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1 Introduction

There exists wide variation in health care utilization across the United States. The extensive

and influential literature documenting this variation has largely focused on how care varies across

regions, understandably because of unobserved patient sorting within regions to hospitals and

physicians.1 However, very little is known about the behavioral foundations of variation from

individual agents. Using quasi-random assignment of patients to teams of physicians in training

(“housestaff”) at a large academic hospital, this paper aims to describe the evolution of practice

variation among internal medicine housestaff in order to shed light on the broader behavioral

foundations underlying practice variation.

While this study is necessarily limited to within an organization, it advances our understand-

ing of practice variation in health care in two important ways. First, while the state of the

art in the area-level variations literature is making progress in separating causes into two broad

categories of patient “demand” factors and provider “supply” factors (Finkelstein et al., 2016),

the empirical design in this paper holds fixed demand factors (by patient random assignment)

as well as most supply factors, including financial incentives, capital endowments, market struc-

ture, and institutional rules and culture. This allows me to focus on variation across agents

within an institution, which is intuitively important but not well understood. Second, residency

training is an advantageous setting to study the dynamics of physician practice variation, as it

is perhaps the most formative period in physicians’ careers, when trainees begin with very little

prior clinical experience and engage in intensive training in a controlled environment. Detailed

patient-care and administrative data permit me to track variation attributable to individual

housestaff, on a daily basis, as they transition to different team roles and rotate among different

practice environments.

I first demonstrate clinically significant variation attributable to housestaff who are quasi-

randomly assigned patients. Assignment of patients to housestaff within the same organization

has causal effects on daily total spending, daily test spending, length of stay, and 30-day read-

missions, and even 30-day mortality. While much of the regional variations literature has found
1See, e.g., Skinner (2012) for a recent review of the literature, which dates at least to Wennberg and Gittelsohn

(1973).
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no correlation between spending and outcomes, I find that housestaff who spend more have bet-

ter outcomes, consistent with more recent evidence by Doyle Jr et al. (2015), which exploits

random assignment to hospitals by ambulances. Although associations between spending and

mortality are imprecise, reassigning patients from 10th-percentile to 90th-percentile housestaff

in the spending distribution would lower readmissions by a 2.5 percentage points, eliminating

about a fifth of readmissions.

Next, in a stylized framework with learning and team decisions, I conceptually show that prac-

tice variation does not necessarily decrease monotonically with experience. Rather, as physicians

gain more precise beliefs about practicing medicine, they may also gain greater influence so that

their beliefs count more in team decisions. I empirically examine this concept of influence within

teams by exploiting a mechanical discontinuity in housestaff roles: Since patients are cared for

by a team comprised of a first-year “intern” and a second- or third-year “resident,” the relative

experience of a housestaff changes discontinuously across the one-year mark. This separates

the effect of influence from time-varying but plausibly continuous characteristics of the index

housestaff, such as skills and cumulative learning. The standard deviation of spending effects

across housestaff discontinuously increases from approximately a 20% difference in costs among

year-end interns to a 70% difference in costs among beginning residents.

Further, I study the evolution of practice variation among the same set of housestaff but in

different practice environments. Residents converge when practicing in specialist-driven services

– cardiology and oncology – eliminating much of the variation by the end of residency, while

the same residents show no convergence when practicing in general medicine. I argue that this

division into specialist and generalist services represents a meaningful difference in the existence

and use of explicit medical knowledge, but at a minimum this finding shows that the same

housestaff with the same average training experiences develop different degrees of practice vari-

ation depending on the environment. This difference between specialist- and generalist-driven

services is highly significant with systematic placebo tests randomizing service-block identities,

and strikingly, this difference holds when matching patients based on formally coded diagnoses.

Finally, as a benchmark to the above results, I quantify practice variation predictable by

housestaff characteristics and prior observable training experiences, using the following: (a)
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detailed housestaff characteristics from confidential residency selection and administrative data

(e.g., test scores, rank-list positions, honors); (b) precommitted career choices in which housestaff

with different future plans are required to have the same initial training in internal medicine; and

(c) histories of training experiences (e.g., whether the housestaff recently trained with a high-

spending supervising physician) that are as good as randomly assigned. Housestaff characteristics

predict in aggregate only a small portion of the large underlying spending variation. When using

LASSO to avoid overfitting due to the large number of characteristics relative to the number of

housestaff, the sole predictive characteristic is male sex, which predicts 4% less spending among

residents, whereas the standard deviation of practice variation among residents is at least 15

times greater. Similarly, housestaff tenure does not significantly shift mean levels of spending

or other outcomes (e.g., readmission and mortality), and a wide variety of training experiences

have no true predictive power.

Together, these findings are most supportive of informational frictions as a major mechanism

sustaining practice variation, in the following sense: The importance of relative influence suggests

that knowledge is slowly gained and not easily passed from senior agents to junior agents.2 Lack of

convergence also suggests that the standard of practice is insufficiently defined or communicable

in many cases, despite a setting with intensive training and close supervision. In contrast,

intrinsic heterogeneity across physicians is unlikely to play a large role, to the extent that any of it

is correlated to detailed physician characteristics related to skill and preferences. These findings,

based on 3.2 million orders tracking physicians as they train, provide complementary evidence

to surveyed physician beliefs (Cutler et al., 2013), especially when much of what physicians do

may arise from knowledge, beliefs, or habits that are not easily elicited by asking them.

At least since Arrow (1963), the informational frictions in medical care have been well-

known, and at least since Polanyi (1966), tacit knowledge – “knowledge,” possibly including

beliefs or habits, that is difficult to communicate – has been considered a significant barrier in the

standardization of decisions and routines across workers (Nelson and Winter, 1982; Autor et al.,

2003). However, tacit knowledge has not received much consideration in the economics literature
2In Appendix A-3, I discuss how this idea is consistent with possibility of social authority or hierarchy. Author-

ity as a function of knowledge, even when used to describe a profession independent of any individual’s knowledge,
is explored in detail by Starr (2008), who documents the rise of the medical profession as specialized scientific
knowledge expanded.
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as a behavioral foundation for practice variation in health care, possibly because it is inherently

difficult to measure and more generally due to a lack of micro-level data following significant

variation in a controlled environment.3 While differences in physician characteristics and training

experiences may be larger across institutions, if informational frictions sustain variation within

a set of housestaff under intense training in a single organization, such frictions are also likely to

be larger across institutions.

The remaining organization of this paper is as follows. Section 2 describes the institutional

setting; Section 3 describes the data. Section 4 presents a first look at meaningful variation across

housestaff in several outcomes. Section 5 discusses variation across the discontinuity of relative

experience, and Section 6 discusses convergence (or the lack thereof) in different environments.

Section 7 describes results on the predictive power of housestaff characteristics and experience

on outcomes. Section 8 discusses policy implications and concludes.

2 Institutional Setting

2.1 Medical Care by Physicians in Training

Since the Flexner Report in 1910, medical training has largely become standardized across

the US (Flexner, 1910; Cooke et al., 2006). Each patient is cared for by a team of a first-year

housestaff (“intern”) and a second- or third-year housestaff (“resident”). Residents are usually

assigned to two interns at a time and therefore are responsible for twice the number of patients. As

a result, span of control considerations argue for more control by interns over their patients than

residents do, as interns can devote more attention to each patient. There are no other formal

distinctions in decision rights or job responsibilities between interns and residents, including

legal or regulatory ones, but residents are expected to know more and often engage in higher-

level decision-making in patient care. These housestaff teams are supervised by “attending”

physicians and operate within a broader practice environment, which includes other health care
3See Cutler (2010) and Skinner (2012) for thoughtful reviews on potential causes of practice variation. Much

of the conventional wisdom focuses on a lack of competition across firms, due for instance to health insurance
and lack of quality measurement. The evidence in this paper would suggest that the issue goes beyond measuring
“quality” and that for large areas of medicine, there is a lack of agreement on what constitutes best practices for
a given patient.
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workers (e.g., consulting physicians, pharmacists, and nurses), as well as institutional rules for

deciding and implementing care.

Housestaff from different programs and different “tracks” within a program work together on

the same clinical services. For example, a sizeable number of interns only plan to spend one year

in the internal medicine residency (“preliminary” interns, as opposed to the standard “categorical”

interns), subsequently proceeding to other residency programs, such as anesthesiology, radiology,

or dermatology.4 These plans are committed to prior to starting the internal medicine residency.

Other residency programs include another internal-medicine residency from a different hospital,

as well as obstetrics-gynecology and emergency medicine from the same hospital.

Housestaff schedules are arranged a year in advance to satisfy hospital programmatic re-

quirements and broader regulations. Rotations include intensive care unit (ICU), outpatient,

research, subspecialty (mostly outpatient) electives, and ward blocks. This study focuses on

inpatient ward rotations, which are comprised of cardiology, oncology, and general medicine

services. Per residency administration, preferences are not collected about rotations, and assign-

ment does not consider housestaff characteristics, although housestaff on certain tracks may be

unavailable during certain times due to programmatic differences.5 Scheduling does not consider

the teams of intern, resident, and attending physicians that will be formed as a result. In fact,

attending schedules are done independently, and neither housestaff nor attending scheduling is

aware of each other’s results in advance.

Patients arriving at the hospital are assigned to interns and residents by algorithm, which

distributes patients in a rotation among housestaff that are “on-call” and have not reached the

maximum number of patients. Patients who remain admitted for more than one day may also

be mechanically transferred between housestaff changing rotations. When a housestaff replaces

another one, she assumes the care of the entire list of patients from the other housestaff. Because

housestaff blocks are generally two weeks in length and staggered for interns and residents, it is

not uncommon for a patient to experience a change in either an intern or a resident.
4In addition, tracks within a residency program include primary care, “short tracks” to fellowship training,

research tracks such as genetics, and medicine-pediatrics or medicine-psychiatry combined programs.
5Housestaff are allowed to express preferences about vacation days, although these vacation days are few, about

two weeks per year. Senior residents (third-year residents) may also express more general preferences about the
timing of non-clinical blocks, such as research electives. For interns, schedules are assigned even prior to their
arrival from medical school.
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2.2 Medical Knowledge

Inpatient medical care is comprised of three services at this institution: cardiology, oncology,

and general medicine. This organization represents the most common configuration of inpatient

care across academic hospitals in the US. Of the 24 residency programs ranked by US News

& World Report and shown in Table A-2, 22 and 19 programs have dedicated cardiology and

oncology services, respectively. Gastroenterology, represented at 6 programs, is the next most

common subspecialty service. A similar relationship among subspecialties exists in the universe

of internal medicine programs recognized by ACGME (Table A-3). Specialist-driven services by

definition are staffed by specialist attending physicians, who have several more years of training

after internal medicine. In contrast, generalists are responsible for patients on general medicine

services, who may optionally consult a specialist if they deem it helpful.

In recent decades, by important measures, medical knowledge has progressed in cardiology

and oncology to a greater extent than for other diseases.6 Table A-4 shows the number of

original research articles appearing in the New England Journal of Medicine in the last ten years

according to key disease specialty or subspecialty. Oncology and cardiology research papers are

the most numerous by a substantial margin. Table A-5 reports current research funding by

National Institute of Health (NIH) Institute or Center. Although Institutes often lump disease

categories, the National Cancer Institute (NCI) with current funding of $6.7 billion and the

National Heart, Lung, and Blood Institute (NHBLI) with current funding of $3.6 billion occupy

the first and third positions for funding out of a list of 27 Institutes and Centers.

In this sense cardiology and oncology care have stronger “best practices” than other subspe-

cialties of internal medicine. Differences in best practices can affect variation in two ways. First,

strong best practices, embedded in attending physicians, ancillary staff, and institutional rules,

constrain variation in housestaff decisions even if these housestaff have not yet fully internalized

all information available at the institution. Second, environments with stronger best practices

will be more conducive to learning. The fact that physicians need further subspecialty training to

assume primary responsibility for cardiology and oncology patients, but not to treat pneumonia,
6The production and use of knowledge is in turn driven by government, academic, and industry priorities. For

example, in some locations and in the past, tuberculosis wards were common but cease to exist today.
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may also reflect a larger body of knowledge used to care for these patients.7

3 Data

This study uses data collected from several sources. First, I observe the identities of each

physician on the clinical team – the intern, resident, and attending physician – for each patient on

an internal medicine ward service and for each day in the hospital. Over five years, I observe data

for 48,185 admissions, equivalent to 220,117 patient-day observations. Corresponding to these

admissions are 724 unique interns, 410 unique residents, and 540 unique attendings. Of the

housestaff, 516 interns and 347 residents are from the same-hospital internal medicine residency,

with the remainder visiting from another residency program within the same hospital or from

the other hospital. There is no unplanned attrition across years of residency.8

Detailed residency application information for each housestaff includes demographics, medi-

cal school, USMLE test scores, membership in the Alpha Omega Alpha (AOA) medical honors

society, other degrees, and position on the residency rank list. USMLE test scores represent

a standardized measure of resident knowledge and ability. Position on the residency rank list

represents desirability to the residency program, according to both criteria that I observe and

those assessed during the interview and potential recruitment process. Finally, I observe precom-

mitted career “tracks” for each housestaff physician, including special tracks (e.g., primary care,

genetics), the standard “categorical” internal medicine track, and tracks into another residency

such as anesthesiology, dermatology, psychiatry, or radiology after a preliminary intern year.

I use scheduling data and past matches with supervising attending physicians and other

housestaff to impute housesetaff experience over time. As described in Section 2, housestaff do

not choose most of their learning experiences, at least in terms of their clinical rotations and in

what order, peers and supervising physicians, and patients seen on the wards. Table 1 shows

that interns and residents, respectively, with high or low spending effects are exposed to similar
7Several observers have noted that the increasing length of training in medicine seems to related to the

growing role of scientific knowledge and technology in medicine (Ludmerer, 1988; Starr, 2008). For example, prior
to the beginning of the 20th century, practitioners could become doctors in a matter of weeks. Although the
first American residency was started at Johns Hopkins in 1889, teaching hospitals and residencies only grew to
prominence in the 1920s, when sufficient technological knowledge (and, to a degree, urbanization) shifted care
from patients’ homes to hospitals.

8In two cases, interns with hardship or illness in the family were allowed to redo intern year.
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types of patients and are equally likely to be assigned to high- or low-spending coworkers and

attendings. In Appendix A-1, I present more formal analyses on conditional random assignment

of housestaff physicians; I cannot reject the null that housestaff identities are jointly unrelated

to patients types or other training experiences.

Patient demographic information includes age, sex, race, and language. Clnical information

derives primarily from billing data, in which I observe International Classification of Diseases,

Ninth Revision, (ICD-9) codes and Diagnostic-related Group (DRG) weights. I use these codes

to construct 29 Elixhauser comorbidity dummies and Charlson comorbidity indices (Charlson

et al., 1987; Elixhauser et al., 1998). I also observe the identity of the admitting service (e.g.,

“Heart Failure Team 1”), which categorizes patients that are admitted for similar reasons (e.g.,

heart failure).9

For each patient-day, I observe total cost information, aggregated within 30 billing depart-

ments such as blood bank, various laboratory, nursing, nutrition, pharmacy, physical therapy,

radiology. I also observed more detailed cost information specific to each of 3.2 million physician

orders in laboratory and radiology (e.g., CT, MRI, nuclear medicine, ultrasound). Admission

and discharge data allow me to impute length of stay in days and readmission rates. Finally,

dates of death are provided via linkages with social security vital statistics data. While I study

variation across housestaff in each of the outcome measures of daily total costs, daily test costs,

length of stay, readmissions, and mortality in Section 4, for most of the paper I focus on daily

test costs (a) because they are most closely controlled by housestaff, (b) because daily outcomes

linked to a large number of physician orders allow for greater precision in measuring variation,

and (c) because they capture variation in diagnostic approaches, the heart of medical decision-

making, including in situations in which very little is known about patients.10 The distribution

of daily test costs is heavily right-skewed. I censor daily test cost observations greater than $800,
9These admitting services are more narrowly defined than the broad categories of cardiology, oncology, and

general medicine. However, even within specific admitting service, attendings may have different types of patients
(e.g., a vertically integrated HMO admits to the same service as the hospital’s own attendings). Therefore,
without hand-coding attendings to practice groups and conditioning on these groups, patients are not quasi-
randomly assigned to attendings. Still, as described above, housestaff are quasi-randomly assigned to patients,
other housestaff, and attendings.

10Medical spending has been the focus of much of the literature on practice variation (Fisher et al., 2003a,b)
and is a key policy focus in its own right (Anderson et al., 2005). Test spending has particularly received
increasing attention as the relative cost of tests has risen and now comprises a significant proportion of overall
costs (Schroeder et al., 1974; Iwashyna et al., 2011).
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which comprise 3% of the data; the resulting distribution is shown in Figure A-5.11 The mean

daily test cost is $124, while the median is $49 and the 90th percentile is $337. These daily costs

aggregate to overall admission tests costs with a mean of $714.

4 Variation across Housestaff

I first examine variation attributable to housestaff, specifically residents, in each of the fol-

lowing outcomes: log total spending on day of admission, log test spending on day of admission,

log length of stay, 30-day readmission, and 30-day mortality. For admission a at time t, associ-

ated with resident j and attending k, I specify outcome Yajkt based on patient and admission

characteristics Xa (see Section 3), a set of time categories Tt for month-year combination and

day of the week, and resident and attending identities:

Yajkt = g (PY (Xa,Tt, k)) + ξj + εajkt, (1)

where PY (Xa,Tt, k) is a linear projection of outcomes Yajkt onto Xa, Tt, and k, using only

within-housestaff variation, g (·) is a potentially flexible transformation of the projection, ξj is a

resident random effect possibly correlated with PY (Xa,Tt, k), and εajkt is an error term that is

normal for log spending and log length of stay or logistic for binary outcomes of readmission and

mortality. For binary outcomes, Yajkt is a latent variable that determines the observed binary

outcome Ỹajkt = 1 (Yajkt > 0). As a simple benchmark of variation in different outcomes, this

exercise treats practice variation as fixed over time within residents, in contrast to the fuller

statistical model in Sections 5 and 6 that nonparametrically allows for drift over time.

Although patients are conditionally as good as randomly assigned to housestaff (Appendix

A-1), random assignment does not hold across time categories and admitting services. This

motivates a treatment of resident effects that allows for correlation with PY (Xa,Tt, k). I thus

separate ξj into a correlated component uj and an uncorrelated component vj :

ξj = uj + vj ,

11Results in this paper are robust to this censoring.
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where Corr (uj , PY (Xa,Tt, k)) ̸= 0 and Corr (vj , PY (Xa,Tt, k)) = 0. I restrict comparisons

across housestaff to the uncorrelated component, vj , for two reasons. First, comparing housestaff

with different average PY (Xa,Tt, k) is less likely to be valid because patients are not randomly

assigned between these housestaff. Second, uj is mechanically correlated across different outcome

measures by the correlation between uj and patient observed and unobserved characteristics

captured by PY (Xa,Tt, k).12 Given this setup, which I describe in more detail in Appendix

A-2, I calculate empirical Bayes predictions v̂j (Searle et al., 1992) for each resident in each of

the outcome measures.

Figure 1 shows distributions of resident effects in each outcome measure. Within the same

institution and set of housestaff, reassigning patients from the 10th-percentile- to the 90th-

percentile-v̂j resident (among residents exposed to patients with the same PY (Xa,Tt, k) on

average) increases respective outcomes of total spending on admission, test spending on admis-

sion, and length of stay by about 20%. In dollar terms, respective reassignment from the 10th

to 90th percentile resident increases total spending on admission from $1,022 to $1,245, and test

spending on admission from $135 to $164.13 Reassignment according to length of stay increases

length of stay from 3.64 days to 4.35 days. Reassignment from the 10th to 90th percentile ac-

cording to 30-day readmissions and 30-day mortality increases these events from 9.6% to 16.4%,

and from 5.1% to 10.3%, respectively.

Figure 2 shows correlations between resident effects in spending and clinical outcomes. Con-

sistent with Doyle Jr et al. (2015), which measures correlations between hospital effects on

spending and outcomes, identified by random arrivals of patients by ambulance to hospitals, I

find a similar positive relationship between spending and clinical outcomes across residents. Res-

idents who spend more either in total or by testing have fewer 30-day readmissions. Reassigning
12Standard approaches (e.g., Abowd et al., 2008) to correlated random effects will mechanically assign uj based

on PY (Xa,Tt, k) and therefore induce correlation in uj between different outcome measures driven by projections
of patient types onto outcomes. For example, patients in the bone marrow transplant service are more resource-
intensive patients and also more likely to die. Comparing housestaff who spent more and less time on the bone
marrow transplant service would thus induce a correlation in uj between spending and mortality.

13Variation in spending on admission is less than variation in spending on all days, even when controlling for
day of stay. This indicates that spending on the first day, even though it is generally higher, is less variable in log
terms. I show results for variation in daily spending in Table 4 (Section 7), although that table and Figure 1 are not
directly comparable since the former states variation in terms of the standard deviation of the directly estimated
random effect distribution while the latter states variation in terms of shrunken empirical Bayes predictions v̂j . I
focus on variation on day of admission in this section in order to assess the relationship between resident effects
on admission-level outcomes and daily-level outcomes.
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patients from the 10th to 90th percentile of v̂j according to total spending would reduce read-

missions by 2.5 percentage points, or eliminate about a fifth of readmissions. The relationship

between spending and mortality is slightly negative but small and statistically insignificant.

5 Influence

This section examines the effect of relative influence in teams on the variation of housestaff

effects. In Appendix A-3, I introduce a simple conceptual framework to consider decision-making

in teams under uncertainty. While details are in the appendix, the intuition is straightforward: in

a team environment under uncertainty, decisions will aggregate information from different agents’

prior beliefs, and this aggregation depends on both the means of the priors as well as relative

precisions of the priors. While agents learning from common data and underlying truth should

converge to the same practices when making decisions individually, the information-aggregation

feature of team decisions, which can be thought of as a foundation for influence, gives rise to the

possibility that an agent’s effect on variation may increase even as she learns.

To estimate the importance of influence in practice variation in a team environment, I ex-

ploit the discontinuous change in roles at the end of the first year of training. In particular,

a housestaff near the end of the first year still has at least one year less experience than the

other teammate, while the same housestaff at the beginning of the second year has one year

more experience than the other teammate. This allows me to focus on a discontinuous change in

relative influence, while holding everything else fixed about the index housestaff that is plausibly

continuous. The institutional setting of residency has the dual advantages of no differences in

formal roles that mechanically increase resident influence and no unobserved selection into senior

roles.14 Nevertheless, the “influence effect” may still be considered a reduced-form combination

of (a) true differences in the relative quality of information for a given housestaff at the discon-

tinuity and (b) perceived differences that can include things like hierarchy and prestige due to

seniority in medicine. As discussed in Appendix A-3, the latter phenomenon of hierarchy can
14Moreover, as mentioned in Section 2, two interns are usually assigned to a resident, and as a result, interns

have more per patient clinical interactions and greater control over orders. These institutional facts suggest that,
if information were equal, interns should have more influence than residents in the care of a given patient. As
such, an observed increase in influence at the first-year mark may be viewed as a lower bound of the effect of
more precise information on influence.
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be thought of as consistent with the framework of team decision-making under uncertainty, in

which informational frictions prevent agents from objectively knowing or even communicating

each other’s true informational content.

For a patient being treated on day t of admission a by intern i, resident j, and attending k,

I specify log daily test costs as

Yaijkt = Xaβ +Ttη + ξ
τ(i,t)
i + ξ

τ(j,t)
j + ζk + νa + εaijkt. (2)

Equation (2) includes patient and admissions characteristics Xa, and a set of time categories Tt

for month-year combination, day of the week, and day of service relative to the admission day.

I allow for attending fixed effects, ζk.15

The parameters of interest in Equation (8) characterize distributions of time-varying random

effects, ξτ(i,t)i and ξ
τ(j,t)
j for intern i and resident j, respectively, at discrete tenure interval τ (·, t)

that is function of the housestaff and time. ξ
τ(i,t)
i and ξ

τ(j,t)
j is constant within each tenure

interval and housestaff, but for this analysis I impose no structure across tenure intervals for the

same housestaff. As described in Appendix A-5, I employ a method akin to restricted maximum

likelihood (REML) and similar to an approach by Chetty et al. (2014) that allows random effects

to be correlated with fixed covariates without further modeling of the correlation. Tenure-specific

standard deviations of ξτ(·)h∈{i,j} are then directly and jointly estimated by maximum likelihood.

These empirical estimates of practice variation are unbiased even in finite samples.16 Finally, in

some specifications I allow for shocks at the admission level, νa, allowing some patients, even

controlling for patient observables, to randomly result in more test costs than others.

Figure 3 presents results for the estimated standard deviations of the distributions of houses-

taff effects within each tenure interval τ . In my baseline specification, I consider non-overlapping
15Physician practice patterns have been found to be quite stable in the existing literature, which motivates fixed

effects that are time-invariant (Epstein and Nicholson, 2009; Molitor, 2011). I do not focus on practice variation
among attending physicians for two practical reasons: First, unlike housestaff physicians, they are not randomly
assigned patients. Second, they are only variably observed in the data, with many attendings working only a few
weeks a year.

16It is well-known that in finite samples fixed effect estimates of ξ
τ(·)
h∈{i,j} would include measurement error

and therefore would have a distribution with greater variance than the underlying distribution of true effects.
However, because I necessarily specify two sets of effects, one for the intern and the other for the resident, there
are two complications to the standard Bayesian shrinkage procedure (e.g., Morris, 1983) which result in biased
estimates of the distribution that I confirm in simulations. This is discussed further in Appendix A-5.

12



tenure intervals that are 60 days in length for the first two years of residency, and 120 days in

length for the third year, since third-year housestaff have fewer inpatient days.17 I find large

and significant variation in housestaff effects during all intervals of time. A standard-deviation

increase in the intern effect, ξτ(i,t)i , increases test spending by about 20%. A standard-deviation

increase in the resident effect, ξ
τ(j,t)
j , increases spending by about 70%. In comparison, the

standard deviation for admission-level effects, νa, is 40%; including or omitting admission-level

random effects does not significantly alter results. Given the large qualitative heterogeneity across

patients in inpatient care, it is notable that residents alone are responsible for more variation in

spending than unobserved patient characteristics.

Physician effects are determined by both individual beliefs and relative influence. However,

under the assumption that housestaff beliefs are continuous over time, the discontinuity at the

one-year tenure mark identifies the change in influence due to a discontinuous increase in relative

tenure, from being at least one year less experienced to being one year more experienced than

the teammate. The change in spending-effect variation indeed is highly discontinuous, tripling

in standard deviation across the one-year tenure mark. This implies a large effect of relative

influence on the size of physician spending variation.

6 Learning: Persistence and Convergence

In this section, I examine housestaff learning, based on two main sources of evidence. First,

I study the serial correlation of housestaff effects across adjacent time periods, as a measure of

persistence. Because correlation should be invariant to changes in scale, it measures persistence

in a way that is conceptually distinct from changes in influence. Increasing persistence only

reflects that physicians are settling on choices similar to their past choices, and these choices

may be different from those of other physicians.18

17I observe approximately half as many patient-days for housestaff in the third year, because third-year hous-
estaff spend more time in research and electives than in the first two years of training.

18In the conceptual framework in Section A-3, particularly in Equation (A-8), this persistence may be most
literally thought of as persistence of beliefs mh. The development of persistent but heterogeneous practices is
consistent with housestaff ceasing to learn a common practice. However, unchanging heterogeneity alone may also
represent heterogeneous preferences or skills. These two sources can be separated somewhat by the time course
of correlation (e.g., high correlation from the beginning suggests intrinsic heterogeneity). I explore intrinsic
heterogeneity further in Section 7.
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Second, I study the convergence of housestaff effects with tenure, separately in the different

practice environments of specialist and generalist services. Convergence – defined as a decrease

in the variation of housestaff effects with tenure – implies that housestaff become more like one

another in their effects and is a more direct test of learning to practice a common standard. I

compare convergence (or the lack thereof) of housestaff effects in specialist services versus the

general medicine service, consistent with greater knowledge in the specialist services. I rule

out an alternative mechanism under which differences in learning occur because cardiology and

oncology have a higher concentration of diagnoses. Interestingly, I also show that convergence

seems unrelated to formal diagnoses, which suggests that the information separating patients

into services is mostly informal and tacit.

6.1 Persistence of Housestaff Effects

I study the serial correlation across estimated housestaff effects across tenure intervals. The

model for housestaff effects remains specified in Equation (2), but the estimation procedure now

includes two periods and specifies a parameter in the variance-covariance matrix of housestaff-

tenure effects that allows for this correlation. Details are described in Appendix A-5.2. This

procedure can yield estimates of the correlation between effects in any two tenure periods, but I

am particularly interested in the serial correlation between two adjacent periods.

Figure 4 shows correlation estimates between each tenure interval and the previous interval.

Estimates are less precise than the standard deviation across housestaff effects within each tenure

period (Figure 3).19 The overall lower precision is not surprising given that correlation estimates

require observing the same housestaff across different periods. It is also important to have

a sufficient number of observations per housestaff in each period, for a sufficient number of

housestaff, because the correlation depends on the relative values of effects across housestaff

both within period and across periods. By contrast, measuring the standard deviation across

housestaff effects only requires more than one observation per housestaff within period in order
19This figure additionally shows results based on a Bayesian refinement, discussed in Appendix A-6, that also

uses correlations between non-adjacent periods. Results and similar with or without the refinement. This perhaps
reflects a general consistency in estimation correlations both between adjacent periods and between non-adjacent
periods. Alternatively, Proposition A-4 in Appendix A-6 also states that the informativeness of these auxiliary
correlations can be low if they are close to 0.
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to decompose the variance components due to housestaff and patient-days.

Nonetheless, central estimates are all above 0 and are generally increasing with tenure. That

is, a higher-spending housestaff is always more likely than not to be higher-spending in the next

period. Many of the central estimates are economically significant, using correlations estimated

by Chetty et al. (2014) for teacher value-added as a reference. At the same time, the upper limit

of the 95% credible interval of the Bayesian posterior rules out extremely high serial correlations

for almost all of the tenure periods. Only one of the fourteen periods has an upper limit greater

than 0.70. This suggests that some non-trivial learning continues to occur throughout training

and is inconsistent with pure intrinsic heterogeneity as the sole explanation for practice style

variation. I will explore intrinsic heterogeneity correlated with rich observable characteristics

further in Section 7.

6.2 Convergence to Best Practices

As described in Section 2, I consider specialist-directed services of cardiology and oncology

as taking place in an environment with stronger best practices relative to general medicine. By

definition, these services are driven by attendings with greater specialized knowledge. Further,

this pattern of organizing inpatient care is common across most academic hospitals in the US and

in the production of knowledge by research. As the baseline analysis of convergence, I therefore

estimate Equation (2) for each of the three ward services of cardiology, oncology, and general

medicine. As in Section 5, this yields the standard deviation of housestaff effect distributions by

tenure, now separately for each of the ward services.

In Figure 5, I show each of these profiles of housestaff-effect variation over tenure for car-

diology, oncology, and general medicine. Housestaff effects significantly converge in cardiology

and oncology, but for the same residents, there is no evidence of convergence in their practice

patterns in general medicine. The standard deviation of spending variation steadily declines

from 85% in cardiology and 75% in oncology, at the beginning of second year (as residents), to

37% in cardiology and 53% in oncology by the end of training. Convergence in specialist services

suggests that housestaff significantly learn toward a best practice in these environments, in which

there is qualitatively more information. In contrast, variation remains largely unchanged in the
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general medicine service, in which care is directed by generalists and is less amenable to the use

of specialized knowledge.

Merging cardiology and oncology services into a single “specialist service,” I quantify a rate of

convergence in spending effects among residents of about a 16% percentage-point decrease in the

standard deviation of housestaff effects per year. In other words, given a standard deviation of

74% at the beginning of the second year (when interns become residents), this is equivalent to a

relative decrease of 43% of this standard deviation over the next two years.20 Randomizing over

10,000 placebo combinations of housestaff-service-months (of about 1.27 × 10970 combinations)

yields a range of placebo convergence estimates of [−0.073, 0.085], suggesting that the actual

estimate −0.160 is extremely significant (see Figure 6). Details are given in Appendix A-7.

6.2.1 Decomposing Experience Leading to Convergence

Using variation in the order of housestaff training experiences, I explore the contribution of

general versus specific experience on cardiology or oncology in determining convergence in these

respective services. This distinction is informative for understanding the pathways through which

learning takes place for the care of patients on these services, for example distinguishing the in-

formation being learned (routines for cardiology patients) vs. the teachers per se (cardiologists).

Convergence according to specific experience suggests that learning occurs via direct experi-

ence with patients and attending physicians on the respective cardiology and oncology services.

Convergence according to general experience is still consistent with stronger best practices for

patients on specialist-driven services, but that learning towards these best practices is not limited

but possibly even complemented by experiences outside of these services.

In order to exploit variation in housestaff training over time in the random effects framework,

I decompose the set of observations into subsets representing deciles of specific experience “or-

thogonal” to general experience, and vice versa. I construct linear boundaries between subsets

by estimating linear quantile regressions of specific experience (i.e., number of days on service

s that resident j has had by day t, τs (j, t)) on general experience (i.e., days of tenure τ (j, t)),

and vice versa, over housestaff-day observations in service s. Figure 8 shows the variation in
20The standard deviation during the first tenure period of the second year is 69%, but the linearized projection

of the trend over the next two years implies a standard deviation of 74% for this tenure period.
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specific and general experience, for cardiology and oncology, with overlaid decile boundaries.

This representation of experience is most informative when there is large variation in training

experiences (i.e., specific experience is not perfectly predicted by general experience).21

I then estimate the distribution of resident-tenure effects in Equation (2) for each orthogonal

decile of specific experience or general experience.22 Figure 9 shows plots of estimated resident

effect standard deviations using observations in each of these deciles. Practice in cardiology shows

clear reductions in variation along increasing deciles of general and specific experience. Results

for oncology are less clear; convergence perhaps is stronger with increases in general experience.

These results decompose convergence in the specialist-driven services into two mechanisms. First,

at least for cardiology, convergence specifically occurs via experience on the same service. Second,

general experience, independent of time spent on cardiology or oncology rotations, also fosters

adoption of the best practices for patients on the specialty services. For example, by exposure

to a spectrum of cardiovascular disease and care in outpatient, emergency department, and

general inpatient care, trainees may learn more about how to handle patients with well-defined

cardiovascular disease on inpatient cardiology wards. This pathway appears present in both

cardiology and oncology and is consistent with a cohesive learning environment with knowledge

spillovers (albeit asymmetric ones) across internal medicine services.

6.2.2 Best Practices as Encoded by Organization

Given convergence with general experience, it is natural to ask whether convergence reflecting

stronger best practices can be predicted by coded diagnoses. First, I explore whether convergence

may occur in cardiology and oncology because these services have a higher concentration of

diagnoses by constructing pseudo-services within general medicine that include the three most

common Major Diagnostic Categories (MDC) of circulatory, respiratory, and digestive (see Table

A-6 for summary statistics). I find no difference in convergence between these pseudo-services
21Intuitively, measures that are strongly positively correlated will result in a large proportion of overlapping

observations in sets but in reverse order, e.g., a large proportion of observations in the first-decile set of one measure
being in the last-decile set of the other measure. This therefore will bias finding convergence with increasing deciles
in both measures, regardless of arbitrary actual positive effects of both measures on convergence. Of course, if
measures are perfectly correlated, then defining orthogonal deciles will be impossible.

22As before, I impose no relationship between ξτh and ξτ
′

h for τ ̸= τ ′, but because ξτh and ξτ
′

h may now both be
in the same estimation sample (i.e., in the same orthogonal decile), I explicitly consider ξτh and ξτ

′
h as separate

random effects.
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(Figure A-7). Relatedly, there is no greater convergence in care for patients with more common

diagnostic codes within service (Figure A-8).

Second, I examine whether stronger best practices can be identified by specific diagnoses,

linked to published guidelines in the national guideline repository maintained by the US Agency

for Healthcare Research and Quality (guidelines.gov). Roughly half of the diagnoses coded in

all services are linked to a published guideline. As shown in Figure A-9, there is no difference in

practice convergence, within service, for patients with and without diagnoses linked to guidelines.

This null finding suggests that guideline existence is an imperfect representation of true best

practices, and that coded diagnoses, despite their potential richness and widespread use as the

foundation for reimbursement (and research), are an imperfect measure of care-relevant patient

conditions. Finally, I replicate 97% of the diagnostic-code makeup of the cardiology service

using patients from general medicine, by selecting patients with ICD-9 codes in common with

cardiology and weighting them appropriately. I find no convergence in these patients from general

medicine but with diagnostic codes in common with cardiology (Figure 7).

These findings are consistent with the complexity of information not only in characterizing

best practices but in identifying the patients themselves for which best practices are applicable.

Although it may be surprising that potentially rich administrative diagnostic codes are unin-

formative for predicting convergence, closer examination reveals that codes used in practice are

quite coarse. For example, the most common formal diagnosis in both cardiology and general

medicine is “Chest pain, not otherwise specified.”23 Further, the strong difference in conver-

gence between specialist and generalist services suggests that much more information is used in

assigning patients in practice, and that this assignment is meaningful.

7 Housestaff Characteristics and Experience

In Sections 5 and 6, I show that practice variation depends to a large degree on team roles and

the practice environment, despite a fixed cohort of housestaff with broadly similar experiences

in the same training program. This suggests that information-based mechanisms are important
23Table A-7 illustrates this further by listing the 15 most common diagnoses in each service, as well as whether

there exists a guideline for each of the listed ICD-9 codes.
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drivers of practice variation. Given the traditional emphasis on human capital and intrinsic het-

erogeneity (e.g., ability) (e.g., Doyle Jr et al., 2010; Fox and Smeets, 2011; Bartel et al., 2014), a

natural comparison is to examine predicted differences in spending according to housestaff char-

acteristics and experience. I use rich data on housestaff characteristics and quasi-experimental

variation in training experiences to address this question in detail, and I find that mean effects

of numerous housestaff characteristics and measures of experience are either insignificant or an

order of magnitude less important than the mechanisms of relative influence and potential con-

vergence. This suggests that traditional concepts of intrinsic heterogeneity and human capital

are less valuable predictors than informational mechanisms in understanding variation in health

care practice.

7.1 Housestaff Characteristics

In the same training program, I observe predetermined and unusually detailed character-

istics that are likely correlated with differences in preferences and abilities.24 For example,

USMLE scores directly measure medical knowledge as a medical student; position on the resi-

dency rank lists reflects overall desirability; and residency tracks reflect important career deci-

sions and lifestyle preferences, such as a decision to become a radiologist rather than a primary

care physician. In addition to housestaff in the main residency program, I observe both in-

terns and residents from an internal medicine residency based in another hospital. For these

outside-hospital housestaff, I can evaluate the effect of their presence on medical teams. This

effect includes both differences in selection into the different program and in training experiences

across the programs (the outside residency is nationally recognized but lower ranked, and the

outside hospital is known to be more cost-conscious).

Separately for each of these characteristics, and for interns and residents, I assess the rela-

tionship these characteristics and daily test spending in regressions of this type:

Yaijkt = αmCharacteristicmh +Xaβ +Ttη + ζ−hk + εaijkt, (3)
24Previous studies have investigated the effect of coarse measures of observable physician characteristics (e.g.,

gender) and training experiences (e.g., place of medical school or residency) in a single regression (e.g., Epstein
and Nicholson, 2009). A challenge with this approach is that housestaff may select into different experiences.
However, these studies have also been unable to find any significant predictors of physician practice styles.
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where Characteristicmh equals 1 if housestaff h ∈ {i, j} had characteristic (or made track choice)

m prior to starting residency, and ζ−hk is a fixed effect for the other housestaff −h and attending

k.25 The coefficient of interest is αm, which is the causal effect of a patient being assigned to

a housestaff with characteristic m, includes effects that may be directly related to m as well as

effects due to any unobserved traits correlated with m.

I also evaluate the combined predictive effect of housestaff characteristics in two steps. First,

I regress outcomes on all direct housestaff characteristics, with continuous characteristics like

position on rank list entered linearly, along with the other admission and time regressors in

Equation (3):

Yaijkt =
∑
m

αmCharacteristicmh +Xaβ +Ttη + ζ−hk + εaijkt. (4)

This yields a predicted score Zh for each housestaff h, Zh =
∑

m α̂mCharacteristicmh , which I

normalize to Z̃h = Zh/
√

Var (Zh) with standard deviation 1. Similar to Equation (3), I then

regress daily test spending on this normalized score:

Yaijkt = αZ̃h +Xaβ +Ttη + ζ−hk + εaijkt. (5)

Finally, I evaluate Equation (3) more flexibly by allowing splines of continuous characteris-

tics and two-way interactions between characteristics, while assuming an “approximately sparse”

model and using LASSO to select for significant characteristics (e.g., Belloni et al., 2014). This

approach guards against overfitting in finite data when the number of potential characteristics

becomes large. In total, excluding collinear characteristics, I consider 36 and 32 direct character-

istics for interns and residents, respectively, and 285 and 308 two-way interactions, as potential

regressors in Equation (3).

Table 2 shows results for Equation (5) and a subset of results for Equation (3). Considering

characteristics individually in Equation (3), only two characteristics are statistically significant:

male sex and high USMLE test score. Male interns have 2% lower daily spending costs, significant
25In principle, I could include housestaff characteristics as mean shifters in the baseline random effects model in

Equation (2). However, since characteristics are generally insignificant predictors of variation, results of (residual)
variation attributable to housestaff are unchanged.
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at the 10% level; male residents have 4% lower daily spending costs, significant at the 5% level.

A high USMLE score predicts 3% lower daily spending, significant at the 10% level, for residents.

Table 2 also considers the mean effect of having housestaff from the other residency program,

an effect that could be due to selection (i.e., intrinsic heterogeneity) or differences in learning

experiences across the two programs. While other-program interns do not have significantly

different mean spending effects, other-program residents spend 17% less, but the latter is only

significant at the 10% level because of relatively few housestaff from the other program.

A standard-deviation change in the overall predictive score changes costs by about 2% for

both interns and residents. By comparison, using the same characteristics to predict whether a

housestaff was ranked in the upper half on the residency program’s rank list (excluding rank as a

characteristic) yields a predictive score that with one standard deviation changes the probability

of being highly ranked by about 20%. LASSO selected no intern characteristic as significant and

selected only resident male sex as significant. In this sense, the overall predictive score is likely

to be an overestimate of variation due to intrinsic heterogeneity.

Overall, these results show that intrinsic heterogeneity, to the extent that it is correlated

with any of the rich pre-residency characteristics and choices I observe, explains relatively little

compared to the size of variation that depends on influence and learning. The single characteristic

selected by LASSO, male sex, has a larger effect for residents than for interns, which supports

the idea of increasing influence, but effects are an order of magnitude less than the variation

across housestaff in any tenure period.

7.2 Housestaff Experience

I consider several measures of experience including days on ward service, patients seen, and

supervising physicians for a given housestaff prior to a patient encounter. For each of these

measures, I estimate a regression of the form

Yaijkt = αm1
(
Experiencemh,τ(h,t)−1 < Medianm

τ(h,t)−1

)
+Xaβ +Ttη + ζh + ζ−hk + εaijkt, (6)

where the coefficient of interest αm is on whether the measure Experiencemh,τ(h,t)−1 is above
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median, where both the measure and the median are calculated using observations before the

tenure period associated with the index observation. I also consider service-specific measures,

Experiencems
h,τ(h,t)−1, calculated using observations within service s (e.g., the number of patients

seen on cardiology service) and evaluated against a service-specific median. Patient character-

istics Xa and time indicators Tt are the same as used in previous regressions. In my baseline

specification, I control for the identities of the housestaff as ζh and the peer-attending com-

bination as ζ−hk separately, although whether I include ζh at all or include a fixed effect for

intern-resident-attending ζijk does not qualitatively influence results, consistent with random

assignment of housestaff to patients and peers (Appendix A-1). Results from Equation (6) are

shown in Table 3 and are broadly insignificant. A LASSO implementation that jointly considers

a larger number of summary experience measures in early or more recent months relative to the

patient encounter, as well as two-way interactions between these measures, (112 and 288 variables

for interns and residents, respectively) also fails to select any of these measures as significant.

I also consider the effect of resident tenure on outcomes of test daily spending, total daily

spending, length of stay, 30-day readmissions, and 30-day mortality for each of the ward services.

Because I also control for month-year interactions, I study this as the effect of having a third-year

housestaff, as opposed to having a second-year housestaff, as the resident:

Yaijkt = α1 (τ (j, t) > 2 years) +Xaβ +Ttη + ζik + εaijkt. (7)

The coefficient α is small and insignificant for all of these outcomes. Table 4 lists results

along with counterfactuals for switching to a resident one standard deviation above or below

in housestaff-effect distribution for the relevant outcome.

Overall, these results indicate that summary measures of housestaff experience are also poor

predictors of practice and outcomes, especially relative to the large variation across housestaff.

In this setting with the distinctive advantage that housestaff are as good as randomly assigned to

training experiences, I am able to reject that formal differences in training are responsible for any

significant subsequent variation in housestaff behavior. This fails to support the view of formal

“schools of thought,” at least within an organization with largely uniform training experiences,
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but nonetheless in an environment with large practice variation. Rather, it is consistent with

the view, as previously suggested in Section 6.2.2, that summary measures of experience, even

with (administratively) rich data, are likely to be impractical representations of the lessons to

be learned via specific experiences.

8 Discussion and Conclusion

The fact that there exists persistent variation in medical care has attained tremendous promi-

nence in policy discussions.26 However, the behavioral foundations of such variation in medical

care, and indeed in closely related variation in other industries (e.g., Syverson, 2011), remain

poorly understood. Although the scope of this paper is necessarily limited to studying varia-

tion within an organization, its empirical setting is well-suited to capture two important facts in

health care delivery that have been largely overlooked in the empirical literature on practice vari-

ation: Medical care is delivered in teams within organizations, and physician practice patterns

must be learned. I find learning-related mechanisms with large effects on variation: influence

given to residents with greater experience and convergence depending on the strength of best

practices. These channels dwarf the contributions of intrinsic heterogeneity, human capital, and

learned practice styles (i.e., “schools of thought”) from individual supervising physicians.27

While this paper is the first, to my knowledge, to empirically show evidence of the contri-

bution of informational frictions in the evolution of medical practice variation, these findings

are consistent with original thinking and evidence in the practice variation literature. It has

long been suspected that practice variation arises because of a lack of consensus on how medical

technology should be used. Jack Wennberg and colleagues indeed document that there exists
26For example, it is well-known that President Barack Obama paid special attention to this fact during US health

care reform leading to the Affordable Care Act (e.g., Pear, 2009). An article about health care spending variation
by Atul Gawande in 2009 in the New Yorker was dubbed by David Brooks of the New York Times as the most
influential essay of the year. The existence of medical spending variation has led influential policymakers, such
as Peter Orszag, to conclude that $700 billion (or over 30%) of health care spending could simply be eliminated
without any ill effects and has led some to propose penalizing areas with higher-than-average per capita spending
(see, e.g., Roy, 2010, and Jauhar, 2014, in the popular press for references to these suggestions and “contrarian
views” against them).

27Although intrinsic heterogeneity and differences in training could play a larger role in variation across in-
stitutions, informational frictions are also likely to be greater across institutions could explain much of regional
variation. Moreover, from a welfare perspective, variation within institutions is no less relevant than variation
across institutions.
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larger variation in surgical procedures where there is more disagreement (Wennberg et al., 1980;

McPherson et al., 1982; Wennberg et al., 1982). This view accords more generally with Polanyi’s

(1958) thesis that knowledge is difficult to communicate and therefore highly personal. As Nelson

and Winter (1982) observe, there is a connection between the tacit nature of knowledge across

individuals and the transferrability of practices or “routines” across organizations, and Gibbons

and Henderson (2012) discuss how this translates to persistent performance differences across

seemingly similar enterprises, in which managers may fail to perceive, understand, or implement

solutions to problems due to these frictions.

The notion that practice variation is a symptom of informational frictions has important

policy implications. For example, in team decision-making, if there are differences in relative

influence due to informational frictions in which agents cannot evaluate the quality of specific

recommendations, then educational interventions may be more effective in targeting agents who

have greater influence on teams, even if they have less to learn. That is, when informational

quality is imperfectly observed among agents, the same recommendation may have a greater

impact on patient care when internalized by an agent who is more influential. More importantly,

for most of medical care, simply selecting or incentivizing physicians and institutions to spend

the “right” amount of resources in medical care is unlikely to be feasible, for the essential reason

that we do not know what the “right” level of care is for a given patient. Rather, this paper

suggests a high degree of knowledge about “best practices” required to generate convergence, even

during an intense period of training at a high-quality academic institution. The billions of yearly

NIH spending in cardiology and oncology is a lower bound on the societal resources required to

support such knowledge, and the fact that formal diagnoses bear less relevance to convergence

than human triage decisions with discretion imply that universal algorithms, in the absence of

more knowledge, would be blunt and likely counterproductive means to reign in variation.
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Figure 1: Distributions of Resident Effects
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Note: This figure shows distributions of empirical Bayes predictions (BLUPs) of resident random effects
for outcomes of spending on day of admission (Panel A), length of stay (Panel B), 30-day readmission
(Panel C), and 30-day mortality (Panel D). Random effects are modeled according to Equation (1), allow-
ing for correlation with patient and admission characteristics, time categories, and attending identities.
The empirical Bayes predictions are of the component of the random effects that is orthogonal to a pro-
jection of these characteristics onto the outcome. More details are described in Section 4 and Appendix
A-2. Random effects are represented directly on the x-axis for continuous outcomes of (log) spending
and (log) length of stay in Panels A and B, while they are transformed into probabilities for the average
patient for binary outcomes of readmission and mortality in Panels C and D. Panel A shows distributions
for both total spending (solid line) and test spending (dashed line). The vertical gray lines represent
10th and 90th percentiles of the distribution (total spending in Panel A); because BLUPs are shrunken
10th and 90th percentiles are less dispersed than implied by standard deviations of the random effects
distributions (Table 4).
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Figure 2: Effects on Spending and Clinical Outcomes
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Note: This figure shows the relationship between empirical Bayes predictions of resident random effects
for spending and for clinical outcomes. Each panel is a binned scatterplot of average random effects for
spending within vigintiles on the x-axis and the corresponding random effects clinical outcomes among the
same residents in the spending vigintile on the y-axis. Clinical outcome random effects are transformed
into probabilities for the average patient, as in Figure 1. The figure considers two measures of spending:
total spending on day of admission (Panels A and B) and test spending on day of admission (Panels C
and D). Two clinical outcomes are 30-day readmissions (Panels A and C) and 30-day mortality (Panels
B and D). Regression lines are also plotted, with y-coordinates of the lines transformed to probabilities
for the average patient by a logistic transformation. Coefficients (and standard errors in parentheses)
correspond to a linear regression fit of the transformed clinical probabilities on spending random effects.
More details on how the random effects are calculated are described in Section 4 and Appendix A-2.
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Figure 3: Standard Deviation of Housestaff Random Effects by Tenure

0
.2

.4
.6

.8
1

St
d.

 d
ev

. (
lo

g 
do

lla
r c

os
ts

)

0 120 240 360 480 600 720 840 960 1080
Days tenure

Note: This figure shows the standard deviation in a random effects model of log daily test costs shown in
Equation (2) at each non-overlapping two-month tenure interval. Point estimates are shown as connected
dots; 95% confidence intervals are shown as dashed lines. The model controls for patient and admis-
sion observable characteristics, time dummies (month-year interactions, day of the week), and attending
identities (as fixed effects). Patient characteristics include demographics, Elixhauser indices, Charlson
comorbidity scores, and DRG weights. Admission characteristics include the admitting service (e.g.,
“Heart Failure Team 1”). Housestaff prior to one year in tenure are interns and become residents after
one year in tenure; a vertical line denotes the one-year tenure mark.
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Figure 4: Serial Correlation of Housestaff Random Effects over Tenure
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Note: This figure shows the serial correlation between random effects within housestaff in a given tenure
period and the previous tenure period. Hollow dots show directly estimated correlations from maximum
likelihood of data from the two tenure periods (details in Appendix A-5.2). Solid dots show posterior
correlations from a Bayesian refinement procedure that includes both the directly estimated correlation
and information from other correlations between non-adjacent periods (details in Appendix A-6). The
dashed lines are the 95% credible interval for the posterior correlations. The 95% confidence interval
for the directly estimated correlations are slightly larger but otherwise similar and are omitted from this
figure for simplicity. The random effect model of log daily test costs is first estimated as in Equation
(2), as described in the notes for Figure 3. Housestaff prior to one year in tenure are interns and become
residents after one year in tenure; a vertical line denotes the one-year tenure mark.
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Figure 6: Systematic Placebo Tests for Specialist-service Convergence
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Note: This figure shows 10,000 random placebo tests for convergence in the specialist services. Merging
cardiology and oncology yields an actual estimate of -0.160, or a 16% percentage point decrease per year
in the standard deviation of spending effects of residents over the two years of the resident role, shown by
the vertical line. In each of 10,000 placebo tests, I randomize combinations of housestaff-month-service
to a placebo specialist service, matching the number of housestaff-month-services assigned to specialist
services in each month of tenure. I estimate the same random effects model of log daily test costs shown
in Equation (2) for the placebo specialist service and estimate the rate of placebo convergence using
estimated housestaff effects in this placebo specialist service. Estimates for convergence are shown as a
frequency histogram with a kernel-smoothed overlay.
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Figure 7: Pseudo-cardiology Service
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A: Pseudo-cardiology by ICD-9 Codes
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B: Housestaff-effect Variation

Note: This figure shows the construction of a pseudo-cardiology service by ICD-9 codes (Panel A) and
housetaff-effect variation by tenure in this service (Panel B). This service is constructed from general
medicine observations, matching ICD-9 codes observed in cardiology. This procedure covers 97% of ob-
servations in the actual cardiology service. Panel A shows ICD-9 codes ranked by frequency in cardiology;
gray bars represent ICD-9 codes matched with observations in general medicine. Eight of 410 ICD-9 codes
have only one observation and are therefore not shown with a non-zero log frequency. Panel B shows the
standard deviation of housestaff effects by tenure for actual services of cardiology (short-dashed line) and
general medicine (long-dashed line), and for a pseudo-cardiology service (dot and solid line) comprised
of patients in general medicine but matching ICD-9 code primary diagnoses in cardiology. Estimation
of Equation (2) includes admission-intern random effects to normalize higher variance in the number of
patients per intern in the pseudo-cardiology service (thus results are slightly different than in Figure 5,
for example. Housestaff prior to one year in tenure are interns and become residents after one year in
tenure; vertical lines denote the one-year tenure mark.
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Figure 8: Orthogonal Quantiles of General and Specific Experience
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B: Oncology

Note: This figure shows orthogonal deciles of general and specific experience in cardiology (Panel A)
and oncology (Panel B), as described in Section 6.2.1. Days on cardiology (i.e., cardiology wards and
coronary care units, including at affiliated hospitals) are considered specific experience for cardiology; days
on oncology (i.e., oncology wards and bone marrow transplant service) are considered specific experience
for oncology. Overall tenure as a resident is considered general experience. Numbers of observations in
each 10 × 10 day bin are shown as densities. Quintile (rather than decile) boundaries are plotted for
visual simplicity: Short-dashed lines illustrate orthogonal quintiles of general experience; long-dashed
lines illustrate orthogonal quintiles of specific experience.

38



Figure 9: Convergence by Orthogonal Deciles of General and Specific Experience

.2
.4

.6
.8

1
St

d.
 d

ev
. (

lo
g 

do
lla

r c
os

ts
)

2 4 6 8 10
Decile experience

A: Cardiology

.2
.4

.6
.8

1
St

d.
 d

ev
. (

lo
g 

do
lla

r c
os

ts
)

2 4 6 8 10
Decile experience
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Note: This figure plots the standard deviation of resident spending effects estimated by Equation (2),
but decomposing experience into deciles of general and specific components, as described in Section 6.2.1.
Controls are the same as those listed in the caption for Figure 3. Each estimation sample is defined
by an “orthogonal decile” of general (solid dots) or specific (hollow dots) experience, which are deciles
of general (or specific) experience orthogonal to linear quantile predictions based on specific (general)
experience. The set of observations comprising each decile is illustrated in Figure 8. Panel A shows
results in cardiology; Panel B shows results in oncology. See notes in Figure 8 for how general and
specific experience are defined.
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Table 2: Effect of Housestaff Characteristics on Spending

Log daily test costs
(1) (2) (3) (4) (5)

Male High
USMLE

Highly
ranked

Other
hospital

Overall
score

Panel A: Interns
Effect of housestaff
with characteristic

-0.021
(0.012)

-0.003
(0.013)

0.011
(0.018)

0.007
(0.025)

0.019
(0.006)

Observations 186,694 185,497 131,418 220,074 190,640
Adjusted R2 0.166 0.166 0.166 0.165 0.165
Sample characteristic
mean 0.596 0.258 0.234 0.055 N/A

Panel B: Residents
Effect of housestaff
with characteristic

-0.039
(0.016)

-0.013
(0.020)

0.002
(0.028)

-0.169
(0.095)

0.022
(0.008)

Observations 206,802 199,715 129,508 220,074 206,802
Adjusted R2 0.180 0.180 0.178 0.178 0.180
Sample characteristic
mean 0.564 0.235 0.213 0.060 N/A

Note: This table reports results for some regressions of the effect of indicators of some housestaff
characteristics, including other hospital status, and a normalized predictive score (with standard deviation
1) based on all observed housestaff characteristics. Panel A shows results for interns; Panel B shows
results for residents. Columns (1) to (4) are regressions of the form in Equation (3), where the coefficient
of interest is on an indicator for a group of housestaff identified by either pre-residency characteristics or
whether the housestaff is from the other academic hospital. The effect of many other characteristics of
interest (or groups) were estimated as insignificant and omitted from this table for brevity. Column (5) is
reports results for Equation (5), where the regressor of interest is a normalized predictive score based on
age, sex, minority status, housestaff track, rank on matching rank list, USMLE score, medical school rank
in US News & World Report , indicators for whether the medical school is foreign or “rare,” AOA medical
honor society membership, and additional degrees at time of residency matriculation. By comparison, a
predictive score for being highly ranked (in the top 50 rank positions) based on the same characteristics
(except rank) changes the probability of being highly ranked by about 20% for both interns and residents.
All models control for patient and admission characteristics, time dummies, and fixed effects for attending
and the other housestaff on the team (e.g., the resident is controlled for if the group is specific to the
intern). Standard errors are clustered by admission.
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Table 3: Effect of Housestaff Experience on Spending

Log daily test costs
(1) (2) (3) (4) (5)

Number
of days

Number of
patients

Number of
attendings

Attending
spending

Attending
spending

Panel A: Interns
Effect of housestaff
with measure above
median

-0.004
(0.016)

-0.016
(0.016)

-0.017
(0.016)

-0.009
(0.013)

0.014
(0.058)

Observations 182,166 182,166 182,166 155,762 129,863
Adjusted R2 0.172 0.172 0.172 0.170 0.192

Panel B: Residents
Effect of housestaff
with measure above
median

-0.034
(0.035)

-0.050
(0.030)

-0.20
(0.039)

0.040
(0.036)

-0.025
(0.054)

Observations 200,276 200,276 200,276 182,329 174,834
Adjusted R2 0.181 0.181 0.181 0.181 0.187

Measure and median
within service Y Y Y N Y

Note: This table reports results for some regressions of the effect of indicators of housestaff experience.
Panel A shows results for interns; Panel B shows results for residents. Regressions are of the form in
Equation (3), where the coefficient of interest is on an indicator for a group of housestaff identified
whether their measure (e.g., number of days) is above the median within a 60-day tenure interval (across
all housestaff). The relevant tenure interval is the tenure interval before the one related to the day of the
index admission. All columns except for (4) represent measures and medians that are calculated within
service (e.g., number of days is calculated separately for a housestaff within cardiology, oncology, and
general medicine and compared to medians similarly calculated within service). Columns (4) and (5)
feature a measure of attending spending, which is the average cumulative effect of attending physicians
who worked with the housestaff of interest up to the last prior tenure interval. Attending “effects” are
calculated by a random effects method that adjusts for finite-sample bias; since patients are not as good
as randomly assigned to attending physicians, these effects do not have a strict causal interpretation at
the level of the attending physician. Other specifications (e.g., calculating all measures across services, or
not conditioning on housestaff identity) were similarly estimated as insignificant and omitted from this
table for brevity. All models control for patient and admission characteristics, time dummies, and fixed
effects for attending and the other housestaff on the team (e.g., the resident is controlled for if the group
is specific to the intern). Standard errors are clustered by admission.
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Appendix (for Online Publication per Referees / Editor)

A-1 Quasi-random Assignment

This appendix presents two sets of randomization tests for exogenous assignment, complementing
evidence in Table 1. Section A-1.1 presents results regarding the assignment of patients to
housestaff. Section A-1.2 presents the assignment of housestaff to supervising physicians.

A-1.1 Assignment of Patients to Housestaff

First, I test for the joint significance of housestaff identities in regressions of this form:

Xa = Ttη + µs (a ∈ Services) + ζτ<T
i + ζτ>T

j + ζk + εaijtk, (A-1)

where Xa is some patient characteristic or linear combination of patient characteristics for the
patient at a unique admission a at time t, being cared for by intern i, resident j, and attending
k on the day of admission. Tt is a set of time categories, including the day of the week and
the month-year interaction; µs is a fixed effect that corresponds to the admitting service s (e.g.,
“heart failure service” or “oncology service”). ζτ<T

i , ζτ>T
j , and ζk are fixed effects for the intern

i, resident j, and attending k, respectively. For simplicity, I do not impose any relationship
between the fixed effect of a housestaff as an intern and the fixed effect of the same housestaff
as a resident. I then test for the joint significance of the fixed effects

(
ζτ<T
i , ζτ>T

j

)
i∈I,j∈J

.

In column (1) of Table A-1, I show F -statistics and the corresponding p-values for the null
hypothesis that

(
ζτ<T
i , ζτ>T

j

)
i∈I,j∈J

= 0. I perform the regression (A-1) separately each of the

following patient characteristics Xa as a dependent variable: patient age, a dummy for male sex,
and a dummy for white race.28 I also perform (A-1) using as dependent variables the linear
prediction of log admission test spending based on patient age, race, and gender. I fail to find
joint statistical significance for any of these tests.

Second, I test for the significance of housestaff characteristics in regressions of this form:

Xa = Ttη + µs (a ∈ Services) + γ1Zi + γ2Zj + ζk + εaijkt. (A-2)

Equation (A-2) is similar to Equation (A-1), except for the use of a vector of housestaff character-
istics Zi and Zj for intern i and resident j, respectively, to test whether certain types of residents
are more likely to be assigned certain types of patients. Housestaff characteristics include the
following: position on the rank list; USMLE Step 1 score; sex; age at the start of training; and
dummies for foreign medical school, rare medical school, AOA honor society membership, PhD
or another graduate degree, and racial minority.

28I do not test for balance in patient diagnoses, because these are discovered and coded by physicians potentially
endogenous. Including or excluding them in the baseline specification of Equation (2) does not qualitatively affect
results.
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Columns (2) and (3) of Table A-1 show F -statistics and the corresponding p-values for the
null hypothesis that (γ1, γ2) = 0. Column (2) includes all housestaff characteristics in Zh; column
(3) excludes position on the rank list, since this information is missing for a sizeable proportion
of housestaff. Patient characteristics for dependent variables in (A-2) are the same as in (A-1).
Again, I fail to find joint significance for any of these tests.

Third, I compare the distribution of patient age and the predicted test costs across patients
admitted to interns and residents with high or low test spending effects, which previously I
estimate in a regression of this form:

Yaijkt = Xaβ +Ttη + ζτ<T
i + ζτ>T

j + ζk + εaijkt, (A-3)

where Yaijkt is log test spending, Xa is a set of admission characteristics as described in Section
3, Tt is a set of time categories, and intern, resident, and attending fixed effects denoted similarly
as in Equation (A-1). Figure A-2 shows kernel density plots of the age distributions for patients
assigned to interns and residents, respectively, each of which compare housestaff with practice
styles above and below the mean. Figure A-3 plotting the distribution of predicted spending
for patients assigned to housestaff with above- or below-mean spending practice styles. There is
essentially no difference across the distribution of age or predicted spending for patients assigned
to housestaff with high or low spending practice styles. Kolmogorov-Smirnov statistics cannot
reject the null that the underlying distributions are different.

A-1.2 Assignment of Housestaff to Other Providers

To test whether certain types housestaff are more likely to be assigned to certain types of hous-
estaff and attending physicians, I perform the following regressions:

ζ̂rh = γhζ̂
1−r
−h + γkζ̂k + εijka, (A-4)

where r ≡ 1 (τ > T ) is an indicator for whether the fixed effect for housestaff h was calculated
while h was an intern (r = 0) or a resident (r = 1). As in Equation (A-1), I assume no relationship
between ζ̂τ<T

h and ζ̂τ>T
h . Each observation in Equation (A-4) corresponds to an admission a, but

where error terms are clustered at the level of the intern-resident-attending team, since there
are multiple observations for a given team. ζ̂k is the estimated fixed effect for attending k.29

Estimates for γh and γk are small, insignificant, and even slightly negative.
Second, I perform a similar exercise as in the previous subsection, in which I plot the distri-

bution of estimated attending fixed effects working with housestaff with above- or below-mean

29I use two approaches to get around the reflection problem due to the first-stage joint estimation of ζ(0)i , ζ(1)j ,
and ζk (Manski, 1993). First, I perform (A-4) using “jack-knife” estimates of fixed effects, in which I exclude
observations with −h and k to compute the ζ̂h

(r)
estimate that I use with ζ̂

(1−r)
−h and ζ̂k. Second, I use the

approach by Mas and Moretti (2009), in which I include nuissance parameters in the first stage to absorb team
fixed effects for (i, j, k).
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spending practice styles. In Figure A-4, the practice-style distribution for attendings is similar
for those assigned to high- vs. low-spending housestaff. As for distributions of patient charac-
teristics in Appendix A-1.1, differences in the distributions are not qualitatively significant, and
Kolmogorov-Smirnov statistics cannot reject the null that these distributions are different, at
least when clustering at the level of the intern-resident-attending team.

A-2 Time-Fixed Practice Variation

This appendix discusses in more detail the approach I take in Section 4, where I estimate practice
variation attributable to residents in several outcome measures. Unlike the fuller statistical model
in Appendix A-5, used in Sections 5 and 6, I focus on variation due to the resident and consider
this variation to be fixed over time. However, this approach allows for both continuous and
binary outcomes, whereas the model in Appendix A-5 is restricted to continuous outcomes.

Consider an outcome Yaijkt observed for admission a at time t under intern i, resident j, and
attending k. In the first step, I calculate a linear projection of the outcome PY (Xa,Tt, k) using
patient-admission characteristics Xa, a vector of time categories Tt, and the attending identity
k, using only within-housestaff variation. That is, I estimate the regression

Yaijkt = Xaβ +Ttη + ζk + νij + εaijkt,

and calculate PY (Xa,Tt, k) = Xaβ̂ +Ttη̂ + ζ̂k. This linear projection is easy to calculate and
avoids incidental parameter problems in nonlinear models for binary outcomes.

Unlike the approach in Appendix A-5, I cannot simply difference PY (Xa,Tt, k) from Yaijkt

and estimate a model restricted maximum likelihood (REML) model, because Yaijkt may be a
binary variable. I therefore estimate a random effects model that controls for patient-admission
characteristics, time categories, and attending identities via this linear projection:

Yajkt = g (PY (Xa,Tt, k)) + ξj + εajkt, (A-5)

omitting i in the subscript for the outcome. g (·) is a potentially flexible nonlinear function that
may be used if Yajkt is a binary outcome determined by a nonlinear model.30 ξj is a resident
effect, and εajkt is an independent error term that is normal for continuous outcomes of log
spending and log length of stay and logistic for binary outcomes of readmission and mortality.

Because I control for PY (Xa,Tt, k) directly in Equation (A-5), I need to explicitly allow
for correlations between ξj and PY (Xa,Tt, k). I allow for this in a correlated random effects
approach (Abowd et al., 2008) by considering two components of ξj – uj that is correlated with
PY (Xa,Tt, k), and vj that is uncorrelated with uj and PY (Xa,Tt, k) – and by modeling uj as a

30I operationalize g (·) as a linear function of cubic splines. Results are insensitive to whether I allow for
g (PY (Xa,Tt, k)) or simply take the projection linearly as γPY (Xa,Tt, k). In my baseline results, I use the
latter approach.
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projection of the empirical expectation of PY (Xa,Tt, k) conditional on j. Define this empirical
expectation as

P̂Y |j =

∑
1 (j (a) = j)PY (Xa,Tt, k)∑

1 (j (a) = j)
,

where 1 (j (a) = j) is an indicator for whether an admission a, for which there exists a projection
PY (Xa,Tt, k), is associated with resident j. I then estimate Equation (A-5) as

Yajkt = g (PY (Xa,Tt, k)) + δP̂Y |j + vj + εajkt. (A-6)

The term δP̂Y |j absorbs the component uj .31 In applications of correlated random effects that
are interested in the variance of ξj , both components uj and vj are used in this calculation, i.e.,
V̂ar (ξj) = V̂ar

(
δ̂P̂Y |j

)
+ V̂ar (vj). However, part of Section 4 aims to compare the effects on

different outcomes among residents who are as good as randomly assigned patients. Therefore,
I focus on empirical Bayes predictions of vj formed by estimates of (A-6) (Searle et al., 1992).
This exercise compares resident effects that are orthogonal to projections of average patient
characteristics, time categories, and attending identities, and more closely approximates the
conditional random assignment design that one obtains under the REML approach in Sections
5 and 6 (Appendix A-5).

A-3 Conceptual Framework of Team Decisions

A-3.1 Influence in Team Decisions

Consider a simple team-theoretic environment of decision-making (e.g., Cyert and March, 1963;
Radner, 1993; Garicano, 2000), in which team members use the information they have to make
the best decision for caring for a particular patient.32 The team must take an action a to match
an unknown state θ, and will receive utility

u (a; θ) = − (θ − a)2 . (A-7)

The team responsible for the care of a patient is comprised of two housestaff agents, a first-year
“intern” i and a second- or third-year “resident” j. These two agents also operate within a practice
environment, including other supervising (“attending”) and consulting physicians, institutional
rules (e.g., they are required to get consultant approval to order expensive tests in certain cases),
and known standards of practice at the institution and more broadly.

31I also consider versions of Equation (A-6) that allow for cubic splines of δP̂Y |j , and results are robust to these
nonlinear transformations.

32Although the experimental literature has shown that agents may have intrinsic utility for influence (Bartling et
al., 2014), I abstract from heterogeneous preferences or specialization at the individual physician level to highlight
the simple mechanism that more-experienced agents should have greater influence in the absence of moral hazard.
However, the intuition should follow in more complicated settings as long as there is a common component to the
decision that is agreed upon by both agents, and there is incomplete information about that component.
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The intern has a normal prior subjective distribution of θ, with mean mi and precision gi,
dropping reference to time for simplicity. The resident also has a normal subjective distribution
of θ, with mean mj and precision gj . Finally, I model the practice environment by another “prior”
with mean 0 and precision G. If agents h ∈ {i, j} can communicate (mh, gh) and know G, the
utility-maximizing action is

a∗ =
gimi + gjmj

gi + gj +G
. (A-8)

This framework illustrates that the “best guess” or mean of each housestaff’s belief is weighted by
a factor akin to influence on the team and within the practice environment, gh/ (gh + g−h +G).

The more precise her signal is relative to her teammate and the practice environment, the
greater her influence will be. Because teams are always comprised of an intern and a resident,
when a housestaff’s tenure passes the one-year mark, she will be assigned to a teammate who has
one year less experience than her, while she previously worked with a teammate who had at least
one year more experience. This discontinuous decrease in g−h results in a discontinuous increase
in her influence (and the variation in medical care attributable to newly minted residents relative
to seasoned interns), even if mh and gh are continuous across time. With respect to the practice
environment, a housestaff’s influence will be lower in a tighter practice environment with higher
G. At the extreme, if care were dictated by attending physicians or guidelines, there should be
no variation attributable to housestaff.

A-3.2 Learning and Convergence

Next consider convergence due to learning, or the process by which housestaff beliefs change
over time. The key intuition is that the rate of learning may depend on the the amount and
accessibility of knowledge to be learned, because learning requires accessing outside knowledge
and incorporating it to future clinical practice.33 This intuition appeals to a broad literature on
search theory (see e.g., Rogerson et al. 2005, for a review), which allows physician learning to slow
down or stop if the search costs of learning exceed the benefits.34 I model this in reduced-form
as a precision function gh = g (τ ;K) that depends on the tenure τ (or experience) of housestaff
h and implicitly on the practice environment K in which the housestaff learns. Under classical
Bayesian learning, the distribution of subjective means mh conditional on tenure τ has mean 0

and standard deviation g (τ ;K)−1/2.
33Although θ is known perfectly ex post in the setup in Section A-3.1, one may consider θ to be imperfectly

observed (e.g., observed with some noise), imperfectly remembered, or most importantly imperfectly informative
for future patients, who will be different, in the absence of devoting some cost to learning.

34See Caplin and Dean (2015) for a broader discussion of rational decision-making under knowledge constraints
and information cost functions. An alternative formulation by Acemoglu et al. (2006) allows for a lack of asymp-
totic agreement if there is sufficient uncertainty in the subjective distributions that map signals onto underlying
parameters. Also, Ellison and Fudenberg (1993) show that, under social learning, there will be less convergence if
agents observe greater diversity in choices made. In this section I am agnostic about the mechanism of learning,
except that agents increase the precision of their beliefs with experience. One intriguing possibility, that seems
consistent with some of the numerical results in Appendix A-4, is that housestaff learn more as residents because
they get feedback on decisions that they influence, an idea explored in psychology (Csikszentmihalyi, 1990).
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Thus, restating Equation (A-8) as

a∗ = a∗i + a∗j =
gimi

gi + gj +G
+

gjmj

gi + gj +G
, (A-9)

the standard deviation σ (τ ;K) of experience-specific housestaff effects a∗h,τ can be stated as

σ (τ ;K) =
g (τ ;K)1/2

g (τ ;K) + g (τ +∆;K) +G
, (A-10)

where the index cohort {h} has tenure τ and the cohort {−h} of the other team member has
tenure τ + ∆, where ∆ may be positive or negative. At time t relative to the beginning of the
academic year, intern tenure is t, and resident tenure is t+ T or t+2T , where T is one year, for
second- or third-year residents, respectively.

Define convergence as a reduction in σ (τ ;K) with time, i.e., as ∂σ (τ ;K) /∂τ < 0 within
academic years. Unlike in settings where there is a single decision-maker and G = 0, g′ (τ) > 0

is not sufficient for convergence. First, convergence in variation attributable to a decision-maker
is muted when that decision-maker’s influence is limited. Second, as long as influence is limited
(i.e., there are other agents with information), increasing g (τ) may primarily increase influence
and therefore even widen variation. I explore these implications further and provide numerical
examples in Appendix A-4.

A-3.3 Tacit Knowledge and Hierarchy

One reason why learning can only increase with tenure is that knowledge cannot be costlessly
passed from senior to junior housestaff. That is, knowledge is tacit, or equivalently, there are
informational frictions in the transfer of knowledge that can have important implications for
practice variation, even with identical preferences and no systematic differences in experiences
(i.e., “schools of thought”) across agents in the same cohort. A natural extension of this is that
agents h ∈ {i, j} cannot fully communicate their beliefs, in particular gh, even in the specific
case of the decision at hand. This leads to the idea of hierarchies, in which agents may simply
weight mh based on characteristics of h such as tenure or perceived expertise that are imperfectly
correlated with gh.

This particularly applies to hierarchies in which there is no asymmetric decision rights or
formal mechanism for one agent to reward or punish another.35 In this sense, hierarchies are

35Another explanation for why subordinate agents contribute less information about θ than managers do involves
moral hazard, outside of the team-theoretic framework: Agents exert private effort to gather information, managers
are principals who incentivize agents to exert effort but only can assess this by gauging m̂i relative to mj , where
j is now the principal, and agents can observe mj (Scharfstein and Stein, 1990; Prendergast, 1993). However,
in this and many other settings, senior team members (i.e., residents) are not principals and cannot provide
incentives. Only attending physicians perform housestaff evaluations, with only weak career implications. If
attending physicians assess intern effort by comparing m̂i to mj , this must still be founded upon learning, in
which gj > gi.
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analogous to directives within a firm as discussed by Alchian and Demsetz (1972): They are not
defined by “some superior authoritarian directive or disciplinary power,” but rather they arise
endogenously given the underlying information structure and production process, and given the
need to settle on a routine that is most likely to yield efficient outcomes. Of note, absent learning
and tacit knowledge, Garicano (2000) and Garicano and Rossi-Hansberg (2006) predict “manage-
ment by exception” under which managers with larger spans of control (i.e., the resident, who is
assigned to two interns) should have less influence over average daily decisions. The prediction
here does not contradict their important insight but highlights an additional mechanism, due to
learning, in which senior agents can have greater influence under tacit knowledge.

A-4 Variation over Time under Example Learning Parameters

This appendix further explores the implications of the conceptual framework in Section A-3, in
which decision-making is modeled in a team-theoretic environment, along a continuous action
space, for two agents with normal priors. While this framework is not meant to be taken literally
(e.g., actions may not be continuous, decision-making may not be strictly team-theoretic), this
appendix provides further intuition and numerical examples in this framework for how learning
could lead to persistent practice variation.

A-4.1 Analytical Evaluation

Consider the standard deviation of experience-specific housestaff effects a∗h,τ , originally stated in
Equation (A-10):

σ (τ) =
g (τ)1/2

g (τ) + g (τ +∆) +G
, (A-11)

omiting reference to the learning environment K for brevity. σ (τ) can be thought of a profile of
practice variation across housestaff over different tenure periods, akin to the profiles empirically
estimated in the paper (e.g., Figure 3). g (τ) is the precision of a housestaff’s subjective prior,
given that the housestaff has tenure τ , and can be thought of as related to learning over τ :
Greater g (·) reflects greater knowledge; greater g′ (·) reflects faster learning. In the standard
case, assume that g′ (·) > 0, i.e., there is no “forgetting.” ∆ is the tenure difference between
housestaff of tenure τ and other housestaff whom this group works with. Finally, recall that G

reflects the strength of the external practice environment, or the precision of the “prior” that
includes attending physicians and institutional rules, which I will refer to as the “external prior.”

A few observations about practice variation and learning can be made. First, note that the
scale and the shape of the practice variation profiles can be separately rationalized.

Proposition A-1. Consider a practice variation profile, σ (τ), that exists under a learning profile
g (τ) and external prior G. Then κσ (τ) also exists for any constant κ.
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Proof. The learning profile g (τ) /κ2 and external prior G/κ2 yield the desired practice variation
profile κσ (τ) under Equation (A-11).

Scaling both the learning profile and the external prior by a constant preserves the “influence”
that each agent has relative to each other and to the external practice environment. However,
variation across agents in their mean beliefs will be increased (or decreased) as they all have
subjective prior distributions smaller (or greater) precisions.

Next, consider the discontinuity in practice variation across the one- and two-year tenure
marks. Recall that at the beginning of the academic year in June, new interns (first-year houses-
taff) arrive, and experienced interns proceed to the role of resident. Housestaff train for a total
of three years, so that in June there are both residents with one year of training and two years
of training.

Proposition A-2. Define σ (T−) ≡ limτ→T− σ (τ), and σ (T+) ≡ limτ→T+ σ (τ); similarly
define σ (2T−) ≡ limτ→2T− σ (τ), and σ (T+) ≡ limτ→2T+ σ (τ). Then

σ (2T+)

σ (2T−)
>

σ (T+)

σ (T−)
> 1.

Proof. Consider the conservative case that interns only work with second-year residents in their
last month. Then

σ (T+)

σ (T−)
=

g (T ) + g (2T ) +G

g (T ) + g (0) +G
,

and
σ (2T+)

σ (2T−)
=

g (2T ) + g (T ) +G

g (2T ) + g (0) +G
.

Since g (·) is monotonically increasing, g (0) < g (T ) < g (2T ), which yields our result.

Because there is a change in the tenure of the other housestaff as new interns arrive at the
beginning of each academic year, there is in principle a discontinuous increase in influence (and
therefore practice variation) at the beginning of each year. However, the increase at τh = T

is always larger than the increase at τh = 2T for two reasons, both related to the monotonic
increase in precision with tenure: First, housestaff at τh = T have less precise subjective priors
than those at τh = 2T , so any decrease in the relative tenure of their peer housestaff increases
their influence by more. Second, the decrease in the relative tenure of the peer is greater at
τh = T (from τ−h = 2T to τ−h = 0) than at τh = 2T (from τ−h = T to τ−h = 0). I will show
below in the numerical examples that, within this framework, this difference in the discontinuous
increases at τh = T and at τh = 2T can be quite large, and that the discontinuity at τh = 2T

can be quite trivial. Of course, there are other reasons for a negligible discontinuity at τh = 2T ,
including discrete decisions and rules of thumb, such as titles of “resident” and “intern” meaning
more than actual tenure within titles.
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Finally, consider the derivative of variation with respect to tenure:

σ′ (τ) =
1
2g (τ)

−1/2 g′ (τ) (g (τ) + g (τ +∆) +G)− g (τ)1/2 (g′ (τ) + g′ (τ +∆))

(g (τ) + g (τ +∆) +G)2
.

Focusing on the numerator to determine the sign of σ′ (τ), I arrive at the following necessary
and sufficient condition for convergence (i.e., σ′ (τ) < 0):

σ′ (τ) < 0 ⇔ g (τ) >
g′ (τ)

2g′ (τ +∆) + g′ (τ)
(g (τ +∆) +G) . (A-12)

This condition highlights that convergence is not supported at all τ under all learning profiles
g (τ). In particular, if the precision of the index housestaff’s subjective prior g (τ) is less than
the combined precision of the peer’s subjective prior g (τ +∆) and the external practice envi-
ronment’s precision G, then convergence may not be supported, particularly if g′ (τ) is large
relative to g′ (τ +∆). The intuition for this is related to influence. For small g (τ) relative to
g (τ +∆) + G, the housestaff has relatively low influence, and increases in g (τ) may increase
variation primarily by increasing influence. This is especially true if most of the learning occurs
in the index housestaff’s cohort as opposed to the peer’s cohort, or g′ (τ) ≫ g′ (τ +∆), because
learning by the peer reduces influence. However, regardless of the size of g′ (τ), a sufficient con-
dition for convergence is g (τ) > g (τ +∆)+G. Given that g (·) is monotonically increasing, this
suggests that convergence is more likely with residents than with interns.

In order to make further observations, I consider a piecewise linear function for the learning
profile g (τ).

Proposition A-3. Assume that g (τ) takes a piecewise linear form, such that

g (τ) = k0 + k1min (τ, T ) + k2max (τ − T, 0) . (A-13)

For any g (τ) that satisfies the form (A-13), conditional on some ∆ > 0 (i.e., τ < T ), there
exists a unique point τ∗∆>0 such that σ′ (τ) > 0 for all τ < τ∗∆>0, and σ′ (τ) < 0 for all τ > τ∗∆>0.
Similarly, conditional on some ∆ < 0 (i.e., τ > T ), there exists a unique point τ∗∆<0 such that
σ′ (τ) > 0 for all τ < τ∗∆<0, and σ′ (τ) < 0 for all τ > τ∗∆<0. The specific forms that τ∗∆>0 and
τ∗∆<0 take are

τ∗∆>0 =
G+ k1T + k2 (∆− T )− 2k0k2/k1

k1 + k2
; (A-14)

τ∗∆<0 =
G+ k1∆− 2k1 (k0 + k1T ) /k2

k1 + k2
+ T. (A-15)

Proof. State the convergence condition in Equation (A-12) as a criterion function G (τ ;∆) in
which convergence occurs if and only if G (τ ; ∆) > 0:

A-9



G (τ ;∆) = g (τ)
(
2g′ (τ +∆) + g′ (τ)

)
− g′ (τ) (g (τ +∆) +G) ,

Under any g (τ) of the form (A-13), G (τ ;∆) is monotonically increasing in τ , which implies
a single solution to G (τ∗∆;∆) = 0 conditional on ∆. To arrive at the specific functions that τ∗∆>0

and τ∗∆<0 take in Equations (A-14) and (A-15), plug Equation (A-13) into G (τ∗∆;∆) = 0 and
solve for τ∗∆.

Note that τ∗∆>0 in Equation (A-14) may be less than 0 or greater than T . In the former
case, there is convergence for all τ ∈ [0, T ] (the entire intern year); in the latter case, there is
divergence (variation is increasing) for all τ ∈ [0, T ]. If τ∗∆>0 ∈ (0, T ), then variation in practice
styles first increases then decreases. Similarly, practice variation may be increasing over the
tenure period as a resident τ ∈ [T, 3T ], decreasing over the entire period, or first increasing then
decreasing.36 As noted above, and by comparing (A-14) and (A-15), convergence is more likely
and occurs earlier during the period as resident than during the period as intern.

A-4.2 Numerical Examples

Figure A-1 presents a few numerical examples of variation profiles under different learning profiles
described by functions of the piecewise linear form in Equation (A-13). The three parameters
of interest are k0, or the precision of subjective beliefs before starting training; ki, or the rate of
increase in the precision during intern year; and kj , or the rate of increase during the subsequent
two years as a resident. I normalize the scale of time with T = 1, so that ki and kj also
represent increases in the precision per year, and the precision of beliefs at the end of training is
g (3T ) = k0 + ki + 2kj . I also normalize G = 1, so that whether precisions of beliefs are greater
than the precision of the external prior simply depends on whether they are greater or less than
1. Given Proposition A-1, I consider this normalization as only relevant for the scale of the
variation profile, since any scale keeping the same shape over the overall variation profile σ (τ)

can be implemented by multiplying k0, ki, kj , and G by some constant.
I discuss each panel of Figure A-1 in turn:

• Panel A considers equal k0 = ki = kj = 0.2, which are relatively small compared to G = 1.
The result is broadly non-convergence, as greater experience primarily results in greater
influence against a relatively strong external practice environment. The discontinuity in
variation is significantly larger at t = T than at t = 2T . Variation increases in intern year
and decreases but only slightly in the next to years as resident.

• Panel B imposes no resident learning (kj = 0) and presents the limiting case in which
discontinuous increases in variation at t = T and t = 2T are the same. Variation is still

36This is ensured even across τ = 2T because τ∗
−T > τ∗

−2T .
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at least as big during the two years as resident as during the year as intern, driven by
influence. Variation seems relatively constant over training.

• Panel C generates a similar variation profile as in Panel B with a non-zero kj by increasing
the ratios of k0 and ki to kj . The scale of variation is smaller than in Panel B, which reflects
that precision in housestaff beliefs are now larger. A rescaled version with smaller precisions
(and smaller G) would reveal larger relative increases in variation at the discontinuities.

• Panel D examines increasing ki relative to k0, so that more learning occurs in the first
year of training as opposed to knowledge possessed before starting training. Influence
more obviously increases in the first year, and increases in variation are sharper at the
discontinuities, since intern experience matters more. Note that working with a resident is
equivalent with working with a end-of-year intern, and increases in variation at τ = T and
τ = 2T are the same (as in Panel B).

• Panel E asserts that most of the learning occurs during the role as resident. There is much
greater variation across residents than across interns, and the discontinuous increase in
variation is much larger at τ = T , while the increase is negligible at τ = 2T . There is
significant convergence during the two years as resident.

• Panel F is similar to panel E but shows less convergence during role as resident. The ratio
of learning as intern to learning as resident (ki/kj) is similar, but learning during training
is reduced relative to knowledge gained prior to training (k0) and to the external practice
environment (G).

A-5 Statistical Model of Housestaff Effects

In this appendix, I introduce a statistical model to estimate the standard deviation σ (τ) of
housestaff effects a∗h,τ in discrete tenure period τ and the correlation ρ (τ1, τ2) between housestaff
effects a∗h,τ1 and a∗h,τ2 in two discrete periods τ1 and τ2. Random assignment of patients to
housestaff, conditional on time categories, allows me to estimate housestaff effects.37 Finite
observations per housestaff-period means that effects will be estimated with error, which implies
that standard deviations of unshrunken effects will overstate the true σ (τ). Further, correlations
of estimates â∗h,τ1and â∗h,τ2 will be generally understate true correlations, and comparing the
relative magnitudes of correlations between two pairs of periods will be invalid.

Standard Bayesian shrinkage procedures to adjust for finite-sample overestimates of σ (τ)

(e.g., Morris, 1983),38 however, deal with a single effect entering the right-hand side of each
37I do not strictly require conditional random assignment of patients to housestaff if I use patients that are

shared by multiple interns or residents due to lengths of stay spanning scheduling shifts. However, I do not rely
on this in my baseline specification, in order to use more of the data.

38Recent examples of papers that have used this procedure include Kane and Staiger (2002), Jacob and Lefgren
(2007), and ?.
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observation. In this setting, I must deal with two effects – one for the intern and one for the
resident – for which I want to estimate distributions. Having two sets of effects results in two
complicating issues: First, it is possible that all housestaff may not form a single connected set,
so effects must be first demeaned within connected set. Second, more importantly, shrinking
one set of effects requires a relatively precise mean to shrink toward; this requirement is violated
because the effects of the other set are equally problematic, which results in biased estimates
of the underlying distribution. Even without this complication, Bayesian shrinkage does not
resolve the issue of biased estimates of ρ (τ1, τ2), since errors in estimates of a∗h,τ1 and a∗h,τ2 are
not eliminated but only shrunken.39

I therefore adopt a random effects approach in which I simulaneously estimate both distribu-
tions of intern and resident effects by maximum likelihood. First, similar in spirit to Chetty et
al. (2014) and closely related to the idea of restricted maximum likelihood (REML) (Patterson
and Thompson, 1971), I create the differenced outcome Ỹaijkt = Yaijkt −

(
Xaβ̂ +Ttη̂ + ζ̂k

)
,

where β̂, η̂, and ζ̂k are estimated by using variation within housestaff pairs and discrete tenure
periods. This allows random housestaff effects to be correlated with Xa, Tt, and ζk.40 Note that
E
[
Ỹaijkt |a, k, t

]
= 0 for all a, k, and t. In practice, given quasi-random assignment of attend-

ing physicians and patients to housestaff, conditional on schedules, I am only concerned with
correlations between housestaff effects and Tt, but differencing out projections due to Xa and
ζk simplifies computation and avoids the incidental parameters problem in the later maximum-
likelihood stage. In the next two subsections I will describe in turn how I calculate σ (τ) and
ρ (τ1, τ2). In simulated data (not shown), I confirm that Bayesian shrinkage results in inaccu-
rate estimates of these moments and that the statistical method outlined in this appendix yield
close estimates of the true moments of the data generating process, regardless of the number of
observations per intern or residents.

A-5.1 Standard Deviation of Housestaff Effects

To estimate σ (τ), I specify a crossed random effects model for each set of days comprising a
housestaff tenure period τ ,

Ỹaijkt = ξτh + ξτ+∆
−h + εaijkt, (A-16)

using observations for which τ (h, t) = τ . In other specifications, I consider a random effect
model that allows for unobserved heterogeneity in patients:

Ỹaijkt = ξτh + ξτ+∆
−h + νa + εaijkt, (A-17)

39Chetty et al. (2014) develop a method of moments approach of predicting unbiased teacher effects that
accounts for drift in effects over time and actually estimates the covariance between effects in different periods.
However, a crucial assumption they make is that effects follow a stationary process, which is obviously not true
among housestaff because of both learning and influence.

40An alternative albeit slightly more involved approach involves estimating “correlated random effects,” as
described by Chamberlain (1984) and Abowd et al. (2008).
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where νa is an admission effect.41 Because housestaff are assigned conditionally randomly to each
other and to patients, ξτh, ξτ+∆

−h , and νai are uncorrelated with each other. Assuming ξτh, ξτ+∆
−h ,

and νa are normally distributed, their standard deviations σξ,τ , σξ,τ+∆, and σν are estimated by
the standard maximum-likelihood method.

Equations (A-16) and (A-17) can be stated in vector form:

Ỹ = Zu+ ε, (A-18)

where Ỹ is the n× 1 vector of differenced outcomes, Z is a selection matrix, and u is a stacked
vector of random effects.

Let Nh be the number of housestaff with tenure τ and N−h be the corresponding peers
observed in the sample. Then in the case that (A-18) represents (A-16), Z is an n×(Nτ +Nτ+∆)

selection matrix for housestaff with tenure τ and their peers, and u is an (Nτ +Nτ+∆)×1 stacked
vector of housestaff and peer random effects. The variance-covariance matrix of u is diagonal:

Varu = G =

[
σ2
ξ,τINh

0

0 σ2
ξ,τ+∆IN−h

]
.

Similarly, in the case that (A-18) represents (A-17), Z is an n × (Nτ +N +Na) selection
matrix for intern i, resident j, and admission a, and u is an (Ni +Nj +Na)×1 stacked vector of
intern, resident, and admission random effects, where Na is additionally the number of admissions
in the sample. The diagonal variance-covariance matrix of u is

Varu = G =

 σ2
ξ,τINh

0 0

0 σ2
ξ,τ+∆IN−h

0

0 0 σ2
νINa

 .

Using the definition V = ZGZ′ + σ2
εIn, the log likelihood function under either of the above

specifications is

L = −1

2

{
n log (2π) + log |V|+ Ỹ′V−1Ỹ

}
. (A-19)

I thus estimate (A-16) or (A-17) by maximum likelihood, for each τ separately. Although each
estimation yields results for both σξ,τ and σξ,τ+∆, the parameter of interest for a given τ is
σξ,τ ≡ σ (τ). Note that for τ corresponding to interns, the peer housestaff are residents who
may have tenure one or two years greater than τ , and the distribution of ξτ+∆

−h should not be
interpreted as tenure-specific. For τ corresponding to residents, σξ,τ+∆ is estimated for only part
of the sample of interns working with residents of tenure τ .

41This specification requires the use of sparse matrices for estimation. In specifications without the use of sparse
matrices, I nest this effect within interns, i.e., I include νai as an intern-admission effect. While it is easier to
estimate a specification with νai, I will describe this specification for ease of explication. In practice, results are
materially unaffected by whether I use νa or νai, or in fact whether I include an admission-related effect at all.
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A-5.2 Correlation of Housestaff Effects

To estimate ρ (τ1, τ2), I augment models in (A-16) and (A-17) to account for two separate tenure
periods τ1 and τ2 across which housestaff effects may be correlated. Although I observe each
housestaff across their entire training, I only observe a subset of these housestaff in each 60-day
or 120-day tenure period, and the number of housestaff observed in two different tenure periods
is even smaller. Because housestaff that I do not observe in both τ1 and τ2 do not contribute to
the estimate of ρ (τ1, τ2), I only include in the estimation sample observations associated with a
housestaff observed in both tenure periods.

Specifically, in place of Equation (A-16), I consider

Ỹaijkt = ξ
τ(h,t)
h + ξτ+∆

−h + εaijkt, (A-20)

which features the function τ (h, t) ∈ {τ1, τ2}. This specifies that effects of housestaff in the
tenure periods of interest (τ1 and τ2) may be drawn from two separate distributions depending
on the tenure period τ1 or τ2 corresponding to observation t, while effects of the peer housestaff
(with tenure τ +∆) are pooled into a single distribution. The analog for Equation (A-17) is

Ỹaijkt = ξ
τ(h,t)
h + ξτ+∆

−h + νa + εaijkt. (A-21)

As above, both (A-20) and (A-21) can be written in the vector form of (A-18). When
representing (A-20) as (A-18), the selection matrix Z is of size n × (2Nτ +Nτ+∆) , since it
now maps observations onto one of two random effects of the index housestaff h, depending
if τ (h, t) = τ1 or τ (h, t) = τ2. The stacked vector of random effects u is similarly of size
(2Nτ +Nτ+∆)× 1. The variance-covariance matrix of u is

Varu = G =

[
Gτ 0

0 σ2
ξ,τ+∆IN−h

]
,

where Gτ is a 2Nτ × 2Nτ block-diagonal matrix of the form

Gτ =


A 0 · · · 0

0 A
...

...
. . . 0

0 · · · 0 A

 ,

with each block being the 2×2 variance-covariance matrix A of random effects within housestaff
and across tenure periods:

Var

[
ξτ1h
ξτ2h

]
= A, for all h.
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Representing (A-21) as (A-18) is a similar exercise. The selection matrix Z is of size n ×
(2Nτ +Nτ+∆ +Na), and the vector of random effects u is of size (2Nτ +Nτ+∆ +Na)× 1. The
variance-covariance matrix of u is

Varu = G =

 Gτ 0 0

0 σ2
ξ,τ+∆IN−h

0

0 0 σ2
vINa

 ,

where Gτ is the same as before.
The log likelihood is the same as in Equation (A-19), but using revised definitions of G that

allow for covariance between random effects of the same housestaff across tenure periods. The
correlation parameter of interest ρ (τ1, τ2) is estimated from Â and is constrained to be between
−1 and 1. Standard errors of the correlation estimate are calculated by a likelihood ratio test
comparing the likelihood of models fit while holding the correlation fixed but varying all other
parameters with the globally optimal fit (i.e., they do not depend on any assumption about the
distribution of ρ̂ (τ1, τ2)).

A-6 Bayesian Refinement of Serial Correlation Estimates

Appendix A-5.2, describes a procedure to estimate the correlation between housestaff effects in
any two tenure periods. While I am most interested in evaluating how serial correlation between
two adjacent periods changes through training, there is valuable information in the correlation
between non-adjacent periods that relates to these parameters of interest. This is particularly the
case since I only observe a subset of housestaff practicing in any given pair of periods. The efficient
method of incorporating all of this information would be to jointly estimate all correlations at
once, but given the computational burden of estimating a crossed random effects model and the
large number of observations in the full sample, I am required to keep the specification simple
and sample restricted.42

Given this, I develop a methodology to refine estimates of the correlation between housestaff
effects in adjacent periods based on estimates of other correlations between effects in non-adjacent
periods. To be more notationally concrete, assume that τ is an integer from 1 (the first tenure
period) to τmax = 15 (the last tenure period), and denote the set T = {1, . . . , τmax}. In this
approach, I first infer prior distributions of ρ (τ, τ + 1) based on other correlations from non-
adjacent periods and then use these prior distributions and the maximum-likelihood estimate
ρ̂ (τ, τ + 1) described in Appendix A-5.2 to compute a posterior distribution.

42Many crossed random effects models without any correlation parameters were computationally feasible until
a few years ago when sparse matrix methods became available, which some statistical packages such as Stata have
yet to incorporate. With 15 periods, the fully specified model would have 105 correlations to estimate jointly. The
fully specified model Further, computational issues are considered important even for “moderately large” datasets,
defined as having between 10,000 to 100,000 observations (Bates et al., 2015), while the full dataset of this study
has more than 200,000 patient-day observations.
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The first step is to use estimates of correlations between non-adjacent periods as information
on a correlation ρ (τ, τ + 1) for some τ . The insight here is that if, for some τ ′ /∈ {τ, τ + 1},
correlations ρ (τ, τ ′) and ρ (τ + 1, τ ′) are known, then this information would place bounds on
admissible values of ρ (τ, τ + 1).

Proposition A-4. Consider random variables X, Y , and Z, such that Corr (X,Y ) = γ and
Corr (Y, Z) = φ. Then Corr (X,Z) satisfies

γφ−
√

(1− γ2) (1− φ)2 ≤ Corr (Y, Z) ≤ γφ+
√

(1− γ2) (1− φ2).

Proof. Without loss of generality, assume that E [X] = E [Y ] = E [Y ] = 0 and Var (X) =

Var (Y ) = Var (Z) = 1. If these conditions do not hold, we can renormalize the random variables
without changing the correlation between them. Consider the projection of Z on X and Y :

Z = αX + βY + U, (A-22)

where Corr (X,U) = 0 and Corr (Y, U) = 0. In addition, consider the projection of Y on X:

Y = γX + V, (A-23)

where Corr (X,V ) = 0. Observe that the coefficient on X in this projection is indeed γ:
Corr (X,Y ) = Corr (X, γX + V ) = γCorr (X,X) = γ. Next, substituting (A-23) into (A-22)
gives

Z = (α+ βγ)X + U +BV. (A-24)

Therefore, Corr (X,Z) = Corr (X, (α+ βγ)X + U +BV ) = α + βγ since Corr (X,U) = 0 and
Corr (X,V ) = 0. Hence, we have φ = α+ βγ, or equivalently, α = φ− βγ.

Now we are ready to bound Corr (Y, Z) = 0:

Corr (Y, Z) = Corr (γX + V, (α+ βγ)X + U +BV ) = γ (α+ βγ) + βVar (V ) ,

using Corr (V,U) = Corr (Y − γX,U) = 0, since Corr (X,U) = Corr (Y, U) = 0. In addition, the
variance of V can be found from (A-23):

1 = γ2 + Var (V ) .

Hence,
Corr (Y, Z) = γ (α+ βγ) + β

(
1− γ2

)
= αγ + β. (A-25)

Substituting α = φ− βγ derived above gives

Corr (Y, Z) = φγ + β
(
1− γ2

)
.
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Since γ and φ are fixed, we only need to bound β to bound Corr (Y, Z). We will use (A-24),
which can be written as

Z = φX + U + βV,

since φ = α+ βγ. So taking the variance of both sides,

1 = φ2 + Var (U) + β2Var (V ) .

We have prviously seen that Var (V ) = 1− γ2, and we know that Var (U) ≥ 0. Thus,

|β| ≤

√
1− φ2

1− γ2
.

Substitiuting this inequality into (A-25) produces our result.43

Proposition A-4 would produce sharp bounds for ρ (τ, τ + 1) if ρ (τ, τ ′) and ρ (τ + 1, τ ′), for
some τ ′ /∈ {τ, τ + 1}, were known with certainty (and at least one of these correlations is nonzero).
However, in practice, both ρ (τ, τ ′) and ρ (τ + 1, τ ′) will also be estimated with error. I therefore
create prior distributions that generally cover the entire support to create “prior distributions”
of ρ (τ, τ + 1), given data between τ and τ ′ and between τ + 1 and τ ′.

These prior distributions and the subsequent Bayesian refinement process will be in a trans-
formed inverse hyperbolic tangent space, which conveniently transforms some correlation ρ ∈
[−1, 1] to ρ̃ = tanh−1 ρ ∈ (−∞,∞). I characterize estimates of ρ (τ, τ ′) and ρ (τ + 1, τ ′) as nor-
mal distributions in this transformed space. In particular, let ρ̂0.5 (τ, τ

′) denote the maximum-
likelihood central estimate, and let ρ̂0.025 (τ, τ ′) and ρ̂0.975 (τ, τ

′) denote the respective 95% lower
and upper confidence limits of ρ (τ, τ ′), as described in Appendix A-5.2. Then switching to a
Bayesian framework, I consider ρ̃ (τ, τ ′) as a normally distributed random variable with density:

fρ̃(τ,τ ′) (x) = ϕ
(
x− µ̃

(
τ, τ ′

)
/σ̃

(
τ, τ ′

))
, (A-26)

where ϕ (·) is the normal probability density function and

µ̃
(
τ, τ ′

)
= tanh−1 ρ̂0.5

(
τ, τ ′

)
;

σ̃
(
τ, τ ′

)
=

tanh−1 ρ̂0.975 (τ, τ
′)− tanh−1 ρ̂0.025 (τ, τ

′)

2 · 1.96
.

Now consider the bounds on ρ (τ, τ + 1) implied by ρ (τ, τ ′) and ρ (τ + 1, τ ′) from Proposition
43I am grateful to Denis Chetverikov for showing me this result.
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A-4. With some abuse of notation, define the lower and upper “bounds,” respectively, as

ρLB
(
τ, τ + 1|τ ′

)
= ρ

(
τ, τ ′

)
ρ
(
τ + 1, τ ′

)
−

√(
1− ρ (τ, τ ′)2

)(
1− ρ (τ + 1, τ ′)2

)
, and

ρUB
(
τ, τ + 1|τ ′

)
= ρ

(
τ, τ ′

)
ρ
(
τ + 1, τ ′

)
+

√(
1− ρ (τ, τ ′)2

)(
1− ρ (τ + 1, τ ′)2

)
.

Because both ρ (τ, τ ′) and ρ (τ + 1, τ ′) are estimated with error, I use the central estimates of
these correlations, ρ̂0.5 (τ, τ ′) and ρ̂0.5 (τ + 1, τ ′), to calculate ρ̂LB0.5 (τ, τ + 1|τ ′) and ρ̂UB

0.5 (τ, τ + 1|τ ′).
I then transform these to µ̃LB (τ, τ + 1|τ ′) and µ̃UB (τ, τ + 1|τ ′) via the inverse hyperbolic tan-
gent. In order to compute σ̃LB (τ, τ + 1|τ ′) and σ̃UB (τ, τ + 1|τ ′), I use the delta method, assum-
ing that Cov (ρ̂ (τ, τ ′) , ρ̂ (τ + 1, τ ′)) = 0.44 I construct a “prior distribution” from the parameters
of ρ̃LB (τ, τ + 1|τ ′) and ρ̃UB (τ, τ + 1|τ ′). Note that Pr

(
ρ̃LB < x

)
= Φ

((
x− µ̃LB

)
/σ̃LB

)
, where

Φ(·) is the normal cumulative distribution function, and where I have omitted the argument
(τ, τ + 1|τ ′) for simplicity. Similarly, Pr

(
ρ̃UB > x

)
= Φ

((
x− µ̃UB

)
/σ̃UB

)
. If ρ̃LB and ρ̃UB

were known with certainty (i.e., σ̃LB = σ̃UB = 0), then this prior distribution would have a very
simple probability density function:

fρ̃(τ,τ+1|τ ′) (x) ∝

1, x ∈
[
ρ̃LB (τ, τ + 1|τ ′) , ρ̃UB (τ, τ + 1|τ ′)

]
0, otherwise

.

In the presence of uncertainty, I elaborate this density function to

fρ̃(τ,τ+1|τ ′) (x) ∝

Φ
((
x− µ̃LB

)
/σ̃LB

)
, x ≤ xc

1− Φ
((
x− µ̃UB

)
/σ̃UB

)
, x > xc

, (A-27)

where xc =
(
σ̃LBµ̃UB + σ̃UBµ̃LB

)
/
(
σ̃LB + σ̃UB

)
is chosen to ensure that fρ̃(τ,τ+1|τ ′) (x) is con-

tinuous.
I am now at a point where I can state the posterior distribution, which I denote as fρ̃(τ,τ+1|T )

as a function of the maximum likelihood estimate in (A-26) and the prior distributions in (A-27):

fρ̃(τ,τ+1|T ) (x) ∝ fρ̃(τ,τ+1) (x) ·
∏

τ ′ /∈{τ,τ+1}

fρ̃(τ,τ+1|τ ′) (x) . (A-28)

It can be shown that this function is log-concave. Thus, I am conveniently able to evaluate
moments of the posterior distribution, including its mean and 95% credible interval using adaptive
rejection sampling (Gilks and Wild, 1992). I finally transform these moments back to the domain
of [−1, 1] with the hyperbolic tangent function in order to present them as estimates of the

44This covariance is unknown because I estimate ρ (τ, τ ′) and ρ (τ + 1, τ ′) separately. In order to estimate
the covariance, I would need to estimate them jointly, but of course in such a model, I would also estimate
ρ (τ, τ + 1). Therefore, bounds would not be necessary with such an approach. The main difficulty with this
approach is computational feasibility.

A-18



correlation ρ (τ, τ + 1|T ).

A-7 Systematic Placebo Tests

I consider the statistical significance for convergence in the specialist services (i.e., cardiology and
oncology) relative to general medicine by performing the following thought experiment. If there
is no difference in true convergence between specialist and generalist services, then randomly
assigning actual months for each resident on either specialist or generalist services to a placebo
specialist or generalist service should result in similar convergence in these placebo services over
time for a large proportion of these placebo tests. On the other hand, if very few of these placebo
tests result in convergence similar to that observed in the actual specialist services, then this
suggests statistical significance.

I implement these placebo tests as follows:

1. Defining a service as either “specialist” or “generalist,” count the number of residents in a
specialist service during each month t. Call this number N spec

t . The proportion of residents
in cardiology, oncology, and general medicine during each month us shown in Figure A-6.

2. For each resident-month-service block of observations in each month t, randomly choose
N spec

t blocks and designate observations belonging to these blocks as pseudo-specialist
service observations.

3. Using pseudo-specialist service observations, estimate the standard deviation in resident
spending distribution, as described in Appendix A-5, for each 60-day tenure period within
two years of tenure and each 120-day tenure period in the third year.

4. Estimate the rate of convergence by regressing σ̂ξ,τ on the midpoint in days tenure of a
tenure period τ (e.g., the first 60-day tenure period has a midpoint of 30 days tenure),
for tenure periods after intern year, weighting by the number of patient-days during each
tenure period. The yearly rate of convergence is the coefficient on days tenure multiplied
by 365.

5. Repeat for 10,000 times steps 2 to 4, collecting the yearly rate of convergence for each run.

The number of possible placebo tests in the procedure above is quite large. For example, consider
a representative month in which there are 30 resident-month blocks in the specialist service
(N spec

t = 30) out of a total of 55 resident-month-service blocks (Nt = 55). The number of random
combinations in that month alone, such that we assign exactly 30 resident-month-service blocks
to the pseudo-specialist service is

Combinations for t =
55!

30!× (55− 30)!
= 3.09× 1015.
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Performing this calculation for each of the 62 months in the data and multiplying together yields
a total number of combinations of 1.27× 10970.

A-8 Additional Results

In this appendix, I describe the following additional appendix tables and figures:

• Figure A-1 shows numerical examples of variation profiles of the standard deviation of
housestaff effects over tenure, depending on the underlying learning function, in which the
precision of subjective priors is parameterized as a piecewise linear of tenure, g (τ), as
discussed in Appendix A-4.

• Figure A-2 shows distributions of age of patients assigned to high- and low-spending interns
and residents.

• Figure A-3 shows distributions of predicted spending (based on patient age, race, and sex)
assigned to high- and low-spending interns and residents.

• Figure A-4 shows distributions of attending spending effects for attendings assigned to
high- and low-spending interns and residents.

• Figure A-5 shows the distribution of test costs across patient-days.

• Figure A-6 describes the number of observations in terms of patient-days and residents on
service for each service across months.

• Figure A-7 shows variation in housestaff effects by tenure for two pseudo-services con-
structed from the general medicine service. These pseudo-services are constructed by Ma-
jor Diagnostic Categories (MDCs), separating highly diagnosis-concentrated MDCs into
one pseudo-service and leaving the remaining MDCs in the other. The purpose of this
is to test the idea that convergence results from more concentrated services. Table A-6
describes summary statistics of both the actual services (cardiology, oncology, and general
medicine), as well as these two pseudo-services.

• Figure A-8 shows variation in housestaff effects by tenure, dividing patients in each service
by whether they have a primary ICD-9 code (administrative code for diagnosis) that is
more or less common than the median observation in each service.

• Figure A-9 shows variation in housestaff effects by tenure, dividing patients in each service
by whether there exists a published guideline for a patient’s primary ICD-9 code. Guidelines
and their linkages to ICD-9 codes are collected from the national guideline repository at
guidelines.gov.
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• Table A-1 presents F -statistics testing for the joint significance housestaff identities and
housestaff characteristics, as described by Equations (A-1) and (A-2) and in Appendix A-1.

• Table A-2 lists core rotations in the top 24 recognized internal residency programs, as a
measure of the organization of medical care in academic hospitals.

• Table A-3 presents the number of core rotations in the universe of US internal medicine
residencies, according to the American Council for Graduate Medical Education (ACGME).

• Table A-4 presents the number research papers in the last ten years in the New England
Journal of Medicine, as a measure of major research activity in different specialties.

• Table A-5 presents the amount of research funding by National Institutes of Health (NIH)
Institute or Center,a s a measure of prioritized major research activity in different special-
ties.

• Table A-6 presents summary statistics for patients admitted to the three ward services
(cardiology, oncology, and general medicine), as well as the two pseudo-services constructed
from general medicine. Numbers of admissions, MDCs, and ICD-9 coces are also presented,
as well as the concentration of MDCs and ICD-9 codes within each service.

• Table A-7 lists the top 15 ICD-9 codes in each service, as well as whether there exists a
guideline linked to that diagnostic code in the guidelines.gov national repository.
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Figure A-1: Numerical Examples of Variation Profiles
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F: k0 = .1, ki = .2, kj = 1

Note: This figure shows variation profiles of the expected standard deviation of housestaff effects over
tenure, σ (τ), differing by the underlying profile of learning over tenure. Learning is parameterized as a
piecewise linear function g (τ) that describes how the precision of subjective priors increases over tenure.
In particular, this figure considers piecewise linear functions of the form (A-13), parameterized by k0, ki,
and kj . Each panel considers a different set of parameters of g (τ). Given g (τ), I calculate the expected
standard deviation of housestaff effects over tenure using Equation (A-11). I assume that interns are
equally likely to work with second-year residents and third-year residents. These profiles are discussed
further in Appendix A-4.
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Figure A-2: Patients Age by Housesetaff Spending Effect
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Note: This figure shows the distribution of the age of patients assigned to interns with above- or below-
average spending effects (Panel A) and residents with above- or below-average spending effects (Panel
B). Housestaff spending effects, not conditioning by tenure, are estimated by Equation (A-3) as fixed
effects by a regression of log test spending on patient characteristics and physician (intern, resident,
and attending) identities. Kolmogorov-Smirnov statistics testing for the difference in distributions yield
p-values of 0.995 and 0.635 for interns (Panel A) and residents (Panel B), respectively.
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Figure A-3: Demographics-predicted Spending by Housestaff Spending Effect
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Note: This figure shows the distribution of predicted test spending (based on patient age, race, and
gender) for patients assigned interns with above- or below-average spending effects (Panel A) and residents
with above- or below-average spending effects (Panel B). Housestaff spending effects, not conditioning by
tenure, are estimated by Equation (A-3) as fixed effects by a regression of log test spending on patient
characteristics and physician (intern, resident, and attending) identities. Kolmogorov-Smirnov statistics
testing for the difference in distributions yield p-values of 0.892 and 0.447 for interns (Panel A) and
residents (Panel B), respectively.
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Figure A-4: Attendings Spending Effects by Housestaff Spending Effect
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Note: This figure shows the distribution of spending fixed effects for attendings assigned to interns with
above- or below-average spending effects (Panel A) and residents with above- or below-average spending
effects (Panel B). Housestaff and attending spending effects, not conditioning by tenure, are estimated by
Equation (A-3) as fixed effects by a regression of log test spending on patient characteristics and physician
(intern, resident, and attending) identities. Kolmogorov-Smirnov statistics testing for the difference in
distributions yield p-values of 0.443 and 0.069 for interns (Panel A) and residents (Panel B), respectively.
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Figure A-5: Distribution of Daily Test Spending
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Note: This figure shows the density daily test costs. The distribution is shown up to $800 per day.
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Figure A-6: Service Days and Residents on Ward Services over Time
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B: Residents

Note: This figure shows the percentage of patient-days (Panel A) and residents on service (Panel B)
during each month in the data for each service of general medicine, cardiology, and oncology. Residents
may be counted in more than one service if they spent time in more than one service in the same month.
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Figure A-7: Housestaff-effect Variation by Tenure in Pseudo-services
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Note: This figure shows the standard deviation of test-spending effects over housestaff tenure in two
pseudo-services formed from general medicine admissions. These pseudo-services are meant to create a
difference in diagnostic concentration. MED1 includes the most common Major Diagnostic Categories
(MDCs) of Circulatory System (MDC 5), Respiratory System (MDC 4), and Digestive System (MDC 6),
roughly equivalent to cardiology, pulmonology, and gastroenterology; MED2 includes all other MDCs.
Summary statistics for these two pseudo-services are given in Table A-6. The random effects model is
still Equation (2), estimated at non-overlapping two-month tenure intervals. 95% confidence intervals are
omitted for simplicity. Controls are the same as those listed in the caption for Figure 3. Housestaff prior
to one year in tenure are interns and become residents after one year in tenure; a vertical line denotes
the one-year tenure mark.
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Table A-3: Core Rotations in Universe of Internal Medicine Residencies

Ward Rotations Program count
General Medicine (MED) 310
Cardiology (CAR) 131
Hematology / Oncology (ONC) 85
Nephrology (RENAL) 34
Gastroenterology, including Hepatology (GI) 28
Pulmonology (PULM) 27
Infectious Disease (ID) 22
Rheumatology (RHEUM) 7
Endocrinology (ENDO) 3

Note: This table shows core ward medical rotations in the universe of internal medicine residency
programs accredited by the American Council for Graduate Medical Education (ACGME), accessed at
www.acgme.org. Of the 345 programs listed in the website, 310 programs had curricula detailing core
ward rotations. Core ward rotations are defined as required rotations on ward services.

Table A-4: New England Journal of Medicine Research Articles by Specialty

Specialty / subspecialty Internal medicine Article count
Hematology / Oncology Y 596
Cardiology Y 562
Genetics N 476
Infectious Disease Y 453
Pulmonary / Critical Care Y 329
Pediatrics N 285
Endocrinology Y 283
Gastroenterology Y 257
Neurology / Neurosurgery N 245
Surgery N 228
Primary Care / Hospitalist Y 179
Nephrology Y 158

Note: This table reports the number of research papers appearing in the last ten years in the New
England Journal of Medicine, by specialty or subspecialty as categorized by the journal. Specialties or
subspecialties are also categorized as being within internal medicine or not. A training path in clinical
genetics is possible from internal medicine, but genetics can also be pursued from pediatrics, obstetrics-
gynecology, and other specialties. The New England Journal of Medicine has the highest impact factor,
51.7, out of all medical journals; only five other medical journals have double-digit impact factors, with
the second-highest of 39.1 belonging to the Lancet , and the third-highest of 30.0 belonging to the Journal
of the American Medical Association. Articles counted as research papers are “scientific reports of the
results of original clinical research.” Other categories, as defined at http://www.nejm.org/page/author-
center/article-types, include reviews, clinical cases, perspective, commentary, and other.
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Table A-5: Research Funding by National Institutes of Health (NIH) Institute or Center

NIH Institute or Center Grants
open

Funding
(millions)

National Cancer Institute (NCI) 9,872 $6,670
National Institute of Allergy and Infectious
Diseases (NIAID) 7,271 $5,433

National Heart, Lung, and Blood Institute
(NHLBI) 6,294 $3,591

National Institute of General Medical Sciences
(NIGMS) 6,268 $2,614

National Institute of Diabetes and Digestive
And Kidney Diseases (NIDDK) 4,971 $2,397

Eunice Kennedy Shriver National Institute of
Child Health & Human Development (NICHD) 3,295 $1,814

National Institute of Neurological Disorders
And Stroke (NINDS) 4,639 $1,753

National Institute of Mental Health (NIMH) 3,650 $1,500
National Institute on Drug Abuse (NIDA) 2,809 $1,229
National Institute on Aging (NIA) 2,749 $1,220
National Institute of Environmental Health
Sciences (NIEHS) 1,504 $1,091

Office of the Director (OD) 820 $756
National Eye Institute (NEI) 1,798 $733
National Human Genome Research Institute
(NHGRI) 623 $627

13 Other Institutes and Centers 8,564 $4,259

Note: This table lists the top fourteen Institutes and Centers of the National Institutes of Health (NIH),
ordered by current funding as defined by funds to currently open grants. Grants open and current funding
(in millions of dollars) are both listed. For brevity, the thirteen other Institutes and Centers are not listed
individually but are aggregated in the last line.

A-34



T a
bl

e
A

-6
:

W
ar

d
Se

rv
ic

e
Su

m
m

ar
y

St
at

is
ti

cs

A
ct

ua
ls

er
vi

ce
s

P
se

ud
o-

se
rv

ic
es

C
A

R
O

N
C

M
E

D
M

E
D

1
M

E
D

2
M

ea
n

ad
m

is
si

on
ch

ar
ac

te
ri

st
ic

s
P
at

ie
nt

ag
e

63
.7

1
59

.2
5

62
.7

9
64

.7
6

60
.6

7
D

R
G

w
ei

gh
t

2.
44

2.
24

1.
69

1.
64

1.
75

T
es

t
co

st
s

$6
13

.6
1

$8
55

.3
8

$6
87

.1
8

$6
34

.7
0

$7
43

.7
5

A
ll

co
st

s
$9

,7
03

.8
0

$7
,5

44
.0

0
$5

,3
03

.4
8

$5
,0

71
.6

3
$5

,5
53

.4
2

Le
ng

th
of

st
ay

(d
ay

s)
3.

89
4.

69
3.

66
3.

47
3.

87
30

-d
ay

re
ad

m
is

si
on

0.
08

9
0.

21
8

0.
09

0
0.

08
9

0.
09

1
30

-d
ay

m
or

ta
lit

y
0.

03
1

0.
17

5
0.

03
4

0.
03

2
0.

03
6

O
bs

er
va

ti
on

s
A

dm
is

si
on

co
un

t
12

,4
85

22
,7

11
12

,9
89

11
,7

84
10

,9
27

M
D

C
co

un
t

23
24

23
3

21
IC

D
-9

co
un

t
44

0
11

01
62

3
60

2
89

7
C
on

ce
nt

ra
ti
on

M
D

C
H

H
I

0.
74

0
0.

11
7

0.
10

3
0.

34
7

0.
10

1
IC

D
-9

H
H

I
0.

05
5

0.
01

9
0.

02
5

0.
03

8
0.

01
3

N
ot

e:
T

hi
s

ta
bl

e
sh

ow
s

su
m

m
ar

y
st

at
is

ti
cs

fo
r

ac
tu

al
se

rv
ic

es
–

ca
rd

io
lo

gy
(C

A
R

),
on

co
lo

gy
(O

N
C

),
an

d
ge

ne
ra

l
m

ed
ic

in
e

(M
E

D
)

–
an

d
fo

r
“p

se
ud

o-
se

rv
ic

es
”

fo
rm

ed
ba

se
d

on
M

aj
or

D
ia

gn
os

ti
c

C
at

eg
or

ie
s

(M
D

C
)

fr
om

th
e

ge
ne

ra
l

m
ed

ic
in

e
se

rv
ic

e.
T

he
ps

eu
do

-s
er

vi
ce

M
E

D
1

in
cl

ud
es

C
ir

cu
la

to
ry

Sy
st

em
(M

D
C

5)
,R

es
pi

ra
to

ry
Sy

st
em

(M
D

C
4)

,a
nd

D
ig

es
ti

ve
Sy

st
em

(M
D

C
6)

;M
E

D
2

in
cl

ud
es

al
lo

th
er

M
D

C
s.

Su
m

m
ar

y
st

at
is

ti
cs

in
cl

ud
e

m
ea

n
ad

m
is

si
on

ch
ar

ac
te

ri
st

ic
s

(p
at

ie
nt

ag
e,

D
R

G
w

ei
gh

t)
an

d
ou

tc
om

es
(c

os
ts

,
le

ng
th

of
st

ay
,

re
ad

m
is

si
on

,
an

d
m

or
ta

lit
y)

,
co

un
ts

(N
um

be
rs

of
ad

m
is

si
on

s,
M

D
C

s,
an

d
IC

D
-9

co
de

s)
,a

nd
H

er
fin

da
hl

-H
ir

sc
hm

an
In

di
ce

s
(H

H
I)

.

A-35



T a
bl

e
A

-7
:

To
p

D
ia

gn
os

ti
c

C
od

es
by

Se
rv

ic
e

C
ar

di
ol

og
y

O
nc

ol
og

y
G

en
er

al
M

ed
ic

in
e

IC
D

-9
D

es
cr

ip
ti

on
IC

D
-9

D
es

cr
ip

ti
on

IC
D

-9
D

es
cr

ip
ti

on

78
6.

50
C

he
st

pa
in

N
O

S
16

2.
9

M
al

ig
na

nt
ne

op
la

sm
of

br
on

ch
us

/l
un

g
N

O
S

78
6.

50
C

he
st

pa
in

N
O

S

42
8.

0
C

on
ge

st
iv

e
he

ar
t

fa
ilu

re
N

O
S

20
2.

80
O

th
er

ly
m

ph
om

a
un

sp
ec

ifi
ed

si
te

78
0.

2
Sy

nc
op

e
an

d
co

lla
ps

e

41
0.

90
A

cu
te

m
yo

ca
rd

ia
li

nf
ar

ct
io

n
N

O
S

17
4.

9
M

al
ig

na
nt

ne
op

la
sm

of
br

ea
st

N
O

S
48

6
P

ne
um

on
ia

,o
rg

an
is

m
N

O
S

41
4.

9
C

hr
on

ic
is

ch
em

ic
he

ar
t

di
se

as
e

N
O

S
17

1.
9

M
al

ig
na

nt
ne

op
la

sm
of

so
ft

ti
ss

ue
N

O
S

57
8.

9
G

as
tr

oi
nt

es
ti

na
lh

em
or

rh
ag

e
N

O
S

41
1.

1
In

te
rm

ed
ia

te
co

ro
na

ry
sy

nd
ro

m
e

20
3.

00
M

ul
ti

pl
e

m
ye

lo
m

a
w

it
ho

ut
re

m
is

si
on

78
6.

09
R

es
pi

ra
to

ry
ab

no
rm

al
it
y

N
E

C

42
7.

31
A

tr
ia

lfi
br

ill
at

io
n

78
0.

6
Fe

ve
r

78
9.

00
A

bd
om

in
al

pa
in

un
sp

ec
ifi

ed
si

te

42
7.

1
P
ar

ox
ys

m
al

ve
nt

ri
cu

la
r

ta
ch

yc
ar

di
a

18
3.

0
M

al
ig

na
nt

ne
op

la
sm

of
ov

ar
y

42
8.

0
C

on
ge

st
iv

e
he

ar
t

fa
ilu

re
N

O
S

42
8.

9
H

ea
rt

fa
ilu

re
N

O
S

15
3.

9
M

al
ig

na
nt

ne
op

la
sm

of
co

lo
n

N
O

S
41

0.
90

A
cu

te
m

yo
ca

rd
ia

li
nf

ar
ct

io
n

N
O

S
78

0.
2

Sy
nc

op
e

an
d

co
lla

ps
e

27
6.

51
D

eh
yd

ra
ti

on
57

7.
0

A
cu

te
pa

nc
re

at
it

is

42
5.

4
P

ri
m

ar
y

ca
rd

io
m

yo
pa

th
y

N
E

C
20

5.
00

A
cu

te
m

ye
lo

id
le

uk
em

ia
w

it
ho

ut
re

m
is

si
on

49
6

C
hr

on
ic

ai
rw

ay
ob

st
ru

ct
io

n
N

E
C

78
6.

09
R

es
pi

ra
to

ry
ab

no
rm

al
it
y

N
E

C
15

7.
9

M
al

ig
na

nt
ne

op
la

sm
of

pa
nc

re
as

N
O

S
27

6.
51

D
eh

yd
ra

ti
on

42
7.

89
C

ar
di

ac
dy

sr
hy

th
m

ia
s

N
E

C
48

6
P

ne
um

on
ia

,o
rg

an
is

m
N

O
S

30
0.

9
N

on
ps

yc
ho

ti
c

m
en

ta
ld

is
or

de
r

N
O

S

99
6.

00
M

al
fu

nc
ti

on
in

g
ca

rd
ia

c
de

vi
ce

/g
ra

ft
N

O
S

18
5

M
al

ig
na

nt
ne

op
la

sm
of

pr
os

ta
te

68
2.

9
C

el
lu

lit
is

N
O

S

42
7.

32
A

tr
ia

lfl
ut

te
r

78
9.

00
A

bd
om

in
al

pa
in

un
sp

ec
ifi

ed
si

te
59

9.
0

U
ri

na
ry

tr
ac

t
in

fe
ct

io
n

N
O

S

41
3.

9
A

ng
in

a
pe

ct
or

is
N

E
C

/N
O

S
15

0.
9

M
al

ig
na

nt
ne

op
la

sm
of

es
op

ha
gu

s
N

O
S

28
5.

9
A

ne
m

ia
N

O
S

N
ot

e:
T

hi
s

ta
bl

e
lis

ts
th

e
to

p
15

pr
im

ar
y

ad
m

is
si

on
di

ag
no

se
s,

by
IC

D
-9

co
de

s,
in

or
de

r
of

de
sc

en
di

ng
fr

eq
ue

nc
y,

fo
r

ea
ch

of
th

e
w

ar
d

se
rv

ic
es

of
ca

rd
io

lo
gy

,o
nc

ol
og

y,
an

d
ge

ne
ra

lm
ed

ic
in

e.
It

al
ic

iz
ed

IC
D

-9
co

de
s

de
no

te
co

de
s

th
at

ar
e

lin
ke

d
to

gu
id

el
in

es
on

g
u
i
d
e
l
i
n
e
s
.
g
o
v
.

“N
O

S”
=

“N
ot

O
th

er
w

is
e

Sp
ec

ifi
ed

”;
“N

E
C

”
=

“N
ot

E
ls

ew
he

re
C

la
ss

ifi
ed

.”

A-36


