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We study a dynamic savings game in continuous time, where decision makers rotate
in and out of power. Agents value consumption more highly while in power. Our
setup applies to individuals under a behavioral interpretation, or to governments un-
der a political-economy interpretation. We prove existence of Markov equilibria by
construction and provide tight characterizations. Our analysis isolates the importance
of a local disagreement index β(c) which we define as the ratio of marginal utilities
for those in and out of power. If disagreement is constant our setup specializes to
hyperbolic discounting and we provide novel results even in this context, but we
also allow disagreement to vary with spending. When disagreements are sufficiently
high we show that an equilibrium with dissavings exists; conversely, when disagree-
ment are sufficiently low, an equilibrium with savings emerges. When disagreements
vary sufficiently with spending rich dynamics are possible. In particular, an equilib-
rium with poverty traps—dissaving at low levels of wealth and savings at high levels
of wealth—exists when disagreements decrease with spending. In contrast, when
disagreements increase with spending, wealth may convergence to a unique interior
steady state. We also investigate conditions for continuous, discontinuous and multi-
ple equilibria. Finally, we show how the model can be solved in reverse, inverting to
find primitives that support an equilibrium.

1 Introduction

Temptations or time-inconsistency problems help explain a number of phenomena and
have received ample attention from the economics literature. However, the extent of
these problems likely varies quite a bit according to the situation. In particular, there
is no reason to expect the self-control problems to save faced by the rich to be the same

∗First version: April 2008. For useful comments and discussions we thank Fernando Alvarez, Manuel
Amador, Jinhui Bai, Abhijit Banerjee, Marco Battaglini, Satyajit Chatterjee, Hugo Hopenhayn, Roger La-
gunoff, Benjamin Moll, Patrick Rabier, Debraj Ray, Eric Young as well as seminar and conference partici-
pants. This project was inspired by conversations with Abhijit Banerjee on self-control problems with many
goods. Finally, we thank Nathan Zorzi for valuable research assistance.

1



as those faced by the poor. Similarly, it has been observed that for political economy rea-
sons, governments may behave in a present-biased manner, yet these problems may be
quite different for advanced countries than for developing countries. The general point
is that strength of the time-inconsistency problem may depend on the level of wealth or
spending. This possibility has received relatively little attention from the literature.

This paper studies an infinite-horizon continuous-time savings game that accommo-
dates flexible forms of time inconsistency. A sequence of decision makers rotate in and
out of power.1 An agent currently in power controls consumption and savings, choos-
ing how much to spend subject to a borrowing constraint and a constant flow of income.
Agents in power retain power for a stochastic interval of time and lose it at a Poisson
rate to a successor. Once removed from power, an agent continues to care about the fu-
ture spending path chosen by other agents. However, spending is enjoyed more while in
power. This disagreement, captured by differences in the utility functions for those in and
out of power, leads to a time-inconsistency problem in savings choices. As a result, one
must approach the problem as a dynamic game.2 We focus on Markov equilibria of this
dynamic game, a widely used refinement in this literature to focus attention on situations
without any commitment, including implicit forms obtained by trigger strategies.

Our model admits both a behavioral and political-economy interpretation. For the
behavioral one, following Phelps and Pollak (1968) and Laibson (1997), the model may
describe the problem of a single consumer playing an intertemporal game against future
’selves’. The disagreement on the utility function that we allow generates a time incon-
sistency problem that is similar, but strictly generalizes, hyperbolic discounting. For the
political economy interpretation, the model describes a situation where the ruling party
controls the budget and obtains private benefits from spending while in power, due to
pork spending or outright transfers to ruling party members. This relates our work to po-
litical economy models of government debt, such as Alesina and Tabellini (1990), Amador
(2002), Battaglini and Coate (2008), Azzimonti (2011) and others.

With few exceptions, the existing time-inconsistency literature has focused on saving
games that are effectively variants of the hyperbolic discounting setup. In our model
this amounts to the assumption of a uniform disagreement, with utility out of power
proportional to utility in power. Our analysis also applies to this special case and delivers
novel results of interest. At the same time one of our main goals is to explore forms of

1The model also admits an reinterpretation with only two agents that rotate in and out of power (see
Section 3.1).

2When preferences are the same in and out of power, the rotation of agents is of no consequence and
the equilibrium coincides with the optimum for a dictator that always remains power—an application of
the Principle of Optimality from dynamic programming.
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disagreements that are not uniform. To this end, we consider general differences in the
utility functions for those in and out of power. This gives rise to a time-inconsistency
problem that is not uniform and, as a result, the incentives to save vary with wealth. We
are especially interested in how the long-run dynamics of wealth play out depending on
the form disagreements take.

Why would disagreements and temptations vary with spending? One straightfor-
ward answer is that there is no real reason to expect them to be uniform and that the
possibility that they are not must be contemplated. For example, in the behavioral con-
text, it seem plausible to assume that present-biased impulses and behaviors decrease
with spending. A more sophisticated answer is offered by Banerjee and Mullainathan
(2010), who provide a foundation for disagreements based on the notion that spending
takes place over many goods, and disagreements focus on some goods.3 The impor-
tance of disagreements then naturally vary with the level of spending, except in special
cases. For example, in a behavioral setting agents may feel great pleasure from current
consumption of tempting goods such as unhealthy foods, alcohol or drugs, but may not
value future consumption of these goods by future ‘selves’. If the marginal propensity
to consume such goods falls with spending, then their relative importance diminishes
at higher spending levels, giving rise to a situation with decreasing disagreements (we
review this argument formally in Section 2). A similar argument applies in a political
economy context as long as the marginal propensity to spend on pork is not constant.
Indeed, the voting model in Battaglini and Coate (2008) provides a motive for increasing
disagreements. One of the goals of this paper is to provide a framework that can encom-
pass a wide class of assumptions on the form of disagreements, nesting the increasing
and decreasing cases in particular.

Our first contribution is to provide general results on the existence and characteri-
zation of Markov equilibria. As is well known, dynamic saving games may be quite ill
behaved. For example, in discrete-time settings Krusell and Smith (2003) proved that
the hyperbolic discounting model has a continuum of local Markov equilibria with dis-
continuous policy functions; more recently Chatterjee and Eyigungor (2015) show that in
discrete time all Markov equilibrium must be discontinuous (see also Morris and Postle-
waite, 1997 and Morris, 2002). Properties such as these render these models relatively

3In a behavioral context, Banerjee and Mullainathan (2010) focus on two- or three-period model with
many goods and additively separable utilities, with disagreements over which goods should be valued. In a
political economy context, Alesina and Tabellini (1990) consider an infinite-horizon model with a relatively
general form of disagreement in the composition of spending across different goods (see their equations 1).
However, for their analysis they specialize to corner cases and a more extreme and uniform disagreement
(see their equations 4 and 5).
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intractable and contribute towards making general existence and characterization results
elusive. The literature has responded to these challenges in a number of ways. Harris
and Laibson (2013) introduce a continuous-time model, focusing on a limit with ’instant
gratification’ and small noise in asset returns to apply the theory of viscosity solutions.
Chatterjee and Eyigungor (2015) work in a discrete-time setting but introduce lotteries to
smooth out the solution.

Our model is cast in continuous time and this turns out to be crucial to our approach,
techniques and results. Our continuous-time formulation builds on Harris and Laibson
(2013), but extends it to allow for more general disagreements. In addition, since we do
not focus on the ‘instant gratification’ limit our solution strategy is different.4 Our ap-
proach works with the differential equations characterizing a Markov equilibrium—the
Hamilton-Jacobi-Bellman equation for the agent in power and the law of motion for wel-
fare for those out of power. Since no general existence results are immediately available
for such equations, our method is to attack these equations head on, to construct and char-
acterize equilibria. Intuitively, since wealth evolves continuously over time, we can build
up our characterization of behavior locally towards a global solution. Our direct attack
on the differential system, as mentioned above, differs from prior approaches and allows
us to prove the existence of relatively well-behaved Markov equilibria without lotteries,
away from the instantaneous-gratification limit, and with relatively general forms of dis-
agreement. Since our proofs proceed by construction, we are also able to characterize
equilibria relatively sharply and provide a straightforward procedure for computation.

Our second contribution is to isolate the forces determining saving and dissaving and
characterize the resulting dynamics for wealth. To do so, we introduce a local disagree-
ment index β(c), defined as the ratio of marginal utilities for agents in and out of power.
The shape of this function summarizes how disagreements depend on spending. In the
special case where β(c) is constant we recover hyperbolic discounting.

Our first set of results involve cases where the disagreement index does not vary too
much and is either sufficiently high or low. Under these conditions, we show that an equi-
librium exists that features either saving or dissaving at all wealth levels. Specifically, we
define a threshold β̂ which depends on the interest rate and other parameters and show
that when the disagreement index β lies above β̂ there is an equilibrium with positive

4Harris and Laibson (2013) show that under some conditions on the hyperbolic discounting parameter
and the utility function there is a connection between Markov equilibria in the instantaneous gratification
limit and the non-strategic choice problem for a time-consistent consumer with a modified utility function.
When available, this connection is very useful and tractable. In the Online Appendix we extend their
approach to allow for non-uniform disagreements. Unfortunately, this approach is not available away from
the instant gratification limit and does require a few additional assumptions on disagreements and utilities
(one of our goals is to place as few restrictions on disagreements as possible).
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savings; when instead β lies below β̂ an equilibrium with dissaving exists. A special case
of interest is the hyperbolic discounting model where β is constant, but our results apply
more generally.

Our second set of results consider cases where the disagreement index β does not lie
on one side of β̂, but instead crosses this threshold. We find that rich dynamics emerge,
with saving and dissaving coexisting at different wealth levels. We focus on two polar
opposite cases, when β is decreasing and when β is increasing.

In particular, if disagreements fall with spending then poverty traps—dissavings at
low wealth levels, savings at high wealth levels—can arise. Intuitively, at low wealth
levels the time-inconsistency problem is relatively severe because spending takes place
in the range where disagreements are high. The incentive to consume is high because
agents in power do not want to leave resources that may be spent when they are out of
power. There is a feedback loop: the incentive to dissave is reinforced by the anticipation
that successors overspend from the point of view of those in power. Indeed, under our
assumptions poverty traps cannot arise without this feedback loop.5 At high wealth lev-
els the time-inconsistency problem is moderated by the fact that spending takes place in
regions with lower disagreement. Positive savings may then emerge if the interest rate is
high enough. Again, a feedback loop reinforces these incentives: the incentive to save is
enhances if successors are not expected to overspend much.

Poverty traps may also emerge with uniform disagreements if one considers non-
Markov subgame-perfect equilibria, as shown recently by Bernheim et al. (2015) in a hy-
perbolic discounting discrete-time setup. Although we obtain poverty traps the results
are different, the one resting on the use of trigger strategies, the other on non-uniform
disagreements. Interestingly, some comparative statics are also different. Higher labor
income makes getting caught in a poverty trap more likely in their setup, but less likely
in ours. Looser borrowing limits make poverty traps less likely in their setup, but more
likely in ours. These differences highlight underlying differences in the mechanisms at
work.

Turning to the opposite case, if disagreements rise with spending then the time-inconsistency
problem worsens at higher wealth levels. As a result, we show that an equilibrium ex-
ists where the wealthy dissave, while the poor save, at least if the interest rate is high
enough. In our equilibrium, from any initial wealth level, wealth converges to an interior
steady state. This kind of stability is related to the mean-reverting forces in Battaglini and
Coate (2008). Indeed, one might view their voting model as providing a foundation for
disagreements to rise with spending.

5In particular, they do not arise in a two-period adaptation of our model.
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In addition to solving for an equilibrium given primitives using our differential ap-
proach, we show how our model can be fruitfully studied in reverse: inverting to find
primitives that support any given postulated equilibrium. In particular, given a baseline
utility for those in power and a discount rate, we construct a disagreement β(c) func-
tion for any given smooth consumption function. This “inverse” perspective is not only
technically tractable, but it may also be the more appropriate point of view in some cir-
cumstances, especially for the economist that observes behavior (the policy function), but
has no direct measurement of disagreements.

Finally, we investigate the potential for continuous, discontinuous and multiple equi-
libria. We first provide sufficient conditions for a continuous equilibrium to exist. We then
provide conditions that guarantee the existence of a discontinuous equilibrium. Since we
find that both conditions are compatible, these results imply that multiple global equilib-
ria arise in some cases. As mentioned earlier, Krusell and Smith (2003) already showed
that local Markov equilibria are indeterminate in a discrete-time hyperbolic model (we
also provide an analogous result for our setup). Importantly, this indeterminacy result is
local in nature, applying only when constrained to an interval of wealth. In contrast, our
multiplicity result constructs equilibria globally, over all wealth levels.

An Online Appendix collects a few additional results and extensions. We extend the
equivalence result for the instantaneous gratification limit obtained by Harris and Laib-
son (2013) to our setting with nonuniform disagreements. We also introduce uncertainty
in asset returns and income and develop some illustrative numerical examples. Lastly,
we show how the model can be extended to replace the constant interest rate with a de-
creasing returns technology for saving.

The next section presents the model. Section 3 defines Markov equilibria and discusses
our solution approach. Sections 4–6 contain our main results.

2 A Dynamic Savings Game

We first introduce the model environment, then offer a few interpretations and special
cases.

2.1 Environment

Time is continuous with an infinite horizon, denoted by t ∈ [0, ∞). We next describe the
preferences and the constraints agents face.

6
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Preferences. At any moment t, the flow utility obtained from consumption by an agent
in power is

U1(ct),

while that for an agent out of power is

U0(ct).

We assume the utility functions U1 : R+ → R and U0 : R+ → R are concave, increasing,
continuous and differentiable. In addition, we assume U1 satisfies the INADA conditions
U′1 (0) = ∞ and limc→∞ U′1(c) = 0.6

Agents in power are removed at a constant Poisson arrival rate λ ≥ 0. Thus, tenure is
stochastic with average length λ−1. To simplify we assume power can never be regained;
however, we later show that this is without loss of generality in the sense that if power
can be regained at some Poisson rate the model can be transformed to a setting where
power cannot be regained. Our Poisson alternation of power helps smooth out the time
inconsistency problem and is borrowed from Harris and Laibson (2013), extended to al-
low for more general differences in preferences. We will also not focus on the ‘instant
gratification’ limit λ → 0, so our approach is different; we do derive results for this limit
in the Online Appendix.

The continuation lifetime utility at time t for an agent in power is

Vt ≡ Et

[ˆ τ

0
e−ρsU1(ct+s)ds + e−ρτWt+τ

]
(1)

where ρ > 0 is a discount rate and τ is the random time at which the agent currently in
power is removed, distributed according to the c.d.f. 1− e−λτ. Here Wt represents the
continuation lifetime utility once out of power,

Wt ≡
ˆ ∞

0
e−ρsU0(ct+s)ds. (2)

The expectation operator in these expressions averages over the only underlying shock in
the economy, the alternation of power. In principle, consumption ct could also be stochas-
tic. However, given the symmetry of preferences and our focus on Markov equilibria, the
path for consumption will be deterministic.

6Concavity and differentiability of U0 are not crucial for the analysis but serve to simplify the exposition
for most of the results. Indeed, an earlier version of the paper focused on a case that had a convex kink in
U0(c). Theorem 6 below actually assumes a concave kink in U0.
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Disagreement between those in and out of power captured by the difference in the
utility functions U0 and U1, is crucial to our model. Crucial to our analysis is the intro-
duction of a local disagreement index, defined as the ratio of marginal utilities

β(c) ≡ U′0(c)
U′1(c)

.

The function β(c) summarizes the difference between the utility functions U1 and U0. In
particular, when β(c) = 1 for all c the utility functions coincide (up to a constant). As
we shall see our local disagreement index is crucial in determining equilibrium behavior.
Throughout the paper we assume that the marginal utility from consumption is higher
while in power.

Assumption 1 (Present Bias). The utility functions U1 and U0 are such that for all c > 0

β(c) ∈ [β, 1]

for some β > 0.

When β(c) < 1, agents prefer to consume relatively more while in power, this leads
to a present-bias time-inconsistency problem. Those out of power would like those in
power to exercise restraint, lowering consumption and increasing savings. Those in
power would like to commit their successors somehow, but have no way to do so.

We allow for general β(c) to capture various possible patterns of disagreement. In
particular, in some cases it may be natural to assume that disagreements are stronger at
lower consumption levels, so that β(c) is increasing. Another possibility is for disagree-
ments to be strongest at higher spending levels, so that β(c) is decreasing. Finally, the case
with constant disagreements, is an important benchmark in the literature on hyperbolic
discounting.

Budget Constraints and Borrowing Limits. While in power, the agent chooses ct ≥ 0
and wealth evolves according to the budget constraint

.
at = rat + y− ct, (3)

where at denotes total asset wealth. The interest rate r > 0 and income y ≥ 0 are exoge-
nous and constant.
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The agent is also subject to a borrowing constraint

a ≤ at, (4)

The so-called natural borrowing limit assumes that a = − y
r ≤ 0, allowing the agent to

borrow against all future income.7 We assume the borrowing constraint is tighter so that
a > − y

r . Note that whenever at = a we require ct ≤ y + ra to ensure that ȧ ≥ 0.

Cutoff Disagreement β̂. Intuitively, when r < ρ even a time consistent agent (i.e. λ = 0
or β(c) = 1) would dissave and the time inconsistency problem (i.e. λ > 0 and β(c) < 1)
only reinforces this conclusion. Our formal results confirm this intuition. On the other
hand, when r > ρ a time consistent agent has an incentive to save, but this incentive may
be counteracted by the time inconsistency problem. It is then unclear whether to expect
savings or dissavings.

What turns out to be crucial is the value of our local disagreement index β(c) relative
to a cutoff defined by

β̂(r, ρ, λ) ≡ ρ

r

(
1− r− ρ

λ

)
. (5)

Note that β̂(r, ρ, λ) < 1 if and only if r > ρ. As we will show, when β(c) < β̂(r, ρ, λ)

temptations are strong enough to provide a force for dissaving; this is necessarily the case
when r < ρ, given Assumption 1. In contrast, we will find that when β(c) > β̂(r, ρ, λ)

temptations are sufficiently weak to allow for positive savings; this requires r > ρ, given
Assumption 1. Note that this is consistent with the time consistent criterion for savings
because when λ = 0 the sign of β(c)− β̂(r, ρ, λ) is dominated by the sign of r− ρ deter-
mining whether β̂(r, ρ, 0) is −∞ or ∞.

Normalization of Income and Asset Limit. Without loss of generality to the analysis
that follows we normalize income to zero, y = 0, and work with a positive asset limit
a > 0. This is simply a normalization since, by a change of variables, one can transform a
problem with positive income y > 0 to one without. To see this, define ãt = at +

y
r . Then

.
ãt = rãt − ct and ã ≥ ã ≡ a + y

r . As a result of this transformation, the borrowing limit
becomes a positive lower bound on assets, ã > 0.

7The borrowing constraint can also be interpreted as a commitment device. In the case of consumers
this may be forced savings and social security or illiquid assets. In the political-economy context, this could
capture wealth funds, which limit discretionary spending from natural resources.
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2.2 Interpretation and Special Cases

In this subsection we first discuss the important case where disagreement is uniform, so
that β(c) is constant. We then discuss a motivation for considering nonuniform patterns
of disagreement. Finally, we provide a Generalized Euler equation that previews the role
of our local index of disagreement β(c) in affecting savings decisions.

Hyperbolic Discounting and Instantaneous Gratification. A special and interesting
case occurs when

β(c) = β̄ (6)

for some β̄ < 1, so that U0(c) = β̄U1(c). This corresponds to the continuous-time hyper-
bolic discounting model introduced by Harris and Laibson (2013), which in turn builds on
discrete-time treatments in Harris and Laibson (2001), Laibson (1997) and Phelps and Pol-
lak (1968). Harris and Laibson focus on the limit as λ → ∞, the so-called ’Instantaneous
Gratification’ limit. They show that tractability is gained from the fact that Vt = Wt in
the limit, so that a single continuation value function suffices, and they relate the Markov
equilibrium to an optimization problem with modified objectives.

Many Goods, Disagreement and Engel Curves. One interesting motivation for dis-
agreements and their variability is to interpret c as overall spending on various goods.
Differences in U0 and U1 then arise from disagreement on how to spend across goods.
This notion is popular in the political economy literature on government spending and
debt, as in Persson and Svensson (1989), Alesina and Tabellini (1990), Amador (2002) and
Azzimonti (2011), although this literature often assumes simple specifications that imply
uniform disagreements. Banerjee and Mullainathan (2010) work in a behavioral setting
and consider richer disagreements across goods, examining the relationship between the
shape of Engel curves and disagreements.

Here we develop these ideas within our formulation, linking U1 and U0 to the dis-
agreement over different goods, the shape of Engel curves and our disagreement index
β(c). Suppose there are two goods x and z. Normalize both prices to unity. Assume
additively separable utilities between x and z, given by h(x) and g(z), respectively. Now
suppose x is equally valued by those in and out of power, while z is not valued at all by
agents out of power (less extreme assumptions work similarly). Thus, utility for those in
power equals h(x) + g(z), while utility for those out of power equals h(x).

At any moment, agents in power solve a static subproblem: splitting spending be-
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tween x and z, given total spending c. This defines indirect utility functions

U1 (c) = max
x+z=c

{h(x) + g(z)} (7a)

U0 (c) = h(x̂(c)), (7b)

where (x̂(c), ẑ(c)) denotes the solution to the maximization. The next result shows that
we can generate any desired U1 and U0 in this way, by appropriate choices of h and g.

Proposition 1. Given U1 and U0 satisfying Assumption 1, there exists strictly concave functions
h and g so that (7) holds.

Proof. Appendix A.1.

Note that U′1(c) = h′(x̂(c)) and U′0(c) = h′(x̂(c))x̂′(c), implying

β(c) = x̂′(c) = 1− ẑ′(c) ≤ 1.

A high marginal propensity to spend on z lowers the marginal utility of spending for
those out of power, since they do not value z. Thus, the shape of the Engel curve dic-
tates the shape of the ratio β(c). For example, when ẑ(c) is concave, so that the marginal
propensity to spend on z is decreasing, the ratio β(c) is increasing. Intuitively, time incon-
sistency problems are then greater for relatively low levels of spending, where marginal
increases in spending are allocated to the good that only those in power value.8

Generalized Euler Equation. To illustrate the central role played by the disagreement
index β(c) we show in the Online Appendix that

d
dt
(
U′1(ct)

)
=(ρ− r)U′1(ct)

+ λ

ˆ T∗

0
e−
´ s

0 (ρ+λ−r+ĉ′(at+s1 ))ds1U′1(ct+s) (1− β(ct+s)) ĉ′(at+s)ds,

+ λe−
´ T∗

0 (ρ+λ−r+ĉ′(at+s1 ))ds1U′1(raT∗) (1− β(raT∗)) ,

8Under hyperbolic discounting, U0(c) = β̄U1(c), the functions h, g in Proposition 1 are

h(x) = β̄U1

(
x
β̄

)
and g(z) = (1− β̄)U1

(
z

1− β̄

)
,

which implies that x̂(c) = β̄c and ẑ(c) = (1− β̄)c.
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where ĉ(a) is the consumption decision of the decision maker as a function of wealth in
a Markov equilibrium, and T∗ the time wealth reaches a steady state, i.e. ĉ(aT∗) = raT∗ ;
if T∗ = ∞ the last term is zero. This is a continuous-time version of what Harris and
Laibson (2001) call a Generalized Euler equation. When λ = 0 or β(c) = 1 it reduces to
the standard Euler equation, stating that the marginal utility U′1(ct) grows at rate ρ− r.
However, when λ > 0, β(c) < 1 and ĉ′(a) > 0 the second and third terms on the right
hand side are nonzero and positive. Intuitively, if an agent currently in power agent saves
today the additional resources may be used consumed once this agent is out of power. The
additional consumption is positive as long as ĉ′(a) > 0 but it is valued less since β(c) < 1.
These positive terms contributes to a form of impatience pushing for a declining path for
consumption and wealth, as does a higher value of ρ.

2.3 Full Commitment

An important benchmark is provided by the following problem with commitment, where
we imagine an agent currently in power that can choose a deterministic path for con-
sumption {ct} that is applied whether or not this agent remains in power.9 Lifetime
utility with such a commitment is given by

Vsp(a) ≡ max
{ct}

ˆ ∞

0
e−ρt

(
e−λtU1(ct) + (1− e−λt)U0(ct)

)
dt (8)

where the maximization is subject to a0 = a, ȧt = rat − ct and at ≥ a. We assume that Vsp

is finite.10 Here e−λt represents the probability that the agent is still in power after time
t.11 Clearly, any equilibrium must be worse for the agent in power than the commitment
value, so that V(a) ≤ Vsp(a).

9A better commitment technology would allow consumption to be contingent on whether the agent is
currently in power or not. However, deterministic consumption is comparable to outcomes in our Markov
equilibria.

10A sufficient condition that guarantees this property is:

lim sup
t→∞

e−ρtU1(e−rt) ≤ 0,

a standard restriction for deterministic optimization problems. This is immediately satisfied if U1 is
bounded from above. If U1 is a power function, i.e. U1(c) = c1−σ

1−σ , and σ < 1 this is equivalent to
r(1− σ) < ρ.

11We derive (8) by integrating out, from the expected value

Vsp =

ˆ
τ

ˆ ∞

0
e−ρt

(
1{t≤τ}U1 (ct) + 1{t>τ}U0(ct)

)
dtdF(τ),

the Poisson uncertainty in the stopping time τ at which the current decision maker is out of power. F(τ) =
1− e−λτ is the CDF for τ.
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When r < ρ then the commitment solution features dissaving. When r > ρ the com-
mitment solution eventually features positive savings.

Proposition 2. Suppose Assumption 1. When r < ρ the commitment solution features dissaving
with ȧ < 0 whenever at > a and at → a as t → ∞. When r > ρ the commitment solution
eventually features positive savings, with wealth and consumption increasing without bound:
there exists T > 0 such that ȧt, ċt > 0 for all t > T and at, ct → ∞ as t→ ∞.

Proof. Appendix A.3.

The first part of this result is immediate and follows from the fact that r < ρ provides
no incentives to save even if λ = 0; the fact that λ > 0 and β(c) < 1 only reinforces
the incentive to dissave. The result for r > ρ is only slightly more subtle and is driven
by the fact that the probability of remaining in power eventually converges to zero. As a
result, the commitment problem approaches a standard optimization problem with utility
function U0. When r > ρ, the solution requires consumption to increase without bound.
As is well understood, without commitment this is no longer the case and dissaving may
emerge even when r > ρ.

3 Markov Equilibria

We focus on Markov equilibria with wealth at as the state variable, consisting of a policy
function ĉ (a) for consumption that maximizes the right hand side of (1), taking as given
the value function W(a) defined by (2).

3.1 Differential Equations

As is well understood, the value and policy functions associated with Markov equilibria
must satisfy differential equations which in our case are given by the following:

ρV (a) = max
c≥0
{U1 (c) + V′ (a) (ra− c) + λ (W (a)−V (a))}, (9a)

ρW (a) = U0 (ĉ (a)) + W ′ (a) (ra− ĉ (a)) , (9b)

where ĉ (a) denotes the solution to the maximization in (9a), which is subject additionally
to c ≤ ra whenever a = a. Equation (9a) is a recursive representation of the problem
of maximizing (1) taking the value function W(a) as given. The last term takes into ac-
count the probability of transitioning out of power with probability λ, at which point the
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continuation value jumps from V(a) to W(a). Equation (9b) is a recursive representation
of condition (2), which defines W(a) given the policy function ĉ(a). Finally, the implied
dynamics for wealth is

.
at = rat − ĉ (at) . (10)

A Markov equilibrium is a pair of value functions (V(a), W(a)) and a consumption
function ĉ (a) satisfying (9) and the following properties: (a) V is continuous and piece-
wise differentiable; (b) W is piecewise continuous and piecewise differentiable; (c) W is
continuous and differentiable at any point where ĉ (a) 6= ra; (d) W is continuous from
the left at any point where ra < ĉ (a) in a neighborhood to the left of a; (e) conversely,
W is continuous from the right at any point where ra > ĉ (a) in a neighborhood to the
right of a; and (f) for any a ≥ a the ODE ȧt = rat − ĉ(at) with initial condition a0 ad-
mits a solution {at}∞

t=0 with at ≥ a for all t ≥ 0 satisfying limt→∞ e−ρtV(at) = 0 and
limt→∞ e−ρtW(at) = 0.

The conditions for a Markov equilibrium are relatively straightforward. The only sub-
tle issue worth discussing here are the smoothness requirements for V and W. The func-
tion V must be continuous, as stated in condition (a), because it represents the value from
a continuous-time optimal control problem with a controllable state with continuous pay-
offs in the control. That is, discontinuities in W cannot induce discontinuities in V as long
as ȧ is unrestricted. Although V is continuous, by (9a) it inherits kinks at points where W
is discontinuous.

In contrast, the function W may be discontinuous, because it is not the value from a
smooth optimization. However, since W(at) =

´ ∞
t e−ρ(s−t)U0 (ĉ (as)) ds, the function W is

continuous and differentiable (differentiating, one recovers (9b)) along interval of wealth
that are connected by a path {a(t)}. These considerations lead to conditions (b)–(e). Note
that when the policy function ĉ is such that there are multiple disconnected ergodic sets
for wealth, then W potentially jumps at the boundaries of these sets.12

3.2 Solution Method

We now describe our method for constructing Markov equilibria, which underlies our
formal analysis and results, as well as numerical examples. Our approach constructs so-
lutions to the differential system (9) by attacking these equations directly and constructing

12In the Online Appendix, we prove a Verification Theorem showing that if (V, W) satisfies the above
requirements, then V is the value function of a decision maker that maximizes (1) subject to the budget
constraint (3) and the borrowing constraint (4). The difference relative to standard verification theorems
(Fleming and Soner, 2005) is that in our case W may be discontinuous and V may not be differentiable at
points of discontinuity of W.

14



a solution. That is, we do not appeal to general existence results for the system (9).
Indeed, we are unaware of the availability of any general results that would immedi-

ately establish the existence of a solution to these equations. This may seem surprising at
first. After all, (9a) which is just a Hamilton-Jacobi-Bellman for V given W, and for which
various existence results may apply (at least for a regular enough class of W functions).
However, the main difficulty is not with solving (9a) for V given W. The problem lies in
solving the system (9) jointly for both V and W. In particular, (9b) may seem reminiscent
of a Hamilton-Jacobi-Bellman equation, but it is not, because ĉ(a) does not maximize the
right hand side (9b).

In contrast, Harris and Laibson (2013) do apply general existence results based on vis-
cosity solutions in a related hyperbolic discounting model (constant β). They study the
‘instantaneous gratification’ limit as λ → ∞ and show that under some conditions (9) is
then equivalent to the HJB system for a time consistent consumer with a suitably modi-
fied utility function, that depends on wealth in addition to consumption. Unfortunately,
this line of attack is not available in our case with finite λ, and it does require some ad-
ditional assumptions on disagreements and utilities (one of our goals is to place as few
assumptions on disagreements as needed).

Thus, we approach the problem differently and treat these two equations as ordinary
differential equations (ODEs) in (V, W). We do not know of any off-the-shelf ODE ex-
istence results that immediately apply to these equations. There are two issues, both
involving steady state points where ĉ(a) = ra. First, solving for V′(a) given (9a) yields
a law of motion that is not Lipschitz continuous around steady states. Second, more se-
riously, W ′(a) is not even determined at steady state points. Fortunately, we are able to
resolve these two issues, as we explain below. Once these two issues at steady states are
surmounted, our method is relatively straightforward and simple to implement.

Constant Wealth and Consumption. It is useful to define the value of holding wealth
and consumption constant,

V̄ (a) =
ρ

ρ + λ

U1 (ra)
ρ

+
λ

ρ + λ

U0 (ra)
ρ

, (11a)

W̄ (a) =
U0 (ra)

ρ
. (11b)

The value for agents outside of power is simply the present value of consuming ra forever
according to the utility function U1. The value for those in power is a weighted average
of the present value according to U1 and the present value according to U0.
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These value functions will play an important role in our constructions and proofs. The
equilibrium value functions (V, W) must coincide with (V̄, W̄) at steady states points,
where ĉ(a) = ra so that ȧ = 0.

Roots for V’(a). Equation (9a) is an implicit differential equation, to be solved for V′(a)
at each point a, given values for V(a) and W(a). In the appendix we show that the right
hand side of (9a) is a strictly convex function with a unique minimum, so that there are
zero, one or two solutions (roots) for V′(a). The first-order condition for the maximization
in (9a) gives

U′1 (ĉ (a)) = V′ (a) , (12)

which gives consumption as a decreasing function of V′(a). Indeed, when two roots for
V′(a) exist, the lower one corresponds to dissaving ĉ(a) > ra and ȧ < 0, while the higher
one corresponds to saving, ĉ(a) < ra and ȧ > 0. When a unique root for V′(a) exists it is
associated with ĉ(a) = ra and ȧ = 0.

Solving the ODEs. The equilibrium analysis in the next sections involves solving the
ODE equations (9) for the value functions (V, W) and associated policy function ĉ(a) to
satisfy the equilibrium requirements (a)–(f) mentioned above.

We construct equilibria by solving the ODEs starting at the bottom and working up;
or by starting at the top and working down; or by combining both procedures. In more
detail, the construction involves the following parts: (i) solving the ODEs with the ap-
propriate root over an interval of wealth; (ii) decide if and where to engineer a jump in
W and the appropriate jump in W; and (iii) imposing boundary conditions, either at the
borrowing constraint or for high enough wealth. Each one of the components is relatively
straightforward. The great advantage of this technique is that part (i) is local in nature. We
work up when we pick the root that implies dissaving; we work down when picking the
root that implies saving. Part (ii) is aided by the fact that V must be continuous and that
W can only jump to a self-generating value, i.e. consistent with (2). Finally, the boundary
conditions required for part (iii) are supplied at the extremes by known solutions: either
getting absorbed by the borrowing constraint at the bottom or reaching a high enough
level of wealth where a known solution is available, such as the commitment solution.13

13The equilibrium coincides with the commitment solution at a high enough level of wealth if disagree-

ment disappears at a high enough level of consumption: U′1(c)
U′0(c)

= 1 for c ≥ c̄. Alternatively, a known

solution can be found if U0(c) = βU1(c) for c ≥ c̄ and U1(c) is a power function for c ≥ c̄. Another possi-
bility is imposing an upper bound on wealth. Basically, what we require is that there be a known solution
for high enough wealth, to serve as a boundary condition.
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Dealing with Singularities at Steady States. One technical challenge is that the differ-
ential system (9) is singular at steady states.14 At any point a0 with V(a0) = V̄(a0) and
W(a0) = W̄(a0) we have ĉ(a0) = ra0, so condition (9b) at a0 cannot determine W ′(a0). As
a result, we cannot apply standard existence theorems for regular ODEs.

The following lemma shows the existence of the solution (V, W) locally around such
points of singularity. Away from these points the system (9) is non-singular, so we can
apply standard ODE methods to extend the solution.

Lemma 1. Suppose β(ra0) < β̂(r, ρ, λ). Then the differential system (9) with initial condition
(V(a0), W(a0)) = (V̄(a0), W̄(a0)) admits a solution over the interval [a0, a0 + ω] for some
ω > 0, with

1. V (a) > V̄ (a) for a > a0;

2. ĉ (a) > ra for a > a0, lima↓a0 ĉ(a) = ra0 and lima↓a0 ĉ′(a) = ∞.

Proof. The details of the proof are in Appendix C, here we provide a sketch. Consider
initial values

(Vε (a0) , Wε (a0)) = (V̄ (a0) , W̄ (a0)− ε) ,

where ε > 0. With this boundary condition, the differential system is nonsingular at a0, so
we can find a solution over some interval [a0, a0 + ω] for some ω > 0 that is independent
of ε. We then take the limit ε → 0 and show that the sequence of solutions converges
to a well-defined limit that constitutes a solution to the original system with the desired
properties.

Note that under this construction wealth falls, ȧ < 0 for a > a0, towards the steady state
at a0. This implies that the values constructed are “self generating” in the sense that the
interval [a, a + ω] is ergodic, forming a closed self-referential system.

3.3 Recovery of Power

We assumed for simplicity that an agent ousted from power never recovers power. We
now show that we can relax this and assume power can be recovered at some Poisson

14When we rewrite system (9) as a differential algebraic equation (DAE), the steady states correspond to
critical singular points. However, the DAE at this point does not satisfy the sufficient conditions provided
in the literature, for example in Rabier and Rheinboldt (2002), for the existence and uniqueness of solutions
around singular points of DAEs, except for the case λ = 0.
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rate λr > 0. The differential system describing a Markov equilibrium is then

ρV (a) = max
c

U1 (c) + V′ (a) (ra− c) + λ (W (a)−V (a)) ,

ρW (a) = U0 (ĉ (a)) + W ′ (a) (ra− ĉ (a)) + λr (V (a)−W (a)) .

This system is different from (9a)–(9b) because the second equation includes the possi-
bility of returning to power in the last term. However, our next result establishes that a
setting with recovery of power is observationally equivalent to one without.

Proposition 3. Consider an economy with utilities and Poisson rates (U1, U0, λ, λr) with pos-
itive recovery probability λr > 0. Markov equilibria for this economy coincide with Markov
equilibria for an economy with utilities and Poisson rates (U1, Ũ0, λ̃, 0) with no possible recovery
of power, where λ̃ ≡ λ + λr and Ũ0 (c) ≡ λ

λ+λr
U0 (c) + λr

λ+λr
U1 (c).

Proof. One can verify that the pair (V, W) satisfies the differential system with power
recovery above for (U1, U0, λ, λr) if and only if the pair (V, W̃) with W̃ ≡ λ

λ+λr
W + λr

λ+λr
V

satisfies the differential system without power recovery (9a)–(9b) for (U1, Ũ0, λ̃, 0) with
λ̃ ≡ λ + λr and Ũ0 (c) ≡ λ

λ+λr
U0 (c) + λr

λ+λr
U1 (c).

Intuitively, the possibility of recovering power makes an agent more invested in the
future consumption possibilities, even after being ousted from power. However, this is
similar to placing a higher value on consumption while out of power; this is why Ũ0 is
a weighted average of U0 than U1 in our result. In a political economy setting, Amador
(2002) and Azzimonti (2011) effectively assume that there are no benefits from consuming
out of power, U0 = 0.15 With λr = 0 there would be no time inconsistency problem,
only greater impatience with utility U1 discounted at geometric rate ρ + λ > ρ. Thus,
they focus on cases where the agent returns to power with positive probability, λr > 0.
Proposition 3 shows that this is equivalent to a model without recovery of power but
with a positive utility for those out of power: Ũ0 = β̄U1 for β̄ = λ/(λ + λr) ∈ (0, 1), a
hyperbolic discounting setting.

As we have shown, studying the case where power is never recovered also captures
situations where power can be recovered, with an appropriate adjustment to utility func-
tions and the Poisson rate of losing power. This allows us to focus, without loss of gener-
ality, on cases where power cannot be recovered, λr = 0.

15They motivate this by assuming there are many goods and agents in power consume different goods,
with polar disagreement on what goods are valued, or, equivalently, that consumption is a private good
enjoyed only by the agent in power.
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4 Dissaving and Saving

In this section we begin to construct and characterize Markov equilibria, first focusing
on situations where the ratio β(c) is relatively stable and lies on one side of the critical
cutoff β̂(r, ρ, λ) (defined by equation (5)). Our main results in this section establishes the
existence of Markov equilibria with dissaving when β < β̂ and positive savings when
β > β̂.

To anticipate the key role played by β relative to β̂ it is useful to cover some special
cases. The first such result is a simple adaptation of a well-known result by Laibson (1996)
for the hyperbolic discounting case, where β(c) is constant, also assuming no asset limit
(i.e. the natural borrowing limit) and power utility functions.

Theorem 1 (Linear Markov Equilibria). Suppose

β(c) = β̄ ≤ 1, U1(c) =
1

1− σ
c1−σ and a = 0.

Then if (1− σ)r < ρ there exists a unique linear Markov equilibrium ĉ(a) = ψa with saving
ψ < r when β̄ > β̂(r, ρ, λ) and dissaving ψ > r when β̄ < β̂(r, ρ, λ). When β̄ > β̂(r, ρ, λ) the
result holds even if a > 0.

Proof. Appendix D.

This result establishes the existence and uniqueness of linear equilibria, characterized
by a constant savings rate ψ− r.16 Crucially, the sign of this savings rate depends on β

versus β̂. When the interest rate is low enough or disagreements are high enough, β < β̂,
the temptation to overconsume is strong and the agent dissaves in equilibrium. When the
interest rate is high enough or disagreements are low enough, so that β > β̂, savings are
positive.

The linear equilibrium breaks down if the disagreement ratio β(c) is not constant, if
utility functions are not power functions, or in the presence of a borrowing constraint
a > 0 if β < β̂. Although the conditions for linear equilibria are very special in this sense,
our analysis below will establish that the key conclusion is much more general: savings
are positive or negative depending on β versus β̂.

Before turning to these results, we state a very simple result showing that in the bor-
derline case β(c) = β̂(r, ρ, λ) an equilibrium exists with zero savings. Since consumption

16In discrete time Phelps and Pollak (1968) and Young (2007) show that multiple linear equilibria might
exist. But in continuous time, we obtain the uniqueness of linear equilibria. However, we will show in
Section 6 that non-linear multiple equilibria may exist.
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and wealth remain constant, this result does not require power utility functions nor the
absence of borrowing constraints (i.e. it holds even if a > 0).

Theorem 2 (Zero Savings). Assume that β(c) = β̂(r, ρ, λ) for all c > ra. Then, (V, W) =

(V̄, W̄) and ĉ(a) = ra is a Markov equilibrium.

Proof. Appendix E.

4.1 Dissaving

Our first result constructs an equilibrium with dissaving, when β(c) < β̂(r, ρ, λ). Since
β(c) < 1 by Assumption 1, this condition is ensured if r ≤ ρ or if r > ρ and is small
enough.

Theorem 3 (Dissaving). Suppose Assumption 1 and that β(c) < β̂(r, ρ, λ) for all c ≥ ra. Then
there exists a Markov equilibrium with ĉ(a) = ra and ĉ(a) ≥ ra for a ≥ a; indeed, the latter
inequality is strict, ĉ(a) > ra, except possibly on a countable set of steady state points where
ĉ(a) = ra.

Proof. Appendix E.

Recall from Proposition 2 that when r > ρ the commitment solution eventually in-
volved positive savings, with consumption and wealth growing without bound. Thus,
dissaving in such a case is due entirely to the lack of commitment and the time-inconsistency
problem generated by the disagreement regarding utility functions. Dissaving is more
likely the lower is β, the higher is λ or ρ, and the lower is r. Intuitively, a higher turnover
rate λ amplifies the time inconsistency problem.

The proof of this theorem implies that there is always an equilibrium with V ≥ V̄
even though there may be equilibria with V < V̄. Thus, there are always equilibria where
a commitment device that imposes a borrowing constraint at the current wealth level
would not be chosen by the agent in power. However, when r ≥ ρ then W < W̄ away
from steady states (where W = W̄), so the agent out of power would always want to bind
the agent in power to keep wealth constant at the current level of wealth.17

As we anticipated in Section 3.2, our proof is constructive and involves solving for
an equilibrium with negative savings by solving the differential system (9). We start at
a setting V(a) = V̄(a) and W(a) = W̄(a) as the boundary condition, then solve moving
up a using the root for V′(a) that implies dissaving. To guarantee that a global solution
exists we need to ensure that we do not run out of a root for V′(a), which may occur for

17When r < ρ, it is possible that W > W̄.
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a region of the space (a, V(a), W(a)); to do so, we show that we can always engineer an
appropriate jump in W to its steady state value W̄(a) to reset the differential equations
before the differential system reaches this region.

Theorem 3 provides a general proof of existence of Markov equilibria. Recall that
a special case is the standard model with hyperbolic discounting in the presence of a
borrowing constraint.18 Section 6 complements this existence result by providing further
characterizations. We explore sufficient conditions for the equilibrium to be continuous
or discontinuous. We also show that there may be multiple Markov equilibria.

4.2 Saving

We now consider the opposite case where disagreement is low enough and show that β >

β̂ provides conditions for positive savings to emerge in equilibrium. Given Assumption
1, β > β̂ requires r > ρ.

Since our approach is constructive, it is useful to first pin down values and behav-
ior above some threshold for wealth, allowing us to concentrate our construction on the
remaining compact interval of wealth. The next assumptions are helpful in this regard.

Assumption 2. Either (a) there is no disagreement for high enough consumption levels: β(c) = 1
for all c ≥ c̄ for some c̄ > 0; or (b) disagreement is constant and the utility functions are power
functions for high enough consumption levels: β(c) = β̄ < 1 and U1(c) = 1

1−σ c1−σ for all c ≥ c̄
for some c̄ > 0.

Importantly, this assumption only applies above possibly very high level of consump-
tion and places no restrictions on the disagreement ratio β(c) or utility functions below
this threshold. We use Assumption 2 to provide a boundary condition at some high
enough level of wealth ā. When Assumption 2a holds, the equilibrium coincides with
the commitment solution above the threshold. When Assumption 2b holds, the equilib-
rium coincides with the linear equilibrium described in Theorem 1 above a threshold ā.19

Using either of these two boundary conditions, the next result constructs an equilibrium
with positive savings by solving the differential system (9).

18Current existence proofs in the literature require additional assumptions or ingredients. For example,
in discrete time, Harris and Laibson (2001) introduce income shocks . Chatterjee and Eyigungor (2015)
introduce lotteries among the choices of the decision maker. Bernheim, Ray and Yeltekin (2015) show the
the existence of Markov equilibrium for the special case of power utility and interest rate strictly greater
than the discount factor, i.e. r > ρ in our notation.

19Another simple, but perhaps less natural, way to provide an upper boundary condition is to assume a
maximum wealth level ā and restrict a ∈ [a, ā]. When β(rā) > β̂, we can then construct an equilibrium with
savings by using the boundary ĉ(ā) = rā, V(ā) = V̄(ā) and W(ā) = W̄(ā). Theorem 6 involves a similar
construction with positive savings to the left of an interior steady-state.
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Theorem 4 (Saving). Suppose that β(c̄) > β̂(r, ρ, λ) and that Assumption 1 and 2 hold. Then
there exists â < c̄

r such that if a > â there exists a Markov equilibrium with ĉ(a) < ra and
ĉ′(a) > 0 for a ≥ a. Moreover, if β(c) is increasing then either â is such that β(râ) ≤ β̂(r, ρ, λ)

or â = 0.

Proof. Appendix F.

Just as for Theorem 3, the proof of this result is constructive and works by solving the
differential system (9). We start at ā using initial conditions for (V(ā), W(ā)) provided by
the commitment solution (under Assumption 2a) or the linear solution (under Assump-
tion 2b). We then solve downwards using the higher root for V′(a), which is associated
with positive savings. Positive savings implies that ā will be reached from below, justi-
fying its use as a boundary condition for the differential system. This construction stops
either at â = 0 or at a value of â where we run out of a root for V′(a). In the latter case we
actually show that (V(â), W(â)) = (V̄(â), W̄(â)) and thus ĉ(â) = râ.

The last statement in the theorem implies that if β(c) is increasing but always above
β̂ then â = 0, which implies that savings occur for all wealth levels regardless of the
asset limit a. This leaves open the possibility that if β(c) is decreasing but always above
β̂ that â > 0, although we have been unable to provide an example. Speculating a little,
although the level of disagreement is conducive to savings, the fact that disagreement
rises with spending may discourage saving.

4.3 An Example

The following example illustrates the previous two theorems.

Example 1. Let the utility for the agent in power be given by

U1(c) =
c1−σ̄

1− σ̄

for σ > 0 and let disagreement be given by

β(c) =

{
β̄
(

α
( c

c̄
)γ

+ 1− α
)

if c ≤ c̄,

β̄ if c ≥ c̄.

with α, β̄ ≤ 1 and γ > 0. Under this specification β(c) is an increasing and continuous
function of c, reaching a plateau of β̄ at c = c̄. The implied U0, which defined by U1 and
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Figure 1: Consumption Functions under Different Interest Rates

β(c) up to a constant, is concave as long as γα ≤ σ̄.20 For our numerical examples we use
the following parameters: ρ = 0.05, σ̄ = 1

5 , β̄ = 3
4 , α = 3

4 , γ = σ̄
α , λ = 0.05, c̄ = 5 and

a = 30.
Figure 1 depicts the policy function ĉ(a) (solid line) against ra (dotted line). The left

panel sets r = 0.05 which ensures that β(c) < β̂(r, ρ, λ) so that Theorem 3 applies. Since
ĉ(a) > ra the agent is dissaving and wealth declines, ȧ < 0. The consumption function is
concave. Indeed, it has infinite slope at the asset limit a and this limit is reached in finite
time.

The right panel sets r = 0.06 ensuring that β(c) > β̂(r, ρ, λ) so that Theorem 4 applies.
Since ĉ(a) < ra the agent is saving and wealth rises, ȧ > 0, without bound, at → ∞. For
a high enough level of wealth the consumption function becomes linear, coinciding with
the linear equilibrium, provided in Theorem 1 for the hyperbolic discounting model with
β(c) = β̄ (dashed line). This provides the boundary condition needed for our construc-
tion. For lower levels of wealth the equilibrium consumption function is nonlinear and
slightly convex.

5 Non-Uniform Disagreement

We now turn our attention to situations where disagreement varies sufficiently so that
β(c) lies on both sides of β̂(r, ρ, λ), preventing the conditions for global dissaving or sav-

20For c < c̄, U′′0 (c) = β̄
(
−σ̄(1− α) + α

( c
c̄
)γ

(γ− σ̄)
)

c−σ̄−1 < 0 if γα ≤ σ̄.
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ing equilibria. We focus on two polar cases. In the first, disagreement is decreasing with
consumption, so that temptations are stronger at low levels of consumption. We show
how this creates the conditions for a poverty trap: dissaving at lower wealth levels coex-
isting with positive savings at high wealth levels. The second case we consider involves
increasing disagreements and leads to convergence to an interior steady state.

5.1 Decreasing Disagreement: Poverty Traps

We start with the case where the disagreement index falls with consumption and lies on
both sides of β̂(r, ρ, λ). By Assumption 1 this requires r > ρ.

Assumption 3. The ratio β(c) is weakly increasing in c and crosses β̂(r, ρ, λ).

Since β(c) > β̂(r, ρ, λ) for high consumption levels, Theorem 4 provides an equilib-
rium with savings as long as the asset limit is high enough, so that a ≥ â. However,
if the asset limit is low enough so that a < â the construction is incomplete and cannot
be completed to yield an equilibrium with positive saving for all wealth levels. Indeed,
since β(râ) < β̂(r, ρ, λ) dissaving seems like a natural outcome for lower wealth levels,
following Theorem 3. This opens the door to poverty traps: positive saving above a cutoff
and dissaving below this cutoff. Intuitively, for lower wealth levels consumption lies in
a region where disagreement is severe, lowering the incentive to save and perpetuating
the time-inconsistency problem. At higher wealth levels disagreements are lower and the
agent is able to save and overcome the time-inconsistency problem. Indeed, reaching re-
gions with lower disagreements and time inconsistency provide an additional incentive
to save, since the equilibrium allocation may get closer to the commitment solution.21

The next result is obtained by combining the constructions underlying Theorems 3
and 4, using Theorem 3 for low wealth levels and Theorem 4 for high wealth levels. The
cutoff must be set at a point where the agent in power is indifferent between following
the saving path versus the dissaving path.

Theorem 5 (Poverty Trap). Suppose Assumptions 1, 2, and 3 hold. Then there exists a cutoff
a∗ and a Markov equilibrium with saving for a > a∗ and dissaving for a < a∗, i.e. ĉ(a) < ra for
a > a∗ and ĉ(a) ≥ ra for a < a∗.

Proof. Appendix G

21For example, under Assumption 2a, since then the commitment solution is obtained at sufficiently
high wealth levels.
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Figure 2: Consumption Function in an Equilibrium with Poverty Trap

This result still leaves open the possibility that a∗ = a, so that there is no region with
dissaving, or that a∗ = ∞, so that there is no region with positive saving. Indeed, these
outcome may occur in some cases. Intuitively, dissaving may not occur if the difference
between β(c) and β̂(r, ρ, λ) are small. Likewise, positive savings may not occur if β is too
low at the top. Ensuring an interior â requires additional assumptions.

The next result provides sufficient conditions for a∗ to be interior.

Proposition 4. Suppose Assumptions 1, 2a and 3 and a < c̄
ρ (where c̄ is defined in Assumption

2a). Then there exists r∗ > ρ such that for all r ∈ (ρ, r∗] the cutoff a∗ defined in Theorem 5 is
interior: a < a∗ < ∞.

Proof. Appendix G.

This result requires a low enough interest rate. Intuitively, when the interest rate r is
close to the discount rate ρ the benefit from saving is relatively small. Dissaving becomes
relatively more attractive and an equilibrium where the latter occurs at low wealth levels
becomes possible. Of course poverty traps with interior a∗ also arise away from these
sufficient conditions.22

Example 2. The following example illustrates a poverty trap under the conditions of The-
orem 5. We use the parameters in Example 1 except that β̄ = 1 and r = 0.055. We let

22In an earlier version of this paper, we showed the existence of a Markov equilibrium with a poverty
trap for U1(c) = c1−σ̄

1−σ̄ and β(c) = β for c < c̄ and β(c) = 1 for c ≥ c̄.
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the asset limit at a = 17. As depicted in Figure 2 (ĉh and ĉl are two pieces of the policy
function ĉ, as constructed in the proof of Theorem 5), ĉ (a) ≥ ra for a < a∗ and ĉ (a) < ra
for a > a∗, where a∗ ≈ 18.37. Thus, there is poverty trap for all a < a∗.

We now discuss a few interesting comparative statics. First, consider the asset limit.
We argue that loosening the asset limit due to a loosening of the borrowing constraint
(recall the connection laid out in Section 2) can actually worsen the incentives for saving,
prompting the agent to dissave instead. To see this, suppose initially that a ≥ â where â
is defined by Theorem 4. An equilibrium with positive savings then exists, where wealth
and consumption rising over time starting from any initial wealth level a ≥ a. Next,
suppose a is lowered and that at its new level a < â (â is unaffected by a). Then, according
to Theorem 5, an equilibrium exists where the agent dissaves below a cutoff a∗ > â, where
wealth and consumption eventually fall to a lower level. It follows that for any wealth
level in the intermediate region [â, a∗) the equilibrium switches from saving to dissaving.
In this sense, loosening the asset limit leads an agent to switch from saving to dissaving.

Next, consider an increase in labor income y and suppose for the sake of the present
discussion the borrowing limit is proportional to income. Recall that for convenience, we
have been working with the transformations outlined in Section 2 that allows us to set
income to zero, without loss of generality. Using these transformations, an increase in y
amounts to an upward adjustment in the asset limit together with an upward adjustment
in the initial (transformed) asset level. As we just argued, the asset limit and the cutoff
a∗ can move in opposite directions: falling when the asset limit rises. This is necessar-
ily the case when the asset limit is high enough (near â), which occurs for high enough
income. When this is the case, both the increase in assets and the decrease in the cutoff
decrease the chances of finding oneself below the cutoff and, thus, trapped in a poverty
trap. Moreover, a large enough increase in y increases a enough and ensures a > â, mak-
ing the poverty trap disappear altogether. We are then left with an equilibrium featuring
global savings.

Our construction of a Markov equilibrium with a poverty trap relies on nonuniform
disagreements. Interestingly, poverty traps are also possible with uniform disagreements,
if one relaxes the equilibrium requirement from a Markov equilibrium to that of a sub-
game perfect equilibrium. This has been shown by Bernheim et al. (2015). Their model
is cast in discrete-time and assumes hyperbolic discounting and power utility. The best
equilibrium is sustained by a trigger strategy that punishes deviations by reverting to the
worst equilibrium, with dissaving. Intuitively, such punishments are not very effective
at low wealth levels, near the asset limit, since there is not much wealth to be dissaved.
As a result, good behavior and positive savings can only be sustained at high wealth lev-
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els. Clearly, this result is driven by a different and complementary mechanism to ours. If
we look at comparative statics, there are also interesting differences in predictions. Bern-
heim et al. (2015) show that when the borrow constraint is loosened, i.e a is lowered, the
likelihood of a poverty trap decreases in their setting (punishments are more severe). It
can also be shown that an increase in labor income, for given positive level of wealth, al-
ways increases the chance of being in a poverty trap in their setting.23 These contrasting
predictions serve to highlight the differences in mechanisms.

As discussed in the Introduction, Banerjee and Mullainathan (2010) study models with
disagreements over many goods that imply nonuniform disagreements with respect to
spending. In particular, they derive a result for the case of decreasing disagreements that
relates to our poverty trap result. However, there are two important differences with our
framework and result. First, they work with a two-period setting so they cannot study
the long-run dynamics for wealth, making it somewhat difficult to define a poverty trap
in this sense. Thus, what they prove is the possibility of a downward discontinuity in the
consumption policy function, which may be related to the discontinuity we obtain at the
cutoff a∗. The discontinuity in their setting is due to a non-convexity in the optimization
problem, which brings us to the second difference: such a discontinuity would never arise
in a two-period version of our model. The relevant optimization would be to maximize
U1(a0 − a1) + e−ρU0(era1) with respect to a1. Since we assumed U1 and U0 to be strictly
concave, the solution is unique and continuous in initial wealth a0. Poverty traps arise in
our model from the strategic interactions across different selves over longer horizons.

5.2 Increasing Disagreement: Convergence

We now consider the reverse situation, when disagreement rises with spending. The time-
inconsistency problem is aggravated at higher wealth levels in this case. Intuitively, this
may provide a force for dissaving at high wealth levels together with saving at low wealth
levels. If these forces are strong enough they may generate convergence to a unique
steady state wealth level. We now provide one such result. Our global convergence proof
requires a downward jump in β(c) at the steady state.24 We conjecture that a similar result

23This follows because with power utility their equilibria are homogeneous. The borrowing limit ex-
pands in proportion to the increase in income. If assets were also changed in the same proportion then the
equilibrium would simply scale up. However, since assets are left unchanged and only income is increased,
then when assets are positive this is effectively like being less rich (relative to income). As a result, the agent
either remains or falls into the poverty trap region.

24This requires U0 to feature a concave kink, which was ruled out up to now by our assumption that U0
is everywhere differentiable, but we relax this assumption for the next result.
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obtains for continuous β(c) as long as the function is sufficiently decreasing.25

Assumption 4. Suppose β(c) is decreasing. Suppose further that β(c) is continuous except at
c∗ > 0 where

lim
c↑c∗

β(c) > β̂(r, ρ, λ) > lim
c↓c∗

β(c).

Under this assumption, we show that there is a Markov equilibrium defined over
some interval [a, ∞) with an interior steady state at a∗ ≡ c∗

r that is globally stable: the
agent saves when wealth falls below a∗ and dissaves when wealth is above a∗, so that
at → a∗ monotonically.

Theorem 6 (Convergence). Suppose Assumption 1 and 4 hold. Then there exists amin ≥ 0
such that when a > amin then a Markov equilibrium exists with a unique stable stationary state
a∗ = c∗

r > a, so that ĉ(a∗) = ra∗, ĉ(a) < ra for a < a∗ and ĉ(a) ≥ ra for a > a∗. If, in addition
β(c) = β̄ for all c < c∗, then amin = 0.

Proof. Appendix H.

Intuitively, at high wealth levels the time inconsistency problem leads to dissaving,
while at low wealth levels the fact that r > ρ leads to positive savings. Thus, the variable
time-inconsistency problem provides a force for convergence, despite a constant interest
rate. In Battaglini and Coate (2008), the authors obtain a similar convergence in a model
with time-inconsistency arises from political economy frictions. In their paper, time-
inconsistency is stronger when debt is low, i.e. wealth is high, and group-specific trans-
fers are strictly positive (“business- as-usual” regime) and there is no time-inconsistency
when debt is high, i.e. wealth is low, and group-specific transfers are absent (“responsible
policymaking” regime).

Observational Non-Equivalence. Both the existence of equilibria with a poverty trap
and the existence of equilibria featuring convergence to an interior steady state illustrate
behavior that is patently not observationally equivalent to any time consistent consumer
with additive utility and constant exponential discounting (with concave or convex utili-
ties). A time-consistent agent would either save or dissave at all wealth levels, depending
on the sign of r− ρ. Morris and Postlewaite (1997) constructs an example where observa-
tional equivalence fails, based on the presence of discontinuities in the equilibrium policy
function. Discontinuities are never optimal for time-consistent agents, assuming concave
utility functions. Interestingly, our convergence result instead provides a refutation of

25In this case c∗ is uniquely determined by β(c∗) = β̂.
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observational equivalence without the need to observe discontinuities in the policy func-
tion.

Local Indeterminacy. We now provide a local result of a different nature. For any
wealth level ã, suppose we restrict asset choices to a local neighborhood of ã. We can
then construct an equilibrium with ã as a stable steady state, as long as β is above β̂ but
not too high.

Theorem 7 (Local Indeterminacy). Suppose r > ρ and

β(rã) ∈ (β̂, 1− r− ρ

λ
) (13)

for some ã > 0. There exists a continuous local Markov equilibrium over an interval [a, ā] con-
taining ã as the unique stable stationary state i.e. ĉ(ã) = rã, ĉ(a) < ra for a < ã and ĉ(a) > ra
for a > ã.

Proof. Appendix H.

This result is the continuous-time version of the indeterminacy result emphasized by
Krusell and Smith (2003). One small but noteworthy difference is that in our continuous-
time setting no discontinuities are present in the construction.

What does this indeterminacy result say and not say? For any ã where (13) holds,
there is a local Markov equilibrium with ã as the unique steady-state. However, it must
be emphasized that this result is local in nature in that wealth levels must be restricted to
a neighborhood [a, a] of ã. Indeed, the interval [a, a] generally depends on ã.26 Unfortu-
nately, this local result cannot be immediately extended to obtain a global result. We have
verified numerically that the equilibrium value and policy functions cannot be extended
indefinitely to the right for high wealth levels a.27,28 Indeed, one difficulty relative to our
previous results is that V(a) < V̄(a) for all a ≥ ã so one cannot apply the construction
procedure behind Theorem 3, which required V ≥ V̄.

26Consequently, this local indeterminacy result is not a multiple equilibrium result as it stands, because
for each different ã the different intervals [a, a] define different games. See Theorem 12 for a multiple
equilibrium result in which different equilibria are defined in the same wealth space [a, ∞).

27For example, when U1(c) = c1−σ̄

1−σ̄ with σ̄ = 3
4 , λ = 1, ρ = 0.05, r = 0.06 and β ≡ β̄ = 9

10 > β̂, the
solution with steady state at ã = 1

r ≈ 16.66 cannot be extended past a = 17.7.
28When β(c) is constant to the left of c̄ then Theorem 6 shows that the equilibrium can be extended

globally to the left.
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5.3 Inverting: Consumption Functions to Disagreements

We now explore the model from a different angle, inverting it to solve for β(c) given an
equilibrium policy function for consumption ĉ(a). It turns out that, at least for sufficiently
smooth consumption functions this mapping is closed form and, thus, very tractable. To
state the next result, define the local curvature of the utility function

σ (U1, c) ≡
−U′′1 (c)c

U′1(c)
, (14)

which is strictly positive, since U1 is assumed strictly increasing and strictly concave.

Theorem 8. Suppose ĉ(a) is the consumption function of a Markov equilibrium and ĉ is strictly
monotone (increasing or decreasing) and twice differentiable within an interval (a1, a2). Let ζ(c)
denote the inverse of ĉ(a) defined over the associated interval (ĉ(a1), ĉ(a2)). Then β(c) must
equal

β(c) =
1

λζ ′

{
α1ζ ′ + α2

(
ζ ′
)2

+ σcζ ′′
(

rζ − c
c

)2

+ σ
(
2 + (2ρ + λ− 3r)ζ ′

) rζ − c
c

+ (σ2 + σ− cσ′)

(
rζ − c

c

)2}
(15)

where α1 = (ρ + λ− r) and α2 = (ρ− r)(ρ + λ− r).

Proof. Appendix I.

This characterization can be used to derive necessary conditions on the disagreement
index β(c) for certain properties to emerge in equilibrium. We next state a few examples.

First, suppose the equilibrium features dissaving for high enough wealth levels, so
that ra − ĉ(a) < 0. Suppose further that ĉ′(a) and and ĉ′′(a)a converge as a → ∞ with
lima→∞ c′(a) > r. In addition, suppose U1 is such that σ and σ′c converge as c→ ∞. Then
it follows that β(c) < β̂ for all high consumption c.

Next, suppose the equilibrium features an interior locally stable steady state ã with
ĉ(ã) = rã and ĉ′(ã) > r. Then we must have

β(rã) > β̂.

If, in addition, ĉ is weakly concave at ã so that ĉ′′(ã) ≤ 0 (i.e. marginal propensity to
consume that falls with wealth) then we also obtain

β′(rã) < 0,
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so that disagreements are increasing. This is consistent with our previous convergence
result, which featured increasing disagreements. Moreover, whether or not ĉ′′(ã) ≤ 0, if
the interior steady state is globally stable, then we must have dissaving above ã. Using the
results from the previous paragraph, assuming the other conditions discussed there are
met, this requires β < β̂ for high consumption levels. Putting this together with β > β̂ at
the steady state we see that β(c) must decrease on average and cross β̂ from above. In this
sense, increasing disagreements are necessary for an equilibrium to feature convergence
of wealth to an interior steady state.

Equation (15) can also be used to construct equilibria globally, simply by postulating
any monotone and twice differentiable consumption function over a range (c, ∞) and
backing out the required disagreement index β(c), obtained in closed form. We only need
to ensure that the disagreement index obtained in this way satisfies β(c) ∈ (0, 1]. The next
example illustrates this procedure.

Example 3. Assume that U1(c) ≡ c1−σ̄

1−σ̄ and ρ + λ > r. Consider a linear consumption
function ĉ(a) = rã + Ψ(a− ã) with Ψ > r and ã > 0. This implies ȧ = −Ψ(a− ã) so that
ã is a stable steady state. Equation (15) then implies that β is quadratic in 1

c ,

β(c) = β̄0 + β̄1

(
rã
c
− 1
)
+ β̄2

(
rã
c
− 1
)2

,

where the coefficients are β̄0 = (ρ−r+Ψ)(ρ+λ−r)
λΨ , β̄1 = σ̄

λΨ (λ + 2ρ + 2Ψ− 3r) (Ψ− r) and
β̄2 = σ̄(σ̄ + 1) 1

λΨ (Ψ− r)2. One confirms that

β(rã) = β̄0 > β̂ and β′(rã) = −β̄1
1
rã

< 0.

Figure 3 depicts an example using ρ = 0.05, σ̄ = 0.8, λ = 0.05, r = 0.07 and a slope
of Ψ = 0.08 and ã = 10. The upper panel depicts the linear consumption function,
while the lower panel depicts the disagreement function β(c) that sustains this linear
policy function as an equilibrium. As it turns out, β(c) is everywhere decreasing and
limc→∞ β(c) > 0.

6 Continuity and Multiplicity

In this section, we focus attention on scenarios with dissaving and characterize them in
greater detail. In particular, we investigate whether equilibria are continuous or discon-
tinuous and explore the possibility of multiple equilibria.
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Figure 3: A linear consumption function and its implied disagreement index β(c).

Theorem 3 showed that a Markov equilibria with dissaving exists whenever β(c) <

β̂(r, ρ, λ). However, this still leaves open a few possibilities. There may exist a continuous
equilibrium, one with a single stable steady state at the lower limit a and strict dissaving
above a. Alternatively, a discontinuous equilibrium may exist, with other steady states in
addition to a. Finally, both equilibria may exist. The following theorems provide some
sufficient conditions for each of these possibilities.

Our first result shows that a continuous equilibrium always exists for interest rates
below the discount rate.

Theorem 9 (Continuity I). Suppose Assumption 1 and r < ρ. Then there exists a continuous
Markov equilibrium with dissaving, i.e. V, W, ĉ continuously differentiable and ĉ(a) > ra for
a > a and ĉ(a) = ra. Moreover, the consumption function is strictly increasing, i.e. ĉ′(a) > 0.

Proof. Appendix J.

Recall that the form of discontinuities we encounter are related to the possibility of
alternative steady states above a. When r < ρ the forces for dissaving are present even
without disagreements (β = 1 or λ = 0). Disagreement only reinforce this tendency for
dissaving, preventing other steady states and implying that continuous equilibria exist.

In contrast, when r ≥ ρ dissaving arises from the time-inconsistency problem due
to disagreements. To ensure the existence of a continuous equilibrium we must be sure
that the time-inconsistency problem is strong enough. Our next result provides sufficient
conditions that ensure this is the case.
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Theorem 10 (Continuity II). Suppose r ≥ ρ, supc≥ra β(c) < ρ
r and

inf
c≥ra

1− σ (U1, c)
β(c)

> 1, (16)

where the local curvature σ is defined in (14).Then a continuous Markov equilibrium exists with
dissaving for all large enough λ or low enough r ≥ ρ, i.e. V, W, ĉ are continuously differentiable,
with ĉ(a) > ra for all a > a, ĉ(a) = ra, and ĉ′(a) > 0. Finally, when r = ρ, a continuous
Markov equilibrium exists for any λ > 0.

Proof. Appendix J.

Theorem 10 requires the local curvature of the utility function to be low relative to
the degree of time-inconsistency. In particular, it requires σ < 1 since β̂ ≤ 1. Figure 4,
based on Example 4 described below, illustrates a continuous Markov equilibrium in the
left panels. The top panel shows the value functions, while the bottom panels presents
the consumption policy function ĉ(a) as well as ra for reference. Since ĉ(a) ≥ ra there is
dissaving and ȧ ≤ 0. Indeed, the equilibrium features ĉ(a) > ra for all a > a, so that ȧ < 0
for all a and, thus, a is a unique globally stable steady state.

Theorems 9 and 10 stand in contrast with the discrete-time results in Chatterjee and
Eyigungor (2015, Theorems 3 and 4) that show that, in the hyperbolic discounting case
with r ≤ ρ and power utility functions, a continuous Markov equilibrium does not ex-
ist. As our two theorems make clear, continuous Markov equilibria do exist under these
conditions in our continuous time setting. Indeed, our results apply away from the hy-
perbolic discounting case and allow for r > ρ and utilities that are not power functions.29

In the hyperbolic discounting case with power utility functions condition (16) is the
opposite of the condition imposed by Harris and Laibson (2013) to guarantees the exis-
tence of an equilibrium in the instantaneous gratification limit λ → ∞ (see our Online
Appendix for details).30 Consistent with this observation, numerically we find that un-
der condition (16) the continuous Markov equilibrium identified by our theorem does
not converge to a the solution of the limiting system, i.e. the instantaneous gratification

29To understand the difference between continuous and discrete time in this regard note that Chatterjee
and Eyigungor (2015) rule out continuous Markov equilibria by observing that there exists an interval
of assets near the debt limit (the flat spot) where the decision maker chooses to go to the debt limit. A
discontinuity in the policy function must appear close to the end of this interval. However, this is no longer
true in continuous time because it always takes a positive amount of time to reach the debt limit, since
wealth must move continuously.

To reconcile these results, it is natural to conjecture that in the discrete time approximation of our continu-
ous time model, as periods are shortened by adjusting interest rates and discount rates, these discontinuities
shrink in size.

30When U1(c) = c1−σ̄

1−σ̄ and U0 (c) = β̄U1 (c), Harris and Laibson (2013) require that 1− β̄ < σ̄.
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limit. Instead, overconsumption becomes extreme, with the sequence of policy functions
diverging with ĉ(a)→ ∞ as λ→ ∞ for any a > a.

Our next result provides sufficient conditions to guarantee the existence of discontin-
uous Markov equilibria.

Theorem 11 (Discontinuity). Suppose r > ρ, supc≥ra β(c) < ρ
r and either U1 is bounded above

or
σ (U1, c) > σ for all c > c̄, (17)

for some c̄ > 0 and σ > 0. Then there exists a Markov equilibrium with dissaving and a discon-
tinuous policy function ĉ(a) for all large enough λ.

Proof. Appendix J.

The proof of this theorem involves showing that for large enough λ the solution to the
differential system (9) delivers a value function Vλ that crosses V̄λ from above at some
finite a1(λ) > a. We can then engineer a jump in Wλ to W̄λ at a1(λ) and apply Theorem 3
to construct the rest of the equilibrium, for a ≥ a1(λ), by letting a1(λ) stand in for a. This
induces an equilibrium with a jump in ĉ(a) at a1 (λ).

Figure 4, based on Example 4 described below, presents a discontinuous Markov equi-
librium with many steady-states in the right panels. The top panel shows the value func-
tions, while the bottom panels presents the consumption policy function ĉ(a) as well as ra
for reference. Since ĉ(a) ≥ ra there is dissaving and ȧ ≤ 0. However, the equilibrium fea-
tures many steady states where ĉ(a) = ra. At these points V(a) = V̄(a) and W(a) = W̄(a)
as required. Note that V(a) is continuous, whereas W(a) and ĉ(a) feature jumps to the
left of the steady state points.

When r > ρ, the conditions required by Theorems 10 and 11 are actually compatible,
as can be easily seen. This then guarantees situations where multiple Markov equilibria
coexist, both a continuous and a discontinuous equilibrium. Our next theorem summa-
rizes this observation.

Theorem 12 (Multiplicity). Suppose r > ρ, supc≥ra β(c) < ρ
r and both (16) and (17) hold.

Then there for all λ large enough there exist at least two Markov equilibria.

Unlike the local indeterminacy result offered by Krusell and Smith (2003) and echoed
in our Theorem 7, the present result provides conditions for the global existence of multi-
ple equilibria, over the entire set of wealth levels.

The following numerical example illustrates these results.
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Figure 4: Multiple Equilibria under hyperbolic discounting (in the figure, V > W and
V > W)
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Example 4. Suppose hyperbolic discounting and power utilities

β(c) = β̄ and U1(c) =
c1−σ̄

1− σ̄
,

with the following parameters similar to Harris and Laibson (2013)

ρ = 0.05 r = 0.05 σ̄ =
3
4

.

When β̄ is sufficiently low, so that σ̄ < 1− β and λ is sufficiently high Theorems 10 and
11 can be applied.31 Figure 4 describes two equilibria when β = 1

5 and λ = 12. The equi-
librium on the left panels (the upper panel depicts value functions and the lower panel
depicts the policy function), has continuous value and policy functions as constructed in
Theorem 10. Given that λ is sufficiently high, another equilibrium with multiple steady
states exists and is depicted in the right panels.

Which equilibrium is more reasonable? We have explored introducing uncertainty
using diffusion processes to either income or the rate of return to wealth. For parameters
where Theorem 12 applies, we find that the noisy perturbations select the continuous
equilibrium: as the variance of the shocks is taken to zero the equilibrium policy and
value functions converge to the continuous equilibrium of the game without uncertainty.
As Example 4 illustrates, the continuous equilibrium features greater dissaving. In this
sense, uncertainty seems to exacerbate the time inconsistency problem.32

7 Conclusion

The study of time-inconsistency problems has produced many insights and potential ex-
planations for behavior. We believe this fruitful exploration should continue into new
territories. Here we have offered an effort to expand the range of disagreements under
study in the context of a standard dynamic stationary savings game. In the process, we
have offered an approach and results that are of interest, even for the case of uniform
disagreements, i.e. hyperbolic discounting. We also characterized the rich dynamics that
are possible with increasing or decreasing disagreements. Much more remains to be done
in future research.

31λ = 12 corresponds to monthly switching frequency.
32When a continuous equilibrium does not exist, for example when r > ρ and condition (16) does not

hold (the case considered by Harris and Laibson (2013)), we find that, for fixed λ, a solution fails to exist
numerically when uncertainty is small enough. In addition, for larger noise variances, the solutions do not
seem to converge as we reduce the variance. More details are provided in the Online Appendix.
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Appendix

A General Properties

A.1 Proof of Proposition 1

We show existence and uniqueness at the same time. By the Envelope Theorem

U′1(c) = h′(x̂(c)) = g′(ẑ(c)).

Moreover,
U′0(c) = h′(x̂(c))x̂′(c).

Therefore, x̂′(c) = U′0(c)
U′1(c)

. Thus

x̂(c) =
ˆ c

0

U′0(c̃)
U′1(c̃)

dc̃,

which is strictly increasing in c since U′0, U′1 > 0. Furthermore,

ẑ(c) = c− x̂(c) =
ˆ c

0

(
1− U′0(c̃)

U′1(c̃)

)
dc̃,

which is also increasing in c because 1− U′0(c̃)
U′1(c̃)

≥ 0 by Assumption 1. So h(x) and g(z) are
uniquely determined (up to constants) by

h′(x̂(c)) = U′1(c)

and
g′(ẑ(c)) = U′1(c).

h and g are increasing because h′, g′ > 0 and are concave because x̂ and ẑ are increasing
in c and U′1 is decreasing in c.

A.2 Roots of Hamilton-Jacobi-Bellman Equations

Write the HJB equation (9a) as

(ρ + λ)V (a)− λW (a) = H
(
V′(a), a

)
, (18)
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where
H (p, a) ≡ sup

c
{U1 (c) + p (ra− c)}. (19)

The next lemma characterizes the function H.

Lemma 2. For any a, the function H (·, a) defined by (19) is continuous, strictly convex and
continuously differentiable for p > 0; has a unique interior minimum at p = U′(ra); satisfies
limp→∞ H (p, a) = ∞ and H(0, a) = limp→0 H(p, a) = U1(∞).

Proof. For any p > 0 a maximum is attained on the right hand side of (19) uniquely by
the first-order condition U′1(c) = p. This implies that H(a, ·) differentiable with derivative
Hp(p, a) = ra− (U′1)

−1(p). This derivative is continuous and strictly increasing. Thus,
H(p, a) is strictly convex in p. Since Hp(U′1(ra), a) = 0 then p = U′1(ra) is the unique
minimum. Since H(a, ·) is strictly convex it follows that limp→∞ H (p, a) = ∞.

Finally, by definition H (0, a) ≡ supc U1 (c) = limc→∞ U1 (c). This also coincides with
limp→0 H (p, a) since

lim
p→0

H(p, a) = lim
c→∞

(
U1(c) + U′1(c)(ra− c)

)
≤ lim

c→∞
U1(c),

lim
p→0

H(p, a) ≥ lim
p→0

(U1(p−
1
2 ) + p(ra− p−

1
2 )) = lim

c→∞
U1(c).

This has immediate implications for the possible solutions to equation (18).

Lemma 3. Consider solutions p = V′(a) to equation (18), if
Case 1. (ρ + λ)V (a)− λW (a) < U1(ra), then no solution exists;
Case 2. (ρ + λ)V(a)− λW(a) = U1(ra), then the unique solution is given by p = U′1(ra);
Case 3. U1 (ra) < (ρ + λ)V (a)− λW (a) ≤ U1(∞), then exactly two solutions p1 and p2

exist and 0 ≤ p1 < U′1 (ra) < p2;
Case 4. U1(∞) < (ρ + λ)V (a)− λW (a), then a unique solution exists and U′1 (ra) < p.

Given Lemma 3, we define the following subsets of R3:

E ≡ {(a, V, W) |a > 0 and (ρ + λ)V − λW > U1(ra)} ,

E0 ≡ {(a, V, W) |a > 0 and U1(∞) > (ρ + λ)V − λW > U1(ra)} ,

Es ≡ {(a, V, W) |a > 0 and (ρ + λ)V − λW = U1(ra)}

Lastly Ē = E ∪ Es, and Ē0 = E0 ∪ Es. Notice that Es corresponds to the set of singular
points of the differential (9) as an implicit ODE.

Using Lemma 3 we now rewrite system (9) as explicit ODEs. There are two systems
to consider, depending on whether we consider the high or lower root.
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Definition 1. Let Rl (a, V, W) denote the lower root p = V′(a) of equation (18). By Lemma
3, Rl is well-defined over Ē0 and is continuous in a, V, W. Let Sl (a, V, W) denote the
associated solution to W ′ in equation (9b), so that

Sl (a, V, W) =
U0(ĉ(a))− ρW

ĉ(a)− ra

with ĉ(a) = (U′1)
−1 (V′(a)) = (U′1)

−1 (Rl(a, V, W)) > ra, defined over E0. By the Implicit
Function Theorem, Rl and Sl are continuously differentiable in a, V, W over E0.

Using Rl and Sl, system (9) can be represented as an explicit ODE(
V′(a)
W ′(a)

)
=

(
Rl (a, V, W)

Sl (a, V, W)

)
. (20)

This ODE is regular around (a, V, W) ∈ E0. Around any regular point we can apply
standard extension results (for example, Picard–Lindelöf theorem or Cauchy–Lipschitz
theorem; see Hartman (2002) for a comprehensive exposition) to show that, the ODE (20)
admits a unique solution (V, W) defined over a neighborhood of a, (a− ε, a + ε), and
is twice continuously differentiable (because Rl and Sl are continuously differentiable),
such that (V(a), W(a)) = (v, w) .33

The next definition is analogous, but using the higher root of equation (18).

Definition 2. Let Rh (a, V, W) be the higher root for p = V′(a) of equation (18). By Lemma
3, Rh is well-defined over Ē and is continuous in a, V, W. Let Sh (a, V, W) be the associated
value W ′ in equation (9b), so that

Sh (a, V, W) =
ρW −U0(ĉ(a))

ra− ĉ(a)
,

where ĉ(a) = (U′1)
−1 (V′(a)) = (U′1)

−1 (Rh(a, V, W)) < ra, defined over E. By the Im-
plicit Function Theorem, Rh and Sh are continuously differentiable in (a, V, W) over E.

Using Rh and Sh, system (9) can be represented as an explicit ODE(
V′(a)
W ′(a)

)
=

(
Rh (a, V, W)

Sh (a, V, W)

)
. (21)

33For any solution x(a) to an ODE x′(a) = F(x(a)). If F is continuously differentiable then x is twice
continuously differentiable, and x′′(a) = ∇F(x) · x′ = ∇F(x) · F(x).
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This ODE is regular around any (a, V, W) ∈ E. Just as with (20), standard extension
results apply whenever (a, V, W) is regular.

A.3 Full Commitment Solution

A.3.1 Proof of Proposition 2

When r < ρ, the result comes directly from the first order condition in ct and the obser-
vation that whenever at reaches a the optimal solution features as = a and cs = ra for all
s ≥ t. In this Appendix, we show the result for when r > ρ.

From the evolution of wealth (3),

at =

ˆ ∞

0
e−rsct+sds ≥ a. (22)

Let U(c, t) = e−λtU1(c) + (1 − e−λt)U0(c). The objective function of the commitment
problem can be rewritten as

´ ∞
0 e−ρtU(ct)dt.

Consider a variation where we decrease ct by ε > 0 and increase ct+s by ersε then this
increases the objective locally if and only if

Uc(ct, t) < e−(ρ−r)sUc(ct+s, t + s).

This variation satisfies the budget constraint and weakly increases wealth at any time so
it is feasible. Thus a necessary condition for an optimum is that

Uc(ct+s, t + s) ≤ e(ρ−r)sUc(ct, t).

In particular
Uc(ct, t) ≤ e(ρ−r)tUc(c0, 0)→ 0,

as t→ ∞.
Moreover, by Assumption 1,

Uc(ct, t) = e−λtU′1(ct) + (1− e−λt)U′0(ct) ≥ βU′1(ct). (23)

Therefore U′1(ct) → 0 as t → ∞. By the INADA condition, this implies ct → ∞ which
then requires at → ∞, from (22).

Thus, there is a date T for which all t ≥ T, the borrowing constraint, at ≥ a, is not
binding. For any dates t ≥ T, we can perform the same variation as above but with ε < 0,
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thus we must have
Uc(ct+s, t + s) = e(ρ−r)sUc(ct, t). (24)

at an optimum. This then implies that ct is monotone for all t ≥ T̂ for some T̂ > T.
Indeed, differentiating both sides of (24) with respect to s, together with letting µ =

Uc(cT, T) > 0 and using t standing for T + s and T standing for t, we obtain(
e−λtU′′1 (ct) + (1− e−λt)U′′0 (ct)

)
ċt =− (r− ρ)µe−(r−ρ)(t−T) + λe−λt(U′1(ct)−U′0(ct))

≤− (r− ρ)µe−(r−ρ)(t−T) + λe−λtU′1(ct)(1− β)

≤− (r− ρ)µe−(r−ρ)(t−T) + λe−λtµe−(r−ρ)(t−T) 1− β

β
,

where the first inequality comes from Assumption 1 that U′0(ct) > βU′0(ct) and the second

inequality comes from (23) and (24). There exists T̂ > T such that (r− ρ) > λe−λt 1−β

β for

all t ≥ T̂. Moreover, e−λtU′′1 (ct) + (1− e−λt)U′′0 (ct) < 0, therefore ċt > 0 for all t ≥ T̂.
From (22), ȧt > 0 for all t ≥ T̂.

A.3.2 Properties of the Commitment Solution

In this subsection, we characterize the commitment solution under Assumption 2a, i.e.
there exists c̄ such that U′1(c) = U′0(c) for all c ≥ c̄. The commitment solution will be used
as a boundary condition for the equilibrium value functions in Theorems 4 and 5.

In this case
U1(c) = U0(c) + ū

for all c ≥ c̄ for some ū ∈ R. Without loss of generality in what follows we normalize
ū = 0.

Because β(c) ≤ 1, from Assumption 1, U1(c) ≤ U0(c) for all c ≤ c̄. It is then immediate
that

Vsp(a0) ≤ V∗0 (a0) ≡ max
ˆ

e−ρtU0(c(t)) s.t. a0 =

ˆ ∞

0
e−rtctdt.

Consider the variations as in the proof of Proposition 2, for an optimum to the maxi-
mization problem in the right-hand side,

U′0(ct) = e(ρ−r)tU′0(c0)

which gives ct as a strictly increasing function of c0 and is strictly increasing in t because
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ρ < r. We then pin down c0 as a function of a0 from

a0 =

ˆ ∞

0
e−rtctdt.

The right-hand side is strictly increasing in c0, so c0 = ĉ0(a0) is uniquely pinned down
from this equation and is strictly increasing in a0.

Let au = max
{´ ∞

0 e−rt (U′0)
−1
(

e(ρ−r)tU′0(c̄)
)

dt, a
}

. Then, for a0 ≥ au, ĉ0(a0) ≥ c̄.

Because ct is strictly increasing in t, c(t) ≥ c̄ for all t ≥ 0, and a(t) =
´ ∞

0 e−rtct+sds ≥ a0 ≥
a for all t ≥ 0. Then it follows that Vsp(a0) = V∗0 (a0) for all a0 ≥ au.

It is standard to show that the value function V∗0 (a) is concave and differentiable and
satisfies an HJB equation,

ρV∗0 (a) = max
c

U0(c) + V∗′0 (a)(ra− c),

and the policy function ĉ(a) = arg maxc U0(c) +V∗′0 (a)(ra− c) gives the optimal solution
ĉ0(a0) defined above. Thus ĉ satisfies ĉ(a0) ≥ c̄ for all a0 ≥ au. It then follows that system
(9) holds for V = V∗0 and W = V∗0 for all a0 ≥ au.

A.4 Useful Observations

The following general properties of the solutions to system (9) is also important for their
characterization.

Lemma 4. Assume that V, W and ĉ constitutes a solution to the system (9). If V and W are
continuously differentiable and V is twice differentiable at a, then

(ρ + λ− r)V′ (a)− λW ′ (a) = V′′ (a) (ra− ĉ (a)) (25)

and if ĉ(a) 6= ra:

ĉ′(a) =
V′′(a)

U′′1 (ĉ(a))
=

1
U′′1 (ĉ(a))

(ρ + λ− r)V′ (a)− λW ′ (a)
ra− ĉ(a)

(26)

Proof. Differentiating (9a) with respect to a, we obtain

(ρ + λ)V′ (a)− λW ′ (a) = U′1(ĉ(a))ĉ′(a) + V′(a)(r− ĉ′(a)) + V′′ (a) (ra− ĉ (a)) .

Combining this with (12) and rearranging yield (25). Now differentiating (12) with respect
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to a,
U′′1 (ĉ(a))ĉ′(a) = V′′(a),

or equivalently ĉ′(a) = V′′(a)
U′′1 (ĉ(a)) , which together with (25) yields (26).

Lastly, we will also use the follow result to connect the comparison between β(.) and
β̂ to the comparison between the slopes of V and U′1.

Lemma 5. For a > 0, β(ra) < β̂(r, ρ, λ) if and only if

V′(a) < U′1(ra). (27)

And β(ra) = β̂(r, ρ, λ) if and only if V′(a) = U′1(ra).

Proof. Using the definition (11) for V, we have

V′(a) =
r

ρ + λ
U′1(ra) +

λr
(ρ + λ)ρ

U′0(ra).

The condition that β̂(ra) < β̂(r, ρ, λ) is equivalent to

r
ρ + λ

U′1(ra) +
λr

(ρ + λ)ρ
U′0(ra) < U′1(ra).

The result then follows. Likewise, for the case with β(ra) = β̂(r, ρ, λ).

B A Single-Crossing Property

The following simple result on the comparison between two functions plays a crucial role
in the characterization of the solutions to system (9). Although this result is very simple,
we do not know of any reference, so include it here for completeness.34

Lemma 6. Let f and g be two continuously differentiable functions defined over [a, a]. Consider
the subset satisfying the requirements that (1) f (a) ≥ g(a); and (2) if f (a) = g(a) for some
a ∈ [a, a] then f ′(a) > g′(a). Then f (a) > g(a) for all a ∈ (a, a].

Proof. First, observe that, if f (a) = g(a), by property 2. f ′(a) > g′(a), therefore f (a) >

g(a) in a neighborhood to the right of a. If f (a) > g(a), we obtain the same result
by continuity. Now, we prove the lemma by contradiction. Assume that, there exists
ã ∈ [a, a] such that f (ã) ≤ g(ã). By the Intermediate Value Theorem, we can assume that

34See Cao (2014) for an earlier application of this result in the context of two-agent dynamic games.
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f (ã) = g(ã), without loss of generality. Now let a∗ = inf {a ∈ [a, a] : f (a) = g(a)} . By
continuity f (a∗) = g(a∗). Moreover, a∗ > a because f (a) > g(a) in the right neighbor-
hood of a. By property 2), f ′(a∗) > g′(a∗). Together with f (a∗) = g(a∗), this implies,
f (a) < g(a) in a neighborhood to the left of a∗. Therefore by the Intermediate Value The-
orem, there exists a∗∗ ∈ (a, a∗) such that f (a∗∗) = g(a∗∗). This contradicts the definition
of a∗ which is the infimum.

We also use a few variations of this lemma.
Variation 1. if 1) f (a) ≥ g(a), and 2) if f (a) = g(a), for some a < ā, then f ′(a) < g′(a),

we have f (a) > g(a) for all a ∈ [a, a] .
Variation 2. We can also relax condition 2, by the condition that if f (a) = g(a) then

f ′(ã) > g′(ã) in a neighborhood to the left of a. Indeed, in the proof above, if f (a∗) =

g(a∗) and f ′(ã) > g′(ã) in the left neighborhood of a∗, then for a in the left neighborhood
of a∗,

f (a) = f (a∗)−
ˆ a∗

a
f ′(ã)dã

=g(a∗)−
ˆ a∗

a
f ′(ã)dã

<g(a∗)−
ˆ a∗

a
g′(ã)dã = g(a).

We can then proceed as in the remaining of the proof. This variation is useful when f ′ or
g′ are not well-defined at some a.

C Proofs for Lemma 1

C.1 Proof of Lemma 1

For any ε > 0 sufficiently small, indeed satisfying

ε <
limc→+∞ U1(c)−U1(ra0)

λ
,

consider the solution (Vε, Wε) to the ODE (20) satisfying the initial condition

(Vε (a0) , Wε(a0)) =
(
V(a0), W(a0)− ε

)
. (28)

46



Given that (20) is regular around a0, we can apply standard ODE existence results to show
that (Vε, Wε) exists and is unique over some interval [a0, a0 + ωε] that depends on ε. We
will use (Vε, Wε), together with the supporting results, Lemmas 7-10 in Subsection C.2, to
construct the equilibrium described in Lemma 1 as follows:

First, Lemma 7 shows that there exists an ω > 0 and ε̄ > 0 such that for 0 < ε < ε̄ such
that (Vε, Wε) are defined over [a0, a0 + ω]. Second, Lemma 9 shows that for 0 < ε < ε̄,
the slopes of Vε and Wε are uniformly bounded over [a0, a0 + ω]. Finally, using these
two results and applying the Dominated Convergence Theorem, we show that (Vε, Wε)

converges to (V, W) for a subsequence εN → 0 and (V, W) is a solution to system (9).
We now describe this last step in detail. Lemma 7 shows that there exist ω > 0 and ε̄ >

0 such that: for any ε < ε̄ the solution (Vε (a) , Wε (a)) are defined over [a0, a0 + ω] and
that Vε (a) > V (a) for all a ∈ (a0, a0 + ω]. Lemma 9 implies that for all a ∈ [a0, a0 + ω],

0 ≤W ′ε (a) ≤ U′0 (ra) +
ρ

λ
U′1 (ra) ,

0 ≤ V′ε (a) ≤ U′1 (ra) .

Because the derivatives V′ε and W ′ε are uniformly bounded, the families of functions {Vε}
and {Wε} defined over [a0, a0 + ω] are uniformly bounded and equicontinuous. By the
Arzela-Ascoli theorem, there exists a sequence εN such that (VεN (a) , WεN (a)) converges
uniformly to continuous functions (V, W). We now show that this candidate (V, W) is a
solution to (9).

Because (Vε, Wε) is a solution to the ODE (20), for any two points a1 < a2 in the interval
[a0, a0 + ω],

VεN (a1)−VεN (a2) =

a2ˆ

a1

Rl (a, VεN (a) , WεN (a)) da.

Since Rl is continuous

lim
N→∞

Rl (a, VεN (a) , WεN (a)) = Rl (a, V(a), W(a)) .

Moreover, by Lemma 9, Rl (a, VεN (a) , WεN (a)) is uniformly bounded over [a1, a2]: 0 ≤
Rl(a, VεN (a) , WεN (a)) = V′εN

(a) ≤ U′1 (ra) < U′1(ra0). Therefore, by the Dominated
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Convergence Theorem,

lim
N→∞

a2ˆ

a1

Rl (a, VεN (a) , WεN (a)) da =

a2ˆ

a1

lim
N→∞

Rl (a, VεN (a) , WεN (a)) da

=

a2ˆ

a1

Rl (a, V(a), W(a)) da.

Thus,

V (a1)−V (a2) = lim
N→∞

(VεN (a1)−VεN (a2))

= lim
N→∞

a2ˆ

a1

Rl (a, VεN (a) , WεN (a)) da

=

a2ˆ

a1

Rl (a, V (a) , W (a)) da. (29)

Because Rl is continuous in a, V, W and V, W are continuous in a, the last equality implies
that V′(a) = Rl(a, V(a), W(a)) for all a ∈ [a0, a0 + ω] (with V′ standing for the right
derivative of V at a = a0) .

Similarly, for any two points a1 < a2 in the interval [a0, a0 + ω],

WεN (a1)−WεN (a2) =

a2ˆ

a1

Sl (a, VεN (a) , WεN (a)) da.

By choosing ω sufficiently small, the last property in Lemma 7 applies for each a ∈
(a0, a0 + ω]. We show that, (a, V(a), W(a)) ∈ E0 for each a ∈ (a0, a0 + ω] and

lim
N→∞

Sl (a, VεN (a) , WεN (a)) = Sl (a, V(a), W(a)) . (30)

Indeed, from the definition of VεN , WεN , (ρ+λ)VεN(a)−λWεN(a) > U1(ra). Therefore, by
pointwise convergence, (ρ + λ)V(a)− λW(a) ≥ U1(ra). We show by contradiction that
(ρ + λ)V(a) − λW(a) > U1(ra). Assume to the contrary that (ρ + λ)V(a) − λW(a) =

U1(ra). From the last property of Lemma 7, VεN(a) ≥ V(a) + γa for εN < εa. There-
fore, by pointwise convergence, V(a) ≥ V(a) + γa. This, together with the contradiction
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assumption, implies that

W(a) < W(a)− ρ + λ

λ
γa.

In addition, by the continuity of Rl and by pointwise convergence,

ĉεN(a) =
(
U′1
)−1

(Rl(a, VεN(a), WεN(a)))→
(
U′1
)−1

(Rl(a, V(a), W(a))) = ra

as N → ∞. Consequently, there exists δ ∈ (0, 1) such that for N sufficiently high,

Sl(a, VεN(a), WεN(a)) =
ρWεN(a)−U0(ĉεN(a))

ra− ĉεN(a)
>

ρW(a)− ρ(ρ+λ)
λ (1− δ)γa −U0(ra)
ra− ĉεN(a)

→
ρW(a)− ρ(ρ+λ)

λ (1− δ)γa −U0(ra)
ra− ra

= +∞,

as N → ∞, which contradicts the boundedness of Sl(a, VεN(a), WεN(a)) shown in Lemma
9. Therefore, we have shown by contradiction that (ρ + λ)V(a) − λW(a) > U1(ra). By
the continuity of Sl in E0, we obtain the limit (30).

Since 0 < Sl (a, VεN (a) , WεN (a)) < U′0 (ra) + ρ
λU′1 (ra) < U′0 (ra1) +

ρ
λU′1 (ra1), by the

Dominated Convergence Theorem, we can take the limit and conclude that

W (a1)−W (a2) =

a2ˆ

a1

Sl (a, V (a) , W (a)) da. (31)

In addition, Rl, Sl are continuous over E0, therefore (29) and (31) imply that (V, W) is
a solution to ODE (20) over (a0, a0 + ω0]; this immediately implies that (9) holds for all
a ∈ (a0, a0 + ω0].

Next we show that (9) holds at a = a0. We showed that V′(a0) = Rl (a0, V (a0) , W (a0)),
so equation (9a) holds at a = a0. Since (V(a0), W(a0)) = limN→∞(VεN(a0), WεN(a0)) =(
V(a0), W(a0)

)
this implies that V′(a0) = U′1(ra0). Since V′(a0) = U′1(ra0), this gives

ĉ(a0) = ra0, and so equation (9b) holds.
Having established the existence of (V, W), we turn to showing Properties 1) and 2).
Property 1: Notice that the right derivative of V at a0, V′(a0) = Rl

(
a0, V(a0), W(a0)

)
=

U′1(ra0) > V̄′(a0), by Lemma 5. Together with V(a0) = V(a0), we have V(a) > V(a) in
a neighborhood to the right of a0. Restricting ω so that a0 + ω lies in this neighborhood,
we obtain the first property in Lemma 1.

Property 2: Because ĉ(a) = (U′1)
−1 (V′(a)) and lima↓a0 V′(a) = lima↓a0 Rl(a, V(a), W(a)) =

U′1(ra0), lima↓a0 ĉ(a) = ra0.
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By (26) in Lemma 4,

ĉ′(a) =
1

U′′1 (ĉ(a))
(ρ + λ− r)V′ (a)− λW ′ (a)

ra− ĉ(a)
.

From the derivation (34) in Lemma 9,

W ′(a) = lim
ε→0

W ′ε(a) ≤ lim
ε→0

(
U0(ra) +

ρ

λ
U′1(ra)− ρ

λ
V′ε(a)

)
,

and V′(a) = limε→0 V′ε(a). Therefore

ĉ′(a) ≥ 1
U′′1 (ĉ(a))

limε→0 ((2ρ + λ− r)V′ε(a)− λU0(ra)− ρU′1(ra))
ra− ĉ(a)

.

Because ĉ(a)→ ra0 as a→ a0, lima→a0 (ra− ĉ(a)) = 0. Moreover,

lim
(a,ε)→(a0,0)

(
(2ρ + λ− r)V′ε(a)− λU0(ra)− ρU′1(ra)

)
= (ρ + λ− r)U′1(ra0)−λU′0(ra0) > 0,

where the last inequality comes from the fact that

U′0(ra0)

U′1(ra0)
= β(ra0) <

ρ

r

(
λ + ρ− r

λ

)
≤ λ + ρ− r

λ
,

if r ≥ ρ and
U′0(ra0)

U′1(ra0)
= β(ra0) ≤ 1 <

ρ + λ− r
λ

,

if r < ρ. As a result, lima→a0 ĉ′(a) = +∞. We have established the second property in
Lemma 1.

C.2 Supporting Results for Lemma 1

The proof of Lemma 1 given above draws on the following results.
The first lemma below shows that there exists ω > 0 and ε such that for each ε ∈ (0, ε),

the solution (Vε, Wε) to ODE (20) are defined over [a0, a0 + ω] and Vε(a) > V(a). The
proof of this lemma uses Lemma 8 that follow.

Lemma 7. There exist ω > 0 and ε̄ > 0 such that for every ε ∈ (0, ε̄), (Vε (a) , Wε (a))
constructed in the proof of Lemma 1 is defined on [a0, a0 + ω]. Moreover, Vε(a) > V(a) for all
a ∈ (a0, a0 + ω] . Lastly, there exists ω0 < ω such that for each a ∈ (a0, a0 + ω0] , there exist
εa, γa > 0 such that Vε(a) > V(a) + γa for all 0 < ε < εa.
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Proof. Let ε̄1 = 1
λ (U1(∞)−U1(ra0)) > 0. For 0 < ε < ε̄1, let [a0, ãε) denote the (right)

maximal interval of existence for (Vε, Wε).35 Lemma 8 shows that if ãε < ∞ then

(ãε, Vε(ãε), Wε(ãε)) ∈ Es.

In addition, Vε (ãε) ≤ V (ãε).
Because Rl is continuous,

lim
ε→0

Rl (a0, Vε(a0), Wε(a0)) = Rl
(
a0, V(a0), W(a0)

)
= U′1(ra0) > V′(a0),

where the last inequality is an application of Lemma 5 at a0. Therefore, there exists ε̄2 > 0,
such that V′ε(a0) = Rl (a0, Vε(a0), Wε(a0)) > V′(a0) for 0 < ε < ε̄2. In this case, Vε(a) >
V(a) in some neighborhood to the right of a0.

For 0 < ε < min (ε̄1, ε̄2), let

āε = sup
{

a ∈ (a0, ãε) : Vε(a′) > V̄(a′) for all a′ ∈ (a0, a)
}

.

Because Vε(a) > V(a) in some neighborhood to the right of a0, as shown above, āε > a0.
We show by contradiction that there exist ω > 0 and 0 < ε̄ < min(ε̄1, ε̄2), such that

āε > a0 +ω for all ε < ε̄. Assume that this is not true, then there exists a sequence εN → 0
such that limN→∞ āεN = a0.

Because VεN is continuous, VεN (āεN) ≥ V(āεN) (otherwise, VεN(a) < V(a) in the some
neighborhood to the left of āεN , which contradicts the definition of āε). If VεN (āεN) >

V(āεN), then āεN < ãεN , because if ãεN < ∞ then VεN (ãεN) ≤ V (ãεN) as shown in Lemma
8. This also contradicts the definition of āεN , because VεN(a) is defined and is strictly
greater than V(a) in a neighborhood of āεN . Therefore VεN (āεN) = V (āεN).

By the Mean Value Theorem, there exists a∗εN
∈ [a0, āεN ] such that

VεN (āεN)−VεN (a0)

āεN − a0
= V′εN

(
a∗εN

)
=

V (āεN)−V (a0)

āεN − a0
(32)

and by the definition of Vε, Wε:

V′εN

(
a∗εN

)
= Rl

(
a∗εN

, VεN

(
a∗εN

)
, WεN

(
a∗εN

))
.

35The definition of the maximal interval of existence is standard in the ODE literature. See, for example,
Hartman (2002).
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By the monotonicity of Vε and Wε shown in Lemma 9,

V (a0) < VεN

(
a∗εN

)
< V (āεN) ,

and
WεN (a0) = W (a0)− εN < WεN

(
a∗εN

)
.

Moreover, from the upper bound on W ′ε shown in Lemma 9 (using VεN(a) ≥ V(a) for
a ∈ (a0, āεN) ):

WεN

(
a∗εN

)
≤WεN (a0) +

(
U′0 (ra0) +

ρ

λ
U′1 (ra0)

) (
a∗εN
− a0

)
.

Besides, by the contradiction assumption, limN→∞ a∗εN
= limN→∞ āεN = a0. Therefore, by

the Squeeze Principle, using the four inequalities above, we obtain

lim
N→∞

VεN

(
a∗εN

)
= V (a0)

lim
N→∞

WεN

(
a∗εN

)
= W (a0) .

Thus, together with the continuity of Rl and (32), we obtain

lim
N→∞

Rl (a∗ε , Vε (a∗ε) , Wε (a∗ε)) = Rl
(
a0, V (a0) , W (a0)

)
= U′1 (ra0)

= lim
N→∞

V (āεN)−V (a0)

āεN − a0
= V′ (a0) .

This leads to the desired contradiction because Lemma 5 for a = a0 implies that V′(a0) <

U′1(ra0).
Finally, we show the last property by contradiction. Assume that it does not hold.

Then there exists a sequence aN → a0 such that for each N, there exists a sequence εN,M →
0 such that VεN,M(aN)→ V(aN). By choosing M sufficiently high, we have 0 < εN,M < 1

N
and ∣∣∣∣∣VεN,M(aN)−V(aN)

aN − a0

∣∣∣∣∣ < 1
N

.

By the Mean Value Theorem, there exists ãN ∈ [a0, aN ] such that

VεN,M(aN)−V(aN)

aN − a0
=

VεN,M(aN)−VεN,M(a0) + VεN,M(a0)−V(aN)

aN − a0

= V′εN,M
(ãN,M)−V′ (ãN,M) .
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Therefore ∣∣∣V′εN,M
(ãN,M)−V′ (ãN,M)

∣∣∣ < 1
N

. (33)

However,
V′εN,M

(ãN,M) = Rl
(
ãN,M, VεN,M(ãN,M), WεN,M(ãN,M)

)
,

and by Lemma 9, as N, M→ ∞ VεN,M(ãN,M)→ V(a0) and WεN,M(ãN,M)→ W(a0). There-
fore by the continuity of Rl,

V′εN,M
(ãN,M)→ Rl

(
a0, V(a0), W(a0)

)
= U′1(ra0).

Because ãN,M → a0

V′ (ãN,M)→ V′(a0).

Combining the last two limits with (33), we have U′1(ra0) = V′(a0), which contradicts
condition (27) for a = a0 that U′1(ra0) > V′(a0). Therefore by contradiction, the last
property holds.

Lemma 8. Consider the (right) maximal interval of existence, [a0, ã) for the solution (Vε, Wε)

to the ODE (20) with the initial condition (28) and 0 ≤ ε < 1
λ (U1(∞)−U1(ra0)). If ã < ∞,

then lima↑ã Vε(a) = V(ã) and lima↑ã Wε(a) = Wε(ã) and (ã, Vε(ã), Wε(ã)) ∈ Es. In addition,
Vε (ã) ≤ V (ã).

Proof. By Lemma 9, V′ε(a), W ′ε(a) > 0. Therefore, the limits lima↑ã Vε(a) = Vε(ã) and
lima↑ã Wε(a) = Wε(ã) exist. In addition, since V′ε(a) = U′1(ĉε(a)) < U′1(ra), Vε(ã) <

Vε(a0) +
´ ã

a0
U′1(ra)da < ∞ and Wε(ã) ≤ (ρ+λ)Vε(ã)−U1(rã)

λ < ∞. By Hartman (2002, The-
orem 3.1), (ã,Vε(ã), Wε(ã)) must lie in the boundary of E0, i.e. Case 1: (ρ + λ)Vε (ã) −
λWε (ã) = U1(∞) or Case 2: (ρ + λ)Vε (ã)− λWε (ã) = U1(rã). We first rule out Case 1
by showing that (ρ + λ)Vε (ã)− λWε (ã) < U1(∞).

If U1(∞) = ∞, this is obvious. Now if U1(∞) < ∞. Let a(t) denote the solution to the
ODE, a(0) = ã and da(t)

dt = ra(t)− ĉε(a(t)) where ĉε(a) = (U′1)
−1 (Rl(a, Vε(a), Wε(a)) >

ra. Consider the derivative:

d
(

e−(ρ+λ)tVε(a(t))
)

dt
=e−(ρ+λ)t (−(ρ + λ)Vε(a(t)) + V′ε(a(t))(ra(t)− ĉε(a(t)))

)
=e−(ρ+λ)t (U1(ĉε(a(t))) + λWε(a(t))) ,

where the second equality comes from the fact that Vε is the solution of ODE (20). Let T
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denote the time at which a(t) reaches a0 (T can be +∞), then

Vε(ã) =
ˆ T

0
e−(ρ+λ)t(U1(ĉε(a(t))) + λWε(a(t)))dt + e−(ρ+λ)TV(a0).

Notice that, by Lemma 9, Wε(a) is strictly increasing in a and at is strictly decreasing in t
because ĉε(a(t)) > ra(t). Therefore Wε(a(t)) < Wε(a(0)) = Wε(ã). This implies

Vε(ã) =<

ˆ T

0
e−(ρ+λ)t(U1(∞) + λWε(ã))dt + e−(ρ+λ)TV(a0)

= (1− e−(ρ+λ)T)
1

ρ + λ
U1(∞) +

λ

ρ + λ
(1− e−(ρ+λ)T)Wε(ã) + e−(ρ+λ)TV(a0).

By the definition of V(a),

V(a0) =
1

ρ + λ
U1(ra0) +

λ

ρ + λ
W(a0) =

1
ρ + λ

U1(ra0) +
λ

ρ + λ
(Wε(a0) + ε)

<
1

ρ + λ
U1(∞) +

λ

ρ + λ
Wε(a0),

since ε < 1
λ (U1(∞)−U1(ra0)). Thus

Vε(ã) < (1− e−(ρ+λ)T)
1

ρ + λ
U1(∞) +

λ

ρ + λ
(1− e−(ρ+λ)T)Wε(ã) + e−(ρ+λ)TV(a0)

< (1− e−(ρ+λ)T)
1

ρ + λ
U1(∞) +

λ

ρ + λ
(1− e−(ρ+λ)T)Wε(ã)

+ e−(ρ+λ)T
(

1
ρ + λ

U1(∞) +
λ

ρ + λ
Wε(ã)

)
=

1
ρ + λ

U1(∞) +
λ

ρ + λ
Wε(ã).

Therefore (ρ + λ)Vε(ã) < U1(∞) + λWε(ã) which is equivalent to the desired inequality.
As we have ruled out Case 1, we must be in Case 2, i.e. (ã, V(ã), W(ã)) ∈ Es.
Next, we show by contradiction that Vε (ã) ≤ V (ã). Assume to the contrary that

Vε (ã) > V (ã) . Then Wε (ã) > W (ã) because (ρ + λ)V (ã)− λW (ã) = U1(rã).
Since Rl is continuous over Ē0, lima↑ã V′ε(a) = U′1(rã) and lima↑ã ĉε(a) = rã. Therefore

lim
a↑ã

W ′ε(a) = lim
a↑ã

U0(ĉε(a))− ρWε(a)
ĉε(a)− ra

=
U0(rã)− ρWε(ã)

rã− rã
= −∞,

which contradicts the property that W ′ε > 0 established in Lemma 9. So by contradiction,
Wε (ã) ≤W (ã), and Vε (ã) ≤ V (ã).

The following lemma establishes the bounds on the derivative of Vε and Wε that are
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important to apply the Dominated Convergence Theorem in Lemma 1. To prove this
result, we use Lemma 10.

Lemma 9. Consider the solution (Vε, Wε) to ODE (20) with the initial condition (28) defined
over some interval [a0, ā]. We have 0 < V′ε (a) ≤ U′1 (ra) and 0 < W ′ε (a) for all a ∈ [a0, ā].
Moreover, if Vε (a) ≥ V (a), W ′ε (a) < U′0 (ra) + ρ

λU′1 (ra) .

Proof. Since ĉε (a) > ra and V′ε (a) = U′1 (ĉε (a)), we have 0 < V′ε (a) ≤ U′1 (ra) due to the
concavity of U1. If r ≥ ρ, from Lemma 10, Wε (a) < W (a). Therefore,

W ′ε (a) =
U0 (ĉε (a))− ρWε (a)

ĉε (a)− ra
>

U0 (ra)− ρW (a)
ĉε (a)− ra

= 0.

If r < ρ, Lemma 10 immediately implies that W ′ε(a) > 0.
To show the upper bound on W ′ε (a) when Vε (a) ≥ V (a), we use the facts that

(ρ + λ)Vε (a)− λWε (a) = U1 (ĉε (a)) + V′ε (a) (ra− ĉε (a))

and
(ρ + λ)V (a)− λW (a) = U1 (ra) .

By subtracting the two equalities side by side and rearranging,

λ
(
W (a)−Wε (a)

)
= − (ρ + λ)

(
Vε (a)−V (a)

)
+ U1 (ĉε (a))−U1 (ra) + V′ε (a) (ra− ĉε (a))

≤ U1 (ĉε (a))−U1 (ra) + V′ε (a) (ra− ĉε (a)) .

where the last inequality comes from Vε (a) ≥ V (a). It follows that

W ′ε (a) =
U0 (ĉε (a))− ρWε (a)

ĉε (a)− ra
=

U0 (ĉε (a))−U0 (ra) + ρ
(
W (a)−Wε (a)

)
ĉε (a)− ra

≤
U0 (ĉε (a))−U0 (ra) + ρ

λ (U1 (ĉε (a))−U1 (ra) + V′ε (a) (ra− ĉε (a)))
ĉε (a)− ra

=
U0 (ĉε (a))−U0 (ra) + ρ

λ (U1 (ĉε (a))−U1 (ra))
ĉε (a)− ra

− ρ

λ
V′ε (a)

<
U0 (ĉε (a))−U0 (ra)

ĉε (a)− ra
+

ρ

λ

U1 (ĉε (a))−U1 (ra)
ĉε (a)− ra

< U′0 (ra) +
ρ

λ
U′1 (ra) , (34)

where the last inequality comes from the concavity of U1 and U0 and ĉε(a) > ra.
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Lemma 10. Consider the solution (Vε, Wε) to ODE (20) with the initial condition (28) defined
over some interval [a0, ā]. We have

1) If r ≥ ρ, Wε (a) < W (a) ∀a > a0.
2) If r < ρ, Wε (a) < U0 (ĉε(a)) ∀a > a0.

Proof. 1) r ≥ ρ: We use Lemma 6 to show property 1). We just need to verify conditions
1) and 2) in Lemma 6. First by definition, Wε(a0) < W(a0), so condition 1) Lemma 6 is
satisfied. For condition 2) in Lemma 6, we show that if Wε (a) = W (a), for some ∀a > a0

then W ′ε(a) < W ′(a). Indeed,

W ′ε (a) =
U0 (ĉε (a))− ρWε (a)

ĉε (a)− ra
=

U0 (ĉε (a))− ρW (a)
ĉε (a)− ra

=
U0 (ĉε (a))−U0 (ra)

ĉε (a)− ra
< U′0 (ra) ,

where the last inequality comes from the fact that U0 is strictly concave and ĉε (a) > ra.
On the other hand, we also have

W ′ (a) =
r
ρ

U′0 (ra) ≥ U′0(ra),

because r ≥ ρ. Therefore, W ′ (a) > W ′ε (a).
2) r < ρ: We also use Lemma 6 to show property 2). By the definition of Vε, Wε:

Wε(a0) = U0(ra0)− ε < U0(ra0) < U0(ĉε(a0)).

So condition 1) in Lemma 6 is satisfied. Now we show that condition 2) in Lemma 6 is also
satisfied, i.e. if at some a > a0, Wε(a) = U0(ĉε(a)), we show that W ′ε(a) < d

da (U
′
0(ĉε(a))).

Indeed,

W ′ε (a) =
U0 (ĉε (a))− ρWε (a)

ĉε (a)− ra
= 0.

Moreover,
d
da

(U0(ĉε(a))) = U′0(ĉε(a))ĉ′ε(a).

By (26), in addition to W ′ε (a) = 0,

ĉ′ε(a) =
1

U′′1 (ĉε(a))
(ρ + λ− r)V′ε (a)− λW ′ε (a)

ra− ĉε(a)

=
1

−U′′1 (ĉε(a))
(ρ + λ− r)U′1 (ĉε(a))

ĉε(a)− ra
> 0.
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Therefore W ′ε(a) = 0 < d
da (U

′
0(ĉε(a))).

D Proof of Theorem 1

Assume σ 6= 1; the case with σ = 1 is similar. To proceed, we guess

V(a) = v̄
a1−σ

1− σ
W(a) = w̄

a1−σ

1− σ
,

and find v̄, w̄ to verify that V, W satisfy (9).36 To show the uniqueness of the linear equi-
librium, notice that in any linear equilibrium, V, W must have the functional form above.

Given the conjectured functional form, the first-order condition (9a) implies

ĉ (a) = ψa,

where ψ = v̄−
1
σ . Plugging this back into (9a) gives

(ρ + λ) v̄
a1−σ

1− σ
=

1
1− σ

((
v̄a−σ

)− 1
σ

)1−σ

+
(
v̄a−σ

) (
ra−

(
v̄a−σ

)− 1
σ

)
+ λw̄

a1−σ

1− σ

=
σ

1− σ

(
v̄a−σ

)− 1−σ
σ +

(
v̄a−σ

)
ra + λw̄

a1−σ

1− σ
.

Canceling the a1−σ

1−σ terms and rearranging we obtain

(λ + ∆) v̄ = σv̄1− 1
σ + λw̄, (35)

where ∆ is defined by
∆ ≡ ρ− r(1− σ) > 0, (36)

where the inequality comes from the restriction that value functions V, W are finite.
From the second equation in system (9) we have

ρw̄
a1−σ

1− σ
= β̄

1
1− σ

((
v̄a−σ

)− 1
σ

)1−σ

+
(
w̄a−σ

) (
ra−

(
v̄a−σ

)− 1
σ

)
.

36If σ = 1

V(a) =Av +
1

ρ + λ

(
1 + λ

β̄

ρ

)
log a

W(a) =Aw +
β̄

ρ
log a.
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Canceling the a1−σ

1−σ terms gives

w̄ =
β̄v̄1− 1

σ

∆ + (1− σ) v̄−
1
σ

. (37)

Combining equations (35) and (37), we obtain

λ + ∆ = σv̄−
1
σ + λβ̄

β̄v̄−
1
σ

∆ + (1− σ) v̄−
1
σ

,

a single equation in v̄. Define ψ ≡ v̄−
1
σ . We then have a quadratic equation in ψ:

P (ψ) ≡ Q2ψ2 + Q1ψ + Q0 = 0, (38)

with

Q2 ≡ (1− σ) σ

Q1 ≡
(
σ + β̄− 1

)
λ + ∆ (2σ− 1)

Q0 ≡ − (λ + ∆)∆.

If σ < 1 then Q2 > 0 and Q0 < 0. This implies that there exists a unique strictly
positive ψ that is the solution to (38). The implied consumption rule yields finite utility.

If σ > 1 we have that Q2 < 0. This implies that

P
(

∆
σ− 1

)
=− σ

σ− 1
∆2 +

((
σ + β̄− 1

)
λ + ∆ (2σ− 1)

) ∆
σ− 1

− (λ + ∆)∆

=
β̄

σ− 1
λ

∆
σ− 1

> 0.

Therefore, there exists two solutions 0 < ψ1 < ∆
σ−1 < ψ2 such that P(ψ) = 0. To know

which root corresponds to a solution to (9), we observe that ct = ψat so ȧt = (r − ψ)at

or at = e(r−ψ)ta0. Thus V ∝
´

e−ρte(1−σ)(r−ψ)tdt =
´ ∞

0 e(−∆+ψ(σ−1))tdt. For V to finite, we
require ψ < ∆

σ−1 . So only the smaller root to (38), ψ1, yields finite value functions, and
corresponds to a solution to (9).

Lastly, the derivations above directly imply the uniqueness of the linear equilibrium.
Now, we turn to the second part of the theorem. Given that ĉ(a) = ψa, ĉ(a) < ra if and

only if ψ < r. For σ < 1 we have r > 0 so that 0 < ψ < r if and only if P(r) > P(ψ) = 0.
For σ > 1, because ρ > 0, r < ρ−r(1−σ)

σ−1 = ∆
σ−1 . Given that P( ∆

σ−1) > 0 and P(ψ1) = 0,
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r > ψ if and only if P(r) > P(ψ) = 0. Thus, we need to establish that P (r) > 0. This is
equivalent to

β >
ρ

r

(
1− r− ρ

λ

)
= β̂.

Similarly, ĉ(a) > ra, i.e. ψ > r if and only if β̄ < β̂.

E Proofs for Dissaving Equilibria

E.1 Proof of Theorem 2

Once we verify the differential system (9) all the equilibrium conditions in Subsection 3.1
are met. By Lemma 5, we have V′(a) = U′1(ra), therefore ĉ(a) = ra and equations (9) are
satisfied by the definitions of V and W.

E.2 Proof of Theorem 3

We prove this theorem by construction.
Lemma 1 shows that starting from a0 = a, ODE (20) with the boundary condition

(V(a0), W(a0)) = (V(a0), W(a0))

admits a solution defined over [a, a + ω) for some ω > 0. Let (V0, W0) denote this solu-
tion. In addition, let [a, a∗) be the right maximal interval of existence for this solution. It is
immediate that a∗ ≥ a+ω. If a∗ = ∞, we have found a (continuous) Markov equilibrium,
with (V, W) = (V0, W0).

If a∗ < ∞ , following the steps in the proof of Lemma 8, we can show that

lim
a↑a∗

V0(a) ≤ V(a∗).

Moreover, as shown in Lemma 1, V0(a) > V̄(a) in a neighborhood to the right of a. Thus,
by the Intermediate Value Theorem, there exists a1 ∈ (a, a∗] such that V0(a1) = V(a1).

Starting from a1, we apply Lemma 1 again with a1 standing for a0 and construct the a
solution (V1, W1) to ODE (20) with the boundary condition

(V1(a1), W1(a1)) = (V(a1), W(a1)).

Following this procedure, we obtain a sequence a0 = a < a1 < ... with limn→∞ an =
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+∞ and a sequence of value functions (Vn, Wn) defined over [an, an+1] with the boundary
condition

(Vn(an), Wn(an)) = (V(an), W(an)).

The divergence of {an} is shown in Lemma 11 below.
We define the value and consumption functions (V, W, ĉ) over the whole interval

[a, ∞) as
(V(a), W(a), ĉ) = (Vn(a), Wn(a), ĉn(a)) for a ∈ [an, an+1) .

We verify that this construction satisfies all the conditions in Subsection 3.1 for a
Markov equilibrium. Conditions (a)-(e) are satisfied by the construction of (V, W). Con-
dition (f) on the existence of at is satisfied because by construction ĉ(a) is differentiable
and ĉ(a) > ra outside steady-states {an}. Indeed, if a(0) = an then a(t) ≡ an for all t ≥ 0
satisfies ODE (10) for all t ≥ 0. If a(0) ∈ (an, an+1), the solution a(t) to ODE (10) with
the initial condition a(t) = a(0) exists and is unique over a small interval [0, ε] because
ĉ(a) is continuously differentiable over (an, an+1). In addition, because ĉ(a) > ra, a(t) is
strictly decreasing in t. Let [0, T) denote the right maximal interval of existence for a(t)
to ODE (10). If T = ∞, we obtain the existence of a(t) to ODE (10) over the whole time
interval [0, ∞). If T < ∞ (in the Online Appendix we show that this is always the case),
by Hartman (2002, Theorem 3.1), a(T) = an. Defining a(t) = an for all t ≥ T, we also
obtain the existence of a(t) to ODE (10) over the whole time interval [0, ∞). Finally, the
limits limt→∞ e−ρtV(at) and limt→t e−ρtW(at) are both equal to 0 because ȧt ≤ 0, V and
W are increasing over [an, an+1) and at ≥ an.

Lemma 11. If the sequence {an} constructed in Theorem 3 has an infinite number of elements
then

lim
n→∞

an = +∞.

Proof. The result is shown by contradiction. Assume that the sequence is infinite and
is bounded above. By construction {an}∞

=0 is strictly increasing, thus the sequence con-
verges to some a∞. We assume by contradiction that a∞ is finite. By construction, Vn (an) =

V (an), W (an) = W (an) and Vn (an+1) = V (an+1) and Vn(a) > V̄(a) for a ∈ (an, an+1).
We can then apply Lemma 9 to show that 0 ≤ V′n (a) ≤ U′1 (ra) and 0 ≤ W ′n (a) ≤
U′0 (ra) + ρ

λU′1 (ra). By the Mean Value Theorem, there exists a∗n ∈ [an, an+1] such that

V′n (a∗n) =
Vn (an+1)−Vn (an)

an+1 − an
=

V (an+1)−V (an)

an+1 − an
.
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Since {an} converges to a∞,
lim

n→∞
V′n (a∗n) = V′ (a∞) . (39)

On the other hand V′n (a∗n) = Rl (a∗n, Vn (a∗n) , Wn (a∗n)). Since V (an) ≤ Vn (a∗n) ≤ V (an+1)

and W (an) ≤ Wn (a∗n) ≤ W (a∗n) +
(
U′0 (ran) +

ρ
λU′1 (ran)

)
(an+1 − an) and Rl is continu-

ous, by the Squeeze Principle,

lim
n→∞

V′n (a∗n) = lim
i→∞

Rl (a∗n, Vn (a∗n) , Wn (a∗n))

= lim
i→∞

Rl
(
a∞, V (a∞) , W (a∞)

)
= U′1 (ra∞) . (40)

The desired contradiction follows from the fact that (39) and (40) cannot happen at the
same time given that V′ (a∞) < U′1(ra∞) by condition (27) at a = a∞.

F Proofs for Saving Equilibria

F.1 Proof of Theorem 4

We prove this theorem by construction.
Depending on condition (a) or (b) in Assumption 2, we define an wealth level au,

and the value functions (Vu, Wu) over [au, ∞) satisfying the differential equations (9) as
following.

Case 1: Assumption 2a holds.
Without loss of generality we assume that c̄ is the minimum consumption level such

that Assumption 2a is satisfied, i.e. β(c) =
U′0(c)
U′1(c)

< 1 for all c < c̄ and β(c) = 1 for all
c ≥ c̄. Therefore there exists ū such that U1(c) = U0(c) + ū for all c ≥ c̄. In Subsection
A.3.2, we show that there exists au such that ĉ0(a) > c̄ for a > au and ĉ0(au) = c̄. For
a ≥ au, let

(Vu(a), Wu(a)) =
(

Vsp(a), Vsp(a)− ū
ρ + λ

)
.

As shown in Subsection A.3.2, (Vu, Wu) satisfies the differential equations (9), with ĉu =

ĉ0. Moreover, ĉ′u(a) > 0 and, because r > ρ, ĉu(a) < ra.
Case 2: Assumption 2b holds.
In Theorem 1, we show that for a ≥ au, (Vu(a), Wu(a)) =

(
v̄ a1−σ

1−σ , w̄ a1−σ

1−σ

)
and ĉu(a) =

φa satisfy the differential equations (9) over [au, ∞) where and au = c̄
φ . It is immediate

that ĉ′u(a) = φ > 0. Moreover, because β̄ > β̂, φ < r, so ĉu(a) < ra.
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Having determined the value and policy functions at and beyond au, we construct the
value and policy functions below au. Noticing that the initial values (au, Vu(au), Wu(au)) ∈
E, a solution (Vd, Wd) to the ODE (21) with the initial condition

(Vd(au), Wd(au)) = (Vu(au), Wu(au))

exists and is unique locally over an interval (au − ε, au + ε).37 Let (â, au + ε) denote the
(left) maximal interval of existence for this solution. We will show that â < c̄

r .
If â = 0, this is immediate. If â > 0, by Lemma 12, V′d(a), W ′d(a) > 0 for all a > â.

So the limits lima↓â Vd(a) = Vd(â) and lima↓â Wd(a) = Wd(â) exist.38 By Hartman (2002,
Theorem 3.1), (â, Vd(â), Wd(â)) ∈ Es. Therefore ĉd(â) = râ. As shown in Lemma 12,
V′′d (a) < 0. This implies ĉ′d(a) = V′′d (a)

U′′1 (ĉd(a)) > 0. Thus,

râ = ĉd(â) < ĉd(au) = c̄.

So â < c̄
r .

Given the value and policy functions (Vu, Wu, ĉu) and (Vd, Wd, ĉd), for a > â, we define
the value and policy functions (V, W, ĉ) over [a, ∞) as follows

(V, W, ĉ) =

(Vd, Wd, ĉd) if a ≤ a < au

(Vu, Wu, ĉu) if a ≥ au.

As in the proof of Theorem 3, we can verify that this construction satisfies all the condi-
tions in Subsection 3.1 for a Markov equilibrium. In addition, ĉ(a) < ra and ĉ′(a) > 0.

If â > 0, Lemma 14 below shows that (V(â), W(â)) = (V̄(â), W̄(â)) and ĉ(â) = râ.

37Because of the uniqueness of the solution, (Vd(a), Wd(a)) = (Vu(a), Wu(a)) for all a ∈ [au, au + ε).
38We also show that lima↓â Wd(a) > −∞ and lima↓â Vd(a) > −∞. This is immediate if U1 is bounded

from below, and consequently U0 is bounded from below by some u, because β(c) ≤ 1. Because W ′d(a) > 0
and ĉd(a) < ra for a > â, (9b) implies that Wd(a) > 1

ρ u for a > â. If U1 is unbounded from below, we make

the additional technical assumption that σ = infc σ(U1, c) > 1− ρ
r . We have

ĉ′d(a) =
(ρ + λ− r)V′d(a)− λW ′d(a)

U′′1 (ĉd(a))(ra− ĉd(a))
<

(ρ− r)V′d(a)
U′′1 (ĉd(a))(ra− ĉd(a))

=
(ρ− r)U′1(ĉd(a))

U′′1 (ĉd(a))(ra− ĉd(a))
<

r− ρ

σ

ĉd(a)
ra− ĉd(a)

,

because W ′d(a) < V′d(a) as shown in Lemma 12. Therefore ĉd(a) > c∗(a) > 0 where c∗(a) is the solution to

the ODE c∗′(a) = r−ρ
σ

c∗(a)
ra−c∗(a) and c∗(au) = ĉd(au) < rau (the closed form solution for c∗(a) is a special case

of the solution to the IG limit provided in the Online Appendix). Therefore, lima↓â Wd(a) > 1
ρ U0(c∗(â)) >

−∞ for all a ≥ â. Finally, lima↓â Vd(a) >
λ
ρ U0(c∗(â))+U1(â)

ρ+λ > −∞.

62



In addition, when β(c) is increasing, Lemma 15 shows that V(a) > V̄(a) for all a > â.
Therefore, V′(â) = U′1(râ) ≥ V̄′(â). By Lemma 5, β(râ) ≤ β̂(r, ρ, λ).

F.2 Supporting Results for Proof of Theorem 4

Lemma 12. Assume ρ < r. Consider a solution (V, W) to ODE (21) defined over (â, au] with
the initial condition (V(au), W(au) = (Vu(au), Wu(au)) with au, Vu, Wu defined in Subsection
F.1 (depending on Assumption 2a or 2b). Then for all a < au

1) (ρ + λ− r)V′ (a)− λW ′ (a) < 0 and W ′(a) > 0
2) V′′(a) < 0
3) V′ (a) > W ′ (a).

Proof. We prove this lemma in two steps. Step 1: If properties 1),2) and 3) hold in a
neighborhood to the left of au then they hold for all a < â. Step 2: Verify that properties
1),2) and 3) hold in a neighborhood to the left of au separately under Assumption 2a or
2b.

Step 1: Assume that properties 1),2) and 3) hold in a neighborhood to the left of au, We
show that 1),2), and 3) hold for all a < au.

We prove 1) separately for two cases: Case 1: ρ + λ− r > 0 and Case 2: ρ + λ− r ≤ 0.
Case 1: By construction, V′(a) = U′1(ĉ(a)) > 0. Therefore if (ρ + λ− r)V′(a) −

λW ′(a) < 0, W ′(a) > 0. We just need to show the first inequality.
We prove this inequality using Lemma 6 (Variation 1). Condition 1) of Lemma 6 (at

au) is satisfied by assumption. We just need to verify Condition 2) of Lemma 6, i.e. if there
exists ă < au such that

(ρ + λ− r)V′ (ă)− λW ′ (ă) = 0. (41)

then
(ρ + λ− r)V′′ (ă) > λW ′′ (ă) .

By Lemma 4,
(ρ + λ− r)V′ (a)− λW ′ (a) = V′′ (a) (ra− ĉ (a)) . (42)

At a = ă, because of (41), and ră > ĉ(ă), V′′ (ă) = 0.
Differentiating the second equation, (9b), in system (9), and using (26), we have

ρW ′ (a) =
U′0 (ĉ (a))
U′′1 (ĉ (a))

V′′ (a) (43)

+ W ′′ (a) (ra− ĉ (a)) + W ′ (a)
(

r− 1
U′′1 (ĉ (a))

V′′ (a)
)

.
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At a = ă, using the previous result that V′′(ă) = 0, and rearranging, we arrive at

W ′′ (ă) (ră− ĉ (ă)) =(ρ− r)W ′ (ă) .

Because, W ′(ă) = (ρ+λ−r)V′(ă)
λ > 0 and ρ− r < 0, the right hand side is strictly negative.

Moreover ra− ĉ(a) > 0, therefore W ′′(ă) < 0. Thus,

W ′′(ă) < 0 = V′′(ă),

i.e. we have verified the second condition in Lemma 6. Given that the two conditions of
Lemma 6 are satisfied, this lemma implies the first property.

Case 2: Because ρ+ λ ≤ r and V′(a) > 0, (ρ + λ− r)V′(a)− λW ′(a) < 0 if W ′(a) > 0.
Therefore we just need to show the last inequality. Again we prove this inequality using
Lemma 6 (Variation 1). Condition 1) of Lemma 6 (at au) is shown in the proof of Theorem
4.We now verify Condition 2). If there exists ă < au such that W ′ (ă) = 0 we show that
W ′′(ă) < 0. From equation (42) at ă, (ρ + λ− r)V′ (ă) = V′′ (â) (ră− ĉ (ă)). This implies
V′′ (ă) < 0. From (43), since W ′(ă) = 0,

0 =
U′0 (ĉ (ă))
U′′1 (ĉ (ă))

V′′ (ă) + W ′′ (ă) (ră− ĉ (ă)) .

Therefore W ′′(ă) < 0. Given that the two conditions of Lemma 6 are satisfied, this lemma
implies W ′(a) > 0 for all a.

The second property immediately follows using (42) and ra− ĉ(a) > 0.
We also prove the third property similarly by using Lemma 6. Condition 1) in Lemma

6 is satisfied. We now verify that condition 2) is also satisfied. Indeed, if there exists
ă < au such that W ′ (ă) = V′ (ă) . By (42), at a = ă,

V′′ (ă) =
(ρ− r)V′(ă)

ră− ĉ(ă)
< 0.

Again by equation (43),

(ră− ĉ (ă))W ′′ (ă) = (ρ− r)W ′ (ă)−
(
U′0 (ĉ (ă))−W ′ (ă)

) 1
U′′1 (ĉ (ă))

V′′ (ă)︸ ︷︷ ︸
<0

> (ρ− r)W ′ (ă) = (ρ− r)V′ (ă) ,

The second line comes from the assumption that W ′ (ă) = V′ (ă) = U′1(ĉ(ă)) > U′0(ĉ(ă))
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(by properties 1) and 2), ĉ′(a) > 0 therefore ĉ(ă) < ĉ(au) = c̄ and that U′1(c) > U′0(c) for
all c < c̄ by Assumption 1). So

W ′′ (ă) >
(ρ− r)V′ (ă)

ră− ĉ (ă)
= V′′ (ă) .

So by Lemma 6, we obtain the third property.
Step 2: We show that properties 1),2) and 3) hold in a neighborhood to the left of au.

We treat the two cases associated with Assumption 2a or 2b separately.
Under Assumption 2b, given the closed form solution given in Appendix D, we show

that properties 1), 2), 3) are satisfied at au in Lemma 13 below. By continuity, properties
1), 2), 3) hold in a neighborhood to the left of au.

Under Assumption 2a. It is easy to verify that properties 1) and 2) are satisfied because
Vsp(a) is strictly concave and W ′u(a) = V′u(a) = V′sp(a) for a ≥ au, and thus V′(au) =

W ′(au) = V′sp(au) > 0 and V′′(au) = V′′sp(au) < 0. By continuity, properties 1) and 2) hold
in a neighborhood to the left of au. Properties 3) is not satisfied at au because V′u(au) =

W ′u(au) so V′(au) = W ′(au) but we show that V′(a) < W ′(a) in some neighborhood to
the left of au.

Indeed, consider the solution (Vε, Wε) to ODE (21) with the initial condition

(Vε(au), Wε(au)) =

(
Vu(au)−

ε

ρ + λ
, Wu(au)−

ε

λ

)
.

Because (au, Vu(au), Wu(au)) ∈ E, by Hartman (2002, Theorem 3.2), there exists ω > 0
such that (Vε, Wε) are defined over, [au −ω, au] and (Vε, Wε) → (V, W) uniformly over
[au −ω, au] as ε→ 0.

It easy to verify that V′ε(au) > W ′ε(au). Indeed, from the initial conditions, we have
ĉε(au) = ĉu(au), and V′u(au) = U′1(ĉu(au)) = U′1(ĉε(au)) = V′ε(au),

W ′ε(au) =
ρ
(
Wu(au)− ε

λ

)
−U0(ĉε(au))

rau − ĉε(au)
<

ρWu(au)−U0(ĉu(au))

rau − ĉu(au)

= W ′u(au) = V′u(au) = V′ε(au).

In addition, when ε sufficiently small, we also have properties 1) and 2) holds for Vε, Wε

at au. Therefore, following the proofs in Step 1 above, we can show that properties
1),2),3) hold for all a ∈ [au −ω, au] for (Vε, Wε). In particular, V′ε(a) > W ′ε(a) for all
a ∈ [au −ω, au].

Now as ε→ 0, (Vε, Wε)→ (V, W). So V′(a) ≥W ′(a) for all a ∈ [au −ω, au]. We show
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by contradiction that V′(a) > W ′(a) for all a ∈ (au −ω, au). Assume to the contrary that
V′(ă) = W ′(ă) for some ă < au. As in Step 1, this implies that V′′(ă) < W ′′(ă) strictly,
because β(ĉ(ă)) < 1 given that ĉ(ă) < ĉ(au) = c̄. Therefore in the right neighborhood of
ă, V′(a) < W ′(a), which contradicts the earlier result that V′(a) ≥ W ′(a). Thus, V′(a) >
W ′(a) for all a ∈ (au −ω, au).

Lemma 13. The linear equilibria in Theorem 1 with β̂ < β̄ < 1 satisfies, for all a > 0
1) (λ + ρ− r)V′(a) < λW ′(a)
2) V′′(a) > 0
3) W ′(a) < V′(a)

Proof. As shown in Theorem 1, because β̄ > β̂, ĉ(a) < ra. By Lemma 4,

(ρ + λ− r)V′ (a)− λW ′ (a) = V′′ (a) (ra− ĉ (a)) .

Because V′′(a) = −v̄σa−σ−1 < 0, and ĉ(a) < ra,

(λ + ρ− r)V′(a)− λW ′(a) < 0.

The second inequality 2) is immediate because V′′(a) = −v̄σa−σ−1 < 0.
The last inequality 3) is equivalent to β̄ψ

∆+(1−σ)ψ
< 1. After algebra manipulation, this

inequality holds if and only if (σ + β̄ − 1)ψ < ∆. This obviously holds if σ + β̄ ≤ 1,
because ∆, ψ > 0. If σ+ β̄ > 1, we show that ψ < ∆

σ+β̄−1 . Indeed, P
(

∆
σ+β̄−1

)
= β̄(1−β̄)

(σ+β̄−1)2 >

0. Therefore, ψ < ∆
σ+β̄−1 .

G Proofs for Poverty Trap Equilibria

G.1 Proof of Theorem 5

We prove this theorem by construction.
As shown in the proof of Theorem 4, there exists a unique solution (Vd, Wd) to ODE

(21) that satisfies (Vd(au), Wd(au)) = (Vu(au), Wu(au)) (with au, Vu, Wu defined differently
under Assumption 2a or 2b) defined over a maximal interval of existence (â, au] , where
â < c̄

r . We also show in the proof of Theorem 4 that Vd, Wd is defined and is continuous at
â, i.e. the limits lima↓â Vd(a) = Vd(â) and lima↓â Wd(a) = Wd(â) exist, and ĉd(â) = râ.

If â ≤ a, let

(V, W, ĉ) =

(Vd, Wd, ĉd) if a ≤ a < â

(Vu, Wu, ĉu) if a ≥ â.
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If a < â, Lemma 14 below shows that Vd(â) = V(â). In addition, Lemma 15 shows
that Vd(a) > V(a) for all a > â. Therefore,

V′d(â) = U′1(râ) ≥ V′(â).

By Lemma 5, β(râ) ≤ β̂.
If β(râ) = β̂. Let ã = min

{
a ≥ a : β(ra) = β̂

}
. Because β is weakly increasing, β(ra) =

β̂ for all a ∈ [ã, â] (Assumption 3). We define Vh, Wh over [ã, ∞) such that

(Vh(a), Wh(a), ĉh) =


(Vu(a), Wu(a), ĉu(a)) if au ≤ a

(Vd(a), Wd(a), ĉd(a)) if â ≤ a < au(
V(a), W(a), ra

)
if ã ≤ a < â.

By Theorems 2 and 4, Vu, Wu satisfy (9) over [ã, ∞). Replacing â by ã if β(râ) = β̂, without
loss of generality, we can assume that β(ra) < β̂ for a < â.

Iteratively, we construct a sequence {ai} starting with a0 = a , and for each i ≥ 0,
ai < â and β(rai) < β̂ and the value and policy functions (Vi, Wi, ĉi) are determined as
following:

Iteration i: Starting from ai < â, because β(rai) < β̂, using Lemma 1, we show
that ODE (20) admits a solution (Vi, Wi), with the initial condition (Vi(ai), Wi(ai)) =(
V(ai), W(ai)

)
, defined over a (right) maximal interval of existence

[
ai, a∗i

)
. Moreover

Vi(a) > V(a) in a neighborhood to right of ai. There are three possibilities:
i-1) a∗i < â. Then following the steps in Lemma 8, we can shows that Vi(a∗i ) ≤ V(a∗i ).

By the Intermediate Value Theorem, there exists ai < ai+1 < â, such that Vi(ai+1) =

V(ai+1) and Vi(a) > V(a) for a ∈ (ai, ai+1). Because ai+1 < â, β(rai+1) < β̂. Go to
iteration i + 1 with ai+1 standing for ai.

i-2) a∗i ≥ â and Vi(a) ≤ V(a) for some a < â. By the Intermediate Value Theorem, there
exists ai ≤ ai+1 < â, such that Vi(ai+1) = V(ai+1) and Vi(a) > V(a) for a ∈ (ai, ai+1). Go
to iteration i + 1 with ai+1 standing for ai.

i-3) a∗i ≥ â and Vi(a) > V(a) for all a < â. We stop the construction.
Following this procedure, we produce a strictly increasing sequence {ai} such that for

each i ≥ 0, ai < â and β(rai) < β̂ and the value functions (Vi, Wi) satisfies (Vi(ai), Wi(ai)) =

(V(ai), V(ai)) and Vi(ai+1) = V(ai+1) and Vi(a) > V(a) for all a ∈ (ai, ai+1). Let

(Vl(a), Wl(a), ĉl) = (Vi(a), Wi(a), ĉi(a)) for a ∈ [ai, ai+1) ,

with an+1 = a∗n if possibility n-3) is reached at some iteration n.
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There are two possible cases:
Case 1: The sequence {ai} is finite, i.e. possibility n-3) is reached at some iteration n:

We obtain a sequence a0 < a1 < ... < an < â.
If a∗n = ∞, we define the value and consumption functions (V, W, ĉ) over the whole

interval [a, ∞) as
(V(a), W(a), ĉ(a)) = (Vl(a), Wl(a), ĉl(a)) .

If a∗n < ∞, following the steps in the proof of Lemma 8, we can show that Vn(a∗n) ≤
V(a∗n).

Therefore, both Vn and Vh are defined over [â, a∗n] and

Vh(â) = V(â) ≤ Vn(â)

Vh(a∗n) ≥ V(a∗n+1) ≥ Vn(a∗n+1).

By the Intermediate Value Theorem, there exists a∗ ∈ [â, a∗n] such that

Vn(a∗) = Vh(a∗).

We define (V, W, ĉ) as

(V, W, ĉ) =

(Vl, Wl, ĉl) if a < a∗

(Vh, Wh, ĉh) if a ≥ a∗.

Case 2: The sequence {ai} is infinite (possibility i-3 is never reached). Then limi→∞ ai =

a∞ ≤ â and β(ra∞) = β̂. Because β(ra) < β̂ for a < â. We have a∞ = â. In this case

(V, W, ĉ) =

(Vl, Wl, ĉl) if a < a∞ = â

(Vh, Wh, ĉh) if a ≥ â.

In all cases we can construct the value and policy functions (V, W, ĉ) over [a, ∞). As in
the proof of Theorem 3, we can verify that this construction satisfies all the conditions
in Subsection 3.1 for a Markov equilibrium. In addition, ĉ(a) < ra for all a ≥ a∗ and
ĉ(a) ≥ ra for all a < a∗.

G.2 Supporting Results for Theorem 5

Lemma 14. Given the definition of Vd and â in the of Theorem 5, if â > 0 then (Vd(â), Wd(â)) =(
V(â), W(â)

)
.
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Proof. As shown in the proof of Theorem 4, if â > 0, (â, Vd(â), Wd(â)) ∈ Es. Therefore
ĉd(â) = râ.

First, we show that Wd(â) ≤W(â). Assume by contradiction that, Wd(â) > W(â), then

W ′d(a) =
ρWd(a)−U0(ĉd(a))

ra− ĉd(a).
−→ ρWd(â)− ρU0(râ)

râ− râ
= +∞

as a approaches â from the right because ĉd(a) → râ. Moreover, by the continuity of Rl,
lima↓â V′d(a) = U′1(râ). This contradicts the property 3) in Lemma 12 that W ′d(a) < V′d(a)
for all au > a > â. Therefore, Wd(â) ≤W(â).

We also show that Wd(â) ≥W(â). Assume by contradiction that, Wd(â) < W(â), then,
similarly to the previous case,

W ′d(a) =
ρWd(a)−U0(ĉd(a))

ra− ĉd(a).
−→ ρWd(â)− ρU0(râ)

râ− râ
= −∞

as a approaches â from the right. This contradicts the property 1) in Lemma 12 that
W ′d(a) > 0 for all a > â. Therefore, Wd(â) ≥W(â).

The two results imply that Wd(â) = W(â). Combining this equality with the fact that
(â, Vd(â), Wd(â)) ∈ Es yields Vd(â) = V(â).

Lemma 15. Given the definition of Vd and â in the proof of Theorem 5, Vd(a) > V(a) for all
a > â.

Proof. Let Ũ(c) ≡ U1(c) + λ
ρ U0(c). By the concavity of U1 and U0, Ũ is also strictly con-

cave. We first show that ra > ĉd(a) > c∗(a) where c∗(a) is defined by

Ũ′(c∗(a)) = V′(a) +
λ

ρ
W ′(a).

Indeed, because Ũ is strictly concave, this is equivalent to Ũ′(c∗(a)) > Ũ′(ĉd(a)) or

V′d(a) +
λ

ρ
W ′d(a) > U′1(ĉd(a)) +

λ

ρ
U′0(ĉd(a)).

Because V′d(a) = U′1(ĉd(a)) and W ′d(a) > U′0(ĉd(a)) by Lemma 16, we obtain the desired
inequality.

Now using system (9), substituting Wd by the right hand side of the second equation
into the first equation, we obtain

(ρ + λ)Vd(a) =Ũ(ĉ(a)) + (V′d(a) +
λ

ρ
W ′d(a))(ra− ĉ(a)).
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Let
F(a, c) ≡ Ũ(c) + (V′d(a) +

λ

ρ
W ′d(a))(ra− c).

Because Ũ is strictly concave, F is strictly concave in c. By the definition of Ũ and c∗(a),
∂F(a,c)

∂c = 0 at c = c∗(a) and ∂F(a,c)
∂c < 0 for c > c∗(a). Therefore

F(a, c∗(a)) > F(a, ĉd(a)) > F(a, ra) = (ρ + λ)V(a).

Moreover, F(a, ĉd(a)) = (ρ + λ)Vd(a), so Vd(a) > V(a).

Lemma 16. Given the definition of Wd and â in the proof of Theorem 5, W ′d(a) > U′0(ĉ(a)) for
all a ∈ (â, au).

Proof. Assumption 3 is equivalent to

−U′′0 (c)
U′0(c)

≤
−U′′1 (c)
U′1(c)

(44)

for all c ≤ c̄. We use Lemma 6 to prove this lemma. Indeed, we first show that condition
2) in Lemma 6 is satisfied, i.e. if W ′d(a) = U′0(ĉd(a)) then

d
da

(W ′d(a)) <
d
da

(U′0(ĉd(a))). (45)

Indeed, differentiating equation (9b) with respect to a implies

ρW ′d(a) = U′0(ĉd(a))ĉ′d(a) + W ′′d (a)(ra− ĉd(a)) + W ′d(a)(r− ĉ′d(a)).

Because W ′d(a) = U′0(ĉd(a)), this equation simplifies to

W ′′d (a) =
(ρ− r)W ′d(a)

ra− ĉd(a)
=

(ρ− r)U′0(ĉd(a))
ra− ĉd(a)

.

On the other hand,

d
da

(U′0(ĉd(a))) = U′′0 (ĉd(a))ĉ′d(a) = U′′0 (ĉd(a))
V′′d (a)

U′′1 (ĉd(a))

= U′′0 (ĉd(a))
(ρ− r)U′1(ĉd(a)) + λ (U′1(ĉd(a))−U′0(ĉd(a)))

U′′1 (ĉd(a)) (ra− ĉd(a))

≥ U′′0 (ĉd(a))
(ρ− r)U′1(ĉd(a))

U′′1 (ĉd(a)) (ra− ĉd(a))
, (46)
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where the last inequality comes from U′1(ĉd(a)) ≥ U′0(ĉd(a)). Combining this with ρ <

r and condition (44), we have (45), but with weak inequality. Now we show that it
holds with strict inequality. For a < au, because ĉ′d > 0, ĉd(a) < ĉd(au) = c̄, therefore
U′1(ĉd(a)) > U′0(ĉd(a)) (this also holds for a = au under Assumption 2b). Thus (46) holds
with strict inequality. If a = au and under Assumption 2a, ĉd(a) = c̄, (44) holds with strict
inequality (we assume that U′1(c) > U′0(c) for c < c̄). Hence, in either case, (45) holds
with strict inequality.

Now, we show that condition 1) in Lemma 6 is also satisfied. Under Assumption 2b of
Theorem 4 with power utility, it is shown in Lemma 17 that at au that W ′d(au) > U′0(ĉd(au).
Under Assumption 2a of Theorem 4, U′1(c) = U′0(c) for c ≥ c̄ , given how au is defined
in Subsection A.3.2, we have W ′d(au) = V′d(au) = U′1(c̄) = U′0(c̄), so W ′d(a) = U′0(ĉ(a)) at
a = au. Therefore, by (45), W ′d(a) > U′0(ĉd(a)) in the left neighborhood of au.39

Given that both conditions in Lemma 6 are satisfied, it implies that W ′(a) > U′0(ĉ(a))
for all a ∈ (â, au) .

Lemma 17. The linear equilibria described in Theorem 1 with β̄ < 1 satisfies W ′(a) > U′0(ĉ(a))
for all a > 0.

Proof. From Theorem 1, W ′(a) > U′0(ĉ(a)) is equivalent to

β̄v̄1− 1
σ

∆ + (1− σ) v̄−
1
σ

> β̄v̄,

or equivalently ψ > ∆
σ . This inequality holds because P

(
∆
σ

)
= (β̄− 1)λ

σ < 0.

G.3 Proof of Proposition 4

Consider the construction in Theorem 5. Fixing ã ∈ (0, c̄
ρ ). First we show that there exists

r1 such that for r < r1 such that

Vd (au) <

ˆ au

ã
U′1 (ra) da + V(ã). (47)

39Another way to show this is to proceed as in the proof of Theorem 3 by considering the solution

(Vε, Wε) to the ODE (21) with the initial condition (Vε(au), Wε(au)) =
(

Vu(au) +
ε

ρ+λ , Wu(au) +
ε
λ

)
. It easy

to verify that W ′ε(au) > U′0(ĉε(au)) because ĉε(au) = ĉ(au). Therefore by Lemma 16, V′ε(a) > W ′ε(a) for all
a < au. As ε → 0, (Vε, Wε) → (Vd, Wd) . As a result, W ′d(a) ≥ U′0(ĉd(a)) for all a < au. We can then apply
Lemma 16 to show that W ′d(a) > U′0(ĉd(a)) for all a < au because β(c) < 1 for all c < c̄, which implies that
(46), and consequently (45), holds with strict inequality.
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Indeed,
´ au

ã U′1(ra)da = 1
r U1(rau)− 1

r U1(rã). When r → ρ, Vd(au)→ 1
ρ+λ

(
U1(c̄) + λ

ρ U0(c̄)
)

and 1
r U1(rau)→ 1

ρU1(c̄). The right hand side of (47) converges to

1
ρ

U1(c̄)−
1
ρ

U1(ρã) +
1

ρ + λ
(U1(ρã) +

λ

ρ
U0(ρã))

=
1
ρ

U1(c̄) +
λ

ρ(ρ + λ)
(U0(ρã)−U1(ρã)) .

Therefore, at the limit r → ρ, (47) is equivalent to

U0(c̄)−U1(c̄) < U0(ρã)−U1(ρã) (48)

By Mean Value Theorem, there exists c̆ ∈ (ρã, c̄) such that

U0(c̄)−U0(ρã)
U1(c̄)−U1(ρã)

=
U′0(c̆)
U′1(c̆)

= β(c̆) < β(c̄) = 1,

which is equivalent to (48). So, by continuity, (47) holds when r belongs to a neighborhood
to the right of ρ, [ρ, r1].

Under (47), we show by contradiction that â > ã. Assume ã ≥ â. By Lemma 15,
Vd(ã) ≥ V(ã). Because ĉ(a) < ra for ã < a < au, V′d (a) > U′1 (ra) . So

Vd (au)−Vd (ã) >
ˆ au

ã
U′1(ra)da,

which contradicts (47). So â > ã > 0. Now pick any a such that 0 < a < ã. We have â > a.
The construction in Theorem 5 implies that a∗ > a. It remains to show that a∗ < ∞.

More strongly, we show by contradiction that a∗ < au. Assume a∗ ≥ au. By the definition
of au, Vu(a) = Vsp(a) for all a ≥ au. Therefore,

Vu(a∗) = Vsp(a∗) > Vl(a∗),

which contradicts the definition of a∗ that Vu(a∗) = Vl(a∗).

H Proofs for Convergence Equilibria

Proof of Theorem 6. First of all let α1 = limc↑c∗ β(c) and α2 = limc↓c∗ β(c). Assumption 4
implies that

β ≤ α2 < α1 ≤ 1.
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Let r = ρ
ρ+λ

ρ+λ(1−α2)
and r̄ = ρ

ρ+λ
ρ+λ(1−α1)

. Also by Assumption 4, we have

ρ < r < r < r̄.

Consider the initial condition at a∗ = c∗
r , (V(a∗), W(a∗)) =

(
V(a∗), W(a∗)

)
. We show

that the ODE (20) admits a solution over [a∗, ∞) with the initial condition at a∗. Similarly,
we show that the ODE (21) admits a solution over [a, a∗] , with the initial condition at a∗.
Combining the two solutions, we obtain a Markov equilibrium defined over [a, ∞).

Indeed, starting at a∗ = c∗
r , and the initial condition

(
V(a∗), W(a∗)

)
, because r <

ρ
ρ+λ

ρ+λ(1−α2)
, β(ra∗+) < β̂, we can use Lemma 1, to show the existence of a solution (V, W)

to ODE (20), given the initial condition. The solution has a (right) maximal interval of
existence [a∗, ã). If 1− α2 > σ(U1, c) for all c ≥ c∗, Theorem 10 shows that ã = +∞, for
λ sufficiently high. Otherwise, we follows the steps in the proof of Theorem 3 to restart
the procedure each time V crosses V̄. In doing so, we obtain a Markov equilibrium over
[a∗, ∞) with ĉ(a) > ra except for a countable set of steady states at which ĉ(a) = ra.

Starting at a∗ = c∗
r , and the initial condition

(
V(a∗), W(a∗)

)
, we also show that the

ODE (21) admits a solution defined over (ã, a∗], where ã < a∗. First consider the case
α1 < 1 (the case α1 = 1 will be considered below). The proof follows closely the steps of
Lemma 1, i.e. we start with the initial condition

(
V(a∗) + ε, W(a∗) + δ(ε)ε

)
, (49)

where δ(ε) ∈
[
1, ρ+λ

λ

)
is chosen appropriately. In Lemma 18 below, we show that there

exists ε̄ > 0 such that for all 0 < ε < ε̄, δ(ε) can be chosen such that

max
{
(ρ + λ− r)V′ε(a∗), λU′0(ĉε(a∗))

}
< λW ′ε(a∗) < λV′ε(a∗).

Therefore, following the steps in Lemma 12, we can show that

max
{
(ρ + λ− r)V′ε(a), 0

}
< λW ′ε(a) < λV′ε(a), (50)

for all a in the (left) maximal interval of existence for Vε, Wε.
As in the proof of Lemma 1, we show that there exists ε̄ > 0 and ω > 0 such that

the ODE (21) with the initial condition (49) admits a unique solution (Vε, Wε) defined
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over [a∗ −ω, a∗]. Moreover, Vε(a) > V(a) for a < a∗.40 Therefore, we follow the steps in
Lemma 12 to show that V′′ε (a) < 0, for all 0 < ε < ε̄ and a∗ −ω ≤ a ≤ a∗.

Now let a = a∗ − ω
2 , we have

V(a∗) + ε̄−V(a∗ −ω) ≥ Vε(a∗)−Vε(a∗ −ω) ≥ Vε(a)−Vε(a∗ −ω) >
ω

2
V′ε(a),

where the last inequality comes from the concavity of Vε. So V′ε(a) < 2
ω

(
V(a∗) + ε̄−V(a∗ −ω)

)
.

Also by the concavity of Vε

V′ε(a) ≤ V′ε(a) <
2
ω

(
V(a∗) + ε̄−V(a∗ −ω)

)
,

for all a ∈ [a, a∗] .
Together with (50), we have

0 < V′ε(a), W ′ε(a) <
2
ω

(
V(a∗) + ε̄−V(a∗ −ω)

)
for all a ∈ [a, a∗] and ε ∈ (0, ε̄) . Therefore, as in Lemma 1, we can apply Dominated
Convergence Theorem to show that (Vε, Wε)→ (V, W) over [a, a∗] for some subsequence
of ε and (V, W) is a solution to the ODE (21) over [a, a∗] . Furthermore, for all a ∈ (a, a∗] ,
(a, V(a), W(a)) is a regular point.

When β(c) = 1− α1 for c ≤ c∗. Consider left maximal interval of existence, (â, a∗] of
(Vε, Wε) as a solution to the ODE (21) from a∗with the initial conditions (Vε(a∗), Wε(a∗)) =(
V(a∗) + ε, W(a∗) + ε

)
. As shown above, for ε sufficiently small, at a∗,

max
{

ρ + λ− r
λ

V′ε(a∗), 0
}

< W ′ε(a∗) ≤ V′ε(a∗)

V′′ε (a∗) < 0

W ′ε(a∗) ≥ U′0(ĉε(a∗))

Vε(a∗) > V(a∗).

By Lemmas 12, 15, and 16 (when limc↑c∗ β(c) = 1, W ′ε(a) = V′ε(a) = U′1(ĉε(a)) =

40We also prove by contradiction: if VεN (aN) = V(aN) and aN → a∗ as N → ∞,

VεN (a∗)−V(aN)

a∗ − aN
>

V(a∗)−V(aN)

a∗ − aN

= Rh(ãN , VεN (ãN), WεN (ãN))

which at the limit contradicts the condition that V′(a∗−) > U′1(ra∗) since β(ra∗−) > β̂.
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U′0(ĉε(a)) for a < a∗, and W ′ε(a) > U′0(ĉε(a)) for a < a∗), these properties hold for all
a ∈ (â, a∗). We show by contradiction that â = 0. Assume by contradiction that this is
not the case, i.e. â > 0. Then the ODE (21) reaches a singular point at â. By Lemma 14,
Vε(â) = V(â). Because Vε(a) > V(a) for all a > â, V′ε(â) ≥ V′(â). In addition, because â is
a singular point, V′ε(â) = U′1(râ). So U′1(râ) ≥ V′(â), or equivalently β(râ) = 1− α1 ≤ β̂,
by Lemma 5. This contradicts the assumption that r < r̄. We obtain the desired contra-
diction. Thus, (Vε, Wε) is defined over (0, a∗].

Given any a > 0, let ω ∈ (0, a). We have

V(a∗) + ε−V(
ω

2
) ≥ Vε(a∗)−Vε(

ω

2
) ≥ Vε(ω)−Vε(

ω

2
) >

ω

2
V′ε(ω),

where the last inequality comes from the concavity of Vε. So V′ε(ω) < 2
ω

(
V(a∗) + ε−V(ω

2 )
)
.

Also by the concavity of Vε

0 < V′ε(a) ≤ V′ε(ω) <
2
ω

(
V(a∗) + ε̄−V(

ω

2
)
)

,

for all a ∈ [ω, a∗] . W ′ε are bounded by the same bounds. Similar to the proof of Lemma
1, there exists a subsequence ε → 0 such that (Vε, Wε) converges to some limit (V, W)

which is a solution to ODE (21) over [ω, a∗], thus over [a, a∗], with the initial condition(
a∗, V(a∗), W(a∗)

)
.

Lemma 18. Assume that α1 < 1. There exists ε̄ > 0 such that for ε ∈ (0, ε̄), there exists
δ(ε) ∈

[
1, ρ+λ

λ

)
, such that

max
{
(ρ + λ− r)V′ε(a∗), λU′0(ĉε(a∗))

}
< λW ′ε(a∗) < λV′ε(a∗),

where (V′ε(a∗), W ′ε(a∗)) = (Rh, Sh)
(
a∗, V(a∗) + ε, W(a∗) + δ(ε)ε

)
and

ĉε(a∗) =
(
U′1
)−1 (V′ε(a∗)

)
< ra∗.

Proof. Because

r > r = ρ
ρ + λ

ρ + λ(1− α2)
> ρ,

we have (ρ + λ− r) < λ.
First, we show that there exists, ε̄ > 0 such that for all ε ∈ (0, ε̄) and δ ∈

[
1, ρ+λ

λ

)
,

U′0(ĉε,δ(a∗)) < V′ε,δ(a∗) (51)
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where
(

V′ε,δ(a∗), W ′ε,δ(a∗)
)
= (Rh, Sh)

(
a∗, V(a∗) + ε, W(a∗) + δε

)
and

ĉε,δ(a∗) =
(
U′1
)−1 (V′ε,δ(a∗)

)
< ra∗.

Indeed, because Rh is continuous, for each δ ∈
[
1, ρ+λ

λ

)
,

lim
ε→0

V′ε,δ(a∗) = U′1(ra∗)

lim
ε→0

ĉε,δ(a∗) = ra∗.

In addition, β(ra∗−) = α1 < 1 which is equivalent to U′0(ra∗−) < U′1(ra∗). Therefore there
exists, ε̄ > 0 such that for all ε ∈ (0, ε̄) and δ ∈

[
1, ρ+λ

λ

)
such that (51) holds. Because

ρ+λ−r
λ < 1, this also implies

max
{

ρ + λ− r
λ

V′ε,δ(a∗), U′0(ĉε,δ(a∗))
}

< V′ε,δ(a∗).

By Lemma 19, we can choose ε̄ such that for all ε ∈ (0, ε̄), W ′ε,1(a∗) < V′ε,1(a∗). It is
easy to see that

lim
δ↑ ρ+λ

λ

W ′ε,δ(a∗) = +∞ > max
{

ρ + λ− r
λ

V′ε,δ(a∗), U′0(ĉε,δ(a∗))
}

.

So by the Intermediate Value Theorem, there exists δ(ε) such that

max
{
(ρ + λ− r)V′ε(a∗), λU′0(ĉε(a∗))

}
< λW ′ε(a∗) < λV′ε(a∗).

Lemma 19. For ε > 0, let Vε(a∗) = V(a∗) + ε and Wε(a∗) = W(a∗) + ε. We have

lim
ε→0

Sh(a∗, Vε(a∗), Wε(a∗)) = U′0(ra∗−).

Proof. From the definition of Rh, Sh,

V′ε(a∗) = Rh(a∗, Vε(a∗), Wε(a∗))

W ′ε(a∗) = Sh(a∗, Vε(a∗), Wε(a∗)).

Also by the definition of Vε(a∗), Wε(a∗), (λ + ρ)Vε(a∗)− λWε(a∗) = U1(ra∗) + ρε. Using
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the Taylor expansion for H(p, a) around p∗ = U′1(ra∗), we obtain

λε + U1(ra∗) = H(V′ε(a∗), a∗)

= H(p∗, a∗) +
∂H(p∗, a∗)

∂p
(V′ε(a∗)− p∗)

+
1
2

∂2H(p∗, a∗)
∂p2 (V′ε(a∗)− p∗)2 + o((V′ε(a∗)− p∗)2).

From the proof of Lemma 3, H(p∗, a∗) = U1(ra∗) and ∂H(p∗,a∗)
∂p = 0. In addition,

∂2H(p∗, a∗)
∂p2 = − 1

U′′1
((

U′1
)−1

(p∗)
) = − 1

U′′1 (ra∗)
> 0.

Therefore
ρε = − 1

2U′′1 (ra∗)
(V′ε(a∗)−U′1(ra∗))2 + o((V′ε(a∗)− p∗)2).

Consequently

V′ε(a∗)−U′1(ra∗) =
√(
−2U′′1 (ra∗)

)
ρε + o(

√
ε).

By the definition of ĉε,

ĉε(a∗)− ra∗ =
(
U′1
)−1

(V′ε(a∗))−
(
U′1
)−1

(U′1(ra∗))

=
1

U′′1 (ra∗)
(
V′ε(a∗)−U′1(ra∗)

)
+ o(V′ε(a∗)−U′1(ra∗))

=
1

U′′1 (ra∗)

√(
−2U′′1 (ra∗)

)
ρε + o(

√
ε).

Therefore,

W ′ε(ra) =
ρWε(a∗)−U0(ĉε(a∗))

ra∗ − ĉε(a)
=

U0(ra∗)−U0(ĉε(a∗))− ρε

ra∗ − ĉε(a∗)

=
U0(ra∗)−U0(ĉε(a∗))

ra∗ − ĉε(a∗)
− ρε

1
−U′′1 (ra∗)

√(
−2U′′1 (ra∗)

)
ρε + o(

√
ε)

−→ U′0(ra∗−),

as ε→ 0.

Proof of Theorem 7. We can show the existence of Markov equilibrium following the steps
of the proofs of Lemma 1 and Theorem 6. In particular, we show that ODEs (21) (and
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(20)) admit a solutions over some neighborhood to the left (and right) of ã, with the initial
condition (V(ã), W(ã)) =

(
V(ã), W(ã)

)
by taking the limit of a sequence of solutions

to ODEs (21) (and (20)) starting at non-singular initial conditions at ã. However, in this
(more informal) proof, we present an intuitive argument.

We look for an equilibrium defined in a local neighborhood of ã with ĉ(a) = rã +
Ψ(a − ã) + o(a − ã). For stability, we require that Ψ > r (and we verify this property
below). This implies that around ã, ȧt ≈ (r − Ψ)at, therefore, at ≈ (a0 − ã) e(r−Ψ)t + ã .
Now

W(at) =

ˆ ∞

0
e−ρsU0(ct+s)ds

≈ 1
ρ

U0(rã) +
ˆ ∞

0
e−ρsU′0(rã)(ct+s − rã)ds

≈ 1
ρ

U0(rã) +
ˆ ∞

0
e−ρsU′0(rã)Ψ(at+s − ã)ds

≈ 1
ρ

U0(rã) +
ˆ ∞

0
e−ρsU′0(rã)Ψ(at − ã)e(r−Ψ)sds

=
1
ρ

U0(rã) + U′0(rã)
Ψ

ρ + Ψ− r
(at − ã).

Therefore, W ′(ã) = U′0(rã) Ψ
ρ+Ψ−r .

By differentiating (9a), we obtain, at a∗, (ρ + λ − r)V′(ã) = λW ′(ã). In addition
V′(ã) = U′1(ĉ(ã)) = U′1(rã). These equalities imply

(ρ + λ− r)U′1(rã) = λ
Ψ

ρ + Ψ− r
U′0(rã)

or equivalently

Ψ =
(r− ρ)(ρ + λ− r)

ρ + λ− r− λ (β(rã))
> 0,

since ρ + λ− r > λβ(rã) > 0. Lastly, because β(rã) > β̂, Ψ > r.

I Derivations for Inverting Results in Section 5.3

Proof of Theorem 8. Differentiating (9a), and noticing that V′(a) = U′1(ĉ(a)), we obtain

(ρ + λ− r)U′1(ĉ(a)) = U′′1 (ĉ(a))ĉ′(a) (ra− ĉ(a)) + λW ′ (a) .
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From this equation, we can solve for W ′(a) as a function of ĉ(a), ĉ′(a), a:

λW ′(a) = (ρ + λ− r)U′1(ĉ(a))−U′′1 (ĉ(a))ĉ′(a) (ra− ĉ(a)) .

Differentiating the last equation, we can also write W ′′(a) as a function of ĉ, ĉ′, ĉ′′, a

λW ′′(a) = (ρ + λ− r)U′′1 (ĉ(a))ĉ′(a)−U′′′1 (ĉ(a))
(
ĉ′(a)

)2
(ra− ĉ(a))

−U′′1 (ĉ(a))ĉ′′(a) (ra− ĉ(a))−U′′1 (ĉ(a))ĉ′(a)
(
r− ĉ′(a)

)
= U′′1 (ĉ(a))

(
(ρ + λ− 2r)ĉ′(a) +

(
ĉ′(a)

)2 − ĉ′′(a) (ra− ĉ(a))
)

−U′′′1 (ĉ(a))
(
ĉ′(a)

)2
(ra− ĉ(a)) .

Now differentiating (9b) and rearranging, we obtain

(
ρ− r + ĉ′(a)

)
W ′ (a) = U′0 (ĉ (a)) ĉ′ (a) + W ′′ (a) (ra− ĉ (a)) .

Substituting in the expressions of W ′ and W ′′ above, and using the fact that U′0(c) =

β(c)U′1(c), we arrive at

(
ρ− r + ĉ′(a)

) (
(ρ + λ− r)U′1(ĉ(a))−U′′1 (ĉ(a))ĉ′(a) (ra− ĉ(a))

)
= λβ(ĉ(a))U′1 (ĉ (a)) ĉ′ (a)

+ U′′1 (ĉ(a))
(
(ρ + λ− 2r)ĉ′(a) +

(
ĉ′(a)

)2 − ĉ′′(a) (ra− ĉ(a))
)
(ra− ĉ(a))

−U′′′1 (ĉ(a))
(
ĉ′(a)

)2
(ra− ĉ(a))2 .

Finally, dividing both sides by U′1(ĉ(a)) and simplifying, we get

(
ρ− r + ĉ′(a)

)
(ρ + λ− r)

= λβ(ĉ(a))ĉ′ (a)−
U′′′1 (ĉ(a))ĉ(a)2

U′1(ĉ(a))
(
ĉ′(a)

)2
(

ra− ĉ(a)
ĉ(a)

)2

− σ(U1, ĉ(a))
(
(2ρ + λ− 3r)ĉ′(a) + 2

(
ĉ′(a)

)2 − ĉ′′(a) (ra− ĉ(a))
) (ra− ĉ(a))

ĉ(a)
.

Since ζ is the inverse of ĉ, a = ζ (ĉ(a)). Therefore, ζ ′ = 1
ĉ′ and ζ ′′ = −ĉ′′

ĉ′2 . In addition,

from the definition of σ, (14), σ′ = −U′′′1
U′1

c + U′′2
U′2 c − U′′

U′ = 1
c

(
−U′′′1

U′1
c2 + σ2 + σ

)
, which

implies −U′′′1
U′1

c2 = cσ′ − σ2 − σ. Plugging these identities into the last equation, we arrive
at (15).
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Now, we apply (15) to the parametric Example 3. Noticing that σ ≡ σ̄, then σ′ ≡ 0,
and ζ(c) ≡ c−rã

Ψ + ã, ζ ′ ≡ 1
Ψ , (15) becomes

λβ
1
Ψ

= α1
1
Ψ

+ α2

(
1
Ψ

)2

+ σ̄(2 + (2ρ + λ− 3r)
1
Ψ
)
(

1− r
Ψ

)(rã
c
− 1
)
+ (σ̄2 + σ̄)

((
1− r

Ψ

)(rã
c
− 1
))2

,

since rζ−c
c =

r( c−rã
Ψ +ã)−c

c =
(
1− r

Ψ

) ( rã
c − 1

)
. Dividing both sides by λ 1

Ψ and simplifying,
we obtain the expression for β(c) given in Example 3.

J Proofs for Further Characterizations

Proof of Theorem 9. Consider the construction of equilibrium in Theorem 3 and let (V, W) =

(V0, W0) and [a, a∗) denote its maximal interval of existence. First of all, we show that
there exists ε ∈ (0, 1) such that λW ′(a) < (1 − ε) (λ + ρ− r)V′(a), for all a ∈ [a, a∗).
Then we show that a∗ = ∞.

Because r < ρ, there exists ε ∈ (0, 1) (sufficiently small) such that

(1− ε) (ρ + λ− r)
λ

> 1

and
(ρ− r)

1
λ

1− ε

ε
>

(1− ε)(ρ + λ− r)
λ

.

In the proof of Lemma 1, we show that

lim
a↓a

W ′(a) ≤ U′0(ra) ≤ U′1(ra) = lim
a↓a

V′(a).

Therefore, in the right neighborhood of a,

λW ′(a) < (1− ε) (λ + ρ− r)V′(a),

because (1− ε) (λ + ρ− r) > λ.
We use Lemma 6 (Variation 2) to show that λW ′(a) < (1− ε)(ρ + λ− r)V′(a) for all

a∗ > a > a. We just showed that this is true in the right neighborhood of a, so the first
condition in Lemma 6 is satisfied. Now, we show that the second (relaxed) condition in
Lemma 6 is also satisfied, i.e. if there exists ã > a such that λW ′(ã) = (1− ε)(ρ + λ −
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r)V′(ã), then λW ′′(a) < (1− ε)(ρ + λ− r)V′′(a) in the left neighborhood of ã.41

Indeed, in the left neighborhood of ã, λW ′(a) ≈ (1− ε)(ρ + λ− r)V′(a), therefore

V′′(a) =
λW ′(a)− (λ + ρ− r)V′(a)

ĉ(a)− ra
≈ −ε(ρ + λ− r)V′(a)

ĉ(a)− ra
< 0,

Differentiating equation (9b), we obtain

W ′′(a) =
(U′0(ĉ(a))ĉ′(a)− ρW ′(a)) (ĉ(a)− ra)− (U0(ĉ(a))− ρW(a))(ĉ′(a)− r)

(ĉ(a)− ra)2

=
(U′0(ĉ(a))ĉ′(a)− ρW ′(a))

ĉ(a)− ra
− W ′(a)(ĉ′(a)− r)

ĉ(a)− ra
.

Therefore,

W ′′(a) =
(U′0(ĉ(a))−W ′(a)) ĉ′(a)

ĉ(a)− ra
+

(r− ρ)W ′(a)
ĉ(a)− ra

=
(U′0(ĉ(a))−W ′(a))

ĉ(a)− ra
V′′(a)

U′′1 (ĉ(a))
+

(r− ρ)W ′(a)
ĉ(a)− ra

=
(W ′(a)−U′0(ĉ(a)))

(ĉ(a)− ra)
(
−U′′1 (ĉ(a))

)V′′(a) +
(r− ρ)W ′(a)

ĉ(a)− ra
.

When a close to ã, we also have:

V′′(a) =
λW ′(a)− (λ + ρ− r)V′(a)

ĉ(a)− ra

≈
−λ ε

1−εW ′(a)
ĉ(a)− ra

,

because, by continuity, when a close to ã, λW ′(a) ≈ (1− ε)(ρ + λ− r)V′(a). Therefore,
W ′(a) ≈ − 1

λ
1−ε

ε V′′(a)(ĉ(a)− ra). Plugging this back to the expression for W ′′ above, we
have

W ′′(a) ≈

(
(1−ε)(ρ+λ−r)

λ U′1(ĉ(a))−U′0(ĉ(a))
)

(ĉ(a)− ra)
(
−U′′1 (ĉ(a))

) V′′(a)−
(r− ρ) 1

λ
1−ε

ε V′′(a)(ĉ(a)− ra)
ĉ(a)− ra

=

((
(1− ε)(ρ + λ− r)

λ
− U′0(ĉ(a))

U′1(ĉ(a))

)
1

σ (U1, ĉ(a))
ĉ(a)

ĉ(a)− ra
+ (ρ− r)

1
λ

1− ε

ε

)
V′′(a)

<
(1− ε)(ρ + λ− r)

λ
V′′(a),

41We use Variation 2 of Lemma 6 because if ã = a∗, W ′ and W ′′ might not exist at a∗.
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where the last inequality comes from(
(1− ε)(ρ + λ− r)

λ
− U′0(ĉ(a))

U′1(ĉ(a))

)
1

σ (U1, ĉ(a))
ĉ(a)

ĉ(a)− ra

≥
(
(1− ε)(ρ + λ− r)

λ
− 1
)

1
σ (U1, ĉ(a))

ĉ(a)
ĉ(a)− ra

> 0,

and
(ρ− r)

1
λ

1− ε

ε
>

(1− ε)(ρ + λ− r)
λ

and V′′(a) < 0. Therefore both conditions 1) and 2) in Lemma 6 are satisfied, and by that
lemma, λW ′(a) ≤ (1− ε)(ρ + λ− r)V′(a) for all a < a∗.

We prove by contradiction that a∗ is infinite. Assume by contradiction that a∗ is finite.
Let F(a) = (ρ + λ)V(a)− λW(a)−U1(ra). At a = a∗, F(a) = 0 and

F′(a) =(ρ + λ)V′(a)− λW ′(a)− rU′1(ra)

>(ρ + λ)V′(a)− (1− ε)(ρ + λ− r)V′(a)− rU′1(ra)

= (ρ + λ− (1− ε)(ρ + λ− r)− r)U′1(ra)

=ε (ρ + λ− r)U′1(ra) > 0.

So F(a) < 0 in the left neighborhood of a∗. This is a contradiction. Thus a∗ = +∞, i.e.
(V, W) is defined over [a, ∞).

By Lemma 4,

ĉ′(a) =
V′′(a)

U′′1 (ĉ(a))
=

(λ + ρ− r)V′(a)− λW ′(a)
U′′1 (ĉ(a))(ĉ(a)− ra)

>
ε(λ + ρ− r)V′(a)

U′′1 (ĉ(a))(ĉ(a)− ra)
>

ελV′(a)
U′′1 (ĉ(a))(ĉ(a)− ra)

> 0,

where the last inequality comes from r < ρ.

Proof of Theorem 10. As in the proof of Theorem 9 (using the same definition of V, W and
a∗), first, we show that there exists ε ∈ (0, 1) such that λW ′(a) < (1− ε) (λ + ρ− r)V′(a),
for all a ∈ [a, a∗). Then we show that a∗ = ∞.

Condition (16) implies that supc>ra β(c) < 1. Therefore, there exists ε ∈ (0, 1) such
that

β(c) < 1− ε

and
(1− ε)− β(c) > (1− ε)σ (U1, c)
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for all c > ra.42 Therefore, given ρ ≤ r, there exists λ̄ ≥ 0 such that for all λ > λ̄, we have
β(ra) < β̂ (r, ρ, λ) (since β(ra) < ρ

r ) and

λU′0(ra) < (1− ε) (λ + ρ− r)U′1(ra) (52)

and for all c > ra,

(1− ε)(ρ + λ− r)
λ

− U′0(c)
U′1(c)

>

(
r− ρ

λ

1− ε

ε
+

(1− ε)(ρ + λ− r)
λ

)
σ (U1, c) . (53)

Moreover λ̄ can be chosen to be increasing in r and λ̄(ρ) = 0.43,44

By (52),
ρ + λ− r > 0. (54)

Since β(ra) < β̂ we can apply Lemma 1. Besides, in the proof of Lemma 1, we show
that

lim
a↓a

W ′(a) ≤U′0(ra),

lim
a↓a

V′(a) =U′1(ra).

Therefore, by (52),
λW ′(a) < (1− ε) (λ + ρ− r)V′(a)

in the right neighborhood of a.
Given these three conditions, as in the proof of Theorem 9, we use Lemma 6 (Variation

2) to show that λW ′(a) < (1− ε)(ρ + λ− r)V′(a) for all a > a. As shown above, this is
true in the right neighborhood of a so the first condition in Lemma 6 is satisfied. Now
we show that the second (relaxed) condition in Lemma 6 is also satisfied, i.e. if there
exists ã > a such that λW ′(ã) = (1− ε)(ρ + λ− r)V′(ã), we show that λW ′′(a) < (1−
ε)(ρ + λ − r)V′′(a) in the left neighborhood of ã. Indeed, in the left neighborhood of ã,
λW ′(a) ≈ (1− ε)(ρ + λ− r)V′(a), therefore

V′′(a) =
λW ′(a)− (λ + ρ− r)V′(a)

ĉ(a)− ra
≈ −ε(ρ + λ− r)V′(a)

ĉ(a)− ra
< 0,

42This is equivalent to 1− σ (U1, c) > 1
1−ε β(c), for some ε ∈ (0, 1)which is true given (16).

43When r = ρ, (53) becomes (1− ε)− β(c) > (1− ε)σ(U1, c).
44Similarly, given λ > 0 there exists r1 > ρ such that for r ∈ [ρ, r1], (52) and (53) hold. The proof for

existence of continuous Markov equilibrium then proceeds in exactly the same way.
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Differentiating equation (9b) and simplifying as done in the proof of Theorem 9:

W ′′(a) =
(W ′(a)−U′0(ĉ(a)))

(ĉ(a)− ra)
(
−U′′1 (ĉ(a))

)V′′(a) +
(r− ρ)W ′(a)

ĉ(a)− ra
.

When a close to ã, we also have:

V′′(a) =
λW ′(a)− (λ + ρ− r)V′(a)

ĉ(a)− ra
≈
−λ ε

1−εW ′(a)
ĉ(a)− ra

,

because, by continuity, when a close to ã, λW ′(a) ≈ (1− ε)(ρ + λ− r)V′(a). Therefore,
W ′(a) ≈ − 1

λ
1−ε

ε V′′(a)(ĉ(a)− ra). Plugging this back to the expression for W ′′ above, we
have

W ′′(a) ≈

(
(1−ε)(ρ+λ−r)

λ U′1(ĉ(a))−U′0(ĉ(a))
)

(ĉ(a)− ra)
(
−U′′1 (ĉ(a))

) V′′(a)−
(r− ρ) 1

λ
1−ε

ε V′′(a)(ĉ(a)− ra)
ĉ(a)− ra

=

((
(1− ε)(ρ + λ− r)

λ
− U′0(ĉ(a))

U′1(ĉ(a))

)
1

σ (U1, ĉ(a))
ĉ(a)

ĉ(a)− ra
− (r− ρ)

1
λ

1− ε

ε

)
V′′(a)

<
(1− ε)(ρ + λ− r)

λ
V′′(a),

where the last inequality comes from (53) and V′′(a) < 0. Therefore both conditions 1)
and 2) in Lemma 6 are satisfied, and by that lemma, λW ′(a) ≤ (1− ε)(ρ + λ− r)V′(a)
for all a ≤ a∗.

As in the proof of Theorem 9, we prove by contradiction that a∗ is infinite. Assume
by contradiction that a∗ is finite. Let F(a) = (ρ + λ)V(a)− λW(a)−U1(ra). At a = a∗,
F(a) = 0 and

F′(a) = (ρ + λ)V′(a)− λW ′(a)− rU′1(ra)

> (ρ + λ)V′(a)− (1− ε)(ρ + λ− r)V′(a)− rU′1(ra)

= (ρ + λ− (1− ε)(ρ + λ− r)− r)U′1(ra)

= ε (ρ + λ− r)U′1(ra) > 0,

where the last inequality comes from (54). So F(a) < 0 in the left neighborhood of a∗. This
is a contradiction. Thus a∗ = +∞.

Similar to the proof of Theorem 9,

ĉ′(a) =
(λ + ρ− r)V′(a)− λW ′(a)

U′′1 (ĉ(a))(ĉ(a)− ra)
>

ε(λ + ρ− r)V′(a)
U′′1 (ĉ(a))(ĉ(a)− ra)

> 0,
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where the last inequality also comes from (54).

Proof of Theorem 11. We use the notation Vλ, Wλ for the functions defined in (11). Notice
that

Wλ(a) =
1
ρ

U0(ra),

independent of λ, so we can drop the subscript λ.
First, we notice that since supc≥ra β(c) < ρ

r , there exists λ∗ > 0 such that β(c) <

β̂(r, ρ, λ) for all λ ≥ λ∗. Therefore, we can apply Lemma 1 and Theorem 3 to construct
Markov equilibria with dissaving. Let Vλ, Wλ denote the equilibrium value functions
constructed in the proof of Theorem 3. We show that there exists λ̄ > λ∗, such that
for all λ ≥ λ∗, Vλ crosses Vλ at some a1(λ) > a and limλ→∞ a1(λ) = a. In addition,
Wλ(a1(λ)) < Wλ(a1(λ)). This result immediate implies the existence of a Markov equi-
librium with dissaving and discontinuous policy function because starting from a1(λ)

we can apply Theorem 3 to obtain a Markov equilibrium defined over [a1(λ), ∞) with
(V, W) =

(
Vλ, Wλ

)
at a1(λ). Combining this equilibrium with (Vλ, Wλ) defined over

[a, a1(λ)), we obtain a discontinuous equilibrium over [a, ∞).
We prove the result by contradiction. Assume that the result does not hold, then there

exists ā > a and a sequence of {λn}∞
n=1 with limn→∞ λn = ∞, such that

Vλn(a) > Vλn(a)

for all a ∈ (a, a) .45Because lima↓a
U0(ra)−U0(ra)

a−a = rU′0(ra), and r > ρ, there exists a1 ∈ (a, a)
and 0 < γ such that

1
ρ

U0(ra1)−U0(ra)
a1 − a

> (γ + 1)U′0(ra).

First, using Lemma 20 below, we show that

lim
n→∞

Wλn(a1) = W(a1).

Indeed, by Lemma 10, Wλn(a1)−W(a1) ≤ 0. Therefore

lim sup
n→∞

(
Wλn(a1)−W(a1)

)
≤ 0. (55)

45By Lemma 10, Wλn(a) < Wλ(a). Therefore (ρ + λn)Vλn(a) − λnWλn(a) > (ρ + λn)Vλn(a) −
λnWλn(a) = U1(ra). Thus Vλn , Wλn are defined and continuous over [a, a] .
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Now,

Wλn(a1)−W(a1) = Wλn(a1)−Vλn(a1) + Vλn(a1)−Vλn(a1)

+ Vλn(a1)−Wλn(a1).

By Lemma 20,
lim

n→∞
(Vλn(a1)−Wλn(a1)) = 0.

By the definition of Vλ, Wλ in (11)

lim
n→∞

(
Vλn(a1)−Wλn(a1)

)
= 0,

and by the contradiction assumption

Vλn(a1)−Vλn(a1) ≥ 0.

Thus
lim inf

n→∞

(
Wλn(a1)−W(a1)

)
≥ 0. (56)

Therefore by (55) and (56)

lim
n→∞

(
Wλn(a1)−W(a1)

)
= 0.

Given this limit, for ε > 0, sufficiently small, there exists N such that Wλn(a1) −
W(a1) > −ε for all n ≥ N. Now,

Wλn(a1)−Wλn(a)
a1 − a

>
W(a1)−W(a)− ε

a1 − a
> (γ + 1)U′0(ra)− ε

a1 − a
. (57)

By the Mean Value Theorem, there exists an ∈ (a, a1) such that,

W ′λn
(an) =

Wλn(a1)−Wλn(a)
a1 − a

≤ U′0(ran) +
ρ

λn
U′1(ran)

≤ U′0(ra) +
ρ

λn
U′1(ra), (58)

where the first inequality comes from the proof of Lemma 9 (especially inequality (34)).
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By choosing ε sufficiently small and n sufficiently large such that

ε

a1 − a
+

ρ

λn
U′1(ra) < γU′0(ra),

which contradicts (57) and (58). We obtain the desired contradiction.

Lemma 20. Assume that there exists ā > a and a diverging sequence {λn} such that Vλn(a) >
Vλn(a) for all a ∈ (a, a) . Then

lim
n→∞

(Vλn(a)−Wλn(a)) = 0, (59)

for all a ∈ (a, ā) .

Proof. By Lemma 10, Wλn ≤W therefore

Vλn(a)−Wλn(a) ≥ Vλm(a)−Wλn(a)

for all a ∈ (a, a) .
To find an upper bound on Vλn −Wλn . We rewrite equation (9a) as

λ (Vλ(a)−Wλ(a)) = U1(ĉλ(a)) + V′λ(a)(ra− ĉλ(a))− ρVλ(a).

Therefore
λ (Vλ(a)−Wλ(a)) ≤ U1(ĉλ(a))− ρVλ(a), (60)

because Vλ(a) > Vλ(a) = Vλ(a), and V′λ ≥ 0, and ra− ĉλ(a) < 0.
Now if U1 is bounded above

λ(Vλ(a)−Wλ(a)) ≤ sup
c

U1(c)− ρVλ(a).

Thus λ |Vλ(a)−Wλ(a)| is bounded when λ→ ∞. Therefore (59) holds.
If U1 is not bounded, but condition (17) is satisfied, we show, using Lemma 6, that

there exists λ̄ such that, when λ > λ̄, ĉλ(a) < 2λ
σ a, for all a ∈ (a, a) . Let f (a) = 2λ

σ a and
g(a) = ĉλ(a). With λ > σr, f (a) = 2λ

σ > ra. We just need to verify that if f (a) = g(a) then
f ′(a) = 2λ

σ > g′(a) = ĉ′λ(a). Indeed, by differentiating, the first order condition (12) with
respect to a,

ĉ′λ(a) =
V′′λ (a)

U′′1 (ĉλ(a))
.

To get V′′λ (a), differentiating (9a) with respect to a and use the first order condition for c,
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we obtain

V′′λ (a)(ra− ĉλ(a)) = (ρ + λ− r)V′λ(a)− λW ′λ(a)

= (ρ + λ− r)U′1(ĉλ(a))− λW ′λ(a).

Therefore, because W ′λ ≥ 0 as shown in Lemma 9,

ĉ′λ(a) =
(ρ + λ− r)U′1(ĉλ(a))− λW ′λ(a)
−U′′1 (ĉλ(a)) (ĉλ(a)− ra)

≤ (ρ + λ− r)U′1(ĉλ(a))
−U′′1 (ĉλ(a)) (ĉλ(a)− ra)

= (ρ + λ− r)
1

σ (U1, ĉλ(a))
ĉλ(a)

(ĉλ(a)− ra)
<

λ

σ

ĉλ(a)
(ĉλ(a)− ra)

=
λ

σ

2λ
σ

2λ
σ − ra

.

By choosing λ̄ sufficiently large, for all λ > λ̄,
2λ
σ

2λ
σ −ra

< 2 for all a ∈ (a, ā) . Therefore, by

Lemma 6, ĉλ(a) < 2λ
σ a.

Now, going back to inequality (60),

λ (Vλ(a)−Wλ(a)) ≤ U1 (ĉλ(a))− ρVλ(a) < U1

(
2λ

σ
ā
)
− ρVλ(a).

By the INADA conditions

lim
λ→∞

U1

(
2λ
σ ā
)

λ
= 0.

It is easy to show that limλ→∞
Vλ(a)

λ = 0. Thus we obtain the desired convergence (59).
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