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1 Introduction

A large literature in macroeconomics investigates the relationship between uncertainty and
business cycle fluctuations. Interest in this topic has been spurred by a growing body of evidence
that uncertainty rises sharply in recessions. This evidence is robust to the use of specific proxy
variables such as stock market volatility and forecast dispersion as in Bloom (2009), or a broad-
based measure of macroeconomic uncertainty, as in Jurado, Ludvigson, and Ng (2015) (JLN
hereafter). But while this evidence substantiates a role for uncertainty in deep recessions,
the question of whether uncertainty is an exogenous source of business cycle fluctuations or
an endogenous response to economic fundamentals is not fully understood. Existing results
are based on convenient but restrictive identifying assumptions and have no explicit role for
financial markets, even though the uncertainty measures are correlated with financial variables.
This paper considers a novel identification strategy to disentangle the causes and consequences
of real and financial uncertainty.

The question of causality and the identification of exogenous variation in uncertainty is
a long-standing challenge of the uncertainty literature. The challenge arises in part because
there is no theoretical consensus on whether the uncertainty that accompanies deep recessions
is primarily a cause or effect (or both) of declines in economic activity. Theories in which
uncertainty is defined as the time varying volatility of a fundamental shock cannot address this
question because, by design, there is no feedback response of uncertainty to other shocks if the
volatility process is specified to evolve exogenously. And, obviously, models in which there is no
exogenous variation in uncertainty cannot be used to analyze the direct effects of uncertainty
shocks. It is therefore not surprising that many theories for which uncertainty plays a role in
recessions reach contradictory conclusions on this question, as we survey below. It is clear that
the body of theoretical work on uncertainty does not provide precise identifying restrictions for
empirical work.

A separate challenge of the uncertainty literature pertains to the origins of uncertainty. Clas-
sic theories assert that uncertainty originates from economic fundamentals such as productivity,
and that such real economic uncertainty, when interacted with market frictions, discourages real
activity. But some researchers have argued that uncertainty dampens the economy through its
influence on financial markets (e.g., Gilchrist, Sim, and Zakrajsek (2010)). Moreover, as sur-
veyed by Ng and Wright (2013), all the post-1982 recessions have origins in financial markets,
and these recessions have markedly different features from recessions where financial markets
play a passive role. From this perspective, if financial shocks are subject to time-varying
volatility, financial market uncertainty—as distinct from real economic uncertainty—could be a
key player in recessions, both as a cause and as a propagating mechanism. The Great Reces-

sion of 2008, characterized by sharp swings in financial markets, hints at such a linkage. Yet so



far the literature has not disentangled the contributions of real versus financial uncertainty to
business cycle fluctuations.

Econometric analyses aimed at understanding the role of uncertainty for business cycle
fluctuations face their own challenges. Attempts to identify the “effects” of uncertainty shocks
in existing empirical work are primarily based on recursive schemes within the framework of
vector-autoregressions (VAR).! But studies differ according to whether uncertainty is ordered
ahead of or after real activity variables in the VAR. While a recursive structure is a reasonable
starting point, any presumed ordering of the variables is hard to defend on theoretical grounds
given the range of models in the literature. Contemporaneous changes in uncertainty can arise
both as a cause of business cycle fluctuations and as a response to other shocks. Recursive
structures explicitly rule out this possibility since they presume that some variables respond
only with a lag to others.

It is with these challenges in mind that we return to the questions posed above: is uncer-
tainty primarily a source of business cycle fluctuations or a consequence of them? And what
is the relation of real versus financial uncertainty to business cycle fluctuations? The objective
of this paper is to address these questions econometrically using a small-scale structural vector
autoregression (SVAR). To confront the challenges just discussed, we take a two-pronged ap-
proach. First, our empirical analysis explicitly distinguishes macro uncertainty from financial
uncertainty. The baseline SVAR we study describes the dynamic relationship between three
variables: an index of macro uncertainty, Uy, a measure of real economic activity, Y; (e.g.,
production, employment), and a new financial uncertainty index introduced here, Ug;. Second,
rather than relying on timing assumptions for identification, we use a different identification
scheme that is less restrictive, both because it allows for simultaneous feedback between uncer-
tainty and real activity, and because it can be used to test whether a lower recursive structure
is supported by the data.

Specifically, our identification scheme relies on the existence of two external instruments for
uncertainty that are not part of the SVAR: a Z;; that is correlated with macro and financial
uncertainty but contemporaneously uncorrelated with real activity, and a Z,; that is correlated
with financial uncertainty but contemporaneously uncorrelated with both real activity and
macro uncertainty. While such ideal instruments have no empirical counterparts, we propose
an iterative projection IV (IPIV) approach to construct Z;; and Zy, with the desired properties
from observables. The approach takes a variable S; that is not in the VAR system and uses
projections to decompose it into two components, one that is correlated with a subset of the
endogenous variables of interest, and one that is orthogonal to it. The orthogonal component

is then used as an external instrumental variable (IV) for the remaining endogenous variables.

!See Bachmann, Elstner, and Sims (2013), Bloom (2009), Bloom (2014), Bekaert, Hoerova, and Duca (2013),
Gilchrist, Sim, and Zakrajsek (2010), and JLN.



In the present context, the key is to find observables that are external to our SVAR, and are
driven by a multitude of innovations including the uncertainty shocks that we are interested in.
We argue that both theory and evidence suggest that aggregate stock market returns are such
variables. Our IPIV approach therefore generates an instrument Z;; by purging the effects of
real activity shocks from stock returns, and another instrument Zs; by further purges the effects
of macro uncertainty shocks. Iteration ensures that the shocks used to generate the instruments
are consistent with those identified by our SVAR. With this procedure, instrument exogeneity
holds by construction and instrument relevance can be verified using the sample covariances
and the estimated parameters. Details are given below.

The empirical exercise also requires that appropriate measures of macro and financial un-
certainty are available. To this end, we exploit a data rich environment, working with 134
macro monthly time series and 147 financial variables. The construction of macro uncertainty
follows JLN. The same approach is used to construct a broad-based measure of financial un-
certainty that has never been used in the literature. Macro uncertainty is itself an aggregate
of uncertainties in variables from three categories: real activity, price, and financial. To better
understand the contributions of each of these categories, we also replace U, in the VAR with
an uncertainty measure based on the sub-components, one at a time. Uncertainty about real
activity is of special interest because classic uncertainty theories postulate that uncertainty
shocks have their origins in economic fundamentals and hence should show up as uncertainty
about real economic activity. We compare “short-run” uncertainty about outcomes over the

)

next one month, with “longer horizon ” uncertainty about outcomes a year hence.

Before summarizing our main results, it should be made clear that the structural shocks
we identify do not in general correspond to primitive shocks in specific economic models. Real
activity is endogenous and may respond to any number of primitive shocks (technology, mon-
etary policy, preferences, wage or price markups, government exenditures, etc.). If a SVAR
representation exists, our identified real activity shock would then be a composite of these
primitive shocks, with the restriction that this composite be orthogonal to the other shocks in
our system. The same could be said for either type of uncertainty, to the extent that these
variables are endogenous. Our objective is not, therefore, to identify primitive shocks in specific
models. Indeed, we argue that the questions raised above are ultimately empirical ones that call
out for a model-free approach. (See the literature review below for further discussion.) What
our approach offers, therefore, is something different: if there exists an SVAR in the system of
interest, then under the assumptions stipulated below, IPIV can provide a less restrictive means
of identifying dynamic causal effects when commonly used ordering or timing assumptions are
difficult to defend.

Our main results can be stated as follows. First, positive shocks to financial uncertainty are

found to cause a sharp decline in real activity that persists for many months, lending support



to the hypothesis that heightened uncertainty is an exogenous impulse that causes recessions.
These effects are especially large for some measures of real activity, notably employment and
orders. The finding that heightened uncertainty has negative consequences for real activity
is qualitatively similar to that of preexisting empirical work that uses recursive identification
schemes (e.g., Bloom (2009), JLN), but differs in that we trace the source of this result specif-
ically to broad-based financial market uncertainty rather than to various uncertainty proxies
or broad-based macro uncertainty. We also show that the converse is not supported by our
evidence: exogenous shocks to real activity have little affect on financial uncertainty.

Second, the identification scheme used here reveals something new that is not possible to
uncover under recursive schemes: macro and financial uncertainty have a very different dynamic
relationship with real activity. Specifically, unlike financial uncertainty, sharply higher macro
and real activity uncertainty in recessions is fully an endogenous response to business cycle
fluctuations. That is, negative economic activity shocks are found to cause increases in both
macro and real activity uncertainty, but there is no evidence that independent shocks to macro
or real uncertainty cause lower economic activity. Indeed the opposite is true: exogenous shocks
to both macro and real uncertainty are found to increase real activity, consistent with “growth
options” theories discussed below.

Third, we investigate the timing of large adverse shocks in the SVAR systems. No matter
which system we investigate, the Great Recession is a prominent example that is characterized
by large negative real activity shocks and a large positive financial uncertainty shock but no
corresponding large shock to real economic uncertainty, even though real economic uncertainty
itself rose to unusual heights in this episode. This finding underscores the extent to which
heightened uncertainty about real activity in recessions is more often an endogenous response
to other shocks, rather than an exogenous impulse driving business cycles.

Our results are distinct from those obtained using recursive identification. Under any re-
cursive ordering of the variables in our VAR, exogenous shocks that increase macro or real
uncertainty appear to reduce real activity, in a manner that is qualitatively similar to financial
uncertainty shocks. This result does not hold in the less restrictive SVAR studied here and
appears to be an artifact of invalid timing assumptions under recursive identification. Further
investigation reveals that the SVAR we study reflects a non-zero contemporaneous correlation
between Up; and Y;, as well as between Uy and Y;, which is inconsistent with any recursive
ordering. Tests of the validity of a recursive structure are easily rejected by the data.

The rest of this paper is organized as follows. Section 2 reviews related literature. Section
3 details the econometric framework and identification employed in our study, describes how
our instruments are constructed, and discusses the data and empirical implementation. Section
4 presents empirical results using broad-based macro uncertainty U,;;, while Section 5 reports

results for systems that isolate sub-components of U,;; corresponding to real activity and price



variables. Section 6 reports results pertaining to robustness and additional cases. Section 7

summarizes and concludes.

2 Related Literature

A large literature addresses the question of uncertainty and its relation to economic activity.?
Theories for which uncertainty plays a key role differ widely on the question of whether uncer-
tainty is primarily a cause or a consequence of declines in economic activity. In most cases, it
is modeled either as a cause or an consequence, but not both.

The first strand of the literature proposes uncertainty as a cause of lower economic growth.
This includes models of the real options effects of uncertainty (Bernanke (1983), McDonald
and Siegel (1986)), models in which uncertainty influences financing constraints (Gilchrist,
Sim, and Zakrajsek (2010), Arellano, Bai, and Kehoe (2011)), or precautionary saving (Basu
and Bundick (2012), Leduc and Liu (2012), Fernandez-Villaverde, Pablo Guerrén-Quintana, and
Uribe (2011)). These theories almost always presume that uncertainty is an exogenous shock to
some economic fundamental. Some theories presume that higher uncertainty originates directly
in the process governing technological innovation, which subsequently causes a decline in real
activity (e.g., Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012)).

A second strand of the literature postulates that higher uncertainty arises solely as a re-
sponse to lower economic growth, emphasizing a variety of mechanisms. Some of these theories
suggest that bad times incentivize risky behavior (Bachmann and Moscarini (2011), Fostel and
Geanakoplos (2012)), or reduce information and with it the forecastability of future outcomes
(Van Nieuwerburgh and Veldkamp (2006) Fajgelbaum, Schaal, and Taschereau-Dumouchel
(2014)), or provoke new and unfamiliar economic policies whose effects are highly uncertain
(Pastor and Veronesi (2013)), or create a greater misallocation of capital across sectors (Ai, Li,
and Yang (2015)), or generate endogenous countercyclical uncertainty in consumption growth
because investment is costly to reverse (Gomes and Schmid (2016)).

And yet a third literature has raised the possibility that some forms of uncertainty can
actually increase economic activity. “Growth options” theories of uncertainty postulate that
a mean-preserving spread in risk generated from an unbounded upside coupled with a limited
downside can cause firms to invest and hire, since the increase in mean-preserving risk increases
expected profits. Such theories were often used to explain the dot-com boom. Examples include
Bar-Tlan and Strange (1996), Pastor and Veronesi (2006), Kraft, Schwartz, and Weiss (2013),
Segal, Shaliastovich, and Yaron (2015).

This brief review reveals a rich literature with a wide range of predictions about the re-

lationship between uncertainty and real economic activity. Yet the absence of a theoretical

2This literature has become voluminous. See Bloom (2014) for a recent review of the literature.



consensus on this matter, along with the sheer number of theories and limited body of evidence
on the structural elements of specific models, underscores the extent to which the question of
cause and effect is fundamentally an empirical matter that must be settled in an econometric
framework with as little specific theoretical structure as possible, so that the various theoretical
possibilities can be nested in empirical tests. Commonly used recursive identification schemes
cannot achieve this objective, since by construction they rule out the possibility that uncer-
tainty and real activity could influence one another within the period. Our econometric model
nests any recursive identification scheme, so we can test whether such timing assumptions are
plausible. We find they are rejected by the data.

Our construction of instruments for uncertainty builds on work in asset pricing emphasizing
the idea that stock market variation is the result of several distinct (and orthogonal) sources
of stochastic variation, some of which are likely to be uniquely suited as instruments for our
uncertainty measures. For example, one quantitatively important component is attributable
to acyclical risk premia variation, and more generally appears to be uncorrelated with most
measures of real activity.> This component is valuable for our objective because it is exogenous
to real activity, but may still be relevant for both macro and financial uncertainty, as in our Zy;.
Yet another component could be attributable to fluctuations in factors like corporate leverage,
or in the risk aversion or “sentiment” of market participants that may be correlated with the
volatility of the stock market. In equilibrium asset pricing models, if leverage increases, volatility
of the corporate sector’s equity return increases. Thus changes in factors like leverage (and
possibly changes in risk aversion or sentiment) should be correlated with financial uncertainty,
but have little to do with real economic uncertainty. This component is valuable for our
objective because it is plausibly uncorrelated with both real activity and uncertainty about
economic fundamentals, but may still be relevant for financial market uncertainty, as in our
Zo. Consistent with the existence of this type of component, JLN document that there are
many spikes in stock market uncertainty that do not coincide with an important movement in
either real activity or macro uncertainty. These findings motivate our maintained hypothesis
that measures of equity market activity are promising non-uncertainty variable comprised of
several distinct sources of stochastic variation, two of which have the statistical characteristics
of Z1; and Zo.

Our IPIV approach is related to a recent line of econometric research in SVARs that uses

information contained in external instruments to identify structural dynamic causal effects.*

3For empirical evidence, see Lettau and Ludvigson (2013), Greenwald, Lettau, and Ludvigson (2014), Kozak
and Santosh (2014), and Muir (2014). Theoretical examples include Greenwald, Lettau, and Ludvigson (2014);
Bianchi, Ilut, and Schneider (2014); Gourio (2012);Wachter (2013); Brunnermeier and Sannikov (2012); Gabaix
and Maggiori (2013); He and Krishnamurthy (2013).

4See for example Hamilton (2003), Kilian (2008), Mertens and Ravn (2013); Stock and Watson (2008), Stock
and Watson (2012), and Olea, Stock, and Watson (2015).



Of these, Stock and Watson (2012) study uncertainty shocks, using a measure of stock market
volatility and/or a news media measure of policy uncertainty from Baker, Bloom, and Davis
(2013), as separate external instruments for identifying the effects of uncertainty shocks in a
SVAR. Our study differs in some fundamental ways. First, Stock and Watson (2012) focus
exclusively on identifying the effects of uncertainty shocks and do not attempt to simultane-
ously identify the converse, namely the effects of real activity shocks on uncertainty. Second,
the identification strategy in Stock and Watson (2012) for uncertainty shocks presumes that
the series themselves (i.e., stock market volatility, policy uncertainty) are valid instruments,
correlated with the uncertainty shock of interest but not with the other shocks. By contrast,
our approach explicitly views both the stock market and our uncertainty measures as partly
endogenous, forcing us to confront the identification quandary. Our identification assumption
is instead that the aggregate stock market return contains components that satisfy population
exogeneity restrictions, even while some of its variation is endogenous.

The study arguably closest in spirit to our identification approach is Baker and Bloom
(2013), who use disaster-like events as instruments for stock market volatility with the aim
of isolating exogenous variation in uncertainty. This has some similarities with our approach,
in that it implicitly assumes that certain components of stock market fluctuations (those as-
sociated with “disasters”) are exogenous. In contrast to our approach, exogenous events are
chosen subjectively rather than constructed econometrically to satisfy specific orthogonality
restrictions. It is of interest that we arrive at complementary conclusions, despite the differing

methodologies for identifying exogenous variation.

3 Econometric Framework

This section explains our econometric approach. Subsection 1 explains the identification strat-
egy. Subsections 2 and 3 explain the construction of external instruments and the uncertainty

measures. This is followed by a discussion of the estimation procedure.

3.1 The SVAR and Identification

Our analysis is based on a structural vector autoregressive model (SVAR). Let X; denote a

K x 1 time series. We suppose that the structural model has a p-th order vector autoregressive

representation
AgXt =k + A1Xt_1 + AQXt_Q + -+ ApXt—p + Eet. (1)
011 0 . 0
. 0 092 0 0
e (0, IK), 2— O . ) 0
0 0 - OKK



where diag (Ag) = 1. The structural shocks e; are mean zero with unit variance, and are serially

and mutually uncorrelated. The corresponding structural M A (co) representation of X, is
Xt =M+ )\ (L) AEIZet,

where W(L) = ¥y + ¥, L + UyL2 + ... with ¥y = I is a polynomial in the lag operator L of
infinite order, ¥y is the (n x n) matrix of coeflicients for the sth lag of W(L).
The reduced form representation of X, is a p-th order vector-autoregression (VAR) with

corresponding reduced-form M A (co) representation
Xy = p+¥(L)n, (2)
m -~ (07 Q)a Q=E (Tltn;) .

The structural shocks e; are related to the reduced form innovations by an invertible K x K
matrix Ag':

n, = AglEet = Be,
where B = Aj'E. We say that an SVAR for X, exists if a rotation Aj of the reduced form

shocks m, can be found such that its elements are serially and mutually uncorrelated.
The objective of the exercise is to study the dynamic effects and the relative importance of
the structural shocks. More precisely, the dynamic response to shock j is summarized by the

impulse response function (IRF):

—_— = lIlSajajj, (3)

where a’ is the jth column of A;'. The structural IRF ¥ a’/ 0;; gives the dynamic response
of Xy, to a one standard deviation shock in €;;. The quantitative importance of each shock is
given by the fraction of S-step ahead forecast error variance of X; that is attributable to each
structural shock. The coefficient matrices of ¥ (L)f1 are identified from the projection of X,
onto its lags in the reduced form VAR (2). The SVAR identification problem therefore amounts
to identifying the elements of A;' and X, from which the structural IRFs are computed.

Let Y; denote a measure of real activity. Our objective is to study the impulse and propa-
gating mechanism of uncertainty shocks, as well as how uncertainty reacts to shocks to Y;, while
explicitly distinguishing between macro and financial market uncertainty. Let K = 3. Hence
our baseline SVAR is based on X; = (Upp, Yi, Ury)', where Uy denotes macro uncertainty,
Ur; denotes financial uncertainty. The reduced form shocks 7, = (14, 7y, 7p¢) are linear
combinations of the three structural form shocks e; = (epz, eyy, € Ft)/ to macro uncertainty, real

activity, and financial uncertainty, respectively.

Ny = Bumvent + Buyeyr + Byrer:
Ny = Bywmemt + Byyeyt + Byrepy
Nry = Bruew + Bryey: + Brrepy,
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where B;; is the element of B that gives the contemporaneous effect of the jth structural shock

on the ith variable. The covariance structure of ), provides K (K + 1)/2 = 6 equations in B:
vech(€2) = vech(BB’) (4)

where vech(€2) stacks the unique elements of the symmetric matrix €. Since there are nine
unknown elements in B, we need three more conditions for exact identification.
To identify these elements, we use two external instruments, denoted Z, = (Zy,, Zo;)'. For

now, suppose that we have measures of Y;, Uy, Upy, and two generic instruments, Zy; and Zs.

Assumption A: For K = 3, let Z1; and Z5; be two instrumental variables such that

(A-i) E[theMt] = ¢1M7 E[theYt] =0, E[theFt] = ¢1F
(AZZ) E[ZQteMt] = O, E[thew] = O, E[theFt] = ¢2F‘

Assumption A are conditions for instrument exogeneity and relevance. 7, is an instrument that
is correlated with both macro and financial uncertainty, but contemporaneously uncorrelated
with real activity. By contrast, Zs; is an instrument that is correlated with financial uncertainty,
but contemporaneously uncorrelated with macro uncertainty and real activity.

Let my, = (vech(n,n;),vec(Z; ®n,))" and B, = vec(B). At the true value of 3;, denoted
3?, the model satisfies

0 = Elg; (my; 8%)], (5)

written out in full as follows:

= wvar(ny) — B%iM + BJ2\/[Y + B%IF

= war(ny) — By + Byy + Byp

= war (ngp) — By + By + Bip

= cov(ny,My) — BumBym + Buy Byy + ByrByr

cov(ny,Ng) — BynBru + Byy Bry + BrrByr

= cov (nynr) — BumBru + Buy Bry + ByrBrr

= BurE[Zauny] — By rE[Zyn )

= BrrE[Zauny,] — ByrE[Zaunp,]

= (BumBrr — BurBrm)E[Z1ny,] — (ByrBry — By mBrr)E[Z11,]
—(ByumByr — BurBym)B[Zun gy

o O O O o o o o o
I

The model has nine equations in nine unknowns. The first six are from the covariance structure.
The next two equations are due to the three moments implied by Assumption (A.ii). The final

equation is due to the three moments implied by Assumption (A.7).



Proposition 1 Under Assumption A with ¢1,; # 0,015 # 0,05 # 0, B, is identified up to

sign.

The Appendix gives an analytical proof of identification up to sign, and we show that the

covariance between the instruments and the structural shocks can be expressed as

E[Z2t€Ft]2 = E[TltZ%}/ilE[??tZ%]
ElnZa) \ - B[n, Zo]
E[Z 2 = (En2y] — =25 ) Q7Y B, Zy) — ===
[Zreem] ( yan E[Zse 4] 2] E[Zser
E(Zyer B[ Zuer] = EnZa)Q "B, Zu).

The instruments allow for identification up to sign. We use the normalization that diag (Ag) =
1, and the elements of the diagonal matrix ¥ must be strictly positive. Since A;' = BX ™!,
these restrictions amount to restrictions on the signs of diagonal elements of B. With this
normalization, a closed form solution can be obtained, which we verified to be the same as the
unique numerical solution obtained with the sign restrictions imposed.

In essence, identification in our analysis is achieved by (i) using movements in Uy and Upy
that are correlated with Zy; to identify the effects of uncertainty shocks and disentangle them
from shocks to real activity, (ii) using movements in Up; that are correlated with Zy, to identify
the effects of Up; shocks and disentangle them from macro uncertainty shocks, and (iii) using
movements in Y; that are uncorrelated with both Z;; and Z,; to identify the effects of real
activity shocks and disentangle them from uncertainty shocks.

We take the stand in this application that our uncertainty measures are potentially en-
dogenous. It is then natural to ask why we do not simply find observable instruments. We
avoid instrumenting one measure uncertainty with an uncertainty proxy (e.g., stock market
volatility). JLN find that such measures, including the options-based volatility index VXO, are
less defensible measures of uncertainty than those employed here, so it makes little sense to
instrument for the latter with the former. Options-based measures of stock market volatility
are doubly problematic because they are known to contain a large component attributable to
changes in the variance risk premium (akin to movements in risk aversion) that is orthogonal
to realized volatility (e.g., Bollerslev, Tauchen, and Zhou (2009); Carr and Wu (2009)). Thus
options-based volatilty indexes such as the VXO or VIX are widely viewed to be “fear indexes”
and are therefore less likely than stock market returns to be relevant for the uncertainty shocks
of interest. This implies that any uncertainty shock identified from movements in the VIX
or VXO could be more reflective of countercyclical time-varying risk aversion rather than an
exogenous movement in our uncertainty indexes. With these considerations in mind, the next

subsection proposes a methodology for constructing the desired instruments.
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3.2 Construction of Instruments

The external instruments Z;; and Zy; play an important role in our analysis but they have no
observable counterpart. The next step is to develop a methodology to construct these variables.
To motivate our method of IPIV, recall that two stage least squares uses projections to purge
the endogenous variations from a relevant regressor. Our IPIV approach is similar in spirit
except that we purge the endogenous variations from a observed variable that is not of first
order relevance to our VAR system. The output of such a projection is a generated external
instrument.

In the present context, we make use of observables S; that are driven not only by our
structural shocks e; = (eyy, ey and epy)’, but also by other shocks collected into an eg; that
are uncorrelated with e;. A theoretical premise of the paper is that uncertainty shocks should
be reflected in aggregate equity returns. Thus our choice of S; is a measure of stock market

returns. Under these assumptions, we may represent S; as
St =+ CyY;g + CMUMt + CFUF,: + Cs(L)St,1 + Cx(L)/Xt,1 +est (6)

where X; = (Y, Upt, Upy)'. The residual eg; could be driven by any number of shocks orthogonal
to €;. One interpretation is risk premium shocks driven by factors orthogonal to uncertainty such
as a pure sentiment shock (one not correlated with uncertainty), but the precise interpretation is
not important to what follows. Obviously, S; is an endogenous variable but it is external to the
variable X; system by assumption. From a regression point of view, omitting any component
of X; as an explanatory variable will yield inconsistently estimates of the parameters in (6).
However, we are not interested in these parameters. Our objective in considering stock-market
returns is solely to remove from it those variations due to eps; and/or ey;. More precisely, (6)

motivates two (non-structural) representations of S; (not necessarily the same variable):

Sy = Pog + Byeys + Ba(L)Si—1 + Zys (7a)
Si = Bag+ Baseyt + Bogemrt + 523([1)5#1 + Zat, (7b)

Given the theory and evidence discussed above, our maintained hypothesis is that the stock
market contains a component that is exogenous to real activity, but correlated with both un-
certainty shocks, and another component that is exogenous to both real activity and macro
uncertainty, but correlated with financial uncertainty. Equation (7a) forms an orthogonal de-
composition of S; into a component that is spanned by ey; and a component Z;; that is orthog-
onal to ey;. Similarly, equation (7b) purges the effect of ey; and ey from S; to arrive at Z.
The two variables Z;; and Zs; are our desired instruments because they satisfy Assumption A
by construction. Note, however, that Z;; and Zy; are forecastable since both U,;; and Ug; can

be serially correlated.

11



Although written as such, the S; variable on the left-hand-side of (7a) and (7b) need not
be the same. Indeed, in our application we will use two different measures of stock market
returns in (7a) and (7b), denoted Sy; and Sy, respectively. Alternatively, one of these left-
hand-side variables could be a nonstock market variable, as long as it is theoretically related to
uncertainty shocks, and has a component unrelated to real activity. We discuss the data used
for the regressands in (7a) and (7b) below.

Let my, = (1,5, Si—1, ey, earr)’ and collect the projection coefficients in (7a) and (7b) into
B, whose population value is 85. The orthogonality conditions of the two projections can be
compactly summarized by

0 — Blgs(ma; BY)]. (®)
If ey and ey were observed, then solving for the sample analog of (8) would produce estimates
of Z; and Z, that satisfy Assumption A. However, these projections are infeasible because ey
and ey, are not observed. In fact, the objective of this paper is to recover these shocks. We
therefore propose a procedure to generate Z; and Z, using an iterative approach to jointly solve
for shocks and instruments that satisfy the required exogeneity restrictions.

Let the 7' x 1 vectors ep(?), ey(® be initial guesses and @ = 0. The following steps are

repeated until convergence:

i Replace ey and ey in (7a) and (7b) by em” and ey®. The projections give Zgi) and
AL

ii Use Z;® and Z»® to solve (3, using the nine equations defined by (5). Let [35” be the

parameter estimates. Form B® from ,Bgl)
iii Update the shocks to e = (ep ) ey (FY epltl)) = (B(i))_1 7.

iv If e — ep® | < tol and [ley ) — ey®|| < tol, stop and let e = e®, 3, = Y.

Else, set i =i+ 1 and return to (i).

As shown in the Appendix, the structural shocks e are identified up to sign. These shocks
are eventually determined by estimates of B (since e = B™'n by definition). The solution
for B is unique, conditional on a converged estimate of the shocks e. This implies that the
starting values ep(?), ey () serve not only to initialize the iterative procedure, they also serve to
normalize the sign of the shocks. Below we study the estimated shocks in detail and check that
the signs are sensible (e.g., positive rather than negative shocks to uncertainty in the financial
crisis). The Appendix presents the details and output of a Monte Carlo study in which we
verify that, if the true data generating process followed a form such as (1), while stock returns
are generated from a process such as (6), the iterative procedure identifies the true structural

shocks e; up to a sign normalization.
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Several additional points about the implementation of this approach bear discussion. First,
there remains the question of choosing starting values. We initialize e§92 = Y, (where the Y;
series used for this e$2 is discussed below) and eg\(})t = Upp. These initial values remove from
Z}?) the variation in ey; attributable to direct effects of the shocks on Y;, and similarly remove
from Zé?) the variation in ey, attributable to direct effects on Y; and the variation in ez
attributable to direct effects on Uy, Iteration purges any remaining indirect effects.

Second, the iterative algorithm as described forces the exogeneity restrictions of Assump-
tion A to be satisfied by construction, but does nothing to enforce the instrument relevance
conditions, which can only be checked ex-post. Hence we place additional restrictions on the
algorithm, discarding solutions generated by starting values that lead any of the covariances
G101, P1p, OF o to be negligible. We focus on the starting values chosen because they deliver
the highest average (absolute value of) the corresponding correlations p (Z1s, enrt), p (Z1s, €rt)
and p (Zy, ept), while maintaining that each must be non-zero individually.

Third, it is known that stock returns are predicted by stock market volatility, and volatility
in the stock market carries a positive risk premium. The risk premium component is likely
correlated with uncertainty shocks, which we want to identify. Thus we are careful to avoid
starting values that purge Z, of the risk premium component. This includes iniatilizing with
residuals from an autoregression in U,;; because lags of U, are likely to be correlated with the

risk premium component.

3.3 Measuring Uncertainty and Stock Market Returns

In our estimation we work with several different aggregate measures of uncertainty, which are
indexes constructed over individual uncertainties for a large number of observable time-series.
A long-standing difficulty with empirical research on this topic has been the measurement of
uncertainty. JLN find that common uncertainty proxies contain economically large components
of their variability that do not appear to be generated by a movement in genuine uncertainty
across the broader economy. This occurs both because these proxies over-weight certain series in
the measurement of aggregate uncertainty, and because they erroneously attribute forecastable
fluctuations to a movement in uncertainty. Equity market volatility, for example, contains a
non-trivial component generated from forecastable variation in stock returns. The estimated
macro uncertainty index constructed in JLN is designed to address these issues and improve the
measurement of aggregate uncertainty. The methodology used here for constructing uncertainty
indexes follows JLN and we refer the reader to that paper for details.

Let yﬁ eyl =08, ..., v t)' be a variable in category C. Its h-period ahead uncertainty,

denoted by Z/lﬁ (h), is defined to be the volatility of the purely unforecastable component of the
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future value of the series, conditional on all information available. Specifically,

Z/{ﬁ(h) = \/E {(yjcwrh — Byl I))? e (9)

where [; is information available. If the expectation today of the squared error in forecasting
Yji+h Tises, uncertainty in the variable increases. Uncertainty in category C' is an aggregate of

individual uncertainty series in the category :

Uct(h) = plimy,_ Z N—Cuﬁ = Ec[Uj; (h)]. (10)

As in JLN, the conditional expectation of squared forecast errors in (9) is computed from
a stochastic volatility model, while the conditional expectation E[yjct +nll¢] is replaced by a
diffusion index forecast, augmented to allow for nonlinearities. These are predictions of an
autoregression augmented with a small number of common factors ¢; = (qi¢, - - -, ¢+)’ estimated
from a large number of economic time series z;; each with factor representation x;; = Al q;+e, it
The use of large datasets reduces the possibility of biases that arise when relevant predictive
information is ignored. Let Y;% = (yf;,...,y5,,)" generically denote the series that we wish to

compute uncertainty in. In this paper, we consider four categories of uncertainty:

Category (C) v,C Ne
(M): Macro all variables in x*/ 134
(F): Financial all variables in x* 147
(R): Real activity | real activity variables in x™ | 73
(m): Price price variables in Y 21

The uncertainty index Ug; for category C' is an equally-weighted average of the individual
uncertainties in the category. We use two datasets covering the sample 1960:07-2015:04.> The
first is a monthly macro dataset, XM, consisting of 134 mostly macroeconomic time series
take from McCracken and Ng (2016). The second is a financial dataset XF consisting of
a 147 of monthly financial indicators, also used in Ludvigson and Ng (2007) and JLN, but
updated to the longer sample. The real uncertainty index Ug; is an equally-weighted average
of the individual uncertainties about 73 series in Groups 1 through 4 of X™. These include
output and income variables, labor market measures, housing market indicators, and orders and
inventories. A second subindex is constructed using only measures of consumer and producer
prices as well as oil prices, commodity prices and crude materials prices. We call this index
price uncertainty, Uy, which averages over the individual uncertainties of the 21 price series

in Group 7 of XY™, Additional predictors for variables in X}’ include factors formed from X%

%A detailed description of the series is given in the Data Appendix of the online location where updated JLN
uncertainty index data are posted: http://www.sydneyludvigson.com/s/jln _data _appendix update.pdf
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and vice-versa, squares of the first factor of each, and factors in the squares of individual series,
(X2)? and (xF).

Our estimation considers different VARs with different Y;. In principle, we could initialize
our ey; shock in the algorithm above with a different measure of Y;, depending on the VAR
system being estimated. For simplicity, we instead set e§9t) = q1; for this purpose, where ¢; is
the first common factor estimated from the macro dataset no matter what measure of Y; we use
in the VAR. In fact, this turns out to often work better for identifying shocks and instruments
that satisfy the instrument relevance conditions of Assumption A. This common factor has long
been understood to be a “real activity factor” that loads heavily on measures of employment
and production such as employees on nonfarm payrolls and manufacturing output, as well as
measures of capacity utilization and new manufacturing orders in all vintages of Y used in
this study, see McCracken and Ng (2016). It loads very little if at all on consumer and producer
inflation measures, and financial market variables.

Our use of stock returns S; to generate instruments is grounded in the theoretical premise
that both macro and financial uncertainty shocks should be reflected in stock market returns.
There is no reason, however, that the regressands in (7a) and (7b) must be exactly the same
measure of stock market activity. All measures of stock market activity are highly correlated
because they contain a large common component (much of which is orthogonal to the rest of the
economy). In order to introduce some additional independent variation in our two instruments,
our base cases use different measures of aggregate stock market activity to generate Z;; and Z,
although in practice we get very similar results if we use the same value-weighted stock market
index return in (7a) and (7b). Specifically, we use the Standard and Poor 500 stock market index
return, Spy, as the regressand for (7b), and S,: = aycrsp, + (1 — «,) small;, a portfolio weighted
average of the return on the CRSP value-weighted stock index (in excess of the one-month
Treasury bill rate) and the smallest decile stock market return in the NYSE as the regressand
for (7a).® Our choice of portfolio weight «, is guided by empirical considerations. The small
stock index is highly volatile, which generates noise in the estimated SVAR parameters and large
error bands for the impulse response functions. To facilitate more precise statistical inference,
we set a;, = 0.94 for the base case results presented below. Results not reported indicate the
the dynamic responses are qualitatively similar if we set portfolio weights to give greater weight
to the small stock index, including «,, = 0, but the impulse response error bands are wider.

It is reasonable to ask if variables other than stock market returns could serve as regressands
in (7a) and (7b). Asset returns other than those for the stock market come to mind, such as
those for corporate bonds. Since bonds must return a fixed stream of payments to claimholders
(a legal requirement set in the bond covenant), bonds are like stocks without the dividend risk.

Our prior is that high frequency macro and financial uncertainty shocks are likely to be more

6The CRSP index is a value-weighted return of all stocks in NYSE, AMEX, and NASDAQ.
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closely related to earnings and dividend payouts than default events, so they should be more
relevant for stock returns than bond returns. But bonds that have some nontrivial probability
of defaulting might also be affected by uncertainty, at least to some degree. We consider this
possibility in the Robustness and Additional Cases section below, where we present results for
one estimation in which we generate Z;; from the return on a portfolio of Baa rated corporate
bonds.

The parameters to be estimated include the reduced form VAR parameters in (2), from
which we obtain 7),, the parameters in (8), from which we construct Z;; and Zy, and the
structural parameters using results from the preceding two estimations. The sample moment
conditions in the three-step estimation can be collected into g(m;; 3) where 3 are parameters
to be estimated. The Generalized Method of Moments (GMM, Hansen (1982)) estimator is
B8 = argmingg(my; 3)'g(my; 3). Under regularity conditions, the GMM estimator of Hansen
(1982) is VT consistent for B° and asymptotically normal with asymptotic variance E%. This
variance matrix is block lower triangular as in Newey (1984) since estimation of B, is not
affected by estimation of B, or of the VAR. Serial correlation and heteroskedasticity robust
standard errors are constructed as in Newey and West (1987).

The next section presents empirical results. We begin by studying systems with macro un-
certainty. We then move on to consider sub-indexes of Uy, including real uncertainty formed
only over real activity variables Ug; and price uncertainty U,;. Our final set of results re-
port several additional cases pertaining to different measures of real activity, different samples,

different uncertainty horizons, and to using recursive identification schemes.

4 Results for X; = (U, Yy, Upy)

Our first VAR is defined by X; = (Up(h), Y, Ure(h))'. For the base case, we consider h = 1
(one-month uncertainty) and several measures of Y;: the log of real industrial production,
denoted ip;, and the log of employment, denoted emp,. While industrial production is a widely
watched economic indicator of business cycles, it only captures goods-producing industries and
has been a declining share of GDP. Employment only covers the labor market. Hence we also
consider two additional measures of real activity: the log NAPM new orders index, which we
denote noi, and the cumulated sum of the first common factor estimated from the macro dataset
XM
We linearly detrend each real activity series before estimation. Results using the first three

since the raw data used to form ¢;; are transformed to stationary), which we denote Q1;.

of these measures of real activity are presented in this section. Results using the real activity
index @)1; and longer uncertainty horizons (h = 12) are discussed in Section 6 below. Since our
emphasis is on h = 1, we write Uy instead of Uy (1), and analogously for Ugy, in order to

simplify notation.
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The top panel of Figure 1 plots the estimated macro uncertainty U, in standardized units
along with the NBER recession dates. The horizontal bar corresponds to 1.65 standard devia-
tion above unconditional mean of each series (which is standardized to zero). As is known from
JLN, the macro uncertainty index is strongly countercyclical, and exhibits large spikes in the
deepest recessions. The updated data U, series shows much the same. Though U, exceeds
1.65 standard deviations 48 times, they are clustered around the 1973-74 and 1981-82 reces-
sions, as well as the Great Recession of 2007-09. Macroeconomic uncertainty is countercyclical
and has a correlation of -0.65 with the 12-month moving-average of the growth in industrial
production.

The bottom panel of Figure 1 plots the financial uncertainty series Ug; over time, which is
new to this paper. Up; is a broad-based measure of time varying financial uncertainty using
data from the bond market, stock market portfolio returns, and commodity markets. Hence,
it is smoother than proxies such as VIX or any particular bond index. As seen from Figure 1,
Upy is also countercyclical, though less so than U,y,; the correlation with industrial production
of -0.39. The series often exhibits spikes around the times when U,;; are high. However, Up; is
more volatile and spikes more frequently outside of recessions, the most notable being the 1987
stock market crash. Though observations on Up; exceed the 1.65 standard deviation line 33
times, they are spread out in seven episodes, with the 2008 and 1997 episodes being the most
pronounced.

As is clear from Figure 1, both indicators of macro and financial uncertainty are serially
correlated and hence predictable. They have comovements but also have independent variations
as the correlation between them is 0.58. However, this unconditional correlation cannot be given
a structural interpretation. The heightened uncertainty measures can be endogenous responses
to events that are expected to happen, but they can also be exogenous innovations. We use a
VAR to capture the predictable variations, and then identify uncertainty shocks from the VAR

residuals using the restrictions described in the previous section.

4.1 VAR Estimates and Uncertainty Shocks

Several features of the VAR estimates are qualitatively similar for all measures of Y;. Table 1
highlights some of these results. As shown in panel A, the sample correlation coefficient between
Z1y and é,; and épy, and between Zs;, and ép, are statistically significant and negative in each
case, indicating that uncertainty shocks of both types are correlated with these instruments, as
required, and tend to be high when these components of stock market returns are low. Panel
A also shows that the correlation between Z1; and éy;, and the correlation between Z,; and éy,
and €, are all zero as required, which is true by construction of the algorithm and solution for

B. Panel B shows that oy, 0yy, and opp are all strongly statistically significantly different
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from zero. This in turn indicates the presence of both macro and financial uncertainty shocks
in the SVAR. Since both U,;; and Up, are serially correlated, we should therefore find that 7,
is correlated with lags of Uy, and Ugy, while Zs, is correlated with lags of Up;. Results not
reported confirm this is the case.

Our model is exactly identified and does not permit a test for the validity of the restrictions.
Nonetheless, we can test the if a lower recursive structure is supported by the data. Specifically,
Assumption A does not rule out the possibility of a recursive structure. Given that /7T ( Bl — B?)
is asymptotically N (0, E%l), the null hypothesis of a recursive structure is a test that the three
components of 3, corresponding to the off-diagonal entries of A;' are jointly zero. Hence it
is chi-square distributed with three degrees of freedom. We first confirm that the test has the
correct size in Monte Carlo simulations. Our estimates based on historical data strongly reject
a lower triangular A;"' for any possible ordering of the variables. Table 2 shows results from
Wald tests with Y; = ip; and Y; = emp;, for h = 1 and h = 12. Results not reported find that
the A matrix reflects a non-zero contemporaneous correlation between Ur; and Y;, as well as
between Uj;; and Y;; no recursive ordering is consistent with such a correlation. In Section 6
below, we discuss how estimates of the dynamic relationships are affected by imposing recursive
identification.

Figure 2 presents the time series of the standardized shocks (ey, €, €r) identified from the
system with Y; = ip;. All shocks display strong departures from normality with excess skewness
and/or excess kurtosis. The largest of the e;, shocks is recorded in 2008:09, followed by 1974:11,
and 1980:04. There also appears to be a moderation in the volatility of the ¢p shocks in the
post-1983 period. The largest macro uncertainty shock is in 1970:12, followed by the shock in
2008:10. The largest financial uncertainty shock is recorded in 1987:10, followed by the shock
in 2008:09. For ep, the 1987 stock market crash evidently dwarfs all other spikes. Because of
the extreme but transitory nature of the crash, there is a very large spike downward in er in
the month following the crash, as the market recovered strongly. While this episode magnifies
the spike in ep in 1987, it is largely orthogonal to real activity and macro uncertainty and
we have verified that none of our results are materially affected by dummying out the episode
in the VAR. Appendix Figure A1 shows a representative set of impulse responses from one of
our benchmark systems in which we dummy out 1987:10 and 1987:11. These responses are
remarkably similar to those without the dummies, as shown below.

Observe that the large p shock in 2005:09 is not associated with a contemporaneous spike in
uncertainty (we discuss this episode further below), while there are several spikes in both types
of uncertainty that do not coincide with spikes in e;,. The next subsection uses impulse response

functions to better understand the dynamic causal effects and propagating mechanisms of these
shocks.
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4.2 The Dynamic Effects of Uncertainty Shocks

Impulse response functions (IRFs) trace out the effects of counterfactual increases in the shocks.
The estimated IRFs are presented with 90% bootstrapped confidence bands. All plots show
responses to one standard deviation changes in €;; in the direction that leads to an increase in
its own variable X ;.

Figure 3 shows the dynamic responses of each variable in the SVAR to each structural shock
for our baseline system with Y; = ip,. The responses show that positive shocks to financial
uncertainty er lead to a sharp decline in real production that persists for many months (center
plot, bottom row). Positive perturbations to ep; also cause Uy to increase. However, there is
less evidence that shocks to macro uncertainty have effects on financial uncertainty: the impact
response of Up; to an increase in e, is not statistically different from zero. Overall, these results
lend support to the hypothesis that heightened financial uncertainty is an exogenous impulse
that causes declines in real activity. Note that the converse relationship is not supported by our
evidence: exogenous (positive) shocks to ip have statistically insignificant effects on financial
uncertainty. If anything, perturbations to e;, modestly increase financial uncertainty in the
long-run.

While we find no evidence that high financial uncertainty is a consequence of lower eco-
nomic activity, the results for macro uncertainty are quite different. Figure 3 (second row, first
column) shows that macro uncertainty falls sharply in response to positive shocks to industrial
production, e;,. Alternatively stated, negative ¢p shocks increase macro uncertainty sharply.
These effects persist for well over a year after the ¢p shock. This result is strongly statistically
significant, suggesting that higher macro uncertainty in recessions is a direct endogenous re-
sponse to lower economic activity. However, there is no evidence that the negative correlation
between macro uncertainty and real activity is driven by causality running in the opposite di-
rection. Indeed, the top middle panel shows that exogenous increases in e,;; actually increase
real activity, consistent with growth options theories discussed above.

The standard error bands for this case with Y; = ip; are wide, indicating considerable
sampling uncertainty as to the magnitude of these effects. However, the systems that use
Y, = ip, appear to be unusual in this respect. The impulse responses are more precisely
estimated when we use any number of alternative measures of real activity Y;. Impulse responses
using Y; = emp; and Y; = noi; are displayed in Figures 4 and 5, respectively. These systems tell
the same story regarding the dynamic causal influences in the system, but here the responses
have tighter standard error bands. A positive shock to emp; or noi; causes a sharp decline in
macro uncertainty, whereas there is again no evidence that positive shocks to macro uncertainty
cause declines either measure of real activity; indeed the opposite occurs. But positive shocks

to financial uncertainty cause declines in both emp; or noi;. In contrast to the responses in
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systems using ip;, these effects are strongly statistically significant in the systems using emp;,
and noi;. We find that this same result also holds for the responses using )y, as discussed in

Section 6 below.

4.3 The Structural Shocks and Decomposition of Variance

In Figure 1 presented earlier, we find 1973-74, 1981-82, and 2007-2009 to be the three episodes
of heightened macroeconomic uncertainty, defined as the periods when U, is 1.65 standard
deviations above its unconditional mean. We now look for the “large adverse” shocks in the
systems (Uary, Vi, Upy)', with Y, = ip;, empy, noi, , Q1,. More precisely, we consider large positive
uncertainty shocks and large negative real activity shocks.

Figure 6 displays the date and size of shocks that are at least two standard deviations above
the mean, estimated using the four different measures of Y;. In view of the non-normality of
the shocks, the figure also plots horizontal lines corresponding to three standard deviation of
the unit shocks, which is used as the reference point for ‘large’. The lowest panel shows that,
irrespective of the definition of Y;, all SVARs identify big financial uncertainty shocks in 1987
and 2008. The middle panel shows that large negative real activity shocks are in alignment
with all post-war recessions with one exception: the negative real activity shock in 2005 is not
immediately associated with a recession, but it could be the seed of the Great Recession that
followed. It is known that the housing market led the 2007-2009 recession (e.g., see Favilukis,
Ludvigson, and Van Nieuwerburgh (2015) for a discussion). We confirm that all 10 housing
series in X (most pertaining to housing starts and permits series) exhibit sharp declines
starting in September 2005 and continuing through 2006, when almost all of the total decrease
in these series through 2009 occurred.

The top panel of Figure 6 shows that the dates of large increases in ey, are less clustered.
They generally coincide with, or occur shortly after, the big real activity shocks and the financial
uncertainty shocks. Observe that large macro uncertainty shocks occurred more frequently in
the pre-1983 than the post 1983 sample. An exception is the Great Recession, where there were
large ejs shocks in some systems but not others: large macroeconomic uncertainty shocks are
found when Y = ip and when Y = noi but are not found in the SVAR with emp; or Q1;. Thus
the finding that there are simultaneous occurrences of big shocks to Uy, Upy, and Y; during
the Great Recession seems to depend on which measure of real activity Y; is used. We return
to this issue when sub-indexes of U, are considered.

To give a sense of the historical importance of these shocks, we perform a decomposition
of variance, which is the fraction of s-step-ahead forecast error variance attributable to each
structural shock €y, €yy, and ep; for s = 1, s = 12, s = oco. We also report the maximum

fraction of forecast error variance over all VAR forecast horizons s that is attributable to each
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shock, denoted s = $,,4, in the table. Table 3 reports results for the system with Y; = ip; (left
column), Y; = emp; (middle column), and Y; = noi; (right column).

According to the top row, all three real activity shocks €;y, €cmp, and e,,; have sizable effects
on macroeconomic uncertainty U,,. But according to the bottom row, these same shocks have
small effects on financial uncertainty Upr. At the same time, positive macro uncertainty shocks
ey, which increase rather than decrease real activity, explain a surprisingly large fraction of
production (up to 42%), employment (up to 37%) and orders (up to 28%), though their relative
importance declines as the forecast horizon increases. On the other hand, financial uncertainty
shocks e have a small contribution to the one-step-ahead forecast error variance of ip, but
their relative importance increases over time. These er shocks make much larger contributions
to the forecast error variance of emp and noi. Financial uncertainty shocks explain up to 59%
of the forecast error variance in employment and up to 51% of the forecast error variance in
orders, compared to 27% for production. Financial uncertainty shocks ep feedback into Uy,
and macroeconomic uncertainty shocks e;; also feedback into Up.

Regardless of which measure of real activity is used, we find that financial uncertainty is
unlike macro uncertainty or real activity in that its variation is far more dominated by its own
shocks. For example, in the system with ip, er shocks explain 95% of the s = 1 step-ahead
forecast error variance in Ur;, and 75% of the s = oo step-ahead forecast error variance. In the
systems with emp and noi, er shocks explain 74 and 72%, respectively, of the s = 1 step-ahead
forecast error variance in Up;, and 53 and 57% of the s = oo step-ahead forecast error variance.

To summarize, in all three systems, real activity shocks ey have quantitatively large per-
sistent negative effects on macro uncertainty U,,. In turn, macro uncertainty shocks e;; have
large positive impact effects on real activity measures Y. Financial uncertainty shocks er have
smaller impact effects but larger long run effects that dampen real activity Y. Across all sys-
tems, the forecast error variance of financial uncertainty is the least affected by shocks other

than its own, suggesting that Ur is quantitatively the most exogenous variable in the system.

5 Uncertainty in Real Activity and Inflation

The results discussed above suggest that the dynamic relationship between macro uncertainty
and real activity can be quite different from the relation between financial uncertainty and
real activity. However, given the composition of our data y™, macroeconomic uncertainty
itself can be due to uncertainty in real activity variables such as output and unemployment,
to price variables, and to financial market variables. The theoretical uncertainty literature
has focused on modeling exogenous uncertainty shocks that arise specifically in measures of
real economic fundamentals, rather than in prices or financial markets. To better evaluate the

implications of these theoretical models, it is therefore of interest to know how systems defined
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by sub-components of broad-based macro uncertainty behave. We first consider systems that
isolate uncertainty about real activity using the Ug; sub-index that more closely corresponds
to the theoretical literature. We then move on to study systems that use a sub-index of macro
uncertainty focused on price variables, U,;, which has not been the focus on the uncertainty

literature but may be of independent interest.

5.1 System X; = (Ugs, Y;, Upy)

We isolate the real activity components of macro uncertainty by aggregating the individual
uncertainty estimates over the 73 real activity variables in the macro dataset X™. The one-
period ahead uncertainty in real activity, denoted Ug,, is show in Figure 7. This series, like
U, is countercyclical though somewhat less so, having a correlation of -0.50 with industrial
production (as compared to -0.66 for Uy ). At first glance, Ug; appears to fluctuate in a manner
similar to macroeconomic uncertainty U,;;. The two series have a correlation of 0.71 and exhibit
some overlapping spikes. But Ug; and U, also display notable independent variation. Figure
7 shows that there are 43 observations of Ug; that are at least 1.65 standard deviations above
its mean. These can be organized into five episodes: 1965, 1970, 1975, 1982-83, and 2007. By
contrast, Uy in Figure 1 only exhibits three such episodes. Observe that the Ug; series exhibits
several spikes before 1970 that are not accompanied by spikes in Uyy,.

Given the distinctive patterns in the time series behavior of Ug; and Uy, one might expect to
find different dynamic relationships with the other variables in our systems when U, is replaced
by Ug;. Surprisingly, the impulse responses functions are qualitatively similar to systems studied
above that use broad-based macro uncertainty. Since the responses are qualitatively similar
using all measures of real activity, we only present one representative example in Figure 8,
for the system (Ug;, empy, Upre)'. We see that (i) positive shocks to employment cause sharp
declines in Ug; so that negative shocks cause sharp increases in real economic uncertainty; (ii)
positive real activity shocks eg; do not cause declines in emp;; instead the opposite is true; (iii)
positive financial uncertainty shocks er; lead to sharp declines in employment that are strongly
statistically significant, and (iv) there is no evidence that financial uncertainty is significantly
affected by real activity shocks.

But while these counterfactual dynamic responses are similar to those reported for the
base case when Uy, is used, the realized shocks that are uncovered from the historical data
are different. Figure 9 plots the large adverse structural shocks identified from the systems
(Uge,Ys, Upy)' for Y, = ip,, empy, noiy, Q1; analogous to Figure 2. The top panel shows that
the real uncertainty shock eg; exhibits no spike in excess of three standard deviations during
the Great Recession for any measure of real activity, despite the fact that Ug, itself exhibits

a large spike (see Figure 7). This is in contrast to the behavior of e, and especially ep; in
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Figure 2, both of which show much larger spikes during this episode. This pattern occurs in
other recessions as well. In the 1973-75 recession, the real uncertainty shocks eg; show a large
spike only for the system using orders, but not for the systems using production, employment
or (14, though all measures of real activity shocks €;p, €emp, €noi, and eg,, exhibited large spikes
downward. Likewise, both the 1980 recession and the 1982-1983 recession were characterized
by large negative real activity shocks that met or exceeded three standard deviations from the
mean, while real uncertainty shocks er were comparatively muted and if anything spiked after
the recession was over.

These episodes serve to reinforce the conclusion that the heightened real economic uncer-
tainty in recessions is more often an endogenous response to other shocks, rather than an
exogenous impulse. Even though there were many large spikes in real uncertainty shocks eg;
pre-1983, there have not been much in the way of large adverse shocks to real economic un-
certainty since 1983, a period that coincides with the so-called Great Moderation. Large real
uncertainty shocks are also absent from the Great Recession. This is an episode characterized
by a large negative ey, and a large increase in ep;. Both adverse shocks are sufficiently large
to drive Ug; upward without a large exogenous increase ep;.

One might ask why we find large macro uncertainty shocks e;; in the Great Recession,
at least for some measures of real activity, while the corresponding real activity uncertainty
shocks er are much smaller. Recall that our U), is a broad-based measure of uncertainty and,
as such, contains some 25 financial variables. These are also the most volatile variables in the
large macro dataset used to construct U,;;. Hence Uy, picks up a fair amount of its movement
from financial variables, which were especially large in this episode. By isolating uncertainty
attributable only to real variables, we can see more clearly the role of uncertainty about real
activity variables in this episode. By the same reasoning, once we control explicitly for financial
uncertainty, it makes little difference whether we use Uy or Ug; in the SVAR. The impulse
responses are similar, as can be seen from a comparison of the base case IRFs and those in
Figure 8. Controlling for Ug,; is thus important as it removes the variation in U, attributable
to financial variable uncertainty. Whether we directly or indirectly control for uncertainty
from financial variables, the main finding is that macroeconomic uncertainty rises in recessions
primarily in response to real activity shocks, while financial uncertainty shocks are exogenous
impulses that have significant negative effects on real activity.

To complete the analysis, we present variance decompositions for the system (Ugy, Y;, U )
with three measures of real activity Y; = ip;, emps, noi;. These results, presented in Table 4,
share some similarities with the systems that use macro uncertainty Uj;; shown in Table 3,
but there are at least two important distinctions. First, financial uncertainty shocks decrease
real activity and explain larger fractions of the forecast error variance in two measures of real

activity. At the longest s = oo VAR horizon, financial uncertainty shocks explain 85% of
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forecast error variance in employment and 63% of the forecast error variance in orders. These
results suggest that financial uncertainty has quantitatively large negative consequences for at
least some measures of real activity.

Second, compared to systems that use U,;;, smaller fractions of the forecast error variance
in Ug, are explained by its own shocks, while larger fractions are explained by the financial
uncertainty shocks. Real activity shocks still have non-trivial consequences for Ug,. For exam-
ple, shocks to industrial production e;, still explain 41% of the one-step-ahead forecast error
variance in Ug;, though smaller than the 53% found earlier using Ujy;.

To summarize, countercyclical increases in real uncertainty Ug;, like macro uncertainty
U, are found to be fully an endogenous response to declines in real activity. Indeed, the most
striking episode of heightened uncertainty in the post-war period, the Great Recession, was
characterized by large negative real activity ey shocks and a large positive financial uncertainty
er shock, but no corresponding large shock to real uncertainty ez. These results underscore the
extent to which the countercyclical variation in Ug; is often an endogenous response to other
shocks. At the same time, Ug; exhibits more variation than U,;; that is independent of fluctu-

ations in real activity especially early in the sample, explaining why it is less countercyclical.

5.2 System X; = (U,,Y:, Up)’

The preceding subsection investigates the real activity component of macroeconomic uncer-
tainty and its interaction with Y; and Up;. This subsection studies the price component of
macroeconomic uncertainty U, which aggregates the 21 uncertainty indicators in the price
block of ¥*. This block includes consumer and producer prices that tend to be more stable, as
well as the price of oil, commodities, and raw materials that tend to be more volatile. With the
exception of the NAPM commodity price index, the price data are second differenced after log
transformation. Hence, the uncertainty indicators pertain to the change in monthly inflation.
We refer to this measure simply as “price uncertainty.”

The top panel of Figure 10 plots this measure of price uncertainty over our sample. It is
countercyclical and has a correlation with industrial production is -0.51. There are 40 obser-
vations that are 1.65 standard deviations above the unconditional mean. These are clustered
into three episodes: 1974-75, 2006-07, and 2008-09. There is a large spike upward in U,; visible
during the Great Recession. This spike actually occurs over four months, from 2008:10-2009:01,
during which Uy; was unusually high. Also plotted in Figure 10 is a U7, uncertainty index that
removes from U five of the most volatile price uncertainty series, namely PPI intermediate
materials, PPI crude materials, oil, PPI metals and metal products, and CPI transportation.
The more volatile price series apparently did not contribute to noticeable changes to aggregate

price uncertainty.
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Further investigation reveals that the increase in price uncertainty around the Great Re-
cession was broad based, as 13 of the 21 series in the price group had uncertainty risen by at
least three standard deviations above its mean in 2008:11, the peak of the spike. Results not
reported show that these series all exhibited large negative forecast errors in 2008:10-2008:12,
and then a large positive error in 2009:01. The change in inflation across many price series
appears to have been volatile and difficult to predict at the peak of the Great Recession. Thus
the Great Recession was hit by the rare occurrence of simultaneous adverse shocks to financial
uncertainty, to real activity, and to price uncertainty.

The bottom panel of 10 plots the large adverse shocks for the systems X; = (U, Y3, Ugy)’
Y;, Ur;)'. Notably,

most of the spikes are concentrated in the years before 1983. Nonetheless, the price uncertainty

with Y, = ip;, empy, noiy, Q1;, and for an alternative set of systems X, = (UZ,,
spike in 2008 is evident both e, and eX. Together with the results reported earlier, the broad
based nature of the surge in uncertainty in 2008 is unprecedented.

We estimate an SVAR for X; = (U, Y, Ury)'. The responses are again similar for all
measures of Y; so we conserve space by showing just one. Figure 11 shows the dynamic responses
with Y; = emp;. As before, it is exogenous shocks to financial uncertainty that drive real
activity endogenously lower. By contrast, positive shocks to price uncertainty do not decrease
real activity, indeed the opposite is true. We see also that positive shocks to price uncertainty
ert lead to a sharp increase in financial uncertainty Ug;. Financial uncertainty shocks, on the
other hand, have no effect on price uncertainty U,;.

Figure 11 also shows that employment shocks e, impact price uncertainty in a manner
that is qualitatively similar to how they impact macro and real economic uncertainty. Positive
(negative) shocks to real activity cause sharp decreases (increases) in price uncertainty, but
have little effect on financial uncertainty. Thus a boom in real activity appears to reduce
macroeconomic uncertainty broadly across many indicators, including uncertainty about price
variables, though not about financial markets.

On the whole, these findings reinforce the notion that financial uncertainty is primarily
an exogenous impulse acting on real activity, while countercyclical uncertainty about other
macroeconomic activity, be it real activity or prices, is primarily an endogenous response to
real activity. But price uncertainty increases financial uncertainty, a finding that is theoretically
consistent with evidence that inflation uncertainty is correlated with higher risk spreads in bond
markets (e.g., Wright (2011)). An interesting direction for future research is to investigate the

dynamic linkages between inflation uncertainty, financial market uncertainty, and term premia.

6 Robustness and Additional Cases

This section presents results for a number of additional cases.
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6.1 Different Measures of Real Activity and Different Sample

Rather than using specific real activity measures such as production, employment and orders, we
now use a more broad-based measure of real activity that we construct, namely the real activity
index @)y Figure 12 presents impulse responses for X; = (Unst, Q1t, Urt)'. The responses are
quite similar to those using Y; = ip; with the main difference being that the standard error
bands are narrower especially for the response of ()1; to Ug; shock. Financial uncertainty shocks
lead to large, statistically significant declines in the index of real activity. Moreover, as for the
systems using other measures of real activity, high macro uncertainty in bad times if fully an
endogenous response to declines in real activity, as measured by Q)q;.

Given the importance of the Great Recession for the uncertainty series, we asked whether
our main results were affected by stopping the sample at the end of 2007:12. A representative
set of impulse response functions is shown in Figure (A2) for the system X; = (U, empy, Uy )’
(the other systems show similar responses). The figure shows that the qualitative nature of
all the responses, including standard error bands, is quite similar to the comparable case for
the full sample (Figure 4). This implies that main findings above are robust to this sample
that excludes the Great Recession and the concomitant financial crisis. Further inspection
indicates that the main difference created by using different samples is evident in the variance
decompositions (not shown): somewhat less of the forecast error variance in Ur in the pre-2008
sample is attributable to its own shocks than in the full sample, while correspondingly more
of the forecast error variance in Uy is attributable to real activity shocks. For example, in the
full sample, 95% of the one-step-ahead forecast error variance in Ur is attributable to its own
shocks in the system with Y; = ip;, whereas this estimate is 82% for the pre-2008 sample. At
the same time, the variance decompositions pertaining to the impact of financial uncertainty
on real activity are little effected by removing the post 2008 part of the sample. This shows
that the negative impact of financial uncertainty shocks for real activity does not hinge on one
episode, and that many episodes prior to 2008 that were characterized by more modest financial

uncertainty shocks also had consequences for real activity.

6.2 One year Uncertainty

So far we have been considering uncertainty about events one-month ahead. To consider a
longer horizon uncertainty, we estimate systems using uncertainty about events 12 months
ahead, denoted Uy (12) and Ugy (12). For the dynamic responses, the findings are qualitatively
similar to the benchmark cases with i = 1 period ahead uncertainty. Figure 13 presents a
representative example for the system: X; = (Uny (12),emp;, Upy (12)). But an inspection
of the variance decompositions suggests some notable differences from the A = 1 uncertainty

systems. Table 5 shows variance decompositions for the systems X; = (Upp: (12), Y, Upe (12))
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with Y; = ip;, emps, noi;. One-year financial uncertainty shocks explain smaller fractions of the
variation in all measures of real activity than do one-month uncertainty shocks, especially over
the longer VAR horizons for which their impact is non-trivial. For example, 12-month-ahead
financial uncertainty ep; shocks explain just 10% of the long-run forecast error variance in
ips. In contrast Table 3 above showed that one-month-ahead financial uncertainty ep; shocks
explain 23% of the long-run forecast error variance in production. Similar comparisons hold
for the other two measures of real activity, emp, and noi;. Up; (12) shocks also explain smaller
fractions of the forecast error variance in macro uncertainty Uy than do Up; (1) shocks. This
result occurs in part because long-run uncertainty is simply much less volatile than short-run
uncertainty. While the level of uncertainty increases with h (on average), the variability of
uncertainty decreases because the forecast tends to the unconditional mean as the forecast
horizon tends to infinity. On the other hand, the impact of macro uncertainty shocks on the
other variables in the system is less affected by the uncertainty horizon h. For example, the
effects of e, shocks on all measures of real activity are about the same for systems using

Unrt (12) as they are for the systems studied above that use Uy (1).

6.3 Imposing Recursive Identification Restrictions

The SVARSs studied here nest any recursive structure so that by imposing additional restrictions
we can recover any such structure. We can also test the validity of these restrictions. The
results above show that these restrictions are rejected in the data. We now show what happens
to the dynamic responses when we nevertheless impose restrictions consistent with recursive
identification (and freely estimate the rest of the parameters). Figure 14 shows one case:
dynamic responses for the system X; = (Upy, Upe,ipy) with that ordering. Although there
are many possible recursive orderings, and the estimated IRF's differ in some ways across these
cases, the dynamic responses under recursive identification have one common feature that is
invariant to the ordering and that provides the sharpest contrast with the results generated
by the SVARs identified with external instruments studied here. Specifically, with recursive
identification, macro uncertainty shocks—no matter which ordering—appear to cause a sharp
decline in real activity, while real activity shocks have little effect on macro uncertainty in the
short run and if anything increase it in the long run. This result, evident in Figure 14, is
precisely the opposite of what is reported above and appears to be an artifact of invalid timing
assumptions under recursive identification. Further investigation reveals that the SVARs we
study display non-zero contemporaneous correlations between Up; and Y;, as well as between
Uy and Y;, which is inconsistent with any recursive ordering. Imposing a structure that
prohibits contemporaneous feedback spuriously suggests that macro uncertainty shocks are a

cause of declines in real activity, rather than an endogenous response. This result is robust
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across any of the six possible recursive orderings and underscores the challenges of relying
on convenient timing assumptions to sort out cause and effect in the relationship between

uncertainty and real activity.”

6.4 Different External Variables

We reestimate the model using a corporate bond return as the regressand in (7a) to generate
Z1. We generate Zy in (7b) using the monthly CRSP value-weighted excess stock market
return crsp,. The bond yield measure is the yield on a portfolio of Baa Moodys seasoned
corporate bonds, where Baa represents a credit score on the border of the investment and junk
categories. Because the Baa yield is highly serially correlated, we use the first difference of the
yield. The estimation procedure in all other ways is the same as above.

Estimates of these cases indicate that the correlation between the resulting Z;; and both
uncertainty shocks is now positive. Thus high uncertainty of both types is associated with rising
yields on risky corporate debt. For the (Upy,ips, U, Ft)/ system, the correlations with Z;, are
p (Z14, én) = 0.1988, p (Zoy, €r) = 0.1219, while the correlation of Zs; with ér; remains similar
to the base cases, with p(Zy,ér;) = —0.1617. The correlation between Z;; and Zo; is -0.2
in this case. Figure (15) presents the dynamic responses for the system (Ujs,ip;, Ury) . The
pattern of responses is qualitatively similar to the base cases presented above. But the SVAR
parameter estimates exhibit more sampling error. This leads to error bands for the dynamic
responses of Uy to e, and for ip, to ep to be wider than in the corresponding base case for
the same system.

Our analysis requires E (Zep) # 0 to identify the column that gives the effects of epy
shocks. In our experience, the bootstrap standard error bands tend to be quite wide when the
external variables produce instruments that only weakly identify some elements of B. More
precisely, in cases when the GMM estimates of E (Z1;ny,) and E (Z1ny,) are imprecisely es-
timated, the bootstrap error bands are also wide. This is because the bootstrap repeatedly
makes draws from the distribution of the GMM estimates and therefore depend on the variance
of the point estimates. The bootstrap standard errors are correspondingly large when the point
estimates are imprecise. Thus, while our approach provides a new way to estimate SVAR, the
methodology requires Assumption A to be satisfied.

An appeal of our estimation strategy is that the estimates provide some guide to the validity
of Assumption A. As an example, consider the system X; = (U, ip;, Upy). When we set So;
equal to the Baa-fed funds rate spread (rather than the Baa rate itself), while keepng S;; the
same as in our baseline case, the resulting Z5; becomes weakly correlated with ép;, so the

financial uncertainty shock is poorly identified. The same finding arises when Sy, is set equal

"The figures for these cases are omitted to conserve space but are available upon request.
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to the growth in the spot market oil price.

The standard errors are also large when we use the Baa-fed funds rate spread as Sy;. With
this choice of Sy, the resulting Z;; is weakly correlated with é,, and so the macro uncertainty
shock is poorly identified. When Si; or alternatively So; is set equal to Anoi;, the estimated
Byy element is close to zero, indicating that the real activity shock is poorly identified. This
can be understood by recalling that the ip; shock is identified off of movements in real activity
that are uncorrelated with the instruments, which are components of Sy; and Ss;. If Si; or Sy
are themselves some measure of real activity (such as orders), there may be little uncorrelated
variation left to identify the ip; shock.

A third example is when Sy, is the small stock index return, then B,y and By, are poorly
identified in our sample. An inspection of the closed-form solutions for B shows why. The
By and By, parameters are highly nonlinear functions of B (Z1,1y,) and E (Z1;1,), so that
small changes in the latter can lead to large differences in the solution for By;y and By ;. The
sample variance of E (Z1;1y,) is two times larger when Sy, is the small stock index return, while

the sample variance of E (Z1;1,) is three times larger.

6.5 Alternative Assumptions on S;

The identification strategy relies on the use of external variables S; that are not part of the
SVAR we seek to identify. This inevitably imposes certain restrictions on a larger VAR that
includes S;. We now make these restrictions precise and consider its robustness.

Let X; = (Up, Y, Urt)" be the endogenous variables of interest and S; = (S, Sa;)’ be the

two variables used to construct the external instruments. A five variable VAR(1) in (X}, S}) is
Axxo Axso) (Xi _ Axx1 Axsi) (Xioa " YXx 0 ex;
Asxo Agso/) \ St Asxi1 Agsa Si1 0 g/ \est/)’
The relation between the reduced form and the structural shocks is now
<77Xt) _ <AXX,0 AXS,0> o (EXeXt> _ (BXX BXS) (EXeXt> (11)
Nst Asxo Asspo Yseg Bsx Bss) \ Xses /-
By substituting out S, it is straightforward to show that
l(AXX,o—AXX,1L)+(AXS,O—AXS,1L)CSX(L)] Xt = —(Axs0—Axs1L)Css(L)Xses+Xxex:

where CS’X(L) = CS.S'(L)(ASX,O - ASX,IL)a Cgs<L) = _<ASS,O - ASS’lL)_l. Without further
restrictions, X; is a VARMA(1,1) driven by a combination of shocks to X, as well as S;.
Our maintained assumption in the base case studied above is Axgo = Axgs1 = 03x2. Under

this assumption, the terms that multiply into Cgx (L) and Cgg(L) drop out, giving
AxxoXy =Axx1 X1+ Xxexy
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which is our base case VAR with p = 1. For arbitrary p > 1, the assumptions A xg,; = 0 for all
J > 0 effectively restricts the five variable system to be block recursive, with the three variables
in X; ordered ahead of the two variables in S;. Since the dynamic responses of S; are not of
direct interest, the block recursive assumption permits us to analyze the smaller VAR for X;.

However, though the assumption that A xg; = 0 for all j is necessary to justify the smaller
three variable VAR, it is stronger than is necessary for the identification of ex;. The reason
is that, provided Axso = 0, Bxg will be zero. The lower block triangularity of B implies
that Axxo can be identified by Assumption A along with the covariance structure of 7y,
associated with the five variable system. In other words, we can in principle leave A xg; for
j > 1 unconstrained to allow the effects of ex; to feedback to X; through lags of S,.

In entertain this possibility, we estimate a five variable SVAR in (Uay, Vi, Uy, Sir, Sa¢)’ as
well as a four variable system in (Uyy, Yy, Upy, St)', both imposing A xso = 0. The results for
the four and five variable systems are similar and we report results for the four variable case.
In this four variable VAR, S; is the return on the CRSP value-weighted stock market index.
The vector of reduced-form innovations is 1, = (90 My Mre> Nss) - As just discussed, we can
identify Bxyx from the first three equations of this VAR alone using IPIV. The only difference
from the base case is that for j = M, Y, F, 7); is a vector of residuals from a regression of X;
on lags Uy, Y, Uy and lags of S. Since Axgo = 0 by assumption, it holds that Bxg = 0. It
only remains to identify Bgx and Bgs. These can be recovered by least squares regression of

Nlg; ON €ppt, €y, €y tO give a fitted residual
€st = Ng; — Bsméus — Bsyeys + Bsrépy

where Bgy = (ESM, By, ]:%SF)’ are the OLS estimates, and Bgg is the standard deviation of
€si- The SVAR estimates are then used to compute impulse responses for the four variable
system.

Figure 16 compares the impulse responses for X; = (Upg, Y;, Upy)' to shocks ey from the four
and three variable VARs. The responses are little different. The data thus appear consistent

with the assumption that Axg; =0 for j > 1.

7 Conclusion

A growing body of research establishes uncertainty as a feature of deep recessions but leaves
open two key questions: is uncertainty primarily a source of business cycle fluctuations or an
endogenous response to them? And where does uncertainty originate? There is no theoretical
consensus on the question of whether uncertainty is primarily a cause or a consequence of
declines in economic activity. In most theories, it is modeled either as a cause or an effect, but

not both, underscoring the extent to which this question is fundamentally an empirical matter.
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The objective of this paper is to address both questions econometrically using small-scale
structural VARs that are general enough to nest the range of theoretical possibilities in empirical
tests. Commonly used recursive identification schemes cannot achieve this objective, since by
construction they rule out the possibility that uncertainty and real activity could influence one
another contemporaneously. The econometric model employed in this paper nests the recursive
identification scheme, and we find that it is strongly rejected by the data. An empirical model
in which uncertainty and real activity simultaneously influence each other fits the data far
better than one in which these relationships are restricted by timing assumptions that prohibit
contemporaneous feedback.

To identify dynamic causal effects, this paper takes an alternative identification approach
by using external instruments that we construct in a novel way to be valid under credible in-
terpretations of the structural shocks. We call this approach iterative projection IV (IPIV).
In addition, our empirical analysis explicitly distinguishes macro uncertainty and uncertainty
about real activity from financial uncertainty, thereby allowing us to shed light on the origins
of uncertainty shocks that drive real activity lower, to the extent that any of them do. The
econometric framework allows uncertainty to be an exogenous source of business cycle fluctu-
ations, or an endogenous response to them, or any combination of the two, without restricting
the timing of these relationships. Underlying our approach is a maintained theoretical assump-
tion that variables such as stock market returns, while endogenous, are nevertheless driven by
distinct sources of stochastic variation, some of which satisfy exogeneity restrictions required
to identify independent structural shocks.

Estimates of the econometric model are used to inform the nature of these dynamic relation-
ships in U.S. data. The results from these estimations show that sharply higher uncertainty
about real economic activity in recessions is fully an endogenous response to business cycle
fluctuations, while uncertainty about financial markets is a likely source of them. Exogenous
declines in economic activity have quantitatively large effects that drive real economic un-
certainty endogenously higher. Financial uncertainty, by contrast, is dominated by its own
shocks, implying that it is primarily an exogenous impulse vis-a-vis real activity and macro
uncertainty. These results reinforce the hypothesis laid out in much of theoretical uncertainty
literature, namely that uncertainty shocks are a source of business cycle fluctuations. But they
also stand in contrast to this literature, which has emphasized the role of uncertainty fluctu-
ations in productivity and other real economic fundamentals. The findings here imply that
the uncertainty shocks that drive real activity lower appear to have their have origins, not in

measures of real activity, but in financial markets.
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Appendix

Closed-Form Solution for B

Lemma 2 The solution to the system (5) exists if B [ep:Zs] # 0 and B [eprs Z1] # 0

Proof. To facilitate the presentation throughout the proof, let

n, = Be
= |:BM7BY7BF1
3x1 3x1 3x1

= E ("71;77:&)

and we have two external instruments (Z;, Z») satisfying

ElepZ1] = é1p #0, BEleaiZ1] = é1p # 0 and E ey Z1] =0
EleriZs] = ¢op # 0 and E ey 2] = EleyZ2] =0
Then
0
En,Z) =E[BeZs] =B | 0 | =¢yBr
Do

Thus Bp exists if ¢, # 0. Observe that, since
Q — E[n,n) — BB
we have
BQ 'B=1
hence, Vi,7 = M, Y, F

1 ifi=j

r0-1/20-1/2R. —
B/Q /20 1/?B, {Oi“%j.

Therefore,
K [mzz]'Q*lE (0, 22] = (¢2FBF)/ Q72972 (¢ypBr) = (bgF

This implies that the scale ¢, is identified up to a sign by

Gop = j3\/E (1, Z2) QB [0, Zs].

Next,
1y
E[n,Z] = E[BeZ| =B 0 = ¢1uBuy + ¢1Br
O1p



But note that

E[n,Z,] Q'E (.2 = ¢2FBF’Q_1 (¢1 By + ¢1£Br)
= ¢rBp (BB,)il (¢10 By + ¢1£Br)
= ¢2F¢1F

This implies that ¢, is identified as

E [0, Z,) Q7 'E [0, Z1]
Gap

¢1F =

which in turn implies
E [0, 2]

Do O1r

Thus solution to B, exists if ¢,, # 0. Furthermore, note that

(E ,2:] - M;"'z—z"‘%)ﬂ (E n,2,] — L2 m)

2F Cbgp
= Q7 :By¢?, By = ¢y,

o1 Bu = EnZ1] —

This implies that the parameter ¢,,, is identified up to a sign as

Poas = (E m,2) — 22 qslp) Q- (E 2] — ElmZ m) . (A.2)
¢2F ¢2F

It only remains to identify By. By must satisfy

B, Q207 12By =1
B, Q V2Q7 2By, =0 (A.3)
B, Q 2Q1?By =0

By can be solved analytically using (A.3) providing that By and By are identified. In addition,
since the equation (A.3) is quadratic in By, By is only unique up to sign. It follows that there
exists a 7 such that

By = 7By (A.4)

where By is unique conditional on ¢ and ¢;,,, but the scalar 7 is unique up to sign.

As a result, the solution to the system (5) exists if ¢op # 0, ¢y, # 0 and is unique up to
sign. W

The system of equations defining B is

0 = E[gi(my; B,)] = 8.

The rank condition is satisfied when J =0Er[g;]/03] is full column rank. We check that the

rank condition is satisfied by evaluating J at the estimated parameter values for each case.



Procedure for Bootstrap

The bootstrap follows Krinsky and Robb (1986). We sample repeatedly from the joint distribu-

tion N <B,@ / T) , where O is the estimated GMM variance-covariance matrix to obtain B new
~(1)  ~(B)

sets of parameters 3 "....3  and calculate the impulse response function values at each draw,
TS}, e Tiﬁ), where s indexes the VAR horizon and j the variable being shocked, and where

Tgb]) =7, (B(b)>. The confidence intervals are ranges for Tgbj) created by trimming «/2 from

each tail of the resulting distribution of the function values. The parameter B is set to 10,000.

Monte Carlo

This section presents details of a Monte Carlo investigation of the projection IV application of

this paper. The Monte Carlo procedure is as follows. There are two cases described below.
1. For each MC iteration ¢« = 1,...,I, draw T x 1 vectors eg),egf), es\?, eg) independently
from N (0,1).

2. Generate true data for (U ](\2), Y@ U }”) from the trivariate VAR

1 Any(0)  Anr(0) Uz(\?t Apm (1) Amy (1) Anrp(1) UJ(\ZA
Ay (0) 1 Ayr(0) | [ V] = [ Avar(1) Ayy(1) Ayp(1) v+
Apar(0) Apy(0) 1 Ul Apu(1)  Apy(1) Arr(1)) \ U8 |
Ao A
(A.5)

The Ay and A; are estimated from a VAR(1) on the historical data and the precise values

are given in the tables below.

3. Generate S; as

S = dy + dy S, + dael), + dseld) + dyell) + dsell). (Case i)
or
S(i) _ d d S(i) d (2) d (1) d (2) d (1) d (2) C .
1w = 10 T 11071 + d12€)p; + d13€y4 + d14€py + d15€g7; + d16Cga; (Case ii)
Sy = doo + do S5y + doely), + dosel)) + daaeld) + dasely,

The d coefficients are chosen to approximately replicate the correlations of Z;; and Zy;
with €y and ép; estimated from historical data. The precise values are given in the tables
below. Case i mimics the our estimates where we use a single stock return index in both
equations, while Case ii mimics estimates where we use two different measures of stock

market activity.

o0

J(u)t
o
€rt



. ) ) Y
4. Taking (U ](\2), Yo U ]Ef), St(l)> as data, estimate a reduced form VAR counterpart to (A.5)

and obtain the reduced form shocks 'f;gi). Initialize j = 0.

4.1 Given ( (Y) ] ég\'} H), calculate the Z by running the following regressions.

Case i:

St(Z) _ /1:6%) ;1] +Zl(?’m

S = By + Zy,
Case ii:

SO _ g0 0l

Sé? = 2 2t) u + Z2(t) & }7
where acgt = (1, St e [ 7Y and xé? = (1,5,5(?1,69)@,eg\?’[j])’,

4.2 Use ZV! and Z{") and estimates vech <nt A ) and vec <Z 0] @ g )> to impose

Assumption A of the paper and solve for B. We obtain éy- @l AEM)’[] 1 ég)’[j 1 from

L1 = (BO) T 0
4.3 Impose sign normalization: Set the sign of V1] to be equal to that of e, element
by element.

4.4 1f [[e®:UH — 8@\ < ¢ (where € is an arbitrarily small number), then set &) =

&®:ll Otherwise, set j = j + 1 and return to step 4.1.

For each i, we store &® and record the series correlations between the estimated and true
shocks for each j =Y, M, F,
Q) _ _1 (i)
pj = corr Jt’ Jt - Z
t:1
We report the average of the series correlations pgﬁ), ps\z/[), pg) across [ iterations. We also

calculate the correlations, for each ¢ and each j =Y, M, F,
I i A(i

%Ez 1 (6") (65-3)

\/ Zz 1 \/ Z'L 1

We report Z:{:l p,- Finally, we report the cross-iteration average of B® and A(()i).




We report results for 7" = 1,000. The data generating process for S; or Si; and Sy is
set to mimic our estimates using observed stock market data, which has a large idiosyncratic
component eg. We set parameter values so that the importance of this shock for the volatility
of S; is roughly six times that of ey, and ep;. The results are reported in Tables (A2) and (A3).
Under these parameterizations we generate instruments Z3; and Zs; that have the empirically
relevant correlations with the estimated ey, and ep,. For Case i these are, corr (Zy, en) =
0.0773, corr (Zy, erp) = 0.1664, and corr (Zy, ery) = 0.167. For Case ii, these correlations are
corr (Zg, ept) = 0.0779, corr (Zy, epy) = 0.162, and corr (Zay, epy) = 0.167. In both cases, Zy;
and Zy; are strongly correlated, as in the data. The results show that the procedure recovers a
close approximation of the true structural shocks (and therefore B matrix) when the instruments
have the observed degree of relevance for the uncertainty shocks, and when finite samples are

set to be within range of the size used in this study.
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8 Figures and Tables

Figure 1: Macro and Financial Uncertainty Over Time
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The upper panel plots the time series of the macro uncertainty Uy, expressed in standardized units. The
lower panel shows the time series of financial uncertainty U expressed in standardized units. The vertical lines
correspond to the NBER recession dates. The horizontal line corresponds to 1.65 standard deviations above
the unconditional mean of each series (which has been normalized to zero). Correlations with the 12-month
moving average of IP growth are reported. The black dots represent months when uncertainty is 1.65 standard

deviations above its unconditional mean. The data are monthly and span the period 1960:07 to 2015:04.



Figure 2: Time Series of ¢ Shock from SVAR System (Uy,ip, Ur)’
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The horizontal line corresponds to 3 standard deviations above/below the unconditional mean of each series.

The shocks e = B!y, are reported, where 7, is the residual from VAR(6) of (Up,ip,Ur)’ and B = A~'¥32.
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Figure 3: Dynamic Responses in SVAR (Uy;,ip, Ur)’
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 4: Dynamic Responses in SVAR (U, emp, Ur)'
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 5: Dynamic Responses in SVAR(U,;, noi, Ur)’
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 6: Large Shock Episodes in SVAR(U,,, Y, Ur)’
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The figure exhibits shocks that are at least 2 standard deviations above the unconditional mean for ep; and ep

and below for ey for three cases where Y = ip,emp, Q1. The shocks e = B~1y, are reported, where 7, is the

residual from VAR(6) and B = A~'%%. The horizontal line corresponds to 3 standard deviations shocks. The

sample spans the period 1960:07 to 2015:04.



Figure 7: Real Uncertainty Over Time
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This plot shows time series of Ug, expressed in standardized units. The vertical lines correspond to the NBER
recession dates. The horizontal line corresponds to 1.65 standard deviations above the unconditional mean of
each series (which has been normalized to zero). Correlations with the 12-month moving average of IP growth
are reported. The black dots represent months when Ug is 1.65 standard deviations above its unconditional

mean. The data are monthly and span the period 1960:07 to 2015:04.



Figure 8: Dynamic Responses in SVAR (Ug, emp, Ur)'
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 9: Large Shock Episodes in SVAR(Ug, Y, Ur)’
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The figure exhibits shocks that are at least 2 standard deviations above the unconditional mean for ep and ep
and below for ey for four cases where Y = ip,emp, Q1,n0i. The shocks e = B~'y, are reported, where 7, is
the residual from VAR(6) and B = A~'%3. The horizontal line corresponds to 3 standard deviations shocks.
The sample spans the period 1960:07 to 2015:04.



Figure 10: Price uncertainty
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The upper panel plots U, and UZ where the latter excludes uncertainties for five volatile sub-series defined in
the text, expressed in standardized units. The five series are: PPI intermediate materials, PPI crude materials,
oil, PPI metals and metal products, and CPI transportation. The middle and lower panel exhibit shocks that
are at least 2 standard deviations above the unconditional mean for U, and UZ. The shaded vertical bars
correspond to the NBER recession dates. Correlations with the 12-month moving average of IP growth are

reported. The data are monthly and span the period 1960:07 to 2015:04.



Figure 11: Dynamic Responses in SVAR. (U, emp, Up)’
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 12: Dynamic Responses in SVAR (U, @4, UF)'
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 13: Dynamic Responses in SVAR(U,, (12), emp, Ur (12))’
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 14: Dynamic Responses using Recursive Identification with Order (Ur, Uy, ip)/
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 15: Dynamic Responses in SVAR. (U, ip, Ur)'
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Moody’s Seasoned Baa corporate bond yield Baa; is used to construct Z; and the CRSP excess return to
construct Z,. Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage

points. The sample spans the period 1960:07 to 2015:04.



Figure 16: Dynamic Responses
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Bootstrapped 90% error bands appear as dashed lines. .S} is the CRSP value weighted average returns. Response

units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.



Table 1: Sample Statistics

Panel A: Correlations between Instruments and Shocks
SVAR (UMJ.p? UF), (UMaemp7 UF), (UManaUF)/ (UM7nOZ'>UF),

p(Zi,énme)  —0.0744 —0.0680 —0.0708 —0.0509
(0.0041) (0.0037) (0.0039) (0.0028)
p(Zit,éry) —-0.1701 —0.1812 —0.1742 —-0.1913
(0.0093) (0.0099) (0.0095) (0.0105)
p(Zay, ert) —~0.1557 —0.1687 —~0.1594 —0.1752
(0.0093) (0.0101) (0.0096) (0.0106)
p(Z1t,éyy) 0.0000 0.0000 0.0000 0.0000
0 (Zat, éyt) 0.0000 0.0000 0.0000 0.0000
p (Zas, énrt) 0.0000 0.0000 0.0000 0.0000
Panel B: Estimates of X
O MM 0.0128 0.0137 0.0135 0.0121
(0.0037) (0.0011) (0.0010) (0.0010)
[0.011,0.017]  [0.011,0.017]  [0.011,0.017]  [0.010,0.016]
oyy 0.0107 0.0027 0.0036 0.1039
(0.0013) (0.0004) (0.0005) (0.0148)
[0.008,0.018]  [0.002,0.006]  [0.003,0.006]  [0.076,0.186]
OFF 0.0277 0.0312 0.0279 0.0324
(0.0037) (0.0045) (0.0038) (0.0057)

0.023,0.038]  [0.025,0.048]  [0.023,0.039]  [0.024,0.049]

Panel A reports the correlation between the estimated uncertainty shocks and the instruments. Panel B reports
estimates of 3 that give the standard deviation of each structural shock. Asymptotic standard errors are
reported in brackets and bootstrapped 90 percent confidence intervals are reported in parentheses. Bolded
numbers indicate statistical significance at 10 percent level. The data are monthly and span the period 1960:07

to 2015:04.



Table 2: Tests of Validity of Recursive Restriction in System (Uy,,Y, Ur)’

Ordering: (Un,ip, Ug)' (Uns (12) ,ip, Up (12))’

Hy: Bry = Brp = Byp =0 239.54 127.75
110.79] [38.60]
Hy: Byp = Byp = Bpp =0 25.96 275.35
65.89] [47.22]
Hy: Bry = Brp = Bry =0 225.18 123.08
[113.74] [43.26]

ot (3) 7.81 7.81

(Unr, emp, Ug)' (Uns (12) , emp, U (12))

Hy: Bry = Brp = Byp =0 236.29 113.63
79.12] [47.42]
Hy: Byp = Byp = Bpp =0 70.73 229.54
[53.61] 169.62]
Hy: Bry = Brp = Bpy = 0 228.85 116.15
88.95] 163.02]

ot (3) 7.81 7.81

The table reports the Wald test statistic for testing the null hypothesis given in the column. The bold indicates that Wald test rejects the null at 95
percent level according to x2(3) distribution. The SVAR system is solved using GMM and delta method is used for computing the standard error.
Estimates of B are based on the SVAR identified with external instruments described in the text. The mean of bootstrap Wald statistics is reported in

parenthesis. The sample size spans 1960:07 to 2015:04.



Table 3: Variance Decomposition for SVARs in System (U, Y, Ur)’

SVAR (Uyy,ip, Up)’

SVAR (Uxs, emp, Urp)’

SVAR (U, noi, Ur)

Fraction variation in Upy

Fraction variation in Uy

Fraction variation in Upy

S Uy Shock  ip Shock Ur Shock Upsr Shock emp Shock Up Shock Ujpr Shock  noi Shock  Up Shock
1 0.371 0.527 0.102 0.531 0.376 0.093 0.679 0.198 0.123
12 0.419 0.409 0.172 0.601 0.249 0.150 0.706 0.098 0.196
00 0.420 0.368 0.212 0.619 0.220 0.161 0.739 0.116 0.145
Smax 0.511 0.528 0.215 0.664 0.384 0.161 0.740 0.212 0.199

[0.27,0.80] [0.24,0.73] [0.06,0.52] [0.39,0.88] [0.13,0.59] [0.06,0.45] [0.43,0.96] [0.04,0.49] [0.03,0.54]

Fraction variation in ¢p Fraction variation in emp Fraction variation in noi

S Upr Shock  ip Shock Ur Shock Unr Shock emp Shock Up Shock Ujps Shock  noi Shock  Up Shock
1 0.401 0.556 0.043 0.352 0.402 0.246 0.206 0.513 0.280
12 0.121 0.659 0.220 0.075 0.406 0.519 0.144 0.350 0.507
o0 0.082 0.691 0.227 0.124 0.424 0.453 0.162 0.348 0.489
Smax 0.415 0.696 0.272 0.373 0.424 0.587 0.275 0.513 0.507

[0.20,0.62] [0.31,0.94] [0.04,0.72] [0.20,0.61] [0.18,0.86] [0.15,0.92] [0.13,0.55] [0.22,0.82] [0.23,0.73]

Fraction variation in Ugp Fraction variation in Up Fraction variation in Ugp

s Upy Shock  ip Shock Ur Shock Upr Shock emp Shock Up Shock Ujps Shock  noi Shock  Up Shock
1 0.029 0.023 0.948 0.140 0.119 0.743 0.078 0.195 0.728
12 0.080 0.041 0.878 0.243 0.133 0.624 0.153 0.218 0.630
00 0.121 0.131 0.748 0.332 0.138 0.530 0.233 0.197 0.570
Smax 0.128 0.131 0.950 0.339 0.152 0.744 0.233 0.218 0.732

[0.03,0.49] [0.05,0.53] [0.52,0.99] [0.08,0.64] [0.04,0.59] [0.33,0.95] [0.03,0.60] [0.05,0.61] [0.40,0.94]

Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the
column heading. The row denoted “s = $;,4,” reports the maximum fraction (across all VAR, forecast horizons m) of forecast error variance explained by
the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples

using the procedure described in the Appendix. The data are monthly and span the period 1960:07 to 2015:04.



Table 4: Variance Decomposition for SVARs in System (Ug,Y, Ur)’

s=1
s=12
S =00
S = Smax
S
s =
s=12
S =00
§ = Smax
S
s=1
s =12
S =00
S = Smax

SVAR (Ug, ip,Ur)’

SVAR (Ug, emp, Ur)’

SVAR (Ug, noi, Up)’

Fraction variation in Ug

Fraction variation in Up

Fraction variation in Ug

Ugr Shock  ip Shock  Up Shock Ugr Shock emp Shock Up Shock Ugr Shock noi Shock Up Shock
0.359 0.513 0.128 0.483 0.405 0.112 0.587 0.281 0.132
0.253 0.463 0.285 0.409 0.292 0.299 0.445 0.200 0.355
0.302 0.407 0.291 0.419 0.263 0.318 0.420 0.180 0.401
0.302 0.407 0.291 0.519 0.405 0.318 0.601 0.285 0.401

[0.13,0.70] [0.19,0.82] [0.05,0.62] [0.24,0.78] [0.13,0.68] [0.07,0.64] [0.19,0.88] [0.05,0.69] [0.10,0.66]

Fraction variation in ¢p Fraction variation in emp Fraction variation in noi

Ugr Shock  ip Shock  Up Shock Ugr Shock emp Shock Up Shock Ugr Shock noi Shock Up Shock
0.391 0.577 0.032 0.378 0.392 0.230 0.268 0.437 0.295
0.295 0.456 0.249 0.220 0.217 0.563 0.114 0.259 0.627
0.211 0.326 0.463 0.092 0.064 0.845 0.112 0.256 0.632
0.397 0.580 0.463 0.392 0.395 0.845 0.342 0.437 0.632

[0.12,0.75] [0.19,0.87] [0.07,0.85] [0.15,0.66] [0.14,0.74] [0.34,0.96] [0.07,0.70] [0.09,0.79] [0.27,0.80]

Fraction variation in Ugp Fraction variation in Up Fraction variation in Ugp

Ugr Shock  ip Shock  Up Shock Ugr Shock emp Shock Up Shock Ugr Shock noi Shock Upg Shock
0.001 0.059 0.941 0.050 0.182 0.768 0.030 0.249 0.721
0.011 0.083 0.906 0.094 0.200 0.707 0.047 0.285 0.668
0.117 0.093 0.790 0.214 0.167 0.619 0.083 0.255 0.662
0.117 0.093 0.943 0.217 0.216 0.774 0.083 0.286 0.730

[0.04,0.37] [0.03,0.52] [0.55,0.99] [0.05,0.49] [0.04,0.64] [0.41,0.97] [0.01,0.41] [0.06,0.64] [0.40,0.93]

Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the

column heading. The row denoted “s = $;,4,” reports the maximum fraction (across all VAR, forecast horizons m) of forecast error variance explained by

the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples

using the procedure described in the Appendix. The data are monthly and span the period 1960:07 to 2015:04.



Table 5: Variance Decomposition for SVARs in System (U, (12),Y,Ur (12))

12

Smax

12

Smax

12

Smax

SVAR (U (12) ,ip, Ur (12))’

SVAR (Uns (12) ,emp, Ur (12))’

SVAR (Uys (12) , noi, Up (12))’

Fraction variation in Ups (12)

Fraction variation in Uy (12)

Fraction variation in Ups (12)

Uns (12) Shock  ip Shock  Up (12) Shock Unr (12) Shock emp Shock Up (12) Shock Ups (12) Shock  noi Shock  Up (12) Shock
0.548 0.432 0.020 0.621 0.360 0.019 0.707 0.276 0.017
0.763 0.219 0.018 0.776 0.212 0.012 0.903 0.091 0.006
0.635 0.206 0.159 0.682 0.135 0.183 0.824 0.081 0.087
0.813 0.432 0.165 0.682 0.135 0.183 0.908 0.328 0.087

0.42,0.95]  [0.19,0.67]  [0.05,0.53] 0.42,0.95]  [0.12,0.63]  [0.07,0.49] 0.53,0.99]  [0.06,0.62]  [0.04,0.41]
Fraction variation in ¢p Fraction variation in emp Fraction variation in no:

Unr (12) Shock  ip Shock  Up (12) Shock Unr (12) Shock  emp Shock Up (12) Shock Unr (12) Shock  moi Shock U (12) Shock
0.379 0.591 0.030 0.342 0.355 0.303 0.223 0.406 0.361
0.124 0.757 0.119 0.076 0.433 0.491 0.264 0.345 0.391
0.202 0.697 0.101 0.269 0.482 0.250 0.309 0.321 0.371
0.382 0.772 0.145 0.342 0.482 0.519 0.309 0.445 0.429

0.21,0.74]  [0.40,0.93]  [0.04,0.57] 0.24,0.79]  [0.20,0.85]  [0.15,0.85] 0.20,0.62]  [0.16,0.79]  [0.19,0.77]
Fraction variation in Ur (12) Fraction variation in U (12) Fraction variation in Up (12)

Unr (12) Shock  ip Shock  Up (12) Shock Unr (12) Shock  emp Shock U (12) Shock Unr (12) Shock  moi Shock U (12) Shock
0.091 0.002 0.907 0.273 0.090 0.637 0.291 0.147 0.562
0.165 0.017 0.819 0.389 0.108 0.503 0.423 0.168 0.409
0.200 0.162 0.638 0.448 0.165 0.387 0.519 0.151 0.330
0.206 0.162 0.907 0.464 0.165 0.637 0.519 0.170 0.584

0.03,0.69]  [0.05,0.50]  [0.40,0.99] 0.09,0.77]  [0.04,0.55]  [0.23,0.94] 0.07,0.84]  [0.03,0.59]  [0.19,0.86]

Each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by the shock named in the

b2

column heading. The row denoted “s = Syqqx

reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by

the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples

using the procedure described in the Appendix. The data are monthly and span the period 1960:07 to 2015:04.



Appendix Figures and Tables

Figure A1l: Dynamic Responses using 1987 Crash Dummies in SVAR(U,;, emp, Ur)'
UM Shock UM Shock UM Shock
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Bootstrapped 90% error bands appear as dashed lines. Dummies for 1987:10 and 1989:11 are included in
VAR estimation. Response units are reported in percentage points. The sample spans the period 1960:07 to

2015:04.



Figure A2: Pre-2008 Dynamic Responses in SVAR (U, emp, Ur)’
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2007:12.



Table Al: Tests of Validity of Recursive Restriction in System (Ug,Y,Ur)’

Ordering: (Ug,ip, Ur)' (Ur (12) ,ip, U (12))

Hy: Bry = Brp = Byrp =0 133.69 303.24
71.23] [77.88]
Hy: Bygn = Byr — Bpp = 0 29.11 167.57
[35.83] [52.54]
Hy: Bry = Brp = By = 0 130.41 306.34
[77.34] [72.79]

oy (3) 7.81 7.81

(Ug,emp,Up)" (Ur(12),emp,Ur (12))’

Hy: Bry = Bpp = Byp = 0 178.68 327.91
[62.11] [76.35]
Hy: Byr = Byp = Brp = 0 85.58 244 85
[46.43] [67.50]
Hy: Bry = Brp = By = 0 154.76 310.66
[76.22] [78.04]

oy (3) 7.81 7.81

The table reports the Wald test statistic for testing the null hypothesis given in the column. The bold indicates that Wald test rejects the null at 95
percent level according to x2(3) distribution. The SVAR system is solved using GMM and delta method is used for computing the standard error.
Estimates of B are based on the SVAR identified with external instruments described in the text. The mean of bootstrap Wald statistics is reported in

parenthesis. The sample size spans 1960:07 to 2015:04.



Table A2: Monte Carlo Case i

Data Generating Process: St(i) =1+ O.2St(i)1 + 26% + 0.016§2 + 26%1 + 126(;2

Panel A: Correlations between True and Generated Structural Shocks

Average over Iterations Average over Iterations and ¢
DY = 09933 L7 gl = 0.9937
DY = 09910 L3 |py] = 0.9923
L e = 09853 L7 |pnl = 0.9852

LS feorr (28, 28))| = 0.9963

Panel B: Correlations between Instruments and Shocks: Average over Iterations
N R RN N RN
Zfz) 0.0773 —0.0000 0.1664 0.0803 0.0015 0.1646

Zéi) —0.0000  0.0000 0.1670 0.0034 0.0014 0.1651

Panel C: True and Estimated Parameters

0.8971  3.5778 0.0880 0.8904  3.7168 0.0430

A= | —3.1844 0.9187 0.5075 Iy AW = | 33737 0.9096 0.5659

0.2951 —1.3191 0.9841 0.4201 —1.1569 0.9774

0.1236 —0.2625  0.1260 0.1198 —0.2623  0.1235

B=| 02380 0.0689 —0.0625 IS BO = 02377 0.0681 —0.0568

0.2993  0.1653  0.8796 0.2811  0.1518  0.8735
100 1.0354 0 0
=010 IS 20 = 0 1.0566 0
00 1 0 0 1.0054

The sample size T' = 1000, number of iteration I = 100, inner loop tolerance is set to be 10~%. e is the true
value generated from DGP and é(*) is the corresponding converged value in iteration i, p* = corr (e(i), é(i)) .
The initial guess for the inner loop is set to be (€$)7[O],e§\i4),[o]) = (Y®, UJ(&)) The DGP coefficient Ag and A,
are set to be the ones from reduced form VAR(1) of system (U, ip, Ur)".



Table A3: Monte Carlo Case ii

S = 140289 +2¢5 +0.018 4 268 + 2,560, + 1260,

Data Generating Process: (i) (i) ) ) ) @
Sey = 140.255" 1 + 2ey;, + 0.01ley, + 2ep; + 12e4),
Panel A: Correlations between True and Generated Structural Shocks
Average over Iterations Average over Iterations and ¢

DD Y = 09825 AT il = 0.9829

Pl Y = 09825 AT oyl = 09842

D — 09832 L7 |pnl = 09831

LSS [eorr (200, 280)| = 0.9758

Panel B: Correlations between Instruments and Shocks: Average over Iterations
I R R RO RN
Zfl) 0.0788 —0.0000 0.1620 0.0820 —0.0007 0.1611

ZQ(i) —0.0000  0.0000 0.1670 0.0035 —0.0005 0.1648

Panel C: True and Estimated Parameters

0.8971  3.5778 0.0880 0.8954  3.4221 0.0548

A= | —3.1844 0.9187 0.5075 IS AP = | —3.0633  0.9183 0.4866

0.2051 —1.3191 0.9841 0.3032 —1.2030 0.9772

0.1236 —0.2625  0.1260 0.1266 —0.2411  0.1266

B=| 0238 00689 —0.0625 IS BO =1 02206 00739 —0.0588

0.2093  0.1653  0.8796 0.2770  0.1705  0.8679
100 0.9727 0 0
=101 0 IS 20 = 0 1.0382 0
00 1 0 0 1.0220

The sample size T' = 1000, number of iteration I = 100, inner loop tolerance is set to be 10~%. () is the true
value generated from DGP and é() is the corresponding converged value in iteration i, p*) = corr (e(i), é(i)) .
The initial guess for the inner loop is set to be (eg),[o]jeg\?,[o]) = (YD, Uﬁ)). The DGP coefficient Ay and A,

are set to be the ones from reduced form VAR(1) of system (Uyy,ip, Ur)".





