new more complex tasks, paving

the way to multiple steady states in our baseline model.

Observe also that the conditions we have discussed so far are not sufficient to guarantee that

the curves for κIvI(n) and κNv(n) intersect. The former always starts below the latter as shown

in Figure 6, but may always remain below it. The last condition in Proposition 5, that κI/κN

is sufficiently large, ensures that such an intersection takes place and thus there exists a unique

“interior” BGP. This discussion then immediately leads to part 3 of the proposition, which establishes

that when this condition does not hold, the long-run equilibrium will be one in which only new tasks

are developed, and there is no automation. BGP is now achieved by continuous creation of more

productive tasks (replacing older tasks), and hence, our economy in this case looks very similar to

a standard “Schumpeterian” economy with growth propelled by quality improvements (e.g., Aghion

and Howitt, 1992; Grossman and Helpman, 1991).

Finally, part 4 of the proposition shows that when ρ < ρ, we have a balanced growth path in

which all (except possibly a measure zero subset modem) of tasks are produced with capital, and the

economy grows by accumulating capital.31 This equilibrium can therefore be likened to Leontief’s

“horse equilibrium,” because it makes labor redundant. Notably, however, such an equilibrium is

possible only when the discount rate, and thus the long-run interest rate, is very low (recall from

footnote 19 that under standard values of the other parameters, ρ < ρ would require the annual

discount rate to be less than 0.012).

In summary, the critical economic force highlighted by Proposition 5 is that, differently from models

with factor-augmenting technologies, it is factor prices—not primarily the market sizes—that guide

the direction of technological change.32 Consequently, there are stronger incentives to undertake the

type of innovation that will work with the factor that has a lower effective cost.

Proposition 5 shows that shifts in technology, for example in the form of a series of new automation

technologies (corresponding to an unanticipated decline in n), will set in motion self-correcting forces.

Following such a change, there will be an adjustment process bringing the level of employment and

the labor share back to their initial BGP values. This does not, however, imply that all shocks will

leave the long-run prospects of labor unchanged. The next corollary shows that if there is a change in

the innovation possibilities frontier that makes automation easier than before, the economy will move

to a new BGP with lower employment and a lower share of labor in national income.

the direct, stabilizing effect described in the previous paragraph.
31The qualifier “except possibly a measure zero subset” is introduced, since when L(0) > 0, there will still be positive

labor supply even with very low wages, but asymptotically all of this labor will be employed in the highest-indexed task;

along the BGP, output of this task will grow by allocating additional capital there as well.

Note also that this BGP is not necessarily globally stable, because the two curves in the right panel of Figure A2 in

Appendix A may cross, in which case the interior BGP will be unstable, and there will be another locally stable BGP in

which the economy behaves as in a Schumpeterian growth model as described in part 3.
32We should also note that this does not overturn the “weak bias” results in Acemoglu (2007), since these were derived

in a setting that is general enough to nest the current environment.
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Corollary 2 Suppose that all the conditions in Proposition 5 are satisfied and there is a one-time

permanent increase in κI/κN . Then the economy converges to a new BGP with lower nD, lower

employment and a lower share of labor in national income.

This corollary follows by noting that an increase in κI/κN shifts the intersection of the curves

κIvI(n) and κNv(n) in Figure 6 to the left, leading to a lower value of nD in the BGP. This will trigger

an adjustment process in which the labor share and employment decline over time, but ultimately settle

to their new steady-state values.

Together this corollary and Proposition 5 delineate the types of changes in technology that will

trigger self-correcting dynamics: those driven by faster than usual arrival of automation technologies

will do so, while those which alter the ability of the society to create new automation technologies will

not (and thus will result in worse prospects for labor in the future).

5 Welfare

In this section we turn to an analysis of the efficiency of the equilibrium described in Proposition 5.

Our main finding is that the presence of rents for workers, as captured by our quasi-labor supply,

biases the composition of equilibrium technology towards too much automation and the creation

of too few new complex tasks (and this is in addition to other distortions that exist in models of

endogenous technology). Two complementary results illustrate this inefficiency. First, in Appendix B

we characterize the constrained efficient allocation chosen by a social planner who is subject to the

same innovation possibilities frontier, the same quasi-labor supply schedule and the constraint that

wages equal the marginal product of labor. We then show how this constrained efficient allocation can

be decentralized by taxes and subsidies. In addition to the usual wedges (taxes/subsidies) between

the social planner’s allocation and the decentralized equilibrium, workers’ rents create an additional

reason to tax automation relative to the creation of new complex tasks. Second, we show how welfare

in the decentralized equilibrium can be improved by altering the composition of R&D in the direction

of creating more new complex tasks and automating fewer of the existing ones.

Let FP (I,N,K,L) denote the aggregate output net of the costs of producing intermediates when

the level of employment is L, the capital stock is K, the state of technologies is represented by N

and I, and intermediates are priced at their marginal cost (which is the relevant net aggregate output

expression for the social planner, since she would always price all intermediates at marginal cost).

Because the level of employment is given by the quasi-labor supply L = Ls(ω), we have that in the

constrained efficient allocation the resulting marginal products of labor and capital are fully determined

by technology and capital, and we can write the resulting value of ω as ωP (I,N,K).

The constrained efficient allocation maximizes the representative household’s utility given by (13)

subject to the endogenous evolution of the state variables:

K̇(t) = FP (N(t), I(t),K(t), L(t)) − C(t)− δK(t),Ṅ(t) = κNSN (t), İ(t) = κISI(t),
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and because the planner faces the same quasi-labor supply schedule and labor demand relations, we

also have:

L(t) ≤ Ls(ωP (I,N,K)).

From the fact that the social planner maximizes (13) we can see that there is no utility loss or

opportunity cost of supplying labor; the higher wages needed to employ additional workers are “quasi

rents” (see Appendix B). Notice also that we have focused on the case in which the planner chooses

I∗(t) = I(t) (in the terminology of our previous section), so that all automated tasks are produced

immediately with capital. As in the previous section, this will be the case when ρ > ρ, since in this

case the planner will always choose to operate in the region where n > n.

We show in Appendix B that the solution to this maximization problem gives the constrained

efficient allocation and can also be used to characterize the taxes and subsidies that need to be

imposed on the decentralized equilibrium to achieve this constrained efficient allocation. In addition

to the usual taxes and subsidies to internalize monopoly markups and technological externalities, the

social planner will need to impose a tax on automation and a subsidy on the creation of new tasks

in order to combat the tendency of the decentralized equilibrium to automate excessively. Intuitively,

while the planner recognizes that automating tasks reduces employment (or creating new complex

tasks increases it) and this has a first-order effect on workers (recall that there is no utility loss or

opportunity cost of supplying labor), innovators do not internalize this externality.

Here, we demonstrate the presence of excessive automation in the decentralized equilibrium more

directly. We show that starting from a decentralized allocation, the social planner can improve the

allocation of resources by discouraging automation. The next proposition establishes this result when

ζ ≥ 1 (which includes the tractable special case of our model in which ζ → 1). We also assume that

intermediates are subsidized at the rate 1 − µ, which removes the main effect of monopoly markups,

or equivalently that µ→ 1.

Proposition 6 (Excessive automation) Suppose that ρ > ρ as in Proposition 5, Assumption 1′

holds, and ζ ≥ 1. Moreover, suppose that intermediate goods are subsidized and can be purchased at

their marginal cost (or equivalently µ → 1). Consider the decentralized equilibrium path described in

Proposition 5, and which converges to a BGP with N(t) − I(t) → nD). Then there exists a feasible

allocation with nP (t) ≥ n(t) and limt→∞ nP (t) > nD that achieves strictly greater welfare than the

decentralized equilibrium.

Proof. See Appendix B.

This proposition establishes that departing from the equilibrium in the direction of discouraging

automation and encouraging the creation of new complex tasks improves welfare. Intuitively, because

of the gap between the equilibrium wage and the opportunity cost of labor, redirecting research towards

the creation of new complex tasks instead of automation has a positive first-order effect on workers,

while it only has a second-order impact on the profits of prospective technology monopolists.
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6 Extensions

In this section, we discuss two extensions. First we introduce heterogeneous skills, which allow us to

analyze the impact of technological changes on inequality. Second, we study a different structure of

intellectual property rights that introduces the creative destruction of profits.

6.1 Automation, New Tasks and Inequality

In this subsection, we introduce heterogeneous skills and study how automation and the creation of

new tasks impact inequality. This extension is motivated by the observation that, because new tasks

are more complex, their creation may favor high-skill workers. The natural assumption that high-skill

workers have a comparative advantage in new complex tasks receives support from the data. For

instance, the left panel of Figure 7 shows that in each decade since 1980, occupations with more new

job titles had higher skill requirements in terms of the average years of schooling among employees at

the start of each decade (relative to the rest of the economy). However, the right panel of the same

figure also shows a pattern of “mean reversion” whereby average years of schooling in these occupations

decline in each subsequent decade, most likely, reflecting the fact that new job titles became more open

to lower-skilled workers over time.
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Figure 7: Left panel: Average years of schooling among employees against the share of new job titles at the beginning

of each decade for 330 occupations. Right panel: Change in average years of schooling over the next 10 years (dark blue),

next 20 years (blue) and next 30 years (in light blue) against the share of new job titles at the beginning of each decade.

See Appendix B for data sources and detailed definitions.

We incorporate these features into our model by assuming that there are two types of workers: low-

skill and high-skill. We introduce a pattern of comparative advantage that reflects our interpretation

of the patterns in the data: the productivity of high-skill labor is the same as before,

γH(i) = eAH i,
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while the productivity of low-skill labor improves over time as new tasks become more “standard-

ized”.33 In particular, for tasks i ≤ N(t), the productivity of low-skill workers is

γL(i, t) = γH(i) · Γ(N(t)− i),

where Γ(·) is increasing, bounded above by 1, and satisfies Γ(0) < 1.

This structure implies that the productivity of low-skill labor in a new task (which means in task i

at time t such that N(t) = i) starts at γL(i, t) = γH(i)Γ(0) < γH(0). This productivity then increases

as time passes. Since γL(i, t)/γH(i) ≡ Γ(N(t)− i) is decreasing in i, high-skill labor has a comparative

advantage at high-index tasks. This structure of comparative advantage ensures that there exists a

threshold task M such that high-skill labor performs tasks in [M,N ], low-skill labor performs tasks

in (I,M), and capital performs tasks in [N − 1,M ].

We denote the wages of high and low-skill labor byWH andWL, respectively. As before, we assume

that there is a quasi-labor supply of high-skill labor given by Hs(WH

RK ), and a quasi-labor supply of

low-skill labor given by Ls(WL

RK ), both of which have a constant and equal elasticity νL ≥ 0.

Proposition 7 (Automation, new tasks and inequality) Suppose technology evolves exogenously

and either one of σ − ζ, ζ − 1, or η is sufficiently close to 0.

1. Suppose that Ṅ = İ = ∆ and I∗(t) = I(t) (and AH(1− θ)∆ < ρ so that net present discounted

value of household income is finite). Then, the economy admits a unique BGP. In this BGP WH

and WL grow at the same rate as the economy and the wage gap, wH/wL, remains constant.

Moreover, both low-skill and high-skill workers perform a constant share of the tasks.

2. Given such a path of technological change, the dynamic equilibrium is unique starting from any

initial condition and converges to the BGP.

3. The immediate effect of increases in both I and N is to raise the wage gap WH/WL. But the

medium-run impact of an increase in N is to reduce inequality.

Proof. See Appendix B.

A number of features are worth noting. First, this extended model generates not only an en-

dogenous distribution of income between capital and labor, but also inequality between high-skill and

low-skill workers. Here, inequality reflects the assumed structure of comparative advantage for workers

of different skill levels in different tasks. The short-run comparative statics in the proposition imply

that automation, by squeezing out tasks previously performed by low-skill labor, increases inequality

between the two types of skills. Interestingly, because it is high-skill labor that has a comparative

advantage in high-index tasks, the creation of new complex tasks also tends to increase inequality at

33This formulation captures the feature that new technologies and tasks are standardized over time (e.g., Acemoglu,

Gancia and Zilibotti, 2010) or that low-skill workers require more time to adapt to new technologies (e.g., Schultz, 1965,

Nelson and Phelps, 1966, Greenwood and Yorukoglu, 1997, Caselli, 1999, Galor and Moav, 2000, Beaudry, Green and

Sand, 2013, and Goldin and Katz, 2008).
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first. However, because tasks become standardized over time, which raises the productivity of low-skill

workers, the medium-term implications of automation and the creation of new tasks are very different.

The former increases inequality both in the short and the medium run. In contrast, the creation of

new tasks increases inequality in the short run, but not in the medium run. In fact, low-skill workers

gain relative to capital in the medium run from the creation of new tasks. Interestingly, inequality

may be particularly high following a period of adjustment in which the labor share first declines—

due to increases in automation—and then recovers—due to the introduction of new complex tasks.

Inequality may remain high for a while, and only start declining after recently-introduced new tasks

become sufficiently standardized.

6.2 Creative Destruction of Profits

In this subsection, we modify our baseline assumption on intellectual property rights, reverting to

the classical setup in the literature in which new technologies do not infringe the patents of the

products that they replace (Aghion and Howitt, 1992, and Grossman and Helpman, 1991). This

assumption introduces creative destruction effects—the destruction of profits of previous inventors by

new innovators. We will see that this alternative structure has little effect on the nature of a BGP in

our model, but we require more demanding conditions to guarantee its uniqueness and stability.

Let us first define VN (t, i) and VI(t, i) as the values at time t of having introduced different tech-

nologies for the production of task i (respectively, new complex tasks and automation). The value

functions satisfy the following Bellman equations:

r(t)VN (t, i)− V̇N (t, i) =πN (t, i) r(t)VI(t, i)− V̇I(t, i) =πI(t, i).

Here πI(t, i) and πN (t, i) denote the flow profits from automating and creating new complex tasks,

respectively, which are given by the formulas in equations (20) and (21).

For a firm creating a new complex task i, let TN (i) denote the time at which it will be replaced by

a technology allowing the automation of this task. Likewise, for a firm automating task i at time t, let

T I(i) denote the time at which it will be replaced by a more complex technology using labor. Since

firms anticipate these deterministic replacement dates, their value functions also satisfy the boundary

conditions VN (TN (i), i) = 0 and VI(T
I(i), i) = 0.

Using the Bellman equations together with the boundary conditions derived above, we obtain:

VN (t) = VN (N(t), t) = (1 − µ)

(
η

1− η

)ζ

ψ1−ζ

∫ TN (N(t))

t

e−
∫

τ

t
(R(s)−δ)dsY (τ )cu

(
W (τ )

γ(N(t))

)ζ−σ

dτ ,

VI(t) = VI(I(t), t) = (1− µ)

(
η

1− η

)ζ

ψ1−ζ

∫ T I (I(t))

t

e−
∫

τ

t
(R(s)−δ)dsY (τ )cu

(
min

{
R(τ ),

w(τ )

γ(I(t))

})ζ−σ

dτ .

In addition, for reasons that will become readily clear, we modify the evolution of the technology

frontier and assume that advances in automation take the form

İ(t) = κIφ(n(t))SI(t), and Ṅ(t) = κNSN (t) (25)
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Here, the function φ(n(t)) is included and assumed to be weakly increasing to capture the possibility

that automating tasks closer to the frontier (defined as the highest available task) may be more difficult.

The characterization of the BGP is similar to that in Proposition 5 with (25) replacing (19). But

there may exist multiple BGPs and additional assumptions on the function φ(n) need to be imposed

to guarantee stability.

Proposition 8 (Equilibrium with creative destruction) Suppose that σ > ζ, Assumption 1′

holds, ρ > ρ, A < A (where ρ and A are defined as in Proposition 5), and there is creative destruction

of profits. Then:

1. There exist φ and φ < φ such that if φ(0) < φ and φ(1) > φ, then there exists at least one

(interior) stable BGP in which there is research in both automation and the creation of new

complex tasks. In this BGP, we have N(t)− I(t) = nD, κNvN (nD) = κIφ(n
D)vI(n

D) and Ṅ =

İ = κIκNφ(nD)
κIφ(nD)+κN

S. Also, Y,C,K and w grow at the constant rate based on g = A κIκNφ(nD)
κIφ(nD)+κN

S,

R is constant, and the labor share and employment are constant.

2. If φ(n) is constant, there is no asymptotically stable BGP with nD ∈ (0, 1). Any asymptotically

stable equilibrium involves n(t) → 0 or n(t) → 1.

Proof. See Appendix B.

The first part of the proposition follows from an analogous argument to that in the proof of

Proposition 5, with the only difference being that, because of the presence of the function φ(n) in

equation (25), the key condition determining a BGP becomes κIφ(n)vI(n) = κNvN (n). In addition,

in a BGP, newly created tasks are automated after a period of length TN (N(t))− t = nD

∆ , and newly

automated tasks are replaced by new complex ones after a period of length T I(I(t))− t = 1−nD

∆ . Here,

∆ = κIκNφ(nD)
κIφ(nD)+κN

S is the endogenous rate at which N and I increase. Thus, both types of innovations

are replaced after a fixed length of time, which ensures that the creative destruction of profits does

not change the balance of the incentives for innovation.

The major difference with our previous analysis is that, in the presence of the creative destruction

of profits, vI(n) decreases with n—that is, vI(n) now increases when more tasks are automated and n

declines—generating a new force towards instability. The reason is that, when n declines, automated

tasks are replaced by new complex ones less frequently, because newly automated tasks are replaced

after 1−n
∆ units of time. This then increases the net present discounted value of profits for automating

tasks. This effect is not compensated by changes in the flow profits from automation: because of

the response in capital accumulation, the long-run interest rate, and hence the flow profits from

automation, remains unchanged. Likewise, vN (n) increases with n—that is, vN (n) decreases when

more tasks are automated—also contributing to instability. Intuitively, when n decreases, newly

created tasks are automated more often, because newly created tasks are automated after n
∆ units of

time, and this reduces the net present discounted value of profits from new tasks. The productivity

effect contributes another force towards instability: when n decreases (there is greater automation)

the effective wage in the newest tasks, wN (n), increases, further reducing the value from new tasks.
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These observations imply that, if φ(n) were constant, the intersection between the curves κNvN (n)

and κIφ(n)vI(n) would give an unstable BGP. This result is in stark contrast to the asymptotic stability

of the BGP characterized in Proposition 5. Economically, this difference is a consequence of the fact

that, in contrast to our baseline model (and the socially planned economy), the creative destruction of

profits implies that the incentives for prospective monopolists to innovate depend on the total revenue

that a technology generates and not on the incremental value created by their innovation (which is

the difference between these revenues and the revenues that the replaced technology generated). In

our baseline model and in the constrained efficient allocation, the fact that automation reduced the

incremental value of automating additional tasks was the key force generating stability, but this force

is absent when innovators destroy the profits of previous inventors.

As shown in Figure 8, with the creative destruction of profits, stability imposes some restrictions on

the φ(n) function, and specifically, stability requires the conditions that φ(0) < φ and φ(1) > φ. This

ensures that the first intersection of these two curves takes place in the region in which κIφ(n)vI(n) is

steeper than κNvN (n), and their interception yields an asymptotically stable BGP. As the figure also

shows, even in this case there might be additional BGPs, each having different stability properties.

Notice also that, as shown in Figure 8, the two cars can intersect more than once. If so, the second

intersection is unstable, and there may also exist a corner equilibrium in which, as in Proposition 5

part 3, there is a BGP in which all tasks are produced with labor.

Figure 8: Determination of nD when the structure of intellectual property rights features the creative destruction of

rents. The model has an odd number of equilibria, which in the case depicted include a stable one at nD = 1.

7 Conclusion

As more tasks performed by labor are being automated, concerns that these new technologies will

make labor redundant have intensified. This paper developed a comprehensive framework in which

these forces can be analyzed and contrasted with countervailing effects. At the center of our model
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is a task-based framework. Automation is modeled as the (endogenous) expansion of the set of tasks

that can be performed by capital, thus replacing labor in tasks that it previously produced. The main

new feature of our framework is that, in addition to automation, there is another type of technological

change enabling the creation of new, more complex versions of existing tasks, and it is labor that tends

to have a comparative advantage in these new tasks. We characterize the structure of equilibrium in

such a model, showing how, given factor prices, the allocation of tasks between capital and labor is

determined both by available technology and the endogenous choices of firms between producing with

capital or labor.

One attractive feature of task-based models is that they highlight the link between factor prices

and the range of tasks allocated to factors: when the equilibrium range of tasks allocated to capital

increases (for example, as a result of automation), the wage relative to the rental rate and the share

of labor in national income decline, and the equilibrium wage rate may also fall. Conversely, as the

equilibrium range of tasks allocated to labor increases, the opposite result obtains. In our model,

because the supply of labor is elastic, automation tends to reduce employment, while the creation

of new tasks increases employment. These results highlight that, while both types of technological

changes undergird economic growth, they have very different implications for the factor distribution

of income and also for employment.

Our full model endogenizes the direction of research towards automation and the creation of new

complex tasks, showing how this framework generates a BGP in which both types of innovations go

hand-in-hand. Moreover, under reasonable assumptions, the dynamic equilibrium is unique and locally

converges to the BGP. Underpinning this stability result is the impact of relative factor prices on the

direction of technological change. The task-based framework— differently from the standard models

of directed technological change which are based on factor-augmenting technologies—implies that as

a factor becomes cheaper, this not only influences the range of tasks allocated to it, but also generates

incentives for prospective technology monopolists to introduce technologies that allow firms to utilize

this factor more intensively. These economic incentives then imply that by reducing the effective

cost of labor in the least complex tasks, automation discourages further automation and generates a

powerful self-correcting force towards stability.

Though market forces ensure the stability of the BGP, they do not necessarily generate the efficient

composition of technology. If the elastic labor supply relationship results from rents (so that there is

a wedge between the wage and the opportunity cost of labor), then there is an important and new

distortion in the direction of technological change. Because firms value reducing the rents earned by

workers, there is a natural bias towards excessive automation. On the other hand, because the planner

recognizes that these rents are just transfers, she has weaker incentives to automate and replace labor

with capital in additional tasks.

In addition to claims about automation leading to the demise of labor, several commentators are

concerned about the inequality implications of automation and related new technologies. In one of our

extensions, we have studied this question by introducing a distinction between low-skill and high-skill

labor, with the latter having a comparative advantage in producing the new complex tasks. In this
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extension, both automation (which squeezes out tasks previously performed by low-skill labor) and the

creation of new tasks (which directly benefits high-skill labor) will increase inequality. Nevertheless,

the medium-term implications of the creation of new tasks could be very different, because new tasks

are later standardized and used by low-skill labor. As a result of this effect, there exists a unique BGP

in which not only the factor distribution of income (between capital and labor) but also inequality

between the two skill types is endogenous but constant.

We consider our paper to be a first step towards a systematic investigation of different types of

technological changes that impact capital and labor differentially. Several areas of research appear

fruitful based on this first step. First, we introduced labor market distortions in this model in the

form of a reduced-form quasi-labor supply curve. Going beyond this, an important set of issues center

around how the process of automation and replacement of workers by capital interplays with the

costly and potentially slow reallocation of workers across tasks and firms. We take some steps in this

direction in our companion paper, Acemoglu and Restrepo (2016). Second, our model implies that it

is always to tasks at the bottom that are automated; in reality, it may be those in the middle (e.g.,

Acemoglu and Autor, 2001). Ensuring a pattern of productivity growth consistent with balanced

growth is more challenging in this case, though incorporating the possibility of such “middling tasks”

being automated is an important generalization. Third, there may be major differences in the ability

of technology to automate and also to create new tasks across industries (e.g., Polanyi, 1966, Autor,

Levy and Murnane, 2003). An interesting step is to construct realistic models in which the sectoral

composition of tasks performed by capital and labor as well as technology evolves endogenously and

is subject to industry-level technological constraints (e.g., on the feasibility or speed of automation).

Finally, and perhaps most importantly, our model highlights the need for additional empirical evidence

on how automation takes place and how the incentives for automation and the creation of new tasks

respond to policies and changes in the environment. One interesting direction would be to construct

measures of automation and the creation of new tasks, potentially at the industry level, and then

explore the impact on technology choices and innovation of industry-level variation in wages and

institutional restrictions on capital-labor substitution.

Appendix A: Proofs

Proofs from Section 2

Proof of Proposition 1: We proceed in three steps. First, we show that I∗, N and K, deter-

mine unique equilibrium values for R,W and Y , thus allowing us to define the function ω(I∗, N,K)

representing the relative demand for labor, which was introduced in the text. Second, we provide

a lemma which ensures that ω(I∗, N,K) is decreasing in I∗ (and increasing in N). Third, we show

that min{I, Ĩ} is nondecreasing in ω and conclude that there is a unique pair {ω∗, I∗} such that

I∗ = min{I, Ĩ} and ω∗ = ω(I∗, N,K). This pair uniquely determines the equilibrium relative factor

prices and range of tasks that get effectively automated.

Step 1: Consider I∗, N and K such that I∗ ∈ (N − 1, N). Then, R,W and Y satisfy the system
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of equations given by capital and labor market clearing, equations (7) and (8), and the ideal price

index, equation (9).

Taking the ratio of (7) and (8), we obtain

∫ N
I∗ γ(i)

ζ−1cu
(

W
γ(i)

)ζ−σ
W−ζdi

Ls
(

W
RK

)
(I∗ −N + 1)cu(R)ζ−σR−ζ

=
1

K
(A1)

In view of the fact that Ls is nondecreasing and the function cu(x)ζ−σx−ζ is decreasing everywhere in

x (as it can be verified directly by differentiation), it follows that the left-hand side is decreasing in

W and increasing in R . Therefore, (A1) defines an upward-sloping relationship between W and R,

which we refer to as the relative demand curve.

On the other hand, inspection of equation (9) readily shows that this equation gives a downward-

sloping locus between R and W as shown in Figure A1, which we refer to as the ideal price curve.

For a given I∗, N and K, the intersection point between the relative demand and the ideal price

curves determines the equilibrium factor prices (if it exists and is unique).

Because the relative demand curve is upward sloping and the ideal price index curve is downward

sloping, there can be at most one intersection. To prove that there always exists an intersection,

observe that limx→0 c
u(x)ζ−σx−ζ = ∞, and that limx→∞ cu(x)ζ−σx−ζ = 0. These observations imply

that as W → 0, the numerator of (A1) limits to infinity, and hence, so must the denominator, i.e.,

R → 0. This proves that the relative demand curve starts from the origin. Similarly, as W → ∞,

the numerator of (A1) limits to zero, and so must the denominator (i.e., R → ∞). This then implies

that the relative demand curve goes to infinity as R→ ∞. Thus, the upward-sloping relative demand

curve necessarily starts below and ends above the ideal price curve, which ensures that there always

exists an intersection between these curves. The unique intersection defines the equilibrium values of

W and R, and therefore the function ω(I∗, N,K) = W
RK .

Figure A1: Construction of function ω(I∗, N,K).

Step 2: Step 2 follows directly from the following lemma, which we prove in Appendix B.

Lemma A1 Suppose Assumption 1 holds. Then ω(I∗, N,K) is decreasing in I∗ and is increasing in

N .

38



Step 3: We now we establish that I∗ = min{I, Ĩ} is uniquely defined. Since γ(Ĩ) = ωK, Ĩ

is increasing in ω, and thus I∗ = min{I, Ĩ} is nondecreasing in ω. Consider the pair of equations

ω = ω(I∗, N,K) and I∗ = min{I, Ĩ} plotted in Figure 3. Because ω = ω(I∗, N,K) is decreasing in I∗

and I∗ = min{I, Ĩ} is increasing in ω, there exists at most a single pair (ω, I∗) satisfying these two

equations (or a single intersection in the figure).

To prove existence, we again verify the appropriate boundary conditions. Suppose that I∗ → N−1.

Then from (7), R→ 0, while W > 0, and thus ω → ∞. This ensures that the curve ω(I∗, N,K) starts

above I∗ = min{I, Ĩ} in Figure 3. Since I∗ = min{I, Ĩ}, it is bounded above by I, and cannot be

below ω = ω(I∗, N,K) at I∗ = I, ensuring that there must exist a unique intersection between the

two curves over the interval I∗ ∈ (N − 1, I], which completes the proof of Proposition 1.�

Proof of Proposition 2: We first establish the comparative statics of ω with respect to I, N

and K when both I∗ = I < Ĩ and I∗ = Ĩ < I, and then turn to their effects on the level of factor

prices.

Comparative statics with respect to I: The relative demand locus ω = ω(I∗, N,K) does not

directly depend on I. Thus, the comparative statics are entirely determined by the effect of changes

in I on the I∗ = min{I, Ĩ} schedule in Figure 3. When I∗ = Ĩ < I, small changes in I have no effect

as claimed in the proposition. Suppose next that I∗ = I < Ĩ. In this case, an increase in I shifts the

curve I∗ = min{I, Ĩ} to the right in Figure 3. From Lemma A1, we have that ω(I∗, N,K) is decreasing

in I∗. This shift the shift in I increases I∗ and reduces ω—as stated in the proposition. Moreover,

because I∗ = I, we have
d ln(W/R)

dI
=
d lnω

dI∗
=

1

ω

∂ω

∂I∗
< 0,

where ∂ω
∂I∗ denotes the partial derivative of ω(I∗, N,K) with respect to I∗.

Comparative statics for N : From Lemma A1, changes in N only shift the relative demand

curve up in Figure 3. Hence, when I∗ = I < Ĩ, we have

d ln(W/R)

dN
=
d lnω

dN
=

1

ω

∂ω

∂N
> 0,

where ∂ω
∂N denotes the partial derivative of ω(I∗, N,K) with respect to N .

Turning next to the case where I∗ = Ĩ < I, note that the threshold task is given by γ(I∗) = ωK.

Therefore, dI∗ = 1
εγ
d lnω (where recall that εγ is the semi-elasticity of the γ function as defined in

the proposition). Therefore, d ln(W/R)
dN = d lnω

dN , and we can compute this total derivative as claimed in

proposition:

d lnω

dN
=

1

ω

∂ω

∂N
+

1

ω

∂ω

∂I∗
1

εγ

d lnω

dN
=

1
ω

∂ω
∂N

1− 1
ω

∂ω
∂I∗

1
εγ

.

Comparative statics for K: The curve I∗ = min{I, Ĩ} does not depend on K, all comparative

statics are entirely determined by the effect of capital on ω(I∗, N,K). An increase in K shifts up the

relative demand locus in Figure A1 (this does not affect the ideal price index condition, which simplifies

the analysis in this case), and thus increases W and reduces R . The impact on ω = W
RK depends on

whether the initial effect on W/R has elasticity greater than one (since K is in the denominator).
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Notice that the function ω(I∗, N,K) already incorporates the equilibrium labor supply response.

To distinguish this supply response from the elasticity of substitution determined by factor demands,

we define ωL(I∗, N,K,L) as the static equilibrium for a fixed level of the labor supply L.

Once again using the notation ∂ωL

∂K
K
ωL = 1

σSR
− 1, and −∂ωL

∂L
L
ωL = 1

σSR
, with σSR denoting the

short-run elasticity of substitution between labor and capital, in the case where I∗ = I < Ĩ, we have

d lnω =

(
1

σSR
− 1

)
d lnK −

1

σSR
εLd lnω =

1− σSR
σSR + εL

d lnK,

where we have used the fact that ω(I∗, N,K) = ωL(I∗, N,K,Ls(ω)). This establishes the claims about

the comparative statics with respect to K when I∗ = I < Ĩ.

For the case where I∗ = Ĩ < I, we have

d ln(W/R) =
1− σSR
σSR + εL

d lnK +
1

ω

∂ω

∂I∗
1

εγ
d ln(W/R) =

1− σSR
σSR + εL

1

1− 1
ω
∂ω
∂I

1
εγ

d lnK.

This expression implies the formula in the proposition.

Effects on factor price levels: Consider an increase in I in the case in which I∗ = I < Ĩ. In

Figure A1, this increase in automation rotates the relative demand curve clockwise around the origin,

but also shifts up the downward-sloping ideal price curve — which reflects the gains in productivity

accruing to both factors.

Although in general the effects on the wage level are ambiguous, when σ is large, the ideal price

curve shifts by little and the effect through the relative demand curve dominates. In the limit in which

σ → ∞, the ideal price curve does not shift, which implies that when automation increases the wage

level declines. The proofs of the results for the effects of N on the rental rate are analogous. �

Proofs from Section 3

As in the main text, define wN (n) ≡ limt→∞W (t)/γ(N(t)) and wI(n) ≡ limt→∞W (t)/γ(I∗(t)).

Notice that now we explicitly take into account the possibility that I∗(t) might be different from I(t).

Because in a BGP R = ρ+δ+θg, these effective wages will just be functions of n = limt→∞N(t)−

I(t). The next lemma characterizes their behavior in the BGP.

Lemma A2 (Behavior of effective wages wN (n) and wI(n)) There exists ρ > 0 such that:

1. For ρ > ρ, there exists n ∈ (0, 1) such that:

• for n ≥ n, we have I∗ = I, and for n < n, we have I∗ < I;

• for n ≥ n, wN (n) is increasing and wI(n) is decreasing in n. Both wages are constant for

n < n;

2. For ρ ≤ ρ, there exists a different threshold ñ ∈ [0, 1) such that:

• for n ≥ ñ, both technologies are used, while for n < ñ, firms do not create or use new tasks

(because labor is not productive or cheap enough compared to capital);
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• for n ≥ ñ, wN (n) is increasing and wI(n) decreasing in n. Both wages are decreasing in n

for n < ñ.

Proof: See Appendix B.

Before proceeding, we will now state a result claimed in the text as a corollary of Lemma A2:

Corollary A1 Suppose ρ > ρ. Then in the BGP, all new tasks will be produced with labor immedi-

ately.

This corollary follows immediately by noting that, in this case, ρ+ δ+ θg > wN (n) for all n. Note

however that this conclusion does not hold for ρ < ρ. In this case, for n ≤ ñ, we have wN (n) > ρ+δ+θg,

which implies that new tasks will not be immediately produced with labor, which is more costly. This

corollary justifies our focus in the main text on the case where ρ > ρ, and hence the fact that we did

not introduce a separate notation to account for the possibility that, when created, new complex tasks

might not be immediately produced using labor.

We now return to the rest of the proof of Proposition 3.

Proof of Proposition 3: We prove each part of the proposition separately.

Part 1: Since ρ > ρ, this part follows directly from Lemma A2.

Part 2: We start by proving the “if” part. Suppose that Ṅ = İ = ∆ and that limt→∞ n(t) = n ≥ n.

Then the normalized variables converge to values that solely depend on n. Given the functional form

of γ in (12), it follows that Y,C,K,W grow at the same rate g = A∆, while the rental rate, R,

remains constant. This shows that balanced growth emerges when both technologies advance at the

same speed.

For the “only if” part, note that in any BGP, Y,C,K and W must grow at some constant rate g,

and thus y, c, k and wI must also grow at some constant rate g̃ while R remains constant at ρ+ δ+ θg.

If g̃ = 0, we have that y, c, k and wI must converge. Because the behavior of these normalized variables

only depends on n(t), we must also have that limt→∞ n(t) = n ∈ [n, 1], which then implies that Ṅ = İ.

Moreover, Ṅ = İ = ∆ because Y,C,K and W grow at a constant rate. These observations show that

to establish the “only if” part it is enough to show that g̃ = 0.

Suppose to obtain a contradiction that g̃ < 0. Then, for t large enough, we will have wI(t) < R(t).

This implies that, at this point, newly automated tasks are not immediately produced with capital,

which contradicts Lemma A2 (recall that ρ > ρ and n(t) ∈ [n, 1]).

Next, suppose once again, to obtain a contradiction, that g̃ > 0. This implies that for t large

enough, we will have wI(t)/γ(1) > R(t), which implies that wN (t) > R(t). At this point in time,

newly created tasks are not immediately produced with labor, which contradicts Lemma B1 (since we

have ρ > ρ). This establishes the “only if”direction of the proof.

Part 3: We start by proving the “if” part. Suppose that n(t) < n for all t > T , and that Ṅ = ∆.

Lemma A2 implies that I∗(t) = Ĩ(t) < I(t), and therefore, wI(t) = R(t).

Let us also define n∗(t) ≡ N(t)− I∗(t). Then, from the same steps that we used in the main text,

it follows that y, c, k, and wI converge to values that depend only on n∗(t). Because asymptotically,
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R(t) is constant and wI(t) = R(t), we must have that n∗(t) converges to n. Moreover, because the

normalized variables converge to values that only depend on n∗, the economy achieves a BGP in which

Y,C,K and W grow at the rate A∆—the same rate as γ(N(t)) and γ(I∗(t))—while the rental rate,

R, remains constant.

For the “only if” part, note that in any BGP with n(t) < n, we have that n∗(t) = n. This implies

that wI , wN , y, c, k converge to constant values. Because Y,C,K and W grow at some constant rate

g, we must have that γ(I∗(t)) and γ(N(t)) also grow at this constant rate, which implies that Ṅ = ∆

and g = A∆, as claimed.

Part 4: Starting with any initial value of k(0) and n(0), the equilibrium behavior is given by equa-

tions (14), (16) and (15). This is identical to the equations characterizing dynamics in the canonical

neoclassical growth model (see, for example, Proposition 8.5 and 8.6 in Acemoglu (2009)). More-

over, the condition that ρ > ρ guarantees that ρ > A(1 − θ)∆, which ensures that the transversality

condition holds, establishing part 4. �

Proof of Proposition 4: That there are no effects when n ≤ n follows from Lemma A2. Next

consider the case n > n, in which technology changes the asymptotic behavior of the economy. The

expressions and comparative statics for the wages follow from equation (18), which we derived in the

proof of Lemma A2.

The asymptotic behavior of the labor share can be established by considering two separate cases.

First, suppose that σSR ≤ 1. Let kI(n) denote the steady-state value forK/γ(I). We have ω(0, n, kI (n)) ≡
wI(n)

(ρ+δ+θg)kI(n)
. Differentiating this expression, we obtain

k′I(n) =
w′
I(n)

1
Rk − ∂ω

∂N
ω
k

1+εL
σSR+εL

.

Using this expression, we compute the total effect of technology on ω as

dω

dn
=
∂ω

∂N

(
σSR + εL
1 + εL

)
+
w′
I(n)

Rk

(
1− σSR
1 + εL

)
.

Because ∂ω
∂N > 0 and w′

I(n) > 0, we have that, whenever σSR ≤ 1, ω increases with n.

Next suppose that σSR > 1. Let kN (n) denote the steady-state value for K/γ(N). We have that

ω(−n, 0, kN (n)) ≡ wN (n)
(ρ+δ+θg)kN (n) . Differentiating this expression, we have

k′N (n) =
w′
N (n) 1

Rk + ∂ω
∂I∗

ω
k

1+εL
σSR+εL

< 0.

We can then compute the total effect of technology on ω as

dω

dn
= −

∂ω

∂I∗

(
σSR + εL
1 + εL

)
+
w′
N (n)

Rk

(
1− σSR
1 + εL

)
.

Because ∂ω
∂I∗ < 0 and w′

N (n) < 0, we have that, whenever σSR ≥ 1, ω increases with n. Since

ω ≡ ω(−n, 0, kN (n)) ≡ ω(0, n, kI (n)), We again conclude that, in the long run, ω always increases

with n. �
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Proofs from Section 4

Let vN (n) ≡ limt→∞ VN (t)/Y (t) and vI(n) ≡ limt→∞ VI(t)/Y (t) be the normalized value functions,

which in the BGP only depend on n.

Lemma A3 (Asymptotic behavior of the normalized value functions) Suppose that σ > ζ,

and that the conditions required in Lemma A2 hold. Let ρ be as defined in Proposition 3. Then there

exist thresholds A and ρ such that:

1. For ρ > ρ and A < A:

• if n < n, we have κNvN (n) > κIvI(n) = O(g);

• if n ≥ n, vN (n) and vI(n) are strictly increasing in n;

• if in addition ρ > ρ, then for n ≥ n, vI(n)/vN (n) is increasing in n.

2. For ρ ≤ ρ:

• for n < ñ, we have vI(n) > 0 and vN (n) ≤ 0;

• for n ≥ ñ, both vN (n) and vI(n) are positive and strictly increasing.

Proof. Let g ≡ A κIκN

κI+κN
S be the growth rate of the economy in the BGP. Suppose ρ > ρ. Then for

n ≥ n, we can write the value functions in the BGP as:

vN (n) =M

∫ ∞

0
e−(ρ−(1−θ)g)τ

[
cu (wN (n)egτ )ζ−σ − cu (ρ+ δ + θg)ζ−σ

]
dτ,

vI(n) =M

∫ ∞

0
e−(ρ−(1−θ)g)τ

[
cu (ρ+ δ + θg)ζ−σ − cu (wI(n)e

gτ )ζ−σ
]
dτ,

where we have defined M ≡ (1− µ)
(

η
1−η

)ζ
ψ1−ζ . Thus, the value functions only depend on the unit

cost of labor wN (n) and wI(n), and on the rental rate, which is equal to ρ+ δ + θg in the BGP.

Now consider Taylor expansions of both of these expressions (which are continuously differentiable)

around g = 0:

vN (n) =
M

ρ

[
cu (wN (n))ζ−σ − cu (ρ+ δ)ζ−σ

]
+O(g),

vI(n) =
M

ρ

[
cu (ρ+ δ)ζ−σ − cu (wI(n))

ζ−σ
]
+O(g), (A2)

where O(g) denotes terms that vanish when the growth rate, g, is small, which enables us to approxi-

mate the integrals (solving them out explicitly when g = 0). Moreover, when n < n, automated tasks

are not immediately produced with capital. Instead, capital is used when wages have grown enough.

Because future wage growth provides the only incentive for automation, we have vI(n) = O(g). On

the other hand, the expression for vN (n) still applies and remains bounded away from zero. Thus,

there exists A > 0 such that for A < A (which guarantees that g is small), κNvN (n) > κIvI(n) > 0 as

claimed.
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Differentiating the value functions in (A2) when n ≥ n immediately establishes that they are both

strictly increasing (since wI(n) > ρ+ δ + θg > wN (n) from Lemma A2). The implied behavior of the

normalized value functions is depicted in Figure A2.

Figure A2: Behavior of value functions in steady state with respect to changes in n = N − I .

We now prove the existence of a threshold ρ, which guarantees that the curves κNvN (n) and

κIvI(n) cross at most once. To prove this result, note that
v′I (n)
vI (n)

>
v′N (n)
vN (n) if and only if

cu(wI(n))
ζ−σs(I)

cu(ρ+ δ)1−σ − cu(wN (n))1−σ

1− σ

(
cu(wN (n))ζ−σ − cu(ρ+ δ)ζ−σ

)
>

cu(wN (n))ζ−σs(N)
cu(wI(n))

1−σ − cu(ρ+ δ)1−σ

1− σ

(
cu(ρ+ δ)ζ−σ − cu(wI(n))

ζ−σ
)
, (A3)

where recall that s(i) is the labor share in the production of task i.

For ρ sufficiently large, we have that ρ + δ → wI(n)
+, and thus the inequality (A3) necessarily

holds (notice that, while the right-hand side is strictly positive, the left-hand side always converges to

zero). Thus, there exists a threshold ρ such that for ρ > ρ and A < A, The single crossing condition

(A3), which ensures that vI/vN is increasing in n, holds for all n ≥ n. (If the value of ρ that ensures

this property is strictly less than ρ, then we simply set ρ = ρ.)

The second part of the lemma has an analogous proof, with the behavior of normalized values

given as in the right panel of Figure A2, and the details are omitted..

Proof of Proposition 5:

Part 1: A BGP emerges if and only if İ = Ṅ , and n(t) = nD. To ensure that asymptotically

ṅ = 0, in a BGP we must have

κIvI(n) = κNvN (n).

Thus, a BGP exists if and only if there exists a solution nD to this equation.

Given ρ > ρ and A > A, Lemma A3 implies that κNvN (n) > κIvI(n). This shows that at n, the

curve κNvN (n) is above κIvI(n). However, as the ratio κI

κN
increases—starting from zero—the curves

κIvI(n) and κNvN (n) eventually cross at some point. This proves that for κ > κ, there exists a BGP

represented by the first intersection at nD ∈ (n, 1) between these two curves. Figure 6 in the main text
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illustrates the determination of nD in this case. Finally, if ρ > ρ, from Lemma A3 vI/vN is increasing

in n, so nD defined by κIvI(n
D) = κNvN (nD) is unique.

Part 2: We will first prove the global stability claim for θ = 0, and then turn to local stability

when θ > 0.

Proof of stability of the unique BGP when θ = 0: Suppose that θ = 0. In this case, capital

adjusts immediately and its equilibrium stock only depends on n, which becomes the unique state

variable of the model. The rental rate is fixed at R = ρ + δ (or the interest rate is r = ρ), and the

effective wages are given by wI(n) and wN (n).

Define next v ≡ κIvI − κNvN . Now starting from any n(0), an equilibrium with endogenous

technology is given by the path of (n, v) such that the evolution of the state variable is given by

ṅ = κNS − (κN + κI)G
( v
λ

)
S,

and the difference of the normalized value functions v satisfies the forward looking differential equation:

ρv − v̇ =MκI

(
cu (ρ+ δ)ζ−σ − cu (wI)

ζ−σ
)
−MκN

(
cu (wN )ζ−σ − cu (ρ+ δ)ζ−σ

)
+O(g),

and in addition the transversality condition (16) holds.

Let nD denote the BGP value for n(t) in the unique BGP. Since κIvI(n) − κNvN (n) crosses zero

only once at nD in this case, equilibrium dynamics can be analyzed using the behavior of the value

difference, v, as in Figure 6. We now prove that this BGP is globally stable. Figure A3 presents the

phase diagram of the system in (v, n). Importantly, the locus for v̇ = 0 crosses v = 0 at nD from below

only once. This follows from the fact that κIv
′
I(n

D) > κNv
′
N (nD)) (that is, κIvI(n) cuts κNvN (n)

from below at nD as shown in Figure 6).

The system of differential equations determining the behavior of n, v near this BGP can be lin-

earized as:

ṅ = −
(κN + κI)

λ
G′(0)Sv, and v̇ = ρv −Q,

where Q > 0 denotes the derivative of −MκIc
u (wI)

ζ−σ +MκNc
u (wN )ζ−σ with respect to n (this

derivative is positive because κIvI(n) cuts κNvN (n) from below at nD). Thus, the eigenvalues

of the characteristic polynomial of this system add up to ρ > 0, and their product is given by

−Q (κN+κI)
λ G′(0)S < 0. This implies that there is one positive and one negative eigenvalue, ensuring

asymptotic (saddle-path) stability. It also follows from the same argument that for each n(0), there

is a unique v(0) in the stable arm of the system, and thus guarantees uniqueness in the neighborhood

of the BGP.

In order to show that globally all equilibria must be along the stable arm, we need to rule out

other potential equilibrium paths. From the figure it is clear that if the equilibrium does not settle

at nD, it must reach the region with v̇ > 0 and ṅ < 0, or it must reach the region with v̇ < 0 and

ṅ > 0. In the first case, v is strictly increasing and n is strictly decreasing, and hence there are no

interior limit points. This implies v → ∞ along any such path, and thus vI → ∞, which violates

the transversality condition (16). In the second case, v → −∞ and n → 1, which again analogously

violates the transversality condition.
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Figure A3: Phase diagram and global saddle path stability when θ = 0.

Proof of local stability of the unique BGP when θ > 0: Let us next turn to the case in which

θ > 0. An equilibrium is given by a solution to the following system of differential equations: Starting

from any n(0), k(0) the equilibrium path with endogenous technology is given by a tuple {n, k, c, v}

such that:

• The evolution of the state variables is given by

ṅ(t) = κNS − (κN + κI)G
( v
λ

)
S,

• The paths for c(t) and k(t) satisfy the Euler equation,

ċ(t)

c(t)
=

1

θ
(RE(n(t), k(t)) − δ − ρ)−O(g)

coupled with the transversality condition in equation (16), and the resource constraint,

k̇(t) = fE(n(t), k(t)) − c(t)− δk(t).

• The value function v satisfies the forward looking differential equation:

ρv − v̇ = κIπI(n, k)− κNπN (n, k) +O(g),

with

πN (n, k) =M

(
cu
(
wE

N (n, k)
)ζ−σ

− cu
(
RE(n, k)

)ζ−σ
)
πI(n, k) = M

(
cu
(
RE(n, k)

)ζ−σ

− cu
(
wE

I (n, k)
)ζ−σ

)

denoting the flow profits for innovators. Here, wE
N = W

γ(N) and wE
I = W

γ(I) , which also depend on

the stock of capital outside of the BGP.

By continuity, there exists a threshold A ≤ A such that, for A < A, the local behavior of the above

system matches that of the system in which we take the limit g → 0 in the above system of equations.

To simplify the notation, define the partial derivatives

Qk = κI
∂πI
∂k

− κN
∂πN
∂k

> 0, Qn = κI
∂πI
∂n

− κN
∂πN
∂n

> 0, Qv =
κI + κN

λ
G′(0)S > 0.
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evaluated at their BGP values. Then local equilibrium dynamics can be linearly approximated around

the BGP as follows (where nD, vD(= 0), kD and cD designate the BGP values):

ṅ =−Qvv

v̇ =ρv −Qk[k(t)− kD]−Qn[n(t)− nD],

ċ =
cD

θ
RE

n [n(t)− nD] +
cD

θ
RE

k [k(t) − kD]

k̇ =fEn [n(t)− nD] + (fEk − δ)[k(t) − kD]− [c− cD].

Here, the fEn , R
E
n and fEk , R

E
k denote the partial derivatives of f and R with respect to n and k. The

characteristic polynomial of the linearized system of differential equations (with all derivatives still

evaluated at their BGP values) can be written as

P (λ) =

∣∣∣∣∣∣∣∣∣∣




−λ −Qv 0 0

−Qn ρ− λ 0 −Qk

cD

θ R
E
n 0 −λ cD

θ R
E
k

fEn 0 −1 fEk − δ − λ




∣∣∣∣∣∣∣∣∣∣

,

or expanding it:

P (z) = z4 − z3(fEk − δ + ρ) + z2
(
−QvQn +

cD

θ
RE

k + ρ(fEk − δ)

)

− z

(
Qv(f

E
n Qk − (fEk − δ)Qn) + ρ

cD

θ
RE

k

)
+Qv(R

E
nQk −RE

k Qn)
cD

θ
.

We now show that this polynomial has exactly two eigenvalues with positive real parts and two

eigenvalues with negative real parts. First, note that RE
nQk −RE

k Qn > 0, which is also the condition

for the curve κIvI(n) cutting κNvN (n) from below. Indeed, the term RE
n Qk−R

E
k Qn > 0 corresponds

to the change in flow profits, κIπI − κNπN that results from an increase in n when capital adjusts

to keep the interest rate constant. Next, let z1, z2, z3 and z4 be the eigenvalues of the above system.

Then z1z2z3z4 = Qv(R
E
n Qk −RE

k Qn)
cD

θ > 0. Moreover, z1 + z2 + z3 + z4 = fEk − δ + ρ > 0 (which is

the trace of the matrix P (z)). This implies that either there are exactly two eigenvalues with positive

real parts and two eigenvalues with negative real parts, or all eigenvalues have positive real parts. We

rule out the latter possibility by showing that the system has at least one negative real root.

To do so, we prove instead that the polynomial P (−z) has at least one positive real root. Descartes’

rule of signs, applied to the polynomial P (−z), implies that this will be the case provided that at least

one of the coefficients Qv(f
E
n Qk−(fEk −δ)Qn+ρ

cD

θ R
E
k and −QvQn+

cD

θ R
E
k +ρ(fEk −δ) is negative. This

is indeed the case as we can see by separately considering two cases. First, suppose that fEK − δ < 0.

Then

−QvQn +
cD

θ
RE

k + ρ(fEk − δ) < 0.

This follows from Proposition 2, which establishes that Qn > 0 (i.e., as n increases—holding capital

constant—the incentives to do automation increase). Suppose, alternatively, that fEk − δ > 0. Then
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fEn Qk − (fEk − δ)Qn < 0, this also follows from Proposition 2, which ensures that an increase in n,

holding output constant, raises the wage relative to the rental rate, or equivalently

Qn −Qk
fEn

fEk − δ
> 0,

which implies that, when fEk − δ > 0, we must also have fEn Qk − (fEk − δ)Qn < 0, and thus

Qv(f
E
n Qk − (fEk − δ)Qn) + ρ

cD

θ
RE

k < 0.

Because the model has two state variables and there are exactly two roots with negative real parts,

equilibrium dynamics are asymptotically (saddle-path) stable.

Part 3: When κ < κ, we have κIvI < κNvN throughout, so ṅ > 0. Thus, asymptotically we have

n(t) = 1 and the BGP is identical to that of an endogenous growth model with purely labor-augmenting

technological change.

Part 4: As the right panel of Figure A2 shows, when ρ ≤ ρ, Lemma A3 implies that for n ≤ ñ

κIvI(n) > κNvN (n). This observation implies that there is an asymptotically stable BGP with n(t) =

0. �

References

Acemoglu, Daron (1998) “Why Do New Technologies Complement Skills? Directed Technical

Change and Wage Inequality,” Quarterly Journal of Economics, 113(4): 1055-1089.

Acemoglu, Daron (2002) “Directed Technical Change,” Review of Economic Studies, 69(4):

781–810.

Acemoglu, Daron (2003) “Labor- and Capital-Augmenting Technical Change,” Journal of Eu-

ropean Economic Association, 1(1): 1–37.

Acemoglu, Daron (2007) “Equilibrium Bias of Technology,” Econometrica, 75(5): 1371–1410.

Acemoglu, Daron (2009) Introduction to Modern Economic Growth, Princeton University Press.

Acemoglu, Daron (2010) “When Does Labor Scarcity Encourage Innovation?” Journal of Po-

litical Economy, 118(6): 1037–1078.

Acemoglu, Daron and David Autor (2011) “Skills, tasks and technologies: Implications for

employment and earnings,” Handbook of Labor Economics, 4: 1043–1171.

Acemoglu, Daron, Gino Gancia and Fabrizio Zilibotti (2010) “Competing Engines of

Growth: Innovation and Standardization,” Journal of Economic Theory, 147(2): 570–601.

Acemoglu, Daron, Gino Gancia and Fabrizio Zilibotti (2015) “Offshoring and Directed

Technical Change,” forthcoming American Economic Journal: Macro.

Acemoglu, Daron and Fabrizio Zilibotti (2001) “Productivity Differences,” Quarterly Jour-

nal of Economics, 116(2): 563–606.

Acemoglu, Daron and Pascual Restrepo (2016) “Automation and Unemployment: A Task-

based Search Model” Work in progress, MIT.

48



Aghion, Philippe and Peter Howitt (1992) “A Model of Growth Through Creative Destruc-

tion,” Econometrica, 60(2): 323–351.

Akst, Daniel (2013) “What Can We Learn From Past Anxiety Over Automation?” Wilson

Quarterly.

Allen, Robert C. (2009) “Engels’ Pause: Technical Change, Capital Accumulation, and In-

equality in the British Industrial Revolution,” Explorations in Economic History, 46(4): 418–435.

Autor, David H. and David Dorn (2013) “The Growth of Low-Skill Service Jobs and the

Polarization of the U.S. Labor Market,” American Economic Review, 103(5): 1553–97.

Autor, David H., Frank Levy and Richard J. Murnane (2003) “The Skill Content of

Recent Technological Change: An Empirical Exploration,” The Quarterly Journal of Economics,

118(4): 1279–1333.

Beaudry, Paul, David A. Green, Benjamin M. Sand (2013) “The Great Reversal in the

Demand for Skill and Cognitive Tasks,” NBER Working Paper No. 18901.

Brynjolfsson, Erik and Andrew McAfee (2014) The Second Machine Age: Work, Progress,

and Prosperity in a Time of Brilliant Technologies, W. W. Norton & Company.

Burstein, Ariel, and Jonathan Vogel (2014) “International Trade, Technology, and the Skill

Premium,” Society for Economic Dynamics, Meeting Papers. No. 664.

Burstein, Ariel, Eduardo Morales and Jonathan Vogel (2014) “Accounting for Changes

in Between-Group Inequality,” NBER Working Paper No. 20855

Caselli, Francesco (1999) “Technological Revolutions,” American Economic Review, 89(1):

78–102.

Caselli, Francesco, and Wilbur John Coleman (2006) “The World Technology Frontier,”

American Economic Review, 96(3): 499–522.

Chandler, Alfred D. (1977) The Visible Hand: The Managerial Revolution in American Busi-

ness, Harvard University Press: Cambridge, MA.

Costinot, Arnaud and Jonathan Vogel (2010) “Matching and Inequality in the World Econ-

omy,” Journal of Political Economy, 118(4): 747–786.

Foote, Christopher L. and Richard W. Ryan (2014) “Labor-Market Polarization Over the

Business Cycle,” NBER Macroeconomics Annual 2014, Volume 29, NBER.

Galor, Oded and Omer Moav (2000) “Ability-Biased Technological Transition, Wage Inequal-

ity, and Economic Growth,” The Quarterly Journal of Economics, 115(2): 469–497.

Goldin, Claudia and Lawrence F. Katz (2008) The Race between Education and Technology,

Harvard University Press: Cambridge.

Greenwood, Jeremy and Mehmet Yorukoglu (1997) “1974,” Carnegie-Rochester Confer-

ence Series on Public Policy, 46: 49–95

Grossman, Gene M. and Elhanan Helpman (1991) “Quality Ladders in the Theory of

Growth,” The Review of Economic Studies, 58(1): 43–61.

Grossman, Gene M. and Esteban Rossi-Hansberg (2008) “Trading Tasks: A Simple Theory

of Offshoring,” American Economic Review, 98(5): 1978–1997.

49



Grossman, Gene M., Elhanan Helpman and Ezra Oberfield (2016) “Balanced Growth

Despite Uzawa,” NBER Working Paper No. 21861.

Hawkins, William, Ryan Michaels and Jiyoon Oh (2015) “The Joint Dynamics of Capital

and Employment at the Plant Level,” Mimeo, Yeshiva University.

Jaimovich, Nir and Henry E. Siu (2014) “The Trend is the Cycle: Job Polarization and

Jobless Recoveries,” NBER Working Paper No. 18334.

Keynes John Maynard (1930) “Economic Possibilities for Our Grandchildren,” in Essays in

Persuasion, New York: Norton & Co.

Kotlikoff, Laurence J. and Jeffrey D. Sachs (2012) “Smart Machines and Long Term Mis-

ery,” NBER Working Paper No. 18629.

Jones, Charles I. (2005) “The Shape of Production Functions and the Direction of Technical

Change,” The Quarterly Journal of Economics, 120(2): 517–549.

Karabarbounis, Loukas and Brent Neiman (2014) “The Global Decline of the Labor Share,”

The Quarterly Journal of Economics, 129(1): 61–103.

Kiley, Michael T. (1999) “The Supply of Skilled Labor and Skill-Biased Technological Progress,”

The Economic Journal, 109(458): 708–724.

Landes, David (1969) The Unbound Prometheus, Cambridge University Press: New York.

Leontief, Wassily (1952) “Machines and Man,” Scientific American.

Lin, Jeffrey (2011) “Technological Adaptation, Cities, and New Work” Review of Economics

and Statistics, 93(2): 554–574.

Mokyr, Joel (1990) The Lever of Riches: Technological Creativity and Economic Progress,

Oxford University Press: New York.

Nelson, Richard R. and Edmund S. Phelps (1966) “Investment in Humans, Technological

Diffusion, and Economic Growth,” The American Economic Review, 56(1): 69–75.

Oberfield, Ezra and Devesh Raval (2014) “Micro Data and Macro Technology,” NBER

Working Paper No. 20452.

Rodriguez-Clare, Andres (2010) “Offshoring in a Ricardian World,” American Economic Jour-

nal: Macroeconomics, 2: 227–258.

Roy, A. D. (1951) “Some Thoughts on the Distribution of Earnings,” Oxford Economic Papers,

3(2): 135–146.

Schultz, Theodore (1975) “The Value of the Ability to Deal with Disequalibria.” Journal of

Economic Literature. 13:827–846.

Thoenig, Mathias, and Thierry Verdier (2003) “A Theory of Defensive Skill-Biased Inno-

vation and Globalization,” American Economic Review, 93(3): 709–728.

Zeira, Joseph (1998) “Workers, Machines, and Economic Growth,” Quarterly Journal of Eco-

nomics, 113(4): 1091–1117.

Zeira, Joseph (2006) “Machines as Engines of Growth,” Dynamics, Economic Growth, and

International Trade Conference Papers. No. 011059.

50



Appendix B (Not-For-Publication): Omitted Proofs and Additional

Results

Details of the Empirical Analysis

Here we provide information about the data used in constructing Figures 1 and 7. We also provide a

regression analysis documenting the robustness of the patterns illustrated in these figures.

Data: We use data on the demographic characteristics of workers and employment counts in each

of the 330 consistently defined occupations proposed by David Dorn (see http://www.ddorn.net/

data.htm). Our sources of data are the U.S. Censuses for 1980, 1990 and 2000, and the American

Community Survey for 2007. We focus on the set of workers between 16 and 64 years of age.

Our measure of new job titles is taken from Lin (2011), who computes the share of new job

titles within each occupation for 1980, 1990 and 2000. Lin defines new job titles by comparing

changes across waves of the Dictionary of Occupational Titles, and also by comparing the 1990

Census Index of Occupations with its 2000 counterpart. The data is available for 329 occupa-

tions in 1980, and 330 occupations for 1990 and 2000. The data are available from his website

https://sites.google.com/site/jeffrlin/newwork.

Detailed Analysis for Figure 1: To document the role of new job titles in employment growth,

we estimate the regression

lnEit+10 − lnEit = βNit + δt + ΓtXit + εit. (B1)

Here, the dependent variable is the percent change in employment from year t to t + 10 in each

occupation i. We stack the data for t = 1980, 1990, 2000. For t = 2000, we use the change from 2000

to 2007 as the dependent variable and re-scale it to a 10-year change. In all regressions we include a

full set of decadal effects δt, and in some models we also control for differential decadal trends that

vary depending on observable characteristics of each occupation, ΓtXit. These characteristics include

the share of workers in different 5-year age brackets and from different races (Black, Hispanic), and

the share of foreign and female workers. These covariates flexibly control for demographic changes

that may affect the labor supply that is relevant for each occupation. Finally, εit is an error term.

Throughout, all standard errors are robust against arbitrary heteroskedasticity and serial correlation

of the error term within occupations.

The coefficient of interest is β, which represents the additional employment growth in occupations

with a large share of new job titles, Nit.

Panel A in Table B1 presents estimates of equation (B1). Column 1 contains no additional co-

variates (the number of observations in this column is 989. We miss one observation because Lin’s

measure only covers 329 occupations in 1980). Our estimates indicate that occupations with 10 per-

centage points more new job titles at the beginning of each decade grew 5.05% faster over the decade

(standard error= 1.29%). If occupations with more new job titles did not grow any faster than the

benchmark category with no novel jobs, employment growth from 1980 to 2007 would have been, on
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average, 8.66% instead of the actual 17.5%, implying that approximately 8.84% of the 17.5% growth

is accounted for by new job titles as reported at the bottom rows of the panel.

In column 2 we control for the log of employment at the beginning of the decade (year t). The

coefficient of interest increases slightly to 0.560 and continues to be precisely estimated. The log of

employment at year t appears with a negative coefficient, which indicates that smaller occupations

tend to grow more over time. The quantitative contribution of new tasks and job titles remains very

similar to column 1, increasing slightly to 9.8%.

In column 3 we control for the trends that depend on the demographic covariates described above,

which have little effect on the quantitative results. In column 4, we also control for the average years of

schooling among workers in each occupation at the beginning of the decade. Although this covariate

reduces the magnitude of the coefficient of the share of new job titles, our estimate for β remains

highly significant. The contribution of new job titles is now estimated at 6.62% out of the 17.5%

growth between 1980 and 2007.

Column 5 repeats the specification of column 4, but this time we reweight the data by the 1980

share of employment in each occupation. This weakens the relationship of interest, and the share of

novel tasks and jobs is no longer statistically significant. However, this lack of significance is driven

by a few large occupations that are outliers in the estimated relationship. (In contrast, there are

no major outliers in the unweighted regressions reported in columns 1-4). These outliers include

office supervisors, office clerks, and production supervisors; three occupations that had combined

employment of about 4 million workers in 1980 and have been contracting since then. Though these

occupations introduced a significant number of new job titles in 1980, they shed a large amount of

workers in the subsequent years. In column 6, we exclude these three occupations from our analysis,

and obtain a similar pattern to that of column 4.

Finally, in Panel B, we present a set of regressions, which are analogous to those in the top panel,

but that focus on a long difference specification between 1980 and 2007. The overall patterns are very

similar, and now the contribution of novel tasks and new job titles to the 17.5% growth in employment

between 1980 and 2007 is between 7.27 and 8.5%.

Detailed Analysis for Figure 7: To document the presence of some amount of “standardiza-

tion” of occupations with greater new job titles,

∆Yit = βNit + δt + ΓtXit + εit. (B2)

Here, the dependent variable is the change in the average years of schooling among workers employed

in occupation i and measured over different time horizons (10 years, 20 years or 30 years). We stack

the data for t = 1980, 1990, 2000, but our sample becomes smaller as we measure the change in average

years of schooling over longer periods of time. We again use the ACS dayear 2007. The covariates and

independent variable are the same ones that we used in equation (B1).

Panel A in Table B2 presents estimates of equation (B2). Columns 1 and 2 present models in

which the dependent variable is the change in average years of education over a 10-year period (hence,

we get 989 observations for 330 occupations). Columns 3 and 4 focus on the change in average years
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Table B1: Differential employment growth in occupations with more new job titles

Dep. var: Percent change in employment growth by decade.

Weighted by size

(1) (2) (3) (4) (5) (6)

Panel A: Stacked differences over decades.

Share of new job titles at the start of decade 0.505∗∗∗ 0.560∗∗∗ 0.479∗∗∗ 0.378∗∗∗ 0.140 0.351∗∗∗

(0.129) (0.127) (0.136) (0.139) (0.163) (0.132)

log of employment at start of decade -0.031∗∗ -0.045∗∗∗ -0.042∗∗∗ 0.002 0.005

(0.012) (0.014) (0.013) (0.011) (0.011)

Average years of schooling at start of decade 9.602∗∗∗ 8.231∗∗∗ 8.179∗∗∗

(1.864) (1.809) (1.793)

R-squared 0.03 0.04 0.11 0.14 0.13 0.15

Observations 989 989 989 989 989 980

Occupations 330 330 330 330 330 327

Employment growth from 1980-2007 in p.p. 17.5 17.5 17.5 17.5 17.5 17.5

Contribution of novel tasks and jobs 8.84 9.8 8.38 6.62 2.45 6.14

Panel B: Long differences from 1980-2007.

Share of new job titles in 1980 1.247∗∗∗ 1.398∗∗∗ 1.458∗∗∗ 1.192∗∗∗ 0.028 0.450

(0.392) (0.348) (0.353) (0.333) (0.532) (0.483)

log of employment in 1980 -0.150∗∗∗ -0.183∗∗∗ -0.163∗∗∗ -0.044 -0.037

(0.031) (0.035) (0.034) (0.032) (0.032)

Average years of schooling in 1980 21.779∗∗∗ 15.978∗∗∗ 15.855∗∗∗

(4.162) (4.204) (4.226)

R-squared 0.02 0.08 0.17 0.24 0.18 0.18

Observations 329 329 329 329 329 326

Occupations 329 329 329 329 329 326

Employment growth from 1980-2007 in p.p. 17.5 17.5 17.5 17.5 17.5 17.5

Contribution of novel tasks and jobs 7.27 8.155 8.50 8.29 0.16 2.17

Covariates:

Decade fixed effects X X X X X X

Demographics × decade effects X X X X

Notes: The table presents 10-years stacked-differences estimates (Panel A) and long-differences estimates (Panel B) of

the share of new job titles in an occupation on subsequent employment growth. The bottom row in each panel reports

the observed growth and the share explained by growth in occupations with more new job titles. The bottom rows

indicate additional covariates included in each model. In column 5 we reweight the data using the baseline share of

employment in each occupation in 1980, and in column 6 we exclude three large employment categories that are outliers

in the model of column 5. These include office supervisors, office clerks, and production supervisors. Standard errors

robust against heteroskedasticity and serial correlation within occupations are presented in parentheses.
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of education over a 20-year period. Columns 5 and 6 focus on the change in average years of education

over a 30-year period. In the models presented in the even columns we include a full set of trends that

are allowed to vary depending on the composition of employment in each occupational category.

Table B2: Reversal in skill content for occupations with more new job titles and in occupations that used to hire more

educated workers.

Dep. var: Change in average years of schooling.

Over 10 years Over 20 years Over 30 years

(1) (2) (3) (4) (5) (6)

Panel A: Change in occupations with new job titles.

Share of new job titles at the start of decade -0.085 -0.103 -0.219 -0.203 -0.452∗∗ -0.411∗∗

(0.123) (0.118) (0.179) (0.173) (0.215) (0.176)

R-squared 0.32 0.53 0.12 0.33 0.02 0.29

Observations 989 989 659 659 329 329

Occupations 330 330 330 330 329 329

Panel B: Change in occupations with more educated workers.

Average years of education at the start of decade -0.030∗∗∗ -0.077∗∗∗ -0.028∗∗ -0.102∗∗∗ -0.083∗∗∗ -0.149∗∗∗

(0.006) (0.011) (0.013) (0.017) (0.016) (0.021)

R-squared 0.36 0.59 0.14 0.41 0.17 0.43

Observations 990 990 660 660 330 330

Occupations 330 330 330 330 330 330

Covariates:

Decade fixed effects X X X X X X

Demographics × decade effects X X X

Notes: The table presents OLS estimates that explain the change in average years of schooling among workers employed

in a given occupation. These changes are computed over 10 years (Columns 1 and 2), 20 years (Columns 3 and 4) and

30 years (Columns 5 and 6). In Panel A we explain the subsequent change in years of schooling as a function of share

of new job titles in each occupation at the start of the decade. In Panel B we explain the subsequent change in years of

schooling as a function of the years of schooling in each occupation at the start of the decade. The bottom rows indicate

additional covariates included in each model. Standard errors robust against heteroskedasticity and serial correlation

within occupations are presented in parentheses.

Our estimates indicate that, although occupations with more new job titles tend to hire more

skilled workers initially, this pattern slowly reverts over time. Figure 7 shows that, at the time of their

introduction, occupations with 10 percentage points more new job titles hire workers with 0.35 more

years of schooling). But our estimates in Column 6 of Table B2 show that this initial difference in the

skill requirements of workers slowly vanishes over time. 30 years after their introduction, occupations

with 10 percentage points more new job titles hire workers with 0.0411 fewer years of education than

the workers hired initially (standard error= 0.0176).

Relatedly, Panel B of the same table shows a similar pattern when we look at occupations that start

with greater average years of schooling at the beginning of a decade. In particular, for each decade

since 1980, employment growth has been faster in occupations with greater skill requirements—as
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measured by the average years of education among employees at the start of each decade (see Table

B1). But estimating a version of (B2) with average years of schooling at the beginning of the decade on

the right-hand side, we find significant mean reversion. For example, Column 6 shows that occupations

that used to hire workers with one additional year of schooling workers reduce their average years of

schooling by 0.149 years relative to baseline after 30 years (standard error=0.021).

Remaining Proofs from Section 2

We start by providing the proof of Lemma A1.

Proof of Lemma A1. As we have just seen, the equilibrium conditions that uniquely determine

W (I∗, N,K) and R(I∗, N,K), are:

Ls

(
W

RK

)
(I∗ −N + 1)cu(R)ζ−σR−ζ −K

∫ N

I∗
γ(i)ζ−1cu

(
W

γ(i)

)ζ−σ

W−ζdi = 0

(I∗ −N + 1)cu(R)1−σ +

∫ N

I∗
cu
(
W

γ(i)

)1−σ

di = 1.

Taking total derivatives with respect to I∗, N , the first equation yields

dN

(
Lscu(r)ζ−σr−ζ +Kγ(N)ζ−1cu

(
W

γ(N)

)ζ−σ

W−ζ

)

−dI∗
(
Lscu(r)ζ−σr−ζ +Kγ(I∗)ζ−1cu

(
W

γ(I∗)

)ζ−σ

W−ζ

)

=(d lnW − d ln r)

(
K

∫ N

I∗
γ(i)ζ−1cu

(
W

γ(i)

)ζ−σ

W−ζ [s(i)(σ − ζ) + ζ] di+ εLL
s(I∗ −N + 1)cu(r)ζ−σr−ζ

)

+d ln r

(
K

∫ N

I∗
γ(i)ζ−1cu

(
W

γ(i)

)ζ−σ

W−ζ [(s(i)− sk)(σ − ζ)] di

)
.

Here, s(i) is the share of labor in the production of task i and sk is the share of capital in tasks

produced with capital.

The last term in the above equation captures the non-homotheticity introduced by the presence

of intermediate goods. In all the special cases in which (s(i) − sk)(σ − ζ) = 0, the demand system

is homothetic and the results outlined in Lemma A1 follow easily. These cases include the limits

when ζ → 1 (and s(i) = sk are constant) or η → 0 (and s(i) = sk = 1 are constant). Intuitively, in

these cases the relative demand curve consists of a ray passing through the origin. However, when

(s(i) − sk)(σ − ζ) 6= 0, the non-homotheticity becomes important and we need to take into account

the movements in the ideal price curve to determine the behavior of relative factor prices.
Differentiation of the ideal price index condition gives us the equation:

dN
1

1− σ

(
cu (r)1−σ − cu

(
W

γ(N)

)1−σ
)

+ dI
1

1− σ

(
cu
(

W

γ(I∗)

)1−σ

− cu (r)1−σ

)

=(d lnW − d ln r)

(∫ N

I∗
s(i)cu

(
W

γ(i)

)1−σ

di

)
+ d ln r

(
(I∗ −N + 1)skc

u(r)1−σ +

∫ N

I∗
s(i)cu

(
W

γ(i)

)1−σ

di

)
.
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Combining both expressions, we can solve for d lnW − d lnR as

(d lnW − d lnR)A = dNPN − dIPI ,

where:

A =

(
K

∫ N

I∗
γ(i)ζ−1cu
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We now show that, under the conditions of Lemma A1, we have that A,PN , PI > 0.

A sufficient condition for A > 0 is that:
(
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After canceling common terms on both sides of this inequality, it boils down to:
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This can be rewritten as:
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The last inequality always holds because s(i)(σ − ζ) + ζ − (s(i)− sk)(σ − ζ) = σsk + ζ(1− sk) > 0.

B-6



To determine the signs of PN and PI , we regroup terms as follows. First, we group the terms that

are multiplied by sk in the expression for PI . To guarantee that these terms add up to a positive

number, a sufficient condition is given by:
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The relative demand for factors implies that
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Therefore, we can rewrite the sufficient condition as:
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After removing common terms on both sides, this condition becomes:
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Second, we group the terms that are multiplied by s(i) in the expression for PI . To guarantee that

these terms add up to a positive number, a sufficient condition is given by:

(
Kγ(I∗)ζ−1cu

(
W

γ(I∗)

)ζ−σ

W−ζ

)
×

(∫ N

I∗
s(i)cu

(
W

γ(i)

)1−σ

di

)

≥

∣∣∣∣∣
σ − ζ

1− σ

(
cu
(

W

γ(I∗)

)1−σ

− cu (r)1−σ

)∣∣∣∣∣×
(
K

∫ N

I∗
s(i)γ(i)ζ−1cu

(
W

γ(i)

)ζ−σ

W−ζdi

)
.

After removing common terms and re-grouping, this condition becomes

∫ N

I∗
s(i)W−ζ

(
γ(I∗)ζ−1cu

(
W

γ(I∗)

)ζ−σ

cu
(

W

γ(i)

)1−σ

− γ(i)ζ−1cu
(

W

γ(i)

)ζ−σ
∣∣∣∣∣
σ − ζ

1 − σ

(
cu
(

W

γ(I∗)

)1−σ

− cu (R)1−σ

)∣∣∣∣∣

)
≥ 0.

(B4)

We now show that, for this condition to hold, it suffices that

(
γ(I∗)

γ(i)

)max{σ,ζ}−1

cu
(
W

γ(i)

)1−σ

≥

∣∣∣∣∣
σ − ζ

1− σ

(
cu
(

W

γ(I∗)

)1−σ

− cu (R)1−σ

)∣∣∣∣∣ . (B5)

We first show this in the case in which σ > ζ. In this case, we have that

cu
(

W

γ(I∗)

)ζ−σ

≥ cu
(
W

γ(i)

)ζ−σ ( γ(i)

γ(I∗)

)ζ−σ

.
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This follows from the fact that
cu
(

W
γ(i)

)

cu
(

W
γ(I∗)

) ≥
γ(I∗)

γ(i)
,

an inequality which can be proven by straightforward differentiation of the function cu(x)/x, which is

weakly decreasing.
Plugging this in the inequality in equation (B4), we obtain the sufficient condition

∫ N

I∗
s(i)W−ζγ(i)ζ−σ

(
γ(I∗)σ−1cu

(
W

γ(i)

)ζ−σ

cu
(

W

γ(i)

)1−σ

− γ(i)σ−1cu
(

W

γ(i)

)ζ−σ
∣∣∣∣∣
σ − ζ

1− σ

(
cu
(

W

γ(I∗)

)1−σ

− cu (R)1−σ

)∣∣∣∣∣

)
,

which holds provided that

(
γ(I∗)

γ(i)

)σ−1

cu
(
W

γ(i)

)1−σ

≥

∣∣∣∣∣
σ − ζ

1− σ

(
cu
(

W

γ(I∗)

)1−σ

− cu (R)1−σ

)∣∣∣∣∣ .

This inequality coincides with the condition in equation (B5), completing this step of the proof.

Turning next to the case where ζ ≥ σ, because the cost function is increasing we have that:

cu
(

W

γ(I∗)

)ζ−σ

≥ cu
(
W

γ(i)

)ζ−σ

Plugging this in the sufficient condition in equation (B4) yields:

∫ N

I∗
s(i)W−ζ

(
γ(I∗)ζ−1cu

(
W

γ(i)

)ζ−σ

cu
(

W

γ(i)

)1−σ

− γ(i)ζ−1cu
(

W

γ(i)

)ζ−σ
∣∣∣∣∣
σ − ζ

1− σ

(
cu
(

W

γ(I∗)

)1−σ

− cu (R)1−σ

)∣∣∣∣∣

)
,

which holds provided that

(
γ(I∗)

γ(i)

)ζ−1

cu
(
W

γ(i)

)1−σ

≥

∣∣∣∣∣
σ − ζ

1− σ

(
cu
(

W

γ(I∗)

)1−σ

− cu (R)1−σ

)∣∣∣∣∣ ,

once again establishing (B5).

Third, we group the terms that are multiplied by s(i) in the expression for PN . To guarantee that

these terms add up to a positive number, a sufficient condition is given by:

(
Kγ(N)ζ−1cu

(
W

γ(N)

)ζ−σ

W−ζ

)
×

(∫ N

I∗
s(i)cu

(
W

γ(i)

)1−σ

di

)

≥

∣∣∣∣∣
σ − ζ

1− σ

(
cu (r)1−σ − cu

(
W

γ(N)

)1−σ
)∣∣∣∣∣×

(
K

∫ N

I∗
s(i)γ(i)ζ−1cu

(
W

γ(i)

)ζ−σ

W−ζdi

)
.

This condition can be rewritten as:

∫ N

I∗
s(i)W−ζ

[
cu
(

W

γ(i)

)1−σ

γ(N)ζ−1cu
(

W

γ(N)

)ζ−σ

−

∣∣∣∣∣
σ − ζ

1− σ

(
cu (R)1−σ − cu

(
W

γ(N)

)1−σ
)∣∣∣∣∣ γ(i)

ζ−1cu
(

W

γ(i)

)ζ−σ
]
di ≥ 0.

In Step 1 of the proof of this proposition, we showed that x−ζcu(x)σ−ζ is decreasing in x. This implies

that γ(N)ζcu
(

W
γ(N)

)ζ−σ
> γ(i)ζcu

(
W
γ(i)

)ζ−σ
.
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Therefore, a sufficient condition for the terms that are multiplied by s(i) in the expression for PN
to add up to a positive number is

∫ N

I∗
s(i)γ(i)ζ−1cu

(
W

γ(i)

)ζ−σ

W−ζ ×

[
γ(I)

γ(N)
cu
(

W

γ(i)

)1−σ

−

∣∣∣∣∣
σ − ζ

1− σ

(
cu (R)1−σ − cu

(
W

γ(N)

)1−σ
)∣∣∣∣∣

]
di ≥ 0.

This expression implies that, to guarantee that these terms are positive, the following relationship

would be sufficient

γ(I)

γ(N)
cu
(
W

γ(i)

)1−σ

≥

∣∣∣∣∣
σ − ζ

1− σ

(
cu (R)1−σ − cu

(
W

γ(N)

)1−σ
)∣∣∣∣∣ . (B6)

Fourth, and lastly, we group the terms that are multiplied by sK in the expression for PN . To

guarantee that these terms add up to a positive number, a sufficient condition is given by:

Lscu(r)ζ−σr−ζ × (I∗ −N + 1)skc
u(r)1−σ

≥

∣∣∣∣∣
σ − ζ

1− σ

(
cu (r)1−σ − cu

(
W

γ(N)

)1−σ
)∣∣∣∣∣×

(
K

∫ N

I∗
skγ(i)

ζ−1cu
(
W

γ(i)

)ζ−σ

W−ζdi

)
.

The relative demand for factors implies that

Lscu(R)ζ−σR−ζ(I∗ −N + 1)skc
u(R)1−σ = skc

u(R)1−σK

∫ N

I∗
γ(i)ζ−1cu

(
W

γ(i)

)ζ−σ

W−ζdi.

Therefore, we can rewrite the sufficient condition as:

skc
u(r)1−σK

∫ N

I∗
γ(i)ζ−1cu

(
W

γ(i)

)ζ−σ

W−ζdi

≥ sk

∣∣∣∣∣
σ − ζ

1− σ

(
cu
(

W

γ(N)

)1−σ

− cu (r)1−σ

)∣∣∣∣∣×K

∫ N

I∗
γ(i)ζ−1cu

(
W

γ(i)

)ζ−σ

W−ζdi.

After removing common terms on both sides, this condition becomes

cu(R)1−σ ≥

∣∣∣∣∣
σ − ζ

1− σ

(
cu
(

W

γ(N)

)1−σ

− cu (R)1−σ

)∣∣∣∣∣ . (B7)

To finalize the proof of the lemma, we use the fact that for any effective factor prices p1, p2 (the

price per effective unit of labor or capital at any given task), we have
∣∣∣∣
σ − ζ

1− σ

(
cu (p1)

1−σ − cu (p2)
1−σ
)∣∣∣∣ ≤ |σ − ζ|cu

(
W

γ(N − 1)

)
cu
(

W

γ(N)

)−σ

. (B8)

This inequality follows because f(x) = 1
1−σx

1−σ is a concave function and the effective factor prices

satisfy p1, p2 ∈
[

W
γ(N) ,

W
γ(N−1)

]
.

Inequality (B8) then implies that to guarantee (B3), (B5), (B6) and (B7), the following would

suffice

cu(R)1−σ ≥|σ − ζ|cu
(

W

γ(N − 1)

)
cu
(

W

γ(N)

)−σ

.

(
γ(I∗)

γ(i)

)max{σ,ζ}−1

cu
(
W

γ(i)

)1−σ

≥|σ − ζ|cu
(

W

γ(N − 1)

)
cu
(

W

γ(N)

)−σ

.

γ(I)

γ(N)
cu
(
W

γ(i)

)1−σ

≥|σ − ζ|cu
(

W

γ(N − 1)

)
cu
(

W

γ(N)

)−σ

.
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These inequalities can be, in turn, rewritten as


 cu(R)

cu
(

W
γ(N−1)

)





cu
(

W
γ(N)

)

cu(R)




σ

≥|σ − ζ|.

(
γ(I∗)

γ(i)

)max{σ,ζ}−1



cu
(

W
γ(i)

)

cu
(

W
γ(N−1)

)





cu
(

W
γ(N)

)

cu
(

W
γ(i)

)




σ

≥|σ − ζ|.

γ(I)

γ(N)




cu
(

W
γ(i)

)

cu
(

W
γ(N−1)

)





cu
(

W
γ(N)

)

cu
(

W
γ(i)

)




σ

≥|σ − ζ|.

From the properties of unit cost functions, it follows that for all p ∈
[

W
γ(N) ,

W
γ(N−1)

]
we have that

cu (p) ≥ cu
(

W
γ(N−1)

)
γ(N−1)
γ(N) and cu

(
W

γ(N)

)
≥ cu (p) γ(N−1)

γ(N) . Using these properties, it follows that the

sufficient conditions above hold whenever

(
γ(N − 1)

γ(N)

)1+σ

≥|σ − ζ|

(
γ(N − 1)

γ(N)

)max{σ,ζ}+σ

≥|σ − ζ|

(
γ(N − 1)

γ(N)

)2+σ

≥|σ − ζ|.

Thus a sufficient condition for all three inequalities to hold is

(
γ(N − 1)

γ(N)

)2+2σ+ζ

≥ |σ − ζ|,

establishing the desired result.

Remaining Proofs from Section 3

Proof of Lemma A2. Let us first suppose that there exists x ∈ [0, 1] for which

wI(x) > ρ+ δ + θg > wN (x). (B9)

This condition states that in the neighborhood of n(t) = x, both automation and the creation of new

complex tasks are profitable, and thus newly created tasks will be immediately produced using labor,

and newly automated tasks will be immediately produced using capital. We discuss the cases in which

this inequality does not hold for any x below.

We proceed in several steps.

Step 1: We show that wI(n) is increasing and wN (n) decreasing in n for all n ≥ x.

Rewrite the ideal price index condition (9), as in Section 3.2, substituting for the BGP value of

the rental rate, R = ρ + δ + θg, which yields (17). Differentiating the expressions for effective wages

using this BGP value of the interest rate yields equation (18) in the main text.

Suppose first that σ < 1. Then, for n ≥ x, the numerator of the first expression is positive, and

the numerator of the second expression is negative, and their denominators are positive, and thus

w′
I(n) > 0 > w′

N (n). Suppose next that σ > 1. In this case, the signs of the numerators are flipped,
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but the denominators are negative, so we reach the same conclusion. From the Fundamental Theorem

of Calculus, we can conclude that

wI(n) > ρ+ δ + θg > wN (n) (B10)

for all n ≥ x.

Step 2: We now show that the inequality (B10) cannot hold for all n ∈ [0, x).

Using the same argument as in Step 1, we have that for n < x and provided that (B10) holds,

wI(n) continues to be increasing and wN (n) decreasing in n. To obtain a contradiction, suppose that

equation (B10) holds for all n ∈ [0, x). Then,

wI(0) > ρ+ δ + θg > wN (0),

but this is impossible, since at n = 0, wI(0) = wN (0), thus yielding a contradiction.

Step 3: We next show that either there exists n or ñ as in the lemma, but both thresholds cannot

exist simultaneously. Moreover, which threshold exists and is relevant depends on whether ρ ≶ ρ.

Since (B10) holds at n = x, but not at n = 0, and both wI(n) and wN (n) are continuous, there exists

either n such that wI(n) = ρ+ δ+ θg, or ñ such that wN (ñ) = ρ+ δ+ θg, or both. We now show that

only one of these cases may occur, and that ρ determines which case it is.

First, suppose that as we move from n = x to the left, we reach n first. Because R > wI(n) for

n ≤ n, in this region there are no incentives to use capital in automated tasks, which implies I∗ < I.

Further increases in I—or reductions in n—do not change the equilibrium allocation. Thus, for n ≤ n,

wI(n) and wN (n) are constant, as shown in the left panel of Figure B1. This establishes that, in this

case, ρ + δ + θg > wN (n) for all n ∈ [0, 1], and there is no threshold ñ. In this case, for n > n we

have that inequality (B10) holds, which implies that automated tasks are immediately produced with

capital and newly created tasks are immediately produced with labor.

Suppose next that as we move from x to the left, we reach ñ first. For n < ñ, we have that

wN (n) > ρ + δ + θg, and thus newly created tasks that use labor are less productive than their old

automated. Moreover, equations (18) and (B10) imply that both wI(n) and wN (n) are decreasing to

the left of ñ as shown in the right panel of Figure B1. This establishes that, in this case, wI(n) >

ρ+ δ + θg for all n ∈ [0, 1], and there is no threshold n.

Consequently, one and only one of n and ñ will be reached. We now show that which one of

these two thresholds is reached first is determined by the discount rate, ρ. For ρ sufficiently small,

we necessarily reach the threshold ñ first. This is the case depicted in the right panel of Figure B1.

Moreover, because

∂wN (n)

∂ρ
= −

1

γ(n)

(1− n)c′(ρ+ δ + θg)cu(ρ+ δ + θg)−σ

∫ n
0

1
γ(i)c

u(wI/γ(i))−σcu′(wI/γ(i))di
< 0,

as ρ increases the curve for wN (n) shifts down, while the curve for ρ+ δ+ θg shifts upwards in Figure

B1. This implies that, as ρ increases, the interception between these curves, ñ, shifts to the left and

B-11



Figure B1: Behavior of unit costs of labor with respect to changes in n = N − I in steady state.

for some ρ we will have that the curves wN (n) and ρ+ δ + θg will intercept exactly at ñ = 0. These

observations imply that there exists a value ρ such that

wN (0) = wI(0) = ρ+ δ + θg.

Let ρ denote the smallest ρ for which this is the case. The definition of ρ implies that, for ρ < ρ

the threshold ñ is reached and we have the case depicted in the right panel of Figure B1. On the

other hand, for ρ > ρ we necessarily have that the threshold n is reached (the curve wN (n) is below

ρ+ δ + θg for these values of ρ) and we have the case depicted in the left panel of Figure B1.

Step 4: We finalize the proof by dealing with the cases in which the inequality (B9) does not

hold. Suppose first that the right inequality does not hold. Then we can simply define ñ = 1, and the

lemma applies as is. Suppose next that the left inequality does not hold. Then we define n = 1, and

the lemma applies as is. This concludes the proof of the lemma.

Constrained Efficient Allocation and Proofs from Section 5

In this part of the Appendix, we complete the characterization of the constrained efficient allocation.

The constrained efficient allocation solves the maximization problem introduced in the main text. To

simplify the notation, we denote the marginal product of labor and capital in the planner’s allocation

by WP (I,N,K) = ∂FP

∂L and RP (I,N,K) = ∂FP

∂K , respectively.

The current value Hamiltonean for the planner’s problem is given by:

H ≡
C1−θ − 1

1− θ
+ µk

(
FP (I,N,K,L) − δK − C

)
+ µL(L

s(ωP (I,N,K)) − L) + µIκISI + µNκNSN .

Here, µN and µI denote the shadow values of the two types of technology, respectively, and µL and

µK the shadow values of labor and capital. The maximum principle implies that these objects satisfy
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the necessary conditions:

ρµN − µ̇N =µK
∂FP

∂N
+ µL

∂Ls

∂ω

∂ωP

∂N
, ρµI − µ̇I =µK

∂FP

∂I
+ µL

∂Ls

∂ω

∂ωP

∂I
,

ρµK − µ̇K =µK(RP − δ) + µL
∂Ls

∂ω

∂ωP

∂K
, µL =µKW

P .

All the functions in the above differential equations are evaluated at their corresponding arguments

at time t.

Moreover, the current value Hamiltonean associated with the planner’s problem is concave, so these

conditions (plus the Euler equation for consumption and the transversality condition) are sufficient

for characterizing the constrained efficient allocation.

We start by providing formulas for ∂FP

∂N and ∂FP

∂I . To derive these formulas, we rewrite the function

FP (I,N,K,L) as:

F p(I,N,K,L) ≡ max
k(i),l(i),qK(i),qL(i)

[∫ I

N−1
yp(qK(i), k(i))

σ−1
σ +

∫ N

I
yp(qL(i), γ(i)l(i))

σ−1
σ

] σ
σ−1

− µψ

∫ I

N−1
qK(i)di − µψ

∫ N

I
qL(i)di

subject to:

∫ I

N−1
k(i)di = K, and

∫ N

I
l(i)di = L.

Here, yp(qK(i), k(i)) and yp(qL(i), γ(i)l(i)) denote the production of a task when using qK(i) and

qL(i) units of the intermediate mixed with k(i) units of capital or γ(i)l(i) units of effective labor,

respectively (see equations (2) and (3)). Notice that we have written this problem assuming that the

planner chooses I∗ = I at all times, as we remarked in the proposition. B1. Also, notice that the

multipliers for the restriction on total capital is Rp—the shadow rental rate—, and the multiplier for

the restriction on total labor is W p—the shadow wage.

Denote by cp(·)—rather than cu(·)—the unit cost of producing a task when intermediates are

priced at their marginal cost. An application of the envelope theorem to the above problem yields

∂F p

∂I
=

σ

σ − 1
Y

1
σ

[
yp(qK(I), k(I))

σ−1
σ − yp(qL(I), γ(I)l(I))

σ−1
σ

]

− µψ(qK(I)− qL(I)) − (Rpk(I) −W pl(I))

=
σ

σ − 1
Y

[
cp (Rp)1−σ − cp

(
W p

γ(I)

)1−σ
]
− Y

[
cp (Rp)1−σ − cp

(
W p

γ(I)

)1−σ
]

=
1

1− σ
Y

[
cp
(
W p

γ(I)

)1−σ

− cp (Rp)1−σ

]
.

Here, we have used the fact that the planner sets the level of production of a task to cp(·) Y −σ, with

cp(·) its unitary cost.
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Likewise,

∂F p

∂N
=

σ

σ − 1
Y

1
σ

[
yp(qL(N), γ(N)l(N))

σ−1
σ − yp(qK(N − 1), k(N − 1))

σ−1
σ

]

− µψ(qL(N)− qK(N − 1))− (W pl(N)−Rpk(N − 1))

=
σ

σ − 1
Y

[
cp
(
W p

γ(N)

)1−σ

− cp (Rp)1−σ

]
− Y

[
cp
(
W p

γ(N)

)1−σ

− cp (Rp)1−σ

]

=
1

1− σ
Y

[
cp (Rp)1−σ − cp

(
W p

γ(N)

)1−σ
]
.

Let ΨN (t) ≡ µN (t)
µK(t)Y (t) and ΨI ≡ µI(t)

µK(t)Y (t) be the shadow discounted net present values of new

technologies (in terms of additional net output they create). These values are then given by:

ΨI(t) =

∫
∞

t

e
−

∫
τ

0

(
RP

(
1+ωPLsεL

∂ lnω
P

∂ lnK

)
−δ−g(s)

)
ds

(
cp(wP

I (τ ))
1−σ − cp(RP (τ ))1−σ

1− σ
+ sLεL

∂ lnωP

∂I

)
dτ

ΨN(t) =

∫
∞

t

e
−

∫
τ

0

(
RP

(
1+ωPLsεL

∂ lnω
P

∂ lnK

)
−δ−g(s)

)
ds

(
cp(RP (τ ))1−σ − cp(wP

N (τ ))1−σ

1− σ
+ sLεL

∂ lnωP

∂N

)
dτ . (B12)

Here, sL is the economy-wide labor share, wP
I is the normalized wage W p/γ(I), and wP

N is the

normalized wage W p/γ(N).

These equations are analogous to the expressions for vI and vN in the decentralized equilibrium

given by equations (22) and (23). In particular, notice that like prospective technology monopolists,

the planner also values the automation of existing tasks or the introduction of new more complex tasks

depending on the difference in production costs. Thus, our structure of intellectual property rights

produces private incentives for innovation that share this common feature with the social value of

such innovations. However, because technology monopolists only capture a non-constant share of the

surplus that new tasks generate, the exact expressions for ΨI and ΨN differ from those of vI and vN .

Besides these differences the expressions for the social value of introducing different technologies show

that the planner also take into account their effect on employment, captured by the terms sLεL
∂ lnωP

∂I

and sLεL
∂ lnωP

∂N in equation (B12). The social planner cares about this margin because changes in

employment have a first-order positive effect on workers owing to the gap between wage and the

opportunity cost of work.

Given the current values for ΨI(t) and ΨN(t), the optimal allocation of scientists to the two

different types of research then satisfies

SI(t) =SG

(
κIΨI − κNΨN

λ

)
∈ [0, S] SN (t) =S

[
1−G

(
κIΨI − κNΨN

λ

)]
∈ [0, S]. (B13)

Following our characterization in Section 4, we denote the normalized output in the socially planned

economy by fP (k, n) = FP (I,N,K,L(ωP (I,N,K)))/γ(I), and the rental rate, RP (n, k) as functions

of technology and capital. The constrained efficient allocation can be represented as a time path for

the variables {c(t), k(t), n(t), SI (t),ΨI(t),ΨN (t)}∞t=0 such that:
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• Consumption satisfies the Euler equation

ċ(t)

c(t)
=

1

θ

(
RP (n(t), k(t))

(
1 + ωPLsεL

∂ lnωP

∂ lnK

)
− δ − ρ

)
−AκISI(t),

together with the transversality conditions

lim
t→∞

µkKe
−ρt =0, lim

t→∞
IµIe

−ρt =0, lim
t→∞

NµNe
−ρt =0.

• Capital satisfies the resource constraint in equation

k̇(t) = fP (n(t), k(t)) − c(t)− (δ +AκISI(t))k(t)

• The gap between automation and the creation of new tasks, n(t) = N(t)− I(t), satisfies:

ṅ(t) = κNS − (κI + κN )G

(
κIΨI − κNΨN

λ

)
S

• The allocation of scientists satisfies the allocation rule in equation (B13).

• The social values of allocating scientists to develop different technologies, ΨI(t) and ΨN (t),

satisfy equation (B12).

The following proposition summarizes the properties of the constrained efficient allocation and

provides a set of taxes and subsidies that can be used to decentralize it.

Proposition B1 (Constrained efficient allocation and decentralization) Under the same

conditions as in Proposition 5, the constrained efficient allocation admits a unique BGP. Moreover,

the constrained efficient allocation locally converges to this BGP, and if θ → 0, it globally converges

to this BGP.

Finally, the constrained efficient allocation can be decentralized by using the following sets of taxes

and subsidies:

1. A proportional subsidy at the rate 1−µ on intermediate prices to remove the monopoly markups.

2. A proportional subsidy/tax of ωPLsεL
∂ lnωP

∂ lnK on gross interests on savings. This subsidy/tax

corrects for the impact of capital on employment (this expression yields a positive subsidy when

σSR < 1 and capital raises the labor share, and a tax in the opposite case).

3. Proportional subsidies/taxes on the profits of successful innovators who entered the market at

time t′ ≤ t. These subsides/taxes correct for the technological externality generated by the two

different types of innovation and appropriability problems.

4. A proportional subsidy on the profits of successful innovators who create new complex tasks.

This subsidy is proportional to sLεL
∂ lnωP

∂N ≥ 0, and corrects for the fact that these technology

monopolists do not take into account the positive effect of new complex tasks on the level of

equilibrium employment.
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5. A proportional tax on the profits of successful innovators who automate existing tasks. This tax

is proportional to −sLεL
∂ lnωP

∂I ≥ 0, and corrects for the fact that these technology monopolists do

not take into account the negative effect of automation on the level of equilibrium employment.

Proof. Using the formula in equation (B12), we now establish the decentralization result by construc-

tion. First, assume the planner subsidizes a fraction 1−µ to the price of intermediate goods, and sets

a subsidy to interests on capital savings of sk = ωPLsεL
∂ lnωP

∂ lnK . This guarantees households discount

future income at the socially optimal rate.

Now, we can decentralize the planner’s allocation by subsidizing/taxing the period τ profits of a

firm that automates task I(t) at time t at the rate sI(t, τ ), and the period τ profits of a firm that

introduces a new complex task N(t) at time t at the rate sN (t, τ).
With these subsidies, the value of automating jobs or creating new tasks is given by a small

modification of equations (22) and (23), which takes into account that firms sell intermediates at a
price ψ, but buyers perceive a price µψ because of the subsidy. These values also discount future
profits as the same rate the planner does because of the subsidies/taxes to capital accumulation and
the subsidies to the two different types of innovations, sI(t, τ ) and sN (t, τ ). Thus:

VI (t) =Y (t)

∫
∞

t

e
−

∫
τ

0

(
RP

(
1+ωP LsεL

∂ lnω
P

∂ lnK

)
−δ−g(s)

)
ds
M ·

(
cP
(
RP (τ)

)ζ−σ
− cP

(
wP

I (τ)
γ(I(τ ))

γ(I(t))

)ζ−σ
)

· (1 + sI(τ ))dτ ,

VN (t) =Y (t)

∫
∞

t

e
−

∫
τ

0

(
RP

(
1+ωP LsεL

∂ lnω
P

∂ lnK

)
−δ−g(s)

)
ds
M ·

(
cP
(
wP

N (τ )
γ(N(τ ))

γ(N(t))

)ζ−σ

− cP
(
RP (τ)

)ζ−σ
)

· (1 + sN (τ))dτ ,

where recall that M ≡ (1−µ)ψ
(

η
1−η

)ζ
(µψ)−ζ . Here we used the cost function cp(·) which takes into

account that intermediates are already priced at their marginal cost.

The following subsidy-tax policy ensures that the incentives of successful innovators are aligned

with the social value of their innovations and provide a way to decentralize the planner’s allocation:

1 + sI(t, τ) =




1

(1− µ)ψ
(

η
1−η

)ζ
(µψ)−ζ


×




cp
(
RP (τ)

)ζ−σ
− cp

(
wP
I (τ)

)ζ−σ

cp (RP (τ))
ζ−σ

− cp
(
wP
I (τ )

γ(I(τ ))
γ(I(t))

)ζ−σ




×




cp(wP
I (τ))1−σ−cp(RP (τ))1−σ

1−σ

cp (RP (τ))
ζ−σ

− cp
(
wP
I (τ)

)ζ−σ


×




cp(wP
I (τ ))1−σ−cp(RP (τ ))1−σ

1−σ + sLεL
∂ lnωP

∂I

cp(wP
I (τ))1−σ−cp(RP (τ))1−σ

1−σ


 ,

and

1 + sN (t, τ) =




1

(1− µ)ψ
(

η
1−η

)ζ
(µψ)−ζ


×




cp
(
wP
N (τ)

)ζ−σ
− cp

(
RP (τ)

)ζ−σ

cp
(
wP
N (τ)γ(N(τ ))

γ(N(t))

)ζ−σ
− cp (RP (τ ))ζ−σ




×




cp(RP (τ))1−σ−cp(wP
N (τ))1−σ

1−σ

cp
(
wP
N (τ )

)ζ−σ
− cp (RP (τ ))

ζ−σ


×




cp(RP (τ))1−σ−cp(wP
N (τ ))1−σ

1−σ + sLεL
∂ lnωP

∂N

cp(RP (τ))1−σ

1−σ − cp(wP
N (τ ))1−σ


 .

These subsidies/taxes can be separated into several components as illustrated by the way in which

we have written them. First, profits from both types of innovations get a gross subsidy of



1

(1− µ)ψ
(

η
1−η

)ζ
(µψ)−ζ


 > 1.
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This term captures the known fact that innovators only manage to extract a fraction of the surplus

they generate.

Second, profits from automation get taxed at a gross rate

cp
(
RP (τ)

)ζ−σ
− cp

(
wP
I (τ)

)ζ−σ

cp (RP (τ))ζ−σ − cp
(
wP
I (τ)

γ(I(τ ))
γ(I(t))

)ζ−σ
< 1;

while profits from creating new complex tasks get subsidized at the rate

cp
(
wP
N (τ)

)ζ−σ
− cp

(
RP (τ)

)ζ−σ

cp
(
wP
N (τ)γ(N(τ ))

γ(N(t))

)ζ−σ
− cp (RP (τ ))ζ−σ

> 1.

These taxes/subsidies correct for a technological externality : by inventing new tasks and increasing

N , monopolists improve the quality of intermediates that future entrants are able to develop, which

creates a positive externality on subsequent innovators. The opposite occurs for automation: by

automating task I, new entrants will be forced to automate more complex tasks, in which they will

obtain fewer profits. These taxes/subsidies depend on the time at which a task was introduced t—

since they are a compensation (or charge) for all technologies built on top of them. This is why the

subsidies that are needed to decentralize the planner allocation, sI(t, τ ) and sN (t, τ), not only depend

on the current time period, τ , but also on the time that the innovation took place, t.

Third, profits from automation get taxed/subsidized at a gross rate:

cp(wP
I (τ))1−σ−cp(RP (τ))1−σ

1−σ

cp (RP (τ ))ζ−σ − cp
(
wP
I (τ)

)ζ−σ
;

while profits from creating new complex task get subsidized at a gross rate:

cp(RP (τ))1−σ−cp(wP
N (τ ))1−σ

1−σ

cp
(
wP
N (τ )

)ζ−σ
− cp (RP (τ ))ζ−σ

.

These subsidies account for the fact that, as the technology for producing tasks is a constant elasticity of

substitution function, the monopolists who supply intermediate goods will charge a constant markup.

When ζ = 1 (and σ > 1), so that monopolists earn a constant fraction of the value of the task, these

taxes/subsidies collapse to 1
σ−1 ≶ 1.

Finally, profits from automation get taxed at a gross rate:

cp(wP
I (τ ))1−σ−cp(RP (τ ))1−σ

1−σ + sLεL
∂ lnωP

∂I

cp(wP
I (τ))1−σ−cp(RP (τ))1−σ

1−σ

< 1;

while profits from creating new complex task get subsidized at a gross rate:

cp(RP (τ))1−σ−cp(wP
N (τ))1−σ

1−σ + sLεL
∂ lnωP

∂N

cp(RP (τ ))1−σ

1−σ − cp(wP
N (τ ))1−σ

> 1.
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these taxes/subsidies correct for the fact that technology monopolists do not take into account the

effect of technologies on the quasi-supply of labor. While, all else equal, automation reduces the supply

of labor, the creation of new complex tasks increases it. Because at the margin increasing the level of

employment improves welfare (given that it has no opportunity cost), the planner taxes profits from

automation and subsidizes profits from the creation of new complex tasks.

Notice that the scientist allocation can be decentralized in many ways. In particular, since there

is a fixed supply of scientists, we only need to get the relative expected profits from each type of

innovation right. The particular decentralization outlined here guarantees the level of innovators’

profits also matches the social value of innovation. Even if both types of technology end up being

subsidized in equilibrium, this does not matter because the money can be recovered by taxing scientists

Remarks: Note first that in contrast to neoclassical models of capital taxation (e.g., Chamley,

1986 and Judd, 1985, but also see Straub and Werning, 2014), the decentralization of the constrained

efficient allocation requires taxing or subsidizing capital accumulation. This is because the capital

stock affects wages and thus the level of employment through the quasi-labor supply schedule. For

instance, if σSR < 1, capital increases the labor share and employment in the short run (see Proposition

2) which is, as noted above, beneficial (recall that workers strictly prefer to work than not). Thus in

this case, the social planner would subsidize capital accumulation. When σSR > 1, and capital reduces

the labor share and employment, the opposite applies.

Second, the quality ladder structure in the creation of new complex tasks introduces a technological

externality. By undertaking this type of innovation and thus increasing N , a technology monopolist

also allows future innovators to create more productive new tasks (because γ(N) is increasing). Au-

tomation creates an opposite and somewhat more subtle externality. Because capital has the same

productivity in all automated tasks, there is no direct technological externality. But automation today

forces future innovators to automate higher-indexed tasks, which are the ones in which labor has a

comparative advantage (because γ(I) is increasing), and this reduces the incremental profits of future

innovators.

Finally and most importantly, the quasi-labor supply schedule creates an additional and novel

distortion in the equilibrium relative to the constrained efficient allocation. Because firms do not

internalize that the quasi-rents received by workers are transfers, they automate tasks taking into

account the wage rate. In contrast, the social planner understand that these quasi-rents are transfers,

and thus at the margin bases her automation decisions on the opportunity cost of labor rather than

the market wage. Equivalently, because the planner recognizes that wages are above the opportunity

cost of labor, she prefers to create more employment. In the market allocation, the resulting greater

incentives of firms to automate tasks than what is socially optimal translate into too much R&D

directed towards automation and too little R&D directed towards the creation of new complex tasks.

For this reason, the social planner would like to encourage (subsidize) the creation of new complex

tasks and discourage (tax) automation, as outlined in parts 4 and 5 of the proposition.

Proof of Proposition 6: Let SI(t) and SN (t) denote the allocation of scientists, and consider
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the allocation obtained by a small deviation SP
N (t) = min{SN (t)+ν, 1} and SP

I (t) = max{SI(t)−ν, 0}

if SI(t) < 1, and SP
N (t) = SN (t), SP

I (t) = SI(t) otherwise.

Clearly, the new allocation satisfies nP (t) ≥ n(t). Furthermore, we have that asymptotically

nP (t) > n(t). We prove that for a small ν > 0, such deviation increases welfare and reduces the extent

of automation.

For ν small enough, we have that the above allocation changes welfare by ν(κNµN (t) − κIµI(t)),

whenever SI(t), SN (t) ∈ (0, 1). Moreover, whenever the allocation of scientists is an interior one, we

have κNVN (t) = κIVI(t).

Thus, to prove that the reallocation of scientists away from automation increases welfare, it is

enough to verify that, whenever κNVN (t) = κIVI(t), we have κNµN − κIµI > 0. This is equivalent to

proving the inequality:
ΨN (t)

ΨI(t)
>
VN (t)

VI(t)
,

with all value functions evaluated at the decentralized equilibrium path.

Because we assumed that in the decentralized allocation the intermediate goods are subsidized at

the rate 1− µ (or equivalently, that µ→ 1), unit costs are given by cP (·) , and factor prices are given

by wP
N , w

P
I and RP .

Thus, we can compute ΨN and ΨI as:

ΨI(t) =Y (t)

∫
∞

t

e−
∫
τ

0 (R
P
−δ−g(s))ds

(
cp(wP

I (τ ))1−σ − cp(RP (τ))1−σ

1− σ
+ sLεL

∂ lnωP

∂I

)
dτ ,

ΨN(t) =Y (t)

∫
∞

t

e−
∫
τ

0 (R
P
−δ−g(s))ds

(
cp(RP (τ))1−σ − cp(wP

N (τ))1−σ

1− σ
+ sLεL

∂ lnωP

∂N

)
dτ.

These are variants of the formula provided in equation (B12) in the main text, in which we now

discount future welfare gains from technology at the household discount rate.

However, this implies the inequalities:

ΨN (t)

ΨI(t)
=

∫∞
t e−

∫ τ
0 (R

P−δ−g(s))ds
(
cp(RP (τ))1−σ−cp(wP

N (τ))1−σ

1−σ + sLεL
∂ lnωP

∂N

)
dτ

∫∞
t e−

∫ τ

0
(RP−δ−g(s))ds

(
cp(wP

I (τ ))1−σ−cp(RP (τ ))1−σ

1−σ + sLεL
∂ lnωP

∂I

)
dτ

>

∫∞
t e−

∫ τ

0 (R
P−δ−g(s))ds cp(RP (τ ))1−σ−cp(wP

N (τ ))1−σ

1−σ dτ
∫∞
t e−

∫ τ
0 (RP−δ−g(s))ds c

p(wP
I (τ))1−σ−cp(RP (τ))1−σ

1−σ dτ

>

∫∞
t e−

∫ τ
0 (R

P−δ−g(s))ds c
p(RP (τ ))1−σ−cp

(
wP

N (τ)N(τ)
N(t)

)1−σ

1−σ dτ

∫∞
t e−

∫ τ
0
(RP−δ−g(s))ds

cp
(
wP

I (τ) I(τ)
I(t)

)1−σ
−cp(RP (τ ))1−σ

1−σ dτ

≥

∫∞
t e−

∫ τ

0 (R
P−δ−g(s))ds

(
cp
(
wP
N (τ )N(τ )

N(t)

)ζ−σ
− cp(RP (τ))ζ−σ

)
dτ

∫∞
t e−

∫ τ

0
(RP−δ−g(s))ds

(
cp(RP (τ ))ζ−σ − cp

(
wP
I (τ)

I(τ)
I(t)

)ζ−σ
)
dτ

=
VN (t)

VI(t)
,

as we set out to prove.
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The first inequality follows from the novel inefficiency introduced in this paper: the fact that labor

gets rents in equilibrium pushes towards the underprovision of new tasks and excessive automation.

The second inequality follows from the technological externality; which as explained above pushes

towards the underprovision of new tasks. The last inequality follows by noting that:

cp(RP (τ ))1−σ−cp
(
wP

N (τ)
N(τ)
N(t)

)1−σ

1−σ

cp
(
wP
N (τ)N(τ )

N(t)

)ζ−σ
− cp(RP (τ))ζ−σ

≥

cp
(
wP

I (τ )
I(τ)
I(t)

)1−σ
−cp(RP (τ))1−σ

1−σ

cp(RP (τ ))ζ−σ − cp
(
wP
I (τ)

I(τ )
I(t)

)ζ−σ
.

To prove this inequality, denote by AN = cp
(
wP
N (τ)N(τ )

N(t)

)ζ−σ
, AI = cp

(
wP
N (τ) I(τ )I(t)

)ζ−σ
, AK = cp(R

p(τ))ζ−σ.

The last inequality is then equivalent to

h(AK)− h(AI)

AK −AI
≥
h(AN )− h(AK)

AN −AK
,

where h(x) = 1
1−σx

1−σ
ζ−σ . When ζ ≥ 1 this function is (weakly)convex, and the above inequality follows

from the convexity of h(·) and the observation that AN > AK > AI .

When ζ < 1 the last inequality is reversed. Thus, in this case, the inequality ΨN (t)
ΨI (t)

> VN (t)
VI(t)

, holds

only if εL is sufficiently large�

Proofs from Section 6

Proof of Proposition 7: Consider an exogenous path for technology in which Ṅ = İ = ∆ and

I∗(t) = I(t) so that N(t) − I∗(t) = n. We show that the economy admits a BGP in which Ṁ = ∆,

and therefore N(t)−M(t) = n−m.

Denote the normalized wages of low-skill and high-skill labor by wL = WL/γ(I
∗) and wH =

WH/γ(I
∗), respectively. Balanced growth requires that these two normalized wages converge to con-

stant values, so that both grow at the same rate as the aggregate economy. A BGP must satisfy two

additional conditions. First, because at time t firms are indifferent between producing task M(t) with

low-skill or high-skill workers, we must Have

Γ(N(t)−M(t)) = Γ(n−m) =
wL

wH
. (B14)

Moreover, because Γ(N(t) − i) is decreasing in i, low-skill workers have comparative advantage in

low-index tasks, and thus will produce the tasks in (I∗(t),M(t)), while high-skill workers will produce

the tasks in [M(t), N(t)].

The second condition is that the wage gap must also be consistent with market clearing. The

market clearing conditions are given by:

K = Y (I∗ −N + 1)cu(R)ζ−σR−ζ ,

Ls

(
WL

RK

)
= Y

∫ M

I∗
γL(i, t)

ζ−1cu
(

WL

γL(i, t)

)ζ−σ

W−ζ
L di,

Hs

(
WH

RK

)
= Y

∫ N

M
γH(i)ζ−1cu

(
WH

γH(i)

)ζ−σ

W−ζ
H di.
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Using the normalized variables k ≡ K/γ(I∗) and y ≡ Y/γ(I∗), these conditions can be rewritten as

k = y(1− n)cu(R)ζ−σR−ζ ,

Ls
(wLγ

Rk

)
γ = y

∫ m

0
(γH(i)Γ(n − i))ζ−1cu

(
wL

γH(i)Γ(n − i)

)ζ−σ

w−ζ
L di,

Hs
(wH

Rk

)
= y

∫ n

m
γH(i)ζ−1cu

(
wH

γH(i)

)ζ−σ

w−ζ
H di.

We can also observe that, under our maintained assumptions, the demand for low-skill and high-skill

labor is isoelastic with a negative elasticity of εD. In particular, this elasticity is equal to σ if σ → ζ

or η → 0, or to σs + (1 − s) if ζ → 1, with s the constant share of labor or capital in the production

of a task.

Moreover, because we assumed that the supply of labor is isoelastic, we can write the relative

demand for low-skill and high-skill labor as:

Ls(1)

Hs(1)

(
wL

wH

)νL

=

∫m
0 (γH(i)Γ(n − i))ζ−1cu

(
1

γH (i)Γ(n−i)

)ζ−σ
di

∫ n
m γH(i)ζ−1cu

(
1

γH(i)

)ζ−σ
di

(
wL

wH

)−εD

(B15)

Combining equations (B14) and (B15), we conclude that there is a BGP if and only if there exists

a threshold m such that:

Ls(1)

Hs(1)
Γ(n−m)νL+εD =

∫m
0 (γH(i)Γ(n − i))ζ−1cu

(
1

γH (i)Γ(n−i)

)ζ−σ
di

∫ n
m γH(i)ζ−1cu

(
1

γH(i)

)ζ−σ
di

.

To show that this threshold always exists, notice that the left-hand side of the above equation decreases

with m, while the right-hand side increases with m. Furthermore, when m → 0 the right-hand side

converges to zero, and when m→ n the right-hand side converges to infinity. Thus, there is a unique

value of m ∈ (0, n) for which the above equality holds. This establishes our claim that there is a

unique BGP.

We omit the proof of part 3 of the proposition, which establishes the effect of changes in technology

on inequality. The required steps are similar to those in the proof of Lemma A1. Specifically, similar

steps established that automation reduces the relative demand for low-skill labor, but at the same

time the productivity gains it generates increase the demand for high-skilled labor, thus increasing

inequality. On the other hand, an increase in N raises the demand for high-skill labor labor relative

to the demand for low-skill workers, also increasing inequality. �

Proof of Proposition 8: We provide formulas for the asymptotic behavior of the value functions

in this case. From the Bellman equations provided in the main text, it follows that along a BGP we

have

vN (n) =M

∫ n
∆

0
e−(ρ−(1−θ)g)τ cu (wN (n)egτ )ζ−σ dτ,

vI(n) =M

∫ 1−n
∆

0
e−(ρ−(1−θ)g)τ cu (ρ+ δ + θg)ζ−σ dτ.
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Here ∆ = κIκNφ(nD)
κIφ(nD)+κN

S is the endogenous rate at which both technologies grow in a BGP.

As before, a BGP requires that nD satisfies

κIφ(n
D)vI(n

D) = κNvN (nD).

Using these formulas, the proof of the proposition follows the same steps as in the proof of Proposition

5. Using the same steps, we also obtain that the equilibrium in this case is locally stable whenever

κIφ(n)vI(n) cuts κNvN (n) from below. �

When New Tasks Also Use Capital

In our baseline model, new tasks use only labor. This simplifying assumption facilitated our analysis,

but is not crucial or even important for our results. Here we outline a version of the model where

new tasks also use capital and show that all of our results continue to hold in this case. Suppose, in

particular, that the production function for non-automated tasks is

y(i) = B

[
ηq(i)

ζ−1
ζ + (1− η)

(
Bν(γ(i)l(i))

νk(i)1−ν
) ζ−1

ζ

] ζ
ζ−1

, (B16)

where k(i) is the capital used in the production of the task, ν ∈ (0, 1), and Bν ≡ ν−ν(1 − ν)−(1−ν) is

a constant that is re-scaled to simplify the algebra.

Automated tasks i ≤ I can be produced using labor or capital, and their production function takes

the form

y(i) = B

[
ηq(i)

ζ−1
ζ + (1− η)

(
k(i) +Bν(γ(i)l(i))

νk(i)1−ν
) ζ−1

ζ

] ζ
ζ−1

. (B17)

Comparing these production functions to those in our baseline model ((2) and (3)), we readily see that

the only difference is the requirement that labor has to be combined with capital in all tasks (while

automated tasks continue not to use any labor). Note also that when ν → 1, we recover the model in

the main text as a special case. It can be shown using a very similar analysis to that in our main model

that most of the results continue to hold with minimal modifications. For example, there will exist a

threshold Ĩ such that tasks below I∗ ≡ min{I, Ĩ} will be produced using capital and the remaining more

complex tasks will be produced using labor. Specifically, whenever R ∈ argmin
{
R,R1−ν

(
W
γ(i)

)ν}

and i ≤ I, the relevant task is produced using capital, and otherwise it is produced using labor.

Since γ(i) is strictly increasing, this implies that there exists a threshold Ĩ at which, if technologically

feasible, firms would be indifferent between using capital and labor. Namely, at task Ĩ, we have that

R =W/γ(Ĩ), or
W

R
= γ(Ĩ).

This threshold represents the index up to which using capital to produce a task yields the cost-

minimizing allocation of factors. However, if Ĩ > I, firms will not be able to use capital all the way up

to task Ĩ because of the constraint imposed by the available automation technology. For this reason,

the equilibrium threshold below which tasks are produced using capital is given by

I∗ = min{I, Ĩ},
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meaning that I∗ = Ĩ < I when it is technologically feasible to produce task Ĩ with capital, and

I∗ = I < Ĩ otherwise.

The demand curves for capital and labor are similar, with the only modification that the demand

for capital also comes from non-automated tasks. Following the same steps as in the text, we can then

establish analogous results. This requires the more demanding Assumption 1′′, which guarantees that

the demand for factors is homothetic:

Assumption 1′′: One of the following three conditions holds:

1. σ − ζ → 0, or

2. ζ → 1, or

3. η → 0.

The following proposition is very similar to Proposition 1, with the only difference being in the

ideal price condition.

Proposition B2 (Equilibrium in the static model when ǫ ∈ (0, 1)) Suppose that Assumption 1′′

holds. Then, for any range of tasks [N−1, N ], automation technology I ∈ (N−1, N ], and capital stock

K, there exists a unique equilibrium characterized by factor prices, W and R, and threshold tasks, Ĩ

and I∗, such that: (i) Ĩ is determined by equation (5) and I∗ = min{I, Ĩ}; (ii) all tasks i ≤ I∗ are

produced using capital and all tasks i > I∗ are produced using labor; (iii) the capital and labor market

clearing conditions, equations (7) and (8), are satisfied; and (iv) factor prices satisfy the ideal price

index condition:

(I∗ −N + 1)cu(R)1−σ +

∫ N

I∗
cu
(
R1−ν

(
W

γ(i)

)ν)1−σ

di = 1. (B18)

Proof. The proof follows the same steps as Proposition 1.

Comparative statics in this case are also identical to those in the baseline model (as summarized

in Proposition 2) and we omit them to avoid repetition. The dynamic extension of this more general

model is also very similar, and in fact, Proposition 3 applies identically, and is also omitted. To

highlight the parallels, we just present the equivalent of Proposition 5.

Proposition B3 (Equilibrium with endogenous technology when ν ∈ (0, 1)) Suppose that σ >

ζ and Assumption 1′′ holds. Then there exist ρ and A such that for ρ > ρ and A < A, the following

are true:

1. There exists κ such that for κI

κN
> κ, there is a BGP, where Ṅ = İ = κIκN

κI+κN
S, and Y,C,K

and W grow at the constant rate g = A κIκN

κI+κN
S, and the rental rate, R, the labor share and

employment are constant. Along this path, we have N(t) − I(t) = nD , with nD determined

endogenously from the condition κNvN = κIvI , and satisfying nD ∈ (n̄, 1). In addition, there

exists ρ ≥ ρ such that if ρ > ρ, the balance growth path is unique.
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2. Suppose that ρ > ρ so that the balance growth path is unique. Then, when θ = 0, the dynamic

equilibrium is globally (saddle-path) stable. Moreover, there exists A ≤ A such that provided that

A < A, and for any value of θ, the dynamic equilibrium is unique in the neighborhood of the

BGP and is locally saddle-path stable.

Proof. The proof of this result follows closely that of Proposition 5, especially exploiting the fact

that the behavior of profits of automation and the creation of new tasks behave identically to those

in the baseline model, and thus the value functions behave identically also.

Microfoundations for the Quasi-Labor Supply Function

We provide various micro-foundations for the quasi-labor supply expression used in the main text,

Ls
(

W
RK

)
.

Efficiency wages: Our first micro-foundation relies on an efficiency wage story. Suppose that,

when a firm hires a worker to perform a task, the worker could shirk and, instead of working, use her

time and effort to divert resources away from the firm.

Each firm monitors its employees, but it is only able to detect those who shirk with probability

q at each instant of time. If the worker is caught shirking, the firm does not pay wages and retains

its resources. Otherwise, the worker earns her wage and a fraction of the resources that she diverted

away from the firm.

In particular, assume that each firm holds a sum RK of liquid assets that the worker could divert,

and that if uncaught, a worker who shirks earns a fraction b(i) of this income. We assume that the

sum of money that the worker may be able to divert is RK to simplify the algebra. In general, we

obtain a similar quasi-supply curve for labor so long as these funds are proportional to total income

Y = R K +WL.

In this formulation, b(i) measures how untrustworthy worker i is, and we assume that this infor-

mation is observed by firms. b(i) is distributed with support [0,∞) and has a cumulative density

function G. Moreover, we assume there is a mass L of workers. A worker of type b(i) does not shirk

if and only if:

W ≥ (1− q)[W + b(i)RK] →
W

RK

q

1− q
≥ b(i).

Thus, when the market wage is W , firms can only afford to hire workers who are sufficiently trustwor-

thy. The employment level is therefore given by:

Ls = G

(
W

RK

q

1− q

)
L.

When q = 1—so that there is no monitoring problem—, we have that G
(

W
RK

q
1−q

)
= 1, and the

supply of labor is fixed at L for all wages W ≥ 0. However, when q < 1—so that there is a monitoring

problem—, we have that Ls < L. Even though all workers would rather work than stay unemployed,

the monitoring problem implies that not all of them can be hired at the market wage. Notice that,
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though it is privately too costly to hire workers with b(i) > W
RK

q
1−q , these workers strictly prefer

employment unemployment.

Alternatively, one could also have a case in which firms do not observe b(i), which is private

information. This also requires that firms do not learn about workers. To achieve that, we assume

that workers draw a new value of b(i) at each point in time.

When the marginal value of labor is W , firms are willing to hire workers so long as the market

wage W̃ satisfies:

(W − W̃ )G

(
W̃

RK

q

1− q

)
− (1− q)

(
W̃ +RK

∫ ∞

W̃
RK

q
1−q

bdG(b)

)
≥ 0.

This condition guarantees that the firm makes positive profits from hiring an additional worker, whose

type is not known.

Competition among firms implies that the equilibrium wage at each point in time satisfies:

(W − W̃ )G

(
W̃

RK

q

1− q

)
− (1− q)

(
W̃ +RK

∫ ∞

W̃
RK

q
1−q

bdG(b)

)
= 0.

This curve yields an increasing mapping from W
RK to W̃

RK , which we denote by

W̃

RK
= h

(
W

RK

)
.

Therefore, the effective labor supply in this economy, or the quasi-supply of labor, is given by

Ls = G

(
W̃

RK

q

1− q

)
= G

(
h

(
W

RK

)
q

1− q

)
L.

As in the previous model, even though the opportunity cost of labor is zero, the economy only

manages to use a fraction of its total labor.

Minimum wages: Following Acemoglu (2003), another way in which we could obtain a quasi-

labor supply curve is if there is a binding minimum wage. Suppose that the government imposes

a (binding) minimum wage W̃ and indexes it to the income level and current employment, L. In

particular, assume that

W̃ =M−1(L)(RK +WL).

Here, RK +WL represents the total income in this economy (net of intermediate goods’ costs), and

M−1(·) is an increasing function with inverse M(·) , which determines the indexation. Rearranging

this expression we obtain:

Ls =M

(
W̃

RK + W̃Ls

)
.

This functional equation defines the quasi-labor supply in this economy as the solution to the above

functional equation. This quasi-labor supply is an increasing function of W̃
RK = W

RK (because the

minimum wage is binding).
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