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1. Introduction 

In canonical asset pricing models such as the Sharpe-Lintner-Mossin and Black 

CAPM [Sharpe (1964), Lintner (1965), Mossin (1966), Black (1972)], Ross’s (1976) 

Arbitrage Pricing Theory, and Merton’s (1973) ICAPM, there is no role for idiosyncratic 

risk.  Although precedent belongs to Levy (1978), Merton (1987) abandons this frictionless 

market ideal and builds a model in which (by assumption) investors do not hold fully 

diversified portfolios.  He justifies this assumption by appealing to incomplete information, 

though any multitude of frictions or behavioral biases could account for such behavior.  

This simple incomplete markets model generates a positive premium for idiosyncratic risk.   

In this paper, we endogenize the representative agent’s diversification decision in 

Merton’s (1987) model with costly information acquisition.  This serves two purposes.   

First, it is economically plausible that agents diversify based on the marginal costs 

and benefits of diversification.  This allows for a mapping from the marginal disutility of 

under-diversification, to the decision to diversify.  Endogenous diversification results in 

diminishing marginal returns to incremental idiosyncratic risk: investors still require a 

positive premium for bearing higher levels of idiosyncratic risk, but endogenously optimal 

diversification reduces the required risk premium.  As a result, the model introduces 

convexity into the compensation for bearing idiosyncratic risk, in sharp contrast to 

Merton’s original model in which the idiosyncratic risk premium is constant.  This 

difference is illustrated in Figure 1.   

Second, as average idiosyncratic volatility changes over time, it affects the disutility 

of under-diversification, leading to a time varying premium.  This can be seen in the cross-

section of stocks via the covariance of a stock’s idiosyncratic volatility with average 

idiosyncratic volatility.  We refer to this covariance as the idiosyncratic risk premium 

sensitivity (IRPS), formally defined as the covariance of the idiosyncratic risk of a stock 

( 2

i ) with one over the square root of the average idiosyncratic risk (1/ 2 ).  The 

intuition is best clarified by contrasting two states of the world, where average 

idiosyncratic volatility is either low or high.  In periods where average idiosyncratic 

volatility is low, the marginal disutility of stocks with high idiosyncratic volatility relative 

to the average (i.e. high IRPS stocks) is higher, generating a high premium.  In contrast, 
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in periods where average idiosyncratic volatility is high, investors’ (endogenously) 

diversify more, making them (relatively) less averse to stocks with high idiosyncratic risk.  

In other words, the marginal disutility of stocks with relatively high idiosyncratic 

volatility is lower, generating a lower (but still positive) premium.  The implication is 

that the slope of regressions of expected returns on IRPS should be positive in periods 

where average idiosyncratic volatility is low, and less positive in periods where average 

idiosyncratic volatility is high. 

Between 1973 and 2014, Fama-MacBeth regressions of monthly returns show a 

positive slope on IRPS, after controlling for firm size, book-to-market ratios and prior 

returns.  This unconditional result, however, masks important conditional variation that 

is at the center of the model.  We separate the sample into periods of high versus low 

average idiosyncratic volatility based on a trailing 10-year average.  This separation 

captures the state dependence implied by the model in which the premium should be 

larger in low average idiosyncratic risk periods.  The regressions show precisely that: in 

low average idiosyncratic volatility periods, the slope on IRPS is 40 percent larger with 

standard errors less than half of the coefficient.  These positive slopes are present in both 

large and small stocks, quite unlike many cross-sectional return patterns that are confined 

to small stocks.   

Time series tests allow for sharper inferences as well as a cleaner assessment of the 

magnitude of the premium.  Portfolios sorted on firm size and IRPS show a monotonic 

relation between intercepts from three-factor models and IRPS.  Over the entire sample 

period, a high-minus-low IRPS portfolio has an intercept of 0.28 percent per month in 

large stocks and 0.37 percent per month in small stocks.  As with the Fama-MacBeth 

regressions, the more interesting results are in the low average idiosyncratic volatility 

periods where the model says that the premium associated with IRPS should be higher.  

In those periods, the intercepts on the high-minus-low IRPS portfolios rise to 0.69 percent 

per month for large stocks and 0.80 percent per month for small stocks.   

We confront these portfolios with more complete models of expected returns, the 

Fama and French (2015a) five-factor comparative static model, and the Hou, Xue and 

Zhang (2014) q-theoretic model.  Both models add factors related to investment and 
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profitability, albeit in different forms.  The addition of investment makes no difference to 

our basic results.  Profitability or ROE, however, absorbs much of the variation in IRPS-

based portfolio returns.  In the full sample, the loadings on profitability or ROE 

monotonically increase across IRPS quintiles, and the intercepts are statistically 

indistinguishable from zero.  This is good news for these factor models for at least two 

reasons.  First, unlike finer sorts on size, book-to-market, profitability and investment, 

sorts on IRPS are independent (or, in the vernacular of Fama and French (2015b), they 

are not home games).  Second, unlike sorts on well-known anomalies such as net issuance, 

accruals, momentum, and others on which there are scores of published papers, IRPS is 

hitherto unstudied.  Data dredging cannot be an issue because the sorting variable arises 

directly from economic theory.  However, the good news is tempered.  While these models 

are powerful descriptors of average returns and span a variety of test assets (Hou, Xue 

and Zhang (2014), Fama and French (2015d), in low average idiosyncratic volatility 

periods, IRPS continues to generate excess returns.  For example, using the Fama-French 

five-factor model, the high-minus-low IRPS portfolio has an intercept of 0.39 percent per 

month for large stocks and 0.51 percent per month for small stocks.  And using the Hou, 

Xue and Zhang (2014) factors, the equivalent premiums are 0.38 and 0.53 percent per 

month.1  The key is conditioning – unconditionally, portfolios generated by IRPS are 

spanned by these factor models, but conditioning on low average idiosyncratic volatility, 

the intercepts are reliably different from zero. 

We conduct two sets of out-of-sample tests.  First, we estimate factor models on 

size and IRPS sorted portfolios in 1931-1973.  Profitability/ROE factors are unavailable 

in this pre-Compustat period so we can only estimate three-factor models.  We continue 

to observe a monotonic relation between intercepts and IRPS, with high-minus-low 

spreads of between 0.35 and 0.41 percent per month.  As in the later sample period, these 

spreads are attenuated in low average idiosyncratic volatility periods.   

                                                           
1 As we show later in the paper, the average time series correlation between IRPS and idiosyncratic volatility 

is negative.  Nonetheless, to alleviate concerns that the results are somehow generated by an inadvertent 

sort on idiosyncratic volatility, we also create portfolios sorted by size, idiosyncratic volatility and IRPS.  

Controlling for idiosyncratic volatility, we still observe economically large premiums in both large and small 

stocks. 
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Second, we build size and IRPS sorted portfolios with ex-US data for the 1990-

2014 sample period.  To maximize power and exploit the results in Fama and French 

(2012, 2015c), we build portfolios for four regions: North America, Europe, Japan and 

Asia Pacific (excluding Japan).  In North America, Europe and Asia Pacific, the intercepts 

for high-minus-low IRPS portfolios from three-factor models are positive and large.  Like 

the US, adding factors for profitability and investment shrinks the intercepts and renders 

them statistically insignificant.  But again paralleling the US results, in low average 

idiosyncratic volatility periods, even intercepts from five-factor models are large and more 

than two standard errors from zero.  In Japan, IRPS generates virtually no dispersion in 

returns using three- or five-factor models.  This could be because of low power, or simply 

because Japan is somehow different; Fama and French (2015c) report that profitability 

and investment do not explain average returns in Japan, and it is well known that 

momentum portfolios also do not generate positive intercepts. 

The limited time series (and hence power) for international data suggest that 

caution is warranted.  Like Fama and French (2012), we can help the situation by further 

expanding the cross-section.  We construct global portfolios, excluding the US in the spirit 

of true out-of-sample tests, and re-estimate factor models.  The results are noticeably 

stronger.  In the full sample period, for large stocks, the spread in intercepts from three- 

and five-factor models for high-minus-low IRPS portfolios is 0.62 and 0.70 percent per 

month, with t-statistics of 3.44 and 3.75 respectively.   

It is useful to step back and view these results in the context of both the theoretical 

and empirical literature.  As discussed earlier, classical theory denies any role for 

idiosyncratic volatility on asset prices.  Empirically, Fama and MacBeth (1973), Bali and 

Cakici (2008), and others agree.  Theories that acknowledge frictions or behavioral biases 

can generate a positive price of idiosyncratic risk [Levy (1978), Merton (1987), Barberis 

and Huang (2001)], and empirically, Malkiel and Xu (2002), Spiegel and Wang (2005), 

and Fu (2009) find some support.  But Ang et al. (2006, 2009) find a negative relation 

between expected returns and lagged idiosyncratic volatility.  Stambaugh, Yu and Yuan 

(2015) argue that a combination of arbitrage asymmetry and arbitrage risk generate this 

negative relation.  We do not take a stand on these conflicting views and evidence.  Our 
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purpose is also not to document yet another anomaly devoid of theory.  Rather our interest 

is in understanding the conditional pricing implication in a rational framework, driven by 

the simple economic intuition that diversification should matter to investors, even in 

incomplete markets. 

It is also important to contrast our results with Herskovic, Kelly, Lustig and 

Nieuwerburgh (2015).  They observe a common component in idiosyncratic volatility 

(CIV) and find that shocks to the common component are priced relative to the three-

factor model.  Motivated by these findings, they build a model in which consumption risk 

has the same factor structure as idiosyncratic volatility, so that high CIV-beta stocks 

serve a hedging purpose and have lower expected returns.  CIV betas are obtained from 

regressions of returns on CIV innovations, quite different from a covariance between 

idiosyncratic volatility and average idiosyncratic volatility.  Moreover, our point of 

embarkation is also quite different – endogenous diversification in incomplete markets, 

rather than the observation that there is a common factor in idiosyncratic volatility.   

The remainder of the paper is organized as follows.  In section 2, we sketch the 

model.  Section 3 describes our sample and basic measurement approach.  Regression and 

portfolio results for the US are in section 4.  Section 5 contains out-of-sample tests using 

both US and international data.  Section 6 concludes. 

 

2. Theoretical framework 

A formal model that endogenizes investor’s diversification decisions in Merton’s 

(1987) model is contained in the appendix.  In this section, we provide an abbreviated 

discussion of the model that captures the economic intuition, and provides the foundation 

for the empirical tests. 

 

2.2 A simplified model 

Merton’s model is motivated by the recognition that standard asset pricing models 

based on frictionless markets and complete information may be inadequate to capture the 

complexity of financial markets.  The setup of our model follows his but with two 

additional assumptions.  As in Merton (1987), investors risk averse, have identical 
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preferences, are price-takers, have the same initial wealth, are mean variance optimizers, 

and have conditional homogenous beliefs.  Investors are less than fully diversified as they 

only invest in a security if they “know” about that security.2   

Our first point of departure is that we explicitly model costly information 

acquisition.  An investor incurs a fixed cost I to learn about the security.  Our second 

point of departure is our assumption that the fraction of all investors who know about a 

security is proportional to the market portfolio invested in that security.  These plausible 

assumptions lead us to an asset pricing model with testable implications.  The equilibrium 

expected return on security i in this model is:3 

 

     
2 2

*i ifR R b
Q


         (1) 

 

where δ is the coefficient of risk aversion, Rf is the risk free rate, 2

i  is the idiosyncratic 

volatility of security i, *Q  is the average number of stocks held by an investor in 

equilibrium and is the average beta of the investors’ portfolio.  As in Merton (1987), 

there is a positive premium for idiosyncratic volatility.  The key deviation from Merton 

(1987), or for that matter, the intuition in Levy (1978)), is that the parameter *Q , 

representing portfolio diversification, is determined endogenously in equilibrium as 

follows: 

 

      

2
*

2

iQ
I


      (2) 

 

Notice that *Q  is determined by risk aversion, average idiosyncratic volatility 2( )i  

and the cost of information acquisition (I), which accords with our intuition.  Combining 

equations (1) and (2), we can write the idiosyncratic risk premium ( IVt ) in equation (1) 

as 

 

                                                           
2 In the sense that they know the mean and variance of its return distribution. 
3 See Appendix A for a detailed derivation. 



7 

 

      
* 2

2
IV

i

I

Q

 



       (3) 

 

Equation (3) highlights several aspects of the model.  With perfect information (I 

= 0), investors are fully diversified and the idiosyncratic risk premium disappears.  

Although the model regards I as the cost of information, to the extent that it influences 
*Q , one might also think of it as the cost of diversification.  The cost of diversification 

has fallen over time, particularly with the advent of passive index funds and ETFs.  This 

could potentially influence the premium for idiosyncratic risk, an issue we discuss later in 

the paper.   

Equation (3) also highlights the role of average idiosyncratic volatility ( 2

i ) in 

portfolio diversification.  In this model, changes in average idiosyncratic volatility 

influence the disutility of under-diversification and therefore the idiosyncratic risk 

premium.4  In the cross-section, when average idiosyncratic volatility is low, the marginal 

disutility of stocks with high idiosyncratic volatility is high relative to the average, 

generating a high premium.  When average idiosyncratic volatility is high, there is still 

disutility associated with stocks that have relatively high idiosyncratic volatility, but the 

disutility is lower because of endogenous diversification.  As a result, the premium for 

bearing idiosyncratic risk is still positive, but lower.  The upshot is that the model delivers 

a state-dependent idiosyncratic risk premium.  Because of this, in the spirit of 

Jagannathan and Wang (1996), we examine the empirical content of the model by taking 

unconditional expectations of a conventional factor model that subsumes equation (1).  

Consider the following factor model: 

 
2

0

1

F

it t ft fit IVt IVit

f

R X   


        (4) 

 

where the factors f can arise from any other theoretical or empirically motivated factor 

model, and the idiosyncratic risk premium IVt is allowed to be time varying.  The 

                                                           
4 Bekaert, Hodrick and Zhang (2012), Brown and Kapadia (2007) and others offer explanations for the 

source of time series variation in average idiosyncratic volatility, but for our purpose, it is exogenous and 

outside the model. 
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advantage of working with equation (4) is that it is very general, and empirically, allows 

us include any set of desired factors in the tests.  Taking unconditional expectations of 

equation 4 introduces the following covariance term into the expected return relation.5 

 

    
2 2

2

2
( ) ( ,, )IVIVit IVit

t

I
Cov Cov


 


      (5) 

Assuming constant (i.e. non-time-varying) risk aversion and cost of information 

acquisition, we can interpret this covariance as reflecting the sensitivity to the 

idiosyncratic risk premium (IRPS) and measure it as follows. 

     
2

2

1
( , )it IVit

t

IRPS Cov 


      (6) 

Our empirical tests, therefore, investigate whether this sensitivity to the idiosyncratic risk 

premium explains the cross-section of returns both unconditionally and conditionally. 
 

3. Sample construction and measurement 

3.1 US sample 

Our sample of US stocks is derived from the CRSP-Compustat universe with CRSP 

share codes 10 or 11, and with exchange codes 1, 2 and 3.  We eliminate stocks with a 

share price below $1 at the beginning of the month.  Most tests are based on a sample 

period from July 1973 to 2014 because we need 5 years of data to calculate IRPS.  A 

subset of tests go back to 1931, with the same sampling procedures.  Daily MKT, SMB 

and HML factors starting from 1926 are obtained from Ken French’s website.  Monthly 

MKT, SMB and HML factors are also available from 1926 but profitability (RMW) and 

investment (CMA) factors start in 1964.  The Hou, Xue and Zhang (2014) investment 

and ROE factors start in 1973. 

 

3.2 International sample 

We obtain a time series of market and accounting information from Datastream.  

We start with an unconstrained universe of all firms in the following developed markets 

                                                           
5 This covariance is analogous to the covariance between the conditional market risk premium and 

conditional beta in equation (4) of Jagannathan and Wang (1996). 
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between 1990 and 2014: Australia, Austria, Belgium, Canada, Denmark, Finland, France, 

Germany, Hong Kong, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, 

Singapore, Spain, Switzerland and the United Kingdom.  The universe includes live as 

well as dead stocks. We apply the sequence of filters described in Goyal and Wahal (2015), 

requiring that stocks have data from both Datastream and Worldscope, retaining only 

equity issues from the primary exchange of the country, and ensuring that we only sample 

local (not cross-listed) stocks.  US dollar returns are computed by converting local 

currency returns using the conversion function built into Datastream which uses spot 

rates.  Market values are similarly converted to US dollar equivalents. 

Our tests require monthly factors for the four regions (North America, Europe, 

Japan, and Asia Pacific ex Japan), as well as for the global ex US markets.  Ken French’s 

website provides monthly MKT, SMB and HML for these regions.  We build RMW and 

CMA from our data following the procedures in Fama and French (2015c).  To verify 

that our processes match theirs, we also build MKT, SMB and HML from our data.  The 

average premiums are very similar to theirs, and the correlations between our factors and 

theirs are over 95 percent.6   

 

3.3 Measuring IRPS 

For each security-month, we estimate daily time series regressions of excess stock 

returns on MKT, SMB and HML.  We calculate idiosyncratic volatility as the mean 

squared error of the residuals from these regression.  Regressions are only estimated for 

stocks with at least 15 valid daily returns.  To compute average idiosyncratic volatility 

for each month, we calculate value-weighted average idiosyncratic volatility for small and 

large stocks separately.  We use the median market capitalization of NYSE stocks in June 

to separate small and large stocks.  We then take a simple average of the idiosyncratic 

volatility of small and large stocks.  This procedure, akin to Fama and French’s (1993) 

construction of HML and other factors, avoids the trap of equal-weighted average 

idiosyncratic volatility being dominated by more numerous small firms with high 

                                                           
6 Our data do not include Greece, Ireland and Sweden so we do not expect correlations to be perfect.  

However, the number of securities and aggregate market capitalization of these exclusions is quite small 

and does not significantly influence the factors. 
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volatilities, and that of value-weighted average idiosyncratic volatility being dominated 

by large (and less volatile) firms.7 

As prescribed by equation (6), for each stock and month t, we compute IRPS as 

the covariance of stock-level idiosyncratic volatility with one over the square root of 

average idiosyncratic volatility over the prior 60 months (t-61 to t-1). 

 

4. Results 

4.1 Average idiosyncratic volatility and properties of IRPS 

Figure 2 shows average monthly idiosyncratic volatility.  We define high and low 

average idiosyncratic risk months as those for which the average idiosyncratic volatility 

is above or below the trailing 10-year mean.  The series starts in July 1973 to enable the 

calculation of the trailing mean from July 1962.  The identification of the low and high 

average idiosyncratic risk periods is very similar if we use the full sample (52-year) mean.  

We do not report results from the latter approach because it is subject to a look-ahead 

bias.   

The graph shows considerable time-series variation in average idiosyncratic 

volatility.  This is critical to our tests since average idiosyncratic volatility is the key state 

variable in the model.  Between 1973 and 1997, the increase in average idiosyncratic 

volatility closely matches that seen in Campbell et al. (2001), despite the fact that our 

weighting scheme (value-weighted within small and large stocks) is different from theirs 

(value-weighted across all securities, holding industry betas to unity).  After 1997, average 

idiosyncratic volatility shows a downward trend, except for spikes in the internet boom-

and-bust period, and the financial crisis of 2008.  With the benefit of an additional 17 

years of data, it does not appear that individual stocks have become more volatile.   

As in Campbell et al. (2001), the spikes in average idiosyncratic volatility are tied 

to periods of economic stress, particularly NBER recessions.  High and low average 

                                                           
7 Herskovic et al. (2015) calculate average idiosyncratic volatility as the simple equal-weighted average of 

residuals.  Our procedure is more conservative because we do not want results to be driven by numerous 

small stocks which represent less than 10 percent of the aggregate market capitalization.  The results 

presented in the body of the paper are stronger across the board if we use equal-weights to calculate average 

idiosyncratic volatility and IRPS. 
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idiosyncratic risk periods are not concentrated in calendar time decades.  The 

consequences for our empirical tests are manifold.  Our model assumes that the cost of 

information (I), which one can also interpret as the cost of diversification, is constant over 

time.  Empirically, the cost of diversification has likely declined over time, particularly 

with the advent of mutual funds and more recently, exchange traded funds. If average 

idiosyncratic risk contained a calendar time pattern, then IRPS could be conflated with 

systematic changes in the cost of diversification.  The fact that there is no trend in average 

idiosyncratic volatility allows the tests to focus on the time-varying disutility of under-

diversification, disconnecting IRPS from any drift in I.  Second, roughly 45 percent of the 

months in our sample are classified as high average idiosyncratic risk months.  The 

econometric benefit of this separation is that regression and portfolio tests in low and high 

idiosyncratic volatility periods do not have radically different levels of statistical power. 

To provide some additional perspective, we calculate the cross-sectional average 

IRPS for each month.  The time series mean of these cross-sectional averages over this 

sample period is -0.003, implying a positive correlation between stock-level idiosyncratic 

volatility and average idiosyncratic volatility.  Although we do not present these results 

in a table, we observe considerable time series variation in these cross-sectional averages, 

with a sudden drop in average IRPS during the financial crisis as the common component 

of security returns increased.8  The cross-sectional standard deviation of IRPS is relatively 

stable through most of the time series but perhaps unsurprisingly, also increases sharply 

during the financial crisis.  By the end of 2013, however, it returns to historical norms.   

 

4.2 Fama-MacBeth regressions 

Table 1 contains Fama and MacBeth (1973) regressions of monthly returns on prior 

month’s IRPS.  As is standard, we control for market capitalization (ln(ME)), book-to-

market ratios (ln(B/M)), momentum, measured as the return from two to 12 months 

prior (R2,12), and the prior 1 month return (R0,1).  In a second specification, we also control 

for profitability (GP/A) defined as in Novy-Marx (2013), and investment defined as 

                                                           
8 This is also visible from average R2 of daily market model regressions.  Such R2 increase dramatically 

during the financial crisis (2008-2010) relative to prior years. 
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changes in assets (Fama and French (2015a).  All independent variables are winsorized 

at the 1 and 99 percent level.  Standard errors are based on Newey-West procedures using 

8 lags. 

The first two columns show results based on the full sample period from July 1973 

to December 2014.  Slopes and t-statistics on the control variables are comparable to those 

reported by many other authors and we do not dwell on them further.  In the first 

regression, IRPS has a positive coefficient (0.64) with a modest t-statistic of 1.95.  Novy-

Marx (2014) shows that the underperformance of high volatility strategies is largely 

attributable to their tilts towards small growth, and particularly unprofitable stocks.  

Adding profitability and investment to the regression, the slope on IRPS is largely 

unaffected, dropping to 0.63 with a t-statistic of 1.91.  If we extend the sample period 

back to July 1968 (the first month for which we can calculate IRPS), the slope on IRPS 

in the first specification rises to 0.76 (t-statistic = 2.09).  Again, adding profitability and 

investment leaves the slope largely unchanged at 0.75 with a t-statistic of 2.01.   

The model says that the coefficients on IRPS should be larger in low average 

idiosyncratic volatility months.  The fourth and fifth columns of table 1 show regressions 

for such periods.  The slope on IRPS rises to 1.06 for the first specification, and to 1.03 

when including profitability and investment.  The t-statistics on IRPS for the low average 

idiosyncratic volatility periods rise to 2.19 and 2.16 respectively.  In contrast, in high 

average idiosyncratic risk periods, the slopes shrink to 0.16 and 0.15, and are statistically 

indistinguishable from zero (t-statistics are 0.33 and 0.32 respectively). 

Table 2 shows the same sets of regressions separately for large and small firms.  In 

the full sample period, the slope of IRPS for large stocks varies from 0.73 to 0.78 but with 

large standard errors.  In the low average idiosyncratic volatility periods, however, the 

slopes are almost five times larger, varying from 3.28 to 3.53 with t-statistics of 1.99 and 

2.04 respectively.  In high average idiosyncratic volatility period, the slope coefficients are 

negative (-2.39 and -2.23) with t-statistics well below 2.00. 

The behavior of small stocks differs from that of large stocks.  Over the full sample 

period, the slopes on IRPS are positive and reliably different from zero.  For instance, 

when including profitability and investment in the equation, the slope on IRPS is 1.04 
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with a t-statistic of 2.41.  In the low average idiosyncratic volatility periods, the slope 

rises to 1.50 with a t-statistic of 2.56.  In the high average idiosyncratic volatility periods, 

the slope is halved to 0.50 with a t-statistic of only 0.75. 

Overall, the regressions contain some evidence that the covariance between stock-

level idiosyncratic volatility and average idiosyncratic volatility helps explain the cross-

section of returns.  This is true for both large and small stocks.  Much of the explanatory 

power of IRPS comes in low average idiosyncratic volatility periods, precisely as prescribed 

by the model. 

 

4.3 Portfolio tests 

4.3.1 Portfolio formation and characteristics 

Fama and MacBeth (1973) regressions have a natural interpretation as zero 

investment portfolios but they are equal-weighted.  Despite the fact that we eliminate 

stocks under $1, they can still be sensitive to small stocks.  Since idiosyncratic volatility 

is substantially higher in small stocks, they could have a disproportionate influence on 

the economic magnitude of the effects we are interested it.   

In this section, we build portfolios based on IRPS and estimate time series factor 

models.  Univariate sorts on IRPS are disproportionately influenced by small stocks.  

Therefore, we sort all firms into two size portfolios (large and small) at the end of each 

June using NYSE breakpoints, and then within each size portfolio, into IRPS quintiles 

each month.  (Updating size breaks monthly does not influence our results).  We elect to 

use 2x5 sorts rather than 5x5 sorts to ensure that the portfolios are well diversified, 

especially early in the time series.  All portfolios returns are value-weighted based on prior 

month market capitalization. 

Panel A of table 3 shows the number of stocks in each portfolio and the percentage 

of the aggregate market capitalization.  On average, IRPS quintiles in large stocks contain 

156 securities and in small stocks contain 437 securities.  Unsurprisingly, particularly 

given our data filters, large cap stocks account for over 90 percent of the aggregate market 

cap.  Therefore, any evidence on the association of IRPS with a premium is only credible 

if we observe it in large stocks. 
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For each portfolio-month, we calculate the percentage of stocks in each book-to-

market, profitability and investment group, and calculate time series averages.  The 

breakpoints used for assigning stocks into groups are from Ken French’s website.  Panel 

B shows these averages.  In large stocks, moving across increasing IRPS quintiles, there 

is a slight tilt away from growth stocks.  For instance, 43.6 percent of the stocks in the 

low IRPS quintile are classified as growth, but only 37.5 percent of the stocks in the high 

IRPS quintile are growth.  Similarly, in small stocks, the percentage of growth stocks goes 

from 28.3 in the low IRPS quintile to 23.3 in the high IRPS quintile.  We do not consider 

any of these tilts to be particularly significant.  Consider, for example, the low- versus 

high-IRPS portfolios within small stocks.  The difference in the percentage of stocks that 

are small-growth between these portfolios is only 5 percent, not enough for the severe 

underperformance of small-growth to drive differences in IRPS portfolio returns (Fama 

and French (1993)).  In addition, the decrease in growth stocks does not imply a tilt 

towards value.  Rather the decline is taken up by a larger concentration of neutral stocks.   

The tilts in the distribution of profitability are bigger.  In large stocks, the 

percentage of stocks with weak profitability drops from 33.4 in the low IRPS quintile to 

21.4 in the high profitability quintile.  This decline is not taken up by an increasing 

fraction of robust profitability firms.  Again, it is the percentage of firms in the neutral 

profitability tercile that rises across IRPS quintiles.  In small stocks, the pattern is largely 

similar, but the differences in fraction of firms that have weak profitability are even larger.  

This basic pattern presages a key result: as in Novy-Marx (2014), some of the 

underperformance of the low IRPS quintiles is likely explained by the ability of 

profitability to explain expected returns. 

Differences in the distribution of firms with aggressive, neutral and conservative 

investment fall somewhere between those for book-to-market and profitability.  Moving 

from low to high IRPS quintiles, there is a small decline in the fraction of stocks that are 

classified as conservative.  But as with book-to-market, differences in investment groups 

are not large enough to influence differences in IRPS portfolio returns. 
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4.3.2 Factor model tests 

Table 4 shows three-factor models for size and IRPS sorted portfolios.  Portfolio 

characteristics in table 3 do not necessarily equate to factor loadings, so we present 

intercepts as well as slopes.  Panel A contains results for the full sample period, while 

Panels B and C are for low and high average idiosyncratic risk periods respectively. 

In the full sample period, for large stocks, the intercept increases from -0.20 (t-

statistic = 2.05) in the low IRPS quintile to 0.08 (t-statistic=1.35) in the high IRPS 

quintile.  The high-minus-low spread portfolio has an intercept of 0.28 percent per month, 

with a t-statistic of 2.01.  The slopes on HML are not large.  The coefficient on SMB 

decreases from quintile 1 to quintile 5, reflecting the distribution of market capitalization 

in table 3.  In small stocks, the difference in intercepts across IRPS quintiles are bigger.  

The high-minus-low IRPS portfolio has an intercept of 0.37 percent (t-statistic = 2.24).  

Again, the slope on SMB declines across IRPS quintiles but there is very little variation 

in HML. 

The variation in intercepts between low and high average idiosyncratic risk periods 

is extremely large.  In low average idiosyncratic risk periods, the high-minus-low IRPS 

portfolio for large stocks has an intercept of 0.69 percent with a t-statistic of 3.86.  The 

spread is generated both in the short (-0.44 percent, t-statistic = 3.18)) and long leg of 

the portfolio (0.25 percent, t-statistic = 4.13).  The intercepts are monotonically 

increasing, implying that the sorting variable (IRPS) has some power and that the effect 

is not just driven by extremes.  In high average idiosyncratic volatility periods, the high-

minus-low IRPS spread disappears (-0.17 percent with a t-statistic of 0.66).  Similarly, in 

small stocks, the high-minus-low IRPS portfolio has an intercept of 0.80 percent (t-

statistic = 4.03) in low average idiosyncratic risk periods.9  Again, the intercepts increase 

monotonically across IRPS quintiles.  In high average idiosyncratic volatility periods, 

however, this spread is 0.06 percent with a t-statistic of only 0.20.   

The three factor model regressions echo the Fama and MacBeth (1973) regressions 

in the sense that the ability of IRPS to explain the cross-section of returns is substantially 

                                                           
9 Most of this is due to the underperformance of the low IRPS quintile (-0.67 percent per month).  The 

loading on HML is positive, indicating that this underperformance is not due to the inability of the three 

factor model to price small growth stocks. 
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different in low versus high average idiosyncratic volatility periods.  Novy-Marx (2014) 

shows that the performance of low volatility strategies (or for that matter, low beta 

strategies) arises largely from tilts to small, unprofitable and growth firms.  The portfolio 

characteristics in table 3 and the slopes in table 4 suggest that tilts towards small-growth 

cannot explain the return dispersion in IRPS portfolios.  Tilts in profitability are another 

matter, however, because low IRPS portfolios do contain more unprofitable firms than 

high IRPS portfolios.  Table 5 contains Fama-French (2015) five factor model regressions 

which add the profitability (RMW) and investment (CMA) to the existing three factor 

model.  Table 6 contains similar regressions based on the Hou, Xue and Zhang (2014) 

factors which, in addition to the market and size factors, add an investment (I/A) and 

ROE factor. 

In the full sample period, the influence of profitability or ROE is immediately 

apparent.  In large stocks, for the low IRPS portfolio, the loadings on RMW and ROE 

are -0.37 and -0.27 respectively, with t-statistics of 5.83 and 5.42.  These loadings rise 

across IRPS quintiles for both RMW and ROE.  Profitability/ROE soaks up much of the 

variation in returns so that the low IRPS, high IRPS and high-minus-low IRPS portfolios 

all have intercepts that are less than 0.10 percent per month and statistically 

indistinguishable from zero.  In small stocks, the story is largely the same – the variation 

in loadings on RMW and ROE across IRPS quintiles are systematic, driving the intercepts 

to zero.  This is good news for these factor models on a number of fronts.  Because the 

test assets (IRPS sorts) are independent of the factors, they constitute a clean examination 

of the ability of these models to span portfolio returns.  On that basis, these factor models 

represent a clear improvement over the three-factor model. 

In low average idiosyncratic risk periods (Panel B in tables 5 and 6), however, the 

picture becomes more complicated.  The loadings on RMW and ROE still increase across 

all IRPS quintiles in both large and small stocks.  But these loadings are not enough to 

drive the intercepts to zero.  In large stocks, using the Fama-French five factor model, 

the low IRPS quintile has an intercept of -0.18 (t-statistic = 1.51) and the high IRPS 

quintile has an intercept of 0.21 (with a t-statistic of 3.14).  Therefore, the spread in the 

high-minus-low IRPS portfolio is 0.39 percent (t-statistic = 2.44).  If we use the Hou, Xue 
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and Zhang (2014) factors, the high-minus-low IRPS portfolio has an identical spread (0.39 

percent with a t-statistic of 2.26).  In small stocks, the low IRPS quintile severely 

underperforms the five factor model (despite a small loading on HML and a large negative 

loading on RMW) to the tune of -0.45 percent (t-statistic = 3.57).  This underperformance 

drives the high-minus-low IRPS spread portfolio’s returns of 0.51 percent per month (t-

statistic = 2.69).   And again, the intercepts using the Hou, Xue and Zhang factors are 

very similar. 

Factor specification does impact inferences in high average idiosyncratic volatility 

periods (Panel C in tables 5 and 6).  Using the Hou, Xue and Zhang factors, we observe 

a negative spread generated by IRPS in both small and large stocks: the high-minus-low 

IRPS portfolio has an intercept of -0.59 percent (t = 2.47) in large stocks and -1.01 percent 

(t = 3.21) in small stocks.  But we do not observe such premiums using the Fama-French 

five factor model where the t-statistics are well below 2.00.  Even using the three-factor 

model (table 4), the intercepts in high average idiosyncratic volatility periods are not 

reliably different from zero.   

  

4.3.3 Relation with idiosyncratic volatility 

A natural concern is that IRPS is conflated with idiosyncratic volatility – in other 

words, that sorts on IRPS are essentially sorts on idiosyncratic volatility.  As an empirical 

matter, we have two reasons to believe that this is not the case.  First, for each security, 

we calculate the time series correlation between idiosyncratic volatility and IRPS.  The 

average correlation across the entire cross-section is -0.09.  These are average time series 

correlations; there could still be cross-sectional correlations.  Therefore, we also build 

portfolios conditionally sorted on size, idiosyncratic volatility and IRPS.  As before, we 

use two size groups (small and large).  To ensure that portfolios remain well diversified 

we use terciles for both idiosyncratic volatility and IRPS (i.e. 2x3x3 dependent sorts).  

For each portfolio, we estimate three- and five-factor models.  The results are in table 7.  

Each row in the table corresponds to low, medium and high idiosyncratic volatility 

terciles.  The columns show the low, medium and high IRPS terciles, as well as the high-

minus-low IRPS portfolio.  Each cell contains the intercept from the appropriate factor 
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model.  Panels A and B show results for low and high average idiosyncratic risk periods 

respectively. 

The core results in Ang et al. (2006) are easily visible.  In Panel A, for instance, 

high idiosyncratic volatility stocks (High IVOL) generally have large negative intercepts 

relative to the three-factor model.  This is true for both small and large capitalization 

stocks.  When evaluated relative to the five factor model, however, this is only the case 

for small stocks.   

Our interest is in whether there is a spread in portfolio returns across IRPS terciles, 

holding idiosyncratic volatility constant.  In Panel A, the intercepts from three- and five 

factor models generally increase across IRPS quintiles for low, medium and high 

idiosyncratic volatility quintiles.  In large stocks, for instance, the spread between high 

and low IRPS quintiles for the low IVOL group is 0.26 percent (t-statistic = 2.13) using 

a three-factor model, and 0.27 percent per month (t-statistic = 2.05) using a five-factor 

model.  In medium idiosyncratic volatility terciles, the spreads rise to 0.64 and 0.51 

percent per month, with still larger t-statistics.  In high idiosyncratic volatility stocks, the 

spreads are 0.61 and 0.32 percent per month and remain statistically significant.  In small 

stocks, where idiosyncratic volatility should play a greater role, the spreads in IRPS 

portfolio returns are smaller.  However, with the exception of the low idiosyncratic 

volatility group, they are still positive.  Finally, as in our earlier tests, the importance of 

IRPS is only evident in low average idiosyncratic volatility periods.  In high average 

idiosyncratic volatility periods, there is no difference in intercepts. 

 

4.3.4 Persistence in IRPS and the term structure of returns 

IRPS is highly persistent.  The average first-order autocorrelation in our sample is 

0.85.10  Some of that persistence is mechanical because it is calculated based on rolling 60-

month covariances.  High persistence implies that even monthly rebalanced portfolios are 

likely to have low turnover relative to strategies like momentum.  In the 1973-2014 sample 

period, in large stocks, the monthly turnover rates for the low and high IRPS quintiles 

                                                           
10 In contrast, idiosyncratic volatility is not very persistent.  Fu (2009) reports that the average first order 

autocorrelation in his sample is 0.33. In our sample, the equivalent average is 0.23. 
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are 7.1 percent and 6.3 percent respectively, and average transition probabilities 

(computed as the percentage of stocks that remain in the portfolio over adjacent months) 

are 91.1 and 92.1 percent per month.  In small stocks, the equivalent monthly turnover 

rates for low and high IRPS quintiles are 8.8 percent and 9.6 percent respectively (with 

equivalent average transition probabilities of 92.3 and 91.7 percent per month).   

This persistence has two implications.  First, quarterly or semi-annual rebalancing 

rules should not significantly degrade the return series.  Second, the term structure of 

portfolio returns should be such that intercepts of spread portfolios should be positive 

even after the first month.  To examine this, we use monthly rebalanced portfolios used 

in earlier tests, but estimate factor models using the nth month after portfolio formation 

(up to the 6th month).  Figure 3 shows the term structure of portfolio returns using three- 

and five-factor models for the high-minus-low IRPS portfolios.  In all four graphs, we fix 

the scale for the y-axis so as to allow visual comparisons.  The top two graphs show results 

for the full sample period (1973-2014).  Using the 3-factor model, intercepts remain high 

for at least 3 months after portfolio formation for both large and small stocks.  Mirroring 

the results in table 5, intercepts from 5-factor models are indistinguishable from zero.  But 

as before, the results for low average idiosyncratic volatility periods are quite different 

(the bottom two graphs).  In these periods, intercepts from 3-factor models remain high 

several months after portfolio formation.  Using 5-factor models, intercepts are high for 

two months after portfolio formation, decline somewhat in the third month, and rise again 

in months four and five.  The term structure suggests that the returns of the IRPS 

portfolios do not simply disappear after the first month. 

 

4.3.4 Robustness and loose ends 

A key component to measuring IRPS is the measure of average idiosyncratic 

volatility that we use.  Instead of taking a simple average of value-weighted idiosyncratic 

volatility in small and large stocks, one could equal-weight all stocks (as in Herskovic et 

al. (2015)).  Our approach is more conservative: if we use equal-weights, the majority of 

intercepts in the factors models in tables 4-6 are larger, and the slopes on IRPS in the 

Fama and MacBeth (1973) regressions are larger (with lower standard errors). 
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IRPS is calculated using a 60-month rolling window.  Volatility is known to be 

persistent, and its predictability is higher over shorter intervals.  Therefore, using a shorter 

window to calculate IRPS should tighten the link between stock-level idiosyncratic 

volatility and average (persistent) idiosyncratic volatility.  The “cost” is that reducing 

the number of observations in the rolling window reduces precision.  We re-calculate IRPS 

using 36-month rolling windows and re-estimate our mains tests.  Intercepts from factor 

models inevitably bounce around but the inferences remain the same. 

Our main tests are based on quintile or tercile sorts to ensure that inferences are 

not driven by extremes.  The results thus far show some monotonicity in intercepts across 

quintiles/terciles suggesting that extremes do not overtly influence our results.  But since 

extremes are also interesting, we also separate stocks into positive and negative IRPS 

groups.  Between 1973 and 2014, about 11 percent of all stocks (representing about 5 

percent of aggregate market capitalization) have positive values of IRPS (i.e. a negative 

covariance between idiosyncratic volatility and average idiosyncratic volatility).  

Variation in the fraction of stocks with positive IRPS over time is quite large, reaching a 

high over 40 percent of stocks and 20 percent of aggregate market capitalization in June 

1998.  We build positive and negative IRPS portfolios across all stocks, and separately for 

large and small stocks.  Across all stocks, the intercept from a five factor model for the 

positive IRPS portfolio in the 1973-2014 sample period is 0.44 percent per month (t-

statistic = 2.31).  The intercept of the positive IRPS minus negative IRPS portfolio is 

0.47 percent per month (t-statistic = 2.42).  The results in large stocks are similar: the 

intercept for the positive IRPS portfolio is 0.41 percent per month (t-statistic = 2.20), 

and the intercept for the positive IRPS minus negative IRPS portfolio is 0.45 percent per 

month (t-statistic = 2.28). 

Finally, as we outline in the introduction, we do not see any obvious reason why 

our results are a reinvention of those in Herskovic, Kelly, Lustig and Nieuwerburgh (2015); 

their CIV betas are constructed from regressions of returns on changes in the common 

factor in idiosyncratic volatility.  Nonetheless, we build high and low CIV beta portfolios 

following their methods for small and large stocks.  We then compute the correlations of 

the high-minus-low CIV-beta portfolios with high-minus-low IRPS portfolios.  The 
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correlations are low: 0.21 and 0.24 for small and large stocks respectively.  Moreover, 

triple sorts on size, CIV-betas and IRPS continue to generate spreads in intercepts with 

three-factor models.      

 

5. Out-of-sample evidence  

We conduct two sets of out-of-sample tests.  The first extends the US sample back 

to 1931, the so-called “pre-Compustat” era.  The second examines the evidence outside 

the US.   

 

5.1 Early US evidence (1931-1973) 

We compute idiosyncratic volatility from 1926 using the same procedures.  Since 

we require 60 months of data to calculate covariances, IRPS estimates are available from 

1931 onwards.  As before, we build size and IRPS sorted portfolios.  Although a sample 

period through 2014 would add power, we restrict our attention to 1931-1973 so that the 

analysis does not overlap with the results in tables 4-7.  Profitability/ROE and investment 

factors are not available for this sample period.  Therefore, we report loadings and 

intercepts from three factor models in table 8. 

Panel A contains results for the 1931-1973 period.  In both large and small stocks, 

intercepts increase systematically from low to high IRPS portfolios.  In large stocks, the 

low IRPS portfolio underperforms the three factor model by 0.24 percent per month (t-

statistic = 2.55) and the high IRPS portfolio outperforms by 0.10 percent per month (t-

statistic = 2.30).  The high-minus-low IRPS portfolio earns 0.35 percent per month in 

large stocks (t-statistic = 2.96) and 0.41 percent per month in small stocks (t-statistic = 

3.09). 

As in the later sample period, these differences are largely driven by low average 

idiosyncratic volatility periods.  Panel B shows that in low average idiosyncratic volatility 

periods, the high-minus-low IRPS portfolios earn 0.34 percent per month in large stocks 

and 0.58 percent per month in small stocks.  In high average idiosyncratic volatility 

periods (Panel C), the equivalent portfolio returns drop to 0.21 and 0.22 percent per 

month respectively and are statistically indistinguishable from zero. 
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5.2 International evidence 

We examine the role of IRPS in the four regions studied by Fama and French 

(2012, 2015c), as well as global markets not including the US.  The North America region 

includes Canada and US.  Europe includes Austria, Belgium, Denmark, Finland, France, 

Germany, Italy, Netherlands, Norway, Portugal, Spain, Switzerland and the United 

Kingdom.  Japan is examined separately, so that Asia Pacific excludes Japan, but includes 

Australia, Hong Kong, New Zealand and Singapore.  Global includes all the above 

countries, except the US. 

 

5.2.1 Modifications to estimation procedures 

We make a number of modifications to the empirical procedures to accommodate 

the international data.  We do not have daily SMB and HML factors for these regions for 

estimating idiosyncratic volatility.  Therefore, we estimate simple market models but 

include four lags of the market return to account for non-synchronous trading.  For each 

stock-month, we require a minimum of 15 valid daily returns.  To calculate average 

idiosyncratic volatility, we need size breakpoints.  We follow Fama and French (2012) 

and use the 90th percentile to separate large and small stocks in each region.  As with the 

data US data, we calculate value-weighted average idiosyncratic volatility for large and 

small stocks, and then an equal-weighted average of the two.  IRPS is calculated as before 

except that we require a minimum of 40 valid observations. 

We use 2x3 (size x IRPS) sorts to construct portfolios rather than 2x5 sorts to 

ensure that portfolios remain well diversified.  The sample period is 1990-2014.  Because 

the time series is relatively short, we separate low versus high average idiosyncratic 

volatility periods by comparing average idiosyncratic volatility in each month to the full 

sample average rather than a rolling average. 

 

5.2.2 International results 

Table 9 contains intercepts from three factor models for size and IRPS portfolios 

in each region.  In North America, Europe and Asia Pacific, intercepts for IRPS terciles 
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increase monotonically in both large and small stocks.  The resulting spreads in intercepts 

are large.  For instance, in large stocks between 1990 and 2014, the high-minus-low 

portfolios have intercepts of 0.37, 0.36 and 0.64 percent per month, all more than two 

standard errors from zero.  In low average idiosyncratic volatility periods, these intercepts 

are even bigger, and have larger t-statistics.  The outlier seems to be Japan where IPRS 

portfolios generate no variation in returns.  This is especially true in large stocks.11  We 

are not the first to detect that the cross-section of returns in Japan does not behave in 

the same way as in other countries.  Momentum appears to exist in most developed 

markets except Japan, and Fama and French (2015c) show that returns do not vary with 

profitability and investment.   

The global portfolios in Panel E are the most diversified ex-US portfolios.  In large 

stocks, each IRPS tercile contains over 270 securities and about 30 percent of the 

aggregate market capitalization.  In small stocks, each tercile contains over 2,400 stocks.  

In large stocks, the intercept for the high-minus-low IRPS in the full sample period is 0.62 

percent per month with a t-statistic of 3.44.  As in our earlier tests, in high average 

idiosyncratic volatility periods, most of the intercepts are statistically indistinguishable 

from zero. 

Table 10 contain five-factor model intercepts for the same regions and portfolios.  

For North America, Europe, Japan and Asia Pacific, intercepts for high-minus-low IRPS 

portfolios are about half the magnitude of their three-factor counterparts.  In low average 

idiosyncratic volatility periods, the shrinkage in intercepts is noticeable smaller.  And in 

these periods, even with five factor models, the intercepts of high-minus-low IRPS 

portfolios remain statistically significant (again, except Japan).  In the global (ex US) 

portfolios, the monotonicity in intercepts from low to high IRPS portfolios remains.  In 

the full sample period, the high-minus-low IRPS portfolio has an intercept of 0.48 percent 

per month (t-statistic = 2.55) for large stocks and 0.26 percent per month (t-statistic = 

1.28) for small stocks.  In the low average idiosyncratic volatility periods, the intercepts 

                                                           
11 There is a hint of a spread in returns in small stocks in Japan.  The high-minus-low IRPS portfolio in 

low average idiosyncratic volatility periods has an intercept of 0.30 percent per month (t-statistic = 2.12), 

but since we do not observe this in other specifications, we do not consider the evidence to be strong. 
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rise to 0.92 percent per month for large stocks and 0.56 percent per month for small stocks 

(with t-statistic of 4.60 and 2.94 respectively). 

Pooling stocks in global markets gives us the luxury of a large number of securities 

so that we can also perform triple sorts on size, idiosyncratic volatility and IRPS.  These 

2x3x3 sorts, similar to those in table 7 for the US, are shown in table 11.  Panels A and 

B contain three factor model intercepts for large and small stocks respectively.  Panels C 

and D, contain parallel intercepts from five factor models.  In both large and small stocks, 

we observe a spread in IRPS portfolios, controlling for idiosyncratic volatility.  The high-

minus-low IRPS portfolios have very similar intercepts in low, medium and high 

idiosyncratic volatility terciles, ranging from a low of 0.27 to a high of 0.85 percent per 

month.   

 

6. Conclusion 

Understanding the nature of equilibrium in capital markets under the frictionless 

ideal is foundational to the development of asset pricing models.  Levy (1978), Merton 

(1987), and others relax that frictionless ideal and investigate its implications for asset 

prices.  We endogenize the diversification decision in Merton’s (1987) model, allowing the 

investor to decide an appropriate level of diversification herself, while appreciating the 

costs and benefits of diversification.  This adjustment delivers a state-dependent premium 

for idiosyncratic risk that reflects the marginal disutility to under-diversification.  

We take this simple idea to the data.  Because state-dependence is empirically 

measurable as the covariance between idiosyncratic volatility of a stock and average 

idiosyncratic volatility, it affords some power to the tests.  In the US, we find that this 

covariance leaves a footprint in the cross-section of returns in 1973-2014.  Some of this 

explanatory power is subsumed by extant factor models, but in low average idiosyncratic 

volatility periods (when the model predicts that this covariance should matter most), even 

the most complete factor models have intercepts that are reliably different from zero.  We 

perform a battery of tests to ensure that our results are not driven by spurious relations, 

especially ruling out the possibility that idiosyncratic volatility itself is driving the results.  

The fact that we observe similar results in earlier time periods in the US (1931-1973), and 
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in markets outside the US, offers an indication that the covariance of idiosyncratic 

volatility with average idiosyncratic volatility matters. 

It is useful to return to the theme of endogenous diversification.  The cost of 

diversification (I) has fallen over time with the advent of delegated portfolio management 

through mutual funds, ETFs and other investment vehicles.  On the surface, this 

exogenous decline suggests that theory should be most applicable in earlier time periods 

or markets in which investors are restricted from using diversified funds.  However, the 

risk premium depends on the cost/benefit of diversification as well as average idiosyncratic 

risk.12  The latter is far from constant.  One might also ask about the risk aversion 

parameter (δ) that we assume to be constant.  It may very well be true that there is a 

positive correlation between risk aversion and average idiosyncratic risk.  But empirically, 

to pin down one of the three primitive drivers (I, δ, 2

i ), we are forced to assume that the 

other two remain constant.  Identification without such an assumption is intriguing but 

remains a challenge.

                                                           
12 As we point out earlier in the paper, cross-sectional correlations across securities varies considerably in 

the time series, rising sharply during the financial crisis.  Of course, this does not imply that diversification 

in not valuable during those times – quite the contrary – but that the benefits are time-varying. 
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Appendix A: Model Derivation 

Our model closely follows Merton (1987). However, we make two additional 

assumptions. Our first point of departure is that we explicitly model costly information 

acquisition. An investor incurs a fixed cost I to learn about a security. Our second point 

of departure is our assumption that the fraction of all investors who know about a security 

is proportional to the market portfolio invested in that security. These plausible 

assumptions lead us to a model with testable implications (equation 1 in the paper). For 

the convenience of the reader and continuity of analysis we reproduce the first part of the 

derivation in Merton (1987)13. 

The economy has  firms, . The return from investing in firm  is: 

,     1, ,
i i i i i
R R bY i N     (A1) 

where  is a common factor with , ,  is the factor loading of 

security,  is a firm-specific random variable with 

   (A2) 

,  is the idiosyncratic volatility of security , and  is the value weighted 

average idiosyncratic volatility across the  securities. denotes the value weighted 

expected return of the  securities. 

 In addition to the  securities issued by firms, the economy has two “inside” 

securities with zero net supply: 

(a)  a  security with return,  and 

(b)  a riskless security with return  

The economy has 𝐾 investors, . Investors are risk averse, with identical 

mean-variance preferences: 

, 1,...,
2

k k

k
U E R Var R k K        (A3) 

 denotes the portfolio return, and  is the coefficient of risk aversion. Investors are 

price takers and assumed to have identical initial wealth .   

                                                           
13 The reader familiar with Merton (1987) will note that equation (A22) below corresponds directly to 

equation (15) in his paper.   



27 

 

An investor only includes security i in his portfolio if he is “informed” in the sense 

that he knows . Information is costly and can be acquired at a cost  per 

security. As a consequence investor  selects only a subset of the  available securities 

to include in his portfolio.14 We assume that the securities he selects  are much smaller 

than N ( ), and that the probability of selecting a firm is proportional to its value 

relative to the market portfolio.  is the set of integers that index the  firms selected 

by investor k.15  

In addition to firm-specific knowledge, each investor’s information set contains 

common knowledge: . 

Equilibrium in capital markets is characterized as follows: 

(a) Given the set of securities selected, each investor chooses an optimal portfolio. 

(b) Markets clear. 

(c) Investors have no incentive to increase their holdings . 

The optimal portfolio holdings for any investor  is determined as follows: 

  From (A1) and (A3), an investor’s portfolio return can be specified as:   

     (A4) 

where: 

      (A5) 

      (A6) 

 and  denote the fraction of investor ’s wealth allocated to security  and 

.  The expected portfolio return and variance are:  

1

k

k k k

f N f i i
i

E R R b R R w     (A7) 

     (A8) 

where:  

1i i f i N f
R R b R R ,     (A9) 

                                                           
14 These subsets will in general differ across the K investors. 
15 They are a subset of the first N natural numbers. 
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The investor’s optimal portfolio choice is the solution to the following problem:   

     (A10) 

     Subject to   

From (A7) (A8), the first-order conditions for (A10) are: 

      (A11) 

2 0,   k

i i i k
w i      (A12) 

From (A5) (A11) (A12), the investor’s optimal portfolio solution is:   

      (A13) 

2
 ,   k i

i k

i

w i       (A14) 

      (A15) 

     (A16) 

We aggregate to determine equilibrium expected returns. From (A13), all investors 

choose the same . Let . Thus, from (A13), we have: 

      (A17) 

From (A14), the aggregate demand for security  is: 

2
1 1

i iK K

k i
i o i o

k k i

D W w W      (A18) 

In the equation above,  is the number of investors who know about the firm . 

From (A15) (A16), the aggregate demand for “inside” securities are: 

   (A19) 

    (A20) 

Inside securities have zero demand in equilibrium: . Thus, from 

(A19) (A20), we have: 
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     (A21) 

where  is the fraction of investors’ total wealth allocated to security . Using (A21), we 

can rewrite (A17) as: 

      (A22) 

 Let  denotes the equilibrium value of firm , then 

       (A23) 

is the fraction of investors’ total wealth invested in firm . From the market clearing 

condition, , and from the equation (A18), we have: 

2

1 1

i i i
i iK K

i
o ok k

V D
x q

W W
    (A24) 

In equation (A24), which corresponds to equation 15 in Merton (1987), 

     (A25) 

is the fraction of investors who invest in firm . 

The fraction of all investors who know about a security is proportional to the 

weight of the security in the market portfolio. That is, we assume that  is proportional 

to  

       (A26) 

Using (A14), (A24) and (A26), 

     (A27) 

Since 

    (A28) 

using (A27) we get 

  (A29) 
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Here we have used the observation that the number of firms in  is and that 

the holdings of security 𝑁 + 1 and the risk-free asset sum to zero across all investors. 

Hence  

     (A30) 

where  is the average number of securities in a portfolio.  

From (A27) and (A30), we have: 

       (A31) 

      (A32) 

     (A33) 

As noted in (A31),  is the same for each investor in firm , while  can 

be different across investors.       

From (A7) (A22-26) (A30), expected security returns are linear in idiosyncratic 

volatility: 

    (A34) 

From (A34), the expected market return  is:  

     (A35) 

where  . 

From (A7-9) (A31-35), the expected portfolio return and portfolio variance are: 

    (A36) 

     (A37) 

Thus, the utility of investor  is:   
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   (A38) 

Finally, given the expected returns in (A22) and (A34), we ensure that investor  

has no incentive to acquire information about an additional security at cost I. We choose 

the information cost I so that the net-of-acquisition-cost I expected increase in the 

investor’s marginal utility from knowing one additional firm is non-positive.  

For an additional security , where  is an element of , the investor’s 

new optimal portfolio choice is again the solution to the maximization problem: 

    (A39) 

The above problem is similar to that of (A10). As in (A11-16), we apply the first-

order conditions to equation (A39). 

      (A40) 

2
,    { }k i

i k

i

w i a      (A41) 

Because the expected returns of all securities are unchanged from (A22) (A34), 

thus, from (A22) (A40),  is unchanged: 

       (A42) 

      From (A9) (A24-30), 
i
 is unchanged:  

2

,   1, ,i
i

i N
Q

     (A43) 

      Then from (A41), we have:  

     (A44) 

From (A7-8) (A44), the expected portfolio return and variance conditional on 

selecting security a is:   

    (A45) 

     (A46) 
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Since the probability of selecting an additional security is proportional to its market 

capitalization, the expected idiosyncratic volatility of the additional security (for an 

uninformed investor) is the value weighted average idiosyncratic volatility across the firms 

he doesn’t know:   

      (A47) 

where  is the set of integers . Since , the investor only knows a fraction 

of all securities. Hence, from (A47), we have: 

     (A48) 

Using (A48), we rewrite the unconditional expected portfolio return and variance in (A45) 

and (A46) as: 

    (A49) 

     (A50) 

The expected utility of investor  is:  

  (A51) 

Comparing (A38) with (A51), the expected increase in marginal utility is: 

' 2

22k k k
U U U

Q
     (A52) 

As shown in (A52), 
k
U  is same for all investors. Investor  has no incentive to 

learn about more firms as long as
k
U  is no greater than the disutility of the information 

cost I: 16  

0
k
U I        (A53) 

Therefore, from (A52) (A53), in equilibrium, we have: 

2

*22
I

Q
       (A54) 

                                                           
16 In this framework U (I) = a constant x I. We have normalized the constant to be 1 as it does not affect 

the subsequent analysis. 
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In the above equation,  is the average number of stocks held by investor k in 

equilibrium.  

From (A54), we have: 

       (A55) 

Since  is proportional to average idiosyncratic risk , portfolio diversification 

is determined endogenously, and is proportional to average idiosyncratic risk .  

From (A34) (A54), expected returns are given by: 

      (A56) 
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Table 1 

 

Fama-MacBeth Regressions for All Stocks, 1973-2014 

IRPS is calculated as the covariance between stock-level idiosyncratic volatility and one over the square 

root of average idiosyncratic volatility over the prior 60 months.  The table contains slopes of Fama and 

MacBeth (1973) regressions of monthly stock returns on prior month IRPS.  Regressions include controls 

for the log of firms market capitalization (ln(ME)), the log of book-to-market ratios (ln(B/M)), prior returns 

measured over the prior 11 month period after skipping the prior month (R2,12), gross profitability defined 

as gross profits scaled by assets, and investment defined as percentage change in assets.  The sample covers 

July 1973 through 2014.  Low and high risk periods are defined as months in which the average idiosyncratic 

volatility is below or above the 10 year trailing average.  All coefficients except IRPS are multiplied by 100.  

T-statistics are based on Newey-West standard errors with 8 lags.   

 Full Sample 

(1973-2014) 

 Low Avg Idio. 

Volatility Periods 

 High Avg Idio. 

Volatility Periods 

         

ln(ME) -0.05 

(-1.63) 

-0.04 

(-0.60) 

 -0.05 

(-1.16) 

-0.04 

(-0.89) 

 -0.05 

(-0.97) 

-0.04 

(-0.66) 

ln(B/M) 0.27 

(3.56) 

0.31 

(4.17) 

 0.31 

(3.28) 

0.34 

(3.68) 

 0.22 

(1.84) 

0.27 

(2.37) 

R2,12 0.53 

(3.02) 

0.49 

(2.77) 

 0.65 

(3.90) 

0.62 

(3.74) 

 0.40 

(1.36) 

0.34 

(1.17) 

R0,1 -4.51 

(-9.17) 

-4.62 

(-9.36) 

 -3.62 

(-5.78) 

-3.73 

(5.99) 

 -5.53 

(-7.50) 

-5.66 

(-5.62) 

GP/A - 0.69 

(4.30) 

 - 0.63 

(3.36) 

 - 0.77 

(3.08) 

Inv. - -0.26 

(-4.05) 

 - -0.23 

(-2.50) 

 - -0.29 

(-3.14) 

IRPS 0.64 

(1.95) 

0.63 

(1.91) 

 1.06 

(2.19) 

1.03 

(2.16) 

 0.16 

(0.33) 

0.15 

(0.32) 
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Table 2 

 

Fama-MacBeth Regressions for Large and Small Stocks, 1973-2014 

IRPS is calculated as the covariance between stock-level idiosyncratic volatility and one over the square 

root of average idiosyncratic volatility over the prior 60 months.  The table contains slopes of Fama and 

MacBeth (1973) regressions of monthly stock returns on prior month IRPS separately for large and small 

stocks.  We use the median NYSE breakpoint for separating firms into small and large stocks.  Regressions 

include controls for the log of firms market capitalization (ln(ME)), the log of book-to-market ratios 

(ln(B/M)), prior returns measured over the prior 11 month period after skipping the prior month (R2,12), 

gross profitability defined as gross profits scaled by assets, and investment defined as percentage change in 

assets.  The sample covers July 1973 through 2014.  Low and high risk periods are defined as months in 

which the average idiosyncratic volatility is below or above the 10 year trailing average.  All coefficients 

except IRPS are multiplied by 100.  T-statistics are based on Newey-West standard errors with 8 lags.   

 Full Sample  Low Avg Idio. 

Volatility Periods 

 High Avg Idio. 

Volatility Periods 

Panel A: Large Stocks 

ln(ME) -0.09 

(-2.65) 

-0.09 

(-2.76) 

 -0.09 

(-2.26) 

-0.09 

(-2.27) 

 -0.09 

(-1.54) 

-0.10 

(-1.65) 

ln(B/M) 0.16 

(2.10) 

0.22 

(2.98) 

 0.18 

(1.99) 

0.23 

(2.37) 

 0.12 

(1.04) 

0.21 

(1.87) 

R2,12 0.50 

(2.09) 

0.47 

(1.98) 

 0.65 

(2.36) 

0.62 

(2.28) 

 0.31 

(0.75) 

0.29 

(0.70) 

R0,1 -2.75 

(-4.53) 

-2.97 

(-4.87) 

 -1.89 

(-2.45) 

-2.01 

(2.60) 

 -3.74 

(-4.28) 

-4.08 

(-4.08) 

GP/A - 0.41 

(2.26) 

 - 0.29 

(1.29) 

 - 0.51 

(1.72) 

Inv. - -0.20 

(-2.00) 

 - -0.10 

(-1.10) 

 - -0.30 

(-1.63) 

IRPS 0.78 

(0.58) 

0.73 

(0.55) 

 3.52 

(2.04) 

3.28 

(1.99) 

 -2.39 

(1.16) 

-2.23 

(-1.10) 

Panel B: Small Stocks 

ln(ME) 0.01 

(0.27) 

0.02 

(0.70) 

 -0.02 

(-0.53) 

-0.02 

(-0.38) 

 0.05 

(0.82) 

0.08 

(1.25) 

ln(B/M) 0.21 

(2.52) 

0.25 

(3.06) 

 0.25 

(2.37) 

0.28 

(2.69) 

 0.17 

(1.25) 

0.22 

(1.69) 

R2,12 0.45 

(2.34) 

0.42 

(2.20) 

 0.54 

(2.97) 

0.53 

(2.91) 

 0.34 

(1.04) 

0.29 

(0.90) 

R0,1 -3.44 

(-6.79) 

-3.58 

(-7.03) 

 -2.87 

(-5.10) 

-2.99 

(-5.29) 

 -4.09 

(-4.77) 

-4.27 

(-4.97) 

GP/A - 0.56 

(3.39) 

 - 0.43 

(2.38) 

 - 0.71 

(2.66) 

Inv. - -0.30 

(-3.18) 

 - -0.20 

(-1.48) 

 - -0.40 

(3.24) 

IRPS 1.08 

(2.52) 

1.04 

(2.41) 

 1.52 

(2.56) 

1.50 

(2.56) 

 0.57 

(0.85) 

0.50 

(0.75) 
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Table 3 

 

Portfolio Characteristics for Sorts on Size and IRPS, 1973-2014 

Stocks are sorted into two size portfolios based on NYSE median market capitalization cutoffs and within 

size portfolios, into quintiles based on IRPS.  Portfolios are rebalanced each month.  Each portfolio 

characteristic is computed as time series averages of monthly statistics.  Panel A shows the average number 

of stocks in each portfolio and the percentage of aggregate market capitalization.  Stocks are placed in book-

to-market, profitability and investment terciles based on breakpoints from Ken French’s website.  Panel B 

shows the percentage of stocks in each portfolio that fall into these terciles.  The full sample period is July 

1973 to December 2014.   

 Large Stocks  Small Stocks 

 Low 

IRPS 

2 3 4 High 

IRPS 

 Low 

IRPS 

2 3 4 High 

IRPS 

 

Panel A: Number of Stocks and Distribution of Aggregate Market Capitalization 

Number of stocks 156 156 156 156 156  437 437 437 437 437 

% of Market Cap 9.30 14.20 18.10 25.20 25.70  0.80 1.30 1.80 2.10 1.50 

Panel B: Percentage of Portfolio Stocks in Book-to-Market, Profitability and Investment Terciles 

Book-to-Market             

    Growth 43.6 40.4 39.1 38.8 37.5  28.3 24.6 21.6 19.3 23.8 

    Neutral 33.9 41.0 41.8 42.3 40.5  26.7 32.5 37.0 40.8 37.7 

    Value 22.5 18.6 19.0 18.9 22.0  45.0 42.9 41.5 39.8 38.5 

Profitability             

    Robust 31.0 33.3 35.1 36.6 32.2  14.6 16.2 19.8 20.6 19.2 

    Neutral 35.6 42.4 43.7 44.7 46.3  21.1 30.0 37.2 42.6 36.4 

    Weak 33.4 24.2 21.1 18.7 21.4  64.3 52.9 43.0 36.8 44.3 

Investment             

    Aggressive 41.6 36.0 32.6 29.5 29.7  29.3 31.7 30.8 29.2 30.0 

    Neutral 31.9 41.8 46.7 51.2 50.6  23.1 30.0 35.5 40.0 35.8 

    Conservative 26.4 22.2 20.7 19.3 19.8  47.6 38.3 33.6 30.8 34.2 
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Table 4 

 

Intercepts and Slopes from Three-Factor Model Regressions for Size and IRPS Portfolios, 1973-2014 

IRPS is calculated as the covariance between stock-level idiosyncratic volatility and one over the square root of average 

idiosyncratic volatility over the prior 60 months.  All stocks in a month are sorted into two size portfolios (small and large) 

based on NYSE median market capitalization cutoffs.  Within each size portfolio, stocks are sorted into quintiles based on 

IRPS.  The table shows intercept and slopes from three-factor models for these portfolio returns.  The full sample period is 

July 1973 to December 2014.  The sample of low and high average idiosyncratic volatility periods are defined as months in 

which the average idiosyncratic volatility is below or above the 10 year trailing average. 

 Large Stocks  Small Stocks 

IRPS 

Quint. 

Low 2 3 4 High 5-1  Low 2 3 4 High 5-1 

Panel A: Full Sample Period 

α -0.20 -0.06 0.04 0.08 0.08 0.28  -0.33 -0.08 0.07 0.13 0.04 0.37 

 (-2.05) (-0.76) (0.71) (1.56) (1.35) (2.01)  (-2.66) (-1.14) (0.91) (1.67) (0.49) (2.24) 

Mkt 1.31 1.16 1.02 0.92 0.86 -0.45  1.29 1.22 1.11 0.95 0.87 -0.42 

 (39.10) (49.10) (76.30) (38.40) (48.10) (-9.81)  (21.00) (37.60) (39.10) (36.90) (37.30) (-5.88) 

SMB 0.30 0.01 -0.15 -0.24 -0.19 -0.50  1.48 1.04 0.77 0.64 0.71 -0.77 

 (7.60) (0.19) (-4.70) (-10.5) (-7.40) (-8.54)  (21.80) (15.60) (8.20) (6.94) (13.3) (-7.15) 

HML -0.02 0.07 0.08 0.08 -0.03 -0.01  0.15 0.31 0.51 0.51 0.31 0.16 

 (-0.27) (1.86) (2.20) (2.13) (-0.99) (-0.14)  (1.17) (5.01) (6.60) (6.43) (5.62) (0.99) 

Panel B: Low Average Idiosyncratic Volatility Periods 

α -0.44 -0.22 0.03 0.10 0.25 0.69  -0.67 -0.16 0.07 0.14 0.13 0.80 

 (-3.18) (-2.72) (0.49) (1.39) (4.13) (3.86)  (-4.91) (-2.04) (1.02) (1.76) (1.55) (4.03) 

Mkt 1.32 1.19 1.02 0.90 0.85 -0.48  1.38 1.25 1.05 0.91 0.86 -0.53 

 (33.48) (47.82) (66.90) (38.58) (33.30) (-7.91)  (23.05) (34.52) (38.74) (30.85) (26.76) (-6.55) 

SMB 0.30 -0.04 -0.08 -0.20 -0.21 -0.51  1.22 1.02 0.92 0.74 0.76 -0.46 

 (4.84) (-1.18) (-2.57) (-6.45) (-6.34) (-6.16)  (17.83) (26.13) (32.42) (21.03) (16.96) (-4.98) 

HML 0.03 0.12 0.01 0.02 -0.05 -0.08  0.18 0.18 0.29 0.29 0.13 -0.05 

 (0.34) (2.52) (0.32) (0.51) (-1.39) (-0.71)  (1.83) (2.91) (6.61) (6.42) (2.12) (-0.33) 

Panel C: High Average Idiosyncratic Volatility Periods 

α 0.10 0.11 0.06 0.10 -0.07 -0.17  0.02 0.15 0.18 0.21 0.08 0.06 

 (0.58) (0.90) (0.69) (1.24) (-0.60) (-0.66)  (0.09) (1.00) (1.40) (1.52) (0.58) (0.20) 

Mkt 1.29 1.15 1.03 0.93 0.86 -0.43  1.26 1.23 1.13 0.98 0.87 -0.39 

 (24.87) (31.64) (54.06) (24.46) (32.83) (-6.12)  (13.43) (31.80) (34.67) (31.83) (26.86) (-3.66) 

SMB 0.31 0.02 -0.17 -0.25 -0.19 -0.49  1.60 1.04 0.71 0.59 0.71 -0.89 

 (5.86) (0.44) (-4.34) (-8.39) (-5.50) (-6.51)  (21.33) (11.28) (6.13) (5.23) (10.13) (-7.44) 

HML -0.04 0.07 0.12 0.10 -0.02 0.03  0.16 0.37 0.61 0.62 0.38 0.22 

 (-0.51) (1.15) (2.53) (1.90) (-0.41) (0.25)  (0.88) (4.47) (7.18) (7.03) (6.04) (0.99) 
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Table 5 

 

Intercepts and Slopes from Fama-French Five-Factor Model Regressions for Size and IRPS Portfolios, 1973-2014 

IRPS is the covariance between stock-level idiosyncratic volatility and one over the square root of average idiosyncratic 

volatility over the prior 60 months.  All stocks in a month are sorted into two size portfolios (small and large) based on NYSE 

median market capitalization cutoffs.  Within each size portfolio, stocks are sorted into quintiles based on IRPS.  The table 

shows intercept and slopes from Fama and French (2015) five-factor models for these portfolio returns.  The sample of low 

and high average idiosyncratic volatility periods are defined as months in which the average idiosyncratic volatility is below 

or above the 10 year trailing average. 

 Large Stocks  Small Stocks 

IRPS Low 2 3 4 High 5-1  Low 2 3 4 High 5-1 

Panel A: Full Sample Period 

α -0.03 -0.03 -0.04 -0.04 0.06 0.10  -0.04 -0.00 -0.03 -0.03 -0.02 0.02 

 (-0.35) (-0.41) (-0.69) (-0.75) (0.97) (0.71)  (-0.30) (-0.04) (-0.41 (-0.21) (-0.280 (0.13) 

Mkt 1.28 1.16 1.04 0.95 0.86 -0.42  1.24 1.21 1.12 0.97 0.87 -0.37 

 (49.60) (57.80) (79.60) (47.70) (55.80) (-12.2)  (26.90) (39.70) (49.80) (54.10) (44.00) (-6.81) 

SMB 0.20 -0.01 -0.10 -0.20 -0.17 -0.37  1.29 1.02 0.87 0.76 0.77 -0.52 

 (4.98) (-0.34) (-4.11) (-9.11) (-6.77) (-6.78)  (22.70) (20.40) (21.80) (21.80) (22.10) (-7.04) 

HML 0.02 0.09 0.08 0.03 0.01 -0.01  0.04 0.22 0.39 0.39 0.19 0.15 

 (0.30) (1.49) (2.17) (0.75) (0.33) (-0.09)  (0.31) (2.68) (6.02) (7.02) (4.14) (1.02) 

RMW -0.37 -0.06 0.17 0.21 0.08 0.44  -0.69 -0.12 0.31 0.39 0.16 0.84 

 (-5.83) (-1.24) (4.29) (4.93) (2.24) (5.37)  (-7.66) (-1.46) (3.80) (5.80) (3.21) (7.01) 

CMA -0.14 -0.03 0.05 0.19 -0.04 0.11  -0.13 -0.09 0.02 0.06 0.06 0.19 

 (-1.59) (-0.44) (1.04) (3.42) (-0.70) (0.88)  (-0.82) (-0.82) (0.34) (1.38) (1.17) (1.04) 

Panel B: Low Average Idiosyncratic Volatility Periods 

α -0.18 -0.21 0.01 -0.00 0.21 0.39  -0.45 -0.06 0.01 0.011 0.06 0.51 

 (-1.51) (-2.56) (0.19) (-0.03) (3.14) (2.44)  (-3.57) (-0.70) (0.19) (0.15) (0.73) (2.69) 

Mkt 1.26 1.19 1.02 0.93 0.86 -0.39  1.31 1.21 1.06 0.94 0.87 -0.44 

 (33.38) (45.50) (59.41) (49.90) (36.32) (-7.31)  (29.28) (44.06) (41.25) (39.59) (30.54) (-7.17) 

SMB 0.21 -0.05 -0.07 -0.18 -0.20 -0.41  1.13 0.97 0.93 0.78 0.79 -0.34 

 (4.17) (-1.41) (-2.30) (-6.74) (-6.16) (-5.69)  (16.61) (25.47) (37.17) (22.79) (15.07) (-3.20) 

HML 0.03 0.13 0.05 -0.02 -0.05 -0.08  0.027 0.05 0.21 0.242 0.10 0.08 

 (0.31) (2.22) (1.58) (-0.41) (-0.88) (-0.59)  (0.26) (0.89) (5.61) (5.75) (1.59) (0.51) 

RMW -0.49 -0.02 0.05 0.18 0.08 0.58  -0.47 -0.24 0.10 0.25 0.13 0.60 

 (-6.34) (-0.32) (1.26) (3.34) (1.64) (5.64)  (-4.21) (-4.11) (2.60) (5.44) (1.99) (3.74) 

CMA -0.17 -0.02 -0.06 0.17 0.05 0.21  0.05 0.07 0.06 0.07 -0.01 -0.06 

 (-1.59) (-0.24) (-1.79) (2.92) (0.67) (1.37)  (0.37) (1.20) (0.97) (1.05) (-0.13) (-0.34) 

Panel C: High Average Idiosyncratic Volatility Periods 

α 0.28 0.17 -0.05 -0.04 -0.08 -0.36  0.38 0.28 0.12 0.010 0.018 -0.36 

 (1.67) (1.58) (-0.61) (-0.47) (-0.60) (-1.37)  (1.34) (1.60) (1.02) (1.06) (0.15) (-1.15) 

Mkt 1.26 1.14 1.04 0.96 0.86 -0.40  1.22 1.19 1.11 0.97 0.87 -0.35 

 (30.68) (41.26) (50.55) (28.72) (37.08) (-7.40)  (17.43) (38.17) (48.91) (50.08) (34.44) (-4.63) 

SMB 0.19 0.01 -0.09 -0.19 -0.18 -0.37  1.32 1.02 0.85 0.75 0.78 -0.54 

 (3.39) (0.02) (-2.66) (-5.98) (-4.93) (-4.84)  (16.38) (15.62) (15.46) (16.13) (16.44) (-5.56) 

HML 0.04 0.10 0.06 0.04 0.02 -0.02  0.13 0.31 0.47 0.46 0.21 0.08 

 (0.49) (1.30) (1.25) (0.65) (0.38) (-0.19)  (0.71) (2.86) (6.59) (8.08) (3.83) (0.43) 

RMW -0.34 -0.08 0.25 0.23 0.06 0.39  -0.81 -0.08 0.36 0.45 0.18 0.98 

 (-4.06) (-1.16) (5.12) (3.75) (1.24) (3.44)  (-6.45) (-0.89) (4.27) (6.31) (2.96) (6.30) 

CMA -0.19 -0.08 0.11 0.18 -0.03 0.16  -0.24 -0.23 -0.07 -0.02 0.07 0.31 

 (-1.41) (-0.68) (1.20) (1.85) (-0.38) (0.87)  (-0.85) (-1.30) (-0.70) (-0.26) (0.81) (0.97) 
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Table 6 

 

Intercepts and Slopes from Hou, Xue and Zhang Four-Factor Model Regressions for Size and IRPS Portfolios, 1973-2014 

IRPS is calculated as the covariance between stock-level idiosyncratic volatility and one over the square root of average 

idiosyncratic volatility over the prior 60 months.  All stocks in a month are sorted into two size portfolios (small and large) 

based on NYSE median market capitalization cutoffs.  Within each size portfolio, stocks are sorted into quintiles based on 

IRPS.  The table shows intercept and slopes from Hou, Xue and Zhang (2014) factor models for these portfolio returns.  The 

full sample period is July 1973 to December 2014.  The sample of low and high average idiosyncratic volatility periods are 

defined as months in which the average idiosyncratic volatility is below or above the 10 year trailing average. 

 Large Stocks  Small Stocks 

IRPS 

Quint. 

Low 2 3 4 High 5-1  Low 2 3 4 High 5-1 

Panel A: Full Sample Period 

α 0.05 -0.02 -0.06 -0.08 0.06 0.01  0.23 0.20 0.04 0.00 0.03 -0.20 

 (0.55) (-0.36) (-0.96) (-1.24) (0.93) (0.06)  (1.32) (1.96) (0.42) (0.02) (0.32) (-0.93) 

Mkt 1.28 1.15 1.03 0.94 0.86 -0.42  1.24 1.19 1.07 0.93 0.84 -0.39 

 (47.20) (54.00) (63.50) (41.70) (43.30) (-10.8)  (31.00) (40.70) (30.50) (29.60) (34.10) (-8.16) 

ME 0.19 -0.01 -0.11 -0.17 -0.17 -0.36  1.14 0.87 0.76 0.65 0.71 -0.43 

 (4.51) (-0.32) (-3.41) (-6.86) (-6.34) (-5.69)  (20.90) (11.90) (7.04) (6.19) (10.70) (-4.16) 

I/A -0.17 0.07 0.17 0.23 -0.00 0.17  -0.16 0.10 0.41 0.46 0.22 0.38 

 (-2.50) (1.52) (2.96) (4.43) (-0.07) (1.82)  (-0.98) (1.19) (3.86) (4.24) (3.24) (1.90) 

ROE -0.27 -0.03 0.11 0.18 0.09 0.36  -0.84 -0.38 -0.00 0.09 0.01 0.85 

 (-5.42) (-0.98) (3.84) (4.56) (2.25) (4.58)  (-6.32) (-5.56) (-0.02) (1.30) (0.28) (5.59) 

Panel B: Low Average Idiosyncratic Volatility Periods 

α -0.22 -0.14 0.00 -0.03 0.17 0.39  -0.36 0.03 0.15 0.17 0.17 0.53 

 (-1.76) (-1.72) (0.07) (-0.45) (2.43) (2.26)  (-2.89) (0.41) (2.01) (1.82) (1.97) (2.87) 

Mkt 1.29 1.17 1.02 0.92 0.87 -0.42  1.30 1.19 1.01 0.87 0.83 -0.47 

 (34.28) (50.65) (63.15) (54.11) (33.82) (-7.24)  (34.08) (55.87) (41.33) (33.22) (26.45) (-8.59) 

ME 0.23 -0.06 -0.07 -0.18 -0.20 -0.43  1.08 0.93 0.88 0.71 0.74 -0.34 

 (4.27) (-1.54) (-2.57) (-6.40) (-5.70) (-5.34)  (17.31) (24.92) (27.53) (16.91) (15.53) (-3.55) 

I/A -0.09 0.09 0.015 0.18 0.06 0.15  0.09 0.11 0.16 0.21 0.02 -0.07 

 (-0.92) (2.04) (0.44) (3.03) (1.32) (1.17)  (0.76) (1.98) (2.52) (2.91) (0.34) (-0.46) 

ROE -0.27 -0.04 0.058 0.16 0.09 0.36  -0.53 -0.33 -0.06 0.03 -0.03 0.50 

 (-3.13) (-1.04) (2.02) (4.48) (2.14) (3.22)  (-5.75) -(6.04) (-1.66) (0.61) (-0.62) (3.64) 

Panel C: High Average Idiosyncratic Volatility Periods 

α 0.49 0.15 -0.11 -0.13 -0.10 -0.59  0.90 0.47 -0.02 -0.10 -0.10 -1.01 

 (3.59) (1.22) (-0.84) (-1.27) (-0.77) (-2.47)  (3.23) (2.42) (-0.13) (-0.52) (-0.70) (-3.21) 

Mkt 1.24 1.14 1.04 0.96 0.85 -0.40  1.20 1.18 1.11 0.98 0.87 -0.33 

 (31.98) (32.61) (40.58) (26.91) (31.02) (-7.01)  (17.28) (29.78) (23.51) (23.02) (26.05) (-4.56) 

ME 0.15 0.01 -0.11 -0.17 -0.15 -0.30  1.10 0.82 0.71 0.64 0.72 -0.38 

 (2.64) (0.34) (-2.48) (-4.78) (-4.11) (-3.53)  (15.3) (8.03) (5.10) (4.52) (8.19) (-3.12) 

I/A -0.28 0.05 0.26 0.28 -0.04 0.24  -0.26 0.07 0.54 0.62 0.33 0.60 

 (-2.85) (0.62) (2.79) (3.91) (-0.62) (1.71)  (-1.12) (0.61) (3.94) (4.51) (4.12) (2.34) 

ROE -0.29 -0.02 0.13 0.19 0.12 0.41  -1.03 -0.43) 0.02 0.11 0.03 1.07 

 (-4.44) (-0.63) (3.04) (3.38) (2.09) (3.84)  (-5.75) (-4.73) (0.16) (1.18) (0.82) (5.53) 
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Table 7 

 

Intercepts from Factor Models on Portfolios Sorted by Size, Idiosyncratic Volatility and IRPS, 1973-2014 

IRPS is calculated as the covariance between stock-level idiosyncratic volatility and one over the square root of average 

idiosyncratic volatility over the prior 60 months.  Stocks in each month are sorted into two size portfolios (large and small 

stocks) based on NYSE median market capitalization cutoffs.  Each size portfolio is then sorted into terciles based on 

idiosyncratic volatility over the prior month (low, med., and high IVOL).  These 2x3 portfolios are further sorted into 

terciles based on IRPS, resulting in 2x3x3 sorts.  All portfolio returns are value weighted.  The table shows intercepts from 

three- and five-factor models for these portfolios returns.  The sample of low and high average idiosyncratic volatility 

periods are defined as months in which the average idiosyncratic volatility is below or above the trailing average. 

          

 Three-Factor Model Intercepts  Five-Factor Model Intercepts 

IRPS 

Tercile 

1 2 3 3-1  1 2 3 3-1 

Panel A: Low Average Idiosyncratic Volatility Periods 

Large Stocks 

Low IVOL 0.01 

(0.09) 

0.08 

(1.16) 

0.27 

(3.51) 

0.26 

(2.13) 

 -0.06 

(-0.61) 

-0.03 

(-0.41) 

0.21 

(2.82) 

0.27 

(2.05) 

Med. IVOL -0.42 

(-3.12) 

-0.01 

(-0.08) 

0.22 

(2.39) 

0.64 

(3.27) 

 -0.39 

(-3.02) 

-0.02 

(-0.29) 

0.12 

(1.3) 

0.51 

(2.72) 

High IVOL -0.53 

(-3.18) 

-0.25 

(-2.22) 

0.08 

(0.81) 

0.61 

(3.20) 

 -0.16 

(-1.13) 

-0.12 

(-1.14) 

0.15 

(1.39) 

0.32 

(1.95) 

Small Stocks 

Low IVOL 0.35 

(4.79) 

0.26 

(2.93) 

0.36 

(4.01) 

0.01 

(0.11) 

 0.25 

(2.83) 

0.10 

(1.31) 

0.26 

(2.96) 

-0.01 

(-0.02) 

Med. IVOL -0.27 

(-2.10) 

0.01 

(0.18) 

0.14 

(1.71) 

0.41 

(2.59) 

 -0.17 

(-1.48) 

-0.03 

(-0.38) 

0.25 

(0.38) 

0.20 

(1.44) 

High IVOL -1.27 

(-6.24) 

-0.58 

(-3.91) 

-0.64 

(-4.98) 

0.63 

(3.12) 

 -0.91 

(-4.75) 

-0.29 

(-1.75) 

-0.50 

(-3.78) 

0.41 

(2.01) 

Panel B: High Average Idiosyncratic Volatility Periods 

Large Stocks 

Low IVOL 0.16 

(1.53) 

0.10 

(0.70) 

0.07 

(0.45) 

0.08 

(-0.38) 

 -0.04 

(-0.28) 

-0.14 

(1.20) 

-0.06 

(-0.29) 

-0.02 

(0.08) 

Med. IVOL 0.17 

(1.31) 

0.05 

(0.42) 

0.19 

(1.52) 

0.02 

(0.12) 

 0.16 

(1.20) 

-0.07 

(-0.63) 

0.19 

(1.23) 

0.03 

(0.14) 

High IVOL 0.01 

(0.04) 

0.14 

(0.81) 

-0.22 

(-1.38) 

-0.23 

(-0.93) 

 0.27 

(1.10) 

0.34 

(1.87) 

-0.15 

(0.91) 

-0.43 

(1.53) 

Small Stocks 

Low IVOL 0.21 

(1.78) 

0.21 

(1.65) 

0.19 

(1.24) 

-0.02 

(-0.15) 

 0.10 

(1.06) 

0.10 

(1.26) 

0.06 

(0.56) 

-0.04 

(-0.26) 

Med. IVOL 0.36 

(1.88) 

0.19 

(1.27) 

0.32 

(2.52) 

-0.04 

(-0.21) 

 0.50 

(2.19) 

0.12 

(0.89) 

0.29 

(2.62) 

-0.21 

(-1.01) 

High IVOL -0.49 

(-1.46) 

-0.04 

(-0.20) 

-0.43 

(-2.00) 

0.06 

(0.17) 

 0.03 

(0.08) 

0.27 

(0.91) 

-0.37 

(-1.57) 

-0.39 

(1.38) 
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Table 8 

 

Intercepts and Slopes from Three-Factor Model Regressions for Size and IRPS Portfolios, 1931-1973 

IRPS is calculated as the covariance between stock-level idiosyncratic volatility and one over the square root of average 

idiosyncratic volatility over the prior 60 months.  All stocks in a month are sorted into two size portfolios (small and large) 

based on NYSE median market capitalization cutoffs.  Within each size portfolio, stocks are sorted into quintiles based on 

IRPS.  The table shows intercept and slopes from three-factor models for these portfolio returns.  The full sample period is 

July 1931 to June 1973.  The sample of low and high average idiosyncratic volatility periods are defined as months in which 

the average idiosyncratic volatility is below or above the 10 year trailing average. 

 Large Stocks  Small Stocks 

IRPS 

Quint. 

Low 2 3 4 High 5-1  Low 2 3 4 High 5-1 

Panel A: Full Sample Period 

α -0.24 -0.23 -0.15 0.06 0.10 0.35  -0.32 -0.14 -0.16 -0.01 0.09 0.41 

 (-2.55) (-3.70) (-2.23) (1.20) (2.30) (2.96)  (-3.10) (-1.70) (-1.93) (-0.17) (1.18) (3.09) 

Mkt 1.10 1.19 1.17 1.01 0.91 -0.19  1.08 1.07 1.09 1.07 1.03 -0.05 

 (20.79) (52.79) (31.51) (39.32) (48.71) (-3.65)  (17.53) (27.59) (27.97) (29.94) (22.80) (-0.58) 

SMB 0.33 0.11 -0.04 -0.14 -0.13 -0.47  1.52 1.22 1.10 0.76 0.67 -0.84 

 (3.06) (3.30) (-1.08) (-5.77) (-4.85) (-4.03)  (22.32) (10.37) (7.04) (15.07) (17.11) (-10.3) 

HML 0.34 0.29 0.22 0.11 -0.09 -0.42  0.58 0.41 0.46 0.54 0.33 -0.24 

 (2.44) (4.12) (3.73) (4.22) (-5.80) (-2.93)  (5.89) (7.01) (9.95) (9.40) (7.39) (-1.84) 

Panel B: Low Average Idiosyncratic Volatility Periods 

α -0.26 -0.15 -0.12 0.07 0.08 0.34  -0.38 -0.25 -0.11 0.05 0.21 0.58 

 (-3.18) (-1.95) (-1.67) (1.45) (2.13) (3.16)  (-2.82) (-2.69) (-1.14) (0.63) (2.86) (3.33) 

Mkt 1.19 1.13 1.11 0.99 0.92 -0.26  1.19 1.17 1.12 1.02 0.96 -0.22 

 (37.59) (42.93) (24.07) (64.93) (50.92) (-6.16)  (20.88) (35.81) (28.28) (15.28) (32.13) (-4.86) 

SMB 0.38 0.21 0.09 -0.04 -0.14 -0.52  1.24 0.92 1.00 0.99 0.86 -0.38 

 (6.40) (4.11) (1.87) (-1.20) (-5.10) (-7.39)  (21.46) (13.59) (17.34) (15.81) (19.62) (-4.74) 

HML 0.21 0.12 0.03 0.10 -0.07 -0.28  0.50 0.32 0.22 0.26 0.22 -0.27 

 (3.46) (3.32) (0.59) (2.67) (-3.45) (-3.71)  (6.59) (6.55) (4.32) (3.09) (3.54) (-2.55) 

Panel C: High Average Idiosyncratic Volatility Periods 

α -0.14 -0.07 -0.01 0.04 0.08 0.21  -0.21 -0.24 -0.03 -0.01 0.01 0.22 

 (-1.00) (-0.97) (-0.09) (0.54) (0.78) (1.06)  (-1.65) (-2.68) (-0.38) (-0.05) (0.14) (1.21) 

Mkt 1.18 1.10 1.01 0.93 0.96 -0.21  1.15 1.13 1.08 0.94 0.86 -0.28 

 (24.89) (50.65) (65.85) (60.67) (44.13) (-3.39)  (23.11) (50.16) (32.86) (52.29) (32.17) (-4.99) 

SMB 0.46 0.08 -0.09 -0.21 -0.23 -0.69  1.55 1.11 0.79 0.63 0.67 -0.87 

 (5.74) (2.27) (-3.28) (-6.84) (-6.88) (-6.64)  (18.63) (17.87) (21.80) (13.30) (13.61) (-8.24) 

HML 0.01 0.07 -0.01 0.09 -0.07 -0.07  0.36 0.37 0.38 0.35 0.40 0.03 

 (0.08) (2.09) (-0.22) (3.21) (-1.78) (-0.80)  (6.18) (8.04) (7.16) (11.75) (7.51) (0.41) 
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Table 9 

 

Intercepts from Three-Factor Model Regressions for Size and IRPS Portfolios for North America, Europe, Japan, Asia 

Pacific (excluding Japan) and Global (excluding US) 

Idiosyncratic volatility is calculated as the mean squared error of the residuals from daily market model regressions for each 

stock month.  The market model includes four lags of the market return.  We require a minimum of 15 valid returns per 

month to calculate idiosyncratic volatility.  Average idiosyncratic volatility for each region is the simple average of the value-

weighted idiosyncratic volatility in large and small cap stocks.  Large and small stocks are based on the 90th percentile of 

market capitalization in each region-month.  IRPS is the covariance between idiosyncratic volatility and one over the square 

root of average idiosyncratic volatility over the prior 60 months, requiring at least 40 valid observations.  Within each size 

portfolio, stocks are sorted into terciles based on IRPS.  The table shows intercept and slopes from three-factor models for 

these portfolio returns.  North America includes Canada and the US.  Europe includes Austria, Belgium, Denmark, Finland, 

France, Germany, Italy, the Netherlands, Norway, Portugal, Spain, Switzerland, and the United Kingdom.  Asia Pacific 

includes Australia, Hong Kong, New Zealand and Singapore.  Global ex US includes all countries in these regions but not 

the US.  The sample period is 1990-2014.  T-statistics appear in parentheses. 

 Full Sample Period  Low Average Idiosyncratic 

Volatility Periods 

 High Average Idiosyncratic 

Volatility Periods 

IRPS 

Tercile 

1 2 3 3-1  1 2 3 3-1  1 2 3 3-1 

Panel A: North America 

Large -0.23 0.01 0.14 0.37  -0.40 -0.01 0.23 0.63  0.09 0.10 -0.08 -0.16 

 (-2.24) (0.22) (1.91) (2.35)  (-4.18) (-0.20) (3.40) (4.23)  (0.35) (0.67) (-0.43) (-0.43) 

Small -0.12 -0.02 0.16 0.28  -0.45 -0.12 0.20 0.65  0.66 0.26 0.13 -0.53 

 (-0.83) (-0.83) (2.24) (1.53)  (-3.51) (-1.87) (3.41) (4.02)  (2.01) (1.46) (0.80) (-1.27) 

Panel B: Europe 

Large -0.25 0.14 0.10 0.36  -0.43 0.16 0.14 0.57  0.29 -0.00 -0.12 -0.41 

 (-2.11) (2.15) (1.28) (1.99)  (-3.62) (2.62) (1.81) (3.24)  (1.07) (-0.01) (-0.64) (-1.01) 

Small -0.18 0.07 0.03 0.21  -0.24 0.08 -0.09 0.14  0.08 0.03 0.11 0.03 

 (-1.94) (1.22) (0.34) (1.46)  (-2.57) (1.31) (-1.22) (1.03)  (0.39) (0.26) (0.63) (0.09) 

Panel C: Japan 

Large -0.01 0.05 0.04 0.06  -0.19 0.05 0.00 0.19  0.09 0.02 0.01 -0.08 

 (-0.09) (0.49) (0.40) (0.31)  (-1.47) (0.51) (0.02) (1.17)  (0.32) (0.08) (0.07) (-0.20) 

Small -0.20 0.10 0.08 0.28  -0.23 -0.01 0.07 0.30  -0.11 0.31 0.23 0.34 

 (-1.34) (0.96) (0.83) (1.65)  (-1.90) (-0.09) (0.83) (2.12)  (-0.35) (1.53) (1.17) (0.96) 

Panel D: Asia Pacific (ex Japan) 

Large -0.36 -0.02 0.28 0.64  -0.29 -0.15 0.36 0.64  -0.41 0.16 0.06 0.47 

 (-2.56) (-0.18) (2.41) (3.05)  (-1.80) (-1.33) (2.97) (2.82)  (-1.53) (0.73) (0.23) (1.12) 

Small -0.85 0.00 0.34 1.19  -0.10 -0.10 0.38 1.35  -0.54 0.32 0.25 0.79 

 (-4.02) (0.03) (3.06) (4.31)  (-0.97) (-0.96) (3.60) (6.00)  (-1.16) (1.50) (1.00) (1.25) 

Panel E: Global (ex US) 

Large -0.35 -0.05 0.28 0.62  -0.49 -0.07 0.47 0.96  -0.15 0.02 0.04 0.18 

 (-3.12) (-0.75) (3.30) (3.44)  (-4.14) (-0.99) (4.55) (4.60)  (-0.64) (0.18) (0.24) (0.52) 

Small -0.31 -0.02 0.08 0.39  -0.45 -0.06 0.12 0.57  0.18 0.15 0.13 -0.05 

 (-2.15) (0.18) (0.95) (2.03)  (-3.33) (-0.75) (1.41) (2.94)  (0.55) (0.75) (0.70) (-0.13) 
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Table 10 

 

Intercepts from Five-Factor Model Regressions for Size and IRPS Portfolios for North America, Europe, Japan, Asia 

Pacific (ex Japan) and Global (ex US) 

Idiosyncratic volatility is calculated as the mean squared error of the residuals from daily market model regressions for each 

stock month.  The market model includes four lags of the market return.  We require a minimum of 15 valid returns per 

month to calculate idiosyncratic volatility.  Average idiosyncratic volatility for each region is the simple average of the value-

weighted idiosyncratic volatility in large and small cap stocks.  Large and small stocks are based on the 90th percentile of 

market capitalization in each region-month.  IRPS is the covariance between idiosyncratic volatility and one over the square 

root of average idiosyncratic volatility over the prior 60 months, requiring at least 40 valid observations.  Within each size 

portfolio, stocks are sorted into terciles based on IRPS.  The table shows intercept and slopes from three-factor models for 

these portfolio returns.  North America includes Canada and the US.  Europe includes Austria, Belgium, Denmark, Finland, 

France, Germany, Italy, the Netherlands, Norway, Portugal, Spain, Switzerland, and the United Kingdom.  Asia Pacific 

includes Australia, Hong Kong, New Zealand and Singapore.  Global ex US includes all countries in these regions but not 

the US.  The sample period is 1990-2014.  T-statistics are in parentheses. 

 Full Sample Period  Low Average Idiosyncratic 

Volatility Periods 

 High Average Idiosyncratic 

Volatility Periods 

IRPS 

Tercile 

1 2 3 3-1  1 2 3 3-1  1 2 3 3-1 

Panel A: North America 

Large -0.15 -0.01 0.14 0.29  -0.34 0.01 0.22 0.55  0.19 0.07 -0.12 -0.31 

 (-1.45) (-0.11) (1.95) (1.81)  (-3.53) (0.23) (3.32) (3.70)  (0.74) (0.48) (-0.70) (-0.79) 

Small -0.10 -0.03 0.17 0.27  -0.37 -0.08 0.23 0.60  0.53 0.26 0.16 -0.37 

 (-0.62) (-0.50) (2.59) (1.35)  (-2.93) (-1.51) (4.07) (3.72)  (1.28) (1.76) (1.05) (-0.75) 

Panel B: Europe 

Large -0.18 0.09 -0.02 0.16  -0.29 0.18 0.16 0.45  0.32 -0.01 -0.29 -0.61 

 (-1.25) (1.17) (-0.20) (0.86)  (-1.92) (2.40) (1.79) (2.34)  (1.03) (-0.03) (-1.40) (-1.48) 

Small -0.05 0.16 0.13 0.18  -0.14 0.17 0.09 0.23  0.24 0.15 0.17 -0.07 

 (-0.61) (2.91) (1.60) (1.26)  (-1.74) (3.80) (1.03) (1.63)  (1.18) (1.11) (0.94) (-0.21) 

Panel C: Japan 

Large -0.06 -0.04 -0.04 0.02  -0.19 0.02 -0.01 0.18  0.03 -0.09 -0.08 -0.11 

 (-0.47) (-0.57) (-0.54) (0.09)  (-1.69) (0.29) (-0.13) (1.06)  (0.11) (-0.67) (-0.49) (0.28) 

Small -0.12 0.11 0.08 0.20  -0.13 0.05 0.12 0.25  -0.15 0.22 0.13 0.28 

 (-0.93) (1.67) (1.14) (1.18)  (-1.33) (0.91) (1.87) (1.87)  (-0.52) (1.52) (0.97) (0.76) 

Panel D: Asia Pacific (ex Japan) 

Large -0.07 0.14 0.22 0.29  0.04 0.06 0.50 0.46  -0.18 0.20 -0.23 -0.05 

 (-0.60) (1.34) (1.62) (1.45)  (-0.34) (0.62) (3.70) (2.26)  (0.75) (0.91) (-0.82) (-0.12) 

Small -0.35 0.23 0.21 0.55  -0.75 0.09 0.43 1.18  0.30 0.68 -0.06 -0.37 

 (-1.59) (2.51) (1.96) (2.08)  (-3.88) (1.06) (4.70) (5.27)  (0.63) (3.78) (-0.26) (-0.61) 

Panel E: Global (ex US) 

Large -0.28 -0.04 0.21 0.48  -0.37 -0.04 0.55 0.92  -0.24 0.04 -0.02 0.23 

 (-2.32) (-0.58) (1.89) (2.55)  (-2.98) (-0.50) (4.49) (4.40)  (-0.97) (0.27) (-0.08) (0.64) 

Small -0.06 0.08 0.20 0.26  -0.22 0.13 0.34 0.56  0.24 0.10 0.15 -0.09 

 (-0.43) (1.42) (2.15) (1.28)  (-2.01) (2.31) (3.21) (2.92)  (0.74) (0.88) (0.81) (-0.20) 
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Table 11 

 

Intercepts from Three- and Five-Factor Model Regressions for Size and IRPS Portfolios for Global (ex US) 

All stocks in the following developed markets are pooled: Australia, Austria, Belgium, Canada, Denmark, Finland, France, 

Germany, Hong Kong, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Switzerland, and the 

United Kingdom.  Idiosyncratic volatility is calculated as the mean squared error of the residuals from daily market model 

regressions for each stock month.  Average idiosyncratic volatility is the simple average of the value-weighted idiosyncratic 

volatility in large and small cap stocks (based on the 90th percentile of market capitalization).  IRPS is the covariance 

between idiosyncratic volatility and one over the square root of average idiosyncratic volatility over the prior 60 months, 

requiring at least 40 valid observations.  Stocks are sorted into two size groups, then into terciles by idiosyncratic volatility, 

and finally into terciles by IRPS.  The sample period is 1990-2014.  T-statistics are in parentheses. 

 Full Sample Period  Low Average Idiosyncratic 

Volatility Periods 

 High Average Idiosyncratic 

Volatility Periods 

IRPS 

Tercile 

1 2 3 3-1  1 2 3 3-1  1 2 3 3-1 

Panel A: Intercepts from three-factor models for large stocks 

Low IVOL -0.30 0.00 0.37 0.67  -0.19 0.18 0.69 0.89  -0.43 -0.14 -0.03 0.40 

 (-2.53) (0.01) (3.03) (3.89)  (-1.49) (1.42) (4.98) (4.27)  (-1.85) (-0.82) (-0.13) (1.27) 

Med IVOL -0.28 -0.03 0.19 0.46  -0.46 -0.15 0.25 0.71  -0.04 0.13 0.06 0.10 

 (-2.14) (-0.34) (1.97) (2.50)  (-3.13) (-1.35) (2.31) (3.36)  (-0.15) (0.73) (0.35) (0.28) 

High IVOL -0.45 -0.07 0.25 0.70  -0.65 -0.22 0.14 0.79  -0.12 0.11 0.40 0.52 

 (-2.07) (-0.54) (1.61) (2.77)  (-3.19) (-1.43) (0.70) (2.91)  (-0.24) (0.40) (1.54) (0.97) 

Panel B: Intercepts from three-factor models for small stocks 

Low IVOL -0.09 0.14 0.18 0.27  0.01 0.29 0.37 0.35  -0.21 -0.01 -0.03 0.18 

 (-1.06) (1.91) (1.93) (2.10)  (0.14) (3.33) (3.43) (2.25)  (-1.30) (-0.07) (-0.18) (0.75) 

Med IVOL -0.27 -0.09 0.06 0.33  -0.45 -0.17 -0.01 0.44  0.22 0.10 0.30 0.08 

 (-1.78) (-0.81) (0.61) (1.74)  (-2.90) (-1.60) (-0.06) (2.23)  (0.70) (0.38) (1.38) (0.20) 

High IVOL -0.59 -0.22 -0.20 0.39  -0.81 -0.48 -0.36 0.45  -0.05 0.45 0.36 0.41 

 (-2.54) (-1.15) (-1.26) (1.50)  (-3.79) (-2.90) (-1.90) (1.67)  (-0.10) (0.98) (1.21) (0.74) 

Panel C: Intercepts from five-factor models for large stocks 

Low IVOL -0.38 -0.10 0.30 0.68  -0.22 0.14 0.72 0.94  -0.63 -0.19 -0.03 0.60 

 (-2.99) (-0.90) (2.06) (3.7)  (-1.49) (1.31) (4.64) (4.49)  (-2.63) (-0.86) (-0.10) (1.84) 

Med IVOL -0.20 -0.06 0.12 0.32  -0.38 -0.11 0.29 0.67  -0.02 0.05 0.06 0.09 

 (-1.44) (-0.64) (1.06) (2.61)  (-2.43) (-1.00) (2.42) (3.07)  (-0.08) (0.26) (0.28) (0.23) 

High IVOL -0.26 0.05 0.37 0.63  -0.36 -0.06 0.41 0.76  -0.10 0.14 0.46 0.57 

 (-1.13) (0.34) (2.10) (2.37)  (-1.78) (-0.39) (1.92) (2.75)  (-0.19) (0.49) (1.46) (0.99) 

Panel D: Intercepts from five-factor models for small stocks 

Low IVOL -0.06 0.16 0.25 0.30  0.06 0.37 0.52 0.46  -0.30 -0.10 -0.08 0.22 

 (-0.60) (1.75) (2.15) (2.25)  (0.59) (3.42) (3.97) (2.97)  (-1.72) (-0.55) (-0.36) (0.87) 

Med IVOL -0.09 0.01 0.19 0.28  -0.23 0.02 0.24 0.47  0.12 0.08 0.34 0.22 

 (-0.72) (0.17) (2.03) (1.44)  (-1.90) (0.21) (2.41) (2.40)  (0.42) (0.49) (1.79) (0.52) 

High IVOL -0.12 0.15 0.13 0.24  -0.40 -0.12 0.08 0.47  0.18 0.75 0.43 0.24 

 (-0.48) (0.89) (0.81) (0.88)  (-1.91) (-0.88) (0.39) (1.67)  (0.32) (1.92) (1.68) (0.46) 
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Figure 1: The x-axis shows average idiosyncratic volatility.  The y-axis shows the premium associated with 
idiosyncratic volatility. 
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Figure 2.  We compute the value-weighted average idiosyncratic volatility for small and large 
capitalization stocks, and then calculate a simple average of the two to obtain average idiosyncratic 
volatility for each month.  We use NYSE median breaks to separate small and large cap stocks.  Each 
month is classified as a low or high average idiosyncratic risk month if the month’s average idiosyncratic 
volatility is above or below the trailing 10 year average. 
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Figure 3.  IRPS is calculated as the covariance between stock-level idiosyncratic volatility and 
one over the square root of average idiosyncratic volatility over the prior 60 months.  All stocks 
in a month are sorted into two size portfolios (small and large) based on NYSE median market 
capitalization cutoffs.  Within each size portfolio, stocks are sorted into quintiles based on IRPS.  
The figure shows intercepts from 3- and 5-factor models for the high-minus-low IPRS portfolios 
for month n after portfolio formation (i.e. the term structure of returns).  The full sample period 
is July 1973 to December 2014.  The sample of low average idiosyncratic volatility periods are 
defined as months in which the average idiosyncratic volatility is below or above the 10 year 
trailing average. 

 




