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1 Introduction

A large literature in macroeconomics investigates the relationship between uncertainty and

business cycle fluctuations. Interest in this topic has been spurred by a growing body of evidence

that uncertainty rises sharply in recessions. This evidence is robust to the use of specific proxy

variables such as stock market volatility and forecast dispersion as in Bloom (2009), or a broad-

based measure of macroeconomic uncertainty, as in Jurado, Ludvigson, and Ng (2015) (JLN

hereafter). But while this evidence substantiates a role for uncertainty in deep recessions,

the question of whether uncertainty is an exogenous source of business cycle fluctuations or

an endogenous response to economic fundamentals is not fully understood. Existing results

are based on convenient but restrictive identifying assumptions and have no explicit role for

financial markets, even though the uncertainty measures are correlated with financial variables.

This paper considers a novel identification strategy to disentangle the causes and consequences

of real and financial uncertainty.

The question of causality and the identification of exogenous variation in uncertainty is

a long-standing challenge of the uncertainty literature. The challenge arises in part because

there is no theoretical consensus on whether the uncertainty that accompanies deep recessions

is primarily a cause or effect (or both) of declines in economic activity. Theories in which

uncertainty is defined as the time varying volatility of a fundamental shock cannot address this

question because, by design, there is no feedback response of uncertainty to other shocks if the

volatility process is specified to evolve exogenously. And, obviously, models in which there is no

exogenous variation in uncertainty cannot be used to analyze the direct effects of uncertainty

shocks. It is therefore not surprising that many theories for which uncertainty plays a role in

recessions reach contradictory conclusions on this question, as we survey below. It is clear that

the body of theoretical work on uncertainty does not provide precise identifying restrictions for

empirical work.

A separate challenge of the uncertainty literature pertains to the origins of uncertainty. Clas-

sic theories assert that uncertainty originates from economic fundamentals such as productivity,

and that such real economic uncertainty, when interacted with market frictions, discourages real

activity. But some researchers have argued that uncertainty dampens the economy through its

influence on financial markets (e.g., Gilchrist, Sim, and Zakrajsek (2010)). Moreover, as sur-

veyed by Ng and Wright (2013), all the post-1982 recessions have origins in financial markets,

and these recessions have markedly different features from recessions where financial markets

play a passive role. From this perspective, if financial shocks are subject to time-varying

volatility, financial market uncertainty—as distinct from real economic uncertainty—could be a

key player in recessions, both as a cause and as a propagating mechanism. The Great Reces-

sion of 2008, characterized by sharp swings in financial markets, hints at such a linkage. Yet so
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far the literature has not disentangled the contributions of real versus financial uncertainty to

business cycle fluctuations.

Econometric analyses aimed at understanding the role of uncertainty for business cycle

fluctuations face their own challenges. Attempts to identify the “effects”of uncertainty shocks

in existing empirical work are primarily based on recursive schemes within the framework of

vector-autoregressions (VAR).1 But studies differ according to whether uncertainty is ordered

ahead of or after real activity variables in the VAR. While a recursive structure is a reasonable

starting point, any presumed ordering of the variables is hard to defend on theoretical grounds

given the range of models in the literature. Contemporaneous changes in uncertainty can arise

both as a cause of business cycle fluctuations and as a response to other shocks. Recursive

structures explicitly rule out this possibility since they presume that some variables respond

only with a lag to others.

It is with these challenges in mind that we return to the questions posed above: is uncer-

tainty primarily a source of business cycle fluctuations or a consequence of them? And what

is the relation of real versus financial uncertainty to business cycle fluctuations? The objective

of this paper is to address these questions econometrically using a small-scale structural vector

autoregression (SVAR). To confront the challenges just discussed, we take a two-pronged ap-

proach. First, our empirical analysis explicitly distinguishes macro uncertainty from financial

uncertainty. The baseline SVAR we study describes the dynamic relationship between three

variables: an index of macro uncertainty, UMt, a measure of real economic activity, Yt (e.g.,

production, employment), and a new financial uncertainty index introduced here, UFt. Second,

rather than relying on timing assumptions for identification, we use a different identification

scheme that is less restrictive, both because it allows for simultaneous feedback between uncer-

tainty and real activity, and because it can be used to test whether a lower recursive structure

is supported by the data.

Specifically, our identification scheme relies on the existence of two external instruments for

uncertainty that are not part of the SVAR: a Z1t that is correlated with macro and financial

uncertainty but contemporaneously uncorrelated with real activity, and a Z2t that is correlated

with financial uncertainty but contemporaneously uncorrelated with both real activity and

macro uncertainty. While such ideal instruments have no empirical counterparts, we propose

an iterative projection IV (IPIV) approach to construct Z1t and Z2t with the desired properties

from observables. The approach takes a variable St that is not in the VAR system and uses

projections to decompose it into two components, one that is correlated with a subset of the

endogenous variables of interest, and one that is orthogonal to it. The orthogonal component

is then used as an external instrumental variable (IV) for the remaining endogenous variables.

1See Bachmann, Elstner, and Sims (2013), Bloom (2009), Bloom (2014), Bekaert, Hoerova, and Duca (2013),
Gilchrist, Sim, and Zakrajsek (2010), and JLN.
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In the present context, the key is to find observables that are external to our SVAR, and are

driven by a multitude of innovations including the uncertainty shocks that we are interested in.

We argue that both theory and evidence suggest that aggregate stock market returns are such

variables. Our IPIV approach therefore generates an instrument Z1t by purging the effects of

real activity shocks from stock returns, and another instrument Z2t by further purges the effects

of macro uncertainty shocks. Iteration ensures that the shocks used to generate the instruments

are consistent with those identified by our SVAR. With this procedure, instrument exogeneity

holds by construction and instrument relevance can be verified using the sample covariances

and the estimated parameters. Details are given below.

The empirical exercise also requires that appropriate measures of macro and financial un-

certainty are available. To this end, we exploit a data rich environment, working with 134

macro monthly time series and 147 financial variables. The construction of macro uncertainty

follows JLN. The same approach is used to construct a broad-based measure of financial un-

certainty that has never been used in the literature. Macro uncertainty is itself an aggregate

of uncertainties in variables from three categories: real activity, price, and financial. To better

understand the contributions of each of these categories, we also replace UMt in the VAR with

an uncertainty measure based on the sub-components, one at a time. Uncertainty about real

activity is of special interest because classic uncertainty theories postulate that uncertainty

shocks have their origins in economic fundamentals and hence should show up as uncertainty

about real economic activity. We compare “short-run”uncertainty about outcomes over the

next one month, with “longer horizon ”uncertainty about outcomes a year hence.

Before summarizing our main results, it should be made clear that the structural shocks

we identify do not in general correspond to primitive shocks in specific economic models. Real

activity is endogenous and may respond to any number of primitive shocks (technology, mon-

etary policy, preferences, wage or price markups, government expenditures, etc.). If a SVAR

representation exists, our identified real activity shock would then be a composite of these

primitive shocks, with the restriction that this composite be orthogonal to the other shocks in

our system. The same could be said for either type of uncertainty, to the extent that these

variables are endogenous. Our objective is not, therefore, to identify primitive shocks in specific

models. Indeed, we argue that the questions raised above are ultimately empirical ones that call

out for a model-free approach. (See the literature review below for further discussion.) What

our approach offers, therefore, is something different: if there exists an SVAR in the system of

interest, then under the assumptions stipulated below, IPIV can provide a less restrictive means

of identifying dynamic causal effects when commonly used ordering or timing assumptions are

diffi cult to defend.

Our main results can be stated as follows. First, positive shocks to financial uncertainty are

found to cause a sharp decline in real activity that persists for many months, lending support
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to the hypothesis that heightened uncertainty is an exogenous impulse that causes recessions.

These effects are especially large for some measures of real activity, notably employment and

orders. The finding that heightened uncertainty has negative consequences for real activity

is qualitatively similar to that of preexisting empirical work that uses recursive identification

schemes (e.g., Bloom (2009), JLN), but differs in that we trace the source of this result specif-

ically to broad-based financial market uncertainty rather than to various uncertainty proxies

or broad-based macro uncertainty. We also show that the converse is not supported by our

evidence: exogenous shocks to real activity have little affect on financial uncertainty.

Second, the identification scheme used here reveals something new that is not possible to

uncover under recursive schemes: macro and financial uncertainty have a very different dynamic

relationship with real activity. Specifically, unlike financial uncertainty, sharply higher macro

and real activity uncertainty in recessions is fully an endogenous response to business cycle

fluctuations. That is, negative economic activity shocks are found to cause increases in both

macro and real activity uncertainty, but there is no evidence that independent shocks to macro

or real uncertainty cause lower economic activity. Indeed the opposite is true: exogenous shocks

to both macro and real uncertainty are found to increase real activity, consistent with “growth

options”theories discussed below.

Third, we investigate the timing of large adverse shocks in the SVAR systems. No matter

which system we investigate, the Great Recession is a prominent example that is characterized

by large negative real activity shocks and a large positive financial uncertainty shock but no

corresponding large shock to real economic uncertainty, even though real economic uncertainty

itself rose to unusual heights in this episode. This finding underscores the extent to which

heightened uncertainty about real activity in recessions is more often an endogenous response

to other shocks, rather than an exogenous impulse driving business cycles.

Our results are distinct from those obtained using recursive identification. Under any re-

cursive ordering of the variables in our VAR, exogenous shocks that increase macro or real

uncertainty appear to reduce real activity, in a manner that is qualitatively similar to financial

uncertainty shocks. This result does not hold in the less restrictive SVAR studied here and

appears to be an artifact of invalid timing assumptions under recursive identification. Further

investigation reveals that the SVAR we study reflects a non-zero contemporaneous correlation

between UFt and Yt, as well as between UMt and Yt, which is inconsistent with any recursive

ordering. Tests of the validity of a recursive structure are easily rejected by the data.

The rest of this paper is organized as follows. Section 2 reviews related literature. Section

3 details the econometric framework and identification employed in our study, describes how

our instruments are constructed, and discusses the data and empirical implementation. Section

4 presents empirical results using broad-based macro uncertainty UMt, while Section 5 reports

results for systems that isolate sub-components of UMt corresponding to real activity and price
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variables. Section 6 reports results pertaining to robustness and additional cases. Section 7

summarizes and concludes.

2 Related Literature

A large literature addresses the question of uncertainty and its relation to economic activity.2

Theories for which uncertainty plays a key role differ widely on the question of whether uncer-

tainty is primarily a cause or a consequence of declines in economic activity. In most cases, it

is modeled either as a cause or an consequence, but not both.

The first strand of the literature proposes uncertainty as a cause of lower economic growth.

This includes models of the real options effects of uncertainty (Bernanke (1983), McDonald

and Siegel (1986)), models in which uncertainty influences financing constraints (Gilchrist,

Sim, and Zakrajsek (2010), Arellano, Bai, and Kehoe (2011)), or precautionary saving (Basu

and Bundick (2012), Leduc and Liu (2012), Fernández-Villaverde, Pablo Guerrón-Quintana, and

Uribe (2011)). These theories almost always presume that uncertainty is an exogenous shock to

some economic fundamental. Some theories presume that higher uncertainty originates directly

in the process governing technological innovation, which subsequently causes a decline in real

activity (e.g., Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012)).

A second strand of the literature postulates that higher uncertainty arises solely as a re-

sponse to lower economic growth, emphasizing a variety of mechanisms. Some of these theories

suggest that bad times incentivize risky behavior (Bachmann and Moscarini (2011), Fostel and

Geanakoplos (2012)), or reduce information and with it the forecastability of future outcomes

(Van Nieuwerburgh and Veldkamp (2006) Fajgelbaum, Schaal, and Taschereau-Dumouchel

(2014)), or provoke new and unfamiliar economic policies whose effects are highly uncertain

(Pástor and Veronesi (2013)), or create a greater misallocation of capital across sectors (Ai, Li,

and Yang (2015)), or generate endogenous countercyclical uncertainty in consumption growth

because investment is costly to reverse (Gomes and Schmid (2016)).

And yet a third literature has raised the possibility that some forms of uncertainty can

actually increase economic activity. “Growth options” theories of uncertainty postulate that

a mean-preserving spread in risk generated from an unbounded upside coupled with a limited

downside can cause firms to invest and hire, since the increase in mean-preserving risk increases

expected profits. Such theories were often used to explain the dot-com boom. Examples include

Bar-Ilan and Strange (1996), Pastor and Veronesi (2006), Kraft, Schwartz, and Weiss (2013),

Segal, Shaliastovich, and Yaron (2015).

This brief review reveals a rich literature with a wide range of predictions about the re-

lationship between uncertainty and real economic activity. Yet the absence of a theoretical

2This literature has become voluminous. See Bloom (2014) for a recent review of the literature.
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consensus on this matter, along with the sheer number of theories and limited body of evidence

on the structural elements of specific models, underscores the extent to which the question of

cause and effect is fundamentally an empirical matter that must be settled in an econometric

framework with as little specific theoretical structure as possible, so that the various theoretical

possibilities can be nested in empirical tests. Commonly used recursive identification schemes

cannot achieve this objective, since by construction they rule out the possibility that uncer-

tainty and real activity could influence one another within the period. Our econometric model

nests any recursive identification scheme, so we can test whether such timing assumptions are

plausible. We find they are rejected by the data.

Our construction of instruments for uncertainty builds on work in asset pricing emphasizing

the idea that stock market variation is the result of several distinct (and orthogonal) sources

of stochastic variation, some of which are likely to be uniquely suited as instruments for our

uncertainty measures. For example, one quantitatively important component is attributable

to acyclical risk premia variation, and more generally appears to be uncorrelated with most

measures of real activity.3 This component is valuable for our objective because it is exogenous

to real activity, but may still be relevant for both macro and financial uncertainty, as in our Z1t.

Yet another component could be attributable to fluctuations in factors like corporate leverage,

or in the risk aversion or “sentiment”of market participants that may be correlated with the

volatility of the stock market. In equilibrium asset pricing models, if leverage increases, volatility

of the corporate sector’s equity return increases. Thus changes in factors like leverage (and

possibly changes in risk aversion or sentiment) should be correlated with financial uncertainty,

but have little to do with real economic uncertainty. This component is valuable for our

objective because it is plausibly uncorrelated with both real activity and uncertainty about

economic fundamentals, but may still be relevant for financial market uncertainty, as in our

Z2t. Consistent with the existence of this type of component, JLN document that there are

many spikes in stock market uncertainty that do not coincide with an important movement in

either real activity or macro uncertainty. These findings motivate our maintained hypothesis

that measures of equity market activity are promising non-uncertainty variable comprised of

several distinct sources of stochastic variation, two of which have the statistical characteristics

of Z1t and Z2t.

Our IPIV approach is related to a recent line of econometric research in SVARs that uses

information contained in external instruments to identify structural dynamic causal effects.4

3For empirical evidence, see Lettau and Ludvigson (2013), Greenwald, Lettau, and Ludvigson (2014), Kozak
and Santosh (2014), and Muir (2014). Theoretical examples include Greenwald, Lettau, and Ludvigson (2014);
Bianchi, Ilut, and Schneider (2014); Gourio (2012);Wachter (2013); Brunnermeier and Sannikov (2012); Gabaix
and Maggiori (2013); He and Krishnamurthy (2013).

4See for example Hamilton (2003), Kilian (2008), Mertens and Ravn (2013); Stock and Watson (2008), Stock
and Watson (2012), and Olea, Stock, and Watson (2015).
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Of these, Stock and Watson (2012) study uncertainty shocks, using a measure of stock market

volatility and/or a news media measure of policy uncertainty from Baker, Bloom, and Davis

(2013), as separate external instruments for identifying the effects of uncertainty shocks in a

SVAR. Our study differs in some fundamental ways. First, Stock and Watson (2012) focus

exclusively on identifying the effects of uncertainty shocks and do not attempt to simultane-

ously identify the converse, namely the effects of real activity shocks on uncertainty. Second,

the identification strategy in Stock and Watson (2012) for uncertainty shocks presumes that

the series themselves (i.e., stock market volatility, policy uncertainty) are valid instruments,

correlated with the uncertainty shock of interest but not with the other shocks. By contrast,

our approach explicitly views both the stock market and our uncertainty measures as partly

endogenous, forcing us to confront the identification quandary. Our identification assumption

is instead that the aggregate stock market return contains components that satisfy population

exogeneity restrictions, even while some of its variation is endogenous.

The study arguably closest in spirit to our identification approach is Baker and Bloom

(2013), who use disaster-like events as instruments for stock market volatility with the aim

of isolating exogenous variation in uncertainty. This has some similarities with our approach,

in that it implicitly assumes that certain components of stock market fluctuations (those as-

sociated with “disasters”) are exogenous. In contrast to our approach, exogenous events are

chosen subjectively rather than constructed econometrically to satisfy specific orthogonality

restrictions. It is of interest that we arrive at complementary conclusions, despite the differing

methodologies for identifying exogenous variation.

3 Econometric Framework

This section explains our econometric approach. Subsection 1 explains the identification strat-

egy. Subsections 2 and 3 explain the construction of external instruments and the uncertainty

measures. This is followed by a discussion of the estimation procedure.

3.1 The SVAR and Identification

Our analysis is based on a structural vector autoregressive model (SVAR). Let Xt denote a

K× 1 time series. We suppose that the structural model has a p-th order vector autoregressive

representation

Xt = k + A1Xt−1 + A2Xt−2 + · · ·+ ApXt−p + HΣet. (1)

et ∼ (0, IK), Σ=


σ11 0 · 0
0 σ22 0 0
0 · · 0
0 0 · σKK

 .
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The structural shocks et are mean zero with unit variance, and are serially and mutually

uncorrelated. The corresponding structural MA (∞) representation of Xt is

Xt = µ+ Ψ (L) HΣet,

where Ψ(L) = Ψ0 + Ψ1L + Ψ2L
2 + . . . with Ψ0 = I is a polynomial in the lag operator L

of infinite order, Ψs is the (n× n) matrix of coeffi cients for the sth lag of Ψ(L). Note that

Ψ(L) = A (L)−1, where A (L) = I−A1L− · · · − ApLp.
The reduced form representation of Xt is a p-th order vector-autoregression (VAR) with

corresponding reduced-form MA (∞) representation

Xt = µ+ Ψ (L)ηt (2)

ηt ∼ (0,Ω), Ω = E (ηtη
′
t) .

The structural shocks et are presumed to be related to the reduced form innovations by an

invertible K ×K matrix H:

ηt = HΣet ≡ Bet,

where B ≡ HΣ. We say that an SVAR for Xt exists if a rotation H−1 of the reduced form

shocks ηt can be found such that its elements are serially and mutually uncorrelated.

A normalization is required to pin down the sign and scale of the shocks. We adopt the unit

effect normalization

diag (H) = 1. (3)

Throughout, we restrict the admissible parameter space such that

σjj ≥ 0 (4)

for all j.

The objective of the exercise is to study the dynamic effects and the relative importance of

the structural shocks. More precisely, the dynamic response to shock j is summarized by the

impulse response function (IRF):
∂Xt+s

∂ejt
= Ψsb

j, (5)

where bj is the jth column of B. The structural IRF Ψsb
j gives the dynamic response of Xt+s

to a one standard deviation shock. The quantitative importance of each shock is given by the

fraction of S-step ahead forecast error variance of Xt that is attributable to each structural

shock. The coeffi cient matrices of Ψ (L)−1 are identified from the projection of Xt onto its

lags in the reduced form VAR (2). The SVAR identification problem therefore amounts to

identifying the elements of H and Σ, from which the structural IRFs are computed.
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Let Yt denote a measure of real activity. Our objective is to study the impulse and propa-

gating mechanism of uncertainty shocks, as well as how uncertainty reacts to shocks to Yt, while

explicitly distinguishing between macro and financial market uncertainty. Let K = 3. Hence

our baseline SVAR is based on Xt = (UMt, Yt, UFt)
′, where UMt denotes macro uncertainty,

UFt denotes financial uncertainty. The reduced form shocks ηt = (ηMt, ηY t, ηFt)
′ are linear

combinations of the three structural form shocks et = (eMt, eY t, eFt)
′ to macro uncertainty, real

activity, and financial uncertainty, respectively.

ηMt = BMMeMt +BMY eY t +BMF eFt

ηY t = BYMeMt +BY Y eY t +BY F eFt

ηFt = BFMeMt +BFY eY t +BFF eFt,

where Bij is the element of B that gives the contemporaneous effect of the jth structural shock

on the ith variable. The covariance structure of ηt provides K(K + 1)/2 = 6 equations in B:

vech(Ω) = vech(BB′) (6)

where vech(Ω) stacks the unique elements of the symmetric matrix Ω. Since there are nine

unknown elements in B, we need three more conditions for exact identification.

To identify these elements, we use two external instruments, denoted Zt = (Z1t, Z2t)
′. For

now, suppose that we have measures of Yt, UMt, UFt, and two generic instruments, Z1t and Z2t.

Assumption A: For K = 3, let Z1t and Z2t be two instrumental variables such that

(A.i) E[Z1teMt] = φ1M , E[Z1teY t] = 0, E[Z1teFt] = φ1F
(A.ii) E[Z2teMt] = 0, E[Z2teY t] = 0, E[Z2teFt] = φ2F .

Assumption A are conditions for instrument exogeneity and relevance. Z1t is an instrument that

is correlated with both macro and financial uncertainty, but contemporaneously uncorrelated

with real activity. By contrast, Z2t is an instrument that is correlated with financial uncertainty,

but contemporaneously uncorrelated with macro uncertainty and real activity.

Let m1t = (vech(ηtη
′
t), vec (Zt ⊗ ηt))′ and β1 = vec(B). At the true value of β1, denoted

β01, the model satisfies

0 = E[g1(m1t;β
0
1)], (7)
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written out in full as follows:

0 = var(ηM)−B2
MM +B2

MY +B2
MF

0 = var(ηY )−B2
YM +B2

Y Y +B2
Y F

0 = var (ηF )−B2
FM +B2

FY +B2
FF

0 = cov(ηM , ηY )−BMMBYM +BMYBY Y +BMFBY F

0 = cov(ηY , ηF )−BYMBFM +BY YBFY +BFFBY F

0 = cov
(
ηM,ηF

)
−BMMBFM +BMYBFY +BMFBFF

0 = BMFE[Z2tηY ]−BY FE[Z2tηMt]

0 = BFFE[Z2tηY t]−BY FE[Z2tηFt]

0 = (BMMBFF −BMFBFM)E[Z1tηY t]− (BY FBFM −BYMBFF )E[Z1tηMt]

−(BMMBY F −BMFBYM)E[Z1tηFt].

The model has nine equations in nine unknowns. The first six are from the covariance structure.

The next two equations are due to the three moments implied by Assumption (A.ii). The final

equation is due to the three moments implied by Assumption (A.i).

Proposition 1 Under Assumption A with φ1M 6= 0, φ1F 6= 0, φ2F 6= 0, the normalization (3),

and the restriction (4), β1 is identified.

The Appendix gives a proof of identification using a closed-form solution for B, and we

show that the covariance between the instruments and the structural shocks can be expressed

as

E[Z2teFt]
2 = E[ηtZ2t]

′−1E[ηtZ2t]

E[Z1teMt]
2 =

(
E[ηtZ1t]−

E[ηtZ2t]

E[Z2teFt]

)′
Ω−1

(
E[ηtZ1t]−

E[ηtZ2t]

E[Z2teFt]

)
E[Z2teFt]E[Z1teFt] = E[ηtZ2t]

′Ω−1E[ηtZ1t].

We verify that the closed-form solution is the the same as the unique numerical solution obtained

with (3) and (4) imposed.

In essence, identification in our analysis is achieved by (i) using movements in UMt and UFt
that are correlated with Z1t to identify the effects of uncertainty shocks and disentangle them

from shocks to real activity, (ii) using movements in UFt that are correlated with Z2t to identify

the effects of UFt shocks and disentangle them from macro uncertainty shocks, and (iii) using

movements in Yt that are uncorrelated with both Z1t and Z2t to identify the effects of real

activity shocks and disentangle them from uncertainty shocks.

We take the stand in this application that our uncertainty measures are potentially en-

dogenous. It is then natural to ask why we do not simply find observable instruments. We
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avoid instrumenting one measure uncertainty with an uncertainty proxy (e.g., stock market

volatility). JLN find that such measures, including the options-based volatility index VXO, are

less defensible measures of uncertainty than those employed here, so it makes little sense to

instrument for the latter with the former. Options-based measures of stock market volatility

are doubly problematic because they are known to contain a large component attributable to

changes in the variance risk premium (akin to movements in risk aversion), much of it that

is orthogonal to realized volatility (e.g., Bollerslev, Tauchen, and Zhou (2009); Carr and Wu

(2009)). Thus options-based volatility indexes such as the VXO or VIX are widely viewed to

be “fear indexes”and are therefore less likely than stock market returns to be relevant for the

uncertainty shocks of interest. Moreover, to the extent that some of this risk aversion compo-

nent moves with our uncertainty measures, any uncertainty shock identified from movements

in the VIX or VXO could be more reflective of countercyclical time-varying risk aversion rather

than an exogenous movement in our uncertainty indexes. With these considerations in mind,

the next subsection proposes a methodology for constructing the desired instruments.

3.2 Construction of Instruments

The external instruments Z1t and Z2t play an important role in our analysis but they have no

observable counterpart. The next step is to develop a methodology to construct these variables.

To motivate our method of IPIV, recall that two stage least squares uses projections to purge

the endogenous variations from a relevant regressor. Our IPIV approach is similar in spirit

except that we purge the endogenous variations from a observed variable that is not of first

order relevance to our VAR system. The output of such a projection is a generated external

instrument.

In the present context, we make use of observables St that are driven not only by our

structural shocks et = (eY t, eMt and eFt)′, but also by other shocks collected into an eSt that

are uncorrelated with et. A theoretical premise of the paper is that uncertainty shocks should

be reflected in aggregate equity returns. Thus our choice of St is a measure of stock market

returns. Under these assumptions, we may represent St as

St = c0 + cY Yt + cMUMt + cFUFt + cS(L)St−1 + cX(L)′Xt−1 + eSt (8)

whereXt = (Yt, UMt, UFt)
′. The residual eSt could be driven by any number of shocks orthogonal

to et. One interpretation is risk premium shocks driven by factors orthogonal to uncertainty such

as a pure sentiment shock (one not correlated with uncertainty), but the precise interpretation is

not important to what follows. Obviously, St is an endogenous variable but it is external to the

variable Xt system by assumption. From a regression point of view, omitting any component

of Xt as an explanatory variable will yield inconsistently estimates of the parameters in (8).

However, we are not interested in these parameters. Our objective in considering stock-market
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returns is solely to remove from it those variations due to eMt and/or eY t. More precisely, (8)

motivates two (non-structural) representations of St (not necessarily the same variable):

St = β21 + β22eY t + β20(L)St−1 + Z1t (9a)

St = β24 + β25eY t + β26eMt + β23(L)St−1 + Z2t, (9b)

Given the theory and evidence discussed above, our maintained hypothesis is that the stock

market contains a component that is exogenous to real activity, but correlated with both un-

certainty shocks, and another component that is exogenous to both real activity and macro

uncertainty, but correlated with financial uncertainty. Equation (9a) forms an orthogonal de-

composition of St into a component that is spanned by eY t and a component Z1t that is orthog-

onal to eY t. Similarly, equation (9b) purges the effect of eY t and eMt from St to arrive at Z2t.

The two variables Z1t and Z2t are our desired instruments because they satisfy Assumption A

by construction. Note, however, that Z1t and Z2t are forecastable since both UMt and UFt can

be serially correlated.

Although written as such, the St variable on the left-hand-side of (9a) and (9b) need not

be the same. Indeed, in our application we will use two different measures of stock market

returns in (9a) and (9b), denoted S1t and S2t, respectively. Alternatively, one of these left-

hand-side variables could be a nonstock market variable, as long as it is theoretically related to

uncertainty shocks, and has a component unrelated to real activity. We discuss the data used

for the regressands in (9a) and (9b) below.

Let m2t = (1, St, St−1, eY t, eMt)
′ and collect the projection coeffi cients in (9a) and (9b) into

β2 whose population value is β
0
2. The orthogonality conditions of the two projections can be

compactly summarized by

0 = E[g2(m2t;β
0
2)]. (10)

If eY and eM were observed, then solving for the sample analog of (10) would produce estimates

of Z1 and Z2 that satisfy Assumption A. However, these projections are infeasible because eY
and eM are not observed. In fact, the objective of this paper is to recover these shocks. We

therefore propose a procedure to generate Z1 and Z2 using an iterative approach to jointly solve

for shocks and instruments that satisfy the required exogeneity restrictions.

Let the T × 1 vectors eM
(0), eY

(0) be initial guesses and i = 0. The following steps are

repeated until convergence:

i Replace eM and eY in (9a) and (9b) by eM
(i) and eY

(i). The projections give Z
(i)
1 and

Z
(i)
2 .

ii Use Z1
(i) and Z2

(i) to solve β1 using the nine equations defined by (7). Let β
(i)
1 be the

parameter estimates. Form B(i) from β
(i)
1 .
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iii Update the shocks to e(i+1) = (eM
(i+1), eY

(i+1), eF
(i+1)) =

(
B(i)

)−1
η̂.

iv If ‖eM(i+1) − eM
(i)‖ ≤ tol and ‖eY(i+1) − eY

(i)‖ < tol, stop and let e = e(i),β1 = β
(i)
1 .

Else, set i = i+ 1 and return to (i).

Several points about the implementation of this approach bear discussion. First, there

remains the question of choosing starting values. We initialize e(0)Y t = Yt (where the Yt series

used for this e(0)Y t is discussed below) and e
(0)
Mt = UMt. These initial values are a sensible

starting place because they remove from Z
(0)
1t the variation in eY t attributable to direct effects

of the shocks on Yt (which is observed), and similarly remove from Z
(0)
2t the variation in eY t

attributable to direct effects on Yt and the variation in eMt attributable to direct effects on UMt

(also observed). Iteration purges any remaining indirect effects.

Second, shocks are eventually identified by estimates of B (since e = B−1η by definition).

Thus the procedure requires B−1 to exist. The solution for B is unique, conditional on a

converged estimate of Z and e. We search for a unique value of B within a compact space

around the initialized values e(0)Y t and e
(0)
Mt, resulting in a converged B and shocks e. Starting

values should be chosen thoughtfully, so that the converged shocks are plausible. Below we

study the estimated shocks in detail and check that the magnitudes and signs are sensible (e.g.,

positive rather than negative shocks to financial uncertainty during the 1987 stock market crash

and in the financial crisis of 2007-2009). The Appendix presents the details and output of a

Monte Carlo study in which we verify that, if the true data generating process followed a form

such as (1), while stock returns are generated from a process such as (8), the iterative procedure

identifies the true B.

Third, the iterative algorithm as described forces the exogeneity restrictions of Assump-

tion A to be satisfied by construction, but does nothing to enforce the instrument relevance

conditions, which can only be checked ex-post. Hence we place additional restrictions on the

algorithm, discarding solutions generated by starting values that lead any of the covariances

φ1M , φ1F, or φ2F to be negligible or too small to identify ourB well in the finite sample available.

We focus on the starting values chosen because they deliver the highest average (absolute value

of) the corresponding correlations ρ (Z1t, eMt) , ρ (Z1t, eFt) and ρ (Z2t, eFt), while maintaining

that each must be non-zero individually.

Fourth, it is known that stock returns are predicted by stock market volatility, and volatility

in the stock market carries a positive risk premium. The risk premium component is likely

correlated with uncertainty shocks, which we want to identify. Thus we are careful to avoid

starting values that purge Z2 of the risk premium component. This includes initializing with

residuals from an autoregression in UMt because lags of UMt are likely to be correlated with the

risk premium component.

Finally, this procedure employs variables that are external to those in the VAR to construct
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instruments for identification. This inevitably imposes certain restrictions on a larger VAR that

includes St. Below we make these restrictions precise and consider its robustness.

3.3 Measuring Uncertainty and Stock Market Returns

In our estimation we work with several different aggregate measures of uncertainty, which are

indexes constructed over individual uncertainties for a large number of observable time-series.

A long-standing diffi culty with empirical research on this topic has been the measurement of

uncertainty. JLN find that common uncertainty proxies contain economically large components

of their variability that do not appear to be generated by a movement in genuine uncertainty

across the broader economy. This occurs both because these proxies over-weight certain series in

the measurement of aggregate uncertainty, and because they erroneously attribute forecastable

fluctuations to a movement in uncertainty. Equity market volatility, for example, contains a

non-trivial component generated from forecastable variation in stock returns. The estimated

macro uncertainty index constructed in JLN is designed to address these issues and improve the

measurement of aggregate uncertainty. The methodology used here for constructing uncertainty

indexes follows JLN and we refer the reader to that paper for details.

Let yCjt ∈ Y C
t = (yC1t, . . . , y

C
NCt

)′ be a variable in category C. Its h-period ahead uncertainty,

denoted by UCjt(h), is defined to be the volatility of the purely unforecastable component of the

future value of the series, conditional on all information available. Specifically,

UCjt(h) ≡

√
E
[
(yCjt+h − E[yCjt+h|It])2|It

]
(11)

where It is information available. If the expectation today of the squared error in forecasting

yjt+h rises, uncertainty in the variable increases. Uncertainty in category C is an aggregate of

individual uncertainty series in the category :

UCt(h) ≡ plimNC→∞

NC∑
j=1

1

NC

UCjt(h) ≡ EC [UCjt(h)]. (12)

As in JLN, the conditional expectation of squared forecast errors in (11) is computed from

a stochastic volatility model, while the conditional expectation E[yCjt+h|It] is replaced by a
diffusion index forecast, augmented to allow for nonlinearities. These are predictions of an

autoregression augmented with a small number of common factors qt = (q1t, . . . , qrt)
′ estimated

from a large number of economic time series xit each with factor representation xit = Λ′itqt+eχ,it.

The use of large datasets reduces the possibility of biases that arise when relevant predictive

information is ignored. Let Y C
t = (yC1t, . . . , y

C
NCt

)′ generically denote the series that we wish to

compute uncertainty in. In this paper, we consider four categories of uncertainty:
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Category (C) Y C
t NC

(M): Macro all variables in χM 134
(F): Financial all variables in χF 147
(R): Real activity real activity variables in χM 73
(π): Price price variables in χM 21

The uncertainty index UCt for category C is an equally-weighted average of the individual

uncertainties in the category. We use two datasets covering the sample 1960:07-2015:04.5 The

first is a monthly macro dataset, XM
t , consisting of 134 mostly macroeconomic time series

take from McCracken and Ng (2016). The second is a financial dataset X F
t consisting of

a 147 of monthly financial indicators, also used in Ludvigson and Ng (2007) and JLN, but

updated to the longer sample. The real uncertainty index URt is an equally-weighted average

of the individual uncertainties about 73 series in Groups 1 through 4 of XM . These include

output and income variables, labor market measures, housing market indicators, and orders and

inventories. A second subindex is constructed using only measures of consumer and producer

prices as well as oil prices, commodity prices and crude materials prices. We call this index

price uncertainty, Uπt, which averages over the individual uncertainties of the 21 price series

in Group 7 of XM . Additional predictors for variables in XM
it include factors formed from X F

it

and vice-versa, squares of the first factor of each, and factors in the squares of individual series,(
XM
it

)2
and

(
X F
it

)2
.

Our estimation considers different VARs with different Yt. In principle, we could initialize

our eY t shock in the algorithm above with a different measure of Yt, depending on the VAR

system being estimated. For simplicity, we instead set e(0)Y t = q1t for this purpose, where q1t is

the first common factor estimated from the macro dataset no matter what measure of Yt we use

in the VAR. In fact, this turns out to often work better for identifying shocks and instruments

that satisfy the instrument relevance conditions of Assumption A. This common factor has long

been understood to be a “real activity factor”that loads heavily on measures of employment

and production such as employees on nonfarm payrolls and manufacturing output, as well as

measures of capacity utilization and new manufacturing orders in all vintages of χM used in

this study, see McCracken and Ng (2016). It loads very little if at all on consumer and producer

inflation measures, and financial market variables.

Our use of stock returns St to generate instruments is grounded in the theoretical premise

that both macro and financial uncertainty shocks should be reflected in stock market returns.

There is no reason, however, that the regressands in (9a) and (9b) must be exactly the same

measure of stock market activity. All measures of stock market activity are highly correlated

because they contain a large common component (much of which is orthogonal to the rest of the

economy). In order to introduce some additional independent variation in our two instruments,

5A detailed description of the series is given in the Data Appendix of the online location where updated JLN
uncertainty index data are posted: http://www.sydneyludvigson.com/s/jln_data_appendix_update.pdf
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our base cases use different measures of aggregate stock market activity to generate Z1t and Z2t,

although in practice we get very similar results if we use the same value-weighted stock market

index return in (9a) and (9b). Specifically, we use the Standard and Poor 500 stock market index

return, SPt, as the regressand for (9b), and Sαt = αpcrspt+(1− αp) smallt, a portfolio weighted
average of the return on the CRSP value-weighted stock index (in excess of the one-month

Treasury bill rate) and the smallest decile stock market return in the NYSE as the regressand

for (9a).6 Our choice of portfolio weight αp is guided by empirical considerations. The small

stock index is highly volatile, which generates noise in the estimated SVAR parameters and large

error bands for the impulse response functions. To facilitate more precise statistical inference,

we set αp = 0.94 for the base case results presented below. Results not reported indicate the

the dynamic responses are qualitatively similar if we set portfolio weights to give greater weight

to the small stock index, including αp = 0, but the impulse response error bands are wider.

It is reasonable to ask if variables other than stock market returns could serve as regressands

in (9a) and (9b). Asset returns other than those for the stock market come to mind, such as

those for corporate bonds. Since bonds must return a fixed stream of payments to claimholders

(a legal requirement set in the bond covenant), bonds are like stocks without the dividend risk.

Our prior is that high frequency macro and financial uncertainty shocks are likely to be more

closely related to earnings and dividend payouts than default events, so they should be more

relevant for stock returns than bond returns. But bonds that have some nontrivial probability

of defaulting might also be affected by uncertainty, at least to some degree. We consider this

possibility in the Robustness and Additional Cases section below, where we present results for

one estimation in which we generate Z1t from the return on a portfolio of Baa rated corporate

bonds.

The parameters to be estimated include the reduced form VAR parameters in (2), from

which we obtain η̂t, the parameters in (10), from which we construct Z1t and Z2t, and the

structural parameters using results from the preceding two estimations. The sample moment

conditions in the three-step estimation can be collected into ḡ(mt;β) where β are parameters

to be estimated. The Generalized Method of Moments (GMM, Hansen (1982)) estimator is

β̂ = argminβḡ(mt;β)′ḡ(mt;β). Under regularity conditions, the GMM estimator of Hansen

(1982) is
√
T consistent for β0 and asymptotically normal with asymptotic variance Σ2

β̂
. This

variance matrix is block lower triangular as in Newey (1984) since estimation of β2 is not

affected by estimation of β1 or of the VAR. Serial correlation and heteroskedasticity robust

standard errors are constructed as in Newey and West (1987).

The next section presents empirical results. We begin by studying systems with macro un-

certainty. We then move on to consider sub-indexes of UMt, including real uncertainty formed

only over real activity variables URt and price uncertainty Uπt. Our final set of results re-

6The CRSP index is a value-weighted return of all stocks in NYSE, AMEX, and NASDAQ.
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port several additional cases pertaining to different measures of real activity, different samples,

different uncertainty horizons, and to using recursive identification schemes.

4 Results for Xt = (UMt, Yt, UFt)
′

Our first VAR is defined by Xt = (UMt(h), Yt, UFt(h))′. For the base case, we consider h = 1

(one-month uncertainty) and several measures of Yt: the log of real industrial production,

denoted ipt, and the log of employment, denoted empt. While industrial production is a widely

watched economic indicator of business cycles, it only captures goods-producing industries and

has been a declining share of GDP. Employment only covers the labor market. Hence we also

consider two additional measures of real activity: the log NAPM new orders index, which we

denote noi, and the cumulated sum of the first common factor estimated from the macro dataset

χM (since the raw data used to form q1t are transformed to stationary), which we denote Q1t.

We linearly detrend each real activity series before estimation. Results using the first three

of these measures of real activity are presented in this section. Results using the real activity

index Q1t and longer uncertainty horizons (h = 12) are discussed in Section 6 below. Since our

emphasis is on h = 1, we write UMt instead of UMt(1), and analogously for UFt, in order to

simplify notation.

The top panel of Figure 1 plots the estimated macro uncertainty UMt in standardized units

along with the NBER recession dates. The horizontal bar corresponds to 1.65 standard devia-

tion above unconditional mean of each series (which is standardized to zero). As is known from

JLN, the macro uncertainty index is strongly countercyclical, and exhibits large spikes in the

deepest recessions. The updated data UMt series shows much the same. Though UMt exceeds

1.65 standard deviations 48 times, they are clustered around the 1973-74 and 1981-82 reces-

sions, as well as the Great Recession of 2007-09. Macroeconomic uncertainty is countercyclical

and has a correlation of -0.65 with the 12-month moving-average of the growth in industrial

production.

The bottom panel of Figure 1 plots the financial uncertainty series UFt over time, which is

new to this paper. UFt is a broad-based measure of time varying financial uncertainty using

data from the bond market, stock market portfolio returns, and commodity markets. Hence,

it is smoother than proxies such as VIX or any particular bond index. As seen from Figure 1,

UFt is also countercyclical, though less so than UMt; the correlation with industrial production

of -0.39. The series often exhibits spikes around the times when UMt are high. However, UFt is

more volatile and spikes more frequently outside of recessions, the most notable being the 1987

stock market crash. Though observations on UFt exceed the 1.65 standard deviation line 33

times, they are spread out in seven episodes, with the 2008 and 1997 episodes being the most

pronounced.
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As is clear from Figure 1, both indicators of macro and financial uncertainty are serially

correlated and hence predictable. They have comovements but also have independent variations

as the correlation between them is 0.58. However, this unconditional correlation cannot be given

a structural interpretation. The heightened uncertainty measures can be endogenous responses

to events that are expected to happen, but they can also be exogenous innovations. We use a

VAR to capture the predictable variations, and then identify uncertainty shocks from the VAR

residuals using the restrictions described in the previous section.

4.1 VAR Estimates and Uncertainty Shocks

Several features of the VAR estimates are qualitatively similar for all measures of Yt. Table 1

highlights some of these results. As shown in panel A, the sample correlation coeffi cient between

Z1t and êMt and êFt, and between Z2t and êFt are statistically significant and negative in each

case, indicating that uncertainty shocks of both types are correlated with these instruments, as

required, and tend to be high when these components of stock market returns are low. Panel

A also shows that the correlation between Z1t and êY t, and the correlation between Z2t and êY t
and êMt are all zero as required, which is true by construction of the algorithm and solution for

B. Panel B shows that σMM , σY Y , and σFF are all strongly statistically significantly different

from zero. This in turn indicates the presence of both macro and financial uncertainty shocks

in the SVAR. Since both UMt and UFt are serially correlated, we should therefore find that Z1t
is correlated with lags of UMt and UFt, while Z2t is correlated with lags of UFt. Results not

reported confirm this is the case.

Our model is exactly identified and does not permit a test for the validity of the restrictions.

Nonetheless, we can test the if a lower recursive structure is supported by the data. Specifically,

Assumption A does not rule out the possibility of a recursive structure. Given that
√
T (β̂1−β01)

is asymptotically N(0,Σ2
β̂1

), the null hypothesis of a recursive structure is a test that the three

components of β1 corresponding to the off-diagonal entries of A−10 are jointly zero. Hence it

is chi-square distributed with three degrees of freedom. We first confirm that the test has the

correct size in Monte Carlo simulations. Our estimates based on historical data strongly reject

a lower triangular A−10 for any possible ordering of the variables. Table 2 shows results from

Wald tests with Yt = ipt and Yt = empt, for h = 1 and h = 12. Results not reported find that

the A matrix reflects a non-zero contemporaneous correlation between UFt and Yt, as well as

between UMt and Yt; no recursive ordering is consistent with such a correlation. In Section 6

below, we discuss how estimates of the dynamic relationships are affected by imposing recursive

identification.

Figure 2 presents the time series of the standardized shocks (eM , eip, eF ) identified from the

system with Yt = ipt. All shocks display strong departures from normality with excess skewness
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and/or excess kurtosis. The largest of the eip shocks is recorded in 2008:09, followed by 1974:11,

and 1980:04. There also appears to be a moderation in the volatility of the ip shocks in the

post-1983 period. The largest macro uncertainty shock is in 1970:12, followed by the shock in

2008:10. The largest financial uncertainty shock is recorded in 1987:10, followed by the shock

in 2008:09. For eF , the 1987 stock market crash evidently dwarfs all other spikes. Because of

the extreme but transitory nature of the crash, there is a very large spike downward in eF in

the month following the crash, as the market recovered strongly. While this episode magnifies

the spike in eF in 1987, it is largely orthogonal to real activity and macro uncertainty and

we have verified that none of our results are materially affected by dummying out the episode

in the VAR. Appendix Figure A1 shows a representative set of impulse responses from one of

our benchmark systems in which we dummy out 1987:10 and 1987:11. These responses are

remarkably similar to those without the dummies, as shown below.

Observe that the large ip shock in 2005:09 is not associated with a contemporaneous spike in

uncertainty (we discuss this episode further below), while there are several spikes in both types

of uncertainty that do not coincide with spikes in eip. The next subsection uses impulse response

functions to better understand the dynamic causal effects and propagating mechanisms of these

shocks.

4.2 The Dynamic Effects of Uncertainty Shocks

Impulse response functions (IRFs) trace out the effects of counterfactual increases in the shocks.

The estimated IRFs are presented with 90% bootstrapped confidence bands. All plots show

responses to one standard deviation changes in εjt in the direction that leads to an increase in

its own variable Xjt.

Figure 3 shows the dynamic responses of each variable in the SVAR to each structural shock

for our baseline system with Yt = ipt. The responses show that positive shocks to financial

uncertainty eF lead to a sharp decline in real production that persists for many months (center

plot, bottom row). Positive perturbations to eFt also cause UMt to increase. However, there is

less evidence that shocks to macro uncertainty have effects on financial uncertainty: the impact

response of UFt to an increase in eMt is not statistically different from zero. Overall, these results

lend support to the hypothesis that heightened financial uncertainty is an exogenous impulse

that causes declines in real activity. Note that the converse relationship is not supported by our

evidence: exogenous (positive) shocks to ip have statistically insignificant effects on financial

uncertainty. If anything, perturbations to eip modestly increase financial uncertainty in the

long-run.

While we find no evidence that high financial uncertainty is a consequence of lower eco-

nomic activity, the results for macro uncertainty are quite different. Figure 3 (second row, first
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column) shows that macro uncertainty falls sharply in response to positive shocks to industrial

production, eip. Alternatively stated, negative ip shocks increase macro uncertainty sharply.

These effects persist for well over a year after the ip shock. This result is strongly statistically

significant, suggesting that higher macro uncertainty in recessions is a direct endogenous re-

sponse to lower economic activity. However, there is no evidence that the negative correlation

between macro uncertainty and real activity is driven by causality running in the opposite di-

rection. Indeed, the top middle panel shows that exogenous increases in eMt actually increase

real activity, consistent with growth options theories discussed above.

The standard error bands for this case with Yt = ipt are wide, indicating considerable

sampling uncertainty as to the magnitude of these effects. However, the systems that use

Yt = ipt appear to be unusual in this respect. The impulse responses are more precisely

estimated when we use any number of alternative measures of real activity Yt. Impulse responses

using Yt = empt and Yt = noit are displayed in Figures 4 and 5, respectively. These systems tell

the same story regarding the dynamic causal influences in the system, but here the responses

have tighter standard error bands. A positive shock to empt or noit causes a sharp decline in

macro uncertainty, whereas there is again no evidence that positive shocks to macro uncertainty

cause declines either measure of real activity; indeed the opposite occurs. But positive shocks

to financial uncertainty cause declines in both empt or noit. In contrast to the responses in

systems using ipt, these effects are strongly statistically significant in the systems using empt
and noit. We find that this same result also holds for the responses using Q1t, as discussed in

Section 6 below.

4.3 The Structural Shocks and Decomposition of Variance

In Figure 1 presented earlier, we find 1973-74, 1981-82, and 2007-2009 to be the three episodes

of heightened macroeconomic uncertainty, defined as the periods when UMt is 1.65 standard

deviations above its unconditional mean. We now look for the “large adverse” shocks in the

systems (UMt, Yt, UFt)
′, with Yt = ipt, empt, noit , Q1t. More precisely, we consider large positive

uncertainty shocks and large negative real activity shocks.

Figure 6 displays the date and size of shocks that are at least two standard deviations above

the mean, estimated using the four different measures of Yt. In view of the non-normality of

the shocks, the figure also plots horizontal lines corresponding to three standard deviation of

the unit shocks, which is used as the reference point for ‘large’. The lowest panel shows that,

irrespective of the definition of Yt, all SVARs identify big financial uncertainty shocks in 1987

and 2008. The middle panel shows that large negative real activity shocks are in alignment

with all post-war recessions with one exception: the negative real activity shock in 2005 is not

immediately associated with a recession, but it could be the seed of the Great Recession that
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followed. It is known that the housing market led the 2007-2009 recession (e.g., see Favilukis,

Ludvigson, and Van Nieuwerburgh (2015) for a discussion). We confirm that all 10 housing

series in XM (most pertaining to housing starts and permits series) exhibit sharp declines

starting in September 2005 and continuing through 2006, when almost all of the total decrease

in these series through 2009 occurred.

The top panel of Figure 6 shows that the dates of large increases in eM are less clustered.

They generally coincide with, or occur shortly after, the big real activity shocks and the financial

uncertainty shocks. Observe that large macro uncertainty shocks occurred more frequently in

the pre-1983 than the post 1983 sample. An exception is the Great Recession, where there were

large eM shocks in some systems but not others: large macroeconomic uncertainty shocks are

found when Y = ip and when Y = noi but are not found in the SVAR with empt or Q1t. Thus

the finding that there are simultaneous occurrences of big shocks to UMt, UFt, and Yt during

the Great Recession seems to depend on which measure of real activity Yt is used. We return

to this issue when sub-indexes of UMt are considered.

To give a sense of the historical importance of these shocks, we perform a decomposition

of variance, which is the fraction of s-step-ahead forecast error variance attributable to each

structural shock εMt, εY t, and εFt for s = 1, s = 12, s = ∞. We also report the maximum
fraction of forecast error variance over all VAR forecast horizons s that is attributable to each

shock, denoted s = smax in the table. Table 3 reports results for the system with Yt = ipt (left

column), Yt = empt (middle column), and Yt = noit (right column).

According to the top row, all three real activity shocks eip, eemp, and enoi have sizable effects

on macroeconomic uncertainty UM . But according to the bottom row, these same shocks have

small effects on financial uncertainty UF . At the same time, positive macro uncertainty shocks

eM , which increase rather than decrease real activity, explain a surprisingly large fraction of

production (up to 42%), employment (up to 37%) and orders (up to 28%), though their relative

importance declines as the forecast horizon increases. On the other hand, financial uncertainty

shocks eF have a small contribution to the one-step-ahead forecast error variance of ip, but

their relative importance increases over time. These eF shocks make much larger contributions

to the forecast error variance of emp and noi. Financial uncertainty shocks explain up to 59%

of the forecast error variance in employment and up to 51% of the forecast error variance in

orders, compared to 27% for production. Financial uncertainty shocks eF feedback into UM ,

and macroeconomic uncertainty shocks eM also feedback into UF .

Regardless of which measure of real activity is used, we find that financial uncertainty is

unlike macro uncertainty or real activity in that its variation is far more dominated by its own

shocks. For example, in the system with ip, eF shocks explain 95% of the s = 1 step-ahead

forecast error variance in UFt, and 75% of the s =∞ step-ahead forecast error variance. In the

systems with emp and noi, eF shocks explain 74 and 72%, respectively, of the s = 1 step-ahead
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forecast error variance in UFt, and 53 and 57% of the s =∞ step-ahead forecast error variance.

To summarize, in all three systems, real activity shocks eY have quantitatively large per-

sistent negative effects on macro uncertainty UM . In turn, macro uncertainty shocks eM have

large positive impact effects on real activity measures Y . Financial uncertainty shocks eF have

smaller impact effects but larger long run effects that dampen real activity Y . Across all sys-

tems, the forecast error variance of financial uncertainty is the least affected by shocks other

than its own, suggesting that UF is quantitatively the most exogenous variable in the system.

5 Uncertainty in Real Activity and Inflation

The results discussed above suggest that the dynamic relationship between macro uncertainty

and real activity can be quite different from the relation between financial uncertainty and

real activity. However, given the composition of our data χM , macroeconomic uncertainty

itself can be due to uncertainty in real activity variables such as output and unemployment,

to price variables, and to financial market variables. The theoretical uncertainty literature

has focused on modeling exogenous uncertainty shocks that arise specifically in measures of

real economic fundamentals, rather than in prices or financial markets. To better evaluate the

implications of these theoretical models, it is therefore of interest to know how systems defined

by sub-components of broad-based macro uncertainty behave. We first consider systems that

isolate uncertainty about real activity using the URt sub-index that more closely corresponds

to the theoretical literature. We then move on to study systems that use a sub-index of macro

uncertainty focused on price variables, Uπt, which has not been the focus on the uncertainty

literature but may be of independent interest.

5.1 System Xt = (URt, Yt, UFt)
′

We isolate the real activity components of macro uncertainty by aggregating the individual

uncertainty estimates over the 73 real activity variables in the macro dataset XM . The one-

period ahead uncertainty in real activity, denoted URt, is show in Figure 7. This series, like

UMt, is countercyclical though somewhat less so, having a correlation of -0.50 with industrial

production (as compared to -0.66 for UMt). At first glance, URt appears to fluctuate in a manner

similar to macroeconomic uncertainty UMt. The two series have a correlation of 0.71 and exhibit

some overlapping spikes. But URt and UMt also display notable independent variation. Figure

7 shows that there are 43 observations of URt that are at least 1.65 standard deviations above

its mean. These can be organized into five episodes: 1965, 1970, 1975, 1982-83, and 2007. By

contrast, UMt in Figure 1 only exhibits three such episodes. Observe that the URt series exhibits

several spikes before 1970 that are not accompanied by spikes in UMt.

Given the distinctive patterns in the time series behavior of URt and UMt, one might expect to
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find different dynamic relationships with the other variables in our systems when UMt is replaced

by URt. Surprisingly, the impulse responses functions are qualitatively similar to systems studied

above that use broad-based macro uncertainty. Since the responses are qualitatively similar

using all measures of real activity, we only present one representative example in Figure 8,

for the system (URt, empt, UMt)
′. We see that (i) positive shocks to employment cause sharp

declines in URt so that negative shocks cause sharp increases in real economic uncertainty; (ii)

positive real activity shocks eRt do not cause declines in empt; instead the opposite is true; (iii)

positive financial uncertainty shocks eFt lead to sharp declines in employment that are strongly

statistically significant, and (iv) there is no evidence that financial uncertainty is significantly

affected by real activity shocks.

But while these counterfactual dynamic responses are similar to those reported for the

base case when UMt is used, the realized shocks that are uncovered from the historical data

are different. Figure 9 plots the large adverse structural shocks identified from the systems

(URt, Yt, UFt)
′ for Yt = ipt, empt, noit, Q1t analogous to Figure 2. The top panel shows that

the real uncertainty shock eRt exhibits no spike in excess of three standard deviations during

the Great Recession for any measure of real activity, despite the fact that URt itself exhibits

a large spike (see Figure 7). This is in contrast to the behavior of eMt and especially eFt in

Figure 2, both of which show much larger spikes during this episode. This pattern occurs in

other recessions as well. In the 1973-75 recession, the real uncertainty shocks eRt show a large

spike only for the system using orders, but not for the systems using production, employment

or Q1t, though all measures of real activity shocks eip, eemp, enoi, and eQ1t exhibited large spikes

downward. Likewise, both the 1980 recession and the 1982-1983 recession were characterized

by large negative real activity shocks that met or exceeded three standard deviations from the

mean, while real uncertainty shocks eR were comparatively muted and if anything spiked after

the recession was over.

These episodes serve to reinforce the conclusion that the heightened real economic uncer-

tainty in recessions is more often an endogenous response to other shocks, rather than an

exogenous impulse. Even though there were many large spikes in real uncertainty shocks eRt
pre-1983, there have not been much in the way of large adverse shocks to real economic un-

certainty since 1983, a period that coincides with the so-called Great Moderation. Large real

uncertainty shocks are also absent from the Great Recession. This is an episode characterized

by a large negative eY t and a large increase in eFt. Both adverse shocks are suffi ciently large

to drive URt upward without a large exogenous increase eRt.

One might ask why we find large macro uncertainty shocks eM in the Great Recession,

at least for some measures of real activity, while the corresponding real activity uncertainty

shocks eR are much smaller. Recall that our UM is a broad-based measure of uncertainty and,

as such, contains some 25 financial variables. These are also the most volatile variables in the
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large macro dataset used to construct UMt. Hence UM picks up a fair amount of its movement

from financial variables, which were especially large in this episode. By isolating uncertainty

attributable only to real variables, we can see more clearly the role of uncertainty about real

activity variables in this episode. By the same reasoning, once we control explicitly for financial

uncertainty, it makes little difference whether we use UMt or URt in the SVAR. The impulse

responses are similar, as can be seen from a comparison of the base case IRFs and those in

Figure 8. Controlling for UFt is thus important as it removes the variation in UMt attributable

to financial variable uncertainty. Whether we directly or indirectly control for uncertainty

from financial variables, the main finding is that macroeconomic uncertainty rises in recessions

primarily in response to real activity shocks, while financial uncertainty shocks are exogenous

impulses that have significant negative effects on real activity.

To complete the analysis, we present variance decompositions for the system (URt, Yt, UFt)
′,

with three measures of real activity Yt = ipt, empt, noit. These results, presented in Table 4,

share some similarities with the systems that use macro uncertainty UMt shown in Table 3,

but there are at least two important distinctions. First, financial uncertainty shocks decrease

real activity and explain larger fractions of the forecast error variance in two measures of real

activity. At the longest s = ∞ VAR horizon, financial uncertainty shocks explain 85% of

forecast error variance in employment and 63% of the forecast error variance in orders. These

results suggest that financial uncertainty has quantitatively large negative consequences for at

least some measures of real activity.

Second, compared to systems that use UMt, smaller fractions of the forecast error variance

in URt are explained by its own shocks, while larger fractions are explained by the financial

uncertainty shocks. Real activity shocks still have non-trivial consequences for URt. For exam-

ple, shocks to industrial production eipt still explain 41% of the one-step-ahead forecast error

variance in URt, though smaller than the 53% found earlier using UMt.

To summarize, countercyclical increases in real uncertainty URt, like macro uncertainty

UMt, are found to be fully an endogenous response to declines in real activity. Indeed, the most

striking episode of heightened uncertainty in the post-war period, the Great Recession, was

characterized by large negative real activity eY shocks and a large positive financial uncertainty

eF shock, but no corresponding large shock to real uncertainty eR. These results underscore the

extent to which the countercyclical variation in URt is often an endogenous response to other

shocks. At the same time, URt exhibits more variation than UMt that is independent of fluctu-

ations in real activity especially early in the sample, explaining why it is less countercyclical.
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5.2 System Xt = (Uπt, Yt, UFt)
′

The preceding subsection investigates the real activity component of macroeconomic uncer-

tainty and its interaction with Yt and UFt. This subsection studies the price component of

macroeconomic uncertainty Uπ which aggregates the 21 uncertainty indicators in the price

block of χM . This block includes consumer and producer prices that tend to be more stable, as

well as the price of oil, commodities, and raw materials that tend to be more volatile. With the

exception of the NAPM commodity price index, the price data are second differenced after log

transformation. Hence, the uncertainty indicators pertain to the change in monthly inflation.

We refer to this measure simply as “price uncertainty.”

The top panel of Figure 10 plots this measure of price uncertainty over our sample. It is

countercyclical and has a correlation with industrial production is -0.51. There are 40 obser-

vations that are 1.65 standard deviations above the unconditional mean. These are clustered

into three episodes: 1974-75, 2006-07, and 2008-09. There is a large spike upward in Uπt visible

during the Great Recession. This spike actually occurs over four months, from 2008:10-2009:01,

during which Uπt was unusually high. Also plotted in Figure 10 is a Ux
π,t uncertainty index that

removes from Uπ,t five of the most volatile price uncertainty series, namely PPI intermediate

materials, PPI crude materials, oil, PPI metals and metal products, and CPI transportation.

The more volatile price series apparently did not contribute to noticeable changes to aggregate

price uncertainty.

Further investigation reveals that the increase in price uncertainty around the Great Re-

cession was broad based, as 13 of the 21 series in the price group had uncertainty risen by at

least three standard deviations above its mean in 2008:11, the peak of the spike. Results not

reported show that these series all exhibited large negative forecast errors in 2008:10-2008:12,

and then a large positive error in 2009:01. The change in inflation across many price series

appears to have been volatile and diffi cult to predict at the peak of the Great Recession. Thus

the Great Recession was hit by the rare occurrence of simultaneous adverse shocks to financial

uncertainty, to real activity, and to price uncertainty.

The bottom panel of 10 plots the large adverse shocks for the systems Xt = (Uπt, Yt, UFt)
′

with Yt = ipt, empt, noit, Q1t, and for an alternative set of systemsXt = (Ux
πt, Yt, UFt)

′. Notably,

most of the spikes are concentrated in the years before 1983. Nonetheless, the price uncertainty

spike in 2008 is evident both eπ and exπ. Together with the results reported earlier, the broad

based nature of the surge in uncertainty in 2008 is unprecedented.

We estimate an SVAR for Xt = (Uπt, Yt, UFt)
′. The responses are again similar for all

measures of Yt so we conserve space by showing just one. Figure 11 shows the dynamic responses

with Yt = empt. As before, it is exogenous shocks to financial uncertainty that drive real

activity endogenously lower. By contrast, positive shocks to price uncertainty do not decrease
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real activity, indeed the opposite is true. We see also that positive shocks to price uncertainty

eπt lead to a sharp increase in financial uncertainty UFt. Financial uncertainty shocks, on the

other hand, have no effect on price uncertainty Uπt.

Figure 11 also shows that employment shocks eemp impact price uncertainty in a manner

that is qualitatively similar to how they impact macro and real economic uncertainty. Positive

(negative) shocks to real activity cause sharp decreases (increases) in price uncertainty, but

have little effect on financial uncertainty. Thus a boom in real activity appears to reduce

macroeconomic uncertainty broadly across many indicators, including uncertainty about price

variables, though not about financial markets.

On the whole, these findings reinforce the notion that financial uncertainty is primarily

an exogenous impulse acting on real activity, while countercyclical uncertainty about other

macroeconomic activity, be it real activity or prices, is primarily an endogenous response to

real activity. But price uncertainty increases financial uncertainty, a finding that is theoretically

consistent with evidence that inflation uncertainty is correlated with higher risk spreads in bond

markets (e.g., Wright (2011)). An interesting direction for future research is to investigate the

dynamic linkages between inflation uncertainty, financial market uncertainty, and term premia.

6 Robustness and Additional Cases

This section presents results for a number of additional cases.

6.1 Different Measures of Real Activity and Different Sample

Rather than using specific real activity measures such as production, employment and orders, we

now use a more broad-based measure of real activity that we construct, namely the real activity

index Q1t. Figure 12 presents impulse responses for Xt = (UMt, Q1t, UFt)
′. The responses are

quite similar to those using Yt = ipt with the main difference being that the standard error

bands are narrower especially for the response of Q1t to UFt shock. Financial uncertainty shocks

lead to large, statistically significant declines in the index of real activity. Moreover, as for the

systems using other measures of real activity, high macro uncertainty in bad times if fully an

endogenous response to declines in real activity, as measured by Q1t.

Given the importance of the Great Recession for the uncertainty series, we asked whether

our main results were affected by stopping the sample at the end of 2007:12. A representative

set of impulse response functions is shown in Figure (A2) for the system Xt = (UMt, empt, UFt)
′

(the other systems show similar responses). The figure shows that the qualitative nature of

all the responses, including standard error bands, is quite similar to the comparable case for

the full sample (Figure 4). This implies that main findings above are robust to this sample

that excludes the Great Recession and the concomitant financial crisis. Further inspection
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indicates that the main difference created by using different samples is evident in the variance

decompositions (not shown): somewhat less of the forecast error variance in UF in the pre-2008

sample is attributable to its own shocks than in the full sample, while correspondingly more

of the forecast error variance in UF is attributable to real activity shocks. For example, in the

full sample, 95% of the one-step-ahead forecast error variance in UF is attributable to its own

shocks in the system with Yt = ipt, whereas this estimate is 82% for the pre-2008 sample. At

the same time, the variance decompositions pertaining to the impact of financial uncertainty

on real activity are little effected by removing the post 2008 part of the sample. This shows

that the negative impact of financial uncertainty shocks for real activity does not hinge on one

episode, and that many episodes prior to 2008 that were characterized by more modest financial

uncertainty shocks also had consequences for real activity.

6.2 One year Uncertainty

So far we have been considering uncertainty about events one-month ahead. To consider a

longer horizon uncertainty, we estimate systems using uncertainty about events 12 months

ahead, denoted UMt (12) and UFt (12). For the dynamic responses, the findings are qualitatively

similar to the benchmark cases with h = 1 period ahead uncertainty. Figure 13 presents a

representative example for the system: Xt = (UMt (12) , empt, UFt (12)). But an inspection

of the variance decompositions suggests some notable differences from the h = 1 uncertainty

systems. Table 5 shows variance decompositions for the systems Xt = (UMt (12) , Yt, UFt (12))

with Yt = ipt, empt, noit. One-year financial uncertainty shocks explain smaller fractions of the

variation in all measures of real activity than do one-month uncertainty shocks, especially over

the longer VAR horizons for which their impact is non-trivial. For example, 12-month-ahead

financial uncertainty eFt shocks explain just 10% of the long-run forecast error variance in

ipt. In contrast Table 3 above showed that one-month-ahead financial uncertainty eFt shocks

explain 23% of the long-run forecast error variance in production. Similar comparisons hold

for the other two measures of real activity, empt and noit. UFt (12) shocks also explain smaller

fractions of the forecast error variance in macro uncertainty UMt than do UFt (1) shocks. This

result occurs in part because long-run uncertainty is simply much less volatile than short-run

uncertainty. While the level of uncertainty increases with h (on average), the variability of

uncertainty decreases because the forecast tends to the unconditional mean as the forecast

horizon tends to infinity. On the other hand, the impact of macro uncertainty shocks on the

other variables in the system is less affected by the uncertainty horizon h. For example, the

effects of eMt shocks on all measures of real activity are about the same for systems using

UMt (12) as they are for the systems studied above that use UMt (1).
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6.3 Imposing Recursive Identification Restrictions

The SVARs studied here nest any recursive structure so that by imposing additional restrictions

we can recover any such structure. We can also test the validity of these restrictions. The

results above show that these restrictions are rejected in the data. We now show what happens

to the dynamic responses when we nevertheless impose restrictions consistent with recursive

identification (and freely estimate the rest of the parameters). Figure 14 shows one case:

dynamic responses for the system Xt = (UFt, UMt, ipt)
′ with that ordering. Although there

are many possible recursive orderings, and the estimated IRFs differ in some ways across these

cases, the dynamic responses under recursive identification have one common feature that is

invariant to the ordering and that provides the sharpest contrast with the results generated

by the SVARs identified with external instruments studied here. Specifically, with recursive

identification, macro uncertainty shocks—no matter which ordering—appear to cause a sharp

decline in real activity, while real activity shocks have little effect on macro uncertainty in the

short run and if anything increase it in the long run. This result, evident in Figure 14, is

precisely the opposite of what is reported above and appears to be an artifact of invalid timing

assumptions under recursive identification. Further investigation reveals that the SVARs we

study display non-zero contemporaneous correlations between UFt and Yt, as well as between

UMt and Yt, which is inconsistent with any recursive ordering. Imposing a structure that

prohibits contemporaneous feedback spuriously suggests that macro uncertainty shocks are a

cause of declines in real activity, rather than an endogenous response. This result is robust

across any of the six possible recursive orderings and underscores the challenges of relying

on convenient timing assumptions to sort out cause and effect in the relationship between

uncertainty and real activity.7

6.4 Different External Variables

We reestimate the model using a corporate bond return as the regressand in (9a) to generate

Z1t. We generate Z2t in (9b) using the monthly CRSP value-weighted excess stock market

return crspt. The bond yield measure is the yield on a portfolio of Baa Moodys seasoned

corporate bonds, where Baa represents a credit score on the border of the investment and junk

categories. Because the Baa yield is highly serially correlated, we use the first difference of the

yield. The estimation procedure in all other ways is the same as above.

Estimates of these cases indicate that the correlation between the resulting Z1t and both

uncertainty shocks is now positive. Thus high uncertainty of both types is associated with rising

yields on risky corporate debt. For the (UMt, ipt, UFt)
′ system, the correlations with Z1t are

ρ (Z1t, êMt) = 0.1988, ρ (Z1t, êFt) = 0.1219, while the correlation of Z2t with êFt remains similar

7The figures for these cases are omitted to conserve space but are available upon request.
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to the base cases, with ρ (Z2t, êFt) = −0.1617. The correlation between Z1t and Z2t is -0.2

in this case. Figure (15) presents the dynamic responses for the system (UMt, ipt, UFt)
′ . The

pattern of responses is qualitatively similar to the base cases presented above. But the SVAR

parameter estimates exhibit more sampling error. This leads to error bands for the dynamic

responses of UMt to eipt and for ipt to eMt to be wider than in the corresponding base case for

the same system.

In our experience, the bootstrap standard error bands tend to be wide when the external

variables produce instruments that only weakly identify some elements of B. Our analysis

requires E (Z2teMt) 6= 0 to identify the column that gives the effects of eMt shocks. In cases

when the GMM estimates of E (Z1tηY t) and E (Z1tηFt) are imprecise, we find BMY and BYM

are poorly identified and the bootstrap error bands for the dynamic responses of UMt to eipt and

for ipt to eMt are then wide. An inspection of the closed-form solutions for B shows why. The

BMY and BYM parameters are highly nonlinear functions of E (Z1tηY t) and E (Z1tηFt), so that

small changes in the latter lead to large differences in the solution for BMY and BYM . Since

the bootstrap repeatedly makes draws from the distribution of the GMM estimates it depends

on the variance of the point estimates. The bootstrap standard errors are correspondingly

large when the point estimates of the variance of E (Z1tηY t) and E (Z1tηFt) and the other

parameters are imprecise. Thus, while our approach provides a new way to estimate the SVAR,

the methodology requires Assumption A to be satisfied.

An appeal of our estimation strategy is that the estimates provide some guide to the validity

of Assumption A for various external instruments used. As an example, consider the system

Xt = (UMt, ipt, UFt)
′. Our analysis requires E (Z2teFt) 6= 0 to identify the column that gives the

effects of eFt shocks. When we set S2t equal to the Baa-fed funds rate spread (rather than the

Baa rate itself), while keeping S1t the same as in our baseline case, the resulting Z2t becomes

weakly correlated with êFt, so the financial uncertainty shock is poorly identified. The same

finding arises when S2t is set equal to the growth in the spot market oil price.

The standard errors are also large when we use the Baa-fed funds rate spread as S1t. With

this choice of S1t, the resulting Z1t is weakly correlated with êMt and so the macro uncertainty

shock is poorly identified. When S1t or alternatively S2t is set equal to ∆noit, the estimated

BY Y element is close to zero, indicating that the real activity shock is poorly identified. This

can be understood by recalling that the ipt shock is identified off of movements in real activity

that are uncorrelated with the instruments, which are components of S1t and S2t. If S1t or S2t
are themselves some measure of real activity (such as orders), there may be little uncorrelated

variation left to identify the ipt shock.

A third example is when S1t is the small stock index return, then BMY and BYM are poorly

identified in our sample, for the same reasons as described above: the bootstrap leads to large

variation in the estimates of BMY and BYM if the sample variance of these parameters is large.
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Indeed, compared to our baseline cases, the sample variance of E (Z1tηY t) is two times larger

when S1t is the small stock index return, while the sample variance of E (Z1tηFt) is three times

larger.

6.5 Alternative Assumptions on St

The identification strategy relies on the use of external variables St that are not part of the

SVAR we seek to identify. This inevitably imposes certain restrictions on a larger VAR that

includes St. We now make these restrictions precise and consider its robustness.

Let Xt = (UMt, Yt, UFt)
′ be the endogenous variables of interest and St = (S1t, S2t)

′ be the

two variables used to construct the external instruments. We express (1) using the equivalent

structural econometric model representation:

A0Xt = k + A1Xt−1 + A2Xt−2 + · · ·+ ApXt−p + Σe, (13)

where A0 = H−1, and Aj = H−1Aj. A five variable VAR(1) in (X′t,S
′
t)
′ can therefore be

written (
AXX,0 AXS,0

ASX,0 ASS,0

)(
Xt

St

)
=

(
AXX,1 AXS,1

ASX,1 ASS,1

)(
Xt−1
St−1

)
+

(
ΣX 0
0 ΣS

)(
eXt
eSt

)
.

The relation between the reduced form and the structural shocks is now(
ηXt
ηSt

)
=

(
AXX,0 AXS,0

ASX,0 ASS,0

)−1(
ΣXeXt
ΣSeSt

)
=

(
BXX BXS

BSX BSS

)(
eXt
eSt

)
. (14)

By substituting out St, it is straightforward to show that[
(AXX,0−AXX,1L)+(AXS,0−AXS,1L)CSX(L)

]
Xt = −(AXS,0−AXS,1L)CSS(L)ΣSeSt+ΣXeXt

where CSX(L) = CSS(L)(ASX,0 −ASX,1L), CSS(L) = −(ASS,0 −ASS,1L)−1. Without further

restrictions, Xt is a VARMA(1,1) driven by a combination of shocks to Xt as well as St.

Our maintained assumption in the base case studied above is AXS,0 = AXS,1 = 03×2. Under

this assumption, the terms that multiply into CSX(L) and CSS(L) drop out, giving

AXX,0Xt = AXX,1Xt−1 + ΣXeXt

which is our base case VAR with p = 1. For arbitrary p ≥ 1, the assumptions AXS,j = 0 for all

j ≥ 0 effectively restricts the five variable system to be block recursive, with the three variables

in Xt ordered ahead of the two variables in St. Since the dynamic responses of St are not of

direct interest, the block recursive assumption permits us to analyze the smaller VAR for Xt.

However, though the assumption that AXS,j = 0 for all j is necessary to justify the smaller

three variable VAR, it is stronger than is necessary for the identification of eXt. The reason
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is that, provided AXS,0 = 0, BXS will be zero. The lower block triangularity of B implies

that AXX,0 can be identified by Assumption A along with the covariance structure of ηXt
associated with the five variable system. In other words, we can in principle leave AXS,j for

j ≥ 1 unconstrained to allow the effects of eXt to feedback to Xt through lags of St.

To entertain this possibility, we estimate a five variable SVAR in (UMt, Yt, UFt, S1t, S2t)
′ as

well as a four variable system in (UMt, Yt, UFt, St)
′, both imposing AXS,0 = 0. The results for

the four and five variable systems are similar and we report results for the four variable case.

In this four variable VAR, St is the return on the CRSP value-weighted stock market index.

The vector of reduced-form innovations is ηt = (ηMt, ηY t, ηFt, ηSt)
′. As just discussed, we can

identify BXX from the first three equations of this VAR alone using IPIV. The only difference

from the base case is that for j = M,Y, F , η̂j is a vector of residuals from a regression of Xj

on lags UM , Y, UM and lags of S. Since AXS,0 = 0 by assumption, it holds that BXS = 0. It

only remains to identify BSX and BSS. These can be recovered by least squares regression of

η̂St on êMt, êY t, êFt to give a fitted residual

ε̂St = ηSt − B̂SM êMt − B̂SY êY t − B̂SF êFt

where B̂SX = (B̂SM , B̂SY , B̂SF )′ are the OLS estimates, and B̂SS is the standard deviation of

ε̂St. The SVAR estimates are then used to compute impulse responses for the four variable

system.

Figure 16 compares the impulse responses forXt = (UMt, Yt, UFt)
′ to shocks eX from the four

and three variable VARs. The responses are little different. The data thus appear consistent

with the assumption that AXS,j = 0 for j ≥ 1.

7 Conclusion

A growing body of research establishes uncertainty as a feature of deep recessions but leaves

open two key questions: is uncertainty primarily a source of business cycle fluctuations or an

endogenous response to them? And where does uncertainty originate? There is no theoretical

consensus on the question of whether uncertainty is primarily a cause or a consequence of

declines in economic activity. In most theories, it is modeled either as a cause or an effect, but

not both, underscoring the extent to which this question is fundamentally an empirical matter.

The objective of this paper is to address both questions econometrically using small-scale

structural VARs that are general enough to nest the range of theoretical possibilities in empirical

tests. Commonly used recursive identification schemes cannot achieve this objective, since by

construction they rule out the possibility that uncertainty and real activity could influence one

another contemporaneously. The econometric model employed in this paper nests the recursive

identification scheme, and we find that it is strongly rejected by the data. An empirical model

31



in which uncertainty and real activity simultaneously influence each other fits the data far

better than one in which these relationships are restricted by timing assumptions that prohibit

contemporaneous feedback.

To identify dynamic causal effects, this paper takes an alternative identification approach

by using external instruments that we construct in a novel way to be valid under credible in-

terpretations of the structural shocks. We call this approach iterative projection IV (IPIV).

In addition, our empirical analysis explicitly distinguishes macro uncertainty and uncertainty

about real activity from financial uncertainty, thereby allowing us to shed light on the origins

of uncertainty shocks that drive real activity lower, to the extent that any of them do. The

econometric framework allows uncertainty to be an exogenous source of business cycle fluctu-

ations, or an endogenous response to them, or any combination of the two, without restricting

the timing of these relationships. Underlying our approach is a maintained theoretical assump-

tion that variables such as stock market returns, while endogenous, are nevertheless driven by

distinct sources of stochastic variation, some of which satisfy exogeneity restrictions required

to identify independent structural shocks.

Estimates of the econometric model are used to inform the nature of these dynamic relation-

ships in U.S. data. The results from these estimations show that sharply higher uncertainty

about real economic activity in recessions is fully an endogenous response to business cycle

fluctuations, while uncertainty about financial markets is a likely source of them. Exogenous

declines in economic activity have quantitatively large effects that drive real economic un-

certainty endogenously higher. Financial uncertainty, by contrast, is dominated by its own

shocks, implying that it is primarily an exogenous impulse vis-a-vis real activity and macro

uncertainty. These results reinforce the hypothesis laid out in much of theoretical uncertainty

literature, namely that uncertainty shocks are a source of business cycle fluctuations. But they

also stand in contrast to this literature, which has emphasized the role of uncertainty fluctu-

ations in productivity and other real economic fundamentals. The findings here imply that

the uncertainty shocks that drive real activity lower appear to have their have origins, not in

measures of real activity, but in financial markets.
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Appendix

Closed-Form Solution for B

Lemma 2 The solution to the system (7) exists and is unique if E [eFtZ2] 6= 0 and E [eMtZ1] 6=
0.

Proof. To facilitate the presentation throughout the proof, let

ηt = Bet

B =

[
BM
3×1

,BY
3×1

,BF
3×1

]
Ω = E (ηtη

′
t)

and we have two external instruments (Z1, Z2) satisfying

E [eFtZ1] ≡ φ1F 6= 0, E [eMtZ1] ≡ φ1M 6= 0 and E [eY tZ1] = 0

E [eFtZ2] ≡ φ2F 6= 0 and E [eMtZ2] = E [eY tZ2] = 0

Then

E [ηtZ2] = E [BetZ2] = B

 0
0
φ2F

 = φ2FBF (A.1)

Thus BF exists if φ2F 6= 0. Observe that, since

Ω = E [ηtη
′
t] = BB′

we have

B′Ω−1B = I

hence, ∀i, j = M,Y, F

B′jΩ
−1/2Ω−1/2Bi =

{
1 if i = j
0 if i 6= j

.

Therefore,

E [ηtZ2]
′Ω−1E [ηtZ2] = (φ2FBF )′Ω−

1
2Ω−

1
2 (φ2FBF ) = φ22F

This implies that the scale φ2F is identified up to a sign by

φ2F = ±
√
E [ηtZ2] Ω

−1E [ηtZ2]. (A.2)

Next,

E [ηtZ1] = E [BetZ1] = B

 φ1M
0
φ1F

 = φ1MBM + φ1FBF



But note that

E [ηtZ2] Ω
−1E [ηtZ1] = φ2FBF ′Ω

−1 (φ1MBM + φ1FBF )

= φ2FBF ′ (BB′)
−1

(φ1MBM + φ1FBF )

= φ2Fφ1F

This implies that φ1F is identified as

φ1F =
E [ηtZ2] Ω

−1E [ηtZ1]

φ2F

which in turn implies

φ1MBM = E [ηtZ1]−
E [ηtZ2]

φ2F
φ1F . (A.3)

Thus solution to BM exists if φ1M 6= 0. Furthermore, note that(
E [ηtZ1]−

E [ηtZ2]

φ22F
φ1F

)′
Ω−1

(
E [ηtZ1]−

E [ηtZ2]

φ22F
φ1F

)
= Ω−

1
2BMφ

2
1MB′MΩ−

1
2 = φ21M

This implies that the parameter φ1M is identified up to a sign as

φ21M =

(
E [ηtZ1]−

E [ηtZ2]

φ22F
φ1F

)′
Ω−1

(
E [ηtZ1]−

E [ηtZ2]

φ22F
φ1F

)
. (A.4)

It only remains to identify BY . BY must satisfy

B′Y Ω−1/2Ω−1/2BY = 1

B′Y Ω−1/2Ω−1/2BM = 0 (A.5)

B′Y Ω−1/2Ω−1/2BF = 0

BY can be solved analytically using (A.5) provided that BF and BY are identified. In addition,

since the equation (A.5) is quadratic in BY , BY is unique up to sign. It follows that there

exists a τ such that

BY = τB̃Y (A.6)

where B̃Y is unique conditional on φ2F and φ1M , but the scalar τ is unique up to sign.

This shows that the solution to the system (7) exists and is unique up to sign if φ2F 6= 0,

φ1M 6= 0. Combined with unit effect normalization (3) and the restriction on the admissible

parameter space (4), B can be uniquely identified. The unit effect normalization implies BMM BMY BMF

BYM BY Y BY F

BFM BFY BFF

 =

 1 HMY HMF

HYM 1 HY F

HFM HFY 1

 σMM 0 0
0 σY Y 0
0 0 σFF

 (A.7)

=

 σMM HMY σY Y HMFσFF
HYMσMM σY Y HY FσFF
HFMσMM HFY σY Y σFF





Equation (A.7) combined with the restriction σjj > 0 for all j = M,Y, F, implies Bjj > 0 for

all j = M,Y, F . From equation (A.1), BFF > 0 pins down the sign of φ2F conditional Zt.

Since the sign of φ2F is pinned down, the signs of BMF and BY F are also pinned down by the

same restriction. From equation (A.3), BMM > 0 pins down the sign of φ1M conditional Zt and

therefore the signs of BYM and BFM are pinned down by the same restriction. It only remains

to show the uniqueness of BY . Provided that BF and BY are identified and given the closed-

form solution (A.5) that is quadratic in BY , then BY Y > 0 pins down the sign of τ conditional

Zt and hence the sign of BMY and BFY are also pinned down by the same restriction.

The system of equations defining B is

0 = E[g1(m1t;β1)] ≡ g1.

The rank condition is satisfied when J ≡∂ET [g1]/∂β
′
1 is full column rank. We check that the

rank condition is satisfied by evaluating J at the estimated parameter values for each case.

Procedure for Bootstrap

The bootstrap follows Krinsky and Robb (1986). We sample repeatedly from the joint distribu-

tion N
(
β̂,Θ̂/T

)
, where Θ̂ is the estimated GMM variance-covariance matrix to obtain B new

sets of parameters β̂
(1)
....β̂

(B)
and calculate the impulse response function values at each draw,

Υ
(1)
s,j , ...,Υ

(B)
s,j , where s indexes the VAR horizon and j the variable being shocked, and where

Υ
(b)
s,j = Υ.

s,j

(
β̂
(b)
)
. The confidence intervals are ranges for Υ

(b)
s,j created by trimming α/2 from

each tail of the resulting distribution of the function values. The parameter B is set to 10,000.

Monte Carlo

This section presents details of a Monte Carlo investigation of the projection IV application of

this paper. The Monte Carlo procedure is as follows.

1. For each MC iteration i = 1, ..., I, draw T × 1 vectors e
(i)
F , e

(i)
Y , e

(i)
M independently from

N (0, 1).

2. Generate true data for
(
U
(i)
M , Y (i), U

(i)
F

)
from the trivariate VAR

AMM (0) AMY (0) AMF (0)
AYM(0) AY Y (0) AY F (0)
AFM(0) AFY (0) AFF (0)


︸ ︷︷ ︸

A0

U
(i)
Mt

Y
(i)
t

U
(i)
Ft

 =

AMM(1) AMY (1) AMF (1)
AYM(1) AY Y (1) AY F (1)
AFM(1) AFY (1) AFF (1)


︸ ︷︷ ︸

A1

U
(i)
Mt−1
Y
(i)
t−1

U
(i)
Ft−1

+

e
(i)
Mt

e
(i)
Y t

e
(i)
Ft


(A.5)



The A0 and A1 are estimated from a VAR(1) on the historical data and the precise values

are given in the tables below.

3. Generate data for S1t and S2t by drawing T × 1 vectors e(i)S1t, e
(i)
S2t independently from

N (0, 1) distributions, where

S
(i)
1t = d10 + d11S

(i)
1t−1 + d12e

(i)
Mt + d13e

(i)
Y t + d14e

(i)
Ft + d15e

(i)
S1t + d16e

(i)
S2t (A.1)

S
(i)
2t = d20 + d21S

(i)
2t−1 + d22e

(i)
Mt + d23e

(i)
Y t + d24e

(i)
Ft + d25e

(i)
S1t

The calibration for the parameters of (A.1) is designed to roughly match the historical

correlations E (Z1êMt) , E (Z1êFt) , E (Z2êFt), as well as the correlation between Z1t and

Z2t. The precise values are given in the tables below.

4. Taking
(
U
(i)
M , Y (i), U

(i)
F , S

(i)
1t , S

(i)
2t

)′
as data, estimate a reduced form VAR counterpart to

(A.5) and obtain the reduced form shocks η̂(i)t . Initialize j = 0 and
(
ê
(i),[0]
Y , ê

(i),[0]
M

)′
=(

Y (i), U
(i)
M

)′
.

4.1 Given
(
ê
(i),[j]
Y , ê

(i),[j]
M

)
, calculate the Z by running the following regressions.

S
(i)
1t = β′1x

(i),[j]
1t + Z

(i),[j]
1t

S
(i)
2t = β′2x

(i),[j]
2t + Z

(i),[j]
2t ,

where x(i)1t = (1, S
(i)
1t−1, e

(i),[j]
Y )′ and x(i)2t = (1, S

(i)
2t−1, e

(i),[j]
Y , e

(i),[j]
M )′,

4.2 Use Z(i),[j]1 and Z(i),[j]2 and estimates vech
(
η̂
(i)
t η̂

(i)′
t

)
and vec

(
Z
(i),[j]
t ⊗ η̂(i)t

)
to impose

Assumption A of the paper and solve forB. We obtain ê(i),[j+1]Y , ê
(i),[j+1]
M , ê(i),[j+1]F from

ê(i),[j+1] =
(
B(i),[j]

)−1
η̂
(i)
t

4.3 If
∥∥ê(i),[j+1] − ê(i),[j]

∥∥ < ε (where ε is an arbitrarily small number), then set ê(i) =

ê(i),[j]. Otherwise, set j = j + 1 and return to step 4.1.

For each i, we store ê(i) and record the series correlations between the estimated and true

shocks for each j = Y,M, F ,

ρ
(i)
j = corr

(
e
(i)
jt , ê

(i)
jt

)
=

1

T

T∑
t=1

(
e
(i)
jt

)(
ê
(i)
jt

)
We report the average of the series correlations ρ(i)Y , ρ

(i)
M , ρ

(i)
F across I iterations. We also

calculate the correlations, for each t and each j = Y,M, F ,



ρjt =

1
I

∑I
i=1

(
e
(i)
jt

)(
ê
(i)
jt

)
√

1
I

∑I
i=1

(
e
(i)
jt

)2√
1
I

∑I
i=1

(
ê
(i)
jt

)2 .
We report

∑T
t=1 ρt. Finally, we report the cross-iteration average of B̂(i) and Â

(i)
0 .

We report results for T = 500. The data generating process S1t and S2t is set to mimic our

estimates using observed stock market data, which has a large idiosyncratic component est. The

results are reported in Table (A2). Under these parameterizations we generate instruments Z1t
and Z2t that have the empirically relevant correlations with the estimated eMt and eFt. These

correlations are corr (Z1t, eMt) = −0.07, corr (Z1t, eFt) = −0.13, and corr (Z2t, eFt) = −0.17.

In addition, the calibration leads Z1t and Z2t to be highly correlated (98%), very close to

the historical correlation attributable to the large common component in stock returns. The

results show that the procedure recovers a close approximation of the true structural shocks

(and therefore B matrix) when the instruments have the observed degree of relevance for the

uncertainty shocks, and when finite samples are set to be within range of the size used in this

study.
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8 Figures and Tables

Figure 1: Macro and Financial Uncertainty Over Time
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The upper panel plots the time series of the macro uncertainty UM , expressed in standardized units. The

lower panel shows the time series of financial uncertainty UF expressed in standardized units. The vertical lines

correspond to the NBER recession dates. The horizontal line corresponds to 1.65 standard deviations above

the unconditional mean of each series (which has been normalized to zero). Correlations with the 12-month

moving average of IP growth are reported. The black dots represent months when uncertainty is 1.65 standard

deviations above its unconditional mean. The data are monthly and span the period 1960:07 to 2015:04.



Figure 2: Time Series of e Shock from SVAR System (UM , ip, UF )′
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The horizontal line corresponds to 3 standard deviations above/below the unconditional mean of each series.

The shocks e = B−1ηt are reported, where ηt is the residual from VAR(6) of (UM , ip, UF )
′ and B = A−1Σ

1
2 .

Skewness is defined as s =
∑T

t (et−ē)3/T
V ar(e) . Kurtosis is defined as κ =

∑T
t (et−ē)4/T
[V ar(e)]2

. The sample spans the period

1960:07 to 2015:04.



Figure 3: Dynamic Responses in SVAR (UM , ip, UF )′
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 4: Dynamic Responses in SVAR (UM , emp, UF )′
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 5: Dynamic Responses in SVAR(UM , noi, UF )′
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 6: Large Shock Episodes in SVAR(UM , Y, UF )′
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The figure exhibits shocks that are at least 2 standard deviations above the unconditional mean for eM and eF

and below for eY for three cases where Y = ip, emp,Q1. The shocks e = B−1ηt are reported, where ηt is the

residual from VAR(6) and B = A−1Σ
1
2 . The horizontal line corresponds to 3 standard deviations shocks. The

sample spans the period 1960:07 to 2015:04.



Figure 7: Real Uncertainty Over Time
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This plot shows time series of UR, expressed in standardized units. The vertical lines correspond to the NBER

recession dates. The horizontal line corresponds to 1.65 standard deviations above the unconditional mean of

each series (which has been normalized to zero). Correlations with the 12-month moving average of IP growth

are reported. The black dots represent months when UR is 1.65 standard deviations above its unconditional

mean. The data are monthly and span the period 1960:07 to 2015:04.



Figure 8: Dynamic Responses in SVAR (UR, emp, UF )′
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 9: Large Shock Episodes in SVAR(UR, Y, UF )′
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The figure exhibits shocks that are at least 2 standard deviations above the unconditional mean for eR and eF

and below for eY for four cases where Y = ip, emp,Q1, noi. The shocks e = B−1ηt are reported, where ηt is

the residual from VAR(6) and B = A−1Σ
1
2 . The horizontal line corresponds to 3 standard deviations shocks.

The sample spans the period 1960:07 to 2015:04.



Figure 10: Price uncertainty
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The upper panel plots Uπ and Uxπ where the latter excludes uncertainties for five volatile sub-series defined in

the text, expressed in standardized units. The five series are: PPI intermediate materials, PPI crude materials,

oil, PPI metals and metal products, and CPI transportation. The middle and lower panel exhibit shocks that

are at least 2 standard deviations above the unconditional mean for Uπ and Uxπ . The shaded vertical bars

correspond to the NBER recession dates. Correlations with the 12-month moving average of IP growth are

reported. The data are monthly and span the period 1960:07 to 2015:04.



Figure 11: Dynamic Responses in SVAR (Uπ, emp, UF )′
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 12: Dynamic Responses in SVAR (UM , Q1, UF )′
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 13: Dynamic Responses in SVAR(UM (12) , emp, UF (12))′
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 14: Dynamic Responses using Recursive Identification with Order (UF , UM , ip)
′
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 15: Dynamic Responses in SVAR (UM , ip, UF )′
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Moody’s Seasoned Baa corporate bond yield Baat is used to construct Z1 and the CRSP excess return to

construct Z2. Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage

points. The sample spans the period 1960:07 to 2015:04.



Figure 16: Dynamic Responses in SVAR (UM , ip, UF , St)
′ v.s. (UM , ip, UF )′
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St is the CRSP value weighted average returns. Response units are reported in percentage points. The sample

spans the period 1960:07 to 2015:04.



Table 1: Sample Statistics

Panel A: Correlations between Instruments and Shocks

SV AR (UM , ip, UF )
′

(UM , emp, UF )
′

(UM , Q1, UF )
′

(UM , noi, UF )
′

ρ (Z1t, êMt) −0.0744 −0.0680 −0.0708 −0.0509

(0.0041) (0.0037) (0.0039) (0.0028)

ρ (Z1t, êFt) −0.1701 −0.1812 −0.1742 −0.1913

(0.0093) (0.0099) (0.0095) (0.0105)

ρ (Z2t, êFt) −0.1557 −0.1687 −0.1594 −0.1752

(0.0093) (0.0101) (0.0096) (0.0106)

ρ (Z1t, êY t) 0.0000 0.0000 0.0000 0.0000

ρ (Z2t, êY t) 0.0000 0.0000 0.0000 0.0000

ρ (Z2t, êMt) 0.0000 0.0000 0.0000 0.0000

Panel B: Estimates of Σ

σMM 0.0066 0.0076 0.0066 0.0085

(0.0010) (0.0009) (0.0010) (0.0011)

[0.041, 0.086] [0.005, 0.010] [0.004, 0.009] [0.006, 0.010]

σY Y 0.0047 0.0009 0.0016 0.0464

(0.0007) (0.0002) (0.0002) (0.0092)

[0.003, 0.006] [0.001, 0.001] [0.001, 0.002] [0.025, 0.060]

σFF 0.0260 0.0230 0.0264 0.0232

(0.0029) (0.0025) (0.0030) (0.0025)

[0.017, 0.031] [0.013, 0.029] [0.017, 0.031] [0.014, 0.029]

Panel A reports the correlation between the estimated uncertainty shocks and the instruments. Panel B reports

estimates of Σ that give the standard deviation of each structural shock. Asymptotic standard errors are

reported in brackets and bootstrapped 90 percent confidence intervals are reported in parentheses. Bolded

numbers indicate statistical significance at 10 percent level. The data are monthly and span the period 1960:07

to 2015:04.



Table 2: Tests of Validity of Recursive Restriction in System (UM , Y, UF )′

Ordering: (UM , ip, UF )′ (UM (12) , ip, UF (12))′

H0: BRY = BRF = BY F = 0 239.54 127.75

[110.79] [38.60]

H0: BY R = BY F = BRF = 0 25.96 275.35

[65.89] [47.22]

H0: BRY = BRF = BFY = 0 225.18 123.08

[113.74] [43.26]

χ25% (3) 7.81 7.81

(UM , emp, UF )′ (UM (12) , emp, UF (12))′

H0: BRY = BRF = BY F = 0 236.29 113.63

[79.12] [47.42]

H0: BY R = BY F = BRF = 0 70.73 229.54

[53.61] [69.62]

H0: BRY = BRF = BFY = 0 228.85 116.15

[88.95] [63.02]

χ25% (3) 7.81 7.81

The table reports the Wald test statistic for testing the null hypothesis given in the column. The bold indicates that Wald test rejects the null at 95

percent level according to χ2(3) distribution. The SVAR system is solved using GMM and delta method is used for computing the standard error.

Estimates of B are based on the SVAR identified with external instruments described in the text. The mean of bootstrap Wald statistics is reported in

parenthesis. The sample size spans 1960:07 to 2015:04.



Table 3: Variance Decomposition for SVARs in System (UM , Y, UF )′

SVAR (UM , ip, UF )′ SVAR (UM , emp, UF )′ SVAR (UM , noi, UF )′

Fraction variation in UM Fraction variation in UM Fraction variation in UM
s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock noi Shock UF Shock

1 0.371 0.527 0.102 0.531 0.376 0.093 0.679 0.198 0.123

12 0.419 0.409 0.172 0.601 0.249 0.150 0.706 0.098 0.196

∞ 0.420 0.368 0.212 0.619 0.220 0.161 0.739 0.116 0.145

smax 0.511 0.528 0.215 0.664 0.384 0.161 0.740 0.212 0.199

[0.25, 0.79] [0.22, 0.71] [0.05, 0.57] [0.34, 0.87] [0.15, 0.59] [0.06, 0.46] [0.37, 0.94] [0.04, 0.50] [0.03, 0.53]

Fraction variation in ip Fraction variation in emp Fraction variation in noi

s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock noi Shock UF Shock

1 0.401 0.556 0.043 0.352 0.402 0.246 0.206 0.513 0.280

12 0.121 0.659 0.220 0.075 0.406 0.519 0.144 0.350 0.507

∞ 0.082 0.691 0.227 0.124 0.424 0.453 0.162 0.348 0.489

smax 0.415 0.696 0.272 0.373 0.424 0.587 0.275 0.513 0.507

[0.19, 0.61] [0.34, 0.94] [0.04, 0.73] [0.21, 0.63] [0.16, 0.85] [0.16, 0.92] [0.13, 0.58] [0.20, 0.82] [0.24, 0.75]

Fraction variation in UF Fraction variation in UF Fraction variation in UF
s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock noi Shock UF Shock

1 0.029 0.023 0.948 0.140 0.119 0.743 0.078 0.195 0.728

12 0.080 0.041 0.878 0.243 0.133 0.624 0.153 0.218 0.630

∞ 0.121 0.131 0.748 0.332 0.138 0.530 0.233 0.197 0.570

smax 0.128 0.131 0.950 0.339 0.152 0.744 0.233 0.218 0.732

[0.03, 0.47] [0.05, 0.52] [0.53, 0.99] [0.08, 0.64] [0.03, 0.58] [0.33, 0.95] [0.02, 0.60] [0.05, 0.63] [0.36, 0.93]

Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the

column heading. The row denoted “s = smax”reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by

the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples

using the procedure described in the Appendix. The data are monthly and span the period 1960:07 to 2015:04.



Table 4: Variance Decomposition for SVARs in System (UR, Y, UF )′

SVAR (UR, ip, UF )′ SVAR (UR, emp, UF )′ SVAR (UR, noi, UF )′

Fraction variation in UR Fraction variation in UR Fraction variation in UR
s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock noi Shock UF Shock

s = 1 0.359 0.513 0.128 0.483 0.405 0.112 0.587 0.281 0.132

s = 12 0.253 0.463 0.285 0.409 0.292 0.299 0.445 0.200 0.355

s =∞ 0.302 0.407 0.291 0.419 0.263 0.318 0.420 0.180 0.401

s = smax 0.302 0.407 0.291 0.519 0.405 0.318 0.601 0.285 0.401

[0.16, 0.72] [0.18, 0.80] [0.07, 0.63] [0.23, 0.80] [0.13, 0.69] [0.07, 0.62] [0.18, 0.90] [0.05, 0.68] [0.10, 0.67]

Fraction variation in ip Fraction variation in emp Fraction variation in noi

s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock noi Shock UF Shock

s = 1 0.391 0.577 0.032 0.378 0.392 0.230 0.268 0.437 0.295

s = 12 0.295 0.456 0.249 0.220 0.217 0.563 0.114 0.259 0.627

s =∞ 0.211 0.326 0.463 0.092 0.064 0.845 0.112 0.256 0.632

s = smax 0.397 0.580 0.463 0.392 0.395 0.845 0.342 0.437 0.632

[0.10, 0.73] [0.22, 0.89] [0.08, 0.84] [0.13, 0.68] [0.14, 0.74] [0.32, 0.96] [0.07, 0.71] [0.09, 0.80] [0.29, 0.80]

Fraction variation in UF Fraction variation in UF Fraction variation in UF
s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock noi Shock UF Shock

s = 1 0.010 0.059 0.941 0.050 0.182 0.768 0.030 0.249 0.721

s = 12 0.011 0.083 0.906 0.094 0.200 0.707 0.047 0.285 0.668

s =∞ 0.117 0.093 0.790 0.214 0.167 0.619 0.083 0.255 0.662

s = smax 0.117 0.093 0.943 0.217 0.216 0.774 0.083 0.286 0.730

[0.04, 0.35] [0.03, 0.52] [0.56, 0.99] [0.06, 0.49] [0.04, 0.64] [0.37, 0.97] [0.01, 0.36] [0.06, 0.63] [0.40, 0.92]

Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the

column heading. The row denoted “s = smax”reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by

the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples

using the procedure described in the Appendix. The data are monthly and span the period 1960:07 to 2015:04.



Table 5: Variance Decomposition for SVARs in System (UM (12) , Y, UF (12))′

SVAR (UM (12) , ip, UF (12))′ SVAR (UM (12) , emp, UF (12))′ SVAR (UM (12) , noi, UF (12))′

Fraction variation in UM (12) Fraction variation in UM (12) Fraction variation in UM (12)

s UM (12) Shock ip Shock UF (12) Shock UM (12) Shock emp Shock UF (12) Shock UM (12) Shock noi Shock UF (12) Shock

1 0.548 0.432 0.020 0.621 0.360 0.019 0.707 0.276 0.017

12 0.763 0.219 0.018 0.776 0.212 0.012 0.903 0.091 0.006

∞ 0.635 0.206 0.159 0.682 0.135 0.183 0.824 0.081 0.087

smax 0.813 0.432 0.165 0.682 0.135 0.183 0.908 0.328 0.087

[0.48, 0.94] [0.17, 0.66] [0.06, 0.51] [0.37, 0.96] [0.10, 0.62] [0.09, 0.52] [0.55, 0.99] [0.07, 0.64] [0.04, 0.40]

Fraction variation in ip Fraction variation in emp Fraction variation in noi

s UM (12) Shock ip Shock UF (12) Shock UM (12) Shock emp Shock UF (12) Shock UM (12) Shock noi Shock UF (12) Shock

1 0.379 0.591 0.030 0.342 0.355 0.303 0.223 0.406 0.361

12 0.124 0.757 0.119 0.076 0.433 0.491 0.264 0.345 0.391

∞ 0.202 0.697 0.101 0.269 0.482 0.250 0.309 0.321 0.371

smax 0.382 0.772 0.145 0.342 0.482 0.519 0.309 0.445 0.429

[0.20, 0.71] [0.42, 0.93] [0.04, 0.59] [0.23, 0.76] [0.17, 0.86] [0.18, 0.88] [0.21, 0.64] [0.16, 0.80] [0.19, 0.76]

Fraction variation in UF (12) Fraction variation in UF (12) Fraction variation in UF (12)

s UM (12) Shock ip Shock UF (12) Shock UM (12) Shock emp Shock UF (12) Shock UM (12) Shock noi Shock UF (12) Shock

1 0.091 0.002 0.907 0.273 0.090 0.637 0.291 0.147 0.562

12 0.165 0.017 0.819 0.389 0.108 0.503 0.423 0.168 0.409

∞ 0.200 0.162 0.638 0.448 0.165 0.387 0.519 0.151 0.330

smax 0.206 0.162 0.907 0.464 0.165 0.637 0.519 0.170 0.584

[0.04, 0.71] [0.05, 0.46] [0.37, 0.99] [0.09, 0.76] [0.04, 0.59] [0.20, 0.94] [0.08, 0.81] [0.04, 0.60] [0.20, 0.89]

Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the

column heading. The row denoted “s = smax”reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by

the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples

using the procedure described in the Appendix. The data are monthly and span the period 1960:07 to 2015:04.



Appendix Figures and Tables

Figure A1: Dynamic Responses using 1987 Crash Dummies in SVAR(UM , emp, UF )′
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Bootstrapped 90% error bands appear as dashed lines. Dummies for 1987:10 and 1989:11 are included in

VAR estimation. Response units are reported in percentage points. The sample spans the period 1960:07 to

2015:04.



Figure A2: Pre-2008 Dynamic Responses in SVAR (UM , emp, UF )′

0 20 40 60

−1

−0.5

0

0.5

1

1.5

UM Shock

U
M

0 20 40 60
−0.6

−0.4

−0.2

0

0.2

0.4

UM Shock

e
m
p

0 20 40 60

−1

0

1

2

3

4

UM Shock

U
F

0 20 40 60

−1

−0.5

0

0.5

1

1.5

emp Shock

U
M

0 20 40 60
−0.6

−0.4

−0.2

0

0.2

0.4

emp Shock

e
m
p

0 20 40 60

−1

0

1

2

3

4

emp Shock

U
F

0 20 40 60

−1

−0.5

0

0.5

1

1.5

UF Shock

U
M

0 20 40 60
−0.6

−0.4

−0.2

0

0.2

0.4

UF Shock

e
m
p

0 20 40 60

−1

0

1

2

3

4

UF Shock

U
F

Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2007:12.



Table A1: Tests of Validity of Recursive Restriction in System (UR, Y, UF )′

Ordering: (UR, ip, UF )′ (UR (12) , ip, UF (12))′

H0: BRY = BRF = BY F = 0 133.69 303.24

[71.23] [77.88]

H0: BY R = BY F = BRF = 0 29.11 167.57

[35.83] [52.54]

H0: BRY = BRF = BFY = 0 130.41 306.34

[77.34] [72.79]

χ25% (3) 7.81 7.81

(UR, emp, UF )′ (UR (12) , emp, UF (12))′

H0: BRY = BRF = BY F = 0 178.68 327.91

[62.11] [76.35]

H0: BY R = BY F = BRF = 0 85.58 244.85

[46.43] [67.50]

H0: BRY = BRF = BFY = 0 154.76 310.66

[76.22] [78.04]

χ25% (3) 7.81 7.81

The table reports the Wald test statistic for testing the null hypothesis given in the column. The bold indicates that Wald test rejects the null at 95

percent level according to χ2(3) distribution. The SVAR system is solved using GMM and delta method is used for computing the standard error.

Estimates of B are based on the SVAR identified with external instruments described in the text. The mean of bootstrap Wald statistics is reported in

parenthesis. The sample size spans 1960:07 to 2015:04.



Table A2: Monte Carlo

Data Generating Process:
S

(i)
1t = 0.0281 + 0.212S

(i)
1t−1 − 0.0033e

(i)
Mt + 0.00005e

(i)
Y t − 0.005e

(i)
Ft + 0.0425e

(i)
S2t + 0.007e

(i)
S1t

S
(i)
2t = 0.0110 + 0.212S

(i)
2t−1 − 0.0002e

(i)
Mt − 0.00007e

(i)
Y t − 0.007e

(i)
Ft + 0.0425e

(i)
S2t

Panel A: Correlations between True and Generated Structural Shocks

Average over Iterations Average over Iterations and t
1
I

∑I
i=1

∣∣∣ρ(i)M ∣∣∣ = 0.9770 1
T

∑T
t=1 |ρMt| = 0.9768

1
I

∑I
i=1

∣∣∣ρ(i)Y ∣∣∣ = 0.9795 1
T

∑T
t=1 |ρY t| = 0.9792

1
I

∑I
i=1

∣∣∣ρ(i)F ∣∣∣ = 0.9741 1
T

∑T
t=1 |ρFt| = 0.9740

1
I

∑I
i=1

∣∣∣corr (Z(i)1t , Z(i)2t )∣∣∣ = 0.9823

Panel B: Correlations between Instruments and Shocks: Average over Iterations

ê
(i)
M ê

(i)
Y ê

(i)
F e

(i)
M e

(i)
Y e

(i)
F

Z
(i)
1 −0.0714 0.0000 −0.1287 −0.0751 0.0063 −0.1214

Z
(i)
2 −0.0000 0.0000 −0.1733 −0.0045 0.0030 −0.1692

Panel C: True and Estimated Parameters

B =

 0.0066 −0.0071 0.0027

0.0042 0.0047 −0.0014

0.0049 0.0050 0.0260

 1
I

∑I
i=1 B(i) =

 0.0068 −0.0065 0.0030

0.0039 0.0048 −0.0014

0.0033 0.0058 0.0254


Σ =

 0.0066 0 0

0 0.0047 0

0 0 0.0260

 1
I

∑I
i=1 Σ(i) =

 0.0068 0 0

0 0.0048 0

0 0 0.0254


A1 =

 0.4906 0.7834 −0.0071

−0.3378 0.4309 0.0527

−0.0502 −1.0000 0.9272

 1
I

∑I
i=1 A

(i)
1 =

 0.5298 0.7490 −0.0207

−0.3173 0.4691 0.0575

0.0491 −0.8935 0.8780


The sample size T = 500, number of iteration I = 100, inner loop tolerance is set to be 10−7. e(i) is the true

value generated from DGP and ê(i) is the corresponding converged value in iteration i, ρ(i) = corr
(
e(i), ê(i)

)
.

The initial guess for the inner loop is set to be (e
(i),[0]
Y , e

(i),[0]
M ) = (Y (i), U

(i)
M ). The DGP coeffi cient A0 and A1

are set to be the ones from reduced form VAR(1) of system (UM , ip, UF )
′
.




