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1 Introduction

Recent work has highlighted that standard monetary business cycle models imply that far future

forward guidance has implausibly large effects on current outcomes (Carlstrom, Fuerst, and Paus-

tian, 2015; Del Negro, Giannoni, and Patterson, 2013). In earlier research, we showed that this

implausible behavior of standard models results from the highly forward looking nature of the stan-

dard consumption Euler equation (McKay, Nakamura, and Steinsson, 2016). To see this, consider

the response of consumption to a forward guidance announcement by the central bank in a standard

New Keynesian model. A key equation in this type of model is the standard consumption Euler

equation, which once it has been log-linearized, takes the form

Ĉt = EtĈt+1 − σ(it − Etπt+1 − rnt ), (1)

where Ĉt denotes consumption, it denotes the nominal interest rate, πt denotes inflation, rnt is the

natural real rate of interest, i.e., the real interest rate that would prevail with flexible prices (all

measured as percent deviations from steady state), Et denotes the expectations operator, and σ is

the intertemporal elasticity of substitution. Solving this equation forward yields

Ĉt = −σ
∞∑
j=0

Et(it+j − Et+jπt+j+1 − rnt+j). (2)

Notice that there is no discounting in the sum on the right hand side of this equation. This implies

that news about future real interest rates at any horizon—however far in the future—has the same

effect on current consumption.1

This prediction is sensitive to the presence of precautionary savings and liquidity constraints.

In McKay, Nakamura, and Steinsson (2016), we presented a heterogeneous agents New Keynesian

model in which the response of current consumption to far future forward guidance is greatly muted

relative to the standard representative agent New Keynesian model.2 A drawback of the model

presented in that paper is that it is considerably more complicated to solve than a standard New

Keynesian model.

In this note, we present a simple model with unemployment risk and borrowing constraints

which yields a “discounted Euler equation.” The discounting in the Euler equation means that the

1Here it is important to remember that consumption will return to its pre-shock steady state in the long run. In
other words, temporary monetary policy actions have no long-run effects in this model.

2Kaplan, Moll, and Violante (2016) present similar results in a richer model. Werning (2015) presents conditions
under which the response of consumption to interest rates in a heterogeneous agents model will be the same as in a
representative agents model.
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effects of future real interest rates on current consumption are muted relative to the standard New

Keynesian model.3 We show that this simple model approximates the outcomes of our richer model

with uninsurable income risk and borrowing constraints in response to a forward guidance shock.

The model is simple enough to be easily incorporated into standard DSGE models. We illustrate

this with an application to the zero lower bound.

2 Discounted Euler Equation Model

Consider a simplied version of the model presented in McKay, Nakamura, and Steinsson (2016), in

which idiosyncratic productivity is i.i.d. and takes one of two values each period, which we refer

to as employed (z = 1) and unemployed (z = 0). The only income of the unemployed comes from

home production in amount m. Recall that agents are not allowed to borrow in the model. In this

version of the model, we furthermore assume for tractability that there are no assets available.4

We show in appendix A that under these assumptions we can derive the following log-linearized

consumption Euler equation

Ĉt = αEtĈt+1 − σ(it − Etπt+1 − rnt ). (3)

This equation differs from the standard consumption Euler equation because of the parameter

α < 1. Solving this equation forward yields

Ĉt = −σEt
∞∑
j=0

αj(it+j − Et+jπt+j+1 − rnt+j). (4)

Notice that the effect of interest rates j periods in the future on current consumption is discounted

by a factor αj . For this reason, we refer to equation (3) as the “discounted Euler equation.” The

presence of α < 1 implies that far future interest rate changes have much smaller effects on current

consumption than near term interest rate changes.

In this version of the model, the unemployed households are liquidity constrained, while the

employed households are not. The presence of α in equation (3) results from the fact that with some

probability the currently employed households will be unemployed next period and next period’s

expected marginal utility is therefore partly determined by the exogenous marginal utility in the

3Interestingly, such a formulation of the consumption Euler equation has actually been used in policy calculations
by the Central Bank of Norway, to combat the forward guidance puzzle. We thank Oistein Roisland for pointing this
out to us.

4Krusell, Mukoyama, and Smith (2011) and Ravn and Sterk (2013) have also used this approach to formulate
tractable incomplete markets models.
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unemployed state. For this reason, the currently employed households put some probability on the

outcome that they will not benefit from an increase in next period’s consumption and therefore do

not increase current consumption one-for-one with next period’s expected consumption.5

In the richer incomplete markets model presented in McKay, Nakamura, and Steinsson (2016),

the response of output to real interest rate changes differs from the response with complete markets

both because the response declines with the horizon of forward guidance and also because the

response to contemporaneous changes in the real rate is smaller. The discounted Euler equation

can match the first of these differences with an appropriate value for α. To match the second of

these differences we can change the value of the intertemporal elasticity of substitution σ in the

discounted Euler equation.

Figure 1 shows that the discounted Euler equation—equation (3)—with α = 0.97 and σ = 3/8

provides a good approximation to the response of output to a real interest rate shock 20 quarters in

the future in the baseline incomplete markets model analyzed in McKay, Nakamura, and Steinsson

(2016).6 The approximation is nearly perfect up until the time that the interest rate changes. What

the discounted Euler equation misses is the fall in consumption after the interest rate shock. This

fall is due to redistribution of wealth in the incomplete markets model (from households with high

MPCs to households with low MPCs), which the discounted Euler equation does not capture.

3 Application to the ZLB

We now illustrate the importance of discounting in the Euler equation using an application to the

Zero Lower Bound (ZLB). We follow the classic paper by Eggertsson and Woodford (2003) in how

we model the ZLB, but show that our “discounted Euler Equation” model yields substantially

different conclusions.

First, using the aggregate resource constraint we rewrite the Euler equation in terms of the

5Piergallini (2006) and Nistico (2012) provide an alternative micro-foundation for discounting in the Euler equation
based on mortality shocks as in Blanchard’s (1985) perpetual-youth model. In their formulation, discounting only
arises from aggregation over different generations, and to generate a quantitatively important deviation from the
standard Euler equation, these authors assume counter-factually high death rates. Our approach rationalizes why
long-lived consumers can have short planning horizons. Moreover, in Piergallini and Nistico’s formulation, the
discounting in the Euler equation is larger the larger is the amount of financial wealth in the economy and disappears
when financial wealth is in zero-net supply. In contrast, in our full model, agents discount the future more when
they have little liquid financial wealth to buffer shocks to income. Discounting of this kind does not arise in the a
spender-saver setup (see, e.g., Bilbiie, 2008).

6Recall that σ = 1/2 in McKay, Nakamura, and Steinsson (2016). The factor by which we need to reduce σ in
the simple model to match the model in McKay, Nakamura, and Steinsson (2016) is therefore 0.75.
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Figure 1: Response of output to a 50 basis point change in the expected real interest rate in quarter

20 in the incomplete markets model and in the discounted Euler equation model.

output gap Ŷt
7

Ŷt = αEtŶt+1 − ζσ(it − Etπt+1 − rnt ), (5)

where ζ is the factor by which we need to change σ to match reponse of output to a contemporaneous

interest rate shock in baseline incomplete markets model in McKay, Nakamura, and Steinsson (2016)

(i.e. the amount by which the effects of even contemporaneous interest rate shocks are muted in

the incomplete markets model).

The Calvo Phillips curve is

πt = βEtπt+1 + κŶt. (6)

Finally, we assume that the central bank follows a “naive” monetary policy,

it = max(0, rnt + φπt). (7)

where φ > 1. For comparability with Eggertsson and Woodford (2003), we assume that β = 0.99,

σ = 0.5, and κ = 0.02.

Following Eggertsson and Woodford (2003), we assume that the ZLB binds due to a shock that

lowers the natural rate below zero and persists at the same negative value with probability λ each

7In our model the level of output under flexible prices is constant so Ŷt is both the log-deviation of output from
steady state and the output gap.
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quarter. With probability 1−λ, it reverts back to normal. For simplicity, we assume that once the

natural rate reverts back to normal, the zero lower bound on nominal interest rates never binds

again in the future.

We start by solving for the level of the output gap and inflation after the shock has dissipated.

Since we have assumed that the natural rate will never go negative again, it is feasible for the

monetary authority to set it = rnt at all times after the shock dissipates. This implies that both

the output gap and inflation will be zero at all times after the shock dissipates. Given this, it is

easy to solve for the output gap and inflation while the shock persists. First, notice that all periods

while the shock persists are identical since the probability of the shock reverting to normal does not

change over time. This implies that output and inflation will be constant while the shock persists.

We refer to the period during which the shock persists as the short run. Next, notice that in the

short run EtŶt+1 = λŶt and Etπt+1 = λπt since with probability 1 − λ the economy will revert to

normal (in which case Ŷt = πt = 0). Using these facts and equations (6) and (5), a few steps of

algebra (presented in Appendix B) yield

πS =
κ

1− βλ
ŶS , (8)

ŶS =
ζσ

1− αλ− ζσλκ
1−λβ

rnS , (9)

where πS and ŶS denote inflation and the output gap in the short run, and rnS denotes the natural

real rate of interest in the short run.

3.1 How Deep is a ZLB Recession?

Our first result is that the discounted Euler equation model implies that the same shocks that

generate a huge recession at the ZLB in the standard model, imply a much smaller recession in the

discounted Euler Equation model. Eggertsson and Woodford (2003) present results for a shock that

lowers the natural rate to rnS = −0.02 (annualized) and reverts to normal with probability λ = 0.1

(per quarter). They show that in the standard model, a shock of this size and persistence generates

a very large recession—an output gap of -14.3%—accompanied by a large amount of deflation (-

10.5%). In Table 1, we show that in the discounted Euler equation model, this same shock leads to

a much more modest recession. The output gap is a mere -2.9%, and inflation falls by only 2.1%.

Clearly, incorporating discounting of future interest rates radically alters the conclusions one comes

to about the severity of the problem that the monetary authority faces with this type of shock.8

8We set α = 0.97 and ζ = 0.75 as in Figure 1. We compare this to the standard case of α = 1 and ζ = 1.
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Table 1: How Deep is a ZLB Recession?

Output Inflation

Standard Model -14.3% -10.5%
(α = 1, ζ = 1)

Discounted Euler Equation Model -2.9% -2.1%
(α = 0.97, ζ = 0.75)

Response of output and inflation when the natural rate falls to -2%
(annualized) with a 10% per quarter probability of returning to nor-
mal.

3.2 When does the Deflationary Death Spiral Occur

Our second result is that the discounted Euler equation model implies that the economy is less prone

to a “deflationary death spiral” at the ZLB. The strength of the deflationary forces in the standard

model are due to a feedback loop that gets stronger the more persistent is the shock to the natural

rate. The basic feedback loop results from the following chain of logic: The negative natural rate

leads to a positive interest rate gap—a real rate that is higher than the natural rate—because the

nominal rate can’t fall below zero. This leads output to fall, and if the shock is persistent it leads

expectations of future output to fall, which in turn leads expected inflation to fall, which causes

the current real rate to rise further, and current output to fall further, etc. The more persistent is

the shock, the more it affects expected inflation and the stronger this feedback loop becomes.

It is well known that the strength of the deflationary forces associated with negative shocks to

the natural real rate become infinitely strong—i.e. imply that the (log) output gap and inflation go

to negative infinity—for even relatively modest levels of persistence. This can be seen by looking at

the denominator of the expression for the short run output gap in equation (9). As this denominator

goes to zero, the short run output gap goes to negative infinity. In the standard model (with α = 1

and ζ = 1), this occurs for a shock with an expected duration of 11 quarters.

In the discounted Euler equation model, the strength of the deflationary forces are muted and

consequently the persistence of the ZLB shock needs to be greater for this “deflationary death

spiral” to occur. This is depicted in Figure 2, which plots the drop in output for different levels

of persistence of the ZLB shock. The solid line is the standard model, while the two broken lines

are two calibrations of the discounted Euler equation model that match the baseline and high-

risk calibrations of the incomplete markets model in McKay, Nakamura, and Steinsson (2016),

6
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Figure 2: Response of output to shock that makes the natural real rate of interest -2% (annualized)

for different levels of persistence of the shock (different values of λ).

respectively.9 The deflationary death spiral occurs only for shocks that are considerably more

persistent in the discounted Euler equation model than in the standard model.

4 Conclusion

In this note, we develop simple microfoundations for a “discounted Euler equation” that is easy to

incorporate into standard DSGE models. This discounted Euler equation implies that the effects

of far future changes in real interest rates as well as far future changes in the natural real rate have

much smaller effects on contemporaneous outcomes than in the standard New Keynesian model.

We show that this has important implications for policy experiments when nominal interest rates

are constrained by their zero lower bound.

9As we discuss in the text, α = 0.97 and ζ = 0.75 matches the baseline calibration of the incomplete markets
model in McKay, Nakamura, and Steinsson (2016). We use the same approach to match the high-risk calibration
with the discounted Euler equation model. This yields α = 0.94 and ζ = 0.7.
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A A Simple Incomplete Markets Model

The discounted Euler equation (3) can be micro-founded with a simplified version of the model

analyzed in McKay, Nakamura, and Steinsson (2016). The simplified model deviates from the full

model in the following ways:

1. The idiosyncratic productivity shock takes just two values, which we will call employed (z = 1)

and unemployed (z = 0).

2. Idiosyncratic productivity is i.i.d. across time: Pr(z′|z) = Pr(z′).

3. The supply of government debt is zero: B = 0.

4. Unemployed agents have access to a home production technology that produces final goods

in amount m.

5. Firm dividends Dt are distributed only to the employed households.

This version of our model is analytically tractable because there is no wealth in the economy and

there is a strict borrowing constraint, b′ ≥ 0. As the gross supply of assets is zero, there is no

possibility of saving in equilibrium and so the distribution of wealth remains degenerate at zero.

A.1 The Environment

Here we briefly summarize the model in McKay, Nakamura, and Steinsson (2016) including the

simplifications above. The economy is populated by a unit continuum of ex ante identical households

with preferences given by

E0

∞∑
t=0

βteqt

[
c1−γ
h,t

1− γ
−

`1+ψ
h,t

1 + ψ

]
,

where ch,t is consumption of household h at time t and `h,t is labor supply of household h at time

t. qt is an aggregate patience shock that determines the natural rate of interest and is given by

qt = qt−1 + rnt−1 with q0 = 0. Households are endowed with stochastic idiosyncratic employment

status zh,t ∈ {0, 1}, which is drawn i.id. with probabilities Pr(zh,t = 0) = u and Pr(zh,t = 1) = 1−u.

Employed households earn labor income Wt`h,t, where Wt is the aggregate real wage. Unemployed

households produce m units of the consumption good at home.

In this economy, a final good is produced from intermediate inputs according to the production

function

Yt =

(∫ 1

0
y

1/µ
j,t dj

)µ
,

where Yt denotes the quantity of the final good produced at time t and yj,t denotes the quantity of

the intermediate good produced by firm j in period t. The intermediate goods are produced using
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labor as an input according to the production function

yj,t = nj,t,

where nj,t denotes the amount of labor hired by firm j in period t.

While the final good is produced by a representative competitive firm, the intermediate goods

are produced by monopolistically competitive firms. The intermediate goods firms face frictions

in adjusting their prices that imply that they can only update their prices with probability θ per

period as in Calvo (1983). These firms are controlled by a risk-neutral manager who discounts

future profits at rate β. Whatever profits are produced are paid out immediately to the employed

households with each of them receiving an equal share.

Households trade a risk-free real bond with real interest rt between periods t and t+1. Borrowing

constraints prevent these households from taking negative bond positions. There is no external

supply of bonds. Finally, a monetary authority determines the nominal interest rate.

A.2 Discounted Euler equation

As individual assets are constant at zero, it follows that all households of a given employment

status must choose the same consumption. Let ce,t be the consumption of the employed and cu,t

be the consumption of the unemployed agents. Moreover, the absence of opportunities to borrow

and save implies that consumption must be equal to income for all individuals. The unemployed

will therefore consume m. The Euler equation for employed agents is

c−γe,t ≥ βer
n
t (1 + rt)Et

[
(1− u)c−γe,t+1 + um−γ

]
. (10)

The Euler equation for an unemployed agent is

m−γ ≥ βernt (1 + rt)Et
[
(1− u)c−γe,t+1 + um−γ

]
.

Notice that the right hand side of the Euler equation is independent of employment status as

employment is i.i.d. across time. Therefore, if m < ce,t the unemployed households must be

constrained and their Euler equation will not hold with equality. We assume that m is low enough

that m < ce,t for all t.10

Following Krusell, Mukoyama, and Smith (2011) and Ravn and Sterk (2013), we will focus on

the equilibrium of this economy in which the Euler equation of the employed holds with equality in

10It is easy to relax the assumption that idiosyncratic productivity is i.i.d., however, with i.i.d. productivity it is
especially easy to see that the unemployed will be constrained if m is low enough.
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all periods. In this equilibrium, the employed households choose zero savings and are therefore up

against their constraint. But the constraint does not bind in the sense that they would not strictly

prefer to borrow more if allowed. There are other equilibria of this economy in which the Euler

equation for the employed household holds with inequality (implying that the employed households

would strictly prefer to borrow if allowed). We focus on the equilibrium in which the employed

households’ Euler equation holds with equality for the following reason. In the more realistic case in

which the gross supply of assets (either internal or external) is positive there is a unique equilibrium

in which the employed households’ Euler equation holds with equality. Consider a sequence of such

economies with smaller and smaller gross supplies of assets. The equilibrium we focus on is the

unique equilibrium of the limiting economy for which the supply goes to zero.11

We assume that home production is not measured as part of GDP. Therefore measured aggregate

consumption is

Ct = (1− u)ce,t. (11)

Substituting into the employed Euler equation we have

(Ct/(1− u))−γ = βer
n
t RtEt

[
(1− u)(Ct+1/(1− u))−γ + um−γ

]
. (12)

Log-linearizing this equation and using the Fisher equation yields

Ĉt = −1

γ
[it − Eπt+1 + rnt ] + αE

[
Ĉt+1

]
(13)

where

α ≡ 1

1 + u
1−u

(
c̄e
m

)γ , (14)

and bars denote steady state values and hats denote log deviations from steady state. Notice that

α is decreasing in the probability of becoming unemployed, u, and the consumption impact of

unemployment, c̄e/m. The parameter σ used in the main text is equal to 1/γ.

11Suppose there is an outstanding supply of government debt in amount ε > 0 financed by a lump sum tax. In
this case, bond market clearing requires some household to hold this debt at the prevailing interest rate (which is set
by the monetary authority). This household must be indifferent at the margin regarding how much they hold of the
debt (i.e., their Euler equation must hold with equality). If instead the Euler equation of all households held with
strict inequality, no household would want to hold the outstanding bonds. There would be excess supply of bonds
and excess demand for consumption goods. Since firms must meet demand at posted prices, they would produce
more, which would increase income and consumption and lead marginal utility of consumption to fall. This process
would continue until the agents with the lowest marginal utility of consumption—the employed agents—were willing
to hold the bonds. Thus, for any positive ε the Euler equation of the employed households will hold with equality in
equilibrium and the equilibrium we focus on is the limit of these equilibria as ε goes to zero.

10



A.3 Phillips curve

Market incompleteness does not change the Phillips curve. To see this, note that the labor supply

condition for the employed is

c−γe,tWt = `ψt .

Using the fact that aggregate labor supply is Lt = (1−u)`t and aggregate consumption is given by

equation (11), this last expression can be rewritten as

(1− u)γ+ψ C−γt Wt = Lψt .

Log-linearizing this equation and using the aggregate resource constraint Ct = Yt and a first-order

approximation to the aggregate production function,12 L̂t = Ŷt, yields

Ŵt = (ψ + γ)Ŷt.

Market incompleteness does not change the relationship between inflation and marginal cost. To a

first-order approximation, this relationship is

πt = βEtπt+1 +
(1− β(1− θ))θ

1− θ
M̂Ct.

As the real marginal cost is the wage, we have

πt = βEtπt+1 +
(1− β(1− θ))θ

1− θ
(ψ + γ)Ŷt. (15)

As the flexible price equilibrium is constant in our model, Ŷt is the output gap and (15) is the

standard New Keynesian Phillips curve.

B Algebra Behind Equations (8) and (9)

Consider first the Phillips curve:

πt = βEtπt+1 + κŶt.

Since the output gap and inflation are constant at ŶS and πS , respectively, and Etπt+1 = λπS in

the short run, we have that

πS = βλπS + κŶS ,

12Here we abstract from the efficiency loss due to price dispersion, which is zero in a first-order approximation

around a zero-inflation steady state.
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which implies

πS =
κ

1− βλ
ŶS (16)

as long as ŶS and πS are finite.

Consider next the discounted Euler equation

Ŷt = αEtŶt+1 − ζσ(it − Etπt+1 − rnt ).

Again, since the output gap and inflation are constant at ŶS and πS , respectively, and Etπt+1 = λπS

and EtŶt+1 = λŶS in the short run, and, in addition, since the natural real rate is rnS in the short

run, we have that

ŶS = αλŶS + ζσ(λπS + rnS).

If we now use equation (16) to eliminate πS from this equation we obtain

ŶS = αλŶS + ζσ

(
λ

κ

1− βλ
ŶS + rnS

)
,

which implies

ŶS =
ζσ

1− αλ− ζσλκ
1−λβ

rnS

as long as ŶS is finite.
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