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1 Introduction

A large literature in macroeconomics investigates the relationship between uncertainty and

business cycle fluctuations. Interest in this topic has been spurred by a growing body of evidence

that uncertainty rises sharply in recessions. This evidence is robust to the use of specific proxy

variables such as stock market volatility and forecast dispersion as in Bloom (2009), or a broad-

based measure of macroeconomic uncertainty, as in Jurado, Ludvigson, and Ng (2015) (JLN

hereafter). But while this evidence substantiates a role for uncertainty in deep recessions,

the question of whether uncertainty is an exogenous source of business cycle fluctuations or

an endogenous response to economic fundamentals is not fully understood. Existing results

are based on convenient but restrictive identifying assumptions and have no explicit role for

financial markets, even though the uncertainty measures are correlated with financial variables.

This paper considers a novel identification strategy to disentangle the causes and consequences

of real and financial uncertainty.

The question of causality and the identification of exogenous variation in uncertainty is

a long-standing challenge of the uncertainty literature. The challenge arises in part because

there is no theoretical consensus on whether the uncertainty that accompanies deep recessions

is primarily a cause or effect (or both) of declines in economic activity. Theories in which

uncertainty is defined as the time varying volatility of a fundamental shock cannot address this

question because, by design, there is no feedback response of uncertainty to other shocks if the

volatility process is specified to evolve exogenously. And, obviously, models in which there is no

exogenous variation in uncertainty cannot be used to analyze the direct effects of uncertainty

shocks. It is therefore not surprising that many theories for which uncertainty plays a role in

recessions reach contradictory conclusions on this question, as we survey below. It is clear that

the body of theoretical work on uncertainty does not provide precise identifying restrictions for

empirical work.

A separate challenge of the uncertainty literature pertains to the origins of uncertainty. Clas-

sic theories assert that uncertainty originates from economic fundamentals such as productivity,

and that such real economic uncertainty, when interacted with market frictions, discourages real

activity. But some researchers have argued that uncertainty dampens the economy through its

influence on financial markets (e.g., Gilchrist, Sim, and Zakrajsek (2010)). Moreover, as sur-

veyed by Ng and Wright (2013), all the post-1982 recessions have origins in financial markets,

and these recessions have markedly different features from recessions where financial markets

play a passive role. From this perspective, if financial shocks are subject to time-varying

volatility, financial market uncertainty—as distinct from real economic uncertainty—could be a

key player in recessions, both as a cause and as a propagating mechanism. The Great Reces-

sion of 2008, characterized by sharp swings in financial markets, hints at such a linkage. Yet so
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far the literature has not disentangled the contributions of real versus financial uncertainty to

business cycle fluctuations.

Econometric analyses aimed at understanding the role of uncertainty for business cycle

fluctuations face their own challenges. Attempts to identify the “effects”of uncertainty shocks

in existing empirical work are primarily based on recursive schemes within the framework of

vector-autoregressions (VAR).1 But studies differ according to whether uncertainty is ordered

ahead of or after real activity variables in the VAR. While a recursive structure is a reasonable

starting point, any presumed ordering of the variables is hard to defend on theoretical grounds

given the range of models in the literature. Contemporaneous changes in uncertainty can arise

both as a cause of business cycle fluctuations and as a response to other shocks. Recursive

structures explicitly rule out this possibility since they presume that some variables respond

only with a lag to others.

It is with these challenges in mind that we return to the questions posed above: is uncer-

tainty primarily a source of business cycle fluctuations or a consequence of them? And what

is the relation of real versus financial uncertainty to business cycle fluctuations? The objective

of this paper is to address these questions econometrically using a small-scale structural vector

autoregression (SVAR). To confront the challenges just discussed, we take a two-pronged ap-

proach. First, our empirical analysis explicitly distinguishes macro uncertainty from financial

uncertainty. The baseline SVAR we study describes the dynamic relationship between three

variables: an index of macro uncertainty, UMt, a measure of real economic activity, Yt (e.g.,

production, employment), and a new financial uncertainty index introduced here, UFt. Second,

rather than relying on timing assumptions for identification, we use a different identification

scheme that is less restrictive, both because it allows for simultaneous feedback between uncer-

tainty and real activity, and because it can be used to test whether a lower recursive structure

is supported by the data.

Specifically, our identification scheme makes use of the existence of two external variables

that are presumed to be relevant for uncertainty shocks but are not part of the SVAR: a Z1t

that is correlated with macro and financial uncertainty but contemporaneously uncorrelated

(exogenous) with respect to real activity, and a Z2t that is correlated with financial uncertainty

but contemporaneously uncorrelated with both real activity and macro uncertainty. While such

external variables have no obvious empirical counterparts, we propose an iterative projection

external variable (IPEV) approach to construct a Z1t and Z2t with the desired properties from

observables. The approach takes a variable St that is not in the VAR system and uses projections

to decompose it into two components, one that is correlated with a subset of the endogenous

variables of interest, and one that is orthogonal to it. We then use these components as part of

1See Bachmann, Elstner, and Sims (2013), Bloom (2009), Bloom (2014), Bekaert, Hoerova, and Duca (2013),
Gilchrist, Sim, and Zakrajsek (2010), and JLN.
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an identification strategy, a procedure that bears some analogies to the external instrumental

variable (IV) approach in the SVAR literature but is distinct from it. The difference is that the

external variables St are not themselves presumed to be valid exogenous instruments. Instead,

components of St are presumed on economic grounds to exhibit a minimal degree of non-zero

correlations with one or both uncertainty shocks but still satisfy the exogeneity properties of

a Z1t and Z2t. In the spirit of the IV literature, we refer to these constructed components as

“synthetic instruments.”

In the present context, the key is to find observables external to our SVAR that are driven

by a multitude of innovations, including the uncertainty shocks we are interested in. We argue

below that both theory and evidence suggest that aggregate stock market returns are natural

candidates for such variables. Our maintained economic hypothesis is that components of stock

market returns exist that have non-negligible correlations with both uncertainty shocks but

still satisfy the exogeneity properties of Z1t and Z2t. Our IPEV approach therefore generates

a synthetic Z1t by purging the effects of real activity shocks from stock returns, and another

synthetic Z2t by further purges the effects of macro uncertainty shocks. Iteration ensures that

the shocks used to generate the synthetic instruments are consistent with those identified by

our SVAR.

Identification is achieved by combining estimates of the synthetic Z1t and Z2t with economic

restrictions. One economic restriction is that minimum thresholds for the correlations between

the synthetic instruments and the relevant uncertainty shocks must be satisfied. Another eco-

nomic restriction is that the identified shocks must be consistent with prior economic reasoning

in a small number of extraordinary events, such as the 1987 stock market crash and the financial

crisis/Great Recession of 2007-09. With these restrictions, the set of solutions to the SVAR

identification problem can be substantially narrowed to reveal a well defined pattern of dynamic

causal effects. Under a closely related set of restrictions, our approach can be fit into the classic

simultaneous equations framework and interpreted as the output of a system estimation for a

larger VAR that includes both Xt and St.

The empirical exercise also requires that appropriate measures of macro and financial un-

certainty are available. To this end, we exploit a data rich environment, working with 134

macro monthly time series and 147 financial variables. The construction of macro uncertainty

follows JLN. The same approach is used to construct a broad-based measure of financial un-

certainty that has never been used in the literature. Macro uncertainty is itself an aggregate

of uncertainties in variables from three categories: real activity, price, and financial. To better

understand the contributions of each of these categories, we also replace UMt in the VAR with

an uncertainty measure based on the real activity sub-components. Uncertainty about real

activity is of special interest because classic uncertainty theories postulate that uncertainty

shocks have their origins in economic fundamentals and hence should show up as uncertainty
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about real economic activity.

Before summarizing our main results, it should be made clear that the structural shocks

we identify do not in general correspond to primitive shocks in specific economic models. Real

activity is endogenous and may respond to any number of primitive shocks (technology, mon-

etary policy, preferences, wage or price markups, government expenditures, etc.). If a SVAR

representation exists, our identified real activity shock would then be a composite of these prim-

itive shocks, with the restriction that this composite be orthogonal to the other shocks in our

system. The same could be said for either type of uncertainty, to the extent that these variables

are endogenous. Our objective is not, therefore, to identify primitive shocks in specific models.

Indeed, we argue that the questions raised above are ultimately empirical ones that call out

for a model-free approach. (See the literature review below for further discussion.) What our

approach offers, therefore, is something different: if there exists an SVAR in the system of in-

terest, then under the assumptions stipulated below, IPEV can provide a less restrictive means

of identifying dynamic causal effects when commonly used ordering or timing assumptions are

diffi cult to defend.

Our main results can be stated as follows. First, positive shocks to financial uncertainty are

found to cause a sharp decline in real activity that persists for many months, lending support

to the hypothesis that heightened uncertainty is an exogenous impulse that causes recessions.

These effects are especially large for some measures of real activity, notably employment and

orders. The finding that heightened uncertainty has negative consequences for real activity

is qualitatively similar to that of preexisting empirical work that uses recursive identification

schemes (e.g., Bloom (2009), JLN), but differs in that we trace the source of this result specif-

ically to broad-based financial market uncertainty rather than to various uncertainty proxies

or broad-based macro uncertainty. We also show that the converse is not supported by our

evidence: exogenous shocks to real activity have little affect on financial uncertainty.

Second, the identification scheme used here reveals something new that is not possible to

uncover under recursive schemes: macro and financial uncertainty have a very different dynamic

relationship with real activity. Specifically, unlike financial uncertainty, sharply higher macro

and real activity uncertainty in recessions is fully an endogenous response to business cycle

fluctuations. That is, negative economic activity shocks are found to cause increases in both

macro and real activity uncertainty, but there is no evidence that independent shocks to macro

or real uncertainty cause lower economic activity. Indeed the opposite is true: exogenous shocks

to both macro and real uncertainty are found to increase real activity, consistent with “growth

options”theories discussed below.

Third, our results are distinct from those obtained using recursive identification. Under any

recursive ordering of the variables in our VAR, exogenous shocks that increase macro or real

uncertainty appear to reduce real activity, in a manner that is qualitatively similar to financial
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uncertainty shocks. This result does not hold in the less restrictive SVAR studied here and

appears to be an artifact of invalid timing assumptions under recursive identification. Further

investigation reveals that the SVAR we study reflects a non-zero contemporaneous correlation

between UFt and Yt, as well as between UMt and Yt, which is inconsistent with any recursive

ordering. Tests of the validity of a recursive structure are easily rejected by the data.

The rest of this paper is organized as follows. Section 2 reviews related literature and

provides motivation for our maintained economic hypothesis that there exists a component

of stock returns that is correlated with macro and financial uncertainty shocks but contem-

poraneously uncorrelated with real activity, and another component that is correlated with

financial uncertainty but contemporaneously uncorrelated with both real activity and macro

uncertainty. Section 3 details the econometric framework and identification employed in our

study, describes how our instruments are constructed, and discusses the data and empirical im-

plementation. Section 4 presents empirical results using broad based macro uncertainty UMt,

while Section 5 reports results for systems that isolate the sub-component of UMt correspond-

ing to real activity variables. Section 6 reports results pertaining to robustness and additional

cases. In this section we consider an estimation where we take two observed external variables

S1t and S2t and presume they are valid external instruments Z1t and Z2t. This is compared to

the case where the same variables are presumed not to be valid instruments and IPEV is used

to construct synthetic instruments from S1t and S2t. In this section we also show how, with

some additional restrictions, our approach can interpreted as the output of a system estimation

for a larger VAR that includes both Xt and St. Section 7 summarizes and concludes. A large

number of additional results on the IPEV methodology are presented in (Ludvigson, Ma, and

Ng (2016)).

2 Related Literature

A large literature addresses the question of uncertainty and its relation to economic activ-

ity.2 Besides the evidence cited above for the U.S., Nakamura, Sergeyev, and Steinsson (2012)

estimate growth rate and volatility shocks for 16 developed countries and find that they are sub-

stantially negatively correlated. Theories for which uncertainty plays a key role differ widely

on the question of whether uncertainty is primarily a cause or a consequence of declines in

economic activity. In most cases, it is modeled either as a cause or an consequence, but not

both.

The first strand of the literature proposes uncertainty as a cause of lower economic growth.

This includes models of the real options effects of uncertainty (Bernanke (1983), McDonald

and Siegel (1986)), models in which uncertainty influences financing constraints (Gilchrist,

2This literature has become voluminous. See Bloom (2014) for a recent review of the literature.
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Sim, and Zakrajsek (2010), Arellano, Bai, and Kehoe (2011)), or precautionary saving (Basu

and Bundick (2012), Leduc and Liu (2012), Fernández-Villaverde, Pablo Guerrón-Quintana, and

Uribe (2011)). These theories almost always presume that uncertainty is an exogenous shock to

some economic fundamental. Some theories presume that higher uncertainty originates directly

in the process governing technological innovation, which subsequently causes a decline in real

activity (e.g., Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012)).

A second strand of the literature postulates that higher uncertainty arises solely as a re-

sponse to lower economic growth, emphasizing a variety of mechanisms. Some of these theories

suggest that bad times incentivize risky behavior (Bachmann and Moscarini (2011), Fostel and

Geanakoplos (2012)), or reduce information and with it the forecastability of future outcomes

(Van Nieuwerburgh and Veldkamp (2006) Fajgelbaum, Schaal, and Taschereau-Dumouchel

(2014)), or provoke new and unfamiliar economic policies whose effects are highly uncertain

(Pástor and Veronesi (2013)), or create a greater misallocation of capital across sectors (Ai, Li,

and Yang (2015)), or generate endogenous countercyclical uncertainty in consumption growth

because investment is costly to reverse (Gomes and Schmid (2016)).

And yet a third literature has raised the possibility that some forms of uncertainty can

actually increase economic activity. “Growth options” theories of uncertainty postulate that

a mean-preserving spread in risk generated from an unbounded upside coupled with a limited

downside can cause firms to invest and hire, since the increase in mean-preserving risk increases

expected profits. Such theories were often used to explain the dot-com boom. Examples include

Bar-Ilan and Strange (1996), Pastor and Veronesi (2006), Kraft, Schwartz, and Weiss (2013),

Segal, Shaliastovich, and Yaron (2015).

This brief review reveals a rich literature with a wide range of predictions about the re-

lationship between uncertainty and real economic activity. Yet the absence of a theoretical

consensus on this matter, along with the sheer number of theories and limited body of evidence

on the structural elements of specific models, underscores the extent to which the question of

cause and effect is fundamentally an empirical matter that must be settled in an econometric

framework with as little specific theoretical structure as possible, so that the various theoretical

possibilities can be nested in empirical tests. Commonly used recursive identification schemes

cannot achieve this objective, since by construction they rule out the possibility that uncer-

tainty and real activity could influence one another within the period. Our econometric model

nests any recursive identification scheme, so we can test whether such timing assumptions are

plausible. We find they are rejected by the data.

Our construction of instruments for uncertainty builds on work in asset pricing emphasizing

the idea that stock market variation is the result of several distinct (and orthogonal) sources

of stochastic variation, some of which are likely to be uniquely suited as instruments for our

uncertainty measures. For example, one quantitatively important component is attributable
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to acyclical risk premia variation, and more generally appears to be uncorrelated with most

measures of real activity.3 This component is valuable for our objective because it is exogenous

to real activity, but may still be relevant for both macro and financial uncertainty, as in our

synthetic Z1t. Yet another component could be attributable to fluctuations in factors like

corporate leverage, or in the risk aversion or “sentiment”of market participants that may be

correlated with the volatility of the stock market. In equilibrium asset pricing models, if leverage

increases, volatility of the corporate sector’s equity return increases. Thus changes in factors like

leverage (and possibly changes in risk aversion or sentiment) should be correlated with financial

uncertainty, but have little to do with real economic uncertainty. This component is valuable

for our objective because it is plausibly uncorrelated with both real activity and uncertainty

about economic fundamentals, but may still be relevant for financial market uncertainty, as

in our synthetic Z2t. Consistent with the existence of this type of component, JLN document

that there are many spikes in stock market uncertainty that do not coincide with an important

movement in either real activity or macro uncertainty. These findings motivate our maintained

hypothesis that measures of equity market returns are promising non-uncertainty variables

comprised of several distinct sources of stochastic variation, two of which have the statistical

characteristics of a Z1t and Z2t.

Our IPEV approach is related to a recent line of econometric research in SVARs that uses

information contained in external instruments to identify structural dynamic causal effects.4

Of these, Stock and Watson (2012) study uncertainty shocks, using a measure of stock market

volatility and/or a news media measure of policy uncertainty from Baker, Bloom, and Davis

(2013), as separate external instruments for identifying the effects of uncertainty shocks in a

SVAR. Our study differs in some fundamental ways. First, our approach relies on a set of

economic assumptions that is distinct from that of standard IV approach, hence the moment

conditions used to identify the model parameters and shocks are not in general the same. Specif-

ically, the identification strategy in Stock and Watson (2012) for uncertainty shocks presumes

that the series themselves (i.e., stock market volatility, policy uncertainty) are valid instruments,

correlated with the uncertainty shock of interest but not with the other shocks. By contrast,

our approach explicitly views both the stock market and our uncertainty measures as partly

endogenous, forcing us to confront the identification quandary. Our identification assumption

is instead that aggregate stock market returns contain components that are non-negligibly cor-

related with both types of uncertainty shocks but still uncorrelated with real activity, or jointly

3For empirical evidence, see Lettau and Ludvigson (2013), Greenwald, Lettau, and Ludvigson (2014), Kozak
and Santosh (2014), and Muir (2014). Theoretical examples include Greenwald, Lettau, and Ludvigson (2014);
Bianchi, Ilut, and Schneider (2014); Gourio (2012);Wachter (2013); Brunnermeier and Sannikov (2012); Gabaix
and Maggiori (2013); He and Krishnamurthy (2013).

4See for example Hamilton (2003), Kilian (2008), Mertens and Ravn (2013); Stock and Watson (2008), Stock
and Watson (2012), and Olea, Stock, and Watson (2015).
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uncorrelated with real activity and macro uncertainty, even while some of its variation is en-

dogenous to these variables. Second, Stock and Watson (2012) focus exclusively on identifying

the effects of uncertainty shocks and do not attempt to simultaneously identify the converse,

namely the effects of real activity shocks on uncertainty.

Berger, Dew-Becker, and Giglio (2016) take a different approach. Using options data they

find that bad times are associated with higher realized volatility but not higher expected volatil-

ity, a result that they interpret as consistent with the hypothesis that higher uncertainty is a

consequence of negative economic shocks rather than a cause.

The study arguably closest in spirit to our identification approach is Baker and Bloom

(2013), who use disaster-like events as instruments for stock market volatility with the aim

of isolating exogenous variation in uncertainty. This has some similarities with our approach,

in that it implicitly assumes that certain components of stock market fluctuations (those as-

sociated with “disasters”) are exogenous. In contrast to our approach, exogenous events are

chosen subjectively rather than constructed econometrically to satisfy specific orthogonality

restrictions. It is of interest that we arrive at complementary conclusions, despite the differing

methodologies for identifying exogenous variation.

3 Econometric Framework

This section outlines our econometric approach. Subsection 1 explains the identification strat-

egy. Subsections 2 and 3 explain the construction of external instruments in the IPEV procedure

and the uncertainty measures. This is followed by a discussion of the estimation procedure.

3.1 The SVAR and Identification

Our analysis is based on a structural vector autoregressive model (SVAR). Let Xt denote a

K× 1 time series. We suppose that the structural model has a p-th order vector autoregressive

representation

Xt = k + A1Xt−1 + A2Xt−2 + · · ·+ ApXt−p + HΣet. (1)

et ∼ (0, IK), Σ=


σ11 0 · 0
0 σ22 0 0
0 · · 0
0 0 · σKK

 , σjj ≥ 0 ∀j. (2)

The structural shocks et are mean zero with unit variance, and are serially and mutually

uncorrelated. The corresponding structural MA (∞) representation of Xt is

Xt = µ+ Ψ (L) HΣet
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where Ψ(L) = Ψ0 + Ψ1L + Ψ2L
2 + . . . with Ψ0 = I is a polynomial in the lag operator L

of infinite order, Ψs is the (n× n) matrix of coeffi cients for the sth lag of Ψ(L). Note that

Ψ(L) = A (L)−1, where A (L) = I−A1L− · · · − ApLp.
The reduced form representation of Xt is a p-th order vector-autoregression (VAR) with

corresponding reduced-form MA (∞) representation

Xt = µ+ Ψ (L)ηt (3)

ηt ∼ (0,Ω), Ω = E (ηtη
′
t) .

The structural shocks et are presumed to be related to the reduced form innovations by an

invertible K ×K matrix H:

ηt = HΣet ≡ Bet,

where B ≡ HΣ. We say that an SVAR for Xt exists if a rotation H−1 of the reduced form

shocks ηt can be found such that its elements are serially and mutually uncorrelated.

A normalization is required to pin down the sign and scale of the shocks. We adopt the unit

effect normalization

diag (H) = 1. (4)

The objective of the exercise is to study the dynamic effects and the relative importance of

the structural shocks. More precisely, the dynamic response to shock j is summarized by the

impulse response function (IRF):
∂Xt+s

∂ejt
= Ψsb

j, (5)

where bj is the jth column of B. The structural IRF Ψsb
j gives the dynamic response of Xt+s

to a one standard deviation shock. The quantitative importance of each shock is given by the

fraction of S-step ahead forecast error variance of Xt that is attributable to each structural

shock. The coeffi cient matrices of Ψ (L)−1 are identified from the projection of Xt onto its

lags in the reduced form VAR (3). The SVAR identification problem therefore amounts to

identifying the elements of H and Σ, from which the structural IRFs are computed.

Let Yt denote a measure of real activity. Our objective is to study the impulse and propa-

gating mechanism of uncertainty shocks, as well as how uncertainty reacts to shocks to Yt, while

explicitly distinguishing between macro and financial market uncertainty. Let K = 3. Hence

our baseline SVAR is based on Xt = (UMt, Yt, UFt)
′, where UMt denotes macro uncertainty,

UFt denotes financial uncertainty. The reduced form shocks ηt = (ηMt, ηY t, ηFt)
′ are linear

combinations of the three structural form shocks et = (eMt, eY t, eFt)
′ to macro uncertainty, real
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activity, and financial uncertainty, respectively.

ηMt = BMMeMt +BMY eY t +BMF eFt

ηY t = BYMeMt +BY Y eY t +BY F eFt

ηFt = BFMeMt +BFY eY t +BFF eFt,

where Bij is the element of B that gives the contemporaneous effect of the jth structural shock

on the ith variable. The covariance structure of ηt provides K(K + 1)/2 = 6 equations in B:

vech(Ω) = vech(BB′) (6)

where vech(Ω) stacks the unique elements of the symmetric matrix Ω. There are nine unknown

elements in B.

To motivate our IPEV procedure, it is helpful to begin by considering the classic IV approach

where valid instruments are observed. To do so, suppose for the moment that we have measures

of Yt, UMt, UFt, and two external instruments, Z1t and Z2t satisfying the following:

Assumption A: Let Zt = (Z1t, Z2t)
′ be two instrumental variables such that

(A.i) E[Z1teMt] 6= 0, E[Z1teY t] = 0, E[Z1teFt] 6= 0
(A.ii) E[Z2teMt] = 0, E[Z2teY t] = 0, E[Z2teFt] 6= 0.

Assumption A are conditions for instrument exogeneity and relevance. Z1t is an instrument

that is correlated with both macro and financial uncertainty, but contemporaneously uncor-

related (exogenous) with respect to real activity. Z2t is an instrument that is correlated with

financial uncertainty, but contemporaneously uncorrelated (exogenous) with respect to macro

uncertainty and real activity.

Let m1t = (vech(ηtη
′
t), vec (Zt ⊗ ηt))′ and β = vec(B). At the true value of β, denoted β0,

the model satisfies

0 = E[g1(m1t;β
0)], (7)
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written out in full as follows:

0 = var(ηM)−B2
MM +B2

MY +B2
MF

0 = var(ηY )−B2
YM +B2

Y Y +B2
Y F

0 = var (ηF )−B2
FM +B2

FY +B2
FF

0 = cov(ηM , ηY )−BMMBYM +BMYBY Y +BMFBY F

0 = cov(ηY , ηF )−BYMBFM +BY YBFY +BFFBY F

0 = cov
(
ηM,ηF

)
−BMMBFM +BMYBFY +BMFBFF

0 = BMFE[Z2tηY ]−BY FE[Z2tηMt]

0 = BFFE[Z2tηY t]−BY FE[Z2tηFt]

0 = (BMMBFF −BMFBFM)E[Z1tηY t]− (BY FBFM −BYMBFF )E[Z1tηMt]

−(BMMBY F −BMFBYM)E[Z1tηFt].

The model has nine equations in nine unknowns. The first six are from the covariance structure.

The next two equations are due to the three moments implied by Assumption (A.ii). The final

equation is due to the three moments implied by Assumption (A.i).

Proposition 1 Under Assumption A with det(B) > 0, the normalization (4), and the restric-

tion (2), β is identified.

The Appendix gives a closed-form solution for B, and shows that the covariance between

the instruments and the structural shocks can be expressed as

E[Z2teFt]
2 = E[ηtZ2t]

′Ω−1E[ηtZ2t]

E[Z1teMt]
2 =

(
E[ηtZ1t]−

E[ηtZ2t]

E[Z2teFt]
E[Z2teFt]

)′
Ω−1

(
E[ηtZ1t]−

E[ηtZ2t]

E[Z2teFt]
E[Z2teFt]

)
E[Z2teFt]E[Z1teFt] = E[ηtZ2t]

′Ω−1E[ηtZ1t].

We verify that the closed-form solution is the the same as the unique numerical solution obtained

with (4) and (2) imposed.

In essence, identification in this analysis is achieved by (i) using movements in UMt and

UFt that are correlated with Z1t to identify the effects of uncertainty shocks and disentangle

them from shocks to real activity, (ii) using movements in UFt that are correlated with Z2t to

identify the effects of UFt shocks and disentangle them from macro uncertainty shocks, and (iii)

using movements in Yt that are uncorrelated with both Z1t and Z2t to identify the effects of

real activity shocks and disentangle them from uncertainty shocks.

We take the stand in this application that our uncertainty measures are potentially en-

dogenous. It is then natural to ask why we do not simply find observable instruments. One
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answer is that credible valid instruments may be diffi cult or impossible to find and defend.

We argue that existing uncertainty proxies are likely to be among those variables that fall into

this category. JLN find that such measures, including options-based volatility indexes such

as VIX or VXO, are less defensible measures of uncertainty than those employed here, so it

makes little sense to instrument for the latter with the former. Options-based volatility indexes

are doubly problematic for our purpose because they are known to contain a large component

attributable to changes in the variance risk premium that are unrelated to common notions of

uncertainty (e.g., Bollerslev, Tauchen, and Zhou (2009); Carr and Wu (2009)). On the other

hand, options based indexes may be valuable in empirical contexts different from ours, such

as those that seek to distinguish expected stock market volatility from realized stock market

volatility (Berger, Dew-Becker, and Giglio (2016)). With these considerations in mind, the next

subsection proposes a methodology that is in the spirit of classic IV. The approach constructs

“synthetic instruments”from endogenous external variables that have properties analogous to

those of Assumption A and can, under some additional economic assumptions, help identify

dynamic causal effects in the SVAR for Xt.

3.2 Construction of Instruments

Suppose that the external instruments Z1t and Z2t have no observable counterpart. The next

step is to develop a methodology to construct synthetic proxies in the spirit of such variables.

To motivate our method of IPEV, recall that two stage least squares uses projections to purge

the endogenous variations from a relevant regressor. Our IPEV approach is similar in spirit

except that we purge the endogenous variations from a observed variable that is not of first

order relevance to our VAR system. The output of such a projection is a generated external

“instrument.”

In the present context, we make use of observables St that are driven not only by our

structural shocks et = (eY t, eMt and eFt)′, but also by other shocks collected into an eSt that

are uncorrelated with et. A theoretical premise of the paper is that uncertainty shocks should

be reflected in aggregate equity returns. Thus our choice of St is a measure of stock market

returns. Under these assumptions, we may represent St as

St = δ0 + δY Yt + δMUMt + δFUFt + δS(L)St−1 + δX(L)′Xt−1 + eSt (8)

where Xt = (Yt, UMt, UFt)
′. The residual eSt could be driven by any number of shocks orthogo-

nal to et. One interpretation is risk premium shocks driven by factors orthogonal to uncertainty,

such as a pure sentiment shock (one uncorrelated with uncertainty), but the precise interpreta-

tion is not important to what follows. Obviously, St is an endogenous variable but it is external

to the variable Xt system by assumption. (Below we show results from estimating a larger

system that includes St in which this exclusion restriction can be evaluated.) Omitting any
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component of Xt as an explanatory variable will yield inconsistent estimates of the parameters

in (8). However, we are not interested in these parameters. Our objective in considering stock-

market returns is solely to remove from it those variations due to the estimated eMt and/or

eY t. More precisely, (8) motivates two (non-structural) representations of St (not necessarily

the same variable):

S1t = d10 + d1Y eY t + d1S(L)S1t−1 + Z1t (9a)

S2t = d20 + d2MeMt + d2Y eY t + d2S(L)S2t−1 + Z2t, (9b)

Equation (9a) forms an orthogonal decomposition of S1t into a component that is spanned by

eY t and a component Z1t that is orthogonal to eY t. Similarly, equation (9b) purges the effect of

eY t and eMt from S2t to arrive at Z2t. If eY and eM were observed, these two Z variables would

satisfy Assumption A by construction. Note, however, that Z1t and Z2t include the effects of

Xt−1. Moreover, they are forecastable since both UMt and UFt can be serially correlated and

their lagged values predict future excess stock market returns.

If eY and eM were observed, then solving for the sample analog of (7) would produce es-

timates of Z1t and Z2t that satisfy Assumption A. Alternatively, if valid instruments Zt were

observed, Proposition 1 shows that we could identify B, hence et. Since both are unobserved,

such regressions are infeasible. However, components of observed variables may have the cor-

relation properties of Z1t and Z2t stipulated in Assumption A. Given the theory and evidence

discussed above, our maintained hypothesis is that the stock market contains a component

that is exogenous to real activity, but correlated with both uncertainty shocks, and another

component that is exogenous to both real activity and macro uncertainty, but correlated with

financial uncertainty. To the extent that we can identify such components by requiring that

they satisfy the same nine equations described in (7), we interpret them as synthetic instru-

ments. We denote these constructed components as Z(β) to emphasize the fact that they are

functions of β.

Unlike the classic IV case where Z is observed, the nine moment restrictions in (7) cannot

by themselves serve to identify the SVAR parameters. Whereas Z′η is fixed when Z is observed,

this is no longer the case when Z is constructed because Z itself depends on β. The problem

that this creates is that if Ẑ′1êY = 0, Ẑ′2êY = 0, and Ẑ′2êM = 0 for some β̂ = vec(B̂), any

orthonormal rotation of B̂ to B̃ = B̂Q′ and ê to ẽ = Qê will have Z̃′1ẽY = 0, Z̃′2ẽY = 0, and

Z̃′2ẽM = 0. This is because the three orthogonality conditions hold by construction; they are

imposed to arrive at the nine equations. If we collect all the solutions that satisfy (7) into the

set B̂, this set can be infinitely large.
To address this problem, we combine the nine moment restrictions in (7) using the synthetic

Z1t and Z2t with economic restrictions. The first economic assumption we impose is that the

there exist components of St given by the constructed Z(β) that exhibit minimum non-zero
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correlations with the uncertainty shocks but still satisfy the exogeneity restrictions of Assump-

tion A. This acts to shrink the unconstrained set because the observed uncertainty correlations

Z′1(β̂)êM 6= 0, Z′1(β̂)êF 6= 0, Z′2(β̂)êF 6= 0 are not invariant to orthonormal rotations, since the

Zt are constructed from data St, which is given. Hence B̂ and B̃ = B̂Q′ will imply components

Z(β) with different correlations. Second, while ẽt and êt have the same mean and variance,

ẽt 6= êt at any particular t. The second set of economic assumptions we impose requires that

the identified shocks be consistent with prior economic reasoning in a small number of extra-

ordinary events. Both sets of economic assumptions are used to dismiss solutions in B̂ to form
a winnowed set of solutions B(c̄, C̄, k), where c̄, C̄, and k ≡ (k1, k2, k3)′ are defined below.

Winnowing Constraints For any β ∈ B̂ that satisfies the nine equations defined in (7) with
Z(β) constructed as in (9a) and (9b), β ∈ B(c̄, C̄, k) only if all the following conditions are

satisfied:

1 The Z(β) have non-negligible correlations with uncertainty shocks: Let ckj(β) = corr(Zkt(β), ejt(β)

be the sample correlation between Zk(β) and the shock in et(β) = (eMt, eY t, eFt) with

label j.

i |c1M(β)| > c̄, |c1F (β)| > c̄, and |c2F (β)| > c̄.

ii For c(β)=
(
c1M(β), c1F (β), c2F (β)

)′
,
√
c(β)′c(β) > C̄.

2 Big shock events: For et(β) = B−1ηt,

i eFt1(β) > k̄1 where t1 is the period 1987:10 of the stock market crash.

ii There exists a t2 ∈ [2007:12, 2009:06] such that eFt2(β) > k̄2.

iii For all t2 ∈ [2007:12, 2009:06], eY t2(β) < k̄3

The first condition requires that each correlation c1M(β̂), c1F (β̂), c2F (β̂) is individually high

enough that it exceeds a pre-specified threshold c̄, and that they are collectively high enough

that the norm of c(β) exceeds C̄. If the thresholds are too low, many solutions will have

correlations between the synthetic Z and uncertainty shocks that are too low to identify these

shocks and their dynamic effects well; in this case many β̂ in B̂ will also be in B(c̄, C̄, k) and little

progress is made. If the thresholds are too high, no solutions will exhibit such high correlations

and B(c̄, C̄, k) will be empty.

The restrictions on big shock events are used to ensure that the identified shocks at specific

episodes have properties that agree with prior economic reasoning. In particular, we require

that the financial uncertainty shocks identified in 1987 and during the 2007-2009 financial crisis

be large and positive, and that the identified output shocks during the Great Recession not take
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on large positive values. The t2 dates are set in accordance with NBER dating of the Great

Recession, which coincides with the timing of the financial crisis.

It remains to discuss the construction of the unconstrained solution set B̂. To obtain a set
of, say, K solutions, we can solve K GMM problems with different staring values. Each GMM

problem consists of solving for nine unknowns from nine equations, with Z generated from (9a)

and (9b). The guess of Z is updated each time β is updated during each iteration. We have

found it more effi cient to solve for β and Z iteratively, updating Z by projection only when a

solution for β is obtained. The complete iterative projection external variable IPEV procedure

is summarized as follows:

Algorithm IPEV For a given guess of β and therefore a guess of et = B−1ηt, the following

steps are repeated until convergence:

i Put the guess of (eM, eY) in (9a) and (9b) to construct Z1 and Z2.

ii Use Z1 and Z2 to solve the nine equations given in (7). This gives a new value for B.

iii Construct new shocks e using the new estimate of B.

iv If the difference between the new and old e exceeds a tolerance, return to (i). Else, put

the solution in the unconstrained set B̂ if det(B) > b̄.

v If the solution satisfies the winnowing constraints, put it in B̄(c̄, C̄, k).

Several points about the implementation of this approach bear discussion.

First, note that the shocks are constructed as e = B−1η and require B−1 to be well behaved.

For this reason we keep only solutions that satisfy a minimum threshold for det(B) ≥ b. Second,

we consider a large number of randomly chosen starting values, or guesses, for β. Specifically,

we initialize B to be the lower Cholesky factorization of Ω for an arbitrary ordering of the

variables (.e.g., (UMt, Yt, UFt)
′). We then rotate it by 40,000 random orthogonal matrices to

give 40,000 initial guesses on the shocks. Completely random starting values will always deliver

some Z(β) and e(β) with properties that are at odds with the data. Our winnowing constraints

exclude such solutions from B(c̄, C̄, k). We also estimate the model by GMM to verify that for

a given initial guess, the solution agrees with the one obtained by IPEV estimation.

Second, the parameter values c, C, and k vary with the data under investigation. For

some choice of S, it is entirely possible that there exists no solution satisfying non-negligible

correlation thresholds ckj(β). To choose these thresholds for a particular DGP, we search

over multiple discrete values for
(
c, C

)
and store the number of survived solutions for each

combination of
(
c, C

)
. Some combinations yield no solutions. For those that have at least

one solution, we choose the set B(c̄, C̄, k) that has the highest C. If there is more than one
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set remaining with the same highest value for C, the tie is broken by taking the set B̄(c̄, C̄, k)

with the highest c. For the baseline case discussed below, this procedure yields c = 0.08,

C = 0.2430. For the presentation of results below we focus on the single solution in the

restricted set B̄(c̄, C̄, k) with the highest
√
c(β)′c(β):

β̂ =arg max
β∈B(c̄,C̄,k)

√
c(β)′c(β).

However, we show that the set of winnowed solutions is not sensitive to the particular values

c = 0.08, C = 0.2430 as long as they are not set too low.

Third, we set the parameters of the big shock event restrictions to k1 = 4.0, k2 = 4.0, and

k3 = 2. The requirement that shocks to financial uncertainty during the 1987 stock market

crash and 2007-09 financial crisis be at least four standard deviations larger than the mean is

guided by Bloom (2009). In his work, uncertainty shocks are calibrated from innovations to the

VXO stock market volatility index. Bloom (2009) studies the dynamic effects of four standard

deviation shocks to uncertainty.

To summarize, identification is predicated on three economic assumptions. First, compo-

nents of the external St variables exist that satisfy a minimum degree of non-zero correlation

with the relevant set of uncertainty shocks ({eMt, eFt} or {eFt}) and are exogenous with re-
spect to the remaining structural shocks in et that form the compliment of this set. Second,

the identified shocks must be consistent with prior economic reasoning in a small number of

extraordinary events. Third, idiosyncratic shocks to St do not affect the variables in Xt either

contemporaneously or with a lag, an assumption that is tantamount to assuming that St can be

excluded from the VAR. Below we show how this last assumption can be empirically evaluated

in the section on system estimation. It is worth noting that the big shock constraints eliminate

99% of the solutions in B̂. When combined with minimum thresholds for the correlations be-

tween the St components and the uncertainty shocks, the qualitative nature of the solutions to

the IPEV and GMM estimation problem is not found to be sensitive to starting values.

To have confidence in this implementation, Ludvigson, Ma, and Ng (2016) use Monte Carlo

experiments to study the properties of the estimator. In general, the degree of synthetic instru-

ment correlation strength and required for precise identification varies with the data generating

process (DGP). But the results for a DGP calibrated to the empirical application here suggest

that the procedure can quite accurately recover the true structural shocks and B matrix when

the procedure is initialized with the starting values employed in this application, when the

estimated instruments have properties consistent with observed values of instrument strength

c(β), and when finite samples are set to be within range of the size used in this study.
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3.3 Measuring Uncertainty and Stock Market Returns

In our estimation we work with several different aggregate measures of uncertainty, which are

indexes constructed over individual uncertainties for a large number of observable time-series.

A long-standing diffi culty with empirical research on this topic has been the measurement of

uncertainty. JLN find that common uncertainty proxies contain economically large components

of their variability that do not appear to be generated by a movement in genuine uncertainty

across the broader economy. This occurs both because these proxies over-weight certain series in

the measurement of aggregate uncertainty, and because they erroneously attribute forecastable

fluctuations to a movement in uncertainty. Equity market volatility, for example, contains a

non-trivial component generated from forecastable variation in stock returns. The estimated

macro uncertainty index constructed in JLN is designed to address these issues and improve the

measurement of aggregate uncertainty. The methodology used here for constructing uncertainty

indexes follows JLN and we refer the reader to that paper for details.

Let yCjt ∈ Y C
t = (yC1t, . . . , y

C
NCt

)′ be a variable in category C. Its h-period ahead uncertainty,

denoted by UCjt(h), is defined to be the volatility of the purely unforecastable component of the

future value of the series, conditional on all information available. Specifically,

UCjt(h) ≡

√
E
[
(yCjt+h − E[yCjt+h|It])2|It

]
(10)

where It is information available. If the expectation today of the squared error in forecasting

yjt+h rises, uncertainty in the variable increases. Uncertainty in category C is an aggregate of

individual uncertainty series in the category :

UCt(h) ≡ plimNC→∞

NC∑
j=1

1

NC

UCjt(h) ≡ EC [UCjt(h)]. (11)

As in JLN, the conditional expectation of squared forecast errors in (10) is computed from

a stochastic volatility model, while the conditional expectation E[yCjt+h|It] is replaced by a
diffusion index forecast, augmented to allow for nonlinearities. These are predictions of an

autoregression augmented with a small number of common factors qt = (q1t, . . . , qrt)
′ estimated

from a large number of economic time series xit each with factor representation xit = Λ′itqt+eχ,it.

The use of large datasets reduces the possibility of biases that arise when relevant predictive

information is ignored. Let Y C
t = (yC1t, . . . , y

C
NCt

)′ generically denote the series that we wish to

compute uncertainty in. In this paper, we consider four categories of uncertainty:

Category (C) Y C
t NC

(M): Macro all variables in χM 134
(F): Financial all variables in χF 147
(R): Real activity real activity variables in χM 73
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The uncertainty index UCt for category C is an equally-weighted average of the individual

uncertainties in the category. We use two datasets covering the sample 1960:07-2015:04.5 The

first is a monthly macro dataset, XM
t , consisting of 134 mostly macroeconomic time series

take from McCracken and Ng (2016). The second is a financial dataset X F
t consisting of

a 147 of monthly financial indicators, also used in Ludvigson and Ng (2007) and JLN, but

updated to the longer sample. The real uncertainty index URt is an equally-weighted average

of the individual uncertainties about 73 series in Groups 1 through 4 of XM . These include

output and income variables, labor market measures, housing market indicators, and orders

and inventories. Additional predictors for variables in XM
it include factors formed from X F

it and

vice-versa, squares of the first factor of each, and factors in the squares of individual series,(
XM
it

)2
and

(
X F
it

)2
.

Our use of stock returns St to generate instruments is grounded in the theoretical premise

that both macro and financial uncertainty shocks should be reflected in stock market returns.

There is no reason, however, that the regressands in (9a) and (9b) must be exactly the same

measure of stock market activity. All measures of stock market activity are highly correlated

because they contain a large common component (much of which is orthogonal to the rest of the

economy). In order to introduce some additional independent variation in our two instruments,

our base cases use different measures of aggregate stock market activity S1t and S2t, although in

practice we get very similar results if we use the same value-weighted stock market index return

in (9a) and (9b). Specifically, we use the Standard and Poor 500 stock market index return, SPt,

as S1t, the regressand for (9b), and Sαt = αpcrspt+(1− αp) smallt, a portfolio weighted average
of the return on the CRSP value-weighted stock index (in excess of the one-month Treasury

bill rate) and the smallest decile stock market return in the NYSE as S2t, the regressand for

(9a).6 We investigated a range of values for αp. Our choice of portfolio weight αp is guided by

empirical considerations. The small stock index is highly volatile, which can generate noise in

the estimated SVAR parameters and large error bands for the impulse response functions. For

the base case results presented below we set αp = 0.94 because it gives reasonably tight error

bands. However, we also investigated a range of values for αp ∈ [0, 1] and found qualitatively

similar point estimates and impulse responses, including setting αp = 0, which gives 100% of

the weight to the small stock index. In our experience, wide error bands indicate diffi culty

identifying some element of the B matrix. We discuss this further below.

The parameters to be estimated include the reduced form VAR parameters in (3), from

which we obtain η̂t, the parameters in (9a) and (9b), from which we construct Z1t (β) and

Z2t (β), the covariances between Z1t (β) and Z2t (β) and η̂t, and the structural parameters

5A detailed description of the series is given in the Data Appendix of the online location where updated JLN
uncertainty index data are posted: http://www.sydneyludvigson.com/s/jln_data_appendix_update.pdf

6The CRSP index is a value-weighted return of all stocks in NYSE, AMEX, and NASDAQ.
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using results from the preceding three estimations. The sample moment conditions can be

collected into one vector and Generalized Method of Moments (GMM, Hansen (1982)) applied

to estimate all parameters, where the number of moments equals the number of parameters.

Serial correlation and heteroskedasticity robust standard errors are constructed as in Newey

and West (1987) wherever asymptotic standard errors are reported.

The next section presents empirical results. We begin by studying systems with macro un-

certainty. We then move on to consider sub-indexes of UMt, including real uncertainty formed

only over real activity variables URt. Our final set of results report several additional cases

pertaining to the plausibility of recursive identification schemes for our application, to different

measures of St and different treatments of St as either valid known instruments where Assump-

tion A applies or imperfect instruments where IPEV is used, and full system estimation where

St is included in a larger VAR with Xt.

4 Results for Xt = (UMt, Yt, UFt)
′

Our first VAR is defined by Xt = (UMt, Yt, UFt)
′. We consider h = 1 (one-month uncertainty)

and several measures of Yt. The first two are the log of real industrial production, denoted ipt,

and the log of employment, denoted empt. While industrial production is a widely watched

economic indicator of business cycles, it only captures goods-producing industries and has been

a declining share of GDP. Employment only covers the labor market. Hence we also consider

an additional measure of real activity: the cumulated sum of the first common factor estimated

from the macro dataset χM (since the raw data used to form this factor q1t are transformed

to stationary), which we denote Q1t. Since our emphasis is on h = 1, we write UMt instead

of UMt(1), and analogously for UFt, in order to simplify notation. We refer to the estimation

using data on Xt = (UMt, ipt, UFt)
′ as our base case.

The top panel of Figure 1 plots the estimated macro uncertainty UMt in standardized units

along with the NBER recession dates. The horizontal bar corresponds to 1.65 standard devia-

tion above unconditional mean of each series (which is standardized to zero). As is known from

JLN, the macro uncertainty index is strongly countercyclical, and exhibits large spikes in the

deepest recessions. The updated data UMt series shows much the same. Though UMt exceeds

1.65 standard deviations 48 times, they are clustered around the 1973-74 and 1981-82 reces-

sions, as well as the Great Recession of 2007-09. Macroeconomic uncertainty is countercyclical

and has a correlation of -0.65 with the 12-month moving-average of the growth in industrial

production.

The bottom panel of Figure 1 plots the financial uncertainty series UFt over time, which is

new to this paper. UFt is a broad-based measure of time varying financial uncertainty using

data from the bond market, stock market portfolio returns, and commodity markets. Hence,
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it is smoother than proxies such as VIX or any particular bond index. As seen from Figure 1,

UFt is also countercyclical, though less so than UMt; the correlation with industrial production

of -0.39. The series often exhibits spikes around the times when UMt are high. However, UFt is

more volatile and spikes more frequently outside of recessions, the most notable being the 1987

stock market crash. Though observations on UFt exceed the 1.65 standard deviation line 33

times, they are spread out in seven episodes, with the 2008 and 1987 episodes being the most

pronounced.

As is clear from Figure 1, both indicators of macro and financial uncertainty are serially

correlated and hence predictable. They have comovements but also have independent variations

as the correlation between them is 0.58. However, this unconditional correlation cannot be given

a structural interpretation. The heightened uncertainty measures can be endogenous responses

to events that are expected to happen, but they can also be exogenous innovations. We use a

VAR to capture the predictable variations, and then identify uncertainty shocks from the VAR

residuals using the restrictions described in the previous section.

4.1 VAR Estimates and Uncertainty Shocks

Several features of the VAR estimates are qualitatively similar for all measures of Yt. Table 1

highlights some of these results. As shown in Panel A, the sample correlation coeffi cient between

Z1t and êMt and êFt, and between Z2t and êFt are statistically significant and negative in each

case, indicating that uncertainty shocks of both types are correlated with these instruments, as

required, and tend to be high when these components of stock market returns are low. Notice

that the magnitude of the instrument relevance correlations is modest for some systems, e.g. for

corr (Z1t, êMt). However, simulations in Ludvigson, Ma, and Ng (2016) indicate that the degree

of instrument relevance required for precise identification varies with the DGP, and results for a

DGP calibrated to the empirical application here—including the size of the estimated instrument

relevance correlations—show that the procedure can recover a close approximation of the true

structural shocks and B matrix even with the correlations between Z1t and êMt found here.

Panel A also shows that the correlation between Z1t and êY t, and the correlation between Z2t

and êY t and êMt are all zero as required, which is true by construction of the algorithm and

solution forB. Panel B shows that σMM , σY Y , and σFF are all strongly statistically significantly

different from zero. This in turn indicates the presence of both macro and financial uncertainty

shocks in the SVAR. Since both UMt and UFt are serially correlated, we should therefore find

that Z1t is correlated with lags of UMt and UFt, while Z2t is correlated with lags of UFt. Results

not reported confirm this is the case.

Figure 2 presents the time series of the standardized shocks (eM , eip, eF ) identified from the

system with Yt = ipt. All shocks display strong departures from normality with excess skewness
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and/or excess kurtosis. The largest of the eip shocks is recorded in 2008:09, followed by 1974:11,

and 2005:09. There also appears to be a moderation in the volatility of the ip shocks in the

post-1983 period. The largest macro uncertainty shock is in 1970:12, followed by the shock

in 2008:10. The largest financial uncertainty shock is recorded in 1987:10 (Black Monday),

followed by the shock in 2008:09 during the financial crisis. For eF , the extreme but transitory

nature of the 1987 stock market crash leads to a very large spike upward in eF in the month

of the crash, followed by a very large spike downward in the month following the crash as the

market recovered strongly and quickly. While this episode magnifies the spike in eF in 1987, it

is largely orthogonal to real activity and macro uncertainty.

Observe that the large ip shock in 2005:09 is not associated with a contemporaneous spike

in uncertainty, while there are several spikes in both types of uncertainty that do not coincide

with spikes in eip. The next subsection uses impulse response functions to better understand

the dynamic causal effects and propagating mechanisms of these shocks.

4.2 The Dynamic Effects of Uncertainty Shocks

Impulse response functions (IRFs) trace out the effects of counterfactual increases in the shocks.

The estimated IRFs are presented with 90% bootstrapped confidence bands as vertical bars.

All plots show responses to one standard deviation changes in εjt in the direction that leads to

an increase in its own variable Xjt.

Figure 3 shows the dynamic responses of each variable in the SVAR to each structural shock.

The figure displays the IRFs for systems with Yt = ipt, empt, and Q1t, the real activity factor.

We see that positive shocks to financial uncertainty eF lead to a sharp declines in all three

measures of real activity that persists for many months (center plot, bottom row). Positive

perturbations to eFt also cause UMt to increase. However, there is less evidence that shocks

to macro uncertainty have effects on financial uncertainty: the impact response of UFt to an

increase in eMt is not statistically different from zero for the system with Y = ip, though it

is for the other two. These results lend support to the hypothesis that heightened financial

uncertainty is an exogenous impulse that causes declines in real activity. Note, however, there

is no evidence that high financial uncertainty is a consequence of lower economic activity.

Instead, exogenous (positive) shocks to real activity either increase financial uncertainty or

have a statistically insignificant effect on it.

While we find no evidence that high financial uncertainty is a consequence of lower eco-

nomic activity, the results for macro uncertainty are quite different. Figure 3 (second row,

first column) shows that macro uncertainty falls sharply in response to positive real activity

shocks. Alternatively stated, negative real activity shocks increase macro uncertainty sharply.

These effects persist for well over a year after the real activity shock. This result is strongly
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statistically significant, suggesting that higher macro uncertainty in recessions is a direct en-

dogenous response to lower economic activity. However, there is no evidence that the negative

correlation between macro uncertainty and real activity is driven by causality running in the

opposite direction. Indeed, the top middle panel shows that exogenous increases in eMt actually

increase real activity in the short run, consistent with growth options theories discussed above.

The results in Figure 3 display are for the single solution in the restricted set B̄(c̄, C̄, k)

with the highest
√
c(β)′c(β). Figure 4 shows the set of all solutions for the system with

Yt = ipt that satisfy the same big shock restrictions with k set as discussed above, but satisfy

lower thresholds for correlations between the synthetic Z and the uncertainty shocks equal to

c = 0.04, C = 0.240. Since these thresholds for the correlations are considerably lower, there

are many more solutions that satisfy them, 76 to be exact. Figure 4 shows that the pattern

of dynamic responses of the set is very similar to the baseline solutions, indicating that the

results is not sensitive to these particular values for the thresholds
(
c, C

)
as long as they are

not set too low. On the other hand, if c is set much lower than 0.04, many solutions will have

estimated correlations that are too small to identify the uncertainty shocks and their dynamic

effects well.

4.3 The Structural Shocks and Decomposition of Variance

In Figure 1 presented earlier, we find 1973-74, 1981-82, and 2007-2009 to be the three episodes

of heightened macroeconomic uncertainty, defined as the periods when UMt is 1.65 standard

deviations above its unconditional mean. We now look for the “large adverse” shocks in the

systems (UMt, Yt, UFt)
′, with Yt = ipt, empt , Q1t. More precisely, we consider large positive

uncertainty shocks and large negative real activity shocks.

Figure 5 displays the date and size of shocks that are at least two standard deviations above

the mean, estimated using the three different measures of Yt. In view of the non-normality

of the shocks, the figure also plots horizontal lines corresponding to three standard deviation

of the unit shocks, which is used as the reference point for ‘large’. The lowest panel shows

that, irrespective of the definition of Yt, all SVARs identify big financial uncertainty shocks

in 1987 and 2008. The middle panel shows that large negative real activity shocks are in

alignment with all post-war recessions with one exception: the negative real activity shock in

2005 is not immediately associated with a recession, but it could be the seed of the Great

Recession that followed. It is known that the housing market led the 2007-2009 recession

(e.g., see Favilukis, Ludvigson, and Van Nieuwerburgh (2015) for a discussion). Indeed, all

10 housing series in XM (most pertaining to housing starts and permits series) exhibit sharp

declines starting in September 2005 and continuing through 2006, thereby leading the Great

Recession. This suggests that the negative spike in real activity in 2005 were at least in part
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driven by the housing sector.

The top panel of Figure 5 shows that the dates of large increases in eM are less clustered.

They generally coincide with, or occur shortly after, the big real activity shocks and the financial

uncertainty shocks. Observe that large macro uncertainty shocks occurred more frequently in

the pre-1983 than the post 1983 sample.

To give a sense of the historical importance of these shocks, we perform a decomposition

of variance, which is the fraction of s-step-ahead forecast error variance attributable to each

structural shock εMt, εY t, and εFt for s = 1, s = 12, s = ∞. We also report the maximum
fraction of forecast error variance over all VAR forecast horizons s that is attributable to each

shock, denoted s = smax in the table. Table 2 reports results for the system with Yt = ipt (left

column), Yt = empt (middle column), and Yt = Q1t (right column).

According to the top row, all three real activity shocks eip, eemp, and eQ1 have sizable effects

on macroeconomic uncertainty UM . But according to the bottom row, these same shocks have

small effects on financial uncertainty UF . At the same time, positive macro uncertainty shocks

eM , which increase rather than decrease real activity, explain a surprisingly large fraction of

production (up to 539%), employment (up to 44%) and the real activity index (up to 30%).

On the other hand, financial uncertainty shocks eF have a small contribution to the one-step-

ahead forecast error variance of ip, but their relative importance increases over time. These

eF shocks make larger contributions to the forecast error variance of emp and Q1. Financial

uncertainty shocks explain up to 69% of the forecast error variance in employment and up to

49% of the forecast error variance in the real activity index, compared to 31% for production.

Financial uncertainty shocks eF feedback into UM , and macroeconomic uncertainty shocks eM
also feedback into UF .

Regardless of which measure of real activity is used, we find that financial uncertainty is

unlike macro uncertainty or real activity in that its variation is far more dominated by its own

shocks. For example, in the system with ip, eF shocks explain 95% of the s = 1 step-ahead

forecast error variance in UFt, and 84% of the s =∞ step-ahead forecast error variance. In the

systems with emp and Q1, eF shocks explain 68% and89%, respectively, of the s = 1 step-ahead

forecast error variance in UFt, and 46% and 66%, respectively, of the s =∞ step-ahead forecast

error variance.

To summarize, in all three systems, real activity shocks eY have quantitatively large per-

sistent negative effects on macro uncertainty UM . In turn, macro uncertainty shocks eM have

large positive impact effects on real activity measures Y . Financial uncertainty shocks eF have

smaller impact effects but larger long run effects that dampen real activity Y . Across all sys-

tems, the forecast error variance of financial uncertainty is the least affected by shocks other

than its own, suggesting that UF is quantitatively the most important exogenous impulse in

the system.
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5 Uncertainty in Real Activity

The results discussed above suggest that the dynamic relationship between macro uncertainty

and real activity can be quite different from the relation between financial uncertainty and real

activity. However, given the composition of our data χM , macroeconomic uncertainty itself

can be due to uncertainty in real activity variables such as output and unemployment, to price

variables, and to financial market variables. The theoretical uncertainty literature has focused

on modeling exogenous uncertainty shocks that arise specifically in measures of real economic

fundamentals, rather than in prices or financial markets. To better evaluate the implications

of these theoretical models, it is therefore of interest to know how systems defined by sub-

components of broad-based macro uncertainty behave. To this end we consider systems that

isolate uncertainty about real activity using the URt sub-index that more closely corresponds

to the theoretical literature.

5.1 System Xt = (URt, Yt, UFt)
′

We isolate the real activity components of macro uncertainty by aggregating the individual

uncertainty estimates over the 73 real activity variables in the macro dataset XM . The one-

period ahead uncertainty in real activity, denoted URt, is show in Figure 6. This series, like

UMt, is countercyclical though somewhat less so, having a correlation of -0.50 with industrial

production (as compared to -0.66 for UMt). At first glance, URt appears to fluctuate in a manner

similar to macroeconomic uncertainty UMt. The two series have a correlation of 0.71 and exhibit

some overlapping spikes. But URt and UMt also display notable independent variation. Figure

6 shows that there are 43 observations of URt that are at least 1.65 standard deviations above

its mean. These can be organized into five episodes: 1965, 1970, 1975, 1982-83, and 2007. By

contrast, UMt in Figure 1 only exhibits three such episodes. Observe that the URt series exhibits

several spikes before 1970 that are not accompanied by spikes in UMt.

Given the distinctive patterns in the time series behavior of URt and UMt, one might expect

to find different dynamic relationships with the other variables in our systems when UMt is

replaced by URt. Surprisingly, the impulse responses functions are in most cases qualitatively

similar to systems studied above that use broad-based macro uncertainty. There are, however,

differences in sampling error. These responses are displayed in Figure 7. We see that (i) positive

shocks to real activity measures cause sharp declines in URt so that negative shocks cause sharp

increases in real economic uncertainty; (ii) positive real activity uncertainty shocks eRt do not

cause statistically significant declines in real activity measures; instead the effect is statistically

insignificant or, in the system using Y = ip, the opposite is true, though the wide error bands

for this case indicate that the estimation for that VAR does not identify the eRt shock well; (iii)

positive financial uncertainty shocks eFt lead to sharp declines in real activity measures that
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are strongly statistically significant, and (iv) there is little evidence that high (low) financial

uncertainty is caused by negative (positive) real activity shocks.

Figure 8 plots the large adverse structural shocks identified from the systems (URt, Yt, UFt)
′

for Yt = ipt, empt, Q1t analogous to Figure 2. The top panel shows that the real uncertainty

shock eRt exhibits spikes in excess of three standard deviations during the Great Recession for

two measures of real activity, Yt = empt and Yt = ipt. However, given that the eRt shock seems

poorly identified in the VAR with Yt = ipt, the result for that case should be viewed with

caution. Ruling out this case, only the system that uses Yt = empt exhibits a spike in excess of

two standard deviations. In particular, the system using the broadest measure of real activity,

Q1t, only exhibits a two standard deviation shock during this episode, despite the fact that URt
itself exhibits a large spike (see Figure 6).

These episodes serve to reinforce the conclusion that the heightened macro and real economic

uncertainty in recessions is more often an endogenous response to other shocks, rather than an

exogenous impulse. Even though there were many large spikes in real uncertainty shocks eRt
pre-1983, there have fewer large adverse shocks to real economic uncertainty since 1983, a period

that coincides with the so-called Great Moderation.

To complete the analysis, we present variance decompositions for the system (URt, Yt, UFt)
′,

with three measures of real activity Yt = ipt, empt, Q1t. These results, presented in Table 3,

share some similarities with the systems that use macro uncertainty UMt shown in Table 2,

but there are at least two distinctions. First, financial uncertainty shocks decrease real activity

and explain larger fractions of the forecast error variance in two measures of real activity

at long horizons. At the longest s = ∞ VAR horizon, financial uncertainty shocks explain

66% of forecast error variance in employment and 41% of the forecast error variance in the

real activity index. These results suggest that financial uncertainty has quantitatively large

negative consequences for at least some measures of real activity.

Second, compared to systems that use UMt, larger fractions of the forecast error variance in

URt are explained by its own shocks, while smaller fractions are explained by the real activity

shocks for the systems using Yt = empt and Q1t, though the opposite is true for the system

using Yt = ipt.

To summarize, countercyclical increases in real uncertainty URt, like macro uncertainty UMt,

are found to be best characterized as endogenous responses to declines in real activity. At the

same time, URt exhibits more variation than UMt that is independent of fluctuations in real

activity especially early in the sample, explaining why it is less countercyclical.

6 Robustness and Additional Cases

This section presents results for a number of additional cases.
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First, we test whether restrictions implied by recursive identification are supported by the

data. Second, we consider an estimation where we presume two observed external variables are

valid external instruments Z1t and Z2t, even though they may in fact contain an endogenous

component. This is compared to the case where the same variables are presumed not to be

valid instruments and IPEV is used to construct such instruments from S1t and S2t. Finally,

we show how the foregoing analysis can be related to a subsystem of a larger VAR in Xt and

St with explicit restrictions on the structure of St.

6.1 Tests of Recursive Identification Restrictions

The econometric model permits us to test whether a recursive structure is supported by the

data. Specifically, Assumption A does not rule out the possibility of a recursive structure. Given

that
√
T (β̂1 − β0

1) is asymptotically N(0,Σ2
β̂1

), the null hypothesis of a recursive structure is

a test that the three components of β1 corresponding to the off-diagonal entries of A−1
0 are

jointly zero. Hence it is chi-square distributed with three degrees of freedom. We first confirm

that the test has the correct size in Monte Carlo simulations. Our estimates based on historical

data strongly reject a lower triangular A−1
0 for any possible ordering of the variables. Table 4

shows results from Wald tests with Yt = ipt, and either using UMt (first column) or URt (second

column). What happens to the dynamic responses when we nevertheless impose restrictions

based on recursive identification (and freely estimate the rest of the parameters)?

Figure 9 shows one case: dynamic responses for the system Xt = (UFt, UMt, ipt)
′ with that

ordering. Although there are many possible recursive orderings, and the estimated IRFs differ

in some ways across these cases, the dynamic responses under recursive identification have

one common feature that is invariant to the ordering and that provides the sharpest contrast

with the results generated by the SVARs identified with external instruments studied here.

Specifically, with recursive identification, macro uncertainty shocks—no matter which ordering—

appear to cause a sharp decline in real activity, while real activity shocks have little effect on

macro uncertainty in the short run and if anything increase it in the long run. This result,

evident in Figure 9, gives precisely the opposite finding from what is reported above and

appears to be an artifact of invalid timing assumptions under recursive identification. Further

investigation reveals that the SVARs we study display non-zero contemporaneous correlations

between UFt and Yt, as well as between UMt and Yt, a finding that is inconsistent with any

recursive ordering. Imposing a structure that prohibits contemporaneous feedback spuriously

suggests that macro uncertainty shocks are a cause of declines in real activity, rather than an

endogenous response. This result is robust across any of the six possible recursive orderings

and underscores the challenges of relying on convenient timing assumptions to sort out cause
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and effect in the relationship between uncertainty and real activity.7

6.2 Observed Instruments Case

The traditional approach to identification when the variables are simultaneously determined

relies on the existence of valid instruments Z that are exogenous and relevant. In many ap-

plications, few if any plausible instruments exist that satisfy these restrictions, motivating our

use of IPEV. We’ve argued above that applications that seek to identify the empirical effects

of uncertainty on real activity (and vice versa) are likely to be among those for which valid

observed instruments are hard to find or identify. It is nevertheless of interest to consider an

estimation in which two observed external variables S1t and S2t are presumed to be valid ex-

ternal instruments Z1t and Z2t and treated as such, even though they may in fact contain an

endogenous component. This approach to estimation may be compared to the IPEV approach,

where these same external variables are suspected to be possibly invalid (or imperfect) instru-

ments because they may contain an endogenous component. For this exercise, we take Z1t and

S1t to be the S&P 500 stock market index return, denoted USPXt, and Z2t and S2t to be CRSP

value-weighted excess stock market return, denoted rCRSPt.

To motivate the use of these two external variables as reasonable choices for the presumed

valid instruments, we first employ the external variables S1t = USPXt and S2t = rCRSPt to

estimate the system Xt = (UMt, ipt, UFt)
′ using IPEV following the method described above.

We use the same winnowing constraints (with identical values for c, k1, k2, and k3) as used

for our base case. We then verify that the estimated slope coeffi cient in a regression of S1t on

êipt is not statistically different from zero, and the estimated slope coeffi cients in a multivariate

regression of S2t on êipt and êMt are also not statistically different from zero.8 The statistically

insignificant coeffi cients suggest that the external variables S1t = USPXt and S2t = rCRSPt can

credibly serve as at least approximately valid external instruments Z1t and Z2t.

When we presume two external variables are valid instruments, we directly apply Assump-

tion A setting Z1t = S1t and Z2t = S2t. The solution for B then follows from Proposition 1 and

can be obtained in closed form. No winnowing constraints are imposed and no projections are

performed. We refer to this as a “presumed valid”IV case. This estimation may be directly

compared to the analogous estimation where we do not make such a presumption, and instead

employ IPEV using S1t = USPXt and S2t = rCRSPt following the method described above. Fig-

ure 10 shows both sets of dynamic responses for the base case system Xt = (UMt, ipt, UFt)
′. The

figure shows that, qualitatively, most dynamic responses are similar to those obtained above for

the base case, and to each other. However, the bootstrap error bands tend to be wider for the

presumed valid IV case than the IPEV case, especially for the responses to macro uncertainty

7The figures for these cases are omitted to conserve space but are available upon request.
8Both regressions control for one lag of the dependent variable.

27



and real activity shocks. This happens because some of the GMM parameter estimates exhibit

more sampling error in the presumed valid IV case than the IPEV estimation.

In our experience, the bootstrap standard error bands tend to be wide when the external

variables produce instruments that only weakly identify some elements of B. The case of

presumed valid instruments requires that the observed Z1t and Z2t satisfy E (Z2teMt) 6= 0 to

identify the column that gives the effects of eMt shocks. In cases when the GMM estimates of

E (Z1tηY t) and E (Z1tηFt) are imprecise, we find BMY and BYM are poorly identified and the

bootstrap error bands for the dynamic responses of UMt to eipt and for ipt to eMt are then wide.

An inspection of the closed-form solutions for B shows why. The BMY and BYM parameters are

highly nonlinear functions of E (Z1tηY t) and E (Z1tηFt), so that small changes in the latter lead to

large differences in the solution for BMY and BYM . Since the bootstrap repeatedly makes draws

from the distribution of the GMM estimates it depends on the variance of the point estimates.

The bootstrap standard errors are correspondingly large whenever the point estimates of the

variance of E (Z1tηY t) and E (Z1tηFt) and the other parameters are imprecise. By contrast, the

IPEV case displays much narrower the bootstrap error bands for most IRFs. This happens

because the winnowing constraints, especially the economic constraints, are imposed both in

the IPEV estimation and in the bootstrap procedure. The imposition of these constraints in

IPEV brings more information to bear, thereby improving the effi ciency of the estimates. This

points to a potential advantage of IPEV over traditional IV, when plausible prior economic

reasoning can be imposed to improve effi ciency.

Sampling uncertainty aside, it is notable that the qualitative nature of the responses in

Figure 10 for both the valid IV and IPEV estimations are similar to that obtained for the base

case above: positive financial uncertainty shocks drive down production sharply and persistently,

while positive production shocks endogenously decrease macro uncertainty but not financial

uncertainty. Likewise, there is no evidence that positive macro uncertainty shocks drive down

production.

Beyond this particular estimation, the findings of this section suggest that IPEV can be

employed as an ex-post validity check in any application where specific external variables are

presumed to be valid instruments Z that satisfy the required exogeneity and relevance condi-

tions. Not only can the two estimations be directly compared, since IPEV provides an estimate

of SVAR without requiring the external variables S to be exogenous, IPEV estimates can be

used ex-post to verify that the presumed valid instruments Z = S actually satisfy the required

exogeneity restrictions vis-a-vis the estimated IPEV structural shocks êt.
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6.3 System Estimation

In this section, we relate the foregoing analysis to a subsystem of a larger VAR for (Xt, St)
′

with explicit restrictions on the structure of St. For this purpose, we consider a single St.

The reduced form errors of the larger VAR are ηt = (η′Xt, ηSt)
′. The structural shocks are(

e′Xt eSt
)′
with ηt = Bet. The B matrix has 16 parameters and the covariance structure gives

10 pieces of information. But the assumption that the shocks eSt do not contemporaneously

affect Xt gives three restrictions. This is weaker than assuming that St is exogenous for Xt,

which would also have constrained the lags of St from affecting Xt. The three restrictions imply

that 
ηY t
ηMt

ηFt
ηSt

 =


BY Y BYM BY F 0
BMY BMM BMF 0
BFY BFM BFF 0
BSY BSM BSF BSS




eY t
eMt

eFt
eSt

 . (12)

As in the earlier analysis, we also make use of Assumption A, but with the synthetic Zt implicitly

defined as

Z1t = ηSt −BSY eY t = BSMeMt +BSF eFt +BSSeSt

Z2t = Z1t −BSMeMt = BSF eFt +BSSeSt.

Unlike the previous analysis of the VAR for Xt with Zt was treated as a residual from a

projection, the synthetic Zt here has a structural interpretation. The synthetic Z interpretation

motivates the exogeneity restrictions of Assumption A, E[Z1teY t] = E[Z2teY t] = E[Z2teMt] = 0,

which gives three additional restrictions. These are exactly the same three restrictions used to

solve for B in the previous subsystem analysis, except that the residual ηSt is used to construct

Zt in place of St. Estimation of the larger system (Xt, St)
′ therefore proceeds exactly as in

GMM estimation of the previous analysis of the VAR for Xt. Given the block structure of B,

we can also use IPEV to solve the X subsystem and the S equation iteratively.

But as is clear from the last three equations of (7), Assumption A does not provide re-

strictions for BSY , BSM , BSF . There can be a large number of solutions consistent with the

covariance structure of ηt and yet satisfy Assumption A. We again use synthetic instrument-

uncertainty correlations to help tie down these parameters. Specifically, in the full system,

c1M(β) =
corr(Z1t, eMt)

σZ1
=

BSM√
B2
SM +B2

SF +B2
SS

c1F (β) =
corr(Z1t, eFt)

σZ1
=

BSF√
B2
SM +B2

SF +B2
SS

c2F (β) =
corr(Z2t, eFt)

σZ2
=

BSF√
B2
SF +B2

SS

,

where the second equalities follow by recalling that eMt and eFt have unit standard deviations.

Evidently, these correlations explicitly depend on the parameters of the S equation. It is
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not invariant to orthonormal rotation of eX and the parameters of the subsystem. Requiring

that c1M(β) > c̄, c1F (β) > c̄, c2F > c̄ may still not be enough to point identify B. But the

number of admissible solutions can be reduced by increasing c̄, and additionally requiring that

the shocks have the expected properties during the stock market crash of 1987 and the Great

Recession/financial crisis of 2008-09, as presented above. The final GMM estimate β̂ is the

one that maximizes
√
c(β)′c(β) in the set of possible solutions that satisfy these winnowing

constraints.

The system estimation is in some ways more restrictive than the subsystem approach. In

the subsystem analysis, the process that generates St is left unspecified. As such, it can be

a function of any variables other than Xt, both contemporaneously, and at lags. The full

system approach specifies the process for St. Any misspecification in one equation can affect

all equations in the system. On the other hand, the subsystem approach excludes not just the

current, but also the past values of St from the equations for Xt even though such a restriction

is not needed for identification. Such overidentifying restrictions can be tested. A simple way

to evaluate these restrictions is to compare the impulse response functions estimated for the

three variable system Xt = (UMt, Yt, UFt)
′ with those from a larger system that includes St but

does not restrict the coeffi cients of St−j in the equations for Xt to zero, for j ≥ 1. Denote these

coeffi cients by AXS,j.

We estimate a four variable system in (Xt, St)
′, imposing AXS,0 = 0, but without imposing

AXS,j = 0 for j ≥ 1. We report results for the four variable case where St is measured as the

return on the CRSP value-weighted stock market index and using ipt as Yt, as in our base case.

Figure 11 presents these two sets of impulse responses for the systems. The responses are little

different. Indeed, the coeffi cients on lags of St appear to be close to zero for all three variables.

The data thus appear at least qualitatively consistent with the restrictions that AXS,j = 0 for

j ≥ 1 and therefore the assumption that stock returns can be excluded from the VAR.

In summary, even though a VAR that directly incorporates S is possible, the system esti-

mation approach restricts S to be explained only by lags of S and X which could in general be

restrictive. Our the three variable approach is more robust to such misspecification that could

affect the entire system. On the other hand, the system estimation allows lags of St to feed back

into future Xt whereas in the three variable approach they are restricted to have no impact.

These form part of the exclusion restriction on St. Estimation of the four variable system that

includes St suggests that these exclusion restrictions are qualitatively consistent with the data.

7 Conclusion

A growing body of research establishes uncertainty as a feature of deep recessions but leaves

open two key questions: is uncertainty primarily a source of business cycle fluctuations or an
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endogenous response to them? And where does uncertainty originate? There is no theoretical

consensus on the question of whether uncertainty is primarily a cause or a consequence of

declines in economic activity. In most theories, it is modeled either as a cause or an effect, but

not both, underscoring the extent to which this question is fundamentally an empirical matter.

The objective of this paper is to address both questions econometrically using small-scale

structural VARs that are general enough to nest the range of theoretical possibilities in empirical

tests. Commonly used recursive identification schemes cannot achieve this objective, since by

construction they rule out the possibility that uncertainty and real activity could influence one

another contemporaneously. The econometric model employed in this paper nests the recursive

identification scheme, and we find that it is strongly rejected by the data. An empirical model

in which uncertainty and real activity simultaneously influence each other fits the data far

better than one in which these relationships are restricted by timing assumptions that prohibit

contemporaneous feedback.

To identify dynamic causal effects, this paper takes an alternative identification approach

by using external instruments that we construct in a novel way to be valid under credible

interpretations of the structural shocks. We call this approach iterative projection external

variable (IPEV). In addition, our empirical analysis explicitly distinguishes macro uncertainty

and uncertainty about real activity from financial uncertainty, thereby allowing us to shed light

on the origins of uncertainty shocks that drive real activity lower, to the extent that any of

them do. The econometric framework allows uncertainty to be an exogenous source of business

cycle fluctuations, or an endogenous response to them, or any combination of the two, without

restricting the timing of these relationships. Underlying our approach is a maintained theoreti-

cal assumption that variables such as stock market returns, while endogenous, are nevertheless

driven by distinct sources of stochastic variation, some of which satisfy exogeneity restrictions

required to identify independent structural shocks.

Estimates of the econometric model are used to inform the nature of these dynamic relation-

ships in U.S. data. The results from these estimations show that sharply higher uncertainty

about real economic activity in recessions is fully an endogenous response to business cycle

fluctuations, while uncertainty about financial markets is a likely source of them. Exogenous

declines in economic activity have quantitatively large effects that drive real economic un-

certainty endogenously higher. Financial uncertainty, by contrast, is dominated by its own

shocks, implying that it is primarily an exogenous impulse vis-a-vis real activity and macro

uncertainty. These results reinforce the hypothesis laid out in much of theoretical uncertainty

literature, namely that uncertainty shocks are a source of business cycle fluctuations. But they

also stand in contrast to this literature, which has emphasized the role of uncertainty fluctu-

ations in productivity and other real economic fundamentals. The findings here imply that

the uncertainty shocks that drive real activity lower appear to have their have origins, not in
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measures of real activity, but in financial markets.
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Appendix

Closed-Form Solution for B when Z is observed

Lemma 2 There exists a unique solution to the system (7) if E [eFtZ2] 6= 0 and E [eMtZ1] 6= 0.

Proof. To facilitate the presentation throughout the proof, let

ηt = Bet

B =

[
BM
3×1

,BY
3×1

,BF
3×1

]
Ω = E (ηtη

′
t) .

Let φ1F = c1FσZ1, φ2F = c2FσZ2, φ1M = c1MσZ1. We have two external instruments (Z1, Z2)

satisfying

E [eFtZ1] ≡ φ1F 6= 0, E [eMtZ1] ≡ φ1M 6= 0 and E [eY tZ1] = 0

E [eFtZ2] ≡ φ2F 6= 0 and E [eMtZ2] = E [eY tZ2] = 0

Then

E [ηtZ2] = E [BetZ2] = B

 0
0
φ2F

 = φ2FBF (A.1)

Thus BF exists if φ2F 6= 0. Observe that, since

Ω = E [ηtη
′
t] = BB′

we have

B′Ω−1B = I

hence, ∀i, j = M,Y, F

B′jΩ
−1/2Ω−1/2Bi =

{
1 if i = j
0 if i 6= j

.

Therefore,

E [ηtZ2]′Ω−1E [ηtZ2] = (φ2FBF )′Ω−
1
2Ω−

1
2 (φ2FBF ) = φ2

2F

This implies that the scale φ2F is identified up to a sign by

φ2F = ±
√
E [ηtZ2] Ω−1E [ηtZ2]. (A.2)

Next,

E [ηtZ1] = E [BetZ1] = B

 φ1M

0
φ1F

 = φ1MBM + φ1FBF



But note that

E [ηtZ2] Ω−1E [ηtZ1] = φ2FBF ′Ω
−1 (φ1MBM + φ1FBF )

= φ2FBF ′ (BB′)
−1

(φ1MBM + φ1FBF )

= φ2Fφ1F

This implies that φ1F is identified as

φ1F =
E [ηtZ2] Ω−1E [ηtZ1]

φ2F

which in turn implies

φ1MBM = E [ηtZ1]− E [ηtZ2]

φ2F

c1F . (A.3)

Thus solution to BM exists if φ1M 6= 0. Furthermore, note that(
E [ηtZ1]− E [ηtZ2]

φ2
2F

φ1F

)′
Ω−1

(
E [ηtZ1]− E [ηtZ2]

φ2
2F

c1F

)
= Ω−

1
2BMφ

2
1MB′MΩ−

1
2 = φ2

1M

This implies that the parameter φ1M is identified up to a sign as

φ2
1M =

(
E [ηtZ1]− E [ηtZ2]

φ2
2F

c1F

)′
Ω−1

(
E [ηtZ1]− E [ηtZ2]

φ2
2F

φ1F

)
. (A.4)

It only remains to identify BY . BY must satisfy

B′Y Ω−1/2Ω−1/2BY = 1

B′Y Ω−1/2Ω−1/2BM = 0 (A.5)

B′Y Ω−1/2Ω−1/2BF = 0

BY can be solved analytically using (A.5) provided that BF and BY are identified. In addition,

since the equation (A.5) is quadratic in BY , BY is unique up to sign. It follows that there

exists a τ such that

BY = τB̃Y (A.6)

where B̃Y is unique conditional on φ2F and φ1M , but the scalar τ is unique up to sign.

This shows that the solution to the system (7) exists and is unique up to sign if φ2F 6= 0,

φ1M 6= 0. Combined with unit effect normalization (4) and the restriction on the admissible

parameter space (2), B can be uniquely identified. The unit effect normalization implies BMM BMY BMF

BYM BY Y BY F

BFM BFY BFF

 =

 1 HMY HMF

HYM 1 HY F

HFM HFY 1

 σMM 0 0
0 σY Y 0
0 0 σFF


=

 σMM HMY σY Y HMFσFF
HYMσMM σY Y HY FσFF
HFMσMM HFY σY Y σFF





Combined with the restriction σjj > 0 for all j = M,Y, F, implies Bjj > 0 for all j = M,Y, F .

From equation (A.1), BFF > 0 pins down the sign of φ2F conditional Zt. Since the sign of

φ2F is pinned down, the signs of BMF and BY F are also pinned down by the same restriction.

From equation (A.3), BMM > 0 pins down the sign of φ1M conditional Zt and therefore the

signs of BYM and BFM are pinned down by the same restriction. It only remains to show the

uniqueness of BY . Provided that BF and BY are identified and given the closed-form solution

(A.5) that is quadratic in BY , then BY Y > 0 pins down the sign of τ conditional Zt and hence

the sign of BMY and BFY are also pinned down by the same restriction.

The system of equations defining B is

0 = E[g1(m1t;β1)] ≡ g1.

The rank condition is satisfied when J ≡∂ET [g1]/∂β′1 is full column rank. We check that the

rank condition is satisfied by evaluating J at the estimated parameter values for each case.

Procedure for Bootstrap

The bootstrap follows Krinsky and Robb (1986). Let β̂ and Θ̂ be the estimated GMM pa-

rameters and covariance of parameters for each case. We sample repeatedly from the joint

distribution N
(
β̂,Θ̂/T

)
, where Θ̂ is the estimated GMM variance-covariance matrix to ob-

tain B new sets of parameters β̂(1)
....β̂

(B)
. For each β̂

(i)
we infer the e(i) for that draw and

check that the winnowing constraints are satisfied. If they are, we keep the draw. If not, we

redraw. We continue until the number of kept draws B=10,000. From these B saved draws, we
calculate the impulse response function values at each draw, Υ(1)

s,j , ...,Υ
(B)
s,j , where s indexes the

VAR horizon and j the variable being shocked, and where Υ
(b)
s,j = Υ.

s,j

(
β̂

(b)
)
. The confidence

intervals are ranges forΥ
(b)
s,j created by trimming α/2 from each tail of the resulting distribution

of the function values.
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8 Figures and Tables

Figure 1: Macro and Financial Uncertainty Over Time
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The upper panel plots the time series of the macro uncertainty UM , expressed in standardized units. The lower

panel shows the time series of financial uncertainty UF expressed in standardized units. The shaded areas

correspond to the NBER recession dates. The horizontal line corresponds to 1.65 standard deviations above

the unconditional mean of each series (which has been normalized to zero). Correlations with the 12-month

moving average of IP growth are reported. The black dots represent months when uncertainty is 1.65 standard

deviations above its unconditional mean. The data are monthly and span the period 1960:07 to 2015:04.



Figure 2: Time Series of e Shock from SVAR System (UM , ip, UF )′
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The horizontal line corresponds to 3 standard deviations above/below the unconditional mean of each series.

The shocks e = B−1ηt are reported, where ηt is the residual from VAR(6) of (UM , ip, UF )
′ and B = A−1Σ

1
2 .

Skewness is defined as s =
∑T

t (et−ē)3/T
V ar(e) . Kurtosis is defined as κ =

∑T
t (et−ē)4/T
[V ar(e)]2

. The sample spans the period

1960:07 to 2015:04.



Figure 3: IRFs of SVAR (UM , Y, UF )′
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The figure displays impulse responses to one standard deviation shocks. Response units are reported in per-

centage points. Bootstrapped 90% error bands appear as vertical lines. The sample spans the period 1960:07

to 2015:04



Figure 4: Set of solutions using c̄ = 0.04, C̄ = 0.24
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The figure displays impulse responses to one standard deviation shocks. Response units are reported in per-

centage points. The sample spans the period 1960:07 to 2015:04



Figure 5: Large Shock Episodes in SVAR(UM , Y, UF )′
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The figure exhibits shocks that are at least 2 standard deviations above the unconditional mean for eM and eF

and below for eY for three cases where Y = ip, emp,Q1. The shocks et = B−1ηt are reported, where ηt is the

residual from VAR(6) and B = A−1Σ
1
2 . The horizontal line corresponds to 3 standard deviations shocks. The

sample spans the period 1960:07 to 2015:04.



Figure 6: Real Uncertainty Over Time
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This plot shows time series of UR, expressed in standardized units. The shaded areas correspond to the NBER

recession dates. The horizontal line corresponds to 1.65 standard deviations above the unconditional mean of

each series (which has been normalized to zero). Correlations with the 12-month moving average of IP growth

are reported. The black dots represent months when UR is 1.65 standard deviations above its unconditional

mean. The data are monthly and span the period 1960:07 to 2015:04.



Figure 7: IRFs of SVAR (UR, Y, UF )′
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The figure displays impulse responses to one standard deviation shocks. Response units are reported in per-

centage points. Bootstrapped 90% error bands appear as vertical lines. The sample spans the period 1960:07

to 2015:04



Figure 8: Large Shock Episodes in SVAR(UR, Y, UF )′
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The figure exhibits shocks that are at least 2 standard deviations above the unconditional mean for eR and eF

and below for eY for three cases where Y = ip, emp,Q1. The shocks et = B−1ηt are reported, where ηt is the

residual from VAR(6) and B = A−1Σ
1
2 . The horizontal line corresponds to 3 standard deviations shocks. The

sample spans the period 1960:07 to 2015:04.



Figure 9: IRFs using Recursive Identification with Order (UF , UM , ip)
′
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 10: IRFs of SVAR (UM , ip, UF )′, presumed valid IV v.s. IPEV
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The figure displays impulse responses to one standard deviation shocks. Response units are reported in per-

centage points. Bootstrapped 90% error bands appear as vertical lines. Presumed valid IV uses Z1 = USPX

and Z2 = rCRSP . IPEV uses S1 = USPX and S2 = rCRSP . The sample spans the period 1960:07 to 2015:04



Figure 11: IRFs of SVAR (UM , ip, UF , rCRSP)′ v.s. (UM , ip, UF )′
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The figure displays impulse responses to one standard deviation shocks. Response units are reported in per-

centage points. The sample spans the period 1960:07 to 2015:04



Table 1: Sample Statistics

Panel A: Correlations between Instruments and Shocks

SV AR (UM , ip, UF )
′

(UM , emp, UF )
′

(UM , Q1, UF )
′

ρ (Z1t(β), êMt) −0.0804 −0.0736 −0.0764

(0.0044) (0.0040) (0.0042)

ρ (Z1t(β), êFt) −0.1698 −0.1782 −0.1655

(0.0093) (0.0097) (0.0090)

ρ (Z2t(β), êFt) −0.1547 −0.1635 −0.1491

(0.0093) (0.0098) (0.0089)

ρ (Z1t(β), êY t) 0.0000 0.0000 0.0000

ρ (Z2t(β), êY t) 0.0000 0.0000 0.0000

ρ (Z2t(β), êMt) 0.0000 0.0000 0.0000

Panel B: Estimates of Σ

σMM 0.0064 0.0071 0.0079

(0.0008) (0.0009) (0.0005)

[0.004, 0.008] [0.005, 0.009] [0.001, 0.010]

σY Y 0.0047 0.0008 0.0017

(0.0006) (0.0002) (0.0001)

[0.003, 0.005] [0.001, 0.001] [0.002, 0.002]

σFF 0.0263 0.0219 0.0252

(0.0030) (0.0025) (0.0025)

[0.018, 0.027] [0.015, 0.027] [0.016, 0.026]

Panel A reports the correlation between the estimated uncertainty shocks and the instruments. Panel B reports

estimates ofΣ that give the standard deviation of each structural shock. Asymptotic standard errors are reported

in brackets and bootstrapped 90 percent confidence intervals are reported in parentheses. Bold numbers indicate

statistical significance at 10 percent level. The data are monthly and span the period 1960:07 to 2015:04.



Table 2: Variance Decomposition for SVARs in System (UM , Y, UF )′

SVAR (UM , ip, UF )′ SVAR (UM , emp, UF )′ SVAR (UM , Q1, UF )′

Fraction variation in UM Fraction variation in UM Fraction variation in UM
s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock Q1 Shock UF Shock

1 0.344 0.590 0.066 0.466 0.424 0.109 0.565 0.295 0.141

12 0.371 0.464 0.166 0.586 0.262 0.152 0.598 0.188 0.214

∞ 0.403 0.463 0.134 0.641 0.256 0.103 0.591 0.177 0.232

smax 0.404 0.590 0.166 0.647 0.440 0.165 0.700 0.295 0.232

[0.22, 0.65] [0.44, 0.70] [0.05, 0.49] [0.38, 0.87] [0.24, 0.63] [0.04, 0.40] [0.51, 0.88] [0.13, 0.46] [0.11, 0.50]

Fraction variation in ip Fraction variation in emp Fraction variation in Q1

s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock Q1 Shock UF Shock

1 0.427 0.540 0.033 0.405 0.288 0.307 0.288 0.606 0.106

12 0.107 0.670 0.223 0.089 0.299 0.612 0.071 0.529 0.400

∞ 0.038 0.683 0.278 0.155 0.315 0.530 0.108 0.458 0.433

smax 0.442 0.683 0.310 0.425 0.315 0.688 0.298 0.616 0.490

[0.30, 0.65] [0.34, 0.78] [0.25, 0.81] [0.29, 0.68] [0.21, 0.66] [0.37, 0.90] [0.17, 0.48] [0.45, 0.81] [0.30, 0.83]

Fraction variation in UF Fraction variation in UF Fraction variation in UF
s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock Q1 Shock UF Shock

1 0.044 0.005 0.951 0.183 0.136 0.681 0.027 0.088 0.885

12 0.107 0.003 0.890 0.313 0.134 0.553 0.087 0.132 0.781

∞ 0.148 0.016 0.836 0.422 0.120 0.458 0.152 0.188 0.660

smax 0.148 0.016 0.951 0.422 0.170 0.682 0.155 0.188 0.888

[0.02, 0.45] [0.02, 0.26] [0.70, 0.98] [0.09, 0.59] [0.04, 0.51] [0.52, 0.93] [0.02, 0.39] [0.11, 0.59] [0.66, 0.97]

Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the

column heading. The row denoted “s = smax”reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by

the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples

using the procedure described in the Appendix. The data are monthly and span the period 1960:07 to 2015:04.



Table 3: Variance Decomposition for SVARs in System (UR, Y, UF )′

SVAR (UR, ip, UF )′ SVAR (UR, emp, UF )′ SVAR (UR, Q1, UF )′

Fraction variation in UR Fraction variation in UR Fraction variation in UR
s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock Q1 Shock UF Shock

1 0.003 0.970 0.027 0.960 0.026 0.015 0.949 0.032 0.018

12 0.004 0.787 0.208 0.770 0.037 0.193 0.808 0.062 0.130

∞ 0.005 0.743 0.252 0.728 0.033 0.239 0.793 0.072 0.135

smax 0.008 0.978 0.252 0.980 0.041 0.239 0.969 0.074 0.137

[0.01, 0.11] [0.84, 1.00] [0.08, 0.55] [0.83, 1.00] [0.01, 0.18] [0.09, 0.53] [0.84, 0.99] [0.03, 0.20] [0.04, 0.44]

Fraction variation in ip Fraction variation in emp Fraction variation in Q1

s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock Q1 Shock UF Shock

1 0.854 0.066 0.080 0.001 0.916 0.083 0.001 0.990 0.008

12 0.506 0.130 0.364 0.023 0.617 0.360 0.000 0.799 0.200

∞ 0.209 0.169 0.622 0.116 0.222 0.662 0.009 0.577 0.414

smax 0.857 0.169 0.622 0.116 0.924 0.662 0.009 0.993 0.414

[0.71, 0.97] [0.01, 0.39] [0.40, 0.93] [0.02, 0.31] [0.72, 0.99] [0.33, 0.94] [0.01, 0.16] [0.79, 1.00] [0.19, 0.83]

Fraction variation in UF Fraction variation in UF Fraction variation in UF
s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock Q1 Shock UF Shock

1 0.078 0.001 0.922 0.016 0.076 0.908 0.003 0.007 0.991

12 0.108 0.004 0.889 0.042 0.140 0.819 0.013 0.038 0.950

∞ 0.108 0.030 0.862 0.094 0.162 0.744 0.073 0.140 0.787

smax 0.110 0.030 0.928 0.094 0.162 0.910 0.075 0.140 0.993

[0.03, 0.38] [0.01, 0.25] [0.71, 0.98] [0.01, 0.30] [0.04, 0.51] [0.68, 0.99] [0.01, 0.29] [0.07, 0.44] [0.80, 1.00]

Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the

column heading. The row denoted “s = smax”reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by

the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples

using the procedure described in the Appendix. The data are monthly and span the period 1960:07 to 2015:04.



Table 4: Tests of Validity of Recursive Restriction in System (UM , Y, UF )′

Ordering: (UM , ip, UF )′ (UR, ip, UF )′

H0: BRY = BRF = BY F = 0 265.64 337.54

[147.78] [83.54]

H0: BY R = BY F = BRF = 0 383.28 457.95

[108.25] [146.74]

H0: BRY = BRF = BFY = 0 265.49 227.58

[164.29] [95.82]

χ2
5% (3) 7.81 7.81

(UM , emp, UF )′ (UR, emp, UF )′

H0: BRY = BRF = BY F = 0 316.22 9.89

[120.73] [8.48]

H0: BY R = BY F = BRF = 0 223.98 11.03

[66.29] [8.35]

H0: BRY = BRF = BFY = 0 318.61 8.64

[121.75] [9.65]

χ2
5% (3) 7.81 7.81

The table reports the Wald test statistic for testing the null hypothesis given in the column. The bold indicates that Wald test rejects the null at 95

percent level according to χ2(3) distribution. The SVAR system is solved using GMM and delta method is used for computing the standard error.

Estimates of B are based on the SVAR identified with external instruments described in the text. The mean of bootstrap Wald statistics is reported in

parenthesis. The sample size spans 1960:07 to 2015:04.


