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1 Introduction

A large literature in macroeconomics investigates the relationship between uncertainty and

business cycle fluctuations. Interest in this topic has been spurred by a growing body of evidence

that uncertainty rises sharply in recessions. This evidence is robust to the use of specific proxy

variables such as stock market volatility and forecast dispersion as in Bloom (2009), or a broad-

based measure of macroeconomic uncertainty, as in Jurado, Ludvigson, and Ng (2015) (JLN

hereafter). But while this evidence substantiates a role for uncertainty in deep recessions,

the question of whether uncertainty is an exogenous source of business cycle fluctuations or

an endogenous response to economic fundamentals is not fully understood. Existing results

are based on convenient but restrictive identifying assumptions and have no explicit role for

financial markets, even though the uncertainty measures are strongly correlated with financial

market variables. This paper considers a novel identification strategy to disentangle the causes

and consequences of real and financial uncertainty.

The question of causality and the identification of exogenous variation in uncertainty is

a long-standing challenge of the uncertainty literature. The challenge arises in part because

there is no theoretical consensus on whether the uncertainty that accompanies deep recessions

is primarily a cause or effect (or both) of declines in economic activity. Theories in which

uncertainty is defined as the time varying volatility of a fundamental shock cannot address this

question because, by design, there is no feedback response of uncertainty to other shocks if the

volatility process is specified to evolve exogenously. And, obviously, models in which there is no

exogenous variation in uncertainty cannot be used to analyze the direct effects of uncertainty

shocks. It is therefore not surprising that many theories for which uncertainty plays a role in

recessions reach contradictory conclusions on this question, as we survey below.

A separate challenge of the uncertainty literature pertains to the origins of uncertainty. Clas-

sic theories assert that uncertainty originates from economic fundamentals such as productivity,

and that such real economic uncertainty, when interacted with market frictions, discourages real

activity. But some researchers have argued that uncertainty dampens the economy through its

influence on financial markets (e.g., Gilchrist, Sim, and Zakrajsek (2010)). Moreover, as sur-

veyed by Ng and Wright (2013), all the post-1982 recessions have origins in financial markets,

and these recessions have markedly different features from recessions where financial markets

play a passive role. From this perspective, if financial shocks are subject to time-varying

volatility, financial market uncertainty—as distinct from real economic uncertainty—could be a

key player in recessions, both as a cause and as a propagating mechanism. The Great Reces-

sion of 2008, characterized by sharp swings in financial markets, hints at such a linkage. Yet so

far the literature has not disentangled the contributions of real versus financial uncertainty to

business cycle fluctuations.
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Econometric analyses aimed at understanding the role of uncertainty for business cycle

fluctuations face their own challenges, especially when the body of theoretical work does not

provide precise identifying restrictions for empirical work. Attempts to identify the “effects”of

uncertainty shocks in existing empirical work are primarily based on recursive schemes within

the framework of vector-autoregressions (VAR).1 But studies differ according to whether un-

certainty is ordered ahead of or after real activity variables in the VAR. While a recursive

structure is a reasonable starting point, any presumed ordering of the variables is hard to

defend on theoretical grounds given the range of models in the literature. Contemporaneous

changes in uncertainty can arise both as a cause of business cycle fluctuations and as a response

to other shocks. Recursive structures explicitly rule out this possibility since they presume that

some variables respond only with a lag to others.

It is with these challenges in mind that we return to the questions posed above: is uncer-

tainty primarily a source of business cycle fluctuations or a consequence of them? And what

is the relation of real versus financial uncertainty to business cycle fluctuations? The objective

of this paper is to address these questions econometrically using a small-scale structural vector

autoregression (SVAR). To confront the challenges just discussed, we take a two-pronged ap-

proach. First, our empirical analysis explicitly distinguishes macro uncertainty from financial

uncertainty. The baseline SVAR we study describes the dynamic relationship between three

variables: an index of macro uncertainty, UMt, a measure of real economic activity, Yt (e.g.,

production, employment), and a new financial uncertainty index introduced here, UFt. Second,

rather than relying on ordering assumptions for identification, we use a different identification

scheme that is less restrictive, both because it allows for simultaneous feedback between uncer-

tainty and real activity, and because it can be used to test whether a lower recursive structure

is supported by the data.

Our identification scheme is based in part on the use of external variables that may be

related to all three shocks in the SVAR but are presumed on economic grounds to have a

non-zero correlation with the structural uncertainty shocks. The approach takes a variable

St that is not in the SVAR system and solves jointly for two components of St, a Z1t that is

correlated with macro and financial uncertainty shocks but contemporaneously uncorrelated

with real activity shocks, and a Z2t that is correlated with financial uncertainty shocks but

contemporaneously uncorrelated with both real activity and macro uncertainty shocks. We

refer to these constructed components as “synthetic external variables.” They are denoted

Z1t (β) and Z2t (β) hereafter, to emphasize that they are constructed and, as a consequence,

depend on a parameter vector β.

In the present context, the key is to find observables external to our SVAR that are driven

1See Bachmann, Elstner, and Sims (2013), Bloom (2009), Bloom (2014), Bekaert, Hoerova, and Duca (2013),
Gilchrist, Sim, and Zakrajsek (2010), and JLN.
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by a multitude of innovations, including the uncertainty shocks we are interested in. We argue

below that both theory and evidence suggest that aggregate stock market returns are natural

candidates for such St variables. Our maintained economic hypothesis is that stock market

returns are correlated with both types of uncertainty shocks and therefore have a Z1t and Z2t

component, as described above.

Identification is achieved by combining estimates of Z1t (β) and Z2t (β) with restrictions

based on economic reasoning. The first economic restriction regards the maintained assump-

tion that uncertainty shocks should be correlated aggregate stock market returns. Rather than

taking a stand on a particular magnitude, bounds are set for the minimum absolute values of

these correlations. This amounts to putting restrictions on the correlations of uncertainty shocks

with Z1t (β) and Z2t (β). We refer to these restrictions as correlation constraints. Another eco-

nomic restriction is that the identified shocks must be consistent with economic reasoning in a

small number of extraordinary events, such as the 1987 stock market crash and the financial

crisis/Great Recession of 2007-09. We refer to these as “event timing constraints,”or simply

event constraints. We identify sets of solutions that satisfy both correlation and event con-

straints. Naturally, the sets may be larger or smaller depending on the constraints. We find

that, with relatively unrestrictive constraints, the set of solutions to the SVAR identification

problem is substantially narrowed to reveal a well defined pattern of dynamic causal effects.

Our use of external variables St bears some analogies to the external instrumental variable

(IV) approach in the SVAR literature but is distinct from it. The difference is that the ex-

ternal variables St are not themselves presumed to be valid exogenous instruments. Instead,

components of observable external variables St are presumed on economic grounds to exhibit a

non-zero correlation with the structural uncertainty shocks and have the exogeneity properties

of Z1t and Z2t. We estimate these St components using an iterative approach that we refer to

as iterative projection external variable (IPEV). We show that this approach can be fit into the

classic simultaneous equations framework and interpreted as the output of a restricted system

estimation for a larger VAR that includes both Xt and St.

Our use of event constraints also differs from the extant SVAR literature, in which shocks

are constructed primarily as a means to other ends, such as the computation of impulse response

functions and variance decompositions. By contrast, we study the estimated shocks in detail

and use their behavior at specific points in the historical sample as an identification tool.

The empirical exercise additionally requires that appropriate measures of macro and finan-

cial uncertainty be available. To this end, we exploit a data rich environment, working with 134

macro monthly time series and 147 financial variables. The construction of macro uncertainty

follows JLN. The same approach is used to construct a broad-based measure of financial un-

certainty that has never been used in the literature. Macro uncertainty is itself an aggregate of

uncertainties in variables from three categories: real activity, price, and financial. To better un-

3



derstand the contributions of each of these categories, we also replace UMt in the VAR with an

uncertainty measure based on the real activity sub-component. Uncertainty about real activity

is of special interest because classic uncertainty theories postulate that uncertainty shocks have

their origins in economic fundamentals and hence should show up as uncertainty about real

economic activity.

Before summarizing our main results, it should be made clear that the structural shocks we

identify do not necessarily correspond to shocks of any particular model, as this is not our goal.

Our real activity shocks could be a combination of technology, monetary policy, preferences,

government expenditures, and our macro uncertainty shocks can originate from economic poli-

cies and/or technology. Given our view that the questions raised above are ultimately empirical

ones, our goal is to use a model-free approach that can identify the dynamic causal effects of

macro and financial uncertainty shocks when commonly used ordering or timing assumptions

are diffi cult to defend. The objective is to establish a set of stylized facts on the dynamic causal

relationships among these variables, against which a wide range of individual models could be

evaluated.

Our main results may be stated as follows. First, positive shocks to financial uncertainty are

found to cause a sharp decline in real activity that persists for many months, lending support

to the hypothesis that heightened uncertainty is an exogenous impulse that causes recessions.

These effects are especially large for several measures of real activity, notably production,

employment and a broad real activity index. The finding that heightened uncertainty has

negative consequences for real activity is qualitatively similar to that of preexisting empirical

work that uses recursive identification schemes (e.g., Bloom (2009), JLN), but differs in that

we trace the source of this result specifically to broad-based financial market uncertainty rather

than to various uncertainty proxies or broad-based macro uncertainty. We also show that the

converse is not supported by our evidence: exogenous shocks to real activity have no clear effect

on financial uncertainty given the set of SVAR parameters we identify.

Second, the identification scheme used here reveals something new that is not possible to

uncover under recursive schemes: macro and financial uncertainty have a very different dynamic

relationship with real activity. Specifically, unlike financial uncertainty, sharply higher macro

and real activity uncertainty in recessions is found to be an endogenous response to business

cycle fluctuations. That is, negative economic activity shocks are found to cause increases in

both macro uncertainty and in the sub-index that measures uncertainty about real economic

activity, but there is no evidence that independent shocks to macro or real activity uncertainty

cause lower economic activity. Indeed the opposite is often true: exogenous shocks to both

macro and real uncertainty are found to increase real activity, consistent with “growth options”

theories discussed below.

Third, our results are distinct from those obtained using recursive identification. Under any
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recursive ordering of the variables in our VAR, exogenous shocks that increase macro or real

uncertainty appear to reduce real activity, in a manner that is qualitatively similar to financial

uncertainty shocks. This result does not hold in the less restrictive SVAR studied here and

appears to be an artifact of invalid timing assumptions under recursive identification. Further

investigation reveals that the SVAR we study reflects a non-zero contemporaneous correlation

between UFt and Yt, as well as between UMt and Yt, which is inconsistent with any recursive

ordering. Tests of the validity of a recursive structure are easily rejected by the data.

The rest of this paper is organized as follows. Section 2 reviews related literature and

provides motivation for our maintained economic hypothesis that stock market returns have

components that are correlated with macro and financial uncertainty shocks but contempo-

raneously uncorrelated with real activity, and also correlated with financial uncertainty but

contemporaneously uncorrelated with both real activity and macro uncertainty. Section 3 de-

tails the econometric framework and identification employed in our study, describes how the

synthetic external variables are constructed, and discusses the data and empirical implemen-

tation. In this section we also show how, with some additional restrictions, our approach can

interpreted as the output of a system estimation for a larger VAR that includes both Xt and

St. Section 4 presents empirical results using broad based macro uncertainty UMt, while Sec-

tion 5 reports results for systems that isolate the sub-component of UMt corresponding to real

activity variables. Section 6 reports results pertaining to robustness and additional cases. In

this section we consider an estimation where we take two observed external variables S1t and

S2t and presume they are valid external instruments Z1t and Z2t. This is compared to the

case where the same variables are presumed not to be valid instruments and IPEV is used to

construct synthetic instruments from S1t and S2t. Section 7 summarizes and concludes. A large

number of additional results and Monte Carlo simulations are presented in Ludvigson, Ma, and

Ng (2016).

2 Related Literature

A large literature addresses the question of uncertainty and its relation to economic activ-

ity.2 Besides the evidence cited above for the U.S., Nakamura, Sergeyev, and Steinsson (2012)

estimate growth rate and volatility shocks for 16 developed countries and find that they are

substantially negatively correlated. Theories for which uncertainty plays a key role differ widely

on the question of whether this correlation implies that uncertainty is primarily a cause or a

consequence of declines in economic activity. In most cases, it is modeled either as a cause or

an consequence, but not both.

The first strand of the literature proposes uncertainty as a cause of lower economic growth.

2This literature has become voluminous. See Bloom (2014) for a recent review of the literature.
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This includes models of the real options effects of uncertainty (Bernanke (1983), McDonald

and Siegel (1986)), models in which uncertainty influences financing constraints (Gilchrist,

Sim, and Zakrajsek (2010), Arellano, Bai, and Kehoe (2011)), or precautionary saving (Basu

and Bundick (2012), Leduc and Liu (2012), Fernández-Villaverde, Pablo Guerrón-Quintana, and

Uribe (2011)). These theories almost always presume that uncertainty is an exogenous shock to

some economic fundamental. Some theories presume that higher uncertainty originates directly

in the process governing technological innovation, which subsequently causes a decline in real

activity (e.g., Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012)).

A second strand of the literature postulates that higher uncertainty arises solely as a re-

sponse to lower economic growth, emphasizing a variety of mechanisms. Some of these theories

suggest that bad times incentivize risky behavior (Bachmann and Moscarini (2011), Fostel and

Geanakoplos (2012)), or reduce information and with it the forecastability of future outcomes

(Van Nieuwerburgh and Veldkamp (2006) Fajgelbaum, Schaal, and Taschereau-Dumouchel

(2014)), or provoke new and unfamiliar economic policies whose effects are highly uncertain

(Pástor and Veronesi (2013)), or create a greater misallocation of capital across sectors (Ai, Li,

and Yang (2015)), or generate endogenous countercyclical uncertainty in consumption growth

because investment is costly to reverse (Gomes and Schmid (2016)).

And yet a third literature has raised the possibility that some forms of uncertainty can

actually increase economic activity. “Growth options” theories of uncertainty postulate that

a mean-preserving spread in risk generated from an unbounded upside coupled with a limited

downside can cause firms to invest and hire, since the increase in mean-preserving risk increases

expected profits. Such theories were often used to explain the dot-com boom. Examples include

Bar-Ilan and Strange (1996), Pastor and Veronesi (2006), Kraft, Schwartz, and Weiss (2013),

Segal, Shaliastovich, and Yaron (2015).

This brief review reveals a rich literature with a wide range of predictions about the re-

lationship between uncertainty and real economic activity. Yet the absence of a theoretical

consensus on this matter, along with the sheer number of theories and limited body of evidence

on the structural elements of specific models, underscores the extent to which the question of

cause and effect is fundamentally an empirical matter that must be settled in an econometric

framework with as little specific theoretical structure as possible, so that the various theoretical

possibilities can be nested in empirical tests. Commonly used recursive identification schemes

cannot achieve this objective, since by construction they rule out the possibility that uncer-

tainty and real activity could influence one another within the period. Our econometric model

nests any recursive identification scheme, so we can test whether such timing assumptions are

plausible. We find they are rejected by the data.

Our maintained hypothesis that stock market returns should be correlated with uncertainty

shocks builds on work in asset pricing emphasizing the idea that stock market variation is
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the result of several distinct (and orthogonal) sources of stochastic variation. For example, one

quantitatively important component is attributable to acyclical risk premia variation, and more

generally appears to be uncorrelated with most measures of real activity.3 This component is

valuable for our objective because it is exogenous to real activity, but may still be relevant

for both macro and financial uncertainty, as in our synthetic Z1t. Yet another component

could be attributable to fluctuations in factors like corporate leverage, or in the risk aversion

or “sentiment”of market participants that may be correlated with the volatility of the stock

market. In equilibrium asset pricing models, if leverage increases, volatility of the corporate

sector’s equity return increases. Thus changes in factors like leverage (and possibly changes

in risk aversion or sentiment) should be correlated with financial uncertainty, but may have

little to do with uncertainty about economic fundamentals. This component is valuable for

our objective because it is plausibly uncorrelated with both real activity and uncertainty about

economic fundamentals, but may still be relevant for financial market uncertainty, as in our

synthetic Z2t. Consistent with the existence of this type of component, JLN document that

there are many spikes in stock market uncertainty that do not coincide with an important

movement in either real activity or macro uncertainty. These findings motivate our maintained

hypothesis that measures of equity market returns are promising non-uncertainty variables

comprised of several distinct sources of stochastic variation, two of which have the statistical

characteristics of a Z1t and Z2t.

Our IPEV approach is related to a recent line of econometric research in SVARs that uses

information contained in external instruments to identify structural dynamic causal effects.4

Of these, Stock and Watson (2012) study uncertainty shocks, using a measure of stock market

volatility and/or a news media measure of policy uncertainty from Baker, Bloom, and Davis

(2013), as separate external instruments for identifying the effects of uncertainty shocks in a

SVAR. Our study differs in some fundamental ways. First, our approach relies on a set of

economic assumptions that is distinct from that of standard IV approach, hence the moment

conditions used to identify the model parameters and shocks are not the same. The identification

strategy in Stock andWatson (2012) for uncertainty shocks presumes that the external variables

themselves (i.e., stock market volatility, policy uncertainty) are valid instruments, correlated

with the uncertainty shock of interest but not with the other shocks. By contrast, our approach

explicitly views both the stock market and our uncertainty measures as partly endogenous,

forcing us to confront the identification quandary. Our identification assumption is instead

3For empirical evidence, see Lettau and Ludvigson (2013), Greenwald, Lettau, and Ludvigson (2014), Kozak
and Santosh (2014), and Muir (2014). Theoretical examples include Bansal and Yaron (2004); Wachter (2013);
Gourio (2012); Brunnermeier and Sannikov (2012); Bianchi, Ilut, and Schneider (2014); Gabaix and Maggiori
(2013); He and Krishnamurthy (2013). These papers have some form of uncertainty shock to economic funda-
mentals that drives risk premia.

4See for example Hamilton (2003), Kilian (2008), Mertens and Ravn (2013); Stock and Watson (2008), Stock
and Watson (2012), and Olea, Stock, and Watson (2015).
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that aggregate stock market returns contain components that are correlated with the structural

uncertainty shocks and we consider solutions to the SVAR identification problem that rely

on lower bounds for the absolute values of these correlations. Second, Stock and Watson

(2012) focus exclusively on identifying the effects of uncertainty shocks and do not attempt to

simultaneously identify the converse, namely the effects of real activity shocks on uncertainty.

Berger, Dew-Becker, and Giglio (2016) take a different approach. Using options data they

find that bad times are associated with higher realized volatility but not higher expected volatil-

ity, a result that they interpret as consistent with the hypothesis that higher uncertainty is a

consequence of negative economic shocks rather than a cause. This interpretation is not in-

tended to provide an explicit identification of uncertainty shocks, however.

The study arguably closest in spirit to our identification approach is Baker and Bloom

(2013), who use disaster-like events as instruments for stock market volatility with the aim of

isolating exogenous variation in uncertainty. This has some similarities with our approach, in

that it implicitly assumes that certain components of stock market fluctuations (those associated

with “disasters”) are exogenous. In contrast to our approach, disasters chosen subjectively are

presumed to be valid instruments for uncertainty, whereas we instead use external stock return

data and unusual events to constrain a set of estimable moment restrictions. It is of interest

that we arrive at complementary conclusions, despite the differing methodologies for identifying

exogenous variation.

3 Econometric Framework

This section outlines our econometric approach. Subsection 1 explains the identification strat-

egy. Subsections 2 and 3 explain the construction of external instruments in the IPEV proce-

dure and the uncertainty measures. Subsection 4 shows how our approach can be fit into the

classic simultaneous equations framework and interpreted as the output of a restricted system

estimation for a larger VAR that includes both Xt and St.

3.1 The SVAR and Identification

Let Xt denote a K × 1 vector time series. We suppose that Xt has a reduced-form vector

autoregressive and an infinite moving average representation given respectively by:

Xt = k + A1Xt−1 + A2Xt−2 + · · ·+ ApXt−p + ηt. (1)

Xt = µ+ Ψ (L)ηt (2)

ηt ∼ (0,Ω), Ω = E (ηtη
′
t)

where Ψ(L) = In + Ψ1L + Ψ2L
2 + . . . is a polynomial in the lag operator L of infinite order,

Ψs is the (n× n) matrix of coeffi cients for the sth lag of Ψ(L). The reduced form innovations
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ηt are related to the structural shocks et by an invertible K ×K matrix H:

ηt = HΣet ≡ Bet (3)

et ∼ (0, IK), Σ=


σ11 0 · 0
0 σ22 0 0
0 · · 0
0 0 · σKK

 , σjj ≥ 0 ∀j. (4)

where B ≡ HΣ. The structural shocks et are mean zero with unit variance, and are serially

and mutually uncorrelated. A normalization is required to pin down the sign and scale of the

shocks. We adopt the unit effect normalization

diag (H) = 1. (5)

The objective of the exercise is to study the dynamic effects and the relative importance of each

structural shock j. These are summarized by the impulse response function (IRF) ∂Xt+s

∂ejt
= Ψsb

j

(where bj is the jth column of B) and the fraction of s-step ahead forecast error variance of Xt

that is attributable to each structural shock. The SVAR identification problem concerns iden-

tifying the elements of H and Σ, from which the structural IRFs and variance decompositions

are computed.

To study the impulse and propagating mechanism of uncertainty shocks while explicitly

distinguishing between macro and financial market uncertainty, we consider a system with

K = 3 variables. Our baseline SVAR is based on Xt = (UMt, Yt, UFt)
′, where UMt denotes

macro uncertainty, Yt denotes a measure of real activity, and UFt denotes financial uncertainty.

The corresponding reduced form shocks ηt = (ηMt, ηY t, ηFt)
′ are related to the three structural

form shocks et = (eMt, eY t, eFt)
′ for macro uncertainty, real activity, and financial uncertainty,

as follows:

ηMt = BMMeMt +BMY eY t +BMF eFt

ηY t = BYMeMt +BY Y eY t +BY F eFt

ηFt = BFMeMt +BFY eY t +BFF eFt,

where Bij is the element of B that gives the contemporaneous effect of the jth structural shock

on the ith variable. The covariance structure of ηt provides K(K + 1)/2 = 6 equations in B:

vech(Ω) = vech(BB′) (6)

where vech(Ω) stacks the unique elements of the symmetric matrix Ω. There are nine unknown

elements in B.

To motivate our procedure, it is helpful to begin by considering the external IV approach

where valid instruments are observed. To do so, suppose for the moment that we have measures

of Yt, UMt, UFt, and two external instruments, Z1t and Z2t satisfying the following:
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Assumption A: Let Zt = (Z1t, Z2t)
′ be two instrumental variables such that

(A.i) E[Z1teMt] 6= 0, E[Z1teY t] = 0, E[Z1teFt] 6= 0
(A.ii) E[Z2teMt] = 0, E[Z2teY t] = 0, E[Z2teFt] 6= 0.

Assumption A are conditions for instrument exogeneity and relevance. Z1t is an instrument

that is correlated with both macro and financial uncertainty, but contemporaneously uncor-

related (exogenous) with respect to real activity. Z2t is an instrument that is correlated with

financial uncertainty, but contemporaneously uncorrelated (exogenous) with respect to macro

uncertainty and real activity.

Let m1t = (vech(ηtη
′
t), vec (Zt ⊗ ηt))′ and β = vec(B). At the true value of β, denoted β0,

the model satisfies

0 = E[g1(m1t;β
0)], (7)

written out in full as follows:

0 = var(ηM)−B2
MM +B2

MY +B2
MF

0 = var(ηY )−B2
YM +B2

Y Y +B2
Y F

0 = var (ηF )−B2
FM +B2

FY +B2
FF

0 = cov(ηM , ηY )−BMMBYM +BMYBY Y +BMFBY F

0 = cov(ηY , ηF )−BYMBFM +BY YBFY +BFFBY F

0 = cov
(
ηM,ηF

)
−BMMBFM +BMYBFY +BMFBFF

0 = BMFE[Z2tηY ]−BY FE[Z2tηMt]

0 = BFFE[Z2tηY t]−BY FE[Z2tηFt]

0 = (BMMBFF −BMFBFM)E[Z1tηY t]− (BY FBFM −BYMBFF )E[Z1tηMt]

−(BMMBY F −BMFBYM)E[Z1tηFt].

The model has nine equations in nine unknowns. The first six are from the covariance structure.

The next two equations are due to the three moments implied by Assumption (A.ii). The final

equation is due to the three moments implied by Assumption (A.i).

Proposition 1 Under Assumption A with det(B) > 0, the normalization (5), and the restric-

tion (4), β is identified.

In essence, identification in this analysis is achieved by (i) using movements in UMt and

UFt that are correlated with Z1t to identify the effects of uncertainty shocks and disentangle

them from shocks to real activity, (ii) using movements in UFt that are correlated with Z2t to

identify the effects of UFt shocks and disentangle them from macro uncertainty shocks, and

(iii) using movements in Yt that are uncorrelated with both Z1t and Z2t to identify the effects
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of real activity shocks and disentangle them from uncertainty shocks.5 The Appendix gives

a closed-form solution for B, and shows that the covariance between the instruments and the

structural shocks can be expressed as

E[Z2teFt]
2 = E[ηtZ2t]

′Ω−1E[ηtZ2t]

E[Z1teMt]
2 =

(
E[ηtZ1t]−

E[ηtZ2t]

E[Z2teFt]
E[Z2teFt]

)′
Ω−1

(
E[ηtZ1t]−

E[ηtZ2t]

E[Z2teFt]
E[Z2teFt]

)
E[Z2teFt]E[Z1teFt] = E[ηtZ2t]

′Ω−1E[ηtZ1t].

Since we take the stand in this application that our uncertainty measures are potentially

endogenous, it is then natural to ask why we do not simply find observable instruments. One

answer is that credible valid instruments for uncertainty that are truly exogenous may be dif-

ficult or impossible to find and defend. Indeed, existing uncertainty proxies are likely to be

among those variables that fall into this category. Beyond this, JLN find that many popular

uncertainty proxies, including options-based volatility indexes such as VIX or VXO, are less

defensible measures of uncertainty than those employed here, so it makes little sense to instru-

ment for the latter with the former. Options-based volatility indexes are doubly problematic

for our purpose because they are known to contain a large component attributable to changes

in the variance risk premium that are unrelated to common notions of uncertainty (e.g., Boller-

slev, Tauchen, and Zhou (2009); Carr and Wu (2009)).6 With these considerations in mind,

the next subsection proposes a methodology to construct synthetic proxy variables that satisfy

the exogeneity properties of valid instruments and can be combined with additional economic

restrictions to identify dynamic causal effects in the SVAR for Xt.

3.2 Construction of Synthetic Proxies

Suppose that the external instruments Z1t and Z2t have no credible observable counterparts.

The next step is to develop a methodology to construct synthetic proxies in the spirit of such

variables. To motivate our method, recall that two stage least squares uses projections to purge

the endogenous variations from a relevant regressor. Our approach is similar except that we

purge the endogenous variations from a observed variable that is not of first order relevance

to our VAR system. The output of such a projection is a generated or synthetic external

“instrument.”

In the present context, we make use of observable variables St that are driven by the struc-

tural shocks et = (eY t, eMt and eFt)′, as well as other shocks collected into an eSt that are

5We verify that the closed-form solution is the the same as the unique numerical solution obtained with (5)
and (4) imposed.

6This does not preclude the possibility that options based indexes may be valuable in empirical contexts
different from ours, such as those that seek to distinguish expected stock market volatility from realized stock
market volatility (Berger, Dew-Becker, and Giglio (2016)).
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uncorrelated with et. A theoretical premise of the paper is that structural uncertainty shocks

should be reflected in aggregate equity return variation. Thus our choice of St is a measure

of stock market returns. As there are many measures of stock returns, we generically denote

stock returns by St and explicitly distinguish the different measures by S1t and S2t only when

the context makes this necessary. Under our maintained assumption, we may represent St as

St = δ0 + δY Yt + δMUMt + δFUFt + δS(L)St−1 + δX(L)′Xt−1 + eSt (8)

where Xt = (Yt, UMt, UFt)
′. The residual eSt could be driven by any number of shocks orthogo-

nal to et. One interpretation is risk premium shocks driven by factors orthogonal to uncertainty,

such as a pure sentiment shock (one uncorrelated with uncertainty), but the precise interpreta-

tion is not important to what follows. It is clear that St and Xt are endogenous variables and

least squares estimation of (8) will yield inconsistent estimates. However, we are not interested

in these parameters. Our objective in considering stock-market returns is solely to remove from

it those variations due to the estimated eY t or eY t and eMt jointly. More precisely, (8) motivates

two non-structural representations of St:

S1t = d10 + d1Y eY t + d1S(L)S1t−1 + Z1t (9a)

S2t = d20 + d2MeMt + d2Y eY t + d2S(L)S2t−1 + Z2t, (9b)

where S1t and S2t are not necessarily the same variable. Equation (9a) forms an orthogonal

decomposition of S1t into a component that is spanned by eY t and a component Z1t that is

orthogonal to eY t. Similarly, equation (9b) purges the effect of eY t and eMt from S2t to arrive

at Z2t. Note that Z1t and Z2t include the effects of Xt−1. Moreover, they are forecastable since

both UMt and UFt can be serially correlated and their lagged values predict future excess stock

market returns.

If eY and eM were observed, then solving for the sample analog of (7) would produce

estimates of Z1t and Z2t that satisfy Assumption A by construction. Alternatively, if valid

instruments Zt were observed, Proposition 1 shows that we could identify B, hence et. Since

both are unobserved, such regressions are infeasible. However, components of observed variables

St may have the correlation properties of Z1t and Z2t stipulated in Assumption A. Given the

theory and evidence discussed above, our maintained hypothesis is that stock market returns

are correlated with all three structural shocks et, hence they contain a Z1t component that is

correlated with both uncertainty shocks but uncorrelated with real activity shocks, and another

component Z2t that is correlated with financial uncertainty shocks but uncorrelated with both

real activity and macro uncertainty shocks. To the extent that we can identify such components

by requiring that they satisfy the same nine equations described in (7), we interpret them as

synthetic external variables that proxy for external instruments. We denote these constructed

components Z(β) to emphasize that they are functions of parameters β to be estimated.
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But unlike the classic external IV case where Z is observed, the nine moment restrictions

in (7) cannot by themselves identify the SVAR parameters and shocks. Whereas Z′η is fixed

when Z is observed, this is no longer the case when Z is constructed because Z itself depends

on β. The problem that this creates is that if Ẑ′1êY = 0, Ẑ′2êY = 0, and Ẑ′2êM = 0 for some

β̂ = vec(B̂), any orthonormal rotation of B̂ to B̃ = B̂Q′ and ê to ẽ = Qê will have Z̃′1ẽY = 0,

Z̃′2ẽY = 0, and Z̃′2ẽM = 0. This is because the three exogeneity conditions hold by construction;

they are imposed to arrive at the nine equations. If we collect all the solutions that satisfy (7)

into the set B̂, this set can be infinitely large.
To address this problem, we combine the nine moment restrictions in (7) using the synthetic

Z1t (β) and Z2t (β) with economic restrictions. The first economic restriction regards the main-

tained assumption that uncertainty shocks should be correlated aggregate stock market returns.

Given a specification for stock returns like (8), this is isomorphic to assuming that the uncer-

tainty shocks must be correlated with the components Z1t (β) = S1t−d10−d1Y eY t−d1S(L)S1t−1

and Z2t (β) = S2t − d20 − d2MeMt − d2Y eY t − d2S(L)S2t−1.

Our maintained economic hypothesis is that stock market returns must have a non-zero

correlation with the structural uncertainty shocks. But how highly correlated? Rather than

taking a stand on a particular magnitude, lower bounds are set for the absolute correlations.

These bounds act to shrink the unconstrained set because the observed correlations Z′1(β̂)êM 6=
0, Z′1(β̂)êF 6= 0, Z′2(β̂)êF 6= 0 are not invariant to orthonormal rotations. This follows because

the Zt are constructed from data St, which is given. Hence B̂ and B̃ = B̂Q′ will imply

components Z(β) with different correlations.

The second set of economic assumptions requires that the identified shocks in a small number

of extraordinary events can be given a defensible interpretation. For this application, we require

that the financial uncertainty shocks identified in October 1987 and during the 2007-2009

financial crisis be large and positive, and that the identified output shocks during the Great

Recession not take on large positive values. Parameter estimates that suggest favorable financial

uncertainty and/or output shocks during particular episodes that are ex-post widely regarded

as characterized by either sub-par economic conditions and/or extreme volatility in the stock

market are dismissed. Observe that these event timing restrictions also act to shrink the

unconstrained set because, while ẽt and êt have the same mean and variance, ẽt 6= êt at any

particular t.

Both sets of economic assumptions are used to dismiss solutions in B̂ to form a winnowed

set of solutions B(c̄, C̄, k), where c̄, C̄, and k ≡ (k1, k2, k3)′ are defined below.

Assumption B: Winnowing Constraints For any β ∈ B̂ that satisfies the nine equations
defined in (7) with Z(β) constructed as in (9a) and (9b), β ∈ B(c̄, C̄, k) only if all the following

conditions are satisfied:
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1 Correlation constraints: Let ckj(β) = corr(Zkt(β), ejt(β)) be the sample correlation

between Zk(β) and the shock in et(β) = (eMt, eY t, eFt) with label j.

i |c1M(β)| > c̄, |c1F (β)| > c̄, and |c2F (β)| > c̄.

ii For c(β)=
(
c1M(β), c1F (β), c2F (β)

)′
,
√
c(β)′c(β) > C̄.

2 Event constraints: For et(β) = B−1ηt,

i eFt1(β) > k̄1 where t1 is the period 1987:10 of the stock market crash.

ii There exists a t2 ∈ [2007:12, 2009:06] such that eFt2(β) > k̄2.

iii For all t2 ∈ [2007:12, 2009:06], eY t2(β) < k̄3

The first type of winnowing constraint pertains to the assumption that stock market re-

turns should be correlated with structural uncertainty shocks and requires that each correla-

tion c1M(β̂), c1F (β̂), c2F (β̂) individually exceeds a pre-specified c̄, and collectively exceeds C̄.

The second type of winnowing constraint, based on the timing of unusual events, are used to

ensure that the identified shocks at specific episodes have properties that agree with economic

reasoning. The t2 dates are set in accordance with NBER dating of the Great Recession, which

coincides with the timing of the financial crisis.

We identify sets of solutions that satisfy both types of winnowing constraints. Naturally,

the sets may be larger or smaller depending on how restrictive are the bounds c̄, C̄, k. If the

bounds are unrestrictive, many β̂ in B̂ will also be in B(c̄, C̄, k) and little progress is made. If

the bounds are too restrictive, no solutions will satisfy the constraints and B(c̄, C̄, k) will be

empty.

It remains to discuss the construction of the unconstrained solution set B̂. To obtain a set
of, say, K solutions, we solve K GMM problems with different staring values. Each GMM

problem consists of solving for nine unknowns from nine equations, with Z generated from (9a)

and (9b), with an initial guess for the shocks et. The guess of et is updated each time B is

updated during each iteration. We have found it more effi cient to solve for B and Z iteratively,

updating Z by projection only when a solution for B is obtained. The leads to what we refer

to as the iterative projection external variable (IPEV) procedure, summarized as follows:

Algorithm IPEV For a given guess of β =vec(B)and therefore a guess of et = B−1ηt, the

following steps are repeated until convergence:

i Put the guess of (eM, eY) in (9a) and (9b) to construct Z1 and Z2.

ii Use Z1 and Z2 to solve the nine equations given in (7). This gives a new value for B.
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iii Construct new shocks e using the new estimate of B.

iv If the difference between the new and old e exceeds a tolerance, return to (i). Else, put

the solution in the unconstrained set B̂ if det(B) > b̄.

v If the solution satisfies the winnowing constraints, put it in B̄(c̄, C̄, k).

Several points about the implementation of this approach bear discussion.

First, note that the shocks are constructed as e = B−1η and require B−1 to be well behaved.

For this reason we keep only solutions that satisfy a lower bound for det(B) ≥ b.

Second, we consider a large number of randomly chosen starting values, or initial guesses,

for β. Specifically, we initialize B to be the lower Cholesky factorization of Ω for an arbitrary

ordering of the variables (e.g., (UMt, Yt, UFt)
′). We then rotate it by 40,000 random orthogonal

matrices to give 40,000 initial guesses on B and hence the shocks. Completely random starting

values will always deliver some Z(β) and e(β) with properties that are at odds with reasonable

economic judgement. Our winnowing constraints are designed to exclude such solutions from

B(c̄, C̄, k). We also estimate the model by GMM to verify that for a given initial guess, the

solution agrees with the one obtained by IPEV estimation.

Third, the parameter values c, C, and k will in general vary with the data under investiga-

tion. For some choice of S, it is entirely possible that there exists no solution satisfying partic-

ular thresholds values. For the applications here, we set the c, C to be relatively unrestrictive,

with c = 0.03 for the individual correlation, and C = 0.24 for the collective correlation. The

latter value corresponds to an average value of approximately 0.14 for the root-mean-square-

correlation
√

1
3
c(β)′c(β). This says that a lower bound of 3% absolute correlation between stock

market returns and both types of uncertainty shocks is maintained, with an average absolute

correlation of 14%. For the presentation of results below we also show the single solution in the

restricted set B̄(c̄, C̄, k) with the highest collective correlation
√
c(β)′c(β):

β̂
maxC

=arg max
β∈B(c̄,C̄,k)

√
c(β)′c(β). (10)

Fourth, we set the parameters of the event constraints to k1 = 4.0, k2 = 4.0, and k3 =

2. The k1 and k2 thresholds pertain to the financial uncertainty shocks in October of 1987

when Black Monday occurred, and during the months of the 2007-09 financial crisis. This

imposes the constraint that these events were accompanied by large financial uncertainty shocks.

The requirement that the shocks be at least four standard deviations larger than the mean is

guided by Bloom (2009). In his work, uncertainty shocks are calibrated from innovations to the

VXO stock market volatility index. Bloom (2009) studies the dynamic effects of four standard

deviation shocks to uncertainty. The k3 threshold states that the identified real activity shock
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cannot be too positive in the Great Recession; specifically, we restrict the shock to be no larger

than two standard deviations above its sample mean in the Great Recession months.

To summarize, identification is predicated on three economic assumptions. First, com-

ponents of the external St variables must exist that satisfy a minimum degree of non-zero

correlation with the relevant set of uncertainty shocks ({eMt, eFt} or {eFt}) and be exogenous
with respect to the remaining structural shocks in et that form the compliment of this set.

Second, the identified shocks must be consistent with a small number of extraordinary events

whose interpretation is relatively incontrovertible. Third, purely idiosyncratic shocks to St are

presumed not to affect the variables in Xt either contemporaneously or with a lag, an assump-

tion that is tantamount to presuming that St can be excluded from the VAR. Below we show

how this last assumption can be empirically evaluated.

It is worth noting that, in this application, the event constraints alone eliminate 99% of the

solutions in B̂. When combined with lower bounds for the absolute correlations between the
St and the uncertainty shocks, the qualitative nature of the solutions to the IPEV and GMM

estimation problem is not found to be sensitive to starting values.

To have confidence in this implementation, Ludvigson, Ma, and Ng (2016) use Monte Carlo

experiments to study the properties of the estimator. In general, the restrictiveness of corre-

lation and event constraints required for precise identification varies with the data generating

process (DGP). But the results for a DGP calibrated to the empirical application here suggest

that the procedure produces solution sets that deliver the fairly narrow IRF bands around the

true structural shocks and B matrix for the same functions for responses to shocks that display

these properties in the historical sample, when the external St have properties consistent with

observed values of c(β), and when finite samples are set to those of the size used in this study.

3.3 System Estimation

The estimation procedure just discussed is based on an SVAR for Xt. While St is used as part

of an identification scheme, it is excluded from the SVAR. We refer to the foregoing analysis

as the subsystem approach. In this section, we show that our approach can be fit into the

classic simultaneous equations framework and interpreted as the output of a restricted system

estimation for a larger VAR for (Xt, St)
′ with explicit restrictions on the structure of St. We

refer to this as the full system approach. For this purpose, we consider a single St.

The full system VAR takes the same form as (1); the only difference is that St is now

included in the VAR. The reduced form errors for the full system are ηt = (η′Xt, ηSt)
′. The

structural shocks are
(
e′Xt eSt

)′
with ηt = Bet. The B matrix now has 16 parameters and

the covariance structure gives 10 pieces of information. We assume that the shocks eSt do not

contemporaneously affect Xt. This means that the impact sub-vector giving the effects of eSt
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on Xt, denoted BXS = (BMS, BY S, BFS)′ , is zero. These three zero restrictions imply
ηMt

ηY t
ηFt
ηSt

 =


BMM BMY BMF 0
BYM BY Y BY F 0
BFM BFY BFF 0
BSM BSY BSF BSS




eMt

eY t
eFt
eSt

 . (11)

The synthetic variables Zt are now defined as

Z1t = ηSt −BSY eY t = BSMeMt +BSF eFt +BSSeSt

Z2t = Z1t −BSMeMt = BSF eFt +BSSeSt.

Hence they are functions of the structural parameters. This treatment of Zt is conceptually

distinct from the subsystem analysis earlier when Zt was treated as a residual from a projection.

The full system analysis also requires the synthetic variables Z to satisfy the exogeneity restric-

tions of Assumption A, E[Z1teY t] = E[Z2teY t] = E[Z2teMt] = 0. These full system restrictions

imply the same equations for solving the model as those used in the subsystem analysis, ex-

cept that the residual ηSt is used to construct Zt in place of St. Estimation of the full system

(Xt, St)
′ therefore proceeds exactly as in the GMM estimation of the subsystem. Given the

block structure of B, we can also use IPEV to solve the X subsystem and the S equation

iteratively.

But as is the case with the subsystem analysis, the model is underidentified. The prob-

lem from the full system perspective is that Assumption A does not provide restrictions for

BSM , BSY , BSF . A large number of solutions can be consistent with the covariance structure

of ηt and yet satisfy Assumption A. To address this problem, we again use Assumption B to

help tie down these parameters. In the full system, the correlations used in the correlation

constraints of Assumption B are given by

c1M(β) =
corr(Z1t, eMt)

σZ1
=

BSM√
B2
SM +B2

SF +B2
SS

c1F (β) =
corr(Z1t, eFt)

σZ1
=

BSF√
B2
SM +B2

SF +B2
SS

c2F (β) =
corr(Z2t, eFt)

σZ2
=

BSF√
B2
SF +B2

SS

,

where the second equalities follow by recalling that eMt and eFt have unit standard deviations.

Evidently, these correlations explicitly depend on the parameters of the S equation. Thus they

are not invariant to orthonormal rotation of eX and the parameters of the subsystem. Still, as

in the subsystem analysis, requiring that c1M(β) > c̄, c1F (β) > c̄, c2F > c̄ and c(β) > C may

not be enough to point identify B. We further reduce the number of admissible solutions by

requiring that the event constraints of Assumption B hold for the stock market crash of 1987

and the Great Recession/financial crisis of 2008-09, as in the subsystem analysis.
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It is of interest to compare the full and subsystem analysis. The full system estimation is

in some ways more restrictive than the subsystem approach. In the subsystem analysis, the

process that generates St is left unspecified. As such, it can be a function of variables other

than Xt, both contemporaneously, and at lags. By contrast, the full system approach specifies

the process for St. Any misspecification in one equation can affect all equations in the system.

On the other hand, the full system merely constrains the contemporaneous effect of St on Xt to

zero. This is a weaker than assuming that St is exogenous for Xt, which additionally prevents

the lags of St from affecting Xt. Constraining the current and lagged values of St to zero

amounts to the subsystem analysis of excluding St from the larger VAR altogether. It should

however be noted that excluding the past values of St from the equations for Xt is not needed

for identification. Thus the assumption that St can be excluded from the VAR for Xt places

overidentifying restrictions on the full system that can be evaluated empirically. A simple way

to do so is to compare the impulse response functions estimated for the three variable system

Xt = (UMt, Yt, UFt)
′ with those from a larger system that includes St but does not restrict the

coeffi cients of St−j in the equations forXt to zero, for j ≥ 1. Denote these coeffi cients byAXS,j.

We present these results below.

3.4 Measuring Uncertainty and Stock Market Returns

In our estimation we work with several different aggregate measures of uncertainty, which are

indexes constructed over individual uncertainties for a large number of observable time-series.

A long-standing diffi culty with empirical research on this topic has been the measurement of

uncertainty. JLN find that common uncertainty proxies contain economically large components

of their variability that do not appear to be generated by a movement in genuine uncertainty

across the broader economy. This occurs both because these proxies over-weight certain series in

the measurement of aggregate uncertainty, and because they erroneously attribute forecastable

fluctuations to a movement in uncertainty. Equity market volatility, for example, contains a

non-trivial component generated from forecastable variation in stock returns. The estimated

macro uncertainty index constructed in JLN is designed to address these issues and improve the

measurement of aggregate uncertainty. The methodology used here for constructing uncertainty

indexes follows JLN and we refer the reader to that paper for details.

Let yCjt ∈ Y C
t = (yC1t, . . . , y

C
NCt

)′ be a variable in category C. Its h-period ahead uncertainty,

denoted by UCjt(h), is defined to be the volatility of the purely unforecastable component of the

future value of the series, conditional on all information available. Specifically,

UCjt(h) ≡

√
E
[
(yCjt+h − E[yCjt+h|It])2|It

]
(12)

where It is information available. If the expectation today of the squared error in forecasting
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yjt+h rises, uncertainty in the variable increases. As in JLN, the conditional expectation of

squared forecast errors in (12) is computed from a stochastic volatility model, while the condi-

tional expectation E[yCjt+h|It] is replaced by a diffusion index forecast, augmented to allow for
nonlinearities. These are predictions of an autoregression augmented with a small number of

common factors qt = (q1t, . . . , qrt)
′ estimated from a large number of economic time series xit

each with factor representation xit = Λ′itqt + eχ,it. Nonlinearities are accommodated by includ-

ing polynomial terms in the factors, and factors estimated squares of the raw data. The use of

large datasets reduces the possibility of biases that arise when relevant predictive information

is ignored. Let Y C
t = (yC1t, . . . , y

C
NCt

)′ generically denote the series that we wish to compute

uncertainty in.

Uncertainty in category C is an aggregate of individual uncertainty series in the category :

UCt(h) ≡ plimNC→∞

NC∑
j=1

1

NC

UCjt(h) ≡ EC [UCjt(h)]. (13)

In this paper, we consider four categories of uncertainty:

Category (C) Y C
t NC

(M): Macro all variables in χM 134
(F): Financial all variables in χF 147
(R): Real activity real activity variables in χM 73

We use two datasets covering the sample 1960:07-2015:04.7 The first is a monthly macro

dataset, XM
t , consisting of 134 mostly macroeconomic time series take from McCracken and Ng

(2016). The second is a financial dataset X F
t consisting of a 147 of monthly financial indicators,

also used in Ludvigson and Ng (2007) and JLN, but updated to the longer sample. The real

uncertainty index URt is an equally-weighted average of the individual uncertainties about 73

series in Groups 1 through 4 of XM . These include output and income variables, labor market

measures, housing market indicators, and orders and inventories. Additional predictors for

variables in XM
it include factors formed from X F

it and vice-versa, squares of the first factor of

each, and factors in the squares of individual series,
(
XM
it

)2
and

(
X F
it

)2
.

Our use of stock returns St to generate instruments is grounded in the theoretical premise

that both macro and financial uncertainty shocks should be reflected in stock market returns.

There is no reason, however, that the regressands in (9a) and (9b) must be exactly the same

measure of stock market activity. All measures of stock market activity are highly correlated

because they contain a large common component (much of which is orthogonal to the rest of the

economy). In order to introduce some additional independent variation in our two instruments,

our base cases use different measures of aggregate stock market activity S1t and S2t, although in

7A detailed description of the series is given in the Data Appendix of the online location where updated JLN
uncertainty index data are posted: http://www.sydneyludvigson.com/s/jln_data_appendix_update.pdf
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practice we get very similar results if we use the same value-weighted stock market index return

in (9a) and (9b). Specifically, for S1t, the regressand for (9b), we use the Standard and Poor

500 stock market index return. For S2t, the regressand in (9a), we use αpcrspt+(1− αp) smallt,
which is a portfolio weighted average of the return on the CRSP value-weighted stock index

in excess of the one-month Treasury bill rate and the smallest decile stock market return in

the NYSE.8 We set the portfolio weight αp to be a value close to one, thereby giving only

a small amount of additional weight to small stocks. Small stocks are less representative of

the market as a whole, and it is unclear how highly correlated they should be with aggregate

uncertainty measures. For the base case results presented below we set αp = 0.94. However,

we also investigated a range of values for αp ∈ [0.75, 1] and found very similar estimates and

impulse responses for all weights in this range, including setting αp = 0.75 and unity.

The parameters to be estimated include the reduced form VAR parameters in (2), from

which we obtain η̂t, the parameters in (9a) and (9b), from which we construct Z1t (β) and

Z2t (β), the covariances between Z1t (β) and Z2t (β) and η̂t, and the structural parameters

using results from the preceding three estimations. The sample moment conditions can be

collected into one vector and Generalized Method of Moments (GMM, Hansen (1982)) applied

to estimate all parameters, where the number of moments equals the number of parameters.

Serial correlation and heteroskedasticity robust standard errors are constructed as in Newey

and West (1987) wherever asymptotic standard errors are reported for a single solution.

4 Results for Xt = (UMt, Yt, UFt)
′

This section presents empirical results. We begin by studying systems with macro uncertainty

UMt. We then move on to consider real uncertainty URt formed exclusively from real activity

variables.

Our first VAR is defined byXt = (UMt, Yt, UFt)
′. We consider h = 1 (one-month uncertainty)

and several measures of Yt. The first two measures are the log of real industrial production,

denoted ipt, and the log of employment, denoted empt. While industrial production is a widely

watched economic indicator of business cycles, it only captures goods-producing industries and

has been a declining share of GDP. Employment only covers the labor market. Hence we also

consider an additional measure of real activity: the cumulated sum of the first common factor

estimated from the macro dataset χM (since the raw data used to form this factor q1t are

transformed to stationary), which we denote Q1t. Since our emphasis is on h = 1, we write

UMt instead of UMt(1), and analogously for UFt, in order to simplify notation. We refer to the

estimation using data on Xt = (UMt, ipt, UFt)
′ as our baseline case.

The top panel of Figure 1 plots the estimated macro uncertainty UMt in standardized units

8The CRSP index is a value-weighted return of all stocks in NYSE, AMEX, and NASDAQ.
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along with the NBER recession dates. The horizontal bar corresponds to 1.65 standard devia-

tion above unconditional mean of each series (which is standardized to zero). As is known from

JLN, the macro uncertainty index is strongly countercyclical, and exhibits large spikes in the

deepest recessions. The updated data UMt series shows much the same. Though UMt exceeds

1.65 standard deviations 48 times, they are clustered around the 1973-74 and 1981-82 reces-

sions, as well as the Great Recession of 2007-09. Macroeconomic uncertainty is countercyclical

and has a correlation of -0.65 with the 12-month moving-average of the growth in industrial

production.

The bottom panel of Figure 1 plots the financial uncertainty series UFt over time, which is

new to this paper. UFt is a broad-based measure of time varying financial uncertainty using

data from the bond market, stock market portfolio returns, and commodity markets. Hence,

it is smoother than proxies such as VIX or any particular bond index. As seen from Figure 1,

UFt is also countercyclical, though less so than UMt; the correlation with industrial production

is -0.39. The series often exhibits spikes around the times when UMt are high. However, UFt is

more volatile and spikes more frequently outside of recessions, the most notable being the 1987

stock market crash. Though observations on UFt exceed the 1.65 standard deviation line 33

times, they are spread out in seven episodes, with the 2008 and 1987 episodes being the most

pronounced.

As is clear from Figure 1, both indicators of macro and financial uncertainty are serially

correlated and hence predictable. They have comovements but also have independent variations

as the correlation between them is 0.58. However, this unconditional correlation cannot be given

a structural interpretation. The heightened uncertainty measures can be endogenous responses

to events that are expected to happen, but they can also be exogenous innovations. We use a

VAR to capture the predictable variations, and then identify uncertainty shocks from the VAR

residuals using the restrictions described in the previous section.

4.1 SVAR Estimates and Uncertainty Shocks

Several features of the VAR estimates are qualitatively similar for all measures of Yt. Table 1

highlights some of these results. For the purposes of this table, we show estimates for the single

max C solution in (10). Panel A of this table shows that the sample correlation coeffi cients

between Z1t and êMt and êFt, and between Z2t and êFt are statistically significant and negative

in each case, indicating that uncertainty shocks of both types tend to be high when stock

market returns are low. Panel A also shows that the correlation between Z1t and êY t, and

the correlation between Z2t and êY t and êMt are all zero, which is true by construction of

the algorithm and solution for B. Panel B shows that σMM , σY Y , and σFF are all strongly

statistically significantly different from zero. This in turn indicates the presence of both macro
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and financial uncertainty shocks in the SVAR, as well as real activity shocks. Since both UMt

and UFt are serially correlated, we should therefore find that Z1t is correlated with lags of UMt

and UFt, while Z2t is correlated with lags of UFt. Results not reported confirm this is the case.

Figure 2 presents the time series of the standardized shocks (eM , eip, eF ) identified from the

system with Yt = ipt, again for the max C solution. All shocks display strong departures from

normality with excess skewness and/or excess kurtosis. The largest of the eip shocks is recorded

in 1980:04, followed by 1974:11, and 2005:09. There also appears to be a moderation in the

volatility of the ip shocks in the post-1983 period. The largest macro uncertainty shock is in

1970:12, followed by the shock in 2008:10. The largest financial uncertainty shock is recorded

in 1987:10 (Black Monday), followed by the shock in 2008:09 during the financial crisis. For

eF , the extreme but transitory nature of the 1987 stock market crash leads to a very large spike

upward in eF in the month of the crash, followed by a very large spike downward in the month

following the crash as the market recovered strongly and quickly. While this episode magnifies

the spike in eF in 1987, it is largely orthogonal to real activity and macro uncertainty.

Observe that the large ip shock in 2005:09 is not associated with a contemporaneous spike

in uncertainty, while there are several spikes in both types of uncertainty that do not coincide

with spikes in eip. The next subsection uses impulse response functions to better understand

the dynamic causal effects and propagating mechanisms of these shocks.

4.2 The Dynamic Effects of Uncertainty Shocks

Impulse response functions (IRFs) trace out the effects of counterfactual increases in the shocks.

All plots show responses to one standard deviation changes in εjt in the direction that leads to

an increase in its own variable Xjt.

Figure 3 shows in shaded areas the set of dynamic responses that satisfy the winnowing

constraints for each variable in the SVAR to each structural shock for system with Yt = ipt.

The dotted line shows the max C solution. Figure 4 displays the analogous plots for systems

that use empt, and the real activity index Q1t. We discuss the results displayed in both figures

simultaneously.

The figures show that positive shocks to financial uncertainty eF are found to lead to sharp

declines in all three measures of real activity that persists for many months (center plot, bot-

tom row). In all estimations, the sets of solutions that satisfy the identification restrictions

in Assumption B have this pattern. These results lend support to the hypothesis that height-

ened financial uncertainty is an exogenous impulse that causes declines in real activity. Note,

however, there is little evidence that high financial uncertainty is a consequence of lower eco-

nomic activity. Instead, exogenous (positive) shocks to real activity either increase financial

uncertainty or have no clear affect on it.
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Positive perturbations to eFt also cause UMt to increase sharply. However, there is less

evidence that shocks to macro uncertainty have effects on financial uncertainty: the set of

solutions show positive response of financial uncertainty for the system with Y = ip, but the

responses for the other two measures of real activity range from positive to zero to negative.

While we find no evidence that high financial uncertainty is a consequence of lower economic

activity, the results for macro uncertainty are quite different. Both figures show that macro

uncertainty falls sharply in response to positive real activity shocks. Alternatively stated,

negative real activity shocks increase macro uncertainty sharply. These endogenous movements

in macro uncertainty persist for well over a year after the real activity shock. This result is

strongly apparent in all the solutions of the identified sets for Y measured as production or

employment, suggesting that higher macro uncertainty in recessions is a direct endogenous

response to lower economic activity. The responses in the system using the real activity index

Q1t as a measure of Y are inconclusive, as the identified set in this case includes a wide range

surrounding zero even though the max C solution shows that UM falls sharply in response to a

positive Q1 shock. However, there is no evidence that the observed negative correlation between

macro uncertainty and real activity is driven by causality running in the opposite direction.

Indeed, the top middle panels of each figure show that positive macro uncertainty shocks often

increase real activity in the short run, consistent with growth options theories discussed above.

The exception is again the system with Y = Q1where the identified set displays a wide range

of responses. But even in this case the max C solution shows the real activity index increases

sharply after a positive shock to macro uncertainty.

4.3 The Structural Shocks and Decomposition of Variance

In Figure 1 presented earlier, we find 1973-74, 1981-82, and 2007-2009 to be the three episodes

of heightened macroeconomic uncertainty, defined as the periods when UMt is at least 1.65

standard deviations above its unconditional mean. We now look for the “large adverse”shocks

in the systems (UMt, Yt, UFt)
′, with Yt = ipt, empt , Q1t. More precisely, we consider large

positive uncertainty shocks and large negative real activity shocks.

For the max C solution, Figure 5 displays the date and size of shocks that are at least two

standard deviations above the mean, estimated using the three different measures of Yt. In view

of the non-normality of the shocks, the figure also plots horizontal lines corresponding to three

standard deviation of the unit shocks, which is used as the reference point for ‘large’. The lowest

panel shows that, irrespective of the definition of Yt, all SVARs identify big financial uncertainty

shocks in October 1987 and in one or more months of 2008. Such solutions are selected as part

of the identification scheme. The middle panel shows that large negative real activity shocks

are in alignment with all post-war recessions with one exception: the negative real activity
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shock in 2005 is not immediately associated with a recession, but it could be the seed of the

Great Recession that followed. It is known that the housing market led the 2007-2009 recession

(e.g., see Favilukis, Ludvigson, and Van Nieuwerburgh (2015) for a discussion). Indeed, all

10 housing series in XM (most pertaining to housing starts and permits series) exhibit sharp

declines starting in September 2005 and continuing through 2006, thereby leading the Great

Recession. This suggests that the negative spike in real activity in 2005 was partly driven by

the housing sector.

The top panel of Figure 5 shows that the dates of large increases in eM are less clustered.

They generally coincide with, or occur shortly after, the big real activity shocks and the financial

uncertainty shocks. Observe that large macro uncertainty shocks occurred more frequently in

the pre-1983 than the post 1983 sample, consistent with a Great Moderation occurring over

the period ending in the Great Recession. However, increases of greater than three standard

deviations for eM appear only when real activity is measured by production in the SVAR, a

point we return to below.

To give a sense of the historical importance of these shocks, we perform a decomposition

of variance, given by the fraction of s-step-ahead forecast error variance attributable to each

structural shock εMt, εY t, and εFt for s = 1, s = 12, s = ∞. We also report the maximum
fraction of forecast error variance over all VAR forecast horizons s that is attributable to each

shock, denoted s = smax in Table 2. Table 2 reports these results for the max C solutions in the

system with Yt = ipt (left column), Yt = empt (middle column), and Yt = Q1t (right column).

According to the top row, two of the three real activity shocks, namely eip, and eQ1, have

sizable effects on macroeconomic uncertainty UM , with shocks to production explaining up

to 67% of the variation in UM . But according to the bottom row, these same shocks have

small effects on financial uncertainty UF . At the same time, positive macro uncertainty shocks

eM , which increase rather than decrease real activity, explain a surprisingly large fraction of

production (up to 70%), employment (up to 20%) and the real activity index (up to 56%).

On the other hand, financial uncertainty shocks eF have a small contribution to the one-step-

ahead forecast error variance of all three measures of real activity, but their relative importance

increases over time. Financial uncertainty shocks explain up to 40% of the forecast error

variance in production, up to 65% of the forecast error variance in employment, and up to

37% of the forecast error variance in the real activity index, compared to 31% for production.

Financial uncertainty shocks eF feed into UM , and macroeconomic uncertainty shocks eM also

feed into UF .

Regardless of which measure of real activity is used, we find that financial uncertainty is

unlike macro uncertainty or real activity in that its variation is far more dominated by its own

shocks. For example, in the system with ip, eF shocks explain 97% of the s = 1 step-ahead

forecast error variance in UFt, and 98% of the s =∞ step-ahead forecast error variance. In the
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systems with emp and Q1, eF shocks explain 76% and 96%, respectively, of the s = 1 step-ahead

forecast error variance in UFt, and 80% and 96%, respectively, of the s =∞ step-ahead forecast

error variance.

To summarize, in all three systems, real activity shocks eY have quantitatively large per-

sistent negative effects on macro uncertainty UM . In turn, macro uncertainty shocks eM have

large positive impact effects on real activity measures Y . Financial uncertainty shocks eF have

smaller impact effects but larger long run effects that dampen real activity Y . Across all sys-

tems, the forecast error variance of financial uncertainty is the least affected by shocks other

than its own, suggesting that UF is quantitatively the most important exogenous impulse in

the system.

5 Uncertainty in Real Activity

The results discussed above suggest that the dynamic relationship between macro uncertainty

and real activity can be quite different from the relation between financial uncertainty and real

activity. However, given the composition of our data χM , macroeconomic uncertainty itself

can be due to uncertainty in real activity variables such as output and unemployment, to price

variables, and to financial market variables. The theoretical uncertainty literature has focused

on modeling exogenous uncertainty shocks that arise specifically in measures of real economic

fundamentals, rather than in prices or financial markets. To better evaluate the implications of

these theoretical models, we consider systems that isolate uncertainty about real activity using

the URt sub-index that more closely corresponds to the theoretical literature.

5.1 System Xt = (URt, Yt, UFt)
′

We isolate the real activity components of macro uncertainty by aggregating the individual

uncertainty estimates over the 73 real activity variables in the macro dataset XM . The one-

period ahead uncertainty in real activity, denoted URt, is show in Figure 6. This series, like

UMt, is countercyclical though somewhat less so, having a correlation of -0.50 with industrial

production (as compared to -0.66 for UMt). At first glance, URt appears to fluctuate in a manner

similar to macroeconomic uncertainty UMt. The two series have a correlation of 0.71 and exhibit

some overlapping spikes. But URt and UMt also display notable independent variation. Figure

6 shows that there are 43 observations of URt that are at least 1.65 standard deviations above

its mean. These can be organized into five episodes: 1965, 1970, 1975, 1982-83, and 2007. By

contrast, UMt in Figure 1 only exhibits three such episodes. Observe that the URt series exhibits

several spikes before 1970 that are not accompanied by spikes in UMt.

Given the distinctive patterns in the time series behavior of URt and UMt, one might expect

to find different dynamic relationships with the other variables in our systems when UMt is
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replaced by URt. Surprisingly, the impulse responses functions are qualitatively similar to

systems studied above that use broad-based macro uncertainty. The sets of responses that

satisfy our winnowing constraints are displayed in Figure 7, with the dashed lines indicating

the max C solution. The solid line for the Yt = ipt system indicates that the set in that case is

a singleton.

Figure 7 shows that, for all solutions that satisfy Assumption B and no matter which

measure of real activity is used, (i) positive shocks to real activity measures unambiguously

cause sharp declines in real economic uncertainty URt so that negative shocks cause sharp

increases in real economic uncertainty; (ii) positive real activity uncertainty shocks eRt do not

cause declines in real activity measures; indeed the opposite is unambiguously true; (iii) positive

financial uncertainty shocks eFt lead to sharp declines in real activity measures that are steep

and persistent, and (iv) there is little evidence that high (low) financial uncertainty is caused

by negative (positive) real activity shocks; the sets of IRFs surround zero for all systems. Thus

the identified sets present an even clearer picture of the dynamic causal relationships in the

systems with Xt = (URt, Yt, UFt)
′ than they do in the systems with Xt = (UMt, Yt, UFt)

′ .

Figure 8 plots the large adverse structural shocks for the max C solutions identified from

the systems (URt, Yt, UFt)
′ for Yt = ipt, empt, Q1t analogous to Figure 2. The top panel shows

that the real uncertainty shock eRt exhibits spikes in excess of three standard deviations during

the Great Recession only for the system in which Yt = ipt. Moreover, for the other two systems

in which Yt = empt or Q1t, there is not a spike that exceeds even two standard deviations

above its mean, despite the fact that URt itself exhibits a large spike in the Great Recession

(see Figure 6).

These episodes serve to reinforce the conclusion from the IRFs that the heightened real

economic uncertainty in recessions is often endogenous response to other shocks, rather than

an exogenous impulse. Even though there were many large spikes in real uncertainty shocks eRt
pre-1983, there have been fewer large adverse shocks to real economic uncertainty since 1983,

a period that coincides with the so-called Great Moderation.

To complete the analysis, we present variance decompositions for the system (URt, Yt, UFt)
′,

with three measures of real activity Yt = ipt, empt, Q1t. These results, presented in Table 3,

share some similarities with the systems that use macro uncertainty UMt shown in Table 2,

but there are at least two distinctions. First, financial uncertainty shocks decrease real activity

and explain larger fractions of the forecast error variance in two measures of real activity

at long horizons. At the longest s = ∞ VAR horizon, financial uncertainty shocks explain

62% of forecast error variance in employment and 58% of the forecast error variance in the

real activity index. These results suggest that financial uncertainty has quantitatively large

negative consequences for at least some measures of real activity. Second, compared to systems

that use UMt, smaller fractions of the forecast error variance in URt are explained by its own
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shocks for two of the three systems corresponding to Yt = ipt, empt. This is largely because,

in these systems, shocks to ipt and empt have larger effects on real activity uncertainty than

on macro uncertainty. This reinforces the point that countercyclical increases in real economic

uncertainty are best characterized as endogenous responses to declines in real activity.

6 Robustness and Additional Cases

This section presents results for a number of additional cases that help assess robustness of our

results.

First, we present results when only event constraints or correlation constraints are imposed,

but not both. Second, we test whether restrictions implied by recursive identification are

supported by the data. Third, we consider an estimation where we presume two observed

external variables are valid external instruments Z1t and Z2t, even though they may in fact

contain an endogenous component. This is compared to the case where the same variables are

presumed not to be valid instruments and IPEV is used to construct such instruments from S1t

and S2t. Finally, we present results for the full system estimation described above for a VAR

in Xt and St with explicit restrictions on the structure of St.

6.1 Eliminating Event or Correlation Constraints

Assumption B imposes two types of winnowing constraints, the event constraints and the cor-

relation constraints. If either of these were not helpful in narrowing the solution sets, then

failure to impose one or the other would not have a significant affect on the results. Figure

9 shows the dynamic responses when we impose either one or the other type constraint (but

not both). The top panel shows the results imposing only event constraints, and the bottom

panel shows the results imposing only correlation constraints. The identified sets of IRFs in

both panels are noticeably wider, indicating that each type of constraint contributes to identi-

fication. However, the event-constraints-only panel shows that all solutions in the identified set

imply that financial uncertainty shocks drive down empt and Q1t, though the set for ipt is too

wide to draw such a conclusion. Many, though not all, of the solutions show that positive real

activity shocks drive down macro uncertainty, whereas both positive and negative responses of

real activity are equally well represented in reaction to macro uncertainty shocks.

A similar pattern emerges in the bottom panel, where results are reported for the case in

which only correlation constraints are imposed. On the whole, the sets are at least as wide

or wider around zero compared to the top panel, indicating that the event constraints are

more important than the correlation constraints. Taken together, the results in both panels

demonstrate the importance of both constraints for drawing clear conclusions about the dynamic

causal effects in the system.
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6.2 Tests of Recursive Identification Restrictions

The econometric model permits us to test whether a recursive structure is supported by the

data. Specifically, the assumptions in our winnowing constraints do not rule out the possibility

of a recursive structure. To carry out the test we focus on a particular solution in the identified

set, namely the max C solution. This solution is not on or near the boundary of the permitted

parameter space given by the winnowing constraints and we simply approach the problem as the

point-identified one. Given that
√
T (β̂1 −β0

1) is asymptotically N(0,Σ2
β̂1

), the null hypothesis

of a recursive structure is a test that the three components of β1 corresponding to the off-

diagonal entries of B are jointly zero. Hence the Wald statistic is chi-square distributed with

three degrees of freedom. We first confirm that the test has the correct size in Monte Carlo

simulations. Our estimates based on historical data strongly reject a lower triangular B for any

possible ordering of the variables. Table 4 shows results from Wald tests with Yt = ipt, and

either using UMt (first column) or URt (second column).

What happens to the dynamic responses when we nevertheless impose restrictions based

on recursive identification (and freely estimate the rest of the parameters)? With these re-

cursive restrictions the SVAR is exactly identified so no winnowing constraints are needed.

Figure 10 shows the dynamic responses for the ordered system Xt = (UFt, UMt, ipt)
′ with boot-

strapped standard error bands in dashed lines. There are many possible recursive orderings,

and inevitably, the estimated IRFs differ in some ways across these cases. However, the dy-

namic responses under recursive identification have one common feature that is invariant to the

ordering. Under recursive identification, no matter the which ordering is presumed, macro un-

certainty shocks appear to cause a sharp decline in real activity, much like financial uncertainty

shocks, while positive real activity shocks have little effect on macro uncertainty in the short

run and if anything increase it in the long run. This is in stark contrast to the results from our

identification scheme. Recall that our identification scheme is capable of recovering a recursive

structure if it were true, but we failed to find such a structure. Further investigation reveals

that the SVARs we study display non-zero contemporaneous correlations between UFt and Yt,

as well as between UMt and Yt, a finding that is inconsistent with any recursive ordering. This

result is robust across any of the six possible recursive orderings.9 These results show that im-

posing a structure that prohibits contemporaneous feedback may spuriously suggest that macro

uncertainty shocks are a cause of declines in real activity, rather than an endogenous response.

The finding underscores the challenges of relying on convenient timing assumptions to sort out

cause and effect in the relationship between uncertainty and real activity.

9The figures for these cases are omitted to conserve space but are available upon request.
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6.3 Observed Instruments Case

The traditional approach to identification when the variables are simultaneously determined

relies on the existence of valid instruments Z that are exogenous and relevant. In many ap-

plications, few if any plausible instruments exist that satisfy these restrictions. We’ve argued

above that applications that seek to identify the empirical effects of uncertainty on real ac-

tivity (and vice versa) are likely to be among those for which valid observed instruments are

hard to find or identify. It is nevertheless of interest to consider an estimation in which two

observed external variables S1t and S2t are presumed to be valid external instruments Z1t and

Z2t and treated as such, even though they may in fact contain an endogenous component. This

approach to estimation may be compared to the IPEV approach, where these same external

variables are suspected to be possibly invalid (or imperfect) instruments because they may

contain an endogenous component. For this exercise, we take Z1t and S1t to be estimated un-

certainty for the S&P 500 stock market index return, denoted USPXt, and Z2t and S2t to be

CRSP value-weighted excess stock market return, denoted rCRSPt.

To motivate the use of these two external variables as reasonable choices for the presumed

valid instruments, we first employ the external variables S1t = USPXt and S2t = rCRSPt to

estimate the system Xt = (UMt, ipt, UFt)
′ using the method of IPEV described above, imposing

Assumption B and using the same quantitative bounds c, k1, k2, and k3 as used previously.

We then verify that, for the max C solution, the estimated slope coeffi cient in a regression

of S1t on êipt is not statistically different from zero, and the estimated slope coeffi cients in

a multivariate regression of S2t on êipt and êMt are also not statistically different from zero,

thereby satisfying the exogeneity requirements of classic IV vis-a-vis the estimated shocks.10

The statistical insignificance of the coeffi cients is at least suggestive that the external variables

S1t = USPXt and S2t = rCRSPt might credibly behave as valid external instruments Z1t and Z2t.

We could call these “ex-post valid IVs.”

When we presume, as in this case, that two external variables are valid instruments, we

directly apply Assumption A setting Z1t = S1t and Z2t = S2t. The solution for B then follows

from Proposition 1 and can be obtained in closed form. No winnowing constraints are imposed

and no projections are performed. This estimation may be directly compared to the analogous

estimation where we do not presume these variables are valid IVs, and instead employ IPEV

using S1t = USPXt and S2t = rCRSPt following the method described above. Figure 11 shows

both sets of dynamic responses along with bootstrapped 90% error bands as vertical lines for

the base case system Xt = (UMt, ipt, UFt)
′. The figure shows that, qualitatively, most dynamic

responses are similar to those obtained above for the base case, and to each other. However,

the bootstrap error bands tend to be far wider for the ex-post valid IV case than the IPEV case

10Both regressions control for one lag of the dependent variable.

29



max C solution, especially for the responses to macro uncertainty and real activity shocks.

In our experience, the bootstrap standard error bands in conventional IV estimation of the

SVAR tend to be wide when the external instruments only weakly identify some elements of B.

By contrast, the IPEV case displays much narrower bootstrap error bands for most IRFs. This

happens because the winnowing constraints bring more information to bear, thereby improving

the effi ciency of the estimates. This points to a potential advantage of IPEV over traditional

IV, when plausible restrictions on the shocks can be imposed to improve effi ciency.

Sampling uncertainty aside, it is notable that the qualitative nature of the responses in

Figure 11 for both the ex-post valid IV and IPEV estimations are similar to that obtained for

the baseline case above: positive financial uncertainty shocks drive down production sharply

and persistently, while positive production shocks endogenously decrease macro uncertainty but

not financial uncertainty. Likewise, there is no evidence that positive macro uncertainty shocks

drive down production.

6.4 System Estimation Results

This section reports the results of estimating the model using the full system approach described

above. We estimate a four variable system in (Xt, St)
′, imposingBXS = 0, but without imposing

AXS,j = 0 for j ≥ 1. We report results for the four variable case where St is measured as the

return on the CRSP value-weighted stock market index. Figure 12 presents the set identified

IRFs for the full system estimation, where we impose the same Assumption B winnowing

constraints imposed for the subsystem analysis. In this estimation the identified set for the

system with Y = Q1 is a singleton, as indicated by the solid lines for the responses in that case.

The figure shows that the results are qualitatively very similar to the subsystem case. As for that

case, positive shocks to financial uncertainty drive down all measures of real activity sharply

and persistently, but there is no evidence that positive shocks to macro uncertainty decrease

real activity. Again the opposite is true. Positive shocks to real activity clearly drive down

macro uncertainty, especially for the systems in which real activity is measured as production

or the real activity index Q1t.

As discussed above, the subsystem exclusion restriction for St places overidentifying restric-

tions on the full system estimation. A simple way to evaluate this restriction is to compare the

impulse response functions estimated for the three variable subsystem for Xt = (UMt, Yt, UFt)
′

alone, with those from the larger system that includes St but does not restrict the coeffi cients

of St−j in the equations for Xt to zero, for j ≥ 1. We denote these coeffi cients by AXS,j. Figure

13 presents the sets of identified impulse responses that satisfy Assumption B for the both the

full system and the subsystem estimations overlayed on one another. To avoid clutter in the

figure, we present the responses only for the systems with Y = ip. As the figure shows, the
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identified sets lie almost on top of each other, indicating that the responses are little different.

Indeed, the coeffi cients on lags of St appear to be close to zero in all three Xt equations. The

data thus appear qualitatively consistent with the restrictions that AXS,j = 0 for j ≥ 1 and

therefore the assumption that stock returns can be excluded from the VAR for Xt.

In summary, even though a VAR that directly incorporates S is possible, the system esti-

mation approach restricts S to be explained only by lags of S and X, which could in general be

restrictive. Our the three variable approach is more robust to such misspecification that could

affect the entire system. On the other hand, the system estimation allows lags of St to feed

back into future Xt whereas they are restricted to have no impact in the subsystem approach.

These form part of the exclusion restriction on St. Estimation of the four variable system that

includes St suggests that these exclusion restrictions are qualitatively consistent with the data.

7 Conclusion

A growing body of research establishes uncertainty as a feature of deep recessions but leaves

open two key questions: is uncertainty primarily a source of business cycle fluctuations or an

endogenous response to them? And where does uncertainty originate? There is no theoretical

consensus on the question of whether uncertainty is a cause or a consequence of declines in

economic activity. In most theories, it is modeled either as a cause or an effect but not both,

underscoring the extent to which the question is fundamentally an empirical matter.

The objective of this paper is to address both questions econometrically using small-scale

structural VARs that are general enough to nest the range of theoretical possibilities in empirical

tests. Commonly used recursive identification schemes cannot achieve this objective, since by

construction they rule out the possibility that uncertainty and real activity could influence one

another contemporaneously. The econometric model employed in this paper nests the recursive

identification scheme, and we find that it is strongly rejected by the data. An empirical model

in which uncertainty and real activity simultaneously influence each other fits the data far

better than one in which these relationships are restricted by timing assumptions that prohibit

contemporaneous feedback.

To identify dynamic causal effects, this paper takes an alternative identification approach

that relies on covariance restrictions with key external variables, and timing of extraordinary

economic events to constrain the set of credible structural parameters. Both aspects impose

economic assumptions about the behavior of the structural shocks that allow sets of solutions to

be identified. We call this approach iterative projection external variable (IPEV). In addition,

our empirical analysis explicitly distinguishes macro uncertainty and uncertainty about real

activity from financial uncertainty, thereby allowing us to shed light on the origins of uncertainty

shocks that drive real activity lower, to the extent that any of them do. The econometric
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framework allows uncertainty to be an exogenous source of business cycle fluctuations, or an

endogenous response to them, or any combination of the two, without restricting the timing of

these relationships.

Estimates of the econometric model are used to inform the nature of these dynamic relation-

ships in U.S. data. The results from these estimations show that sharply higher uncertainty

about real economic activity in recessions is fully an endogenous response to business cycle

fluctuations, while uncertainty about financial markets is a likely source of them. Exogenous

declines in economic activity have quantitatively large effects that drive real economic un-

certainty endogenously higher. Financial uncertainty, by contrast, is dominated by its own

shocks, implying that it is primarily an exogenous impulse vis-a-vis real activity and macro

uncertainty. These results reinforce the hypothesis laid out in much of theoretical uncertainty

literature, namely that uncertainty shocks are a source of business cycle fluctuations. They also

stand in contrast to this literature, which has emphasized the role of uncertainty fluctuations

in productivity and other real economic fundamentals. The findings here imply that the uncer-

tainty shocks that drive real activity lower appear to have their have origins, not in measures

of real activity, but in financial markets.
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Appendix

Closed-Form Solution for B when Z is observed

Lemma 2 There exists a unique solution to the system (7) if E [eFtZ2] 6= 0 and E [eMtZ1] 6= 0.

Proof. To facilitate the presentation throughout the proof, let

ηt = Bet

B =

[
BM
3×1

,BY
3×1

,BF
3×1

]
Ω = E (ηtη

′
t) .

Let φ1F = c1FσZ1, φ2F = c2FσZ2, φ1M = c1MσZ1. We have two external instruments (Z1, Z2)

satisfying

E [eFtZ1] ≡ φ1F 6= 0, E [eMtZ1] ≡ φ1M 6= 0 and E [eY tZ1] = 0

E [eFtZ2] ≡ φ2F 6= 0 and E [eMtZ2] = E [eY tZ2] = 0

Then

E [ηtZ2] = E [BetZ2] = B

 0
0
φ2F

 = φ2FBF (A.1)

Thus BF exists if φ2F 6= 0. Observe that, since

Ω = E [ηtη
′
t] = BB′

we have

B′Ω−1B = I

hence, ∀i, j = M,Y, F

B′jΩ
−1/2Ω−1/2Bi =

{
1 if i = j
0 if i 6= j

.

Therefore,

E [ηtZ2]′Ω−1E [ηtZ2] = (φ2FBF )′Ω−
1
2Ω−

1
2 (φ2FBF ) = φ2

2F

This implies that the scale φ2F is identified up to a sign by

φ2F = ±
√
E [ηtZ2] Ω−1E [ηtZ2]. (A.2)

Next,

E [ηtZ1] = E [BetZ1] = B

 φ1M

0
φ1F

 = φ1MBM + φ1FBF



But note that

E [ηtZ2] Ω−1E [ηtZ1] = φ2FBF ′Ω
−1 (φ1MBM + φ1FBF )

= φ2FBF ′ (BB′)
−1

(φ1MBM + φ1FBF )

= φ2Fφ1F

This implies that φ1F is identified as

φ1F =
E [ηtZ2] Ω−1E [ηtZ1]

φ2F

which in turn implies

φ1MBM = E [ηtZ1]− E [ηtZ2]

φ2F

c1F . (A.3)

Thus solution to BM exists if φ1M 6= 0. Furthermore, note that(
E [ηtZ1]− E [ηtZ2]

φ2
2F

φ1F

)′
Ω−1

(
E [ηtZ1]− E [ηtZ2]

φ2
2F

c1F

)
= Ω−

1
2BMφ

2
1MB′MΩ−

1
2 = φ2

1M

This implies that the parameter φ1M is identified up to a sign as

φ2
1M =

(
E [ηtZ1]− E [ηtZ2]

φ2
2F

c1F

)′
Ω−1

(
E [ηtZ1]− E [ηtZ2]

φ2
2F

φ1F

)
. (A.4)

It only remains to identify BY . BY must satisfy

B′Y Ω−1/2Ω−1/2BY = 1

B′Y Ω−1/2Ω−1/2BM = 0 (A.5)

B′Y Ω−1/2Ω−1/2BF = 0

BY can be solved analytically using (A.5) provided that BF and BY are identified. In addition,

since the equation (A.5) is quadratic in BY , BY is unique up to sign. It follows that there

exists a τ such that

BY = τB̃Y (A.6)

where B̃Y is unique conditional on φ2F and φ1M , but the scalar τ is unique up to sign.

This shows that the solution to the system (7) exists and is unique up to sign if φ2F 6= 0,

φ1M 6= 0. Combined with unit effect normalization (5) and the restriction on the admissible

parameter space (4), B can be uniquely identified. The unit effect normalization implies BMM BMY BMF

BYM BY Y BY F

BFM BFY BFF

 =

 1 HMY HMF

HYM 1 HY F

HFM HFY 1

 σMM 0 0
0 σY Y 0
0 0 σFF


=

 σMM HMY σY Y HMFσFF
HYMσMM σY Y HY FσFF
HFMσMM HFY σY Y σFF





Combined with the restriction σjj > 0 for all j = M,Y, F, implies Bjj > 0 for all j = M,Y, F .

From equation (A.1), BFF > 0 pins down the sign of φ2F conditional Zt. Since the sign of

φ2F is pinned down, the signs of BMF and BY F are also pinned down by the same restriction.

From equation (A.3), BMM > 0 pins down the sign of φ1M conditional Zt and therefore the

signs of BYM and BFM are pinned down by the same restriction. It only remains to show the

uniqueness of BY . Provided that BF and BY are identified and given the closed-form solution

(A.5) that is quadratic in BY , then BY Y > 0 pins down the sign of τ conditional Zt and hence

the sign of BMY and BFY are also pinned down by the same restriction.

The system of equations defining B is

0 = E[g1(m1t;β1)] ≡ g1.

The rank condition is satisfied when J ≡∂ET [g1]/∂β′1 is full column rank. We check that the

rank condition is satisfied by evaluating J at the estimated parameter values for each case.

Procedure for Bootstrap

The bootstrap follows Krinsky and Robb (1986). Let β̂ and Θ̂ be the estimated GMM pa-

rameters and covariance of parameters for each case. We sample repeatedly from the joint

distribution N
(
β̂,Θ̂/T

)
, where Θ̂ is the estimated GMM variance-covariance matrix to ob-

tain B new sets of parameters β̂(1)
....β̂

(B)
. For each β̂

(i)
we infer the e(i) for that draw and

check that the winnowing constraints are satisfied. If they are, we keep the draw. If not, we

redraw. We continue until the number of kept draws B=10,000. From these B saved draws, we
calculate the impulse response function values at each draw, Υ(1)

s,j , ...,Υ
(B)
s,j , where s indexes the

VAR horizon and j the variable being shocked, and where Υ
(b)
s,j = Υ.

s,j

(
β̂

(b)
)
. The confidence

intervals are ranges forΥ
(b)
s,j created by trimming α/2 from each tail of the resulting distribution

of the function values.
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8 Figures and Tables

Figure 1: Macro and Financial Uncertainty Over Time
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The upper panel plots the time series of the macro uncertainty UM , expressed in standardized units. The lower

panel shows the time series of financial uncertainty UF expressed in standardized units. The shaded areas

correspond to the NBER recession dates. The horizontal line corresponds to 1.65 standard deviations above

the unconditional mean of each series (which has been normalized to zero). Correlations with the 12-month

moving average of IP growth are reported. The black dots represent months when uncertainty is 1.65 standard

deviations above its unconditional mean. The data are monthly and span the period 1960:07 to 2015:04.



Figure 2: Time Series of e Shock from SVAR System (UM , ip, UF )′
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The horizontal line corresponds to 3 standard deviations above/below the unconditional mean of each series.

The shocks e = B−1ηt for max C solution are reported, where ηt is the residual from VAR(6) of (UM , ip, UF )
′

and B = A−1Σ
1
2 . Skewness is defined as s =

∑T
t (et−ē)3/T
V ar(e) . Kurtosis is defined as κ =

∑T
t (et−ē)4/T
[V ar(e)]2

. The sample

spans the period 1960:07 to 2015:04.



Figure 3: IRFs of SVAR (UM , ip, UF )′

Shaded areas are set of solutions that satisfy c̄ = 0.03 and C̄ = 0.24 and event constraints.

Dashed line is the max C solution. Responses to positive one stdev shocks are reported in

percentage points. The sample spans the period 1960:07 to 2015:04.



Figure 4: IRFs of SVAR (UM , Y, UF )′

Shaded areas are set of solutions that satisfy c̄ = 0.03 and C̄ = 0.24 and event constraints.

Dashed line is the max C solution. Responses to positive one stdev shocks are reported in

percentage points. The sample spans the period 1960:07 to 2015:04.



Figure 5: Large Shock Episodes in SVAR(UM , Y, UF )′
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For the max C solution, the figure exhibits shocks that are at least 2 standard deviations above the uncondi-

tional mean for eM and eF and below for eY for three cases where Y = ip, emp,Q1. The shocks et = B−1ηt

are reported, where ηt is the residual from VAR(6) and B = A−1Σ
1
2 . The horizontal line corresponds to 3

standard deviations shocks. The sample spans the period 1960:07 to 2015:04.



Figure 6: Real Uncertainty Over Time
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This plot shows time series of UR, expressed in standardized units. The shaded areas correspond to the NBER

recession dates. The horizontal line corresponds to 1.65 standard deviations above the unconditional mean of

each series (which has been normalized to zero). Correlations with the 12-month moving average of IP growth

are reported. The black dots represent months when UR is 1.65 standard deviations above its unconditional

mean. The data are monthly and span the period 1960:07 to 2015:04.



Figure 7: IRFs of SVAR (UR, Y, UF )′

Shaded areas are set of solutions that satisfy c̄ = 0.03 and C̄ = 0.22 and event constraints.

Dashed line is the max C solution. Responses to positive one stdev shocks are reported in

percentage points. The sample spans the period 1960:07 to 2015:04.



Figure 8: Large Shock Episodes in SVAR(UR, Y, UF )′

Positive eR exceeding 2 standard deviations
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For the max C solution, the figure exhibits shocks that are at least 2 standard deviations above the uncondi-

tional mean for eR and eF and below for eY for three cases where Y = ip, emp,Q1. The shocks et = B−1ηt

are reported, where ηt is the residual from VAR(6) and B = A−1Σ
1
2 . The horizontal line corresponds to 3

standard deviations shocks. The sample spans the period 1960:07 to 2015:04.



Figure 9: Set of Solutions with Event or Correlation Constraints Only

Event constraints only

Correlation constraints only

The top panel reports the set of solutions that only satisfy event constraints . The bottom panel reports set of

solutions that only satisfy correlation constraints . The sample spans the period 1960:07 to 2015:04.



Figure 10: IRFs using Recursive Identification with Order (UF , UM , ip)
′
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Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Figure 11: IRFs of SVAR (UM , ip, UF )′, ex-post valid IV v.s. IPEV

0 20 40 60
−2.2 

0.0 

1.0 

2.0 
UM Shock

U
M

Months

 

 
IPEV
Valid IV

0 20 40 60
−2.0 

0.0 

0.9 

1.8 
UM Shock

i
p

Months

 

 
IPEV
Valid IV

0 20 40 60

−2.0 

0.0 
0.9 
1.8 

UM Shock

U
F

Months

 

 
IPEV
Valid IV

0 20 40 60
−2.2 

0.0 

1.0 

2.0 
ip Shock

U
M

Months

 

 
IPEV
Valid IV

0 20 40 60
−2.0 

0.0 

0.9 

1.8 
ip Shock

i
p

Months

 

 

IPEV
Valid IV

0 20 40 60

−2.0 

0.0 
0.9 
1.8 

ip Shock

U
F

Months

 

 
IPEV
Valid IV

0 20 40 60
−2.2 

0.0 

1.0 

2.0 
UF Shock

U
M

Months

 

 
IPEV
Valid IV

0 20 40 60
−2.0 

0.0 

0.9 

1.8 
UF Shock

i
p

Months

 

 
IPEV
Valid IV

0 20 40 60

−2.0 

0.0 
0.9 
1.8 

UF Shock

U
F

Months

 

 
IPEV
Valid IV

The figure displays impulse responses to one standard deviation shocks. For IPEV, it reports the max C

solution. Response units are reported in percentage points. Bootstrapped 90% error bands appear as vertical

lines. Ex-post valid IV uses Z1 = USPX and Z2 = rCRSP . IPEV uses S1 = USPX and S2 = rCRSP . The sample

spans the period 1960:07 to 2015:04



Figure 12: IRFs of SVAR (UM , Y, UF , rCRSP)′

Shaded areas are set of solutions that satisfy c̄ = 0.03 and C̄ = 0.24 and event constraints. Dashed lines are

the max C solution. The sample spans the period 1960:07 to 2015:04.



Figure 13: IRFs of SVAR (UM , ip, UF , rCRSP)′ v.s. (UM , ip, UF )′

Shaded areas are set of solutions that satisfy c̄ = 0.03 and C̄ = 0.24 and event constraints. The sample spans

the period 1960:07 to 2015:04.



Table 1: Sample Statistics

Panel A: Correlations between Instruments and Shocks

SV AR (UM , ip, UF )
′

(UM , emp, UF )
′

(UM , Q1, UF )
′

ρ (Z1t(β), êMt) −0.0352 −0.0746 −0.0708

(0.0019) (0.0040) (0.0039)

ρ (Z1t(β), êFt) −0.1845 −0.1784 −0.1745

(0.0101) (0.0098) (0.0095)

ρ (Z2t(β), êFt) −0.1634 −0.1532 −0.1593

(0.0099) (0.0093) (0.0096)

ρ (Z1t(β), êY t) 0.0000 0.0000 0.0000

ρ (Z2t(β), êY t) 0.0000 0.0000 0.0000

ρ (Z2t(β), êMt) 0.0000 0.0000 0.0000

Panel B: Estimates of Σ

σMM 0.0039 0.0059 0.0060

(0.0016) (0.0012) (0.0004)

[0.001, 0.007] [0.004, 0.008] [0.004, 0.008]

σY Y 0.0035 0.0013 0.0014

(0.0010) (0.0001) (0.0001)

[0.000, 0.005] [0.001, 0.001] [0.001, 0.002]

σFF 0.0265 0.0232 0.0264

(0.0030) (0.0032) (0.0029)

[0.018, 0.027] [0.016, 0.026] [0.017, 0.027]

For the max C solution, panel A reports the correlation between the estimated uncertainty shocks and the

instruments. Panel B reports estimates of Σ that give the standard deviation of each structural shock. Asymp-

totic standard errors are reported in brackets and bootstrapped 90 percent confidence intervals are reported in

parentheses. Bold numbers indicate statistical significance at 10 percent level. The data are monthly and span

the period 1960:07 to 2015:04.



Table 2: Variance Decomposition for SVARs in System (UM , Y, UF )′

SVAR (UM , ip, UF )′ SVAR (UM , emp, UF )′ SVAR (UM , Q1, UF )′

Fraction variation in UM Fraction variation in UM Fraction variation in UM
s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock Q1 Shock UF Shock

1 0.107 0.669 0.224 0.293 0.151 0.555 0.310 0.566 0.124

12 0.111 0.512 0.377 0.232 0.072 0.696 0.367 0.427 0.207

∞ 0.142 0.534 0.324 0.350 0.048 0.602 0.444 0.350 0.206

smax 0.147 0.669 0.377 0.350 0.151 0.697 0.518 0.566 0.215

[0.01, 0.46] [0.45, 0.78] [0.17, 0.67] [0.18, 0.73] [0.06, 0.41] [0.33, 0.79] [0.25, 0.81] [0.28, 0.71] [0.13, 0.58]

Fraction variation in ip Fraction variation in emp Fraction variation in Q1

s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock Q1 Shock UF Shock

1 0.678 0.317 0.005 0.202 0.797 0.000 0.547 0.415 0.038

12 0.316 0.457 0.227 0.129 0.677 0.194 0.235 0.489 0.276

∞ 0.048 0.563 0.389 0.025 0.330 0.645 0.057 0.602 0.341

smax 0.697 0.563 0.394 0.209 0.810 0.645 0.558 0.602 0.374

[0.44, 0.92] [0.12, 0.65] [0.28, 0.88] [0.12, 0.52] [0.58, 0.95] [0.29, 0.91] [0.29, 0.73] [0.30, 0.75] [0.25, 0.81]

Fraction variation in UF Fraction variation in UF Fraction variation in UF
s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock Q1 Shock UF Shock

1 0.001 0.028 0.971 0.190 0.051 0.759 0.021 0.022 0.956

12 0.014 0.018 0.968 0.107 0.095 0.798 0.091 0.035 0.874

∞ 0.029 0.028 0.943 0.104 0.111 0.785 0.176 0.078 0.746

smax 0.029 0.048 0.978 0.201 0.113 0.799 0.181 0.078 0.959

[0.01, 0.30] [0.03, 0.29] [0.74, 0.98] [0.06, 0.38] [0.01, 0.44] [0.63, 0.96] [0.03, 0.38] [0.07, 0.56] [0.69, 0.98]

For the max C solution, each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by

the shock named in the column heading. The row denoted “s = smax”reports the maximum fraction (across all VAR forecast horizons m) of forecast

error variance explained by the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics

from bootstrapped samples using the procedure described in the Appendix. The data are monthly and span the period 1960:07 to 2015:04.



Table 3: Variance Decomposition for SVARs in System (UR, Y, UF )′

SVAR (UR, ip, UF )′ SVAR (UR, emp, UF )′ SVAR (UR, Q1, UF )′

Fraction variation in UR Fraction variation in UR Fraction variation in UR
s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock Q1 Shock UF Shock

1 0.003 0.970 0.027 0.176 0.407 0.417 0.615 0.317 0.068

12 0.004 0.787 0.208 0.073 0.321 0.605 0.473 0.306 0.221

∞ 0.005 0.743 0.252 0.064 0.288 0.648 0.515 0.262 0.223

smax 0.008 0.978 0.252 0.220 0.411 0.648 0.659 0.360 0.226

[0.01, 0.12] [0.80, 1.00] [0.06, 0.60] [0.09, 0.49] [0.25, 0.66] [0.38, 0.75] [0.51, 0.79] [0.20, 0.52] [0.06, 0.49]

Fraction variation in ip Fraction variation in emp Fraction variation in Q1

s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock Q1 Shock UF Shock

1 0.854 0.066 0.080 0.484 0.515 0.001 0.238 0.701 0.061

12 0.506 0.130 0.364 0.478 0.375 0.147 0.166 0.495 0.340

∞ 0.209 0.169 0.622 0.302 0.171 0.527 0.104 0.315 0.581

smax 0.857 0.169 0.622 0.490 0.524 0.527 0.243 0.705 0.581

[0.71, 0.98] [0.01, 0.36] [0.38, 0.92] [0.25, 0.72] [0.36, 0.77] [0.16, 0.92] [0.11, 0.43] [0.62, 0.87] [0.24, 0.84]

Fraction variation in UF Fraction variation in UF Fraction variation in UF
s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock Q1 Shock UF Shock

1 0.078 0.001 0.922 0.138 0.113 0.749 0.004 0.056 0.940

12 0.108 0.004 0.889 0.079 0.135 0.786 0.025 0.089 0.886

∞ 0.108 0.030 0.862 0.065 0.120 0.815 0.145 0.114 0.741

smax 0.110 0.030 0.928 0.138 0.142 0.815 0.146 0.114 0.944

[0.02, 0.37] [0.01, 0.26] [0.74, 0.98] [0.05, 0.40] [0.03, 0.42] [0.57, 0.96] [0.02, 0.39] [0.06, 0.42] [0.84, 0.99]

For the max C solution, each panel shows the fraction of s-step-ahead forecast-error variance of the variable given in the panel title that is explained by

the shock named in the column heading. The row denoted “s = smax”reports the maximum fraction (across all VAR forecast horizons m) of forecast

error variance explained by the shock listed in the column heading. The numbers in parentheses represent the 5th and 95th percentiles of these statistics

from bootstrapped samples using the procedure described in the Appendix. The data are monthly and span the period 1960:07 to 2015:04.



Table 4: Tests of Validity of Recursive Restriction in System (UM , Y, UF )′

Ordering: (UM , ip, UF )′ (UR, ip, UF )′

H0: BRY = BRF = BY F = 0 265.64 337.54

[147.78] [83.54]

H0: BY R = BY F = BRF = 0 383.28 457.95

[108.25] [146.74]

H0: BRY = BRF = BFY = 0 265.49 227.58

[164.29] [95.82]

χ2
5% (3) 7.81 7.81

(UM , emp, UF )′ (UR, emp, UF )′

H0: BRY = BRF = BY F = 0 316.22 9.89

[120.73] [8.48]

H0: BY R = BY F = BRF = 0 223.98 11.03

[66.29] [8.35]

H0: BRY = BRF = BFY = 0 318.61 8.64

[121.75] [9.65]

χ2
5% (3) 7.81 7.81

For the max C solution, the table reports the Wald test statistic for testing the null hypothesis given in the column. The bold indicates that Wald test

rejects the null at 95 percent level according to χ2(3) distribution. The SVAR system is solved using GMM and delta method is used for computing the

standard error. Estimates of B are based on the SVAR identified with external instruments described in the text. The mean of bootstrap Wald statistics

is reported in parenthesis. The sample size spans 1960:07 to 2015:04.




