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1 Introduction

A large literature in macroeconomics investigates the relationship between uncertainty and

business cycle fluctuations. Interest in this topic has been spurred by a growing body of evidence

that uncertainty rises sharply in recessions. This evidence is robust to the use of specific proxy

variables such as stock market volatility and forecast dispersion as in Bloom (2009), or a broad-

based measure of macroeconomic uncertainty, as in Jurado, Ludvigson, and Ng (2015) (JLN

hereafter). But while this evidence substantiates a role for uncertainty in deep recessions,

the question of whether uncertainty is an exogenous source of business cycle fluctuations or

an endogenous response to economic fundamentals is not fully understood. Existing results

are based on convenient but restrictive identifying assumptions and have no explicit role for

financial markets, even though the uncertainty measures are strongly correlated with financial

market variables. This paper considers a novel identification strategy to disentangle the causes

and consequences of real and financial uncertainty.

The question of causality and the identification of exogenous variation in uncertainty is

a long-standing challenge of the uncertainty literature. The challenge arises in part because

there is no theoretical consensus on whether the uncertainty that accompanies deep recessions

is primarily a cause or effect (or both) of declines in economic activity. Theories in which

uncertainty is defined as the time varying volatility of a fundamental shock cannot address this

question because, by design, there is no feedback response of uncertainty to other shocks if the

volatility process is specified to evolve exogenously. And, obviously, models in which there is no

exogenous variation in uncertainty cannot be used to analyze the direct effects of uncertainty

shocks. It is therefore not surprising that many theories for which uncertainty plays a role in

recessions reach contradictory conclusions on this question, as we survey below.

A separate challenge of the uncertainty literature pertains to the origins of uncertainty. Clas-

sic theories assert that uncertainty originates from economic fundamentals such as productivity,

and that such real economic uncertainty, when interacted with market frictions, discourages real

activity. But some researchers have argued that uncertainty dampens the economy through its

influence on financial markets (e.g., Gilchrist, Sim, and Zakrajsek (2010)). Moreover, as sur-

veyed by Ng and Wright (2013), all the post-1982 recessions have origins in financial markets,

and these recessions have markedly different features from recessions where financial markets

play a passive role. From this perspective, if financial shocks are subject to time-varying

volatility, financial market uncertainty—as distinct from real economic uncertainty—could be a

key player in recessions, both as a cause and as a propagating mechanism. The Great Reces-

sion of 2008, characterized by sharp swings in financial markets, hints at such a linkage. Yet so

far the literature has not disentangled the contributions of real versus financial uncertainty to

business cycle fluctuations.
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Econometric analyses aimed at understanding the role of uncertainty for business cycle

fluctuations face their own challenges, especially when the body of theoretical work does not

provide precise identifying restrictions for empirical work. Attempts to identify the “effects”of

uncertainty shocks in existing empirical work are primarily based on recursive schemes within

the framework of vector-autoregressions (VAR).1 But studies differ according to whether un-

certainty is ordered ahead of or after real activity variables in the VAR. While a recursive

structure is a reasonable starting point, any presumed ordering of the variables is hard to

defend on theoretical grounds given the range of models in the literature. Contemporaneous

changes in uncertainty can arise both as a cause of business cycle fluctuations and as a response

to other shocks. Recursive structures explicitly rule out this possibility since they presume that

some variables respond only with a lag to others.

It is with these challenges in mind that we return to the questions posed above: is uncertainty

primarily a source of business cycle fluctuations or a consequence of them? And what is the

relation of real versus financial uncertainty to business cycle fluctuations? The objective of this

paper is to establish a set of stylized facts that addresses these questions econometrically, against

which a wide range of individual models could be evaluated. To do so, we employ a small-scale

structural vector autoregression (SVAR). To confront the challenges just discussed, we take a

two-pronged approach. First, our empirical analysis explicitly distinguishes macro uncertainty

from financial uncertainty. The baseline SVAR we study describes the dynamic relationship

between three variables: an index of macro uncertainty, UMt, a measure of real economic

activity, Yt (e.g., production, employment), and a new financial uncertainty index introduced

here, UFt. Second, rather than relying on ordering assumptions for identification, we use a

different identification scheme that is less restrictive, both because it allows for simultaneous

feedback between uncertainty and real activity, and because it can be used to test whether a

lower recursive structure is supported by the data.

In conventional SVAR analyses, the focus is typically on the identified impulse response

functions and decomposition of variances. The properties of the shocks are often not scrutinized

even though the stated purpose of a SVAR analysis is to identify the structural shocks. In our

analysis, the shocks play a central role. Our identification strategy is to complement standard

covariance restrictions with implicit or explicit restrictions on the shocks. We impose two types

of shock-based restrictions. The first requires that the identified shocks be consistent with

economic reasoning in a small number of extraordinary events, such as the 1987 stock market

crash and the financial crisis/Great Recession of 2007-09. We refer to these as “event timing

constraints,”or simply event constraints.

The second type of constraints is referred to as component correlation constraints, so called

1See Bachmann, Elstner, and Sims (2013), Bloom (2009), Bloom (2014), Bekaert, Hoerova, and Duca (2013),
Gilchrist, Sim, and Zakrajsek (2010), and JLN.
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because restrictions are placed on the correlation between the identified shocks and certain

sub-components of special variables denoted St. These St variables are external to the SVAR

system and are not themselves valid instruments. But each variable in St is presumed to have

a component that is correlated with both types of uncertainty shocks yet contemporaneously

uncorrelated with real activity shocks, while having another component that is correlated with

financial uncertainty shocks but contemporaneously uncorrelated with both real activity and

macro uncertainty shocks. Since these components behave as if they were valid instruments, we

refer to them as “synthetic proxies.”Restricting the correlation between these synthetic proxies

and the shocks is akin to requiring an instrument to be minimally relevant.

The event and component correlation constraints are used to constrict the number of solu-

tions in an identified set that can otherwise be arbitrarily large. Naturally, we may have many

solutions or no solution depending on the implementation. As we shall see, our proposed con-

straints are capable of substantially winnowing the set of identified impulse responses. A key

part of the analysis is to find observables external to our SVAR that are driven by a multitude

of innovations, including the two types of uncertainty shocks that we are interested in. We

argue below that both theory and evidence suggest that aggregate stock market returns are

natural candidates for such St variables. Our maintained economic hypothesis is that stock

market returns should be correlated with both types of uncertainty shocks and therefore have

the two components described above.

The empirical exercise additionally requires that appropriate measures of macro and finan-

cial uncertainty be available. To this end, we exploit a data rich environment, working with 134

macro monthly time series and 147 financial variables. The construction of macro uncertainty

follows JLN. The same approach is used to construct a broad-based measure of financial un-

certainty that has never been used in the literature. Macro uncertainty is itself an aggregate of

uncertainties in variables from three categories: real activity, price, and financial. To better un-

derstand the contributions of each of these categories, we also replace UMt in the VAR with an

uncertainty measure based on the real activity sub-component. Uncertainty about real activity

is of special interest because classic uncertainty theories postulate that uncertainty shocks have

their origins in economic fundamentals and hence should show up as uncertainty about real

economic activity.

Before summarizing our main results, it should be made clear that the structural shocks

we identify do not necessarily correspond to primitive shocks of any particular model, as this

is not our goal. Our real activity shocks could originate from technology, monetary policy,

preferences, or government expenditure innovations, and our uncertainty shocks could originate

from economic policies and/or technology. Our approach explicitly eschews imposing a specific

model structure. It is instead designed to elicit the dynamic causal relationships between

business cycle and uncertainty fluctuations when commonly used timing, ordering, or other
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restrictions valid only under special theoretical assumptions are diffi cult to defend.

Our main results may be stated as follows. First, positive shocks to financial uncertainty are

found to cause a sharp decline in real activity that persists for many months, lending support

to the hypothesis that heightened uncertainty is an exogenous impulse that causes recessions.

These effects are especially large for several measures of real activity, notably production,

employment and a broad real activity index. The finding that heightened uncertainty has

negative consequences for real activity is qualitatively similar to that of preexisting empirical

work that uses recursive identification schemes (e.g., Bloom (2009), JLN), but differs in that

we trace the source of this result specifically to broad-based financial market uncertainty rather

than to various uncertainty proxies or broad-based macro uncertainty. We also show that the

converse is not supported by our evidence: exogenous shocks to real activity have no clear effect

on financial uncertainty given the set of SVAR parameters we identify.

Second, the identification scheme used here reveals something new that is not possible to

uncover under recursive schemes: macro and financial uncertainty have a very different dynamic

relationship with real activity. Specifically, unlike financial uncertainty, sharply higher macro

and real activity uncertainty in recessions is found to be an endogenous response to business

cycle fluctuations. That is, negative economic activity shocks are found to cause increases in

both macro uncertainty and in the sub-index that measures uncertainty about real economic

activity, but there is no evidence that independent shocks to macro or real activity uncertainty

cause lower economic activity. Indeed the opposite is often true: exogenous shocks to both

macro and real uncertainty are found to increase real activity, consistent with “growth options”

theories discussed below.

Third, our results are distinct from those obtained using recursive identification. Under any

recursive ordering of the variables in our VAR, exogenous shocks that increase macro or real

uncertainty appear to reduce real activity, in a manner that is qualitatively similar to financial

uncertainty shocks. This result does not hold in the less restrictive SVAR studied here and

appears to be an artifact of invalid timing assumptions under recursive identification. Further

investigation reveals that the SVAR we study reflects a non-zero contemporaneous correlation

between UFt and Yt, as well as between UMt and Yt, which is inconsistent with any recursive

ordering. Tests of the validity of a recursive structure are easily rejected by the data.

The rest of this paper is organized as follows. Section 2 reviews related literature and

provides motivation for our maintained economic hypothesis that stock market returns have

components that are correlated with macro and financial uncertainty shocks but contempo-

raneously uncorrelated with real activity, and also correlated with financial uncertainty but

contemporaneously uncorrelated with both real activity and macro uncertainty. Section 3 de-

tails the econometric framework and identification employed in our study, describes how the

synthetic proxies are constructed, and discusses the data and empirical implementation. In this
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section we also show how, with some additional restrictions, our approach can interpreted as

the output of a system estimation for a larger VAR that includes both Xt = (UMt, Yt, UFt) , and

St. Section 4 presents empirical results using broad based macro uncertainty UMt, while Section

5 reports results for systems that isolate the sub-component of UMt corresponding to real ac-

tivity variables. Section 6 reports results for additional cases including alternative bounds, an

assessment of the validity of recursive identification restrictions, and system estimation results

for a VAR in (Xt, St). Section 7 summarizes and concludes. A large number of additional

results are reported in an online Appendix. The underpinnings of the identification scheme as

well as Monte Carlo simulations calibrated to the present application are further explored in

Ludvigson, Ma, and Ng (2016).

2 Related Literature

A large literature addresses the question of uncertainty and its relation to economic activ-

ity.2 Besides the evidence cited above for the U.S., Nakamura, Sergeyev, and Steinsson (2012)

estimate growth rate and volatility shocks for 16 developed countries and find that they are

substantially negatively correlated. Theories for which uncertainty plays a key role differ widely

on the question of whether this correlation implies that uncertainty is primarily a cause or a

consequence of declines in economic activity. In most cases, it is modeled either as a cause or

an consequence, but not both.

The first strand of the literature proposes uncertainty as a cause of lower economic growth.

This includes models of the real options effects of uncertainty (Bernanke (1983), McDonald

and Siegel (1986)), models in which uncertainty influences financing constraints (Gilchrist,

Sim, and Zakrajsek (2010), Arellano, Bai, and Kehoe (2011)), or precautionary saving (Basu

and Bundick (2012), Leduc and Liu (2012), Fernández-Villaverde, Pablo Guerrón-Quintana, and

Uribe (2011)). These theories almost always presume that uncertainty is an exogenous shock to

some economic fundamental. Some theories presume that higher uncertainty originates directly

in the process governing technological innovation, which subsequently causes a decline in real

activity (e.g., Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012)).

A second strand of the literature postulates that higher uncertainty arises solely as a re-

sponse to lower economic growth, emphasizing a variety of mechanisms. Some of these theories

suggest that bad times incentivize risky behavior (Bachmann and Moscarini (2011), Fostel and

Geanakoplos (2012)), or reduce information and with it the forecastability of future outcomes

(Van Nieuwerburgh and Veldkamp (2006) Fajgelbaum, Schaal, and Taschereau-Dumouchel

(2014)), or provoke new and unfamiliar economic policies whose effects are highly uncertain

(Pástor and Veronesi (2013)), or create a greater misallocation of capital across sectors (Ai, Li,

2This literature has become voluminous. See Bloom (2014) for a recent review of the literature.
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and Yang (2015)), or generate endogenous countercyclical uncertainty in consumption growth

because investment is costly to reverse (Gomes and Schmid (2016)).

And yet a third literature has raised the possibility that some forms of uncertainty can

actually increase economic activity. “Growth options” theories of uncertainty postulate that

a mean-preserving spread in risk generated from an unbounded upside coupled with a limited

downside can cause firms to invest and hire, since the increase in mean-preserving risk increases

expected profits. Such theories were often used to explain the dot-com boom. Examples include

Bar-Ilan and Strange (1996), Pastor and Veronesi (2006), Kraft, Schwartz, and Weiss (2013),

Segal, Shaliastovich, and Yaron (2015).

This brief review reveals a rich literature with a wide range of predictions about the re-

lationship between uncertainty and real economic activity. Yet the absence of a theoretical

consensus on this matter, along with the sheer number of theories and limited body of evidence

on the structural elements of specific models, underscores the extent to which the question of

cause and effect is fundamentally an empirical matter that must be settled in an econometric

framework with as little specific theoretical structure as possible, so that the various theoretical

possibilities can be nested in empirical tests. Commonly used recursive identification schemes

cannot achieve this objective, since by construction they rule out the possibility that uncer-

tainty and real activity could influence one another within the period. Our econometric model

nests any recursive identification scheme, so we can test whether such timing assumptions are

plausible. We find they are rejected by the data.

Our maintained hypothesis that stock market returns should be correlated with uncertainty

shocks builds on work in asset pricing emphasizing the idea that stock market variation is

the result of several distinct (and orthogonal) sources of stochastic variation. For example, one

quantitatively important component is attributable to acyclical risk premia variation, and more

generally appears to be uncorrelated with most measures of real activity. This component is

valuable for our objective because it is exogenous to real activity, but may still be relevant for

both macro and financial uncertainty. Yet another component could be attributable to fluctu-

ations in factors like corporate leverage, the risk-bearing capacity of financial intermediaries,

or the risk aversion or “sentiment” of market participants that may be correlated with the

volatility of the stock market. In equilibrium asset pricing models, if leverage increases or the

risk-bearing capacity of intermediaries declines, volatility of the corporate sector’s equity return

increases. Thus changes in factors like leverage, intermediary risk-bearing capacity (and possi-

bly changes in risk aversion or sentiment) are likely to be correlated with financial uncertainty,

but may have little to do with uncertainty about economic fundamentals. This component

is valuable for our objective because it is plausibly uncorrelated with both real activity and

uncertainty about economic fundamentals, but may still be relevant for financial market uncer-
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tainty.3 Consistent with the existence of this type of component, JLN document that there are

many spikes in stock market uncertainty that do not coincide with an important movement in

either real activity or macro uncertainty. These findings motivate our maintained hypothesis

that measures of equity market returns are promising non-uncertainty variables comprised of

several distinct sources of stochastic variation, two of which are useful for identifying the shocks

of interest.

Our use of external variables St is related to a recent line of econometric research in SVARs

that uses information contained in external instruments to identify structural dynamic causal

effects.4 Of these, Stock and Watson (2012) study uncertainty shocks, using a measure of stock

market volatility and/or a news media measure of policy uncertainty from Baker, Bloom, and

Davis (2013), as separate external instruments for identifying the effects of uncertainty shocks

in a SVAR. Our study differs in some fundamental ways. First, our approach relies on a set of

economic assumptions that is distinct from that of standard IV approach, hence the moment

conditions used to identify the model parameters and shocks are not the same. The identification

strategy in Stock andWatson (2012) for uncertainty shocks presumes that the external variables

themselves (i.e., stock market volatility, policy uncertainty) are valid instruments, correlated

with the uncertainty shock of interest but not with the other shocks. By contrast, our approach

explicitly views both the stock market and our uncertainty measures as partly endogenous,

forcing us to confront the identification quandary. Our identification assumption is instead

that aggregate stock market returns contain components that are correlated with the structural

uncertainty shocks and we consider an identification strategy that relies on lower bounds for

the absolute values of these correlations. Second, Stock and Watson (2012) focus exclusively

on identifying the effects of uncertainty shocks and do not attempt to identify all shocks in the

system, including the effects of real activity on uncertainty.

Berger, Dew-Becker, and Giglio (2016) take a different approach. Using options data they

find that bad times are associated with higher realized volatility but not higher expected volatil-

ity, a result that they interpret as consistent with the hypothesis that higher uncertainty is a

consequence of negative economic shocks rather than a cause. This interpretation is not in-

tended to provide an explicit identification of uncertainty shocks, however.

Finally, Baker and Bloom (2013), who use disaster-like events as instruments for stock

market volatility with the aim of isolating exogenous variation in uncertainty. This has some

3For empirical evidence that risk premia in financial markets have an important component uncorrelated
with real activity, see Bianchi, Ilut, and Schneider (2014); Lettau and Ludvigson (2013), Greenwald, Lettau,
and Ludvigson (2014), Kozak and Santosh (2014), and Muir (2014). Theoretical examples in which real or
financial uncertainty varies independently of economic fundamentals include Bansal and Yaron (2004); Wachter
(2013); Gourio (2012); Bianchi, Ilut, and Schneider (2014); Gabaix and Maggiori (2013); He and Krishnamurthy
(2013).

4See for example Hamilton (2003), Kilian (2008), Mertens and Ravn (2013); Stock and Watson (2008), Stock
and Watson (2012), and Olea, Stock, and Watson (2015).
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similarities with our approach, in that it implicitly assumes that certain components of stock

market fluctuations (those associated with “disasters”) are exogenous. Whereas disasters chosen

subjectively are presumed to be valid instruments for uncertainty, we instead use external stock

return data and unusual events to constrain a set of estimable moment restrictions. It is of

interest that we arrive at complementary conclusions, despite the differing methodologies for

identifying exogenous variation.

3 Econometric Framework

This section outlines our econometric approach. Subsection 1 explains the identification strat-

egy. Subsections 2 and 3 explain estimation methodology and the uncertainty measures. Sub-

section 4 shows how our approach can be interpreted as the output of a restricted system

estimation for a larger VAR that includes both Xt and St.

3.1 The SVAR and Identification

Let Xt denote a K × 1 vector time series. We suppose that Xt has a reduced-form vector

autoregressive and an infinite-order moving average representation given respectively by:

Xt = k + A1Xt−1 + A2Xt−2 + · · ·+ ApXt−p + ηt. (1)

Xt = µ+ Ψ (L)ηt (2)

ηt ∼ (0,Ω), Ω = E (ηtη
′
t)

whereΨ(L) = In+Ψ1L+Ψ2L
2 + . . . is a polynomial in the lag operator L of infinite order, and

Ψs is the (n× n) matrix of coeffi cients for the sth lag of Ψ(L). The reduced form innovations

ηt are related to the structural shocks et by an invertible K ×K matrix H:

ηt = HΣet ≡ Bet (3)

et ∼ (0, IK), Σ=


σ11 0 · 0
0 σ22 0 0
0 · · 0
0 0 · σKK

 , σjj ≥ 0 ∀j. (4)

where B ≡ HΣ. The structural shocks et are mean zero with unit variance, and are serially

and mutually uncorrelated. A normalization is required to pin down the sign and scale of the

shocks. We adopt the unit effect normalization

diag (H) = 1. (5)

The objective of the exercise is to study the dynamic effects and the relative importance of each

structural shock j. These are summarized by the impulse response function (IRF) ∂Xt+s

∂ejt
= Ψsb

j
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(where bj is the jth column of B) and the fraction of s-step ahead forecast error variance of Xt

that is attributable to each structural shock. The SVAR identification problem concerns iden-

tifying the elements of H and Σ, from which the structural IRFs and variance decompositions

are computed.

To study the impulse and propagating mechanism of uncertainty shocks while explicitly

distinguishing between macro and financial market uncertainty, we consider a system with

K = 3 variables. Our baseline SVAR is based on Xt = (UMt, Yt, UFt)
′, where UMt denotes

macro uncertainty, Yt denotes a measure of real activity, and UFt denotes financial uncertainty.

The corresponding reduced form shocks ηt = (ηMt, ηY t, ηFt)
′ are related to the three structural

form shocks et = (eMt, eY t, eFt)
′ for macro uncertainty, real activity, and financial uncertainty,

as follows:

ηMt = BMMeMt +BMY eY t +BMF eFt

ηY t = BYMeMt +BY Y eY t +BY F eFt

ηFt = BFMeMt +BFY eY t +BFF eFt,

where Bij is the element of B that gives the contemporaneous effect of the jth structural shock

on the ith variable. The standard covariance restrictions come from the covariance structure of

ηt, which provides K(K + 1)/2 = 6 equations in B:

vech(Ω) = vech(BB′), (6)

where vech(Ω) stacks the unique elements of the symmetric matrix Ω. There are nine unknown

elements in B.

To motivate our procedure, it is helpful to begin by considering the external instrumental

variables (IV) approach where valid instruments are observed. To do so, suppose for the moment

that we have measures of Yt, UMt, UFt, and two valid external instruments Z1t and Z2t satisfying

the following:

Assumption A: Let Zt = (Z1t, Z2t)
′ be two instrumental variables such that

(A.i) E[Z1teMt] 6= 0, E[Z1teY t] = 0, E[Z1teFt] 6= 0
(A.ii) E[Z2teMt] = 0, E[Z2teY t] = 0, E[Z2teFt] 6= 0.

Assumption A are conditions for instrument exogeneity and relevance. Z1t is an instrument

that is correlated with both macro and financial uncertainty, but contemporaneously uncor-

related (exogenous) with respect to real activity. Z2t is an instrument that is correlated with

financial uncertainty, but contemporaneously uncorrelated (exogenous) with respect to macro

uncertainty and real activity.
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Let m1t = (vech(ηtη
′
t), vec (Zt ⊗ ηt))′ and β = vec(B). At the true value of β, denoted β0,

the SVAR external IV model satisfies

0 = E[g1(m1t;β
0)], (7)

written out in full as follows:

0 = var(ηM)−B2
MM +B2

MY +B2
MF

0 = var(ηY )−B2
YM +B2

Y Y +B2
Y F

0 = var (ηF )−B2
FM +B2

FY +B2
FF

0 = cov(ηM , ηY )−BMMBYM +BMYBY Y +BMFBY F

0 = cov(ηY , ηF )−BYMBFM +BY YBFY +BFFBY F

0 = cov
(
ηM,ηF

)
−BMMBFM +BMYBFY +BMFBFF

0 = BMFE[Z2tηY ]−BY FE[Z2tηMt]

0 = BFFE[Z2tηY t]−BY FE[Z2tηFt]

0 = (BMMBFF −BMFBFM)E[Z1tηY t]− (BY FBFM −BYMBFF )E[Z1tηMt]

−(BMMBY F −BMFBYM)E[Z1tηFt].

With two external instruments, the model has nine equations in nine unknowns. The first six

are from the covariance structure. The next two equations are due to the three moments implied

by Assumption (A.ii). The final equation is due to the three moments implied by Assumption

(A.i). It is straightforward to prove that, under Assumption A, the unit-effect normalization,

and the restrictions on the admissible parameter space, β is point-identified. (See the online

Appendix.) In essence, identification in this IV analysis is achieved by (i) using movements

in UMt and UFt that are correlated with Z1t to identify the effects of uncertainty shocks and

disentangle them from shocks to real activity, (ii) using movements in UFt that are correlated

with Z2t to identify the effects of UFt shocks and disentangle them from macro uncertainty

shocks, and (iii) using movements in Yt that are uncorrelated with both Z1t and Z2t to identify

the effects of real activity shocks and disentangle them from uncertainty shocks.

Since we take the stand in this application that our uncertainty measures are potentially

endogenous, it is then natural to ask why we do not simply find observable instruments. One

answer is that credible external instruments for uncertainty shocks that are truly exogenous

may be diffi cult or impossible to find and defend. Indeed, existing uncertainty proxies are likely

to be among the variables that fall into this category. But even if the exogeneity assumption

is questionable, variables external to the VAR could still contain valuable information about

the parameters and shocks of interest. The next subsection exploits this idea by proposing

a methodology to construct synthetic proxy variables that should contain at least some in-

formation for uncertainty shocks, information that, once combined with additional economic
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restrictions, can help narrow the set of plausible solutions and the range of dynamic causal

effects in the SVAR for Xt.

3.2 Construction of Synthetic Proxies

Suppose that the ideal instruments Z1t and Z2t have no credible observable counterparts. The

next step is to develop a methodology to construct synthetic proxies in the spirit of such

variables. To motivate our method, recall that two stage least squares uses projections to purge

the endogenous variations from a relevant regressor. Our approach is similar except that we

purge the endogenous variations from observed variables St. The residuals are our synthetically

created proxies for Z1t and Z2t. We denote these constructed components Zt(β) to emphasize

that they are functions of parameters β to be estimated.

In the present context, we make use of observable variables St that are driven by the struc-

tural shocks et = (eY t, eMt and eFt)′, as well as other shocks collected into an eSt that are

uncorrelated with et. A theoretical premise of the paper is that structural uncertainty shocks

should be reflected in stock prices. Thus we use measures of stock market returns as St. Under

this maintained assumption, we may represent St as

St = δ0 + δY Yt + δMUMt + δFUFt + δS(L)St−1 + δX(L)′Xt−1 + eSt (8)

whereXt = (Yt, UMt, UFt)
′. The residual eSt could be driven by any number of shocks orthogonal

to et. One interpretation is risk premium shocks driven by factors orthogonal to uncertainty,

such as a pure sentiment shock, but the precise interpretation is not important to what follows.

It is clear that St and Xt are endogenous variables and least squares estimation of (8) will

yield inconsistent estimates. However, we are not interested in these parameters. Our interest

in stock market returns is solely that they have components that are useful for understanding

uncertainty shocks. Consider the projections

St = d10 + d1Y eY t + d1S(L)St−1 + Z1t (9a)

St = d20 + d2MeMt + d2Y eY t + d2S(L)St−1 + Z2t, (9b)

where St in (9a) and (9b) are not necessarily the same variable. Equation (9a) forms an

orthogonal decomposition of St conditional on its own lag into a component that is spanned by

eY t and a component Z1t that is orthogonal to eY t. Similarly, equation (9b) purges the effect

of eY t and eMt from St conditional on its lags to arrive at Z2t. Note that Z1t and Z2t include

the effects of Xt−1. As UMt and UFt can be serially correlated, their lagged values can predict

future excess stock market returns.

If eY and eM were observed, then simple least squares regressions would produce estimates

of Z1t and Z2t that satisfy Assumption A by construction. But et themselves depend on β,

11



hence Z(β) also depends on β. The problem that this creates is that if Ẑ′1êY = 0, Ẑ′2êY = 0,

and Ẑ′2êM = 0 for some β̂ = vec(B̂), any orthonormal rotation of B̂ to B̃ = B̂Q′ and ê to

ẽ = Qê will also result in Z̃′1ẽY = 0, Z̃′2ẽY = 0, and Z̃′2ẽM = 0. In other words, the three

exogeneity conditions hold by construction and no longer offer information about β. Hence,

the nine moment restrictions in (7) cannot identify the SVAR parameters when the external

instruments are replaced by the synthetic proxies. If we collect all the solutions that satisfy (7)

into the set B̂, this set can be infinitely large.
To address this problem, we abandon the goal of point identification in favor of less restrictive

economic assumptions that are supported by the data. Specifically, we consider two types of

restrictions that appear new in the SVAR literature. The general idea is that some solutions

of β will produce Z(β) and e(β) that are at odds with reasonable economic judgment. We

employ two types of winnowing constraints to dismiss such solutions in B̂ to arrive a restricted
solution set B(c̄, C̄, k).

1 Component correlation constraints: Let ckj(β) = corr(Zkt(β), ejt(β)) be the sample

correlation between Zk(β) and the shock in et(β) = (eMt, eY t, eFt) with label j.

i |c1M(β)| > c̄, |c1F (β)| > c̄, and |c2F (β)| > c̄.

ii For c(β)=
(
c1M(β), c1F (β), c2F (β)

)′
,
√
c(β)′c(β) > C̄.

2 Event constraints: For et(β) = B−1ηt and k =
(
k1, k2, k3

)′
,

i eFt1(β) > k̄1 where t1 is the period 1987:10 of the stock market crash.

ii There exists a t2 ∈ [2007:12, 2009:06] such that eFt2(β) > k̄2.

iii For all t2 ∈ [2007:12, 2009:06], eY t2(β) < k̄3

The first set of restrictions regards the correlation between uncertainty shocks and aggregate

stock market returns. Granted that a non-zero correlation is a maintained assumption, it leaves

open the question of how correlated. Rather than taking a stand on a particular magnitude,

we set lower bounds on the absolute correlations. This allows us to make use of the fact that

the component correlations c1M = Z′1(β̂)êM , c1F = Z′1(β̂)êF , c2F = Z′2(β̂)êF are not invariant

to orthonormal rotations. That is to say, the component correlations generated by B̂ will in

general be different from those generated by B̃ = B̂Q′. Hence solutions in the unconstrained

set that do not satisfy the lower bound will be dismissed. In implementation, we require that

each correlation c1M(β̂), c1F (β̂), c2F (β̂) individually exceeds a pre-specified c̄, and collectively

exceeds C̄.

The second set of restrictions requires that the financial uncertainty shocks identified in

October 1987 (black Monday) and during the 2007-2009 financial crisis be large and positive,
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and that the identified output shocks during the Great Recession not take on large positive

values. These event timing restrictions also act to shrink the unconstrained set because, while

ẽt and êt have the same mean and variance, ẽt 6= êt at any particular t. Solutions that imply

favorable financial uncertainty and/or output shocks during these times are dismissed in light of

of the sub-par economic conditions and/or extreme volatility in the stock market that prevailed.

The precise t2 dates are set in accordance with NBER dating of the Great Recession, which

coincides with the timing of the financial crisis.

It remains to discuss the construction of the unconstrained solution set B̂. The possible
solutions in B̂ are obtained by initializing B to be the lower Cholesky factorization of Ω for

an arbitrary ordering of the variables, and then rotating it by K = 40, 000 random orthogonal

matrices Q. Each rotation begins by drawing an n×n matrix G of NID(0,1) random variables.

Then Q is taken to be the orthonormal matrix in the QR decomposition of G = QR and

QQ′ = In. A β in the unconstrained solution set B̂ is also in the constrained solution set
B(c̄, C̄, k) only if the event and component correlation constraints are all satisfied.

Some comments about the implementation of this approach bear discussion. First, the para-

meter values for the bounds c, C, and k must in general vary with the data under investigation.

It should be clear that if the values for the bounds are overly restrictive, the constrained solu-

tion set will be empty, while if they are too unrestrictive the constraints themselves will have

no identifying power. Moreover, a particular choice of values for c, C, and k may be highly

restrictive for one system of data but entirely unrestrictive for another. For the applications

here, we consider several different systems for Xt that vary according to how real activity is

measured (production, employment, or a real activity index), or whether macro uncertainty or

the sub-index for real activity uncertainty is used. The bounds are adjusted accordingly across

these cases, in order for the degree of restrictiveness of the event and correlation constraints to

be similar. We discuss the precise values for the bounds below as they pertain to each case.

Second, though no one solution in B̄(c̄, C̄, k̄) is any more likely than another, it will be

useful to have one solution as reference point in the discussions. We use what will be referred

to as the ‘max-C’solution. This is the solution in the restricted set B(c̄, C̄, k) with the highest

collective correlation
√
c( β)′c(β), defined as:

β̂
max-C

=arg max
β∈B(c̄,C̄,k)

√
c(β)′c(β). (10)

Third, in conventional IV analyses the instruments are observed and can be readily used

to formulate sample orthogonality conditions, as in the nine moment restrictions of (7). If

the synthetic variables Z(β) were to be thought of as synthetic instruments, then conceptually

they would need to be constructed prior to estimation. But the construction of Z(β) itself

necessitates values of B. In this case, an iterative step would be necessary to ensure that the B

used to construct Zt(β) is consistent with the solution that emerges from (7). This approach was
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taken in an earlier draft of the paper, in which the procedure was referred to iterative projection

IV. It is now understood that, though conceptually appealing, the additional iteration comes at

a computational cost with little to gain, as the results without this step are virtually identical

to those with the additional step. It should be noted, however, that regardless of whether this

step is taken, the synthetic Z(β) components satisfy the exogeneity restrictions of assumption

A, since the structural shocks et are by construction mutually uncorrelated.

To summarize, identification is predicated on three economic assumptions. First, the exter-

nal variables St must have components that are relevant for the uncertainty shocks, as specified

by the correlation constraints. Second, the identified shocks must be consistent with a priori

economic reasoning in a small number of extraordinary events whose interpretation is relatively

incontrovertible. Third, St is excluded from the VAR so that its shocks cannot affect the vari-

ables in Xt either contemporaneously or with a lag. Below we show how this last assumption

can be empirically evaluated.

To have confidence in this implementation, Ludvigson, Ma, and Ng (2016) use Monte Carlo

experiments to study the properties of the estimator. The results for a data generating process

calibrated to the empirical application here shows that the procedure produces solution sets

that are substantially narrowed by applying the event and correlation constraints described

above.

3.3 System Estimation

The estimation procedure just discussed is based on an SVAR for Xt. While St plays a role in

identification, it is excluded from the SVAR. We refer to the foregoing analysis as the subsystem

approach. However, it is also possible to apply the event and component correlation constraints

to a larger VAR in (Xt, St)
′. We refer to this as the full system approach. For this purpose, we

consider a single St.

The full system VAR takes the same form as (1); the only difference is that St is now

included in the VAR. The reduced form errors for the full system are ηt = (η′Xt, ηSt)
′. The

structural shocks are
(
e′Xt eSt

)′
with ηt = Bet. The B matrix now has 16 parameters and

the covariance structure gives 10 pieces of information. We assume that the shocks eSt do not

contemporaneously affect Xt. This means that the impact sub-vector giving the effects of eSt
on Xt, denoted BXS = (BMS, BY S, BFS)′ , is zero. These three zero restrictions imply

ηMt

ηY t
ηFt
ηSt

 =


BMM BMY BMF 0
BYM BY Y BY F 0
BFM BFY BFF 0
BSM BSY BSF BSS




eMt

eY t
eFt
eSt

 . (11)
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The synthetic variables Zt are now defined as

Z1t = ηSt −BSY eY t = BSMeMt +BSF eFt +BSSeSt

Z2t = Z1t −BSMeMt = BSF eFt +BSSeSt.

Hence they are functions of the structural parameters. This treatment of Zt is conceptually

distinct from the subsystem analysis earlier when Zt was treated as a residual from a projection.

The full system is estimated using the component correlation and event constraints, just as for

the subsystem, except that the residual ηSt is used to construct Zt in place of St. Hence as in

the case with the subsystem analysis, the model is underidentified. To address this problem,

we again use the event and component correlation constraints to narrow the set of plausible

parameters. In the full system, the correlation constraints are given by

c1M(β) =
corr(Z1t, eMt)

σZ1
=

BSM√
B2
SM +B2

SF +B2
SS

c1F (β) =
corr(Z1t, eFt)

σZ1
=

BSF√
B2
SM +B2

SF +B2
SS

c2F (β) =
corr(Z2t, eFt)

σZ2
=

BSF√
B2
SF +B2

SS

,

where the second equalities follow by recalling that eMt and eFt have unit standard deviations.

Evidently, these correlations explicitly depend on the parameters of the S equation. Thus,

as in the subsystem analysis, they are not invariant to orthonormal rotation of eX and the

parameters of the subsystem.

It is of interest to compare the full and subsystem analyses. In the subsystem analysis, the

process that generates St is left unspecified. As such, it can be a function of variables other

than Xt, both contemporaneously, and at lags. By contrast, the full system approach specifies

the process for St. Any misspecification in one equation can affect all equations in the system.

On the other hand, the full system merely constrains the contemporaneous effect of St on Xt to

zero. This is a weaker than assuming that St is exogenous for Xt, which additionally prevents

the lags of St from affecting Xt. Constraining the current and lagged values of St to zero

amounts to the subsystem analysis of excluding St from the larger VAR altogether. It should

however be noted that excluding the past values of St from the equations for Xt is not needed

for the set identification described above. Thus the assumption that St can be excluded from

the VAR for Xt places overidentifying restrictions on the full system that can be evaluated

empirically. A simple way to do so is to compare the impulse response functions estimated for

the three variable system Xt = (UMt, Yt, UFt)
′ with those from a larger system that includes

St but does not restrict the coeffi cients of St−j in the equations for Xt to zero, for j ≥ 1. We

present these results below.
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3.4 Measuring Uncertainty and Stock Market Returns

In our estimation we work with several different aggregate measures of uncertainty, which are

indexes constructed over individual uncertainties for a large number of observable time-series.

A long-standing diffi culty with empirical research on this topic has been the measurement of

uncertainty. JLN find that common uncertainty proxies contain economically large components

of their variability that do not appear to be generated by a movement in genuine uncertainty

across the broader economy. This occurs both because these proxies over-weight certain series in

the measurement of aggregate uncertainty, and because they erroneously attribute forecastable

fluctuations to a movement in uncertainty. Equity market volatility, for example, contains a

non-trivial component generated from forecastable variation in stock returns. The estimated

macro uncertainty index constructed in JLN is designed to address these issues and improve the

measurement of aggregate uncertainty. The methodology used here for constructing uncertainty

indexes follows JLN and we refer the reader to that paper for details.

Let yCjt ∈ Y C
t = (yC1t, . . . , y

C
NCt

)′ be a variable in category C. Its h-period ahead uncertainty,

denoted by UCjt(h), is defined to be the volatility of the purely unforecastable component of the

future value of the series, conditional on all information available. Specifically,

UCjt(h) ≡

√
E
[
(yCjt+h − E[yCjt+h|It])2|It

]
(12)

where It is information available. If the expectation today of the squared error in forecasting

yjt+h rises, uncertainty in the variable increases. As in JLN, the conditional expectation of

squared forecast errors in (12) is computed from a stochastic volatility model, while the condi-

tional expectation E[yCjt+h|It] is replaced by a diffusion index forecast, augmented to allow for
nonlinearities. These are predictions of an autoregression augmented with a small number of

common factors qt = (q1t, . . . , qrt)
′ estimated from a large number of economic time series xit

each with factor representation xit = Λ′itqt + eχ,it. Nonlinearities are accommodated by includ-

ing polynomial terms in the factors, and factors estimated squares of the raw data. The use of

large datasets reduces the possibility of biases that arise when relevant predictive information

is ignored. Let Y C
t = (yC1t, . . . , y

C
NCt

)′ generically denote the series that we wish to compute

uncertainty in.

Uncertainty in category C is an aggregate of individual uncertainty series in the category :

UCt(h) ≡ plimNC→∞

NC∑
j=1

1

NC

UCjt(h) ≡ EC [UCjt(h)]. (13)

In this paper, we consider four categories of uncertainty:
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Category (C) Y C
t NC

(M): Macro all variables in χM 134
(F): Financial all variables in χF 147
(R): Real activity real activity variables in χM 73

We use two datasets covering the sample 1960:07-2015:04.5 The first is a monthly macro

dataset, XM
t , consisting of 134 mostly macroeconomic time series take from McCracken and Ng

(2016). The second is a financial dataset X F
t consisting of a 147 of monthly financial indicators,

also used in Ludvigson and Ng (2007) and JLN, but updated to the longer sample. The real

uncertainty index URt is an equally-weighted average of the individual uncertainties about 73

series in Groups 1 through 4 of XM . These include output and income variables, labor market

measures, housing market indicators, and orders and inventories. Additional predictors for

variables in XM
it include factors formed from X F

it and vice-versa, squares of the first factor of

each, and factors in the squares of individual series,
(
XM
it

)2
and

(
X F
it

)2
.

Our use of stock returns St to generate instruments is grounded in the theoretical premise

that both macro and financial uncertainty shocks should be reflected in stock market returns.

There is no reason, however, that the regressands in (9a) and (9b) must be exactly the same

measure of stock market activity. All measures of stock market activity are highly correlated

because they contain a large common component (much of which is orthogonal to the rest of the

economy). In order to introduce some additional independent variation in our two instruments,

our base cases use different measures of aggregate stock market activity S1t and S2t, although in

practice we get very similar results if we use the same value-weighted stock market index return

in (9a) and (9b). Specifically, for S1t, the regressand for (9b), we use the Standard and Poor

500 stock market index return. For S2t, the regressand in (9a), we use αpcrspt+(1− αp) smallt,
which is a portfolio weighted average of the return on the CRSP value-weighted stock index in

excess of the one-month Treasury bill rate and the smallest decile stock market return in the

NYSE.6 We set the portfolio weight αp to be a value close to one, thereby giving only a small

amount of additional weight to small stocks. Small stocks are less representative of the market

as a whole, and it is unclear how highly correlated they should be with aggregate uncertainty

measures. For the base case results presented below we set αp = 0.94. This constructs a

portfolio that gives slightly more weight to small stocks than what they receive in the value-

weighted CRSP index. However, we also investigated a range of values for αp ∈ [0.75, 1] and

found very similar estimates and impulse responses for all weights in this range.

5A detailed description of the series is given in the Data Appendix of the online location where updated JLN
uncertainty index data are posted: http://www.sydneyludvigson.com/s/jln_data_appendix_update.pdf

6The CRSP index is a value-weighted return of all stocks in NYSE, AMEX, and NASDAQ.
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4 Results for Xt = (UMt, Yt, UFt)
′

This section presents empirical results. We begin by studying systems with macro uncertainty

UMt. We then move on to consider real uncertainty URt formed exclusively from real activity

variables.

We consider h = 1 (one-month uncertainty) and several measures of Yt. The first two

measures are the log of real industrial production, denoted ipt, and the log of employment,

denoted empt. While industrial production is a widely watched economic indicator of business

cycles, it only captures goods-producing industries and has been a declining share of GDP.

Employment only covers the labor market. Hence we also consider an additional measure of

real activity: the cumulated sum of the first common factor estimated from the macro dataset

χM (since the raw data used to form this factor q1t are transformed to stationary), which we

denote Q1t. Since our emphasis is on h = 1, we write UMt instead of UMt(1), and analogously

for UFt, in order to simplify notation. Our baseline VAR is defined by the system that uses

production as a measure of real activity, along with UMt and UFt, i.e., Xt = (UMt, ipt, UFt)
′.

The bounds for the correlation and event constraints in each of these cases are set as fol-

lows. We start with the baseline system using Yt = ipt and set the c and C to be relatively

unrestrictive, with c = 0.03 for the individual correlation, and C = 0.24 for the collective

correlation. The latter value corresponds to an average value of approximately 0.14 for the

root-mean-square-correlation
√

1
3
c(β)′c(β). This says that a lower bound of 3% absolute corre-

lation between stock market returns and both types of uncertainty shocks is maintained, with

an average absolute correlation of 14%. We set the parameters of the event constraints to

k1 = 4.0, k2 = 4.0, and k3 = 2. The k1 and k2 thresholds pertain to the financial uncertainty

shocks in October of 1987 when Black Monday occurred, and during the months of the 2007-09

financial crisis. This imposes the constraint that these events were accompanied by large finan-

cial uncertainty shocks. The requirement that the shocks be at least four standard deviations

larger than the mean is roughly guided by Bloom (2009). In his work, uncertainty shocks are

calibrated from innovations to the VXO stock market volatility index. Bloom (2009) studies

the dynamic effects of four standard deviation shocks to uncertainty. The k3 threshold states

that the identified real activity shock cannot be too positive in the Great Recession; specifically,

we restrict the shock to be no larger than two standard deviations above its sample mean in

the Great Recession months. In the additional cases section below, we assess the sensitivity

of the findings to changing the values of the bounds. It is worth noting that, for the baseline

case, the event constraints alone eliminate 99% of the solutions in B̂. When combined with the
correlation constraints, we are left with a handful of solutions.

For the systems with other measures of Yt = empt or Q1t, the correlation bounds must be

strengthened in order for the constraints to have a similar degree of restrictiveness. Specifically,
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if for these cases we use the same c = 0.03 for the individual correlation and C = 0.24 for

the collective correlation, more than three times as many solutions survive the correlation

constraints (for the same event constraints) than for the baseline system that uses Yt = ipt.

Thus its clear that the the correlation bounds parameters for the ipt system have very little

identifying power for the systems using empt and Q1t. To make the degree of restrictiveness

of these constraints comparable with the baseline case, we increase the individual correlation

parameter to c = 0.05 for both the Yt = empt or Q1t systems, while setting collective correlation

C = 0.247 for the empt system and C = 0.244 for the Q1t system. The event constraint

parameters k are the same as for the baseline case.

The top panel of Figure 1 plots the estimated macro uncertainty UMt in standardized units

along with the NBER recession dates. The horizontal bar corresponds to 1.65 standard devia-

tion above unconditional mean of each series (which is standardized to zero). As is known from

JLN, the macro uncertainty index is strongly countercyclical, and exhibits large spikes in the

deepest recessions. The updated data UMt series shows much the same. Though UMt exceeds

1.65 standard deviations 48 times, they are clustered around the 1973-74 and 1981-82 reces-

sions, as well as the Great Recession of 2007-09. Macroeconomic uncertainty is countercyclical

and has a correlation of -0.65 with the 12-month moving-average of the growth in industrial

production.

The middle panel of Figure 1 plots the financial uncertainty series UFt over time, which is

new to this paper. UFt is a broad-based measure of time varying financial uncertainty using

data from the bond market, stock market portfolio returns, and commodity markets. Hence,

it is smoother than proxies such as VIX or any particular bond index. As seen from Figure 1,

UFt is also countercyclical, though less so than UMt; the correlation with industrial production

is -0.39. The series often exhibits spikes around the times when UMt is high. However, UFt is

more volatile and spikes more frequently outside of recessions, the most notable being the 1987

stock market crash. Though observations on UFt exceed the 1.65 standard deviation line 33

times, they are spread out in seven episodes, with the 2008 and 1987 episodes being the most

pronounced. (The bottom panel of 1 plots the real activity uncertainty series URt over time,

discussed below.)

As is clear from Figure 1, both indicators of macro and financial uncertainty are serially

correlated and hence predictable. They have comovements but also have independent variations

as the correlation between them is only 0.58. However, this unconditional correlation cannot

be given a structural interpretation. The heightened uncertainty measures can be endogenous

responses to events that are expected to happen, but they can also be exogenous innovations.

We use a VAR to capture the predictable variations, and then identify uncertainty shocks from

the VAR residuals using the restrictions described in the previous section.
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4.1 SVAR Estimates and Uncertainty Shocks

Several features of the VAR estimates are qualitatively similar for all measures of Yt. Table 1

highlights some of these results. For the purposes of this table, we show estimates for the single

max-C solution in (10). Panel A of this table shows that the sample correlation coeffi cients

between Z1t and êMt and êFt, and between Z2t and êFt are negative in each case, indicating that

uncertainty shocks of both types tend to be high when stock market returns are low. Panel A

also shows that the correlation between Z1t and êY t, and the correlation between Z2t and êY t
and êMt are all zero, which is true by construction of the algorithm and solution for B. Panel B

shows that σMM , σY Y , and σFF are all non-zero for the max-C solution. In square brackets we

report the range of values for these parameters across all solutions in the constrained set. The

max-C solution is roughly in the middle of the range, which includes very small values close

to zero all the way up to values several times higher. This in turn indicates the presence (for

many solutions) of both macro and financial uncertainty shocks in the SVAR, as well as real

activity shocks. Since both UMt and UFt are serially correlated, we should therefore find that

Z1t is correlated with lags of UMt and UFt, while Z2t is correlated with lags of UFt. Results not

reported confirm this is the case.

Figure 2 presents the time series of the standardized shocks (eM , eip, eF ) identified from the

system with Yt = ipt, again for the max-C solution. All shocks display strong departures from

normality with excess skewness and/or excess kurtosis. The largest of the eip shocks is recorded

in 1980:04, followed by 1974:11, and 2005:09. There also appears to be a moderation in the

volatility of the ip shocks in the post-1983 period. The largest macro uncertainty shock is in

1970:12, followed by the shock in 2008:10. The largest financial uncertainty shock is recorded

in 1987:10 (Black Monday), followed by the shock in 2008:09 during the financial crisis. For

eF , the extreme but transitory nature of the 1987 stock market crash leads to a very large spike

upward in eF in the month of the crash, followed by a very large spike downward in the month

following the crash as the market recovered strongly and quickly. While this episode magnifies

the spike in eF in 1987, it is largely orthogonal to real activity and macro uncertainty.

Observe that the large ip shock in 2005:09 is not associated with a contemporaneous spike

in uncertainty, while there are several spikes in both types of uncertainty that do not coincide

with spikes in eip. The next subsection uses impulse response functions to better understand

the dynamic causal effects and propagating mechanisms of these shocks.

4.2 The Dynamic Effects of Uncertainty Shocks

Impulse response functions (IRFs) trace out the effects of counterfactual increases in the shocks.

All plots show responses to one standard deviation changes in εjt in the direction that leads to

an increase in its own variable Xjt.
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The left panel of Figure 3 shows in shaded areas the set of dynamic responses that satisfy the

winnowing constraints for each variable in the SVAR to each structural shock for the baseline

system with Yt = ipt. The dotted line shows the max-C solution. The right panel displays the

analogous plots for systems that use empt, and the real activity index Q1t. To avoid clutter,

the max-C solutions are omitted from the right panel, but we comment on them below.

The figures show that positive shocks to financial uncertainty eF (center plot, bottom row)

lead to sharp declines in all three measures of real activity that persists for many months.

All solutions that satisfy the identification restrictions have this pattern. These results lend

support to the hypothesis that heightened financial uncertainty is an exogenous impulse that

causes declines in real activity. However, there is little evidence that high financial uncertainty

is a consequence of lower economic activity. Instead, exogenous (positive) shocks to real activity

either increase financial uncertainty or have no clear affect on it.

Positive perturbations to eFt also cause UMt to increase sharply. However, there is less

evidence that shocks to macro uncertainty have effects on financial uncertainty: the set of

solutions show positive response of financial uncertainty for the baseline system with Y = ip,

but the responses for the other two measures of real activity range from positive to zero to

negative.

While we find no evidence that high financial uncertainty is a consequence of lower economic

activity, the results for macro uncertainty are quite different. Both figures show that macro un-

certainty falls sharply in response to positive real activity shocks when real activity is measured

as ipt or empt. Alternatively stated, negative real activity shocks increase macro uncertainty

sharply. These endogenous movements in macro uncertainty persist for well over a year after

the real activity shock. This result is strongly apparent in all the solutions of the identified

sets for Y measured as production or employment, suggesting that higher macro uncertainty

in recessions is a direct endogenous response to lower economic activity. The responses in the

system using the real activity index Q1t as a measure of Y are inconclusive, as the identified

set in this case includes a wide range surrounding zero even though the max-C solution (not

displayed) indicates that UM falls sharply in response to a positive Q1 shock.

Finally, there is no evidence that the observed negative correlation between macro uncer-

tainty and real activity is driven by causality running in the opposite direction. Indeed, the

top middle panels of each figure show that positive macro uncertainty shocks often increase

real activity in the short run, consistent with growth options theories discussed above. The

exception again is the system with Y = Q1 where the identified set displays a wide range of

responses. In all cases the max-C solution implies that real activity increases initially after a

positive shock to macro uncertainty.
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4.3 The Structural Shocks and Decomposition of Variance

In Figure 1 presented earlier, we find 1973-74, 1981-82, and 2007-2009 to be the three episodes

of heightened macroeconomic uncertainty, defined as the periods when UMt is at least 1.65

standard deviations above its unconditional mean. We now look for the “large adverse”shocks

in the systems (UMt, Yt, UFt)
′, with Yt = ipt, empt , Q1t. More precisely, we consider large

positive uncertainty shocks and large negative real activity shocks.

For the max-C solution, the left panel of Figure 4 displays the date and size of shocks

that are at least two standard deviations above the mean, estimated using the three different

measures of Yt. In view of the non-normality of the shocks, the figure also plots horizontal lines

corresponding to three standard deviation of the unit shocks, which is used as the reference point

for ‘large’. The lowest panel shows that, irrespective of the definition of Yt, all SVARs identify

big financial uncertainty shocks in October 1987 and in one or more months of 2008. Such

solutions are selected as part of the identification scheme. The middle panel shows that large

negative real activity shocks are in alignment with all post-war recessions with one exception:

the negative real activity shock in 2005 is not immediately associated with a recession, but it

could be the seed of the Great Recession that followed. It is known that the housing market

led the 2007-2009 recession (e.g., see Favilukis, Ludvigson, and Van Nieuwerburgh (2015) for a

discussion). Indeed, all 10 housing series in XM (most pertaining to housing starts and permits

series) exhibit sharp declines starting in September 2005 and continuing through 2006, thereby

leading the Great Recession. This suggests that the negative spike in real activity in 2005 was

partly driven by the housing sector.

The left panel of Figure 4 shows that the dates of large increases in eM are less clustered.

They generally coincide with, or occur shortly after, the big real activity shocks and the financial

uncertainty shocks. Observe that large macro uncertainty shocks occurred more frequently in

the pre-1983 than the post 1983 sample, consistent with a Great Moderation occurring over

the period ending in the Great Recession. However, increases of greater than three standard

deviations for eM appear only when real activity is measured by production in the SVAR, a

point we return to below.

To give a sense of the historical importance of these shocks, we perform a decomposition

of variance, given by the fraction of s-step-ahead forecast error variance attributable to each

structural shock εMt, εY t, and εFt for s = 1, s = 12, s = ∞. We also report the maximum
fraction of forecast error variance over all VAR forecast horizons s that is attributable to each

shock, denoted s = smax in Table 2. The top panel of Table 2 reports these results for the

max-C solutions in the systems with UMt and with Yt = ipt (left column), Yt = empt (middle

column), and Yt = Q1t (right column). In square brackets we report, for the smax horizon, the

range of values from lowest to highest across all solutions in the constrained set.
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According to the top row, all three real activity shocks have sizable effects on macroeconomic

uncertainty UM , with shocks to production explaining up to 66% of the variation in UM . But

according to the bottom row, these same shocks have small effects on financial uncertainty UF .

At the same time, positive macro uncertainty shocks eM , which increase rather than decrease

real activity, explain a surprisingly large fraction of production (up to 69%), employment (up

to 81%) and the real activity index (up to 85%). The ranges across all survived solutions

tend to be wide, however. On the other hand, financial uncertainty shocks eF have a small

contribution to the one-step-ahead forecast error variance of all three measures of real activity,

but their relative importance increases over time. Financial uncertainty shocks explain up to

40% of the forecast error variance in production, up to 44% of the forecast error variance in

employment, and up to 40% of the forecast error variance in the real activity index. Financial

uncertainty shocks eF feed into UM , and macroeconomic uncertainty shocks eM also feed into

UF .

Regardless of which measure of real activity is used, we find that financial uncertainty is

unlike macro uncertainty or real activity in that its variation is far more dominated by its own

shocks. For example, in the system with ip, eF shocks explain 97% of the s = 1 step-ahead

forecast error variance in UFt, and 95% of the s =∞ step-ahead forecast error variance. In the

systems with emp and Q1, eF shocks explain 95% and 96%, respectively, of the s = 1 step-ahead

forecast error variance in UFt, and 90% and 78%, respectively, of the s =∞ step-ahead forecast

error variance.

To summarize, in all three systems, real activity shocks eY have quantitatively large per-

sistent negative effects on macro uncertainty UM . In turn, macro uncertainty shocks eM often

have large positive impact effects on real activity measures Y . Financial uncertainty shocks eF
have smaller impact effects but larger long run effects that dampen real activity Y . Across all

systems, the forecast error variance of financial uncertainty is the least affected by shocks other

than its own, suggesting that UF is quantitatively the most important exogenous impulse in

the system.

5 Uncertainty in Real Activity Xt = (URt, Yt, UFt)
′

The results discussed above suggest that the dynamic relationship between macro uncertainty

and real activity can be quite different from the relation between financial uncertainty and real

activity. However, given the composition of our data χM , macroeconomic uncertainty itself

can be due to uncertainty in real activity variables such as output and unemployment, to price

variables, and to financial market variables. The theoretical uncertainty literature has focused

on modeling exogenous uncertainty shocks that arise specifically in measures of real economic

fundamentals, rather than in prices or financial markets. To better evaluate the implications of
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these theoretical models, we consider systems that isolate uncertainty about real activity using

the URt sub-index that more closely corresponds to the theoretical literature.

We isolate the real activity components of macro uncertainty by aggregating the individual

uncertainty estimates over the 73 real activity variables in the macro dataset XM . The one-

period ahead uncertainty in real activity, denoted URt, is shown in the bottom panel of Figure

1. This series, like UMt, is countercyclical though somewhat less so, having a correlation of

-0.50 with industrial production (as compared to -0.66 for UMt). At first glance, URt appears

to fluctuate in a manner similar to macroeconomic uncertainty UMt. The two series have a

correlation of 0.71 and exhibit some overlapping spikes. But URt and UMt also display notable

independent variation. The bottom panel of Figure 1 shows that there are 43 observations of

URt that are at least 1.65 standard deviations above its mean. These can be organized into five

episodes: 1965, 1970, 1975, 1982-83, and 2007. By contrast, UMt in the top panel of Figure

1 only exhibits three such episodes. Observe that the URt series exhibits several spikes before

1970 that are not accompanied by spikes in UMt.

The bounds for the correlation and event constraints for these systems are set as follows.

An inspection of the solution sets for systems that use URt in place of UMt reveals that positive

financial uncertainty eFt shocks are larger in the financial crisis/Great Recession for systems

that use URt, both in terms of the average increase in the periods of this episode as well as

the magnitudes of the shocks in the upper quantiles. This implies that the bounds on the

behavior of financial uncertainty shocks in the financial crisis need to be strengthened to be

made comparable to the case that uses UMt. Moreover, in the system with URt an individual

correlation constraint of c = 3% or even 5% is almost entirely unrestrictive. To ensure that

the restrictiveness of the bounds in this case is comparable to that of the systems with UMt we

therefore set the bounds k1 and k2 on the eFt shock behavior to be 4.3 (rather than 4) standard

deviations for systems that use empt and Q1t, and 4.1 for the system that uses ipt. We set

the individual correlation parameter to c = 0.07 and the collective correlation parameter to

C = 0.24 in all cases.

Given the distinctive patterns in the time series behavior of URt and UMt, one might expect

to find different dynamic relationships with the other variables in our systems when UMt is

replaced by URt. However, the impulse responses functions are qualitatively similar to systems

studied above that use broad-based macro uncertainty. The sets of responses that satisfy our

winnowing constraints are displayed in Figure 5. The solid line for the Yt = ipt system indicates

that the set in that case is a singleton. The figure shows that, for all solutions that satisfy the

constraints and no matter which measure of real activity is used, (i) positive shocks to real

activity measures unambiguously cause sharp declines in real economic uncertainty URt so that

negative shocks cause sharp increases in real economic uncertainty; (ii) positive real activity

uncertainty shocks eRt do not cause declines in real activity measures; indeed the opposite
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is unambiguously true; (iii) positive financial uncertainty shocks eFt lead to declines in real

activity measures that are steep and persistent, and (iv) there is little evidence that high (low)

financial uncertainty is caused by negative (positive) real activity shocks; the sets of IRFs are

either positive or surround zero for all systems. Thus the identified sets present an even clearer

picture of the dynamic causal relationships in the systems with Xt = (URt, Yt, UFt)
′ than they

do in the systems with Xt = (UMt, Yt, UFt)
′ .

The right panel of Figure 4 plots the large adverse structural shocks for the max-C solutions

identified from the systems (URt, Yt, UFt)
′ for Yt = ipt, empt, Q1t. The topmost right panel

shows that the real uncertainty shock eRt exhibits spikes in excess of three standard deviations

during the Great Recession only for the system in which Yt = ipt. Moreover, for the other

two systems in which Yt = empt or Q1t, there is not a spike that exceeds even two standard

deviations above its mean, despite the fact that URt itself exhibits a large spike in the Great

Recession. These episodes serve to reinforce the conclusion from the IRFs that the heightened

real economic uncertainty in recessions is often endogenous response to other shocks, rather

than an exogenous impulse. Even though there were many large spikes in real uncertainty

shocks eRt pre-1983, there have been fewer large adverse shocks to real economic uncertainty

since 1983, a period that coincides with the so-called Great Moderation.

To complete the analysis, we present variance decompositions for the system (URt, Yt, UFt)
′,

with three measures of real activity Yt = ipt, empt, Q1t. These results, presented in the bottom

panel of Table 2, share some similarities with the systems that use macro uncertainty UMt

shown in the top panel, but there are at least two distinctions. First, financial uncertainty

shocks decrease real activity and explain larger fractions of the forecast error variance in all

three measures of real activity at long horizons. The ranges for these numbers at the s = smax

horizon across all solutions in the winnowed set are also relatively narrow. Second, compared to

systems that use UMt, smaller fractions of the forecast error variance in URt are explained by its

own shocks. This is because, in these systems, shocks to all three measures of real activity have

larger effects on real activity uncertainty than they do on macro uncertainty. This reinforces the

point that countercyclical increases in real economic uncertainty are often well characterized as

endogenous responses to declines in real activity, rather than exogenous impulses driving real

activity downward.

6 Additional Cases

This section presents results for a number of additional cases.
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6.1 Alternative Bounds

Our base cases imposes two types of winnowing constraints, the event constraints and the

correlation constraints. If either of these were not helpful in narrowing the solution sets, then

failure to impose one or the other would not have a significant affect on the results. Figure

6 shows the baseline IRF when k is changed from (4,4,2) to (2,2,3) with (c̄, C̄) held fixed at

(0.03, 0.24). This means that shocks of less extreme magnitudes are admitted into the solution

set. This leaves about seven times more solutions (879 compared to 108). The right panel shows

the sets of IRFs when the correlation constraint bounds (c, C) are changed from (0.03, 0.24) to

(0.015, 0.12) with k held fixed at (4,4,2). This means the synthetic variables are allowed to be

less correlated with the shocks. This leaves about three times more solutions (407 compared

to 108 under the baseline parameterization). In both cases, many of the additional solutions

fail to show any large spike in financial uncertainty in the financial crisis or a non-negligible

correlation between either type of uncertainty shock and stock market returns.

Figure 6 shows that the identified sets of IRFs in both panels are noticeably wider indicating

that each type of constraint contributes to identification. The left panel shows that all solutions

imply that financial uncertainty shocks drive ipt down eventually, though the effect is smaller

than the base case. Positive real activity shocks either drive down or have no effect on macro

uncertainty. While the responses of real activity to macro uncertainty shocks are wide, a macro

uncertainty shock has an inconclusive effect on macro uncertainty itself. The right panel shows

less restrictive correlation bounds also yield a wider range of impulse responses. The noticeable

difference compared to the baseline case concerns the effects financial uncertainty shocks on real

activity, which are not well determined. This suggests that the correlation constraints matter

most for the effect of financial uncertainty shocks. Solutions for which financial uncertainty

shocks have a very low correlation with the stock market are unlikely to signify an important

role for financial uncertainty in business cycle downturns. The effects of eFt shocks on the other

variables in the system are insensitive to changes in either type of bound. Taken together,

the results in two panels demonstrate the importance and identifying power of both types of

constraints for drawing clear conclusions about the dynamic causal effects in the system.

6.2 Validity of Recursive Identification Restrictions

The econometric model permits us to test whether a recursive structure is supported by the

data. Specifically, the assumptions in our event and correlation constraints do not rule out the

possibility of a recursive structure, so that if such a structure is consistent with the data, our

identifying restrictions are free to recover it. With three variables in the SVAR, there are six

possible recursive orderings corresponding to six different 3×1 vectors of elements ofB that must

be jointly zero. It is straightforward to assess whether our identified solutions are consistent
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with a recursive structure by examining the distribution of solutions in the constrained set for

four elements of the B matrix: B̂Y F , B̂YM , B̂MY , and B̂MF . None of the distributions contain

any values near zero. The minimum absolute values in each case are .0005, .0037, .0066, and

.0016, respectively, which are all bounded away from zero. The implication is that the recursive

structure is inconsistent with any recursive ordering across all solutions in the identified set.

What happens to the dynamic responses when we nevertheless impose restrictions based on

recursive identification (and freely estimate the rest of the parameters)? With these recursive

restrictions the SVAR is point-identified so no winnowing constraints are needed. Of course,

there are many possible recursive orderings, and inevitably, the estimated IRFs differ in some

ways across these cases. However, the dynamic responses under recursive identification have

one common feature that is invariant to the ordering. Results available on request show that, no

matter which ordering is assumed in the recursive structure, macro uncertainty shocks appear

to cause a sharp decline in real activity, much like financial uncertainty shocks, while positive

real activity shocks have little effect on macro uncertainty in the short run and if anything

increase it in the long run, as shown in the figure. This is in stark contrast to the results

from our identification scheme, which is capable of recovering a recursive structure if it were

true. But we fail to find such a structure. These results show that imposing a structure that

prohibits contemporaneous feedback may spuriously suggest that macro uncertainty shocks are

a cause of declines in real activity, rather than an endogenous response. The finding underscores

the challenges of relying on convenient timing assumptions to sort out cause and effect in the

relationship between uncertainty and real activity.

6.3 System Estimation Results

This section reports the results of estimating the model using the full system approach described

above. We estimate a four variable system in (Xt, St)
′ where St is measured as the return on

the CRSP value-weighted stock market index excess return. The bounds for the winnowing

constraints are the same as for the subsystem analysis for the same variables. The left panel of

Figure 7 presents the set identified IRFs for the full system estimation. The figure shows that

the results are qualitatively very similar to the subsystem case. As for that case, positive shocks

to financial uncertainty drive down all measures of real activity sharply and persistently, but

there is no evidence that positive shocks to macro uncertainty decrease real activity. Positive

shocks to production and employment clearly drive down macro uncertainty, though like the

subsystem analysis the results are inconclusive in this system when real activity is measured

by the index Q1t.

As discussed above, the subsystem exclusion restriction for St places overidentifying restric-

tions on the full system estimation. A simple way to evaluate this restriction is to compare the
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impulse response functions estimated for the three variable subsystem for Xt = (UMt, Yt, UFt)
′,

with those from the larger system that includes St but does not restrict the coeffi cients of St−j
in the equations for Xt to zero, for j ≥ 1. The right panel of Figure 7 presents the sets of

identified impulse responses that satisfy the constraints in each case, overlaid on one another.

The identified sets lie almost on top of each other, indicating that the responses are little dif-

ferent. Indeed, the coeffi cients on lags of St appear to be close to zero in all three Xt equations.

The data thus appear qualitatively consistent with the assumption that stock returns can be

excluded from the VAR for Xt.

7 Conclusion

A growing body of research establishes uncertainty as a feature of deep recessions but leaves

open two key questions: is uncertainty primarily a source of business cycle fluctuations or an

endogenous response to them? And where does uncertainty originate? There is no theoretical

consensus on the question of whether uncertainty is a cause or a consequence of declines in

economic activity. In most theories, it is modeled either as a cause or an effect but not both,

underscoring the extent to which the question is fundamentally an empirical matter.

The objective of this paper is to address both questions econometrically using small-scale

structural VARs that are general enough to nest a range of theoretical possibilities in empirical

tests. Commonly used recursive identification schemes cannot achieve this objective, since by

construction they rule out the possibility that uncertainty and real activity could influence one

another contemporaneously. The econometric model employed in this paper nests the recursive

identification scheme, and we find that it is strongly rejected by the data.

To identify dynamic causal effects, this paper takes an alternative identification approach

that imposes economic assumptions about the behavior of the structural shocks to allow sets

of solutions to be identified. In addition, our empirical analysis explicitly distinguishes macro

uncertainty and uncertainty about real activity from financial uncertainty, thereby allowing us

to shed light on the origins of uncertainty shocks that drive real activity lower, to the extent that

any of them do. The econometric framework permits uncertainty to be an exogenous source

of business cycle fluctuations, or an endogenous response to them, or any combination of the

two, without restricting the timing of these relationships. The results from these estimations

show that sharply higher uncertainty about real economic activity in recessions is more likely

to be an endogenous response to business cycle fluctuations, while uncertainty about financial

markets is a likely source of them. Exogenous declines in economic activity have quantitatively

large effects that drive real economic uncertainty endogenously higher. Financial uncertainty,

by contrast, is dominated by its own shocks, implying that it is primarily an exogenous impulse

vis-a-vis real activity and macro uncertainty.
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Figure 1: Macro, Financial and Real Uncertainty Over Time

Year

1.65 std

Aggregate Macro Uncertainty UM

 

 

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
−5

0

5

UM , corr with IP = -0.65

Year

1.65 std

Aggregate Financial Uncertainty UF

 

 

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
−2

0

2

4
UF , corr with IP = -0.39

Year

1.65 std

Real Uncertainty UR

 

 

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
−5

0

5

UR, corr with IP = -0.50

The panels plot the time series of macro uncertainty UM , financial uncertainty UF , and real activity uncertainty
UR, expressed in standardized units. Shaded areas correspond to NBER recession dates. The horizontal
line corresponds to 1.65 standard deviations above the unconditional mean of each series (which has been
normalized to zero); the black dots are months when uncertainty is at least 1.65 standard deviations above the
mean. Correlations with the 12-month moving average of IP growth are reported. The data span the period
1960:07 to 2015:04.



Figure 2: Time Series of e Shock from SVAR (UM , ip, UF )′
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The horizontal line corresponds to 3 standard deviations above/below the unconditional mean of each series.
The shocks e = B−1ηt for max-C solution are reported, where ηt is the residual from VAR(6) of (UM , ip, UF )

′

and B = A−1Σ
1
2 . The sample spans the period 1960:07 to 2015:04.



Figure 3: SVAR (UM , Y, UF )′
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The left panel reports the IRFs of SVAR (UM , ip, UF )
′. The dashed line is the max-C solution. The right panel reports the IRFs of SVAR (UM , Y, UF )

′

where Y = Q1, emp. The shaded areas represent sets of solutions that satisfy the correlation and event constraints. Responses to positive one standard
deviation shocks are reported in percentage points. The sample spans the period 1960:07 to 2015:04.



Figure 4: Large Shocks

Large Shocks in SVAR(UM , Y, UF )′

Positive eM exceeding 2 standard deviations
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Large Shocks in SVAR(UR, Y, UF )′
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For the max-C solution, the figure exhibits shocks that are at least 2 standard deviations above the unconditional mean for eM or eR and eF and below
for eY for three cases where Y = ip, emp,Q1. The shocks et = B−1ηt are reported, where ηt is the residual from VAR(6) and B = A−1Σ

1
2 . The horizontal

line corresponds to 3 standard deviations shocks. The sample spans the period 1960:07 to 2015:04.



Figure 5: IRFs of SVAR (UR, Y, UF )′

The shaded areas represent sets of solutions that satisfy the correlation and event constraints. Responses to
positive one standard deviation shocks are reported in percentage points. The sample spans the period 1960:07
to 2015:04.



Figure 6: IRFs of SVAR (UM , ip, UF )′ under Alternative Bounds

Event Constraint Less Restrictive Correlation Constraint Less Restrictive

The left panel reports sets of solutions obtained when the event parameters
(
k̄1, k̄2, k̄3

)
are less restrictive while c̄ and C̄ are held fixed at their baseline

values. The right panel reports sets of solutions obtained when c̄ and C̄ are less restrictive while
(
k̄1, k̄2, k̄3

)
are held fixed at their baseline values. The

sample spans the period 1960:07 to 2015:04.



Figure 7: SVAR (UM , Y, UF , rCRSP)′

IRFs of SVAR (UM , Y, UF , rCRSP)′ IRFs of SVAR (UM , ip, UF , rCRSP)′ v.s. (UM , ip, UF )′

The shaded areas represent sets of solutions that satisfy the correlation and event constraints. The sample spans the period 1960:07 to 2015:04.



Table 1: Sample Statistics

Panel A: Correlations between Instruments and Shocks
SV AR (UM , ip, UF )

′
(UM , emp, UF )

′
(UM , Q1, UF )

′

ρ (Z1t(β), êMt) −0.0309 −0.0501 −0.0535
ρ (Z1t(β), êFt) −0.1853 −0.1866 −0.1809
ρ (Z2t(β), êFt) −0.1637 −0.1665 −0.1637
ρ (Z1t(β), êY t) 0.0000 0.0000 0.0000
ρ (Z2t(β), êY t) 0.0000 0.0000 0.0000
ρ (Z2t(β), êMt) 0.0000 0.0000 0.0000

Panel B: Estimates of Σ
σMM 0.0038 0.0030 0.0030

[0.000, 0.007] [0.000, 0.008] [0.000, 0.007]
σY Y 0.0035 0.0006 0.0008

[0.000, 0.005] [0.000, 0.002] [0.000, 0.002]
σFF 0.0264 0.0263 0.0263

[0.024, 0.027] [0.023, 0.026] [0.022, 0.027]

For the max-C solution, panel A reports the correlation between the estimated uncertainty shocks and the instruments. Panel B reports estimates of Σ.
Lower and upper bounds across solutions that survive the correlation and event constraints are reported in square brackets. The data are monthly and
span the period 1960:07 to 2015:04.



Table 2: vd

Table 2: Variance Decomposition
Panel A: Variance Decomposition (UM , Y, UF )′

SVAR (UM , ip, UF )′ SVAR (UM , emp, UF )′ SVAR (UM , Q1, UF )′

Fraction variation in UM Fraction variation in UM Fraction variation in UM
s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock Q1 Shock UF Shock
1 0.103 0.654 0.243 0.069 0.660 0.271 0.067 0.722 0.212
12 0.104 0.497 0.399 0.098 0.485 0.417 0.116 0.570 0.314
∞ 0.136 0.518 0.345 0.189 0.469 0.342 0.268 0.457 0.274
smax 0.143 0.654 0.399 0.189 0.675 0.417 0.292 0.733 0.321

[0.01, 0.51] [0.44, 0.79] [0.13, 0.61] [0.05, 0.53] [0.02, 0.72] [0.42, 0.70] [0.16, 0.62] [0.16, 0.78] [0.23, 0.71]
Fraction variation in ip Fraction variation in emp Fraction variation in Q1

s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock Q1 Shock UF Shock
1 0.674 0.322 0.004 0.800 0.197 0.003 0.844 0.136 0.020
12 0.321 0.453 0.226 0.553 0.311 0.136 0.521 0.223 0.256
∞ 0.051 0.551 0.398 0.080 0.485 0.435 0.140 0.472 0.388
smax 0.694 0.551 0.401 0.809 0.485 0.435 0.852 0.472 0.401

[0.34, 0.97] [0.18, 0.73] [0.30, 0.61] [0.08, 0.96] [0.23, 0.99] [0.40, 0.69] [0.05, 0.97] [0.21, 1.00] [0.31, 0.55]
Fraction variation in UF Fraction variation in UF Fraction variation in UF

s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock Q1 Shock UF Shock
1 0.002 0.033 0.965 0.018 0.033 0.948 0.008 0.035 0.957
12 0.010 0.022 0.968 0.016 0.027 0.957 0.069 0.032 0.900
∞ 0.024 0.030 0.946 0.069 0.030 0.900 0.170 0.048 0.781
smax 0.024 0.055 0.973 0.069 0.051 0.963 0.173 0.052 0.961

[0.02, 0.19] [0.02, 0.18] [0.87, 0.99] [0.05, 0.26] [0.02, 0.23] [0.79, 0.96] [0.11, 0.35] [0.04, 0.15] [0.74, 0.97]
Panel B: Variance Decomposition for SVAR in System (UR, Y, UF )′

SVAR (UR, ip, UF )′ SVAR (UR, emp, UF )′ SVAR (UR, Q1, UF )′

Fraction variation in UR Fraction variation in UR Fraction variation in UR
s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock Q1 Shock UF Shock
1 0.002 0.956 0.042 0.069 0.595 0.336 0.002 0.879 0.119
12 0.005 0.755 0.240 0.033 0.440 0.527 0.008 0.699 0.293
∞ 0.005 0.710 0.284 0.032 0.395 0.573 0.044 0.670 0.286
smax 0.006 0.971 0.284 0.098 0.595 0.573 0.044 0.897 0.298

[0.01, 0.01] [0.97, 0.97] [0.28, 0.28] [0.04, 0.47] [0.19, 0.69] [0.55, 0.65] [0.04, 0.80] [0.23, 0.92] [0.20, 0.30]
Fraction variation in ip Fraction variation in emp Fraction variation in Q1

s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock Q1 Shock UF Shock
1 0.846 0.048 0.105 0.709 0.287 0.004 0.919 0.009 0.073
12 0.490 0.100 0.410 0.662 0.219 0.119 0.637 0.004 0.359
∞ 0.194 0.133 0.673 0.399 0.114 0.487 0.395 0.004 0.602
smax 0.848 0.133 0.673 0.713 0.298 0.487 0.927 0.011 0.602

[0.85, 0.85] [0.13, 0.13] [0.67, 0.67] [0.06, 0.87] [0.13, 0.98] [0.34, 0.52] [0.12, 0.93] [0.01, 0.82] [0.60, 0.64]
Fraction variation in UF Fraction variation in UF Fraction variation in UF

s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock Q1 Shock UF Shock
1 0.097 0.001 0.902 0.082 0.112 0.806 0.058 0.032 0.910
12 0.129 0.003 0.868 0.041 0.113 0.845 0.119 0.028 0.853
∞ 0.129 0.025 0.846 0.039 0.093 0.868 0.239 0.046 0.715
smax 0.132 0.025 0.909 0.083 0.138 0.868 0.239 0.047 0.914

[0.13, 0.13] [0.03, 0.03] [0.91, 0.91] [0.06, 0.37] [0.01, 0.22] [0.77, 0.88] [0.13, 0.29] [0.03, 0.15] [0.91, 0.94]

For the max-C solution, each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by
the shock named in the column heading. The row denoted “s = smax”reports the maximum fraction (across all VAR forecast horizons m) of forecast
error variance explained by the shock listed in the column heading. Lower and upper bounds for the s = smax horizon across solutions that survive the
correlation and event constraints are reported in square brackets. The data are monthly and span the period 1960:07 to 2015:04.



Online Appendix

This appendix contains additional information for “Uncertainty and Business Cycles: Exogenous
Impulse or Endogenous Response?”

Closed-Form Solution for B when Z is observed

Lemma 1 There exists a unique solution to the system (7) if E [eFtZ2] 6= 0 and E [eMtZ1] 6= 0.

Proof. To facilitate the presentation throughout the proof, let

ηt = Bet

B =

[
BM
3×1

,BY
3×1

,BF
3×1

]
Ω = E (ηtη

′
t) .

Let φ1F = c1FσZ1, φ2F = c2FσZ2, φ1M = c1MσZ1. We have two external instruments (Z1, Z2)
satisfying

E [eFtZ1] ≡ φ1F 6= 0, E [eMtZ1] ≡ φ1M 6= 0 and E [eY tZ1] = 0

E [eFtZ2] ≡ φ2F 6= 0 and E [eMtZ2] = E [eY tZ2] = 0

Then

E [ηtZ2] = E [BetZ2] = B

[
0
0
φ2F

]
= φ2FBF (A.1)

Thus BF exists if φ2F 6= 0. Observe that, since

Ω = E [ηtη
′
t] = BB′

we have
B′Ω−1B = I

hence, ∀i, j = M,Y, F

B′jΩ
−1/2Ω−1/2Bi =

{
1 if i = j
0 if i 6= j .

Therefore,
E [ηtZ2]′Ω−1E [ηtZ2] = (φ2FBF )′Ω−

1
2Ω−

1
2 (φ2FBF ) = φ2

2F

This implies that the scale φ2F is identified up to a sign by

φ2F = ±
√
E [ηtZ2] Ω−1E [ηtZ2]. (A.2)

Next,

E [ηtZ1] = E [BetZ1] = B

[
φ1M

0
φ1F

]
= φ1MBM + φ1FBF

But note that

E [ηtZ2] Ω−1E [ηtZ1] = φ2FBF ′Ω
−1 (φ1MBM + φ1FBF )

= φ2FBF ′ (BB′)
−1

(φ1MBM + φ1FBF )
= φ2Fφ1F



This implies that φ1F is identified as

φ1F =
E [ηtZ2] Ω−1E [ηtZ1]

φ2F

which in turn implies

φ1MBM = E [ηtZ1]− E [ηtZ2]

φ2F

c1F . (A.3)

Thus solution to BM exists if φ1M 6= 0. Furthermore, note that(
E [ηtZ1]− E [ηtZ2]

φ2
2F

φ1F

)′
Ω−1

(
E [ηtZ1]− E [ηtZ2]

φ2
2F

c1F

)
= Ω−

1
2BMφ

2
1MB′MΩ−

1
2 = φ2

1M

This implies that the parameter φ1M is identified up to a sign as

φ2
1M =

(
E [ηtZ1]− E [ηtZ2]

φ2
2F

c1F

)′
Ω−1

(
E [ηtZ1]− E [ηtZ2]

φ2
2F

φ1F

)
. (A.4)

It only remains to identify BY . BY must satisfy

B′Y Ω−1/2Ω−1/2BY = 1

B′Y Ω−1/2Ω−1/2BM = 0 (A.5)

B′Y Ω−1/2Ω−1/2BF = 0

BY can be solved analytically using (A.5) provided that BF and BY are identified. In addition,
since the equation (A.5) is quadratic in BY , BY is unique up to sign. It follows that there
exists a τ such that

BY = τB̃Y (A.6)

where B̃Y is unique conditional on φ2F and φ1M , but the scalar τ is unique up to sign.
This shows that the solution to the system (7) exists and is unique up to sign if φ2F 6= 0,

φ1M 6= 0. Combined with unit effect normalization (5) and the restriction on the admissible
parameter space (4), B can be uniquely identified. The unit effect normalization implies(

BMM BMY BMF
BYM BY Y BY F
BFM BFY BFF

)
=

(
1 HMY HMF

HYM 1 HY F
HFM HFY 1

)(
σMM 0 0

0 σY Y 0
0 0 σFF

)

=

(
σMM HMY σY Y HMFσFF

HYMσMM σY Y HY FσFF
HFMσMM HFY σY Y σFF

)
Combined with the restriction σjj > 0 for all j = M,Y, F, implies Bjj > 0 for all j = M,Y, F .
From equation (A.1), BFF > 0 pins down the sign of φ2F conditional Zt. Since the sign of
φ2F is pinned down, the signs of BMF and BY F are also pinned down by the same restriction.
From equation (A.3), BMM > 0 pins down the sign of φ1M conditional Zt and therefore the
signs of BYM and BFM are pinned down by the same restriction. It only remains to show the
uniqueness of BY . Provided that BF and BY are identified and given the closed-form solution
(A.5) that is quadratic in BY , then BY Y > 0 pins down the sign of τ conditional Zt and hence
the sign of BMY and BFY are also pinned down by the same restriction.
The system of equations defining B is

0 = E[g1(m1t;β1)] ≡ g1.


