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1 Introduction

A large literature in macroeconomics investigates the relationship between uncertainty and

business cycle fluctuations. Interest in this topic has been spurred by a growing body of evidence

that uncertainty rises sharply in recessions. This evidence is robust to the use of specific proxy

variables such as stock market volatility and forecast dispersion as in Bloom (2009), or a broad-

based measure of macroeconomic uncertainty, as in Jurado, Ludvigson, and Ng (2015) (JLN

hereafter). But while this evidence substantiates a role for uncertainty in deep recessions,

the question of whether uncertainty is an exogenous source of business cycle fluctuations or

an endogenous response to economic fundamentals is not fully understood. Existing results

are based on convenient but restrictive identifying assumptions and have no explicit role for

financial markets, even though the uncertainty measures are correlated with financial variables.

This paper considers a novel identification strategy to disentangle the causes and consequences

of real and financial uncertainty.

The question of causality and the identification of exogenous variation in uncertainty is

a long-standing challenge of the uncertainty literature. The challenge arises in part because

there is no theoretical consensus on whether the uncertainty that accompanies deep recessions

is primarily a cause or effect (or both) of declines in economic activity. Theories in which

uncertainty is defined as the time varying volatility of a fundamental shock cannot address this

question because, by design, there is no feedback response of uncertainty to other shocks if the

volatility process is specified to evolve exogenously. And, obviously, models in which there is no

exogenous variation in uncertainty cannot be used to analyze the direct effects of uncertainty

shocks. It is therefore not surprising that many theories for which uncertainty plays a role in

recessions reach contradictory conclusions on this question, as we survey below. It is clear that

the body of theoretical work on uncertainty does not provide precise identifying restrictions for

empirical work.

A separate challenge of the uncertainty literature pertains to the origins of uncertainty. Clas-

sic theories assert that uncertainty originates from economic fundamentals such as productivity,

and that such real economic uncertainty, when interacted with market frictions, discourages real

activity. But some researchers have argued that uncertainty dampens the economy through its

influence on financial markets (e.g., Gilchrist, Sim, and Zakrajsek (2010)). Moreover, as sur-

veyed by Ng and Wright (2013), all the post-1982 recessions have origins in financial markets,

and these recessions have markedly different features from recessions where financial markets

play a passive role. From this perspective, if financial shocks are subject to time-varying

volatility, financial market uncertainty—as distinct from real economic uncertainty—could be a

key player in recessions, both as a cause and as a propagating mechanism. The Great Reces-

sion of 2008, characterized by sharp swings in financial markets, hints at such a linkage. Yet so
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far the literature has not disentangled the contributions of real versus financial uncertainty to

business cycle fluctuations.

Econometric analyses aimed at understanding the role of uncertainty for business cycle

fluctuations face their own challenges. Attempts to identify the “effects”of uncertainty shocks

in existing empirical work are primarily based on recursive schemes within the framework of

vector-autoregressions (VAR).1 But studies differ according to whether uncertainty is ordered

ahead of or after real activity variables in the VAR. While a recursive structure is a reasonable

starting point, any presumed ordering of the variables is hard to defend on theoretical grounds

given the range of models in the literature. Contemporaneous changes in uncertainty can arise

both as a cause of business cycle fluctuations and as a response to other shocks. Recursive

structures explicitly rule out this possibility since they presume that some variables respond

only with a lag to others.

It is with these challenges in mind that we return to the questions posed above: is uncer-

tainty primarily a source of business cycle fluctuations or a consequence of them? And what

is the relation of real versus financial uncertainty to business cycle fluctuations? The objective

of this paper is to address these questions econometrically using a small-scale structural vector

autoregression (SVAR). To confront the challenges just discussed, we take a two-pronged ap-

proach. First, our empirical analysis explicitly distinguishes macro uncertainty from financial

uncertainty. The baseline SVAR we study describes the dynamic relationship between three

variables: an index of macro uncertainty, UMt, a measure of real economic activity, Yt (e.g.,

production, employment), and a new financial uncertainty index introduced here, UFt. Second,

rather than relying on timing assumptions for identification, we use a different identification

scheme that is less restrictive, both because it allows for simultaneous feedback between uncer-

tainty and real activity, and because it can be used to test whether a lower recursive structure

is supported by the data. Specifically, our identification scheme relies on the existence of two

external instruments for uncertainty that are not part of the SVAR: a Z1t that is correlated with

macro and financial uncertainty but uncorrelated with real activity, and a Z2t that is correlated

with financial uncertainty but uncorrelated with both real activity and macro uncertainty.

With this identification strategy in hand, the econometric exercise reduces to finding em-

pirical counterparts to Z1t and Z2t. While this task is straightforward in principle, as is often

the case in empirical work, it is diffi cult to locate such ideal instruments from among the set

of readily observable indicators. Hence we suggest a way to construct these instruments. Our

approach is to find a variable that is comprised of several distinct sources of stochastic vari-

ation, including shocks to uncertainty. We argue that both theory and evidence suggest that

the stock market is such a variable, as discussed in the next section. Under this assumption,

1See Bachmann, Elstner, and Sims (2013), Bloom (2009), Bloom (2014), Bekaert, Hoerova, and Duca (2013),
Gilchrist, Sim, and Zakrajsek (2010), and JLN.

2



our ideal instrument Z1t can be approximated by residuals from a projection of stock market

returns onto real activity, and Z2t can be approximated by residuals from a projection of stock

market returns onto real activity and macro uncertainty. To be valid instruments, Z1t must

be contemporaneously correlated with both macro and financial uncertainty while Z2t must

be correlated with financial uncertainty. This latter proposition is directly testable using the

sample covariances and the estimated parameters.

The implementation consists in finding appropriate measures of macro and financial un-

certainty. To this end, we exploit a data rich environment, working with 134 macro monthly

time series and 147 financial variables. Following the approach in JLN for constructing macro

uncertainty, we construct a broad-based measure of financial uncertainty that has never been

used in the literature. Macro uncertainty is itself an aggregate of uncertainties in variables from

three categories: real activity, price, and financial. To better understand the contributions of

each of these categories, we also replace UMt in the VAR with an uncertainty measure based

on the sub-components, one at a time. Uncertainty about real activity is of special interest

because classic uncertainty theories postulate that uncertainty shocks have their origins in eco-

nomic fundamentals and hence should show up as uncertainty about real economic activity.

We compare “short-run”uncertainty about outcomes over the next one month, with “longer

horizon ”uncertainty about outcomes a year hence.

Our main results can be stated as follows. First, positive shocks to financial uncertainty are

found to cause a sharp decline in real activity that persists for many months, lending support

to the hypothesis that heightened uncertainty is an exogenous impulse that causes recessions.

These effects are especially large for some measures of real activity, notably employment and

orders. The finding that heightened uncertainty has negative consequences for real activity

is qualitatively similar to that of preexisting empirical work that uses recursive identification

schemes (e.g., Bloom (2009), JLN), but differs in that we trace the source of this result specif-

ically to broad-based financial market uncertainty rather than to various uncertainty proxies

or broad-based macro uncertainty. We also show that the converse is not supported by our

evidence: exogenous shocks to real activity have little affect on financial uncertainty.

Second, the identification scheme used here reveals something new that is not possible to

uncover under recursive schemes: macro and financial uncertainty have a very different dynamic

relationship with real activity. Specifically, unlike financial uncertainty, sharply higher macro

and real activity uncertainty in recessions is fully an endogenous response to business cycle

fluctuations. That is, negative economic activity shocks are found to cause increases in both

macro and real activity uncertainty, but there is no evidence that independent shocks to macro

or real uncertainty cause lower economic activity. Indeed the opposite is true: exogenous shocks

to both macro and real uncertainty are found to increase real activity, consistent with “growth

options”theories discussed below.
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Third, we investigate the timing of large adverse shocks in the SVAR systems. No matter

which system we investigate, the Great Recession is a prominent example that is characterized

by large negative real activity shocks and a large positive financial uncertainty shock but no

corresponding large shock to real economic uncertainty, even though real economic uncertainty

itself rose to unusual heights in this episode. This finding underscores the extent to which

heightened uncertainty about real activity in recessions is more often an endogenous response

to other shocks, rather than an exogenous impulse driving business cycles.

Our results are distinct from those obtained using recursive identification. Under any re-

cursive ordering of the variables in our VAR, exogenous shocks that increase macro or real

uncertainty appear to reduce real activity, in a manner that is qualitatively similar to financial

uncertainty shocks. This result does not hold in the less restrictive SVAR studied here and

appears to be an artifact of invalid timing assumptions under recursive identification. Further

investigation reveals that the SVAR we study reflects a non-zero contemporaneous correlation

between UFt and Yt, as well as between UMt and Yt, which is inconsistent with any recursive

ordering. Tests of the validity of a recursive structure are easily rejected by the data.

The rest of this paper is organized as follows. Section 2 reviews related literature. Section

3 details the econometric framework and identification employed in our study, describes how

our instruments are constructed, and discusses the data and empirical implementation. Section

4 presents empirical results using broad-based macro uncertainty UMt, while Section 5 reports

results for systems that isolate sub-components of UMt corresponding to real activity and price

variables. Section 6 reports results pertaining to robustness and additional cases. Section 7

summarizes and concludes.

2 Related Literature

A large literature addresses the question of uncertainty and its relation to economic activity.2

Theories for which uncertainty plays a key role differ widely on the question of whether uncer-

tainty is primarily a cause or a consequence of declines in economic activity. In most cases, it

is modeled either as a cause or an consequence, but not both.

The first strand of the literature proposes uncertainty as a cause of lower economic growth.

This includes models of the real options effects of uncertainty (Bernanke (1983), McDonald

and Siegel (1986)), models in which uncertainty influences financing constraints (Gilchrist,

Sim, and Zakrajsek (2010), Arellano, Bai, and Kehoe (2011)), or precautionary saving (Basu

and Bundick (2012), Leduc and Liu (2012), Fernández-Villaverde, Pablo Guerrón-Quintana, and

Uribe (2011)). These theories almost always presume that uncertainty is an exogenous shock to

some economic fundamental. Some theories presume that higher uncertainty originates directly

2This literature has become voluminous. See Bloom (2014) a recent review of the literature.
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in the process governing technological innovation, which subsequently causes a decline in real

activity (e.g., Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012)).

A second strand of the literature postulates that higher uncertainty arises solely as a re-

sponse to lower economic growth, emphasizing a variety of mechanisms. Some of these theories

suggest that bad times incentivize risky behavior (Bachmann and Moscarini (2011), Fostel and

Geanakoplos (2012)), or reduce information and with it the forecastability of future outcomes

(Van Nieuwerburgh and Veldkamp (2006) Fajgelbaum, Schaal, and Taschereau-Dumouchel

(2014)), or provoke new and unfamiliar economic policies whose effects are highly uncertain

(Pástor and Veronesi (2013)), or create a greater misallocation of capital across sectors (Ai, Li,

and Yang (2015)).

And yet a third literature has raised the possibility that some forms of uncertainty can

actually increase economic activity. “Growth options” theories of uncertainty postulate that

a mean-preserving spread in risk generated from an unbounded upside coupled with a limited

downside can cause firms to invest and hire, since the increase in mean-preserving risk increases

expected profits. Such theories were often used to explain the dot-com boom. Examples include

Bar-Ilan and Strange (1996), Pastor and Veronesi (2006), Kraft, Schwartz, and Weiss (2013),

Segal, Shaliastovich, and Yaron (2015).

This brief review reveals a rich literature with a wide range of predictions about the re-

lationship between uncertainty and real economic activity. Yet the absence of a theoretical

consensus on this matter, along with the sheer number of theories and limited body of evidence

on the structural elements of specific models, underscores the extent to which the question of

cause and effect is fundamentally an empirical matter that must be settled in an econometric

framework with as little specific theoretical structure as possible, so that the various theoretical

possibilities can be nested in empirical tests. Commonly used recursive identification schemes

cannot achieve this objective, since by construction they rule out the possibility that uncer-

tainty and real activity could influence one another within the period. Our econometric model

nests any recursive identification scheme, so we can test whether such timing assumptions are

plausible. We find they are rejected by the data.

Our construction of instruments for uncertainty builds on work in asset pricing emphasizing

the idea that stock market variation is the result of several distinct (and orthogonal) sources

of stochastic variation, some of which are likely to be uniquely suited as instruments for our

uncertainty measures. For example, one quantitatively important component is attributable

to acyclical risk premia variation, and more generally appears to be uncorrelated with most

measures of real activity.3 This component is valuable for our objective because it is exogenous

3For empirical evidence, see Lettau and Ludvigson (2013), Greenwald, Lettau, and Ludvigson (2014), Kozak
and Santosh (2014), and Muir (2014). Theoretical examples include Greenwald, Lettau, and Ludvigson (2014);
Bianchi, Ilut, and Schneider (2014); Gourio (2012);Wachter (2013); Brunnermeier and Sannikov (2012); Gabaix
and Maggiori (2013); He and Krishnamurthy (2013).
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to real activity, but may still be relevant for both macro and financial uncertainty, as in our Z1t.

Yet another component could be attributable to fluctuations in factors like corporate leverage,

or in the risk aversion or “sentiment”of market participants that may be correlated with the

volatility of the stock market. In equilibrium asset pricing models, if leverage increases, volatility

of the corporate sector’s equity return increases. Thus changes in factors like leverage (and

possibly changes in risk aversion or sentiment) should be correlated with financial uncertainty,

but have little to do with real economic uncertainty. This component is valuable for our

objective because it is plausibly uncorrelated with both real activity and uncertainty about

economic fundamentals, but may still be relevant for financial market uncertainty, as in our

Z2t. Consistent with the existence of this type of component, JLN document that there are

many spikes in stock market uncertainty that do not coincide with an important movement in

either real activity or macro uncertainty. These findings motivate our maintained hypothesis

that a broad equity market return is a promising non-uncertainty variable comprised of several

distinct sources of stochastic variation, two of which have the statistical characteristics of Z1t
and Z2t.

Our approach is related to a recent line of econometric research in SVARs that uses in-

formation contained in external instruments to identify structural dynamic causal effects.4 Of

these, Stock and Watson (2012) study uncertainty shocks, using a measure of stock market

volatility and/or a news media measure of policy uncertainty from Baker, Bloom, and Davis

(2013), as separate external instruments for identifying the effects of uncertainty shocks in a

SVAR. Our study differs in some fundamental ways. First, Stock and Watson (2012) focus

exclusively on identifying the effects of uncertainty shocks and do not attempt to simultane-

ously identify the converse, namely the effects of real activity shocks on uncertainty. Second,

the identification strategy in Stock and Watson (2012) for uncertainty shocks presumes that

the series themselves (i.e., stock market volatility, policy uncertainty) are valid instruments,

correlated with the uncertainty shock of interest but not with the other shocks. By contrast,

our approach explicitly views both the stock market and our uncertainty measures as partly

endogenous, forcing us to confront the identification quandary. Our identification assumption

is instead that the aggregate stock market return contains components that satisfy population

exogeneity restrictions, even while some of its variation is endogenous.

The study arguably closest in spirit to our identification approach is Baker and Bloom

(2013), who use disaster-like events as instruments for stock market volatility with the aim

of isolating exogenous variation in uncertainty. This has some similarities with our approach,

in that it implicitly assumes that certain components of stock market fluctuations (those as-

sociated with “disasters”) are exogenous. In contrast to our approach, exogenous events are

4See for example Hamilton (2003), Kilian (2008), Mertens and Ravn (2013); Stock and Watson (2008), Stock
and Watson (2012), and Olea, Stock, and Watson (2015).
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chosen subjectively rather than constructed econometrically to satisfy specific orthogonality

restrictions. It is of interest that we arrive at complementary conclusions, despite the differing

methodologies for identifying exogenous variation.

3 Econometric Framework

This section explains our econometric approach. Subsection 1 explains the identification strat-

egy. Subsections 2 and 3 explain the construction of external instruments and the uncertainty

measures. This is followed by a discussion of the estimation procedure.

3.1 The SVAR and Identification

Our analysis is based on a structural vector autoregressive model (SVAR). Let Xt denote a

K× 1 time series. We suppose that the structural model has a p-th order vector autoregressive

representation

A0Xt = k + A1Xt−1 + A2Xt−2 + · · ·+ ApXt−p + εt.

εt ∼ (0,Σ), Σ =

 σ11 0 0
0 σ22 0
0 0 σ33


where diag (A0) = 1. The structural shocks εt are mean zero and are serially and mutually

uncorrelated. The corresponding structural MA (∞) representation of Xt is

Xt = µ+ Ψ (L) A−10 εt,

where Ψ(L) = Ψ0 + Ψ1L+ Ψ2L
2 + . . . is a polynomial in the lag operator L of infinite order,

Ψs is the (n× n) matrix of coeffi cients for the sth lag of Ψ(L).

The reduced form representation of Xt is a p-th order vector-autoregression (VAR)

Xt = c + A1Xt−1 + A2Xt−2 + ApXt−p + ηt. (1)

ηt ∼ (0,Ω), Ω = E (ηtη
′
t) .

The corresponding reduced-form (MA (∞)) representation is

Xt = µ+ Ψ (L)ηt,

where Ψ (L) ≡ Ψ0 + Ψ1L+ Ψ2L
2 + · · · , with Ψ0 = I. The structural shocks εt are related to

the reduced form innovations by an invertible K ×K matrix A−10 :

ηt = A−10 εt.

7



The objective of the exercise is to study the dynamic effects and the relative importance of

the structural shocks. More precisely, the dynamic response to shock j is summarized by the

impulse response function (IRF):

∂Xt+s

∂ejt
=
∂Xt+s

∂η′t

∂ηt
∂εjt

= Ψsa
j√σjj, (2)

where aj is the jth column of A−10 . The structural IRF Ψsa
j√σjj gives the dynamic response

of Xt+s to a one standard deviation shock in εjt. The quantitative importance of each shock is

given by the fraction of S-step ahead forecast error variance of Xt that is attributable to each

structural shock.

The coeffi cient matrices A1,...,Ap are identified from the projection of Xt onto its lags in

the reduced form VAR (1). The SVAR identification problem therefore amounts to identifying

the elements of A−10 and Σ, from which the structural IRFs are computed.

Let Yt denote a measure of real activity. Our objective is to study the impulse and propa-

gating mechanism of uncertainty shocks, as well as how uncertainty reacts to shocks to Yt, while

explicitly distinguishing between macro and financial market uncertainty. Hence our baseline

SVAR is based on Xt = (UMt, Yt, UFt)
′, where UMt denotes macro uncertainty, UFt denotes

financial uncertainty, and εt = (εMt, εY t, εFt)
′ are the structural shocks to macro uncertainty,

real activity, and financial uncertainty, respectively.

It is convenient to define structural shocks with unit standard deviation. Let εt = Σ1/2et,

where E [ete
′
t] = IK (the K × K identity matrix), and define B ≡ A−10 Σ1/2. Then ηt =

A−10 εt = Bet. The reduced form shocks ηt = (ηMt, ηY t, ηFt)
′ are linear combinations of the

three structural form shocks et = (eMt, eY t, eFt)
′

ηMt = BMMeMt +BMY eY t +BMF eFt

ηY t = BYMeMt +BY Y eY t +BY F eFt

ηFt = BFMeMt +BFY eY t +BFF eFt,

where Bij is the element of B that gives the contemporaneous effect of the jth structural shock

on the ith variable. The covariance structure of ηt provides K(K + 1)/2 = 6 equations in B:

vech(Ω) = vech(BB′) (3)

where vech(Ω) stacks the unique elements of the symmetric matrix Ω. Since there are nine

unknown elements in B, we need three more conditions for exact identification.

To identify these elements, we use two external instruments, denoted Zt = (Z1t, Z2t)
′. For

now, suppose that we have measures of Yt, UMt, UFt, and two generic instruments, Z1t and Z2t.
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Assumption A: For K = 3, let Z1t and Z2t be two instrumental variables such that

(A.i) E[Z1teMt] = φ1M , E[Z1teY t] = 0, E[Z1teFt] = φ1F
(A.ii) E[Z2teMt] = 0, E[Z2teY t] = 0, E[Z2teFt] = φ2F .

Assumption A are conditions for instrument exogeneity and relevance. Z1t is an instrument that

is correlated with both macro and financial uncertainty, but contemporaneously uncorrelated

with real activity. By contrast, Z2t is an instrument that is correlated with financial uncertainty,

but contemporaneously uncorrelated with macro uncertainty and real activity.

Let m1t = (vech(ηtη
′
t), vec (Zt ⊗ ηt))′ and β1 = vec(B). At the true value of β1, denoted

β01, the model satisfies

0 = E[g1(m1t;β
0
1)], (4)

written out in full as follows:

0 = var(ηM)−B2
MM +B2

MY +B2
MF

0 = var(ηY )−B2
YM +B2

Y Y +B2
Y F

0 = var (ηF )−B2
FM +B2

FY +B2
FF

0 = cov(ηM , ηY )−BMMBYM +BMYBY Y +BMFBY F

0 = cov(ηY , ηF )−BYMBFM +BY YBFY +BFFBY F

0 = cov
(
ηM,ηF

)
−BMMBFM +BMYBFY +BMFBFF

0 = BMFE[Z2tηY ]−BY FE[Z2tηMt]

0 = BFFE[Z2tηY t]−BY FE[Z2tηFt]

0 = (BMMBFF −BMFBFM)E[Z1tηY t]− (BY FBFM −BYMBFF )E[Z1tηMt]

−(BMMBY F −BMFBYM)E[Z1tηFt].

The model has nine equations in nine unknowns. The first six are from the covariance structure.

The next two equations are due to he three moments implied by Assumption (A.ii). The final

equation is due to the three moments implied by Assumption (A.i).

Proposition 1 Under Assumption A with φ1M 6= 0, φ1F 6= 0, φ2F 6= 0, β1 is identified up to

the sign.

In the Appendix, we show that the covariance between the instruments and the structural

shocks can be expressed as

E[Z2teFt]
2 = E[ηtZ2t]

′−1E[ηtZ2t]

E[Z1teMt]
2 =

(
E[ηtZ1t]−

E[ηtZ2t]

E[Z2teFt]

)′
Ω−1

(
E[ηtZ1t]−

E[ηtZ2t]

E[Z2teFt]

)
E[Z2teFt]E[Z1teFt] = E[ηtZ2t]

′Ω−1E[ηtZ1t].
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The instruments allow for identification up to sign. We use the normalization that diag (A0) =

1 , and the elements of the diagonal matrix Σ1/2 must be strictly positive. SinceA−10 = BΣ−1/2,

these restrictions amount to restrictions on the signs of diagonal elements of B. With this

normalization, a closed form solution can be obtained, which we verified to be the same as the

single numerical solution obtained with the sign restrictions imposed.

In essence, identification in our analysis is achieved by (i) using movements in UMt and UFt
that are correlated with Z1t to disentangle the effects of uncertainty shocks from shocks to real

activity, (ii) using movements in UFt that are correlated with Z2t to disentangle the effects of

macro uncertainty shocks from financial uncertainty shocks, and (iii) using movements in Yt
that are uncorrelated with both Z1t and Z2t to disentangle the effects of real activity shocks

from uncertainty shocks.

We take the stand in this application that our uncertainty measures are potentially endoge-

nous. It is then natural to ask why we do not simply find observable instruments. We avoid

instrumenting one measure uncertainty with another measure of uncertainty (e.g., stock market

volatility) since these are ex-ante less likely to satisfy the relevant exogeneity restrictions if the

uncertainty measures themselves do not. Options-based measures of stock market volatility

are doubly problematic because they are known to contain a large component attributable to

changes in the price of risk (i.e., risk aversion) that is uncorrelated with expected (physical)

stock market volatility (uncertainty) (e.g., Bollerslev, Tauchen, and Zhou (2009); Carr and

Wu (2009)). Thus measures like the VIX are not only unlikely to be exogenous, they also are

less likely than other instruments to be relevant for the uncertainty shocks of interest. With

these considerations in mind, the next subsection proposes a methodology for constructing the

desired instruments.

3.2 Construction of Instruments

The external instruments Z1t and Z2t play an important role in our analysis but they have

no observable counterpart. The next step in our analysis is to find credible proxies for these

variables. These instruments need to be relevant for uncertainty. We make use of information

on stock market returns rSt to construct the instruments. Our maintained assumption is that

rSt is driven by a mix of exogenous and endogenous sources of stochastic variation, endogenous

in the sense of being contemporaneously correlated with the structural shocks eY t, eMt, eFt, as

well as with our two instruments. This contrasts with the analysis of Bloom (2009) and Stock

and Watson (2012) in which shocks to stock market volatility are treated as entirely exogenous.

Our choice of rSt is the CRSP value-weighted stock market index return minus the one-month

Treasury bill rate.
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Consider the following orthogonal decompositions of stock returns rSt:

rSt = β21 + β22Yt + Z1t

rSt = β23 + β24Yt + β25UMt + Z2,t

satisfying E[Z1tYt] = 0, E[Z2tYt] = 0, E[Z2tUMt] = 0, E[Z1t] = 0, and E[Z2t] = 0. Let

m2t = (1, rSt, Yt, UMt)
′ and β2 = (β21, β22, β23, β24, β25) whose true value is β

0
2. The two

decompositions can be represented by a vector of five orthogonal conditions:

0 = E[g2(m2t;β
0
2)]. (5)

Together with Assumption A, Z1t will be uncorrelated with Yt and hence with our identified

shock eY t. Similarly, Z2t will be uncorrelated with our identified shocks eY t and eMt shocks.

Note that the instruments Z1t and Z2t are not unforecastable errors. It is also worth empha-

sizing that our approach expressly rules out the possibility that the stock market is itself a valid

instrument satisfying an exogeneity restriction with the real activity shock eY t and the macro

uncertainty shock eMt. This seems especially important in the aftermath of the 2007-2009 re-

cession where a financial crises created a strong correlation between financial market volatility,

real activity, and uncertainty. We only require the weaker conditions that Z1t is a component of

stock market variation that is contemporaneously uncorrelated with the real activity shock eY t,

and Z2t is a component that is contemporaneously uncorrelated with both eY t and the macro

uncertainty shock eMt.

3.3 Measuring Uncertainty

In our estimation we work with several different aggregate measures of uncertainty, which are

indexes constructed over individual uncertainties for a large number of observable time-series.

A long-standing diffi culty with empirical research on this topic has been the measurement of

uncertainty. JLN find that common uncertainty proxies contain economically large components

of their variability that do not appear to be generated by a movement in genuine uncertainty

across the broader economy. This occurs both because these proxies over-weight certain series in

the measurement of aggregate uncertainty, and because they erroneously attribute forecastable

fluctuations to a movement in uncertainty. Equity market volatility, for example, contains a

non-trivial component generated from forecastable variation in stock returns. The estimated

macro uncertainty index constructed in JLN is designed to address these issues and improve the

measurement of aggregate uncertainty. The methodology used here for constructing uncertainty

indexes follows JLN and we refer the reader to that paper for details.

Let yCjt ∈ Y C
t = (yC1t, . . . , y

C
NCt

)′ be a variable in category C. Its h-period ahead uncertainty,

denoted by UCjt(h), is defined to be the volatility of the purely unforecastable component of the
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future value of the series, conditional on all information available. Specifically,

UCjt(h) ≡

√
E
[
(yCjt+h − E[yCjt+h|It])2|It

]
(6)

where It is information available. If the expectation today of the squared error in forecasting

yjt+h rises, uncertainty in the variable increases. Uncertainty in category C is an aggregate of

individual uncertainty series in the category :

UCt(h) ≡ plimNC→∞

NC∑
j=1

1

NC

UCjt(h) ≡ EC [UCjt(h)]. (7)

As in JLN, the conditional expectation in (6) is replaced by a diffusion index forecast,

augmented to allow for nonlinearities. These are predictions of an autoregression augmented

with a small number of common factors qt = (q1t, . . . , qrt)
′ estimated from a large number

of economic time series xit each with factor representation xit = Λ′itqt + eχ,it. The use of

large datasets reduces the possibility of biases that arise when relevant predictive information

is ignored. Let Y C
t = (yC1t, . . . , y

C
NCt

)′ generically denote the series that we wish to compute

uncertainty in. In this paper, we consider four categories of uncertainty:

Category (C) Y C
t NC

(M): Macro all variables in χM 134
(F): Financial all variables in χF 147
(R): Real activity real activity variables in χM 73
(π): Price price variables in χM 21

The uncertainty index UCt for category C is an equally-weighted average of the individual

uncertainties in the category. We use two datasets covering the sample 1960:07-2015:04.5 The

first is a monthly macro dataset, XM
t , consisting of 134 mostly macroeconomic time series

take from McCracken and Ng (2014). The second is a financial dataset X F
t consisting of

a 147 of monthly financial indicators, also used in Ludvigson and Ng (2007) and JLN, but

updated to the longer sample. The real uncertainty index URt is an equally-weighted average

of the individual uncertainties about 73 series in Groups 1 through 4 of XM . These include

output and income variables, labor market measures, housing market indicators, and orders and

inventories. A second subindex is constructed using only measures of consumer and producer

prices as well as oil prices, commodity prices and crude materials prices. We call this index

price uncertainty, Uπt, which averages over the individual uncertainties of the 21 price series

in Group 7 of XM . Additional predictors for variables in XM
it include factors formed from X F

it

and vice-versa, squares of the first factor of each, and factors in the squares of individual series,(
XM
it

)2
and

(
X F
it

)2
.

5A detailed description of the series is given in the Data Appendix of the online location where updated JLN
uncertainty index data are posted: http://www.sydneyludvigson.com/s/jln_data_appendix_update.pdf
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In principle, there will be a different Z1 and Z2 for each measure of aggregate activity, Y .

To simplify the analysis, we use the first common factor estimated from the macro dataset as

our measure of real activity in (5) to construct only one set of instruments. This factor, denoted

q1t, has long been understood to be a “real activity factor”that loads heavily on measures of

employment and production such as employees on nonfarm payrolls and manufacturing output,

as well as measures of capacity utilization and new manufacturing orders in all vintages of χM

used in this study, see McCracken and Ng (2014). It loads very little if at all on consumer and

producer inflation measures, and financial market variables.

The parameters to be estimated include the reduced form VAR parameters in (1), from

which we obtain η̂t, the parameters in (5), from which we construct Z1t and Z2t, and the

structural parameters using results from the preceding two estimations. The sample moment

conditions in the three-step estimation can be collected into ḡ(mt;β) where β are parameters

to be estimated. The Generalized Method of Moments (GMM, Hansen (1982)) estimator is

β̂ = argminβḡ(mt;β)′ḡ(mt;β). Under regularity conditions, the GMM estimator of Hansen

(1982) is
√
T consistent for β0 and asymptotically normal with asymptotic variance Σβ̂. This

variance matrix is block lower triangular as in Newey (1984) since estimation of β2 is not

affected by estimation of β1 or of the VAR. Serial correlation and heteroskedasticity robust

standard errors are constructed as in Newey and West (1987).

The next section presents empirical results. We begin by studying systems with macro un-

certainty. We then move on to consider sub-indexes of UMt, including real uncertainty formed

only over real activity variables URt and price uncertainty Uπt. Our final set of results re-

port several additional cases pertaining to different measures of real activity, different samples,

different uncertainty horizons, and to using recursive identification schemes.

4 Results for Xt = (UMt, Yt, UFt)
′

Our first VAR is defined by Xt = (UMt(h), Yt, UFt(h))′. For the base case, we consider h = 1

(one-month uncertainty) and several measures of Yt: the log of real industrial production,

denoted ipt, and the log of employment, denoted empt. While industrial production is a widely

watched economic indicator of business cycles, it only captures goods-producing industries and

has been a declining share of GDP. Employment only covers the labor market. Hence we also

consider two additional measures of real activity: the NAPM new orders index, which we denote

NOI, and the cumulated sum of the first common factor estimated from the macro dataset

χM (since the raw data used to form q1t are transformed to stationary), which we denote Q1t.

We linearly detrend each real activity series before estimation. Results using the first three

of these measures of real activity are presented in this section. Results using the real activity

index Q1t and longer uncertainty horizons (h = 12) are discussed in Section 6 below. Since our
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emphasis is on h = 1, we write UMt instead of UMt(1), and analogously for UFt, in order to

simplify notation.

The top panel of Figure 1 plots the estimated macro uncertainty UMt in standardized units

along with the NBER recession dates. The horizontal bar corresponds to 1.65 standard devia-

tion above unconditional mean of each series (which is standardized to zero). As is known from

JLN, the macro uncertainty index is strongly countercyclical, and exhibits large spikes in the

deepest recessions. The updated data UMt series shows much the same. Though UMt exceeds

1.65 standard deviations 48 times, they are clustered around the 1973-74 and 1981-82 reces-

sions, as well as the Great Recession of 2007-09. Macroeconomic uncertainty is countercyclical

and has a correlation of -0.65 with the 12-month moving-average of the growth in industrial

production.

The bottom panel of Figure 1 plots the financial uncertainty series UFt over time, which is

new to this paper. UFt is a broad-based measure of time varying financial uncertainty using

data from the bond market, stock market portfolio returns, and commodity markets. Hence,

it is smoother than proxies such as VIX or any particular bond index. As seen from Figure 1,

UFt is also countercyclical, though less so than UMt; the correlation with industrial production

of -0.39. The series often exhibits spikes around the times when UMt are high. However, UFt is

more volatile and spikes more frequently outside of recessions, the most notable being the 1987

stock market crash. Though UFt crosses the 1.65 standard deviation line only 33 times, they

are spread out in seven episodes, with the 2008 and 1997 episodes being the most pronounced.

As is clear from Figure 1, both indicators of macro and financial uncertainty are serially

correlated and hence predictable. They have comovements but also have independent variations

as the correlation between them is 0.58. However, this unconditional correlation cannot be given

a structural interpretation. The heightened uncertainty measures can be endogenous responses

to events that are expected to happen, but they can also be exogenous innovations. We use a

VAR to capture the predictable variations, and then identify uncertainty shocks from the VAR

residuals using the restrictions described in the previous section.

4.1 VAR Estimates and Uncertainty Shocks

Several features of the VAR estimates are qualitatively similar for all measures of Yt. Table 1

highlights some of these results, which will focus on ipt since results are very similar for other

measures of Yt. Panel A of Table 1 reports results from the regressions (5) used to construct

instruments. It shows that stock market returns rSt exhibit a statistically weak relation when

regressed on the broad-based measure of real activity q1t, as long as it is the only regressor.

This finding is attributable to a large standard error rather than a zero coeffi cient on q1t, so it

does not obviate the need to use the fitted residual as our instrument Z1t in place of rSt itself.
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However, the estimated coeffi cient on q1t is larger in absolute value and strongly significant

once UMt is introduced as an additional regressor. Indeed, in the regression that constructs Z2t,

both coeffi cient estimates are statistically significant, and the coeffi cient on q1t is quite different

than in the regression used to construct Z1t. This indicates that Z1t and Z2t are qualitatively

distinct components of rSt.

Proposition 1 requires that E[Z1teMt], E[Z1teFt], and E[Z2teFt] be nonzero. To assess the

validity of these assumptions, Panel B of Table 1 reports the sample correlation coeffi cient

between Z1t and estimates of eMt, and between Z2t and estimates of eFt. The correlation

coeffi cients are statistically significant and negative in each case, indicating that uncertainty

shocks of both types are correlated with these instruments, as required, and tend to be high

when these components of stock market returns are low. Finally, Panel C shows that
√
σMM ,√

σY Y , and
√
σFF are all strongly statistically significantly different from zero. This in turn

indicates the presence of both macro and financial uncertainty shocks in the SVAR. Since both

UMt and UFt are serially correlated, we should therefore find that Z1t is correlated with lags of

UMt and UFt, while Z2t is correlated with lags of UFt. Results not reported confirm this is the

case.

Our model is exactly identified and does not permit a test for the validity of the restrictions.

Nonetheless, we can test the if a lower recursive structure is supported by the data. Specifically,

Assumption A does not rule out the possibility of a recursive structure. Given that
√
T (β̂1−β01)

is asymptotically N(0,Σβ̂1
), the null hypothesis of a recursive structure is a test that the three

components of β1 corresponding to the off-diagonal entries of A−10 are jointly zero. Hence it

is chi-square distributed with three degrees of freedom. We first confirm that the test has the

correct size in Monte Carlo simulations. Our estimates based on historical data strongly reject

a lower triangular A−10 for any possible ordering of the variables. Table 2 shows results from

Wald tests with Yt = ipt and Yt = empt, for h = 1 and h = 12. Results not reported find that

the A matrix reflects a non-zero contemporaneous correlation between UFt and Yt, as well as

between UMt and Yt; no recursive ordering is consistent with such a correlation. In Section 6

below, we discuss how estimates of the dynamic relationships are affected by imposing recursive

identification.

Figure 2 presents the time series of the standardized shocks (eM , eip, eF ) identified from the

system with Yt = ipt. All shocks display strong departures from normality with excess skewness

and/or excess kurtosis. The largest of the eip shocks is recorded in 1980:04 followed by the one

in 2008:09. There also appears to be a moderation in the volatility of the ip shocks in the

post-1983 period. The largest macro uncertainty shock is in 1970:12, followed by the shock in

2008:10. The largest financial uncertainty shock is recorded in 1987:10, followed by the shock

in 2008:09. For eF , the 1987 stock market crash evidently dwarfs all other spikes. Because of

the extreme but transitory nature of the crash, there is a very large spike downward in eF in
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the month following the crash, as the market recovered strongly. While this episode magnifies

the spike in eF in 1987, it is largely orthogonal to real activity and macro uncertainty and

we have verified that none of our results are materially affected by dummying out the episode

in the VAR. Appendix Figure A1 shows a representative set of impulse responses from one of

our benchmark systems in which we dummy out 1987:10 and 1987:11. These responses are

remarkably similar to those without the dummies, as shown below.

Observe that the large ip shock in 2005:09 is not associated with a contemporaneous spike in

uncertainty (we discuss this episode further below), while there are several spikes in both types

of uncertainty that do not coincide with spikes in eip. The next subsection uses impulse response

functions to better understand the dynamic causal effects and propagating mechanisms of these

shocks.

4.2 The Dynamic Effects of Uncertainty Shocks

Impulse response functions (IRFs) trace out the effects of counterfactual increases in the shocks.

The estimated IRFs are presented with 90% bootstrapped confidence bands. All plots show

responses to one standard deviation changes in εjt in the direction that leads to an increase in

its own variable Xjt.

Figure 3 shows the dynamic responses of each variable in the SVAR to each structural shock

for our baseline system with Yt = ipt. The responses show that positive shocks to financial

uncertainty eF lead to a sharp decline in real production that persists for many months (center

plot, bottom row). Positive perturbations to eFt also cause UMt to increase. However, there is

less evidence that shocks to macro uncertainty have effects on financial uncertainty: the impact

response of UFt to an increase in eMt is not statistically different from zero. Overall, these results

lend support to the hypothesis that heightened financial uncertainty is an exogenous impulse

that causes declines in real activity. Note that the converse relationship is not supported by our

evidence: exogenous (positive) shocks to ip have statistically insignificant effects on financial

uncertainty. If anything, perturbations to eip modestly increase financial uncertainty in the

long-run.

While we find no evidence that high financial uncertainty is a consequence of lower eco-

nomic activity, the results for macro uncertainty are quite different. Figure 3 (second row, first

column) shows that macro uncertainty falls sharply in response to positive shocks to industrial

production, eip. Alternatively stated, negative ip shocks increase macro uncertainty sharply.

These effects persist for well over a year after the ip shock. This result is strongly statistically

significant, suggesting that higher macro uncertainty in recessions is a direct endogenous re-

sponse to lower economic activity. However, there is no evidence that the negative correlation

between macro uncertainty and real activity is driven by causality running in the opposite di-
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rection. Indeed, the top middle panel shows that exogenous increases in eMt actually increase

real activity, consistent with growth options theories discussed above.

The standard error bands for this case with Yt = ipt are wide, indicating considerable

sampling uncertainty as to the magnitude of these effects. However, the systems that use

Yt = ipt appear to be unusual in this respect. The impulse responses are more precisely

estimated when we use any number of alternative measures of real activity Yt. Impulse responses

using Yt = empt and Yt = NOIt are displayed in Figures 4 and 5, respectively. These systems

tell the same story regarding the dynamic causal influences in the system, but here the responses

have tighter standard error bands. A positive shock to empt or NOIt causes a sharp decline in

macro uncertainty, whereas there is again no evidence that positive shocks to macro uncertainty

cause declines either measure of real activity; indeed the opposite occurs. But positive shocks

to financial uncertainty cause declines in both empt or NOIt. In contrast to the responses in

systems using ipt, these effects are strongly statistically significant in the systems using empt
and NOIt. We find that this same result also holds for the responses using Q1t, as discussed in

Section 6 below.

4.3 The Structural Shocks and Decomposition of Variance

In Figure 1 presented earlier, we find 1973-74, 1981-82, and 2007-2009 to be the three episodes

of heightened macroeconomic uncertainty, defined as the periods when UMt is 1.65 standard

deviations above its unconditional mean. We now look for the “large adverse” shocks in the

systems (UMt, Yt, UFt)
′, with Yt = ipt, empt, NOIt , Q1t. More precisely, we consider large

positive uncertainty shocks and large negative real activity shocks.

Figure 6 displays the date and size of shocks that are at least two standard deviations above

the mean, estimated using the four different measures of Yt. In view of the non-normality of

the shocks, the figure also plots horizontal lines corresponding to three standard deviation of

the unit shocks, which is used as the reference point for ‘large’. The lowest panel shows that,

irrespective of the definition of Yt, all SVARs identify big financial uncertainty shocks in 1987

and 2008. The middle panel shows that large negative real activity shocks are in alignment

with all post-war recessions with two exceptions. First, the real activity shock identified in

the 1982-83 recession is only moderately high, exceeding 2 standard deviations but not three.

Instead, there is a cluster of macroeconomic uncertainty shocks in the top panel. Second, the

negative real activity shock in 2005 is not immediately associated with a recession, but it could

be the seed of the Great Recession that followed. It is known that the housing market led

the 2007-2006 recession (e.g., see Favilukis, Ludvigson, and Van Nieuwerburgh (2015) for a

discussion). We confirm that all 10 housing series in XM (most pertaining to housing starts

and permits series) exhibit sharp declines starting in September 2005 and continuing through
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2006, when almost all of the total decrease in these series through 2009 occurred.

The top panel of Figure 6 shows that the dates of large increases in eM are less clustered.

They generally coincide with, or occur shortly after, the big real activity shocks and the financial

uncertainty shocks. Observe that large macro uncertainty shocks occurred more frequently in

the pre-1983 than the post 1983 sample. An exception is the Great Recession, where there were

large eM shocks in some systems but not others: large macroeconomic uncertainty shocks are

found when Y = ip and when Y = NOI but are not found in the SVAR with empt or Q1t.

Thus the finding that there are simultaneous occurrences of big shocks to UMt, UFt, and Yt
during the Great Recession seems to depend on which measure of real activity Yt is used. We

return to this issue when sub-indexes of UMt are considered.

To give a sense of the historical importance of these shocks, we perform a decomposition

of variance, which is the fraction of s-step-ahead forecast error variance attributable to each

structural shock εMt, εY t, and εFt for s = 1, s = 12, s = ∞. We also report the maximum
fraction of forecast error variance over all VAR forecast horizons s that is attributable to each

shock, denoted s = smax in the table. Table 3 reports results for the system with Yt = ipt (left

column), Yt = empt (middle column), and Yt = NOIt (right column).

According to the top row, all three real activity shocks eip, eemp, and eNOI have large effects

on macroeconomic uncertainty UM . But according to the bottom row, these same shocks have

negligible effects on financial uncertainty UF . At the same time, positive macro uncertainty

shocks eM , which increase rather than decrease real activity, explain a surprisingly large fraction

of production (up to 79%), employment (up to 66%) and orders (up to 60%), though their

relative importance declines gradually as the forecast horizon increases. On the other hand,

financial uncertainty shocks eF have a small contribution to the one-step-ahead forecast error

variance of ip, but their relative importance increases over time. On the other hand, eF shocks

make much larger contributions to the forecast error variance of emp and NOI. Financial

uncertainty shocks explain up to 66% of the forecast error variance in employment and up 57%

of the forecast error variance in orders, compared to 36% for production. Financial uncertainty

shocks eF feedback into UM , and macroeconomic uncertainty shocks eM also feedback into UF ,

though eF appears to have stronger effects on UM than eM shocks have on UF .

Regardless of which measure of real activity is used, we find that financial uncertainty is

unlike macro uncertainty or real activity in that its variation is far more dominated by its own

shocks. For example, in the system with ip, eF shocks explain 92% of the s = 1 step-ahead

forecast error variance in UFt, and 73% of the s =∞ step-ahead forecast error variance. In the

systems with emp and NOI, eF shocks explain 72 and 68%, respectively, of the s = 1 step-

ahead forecast error variance in UFt, and 72 and 68% of the s = ∞ step-ahead forecast error

variance. These findings suggest that financial uncertainty is quantitatively the most important

exogenous impulse in these systems.
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To summarize, in all three systems, real activity shocks eY have quantitatively large per-

sistent negative effects on macro uncertainty UM . In turn, macro uncertainty shocks eM have

large positive impact effects on real activity measures Y . Financial uncertainty shocks eF have

smaller impact effects but larger long run effects that dampen real activity Y . Across all sys-

tems, the forecast error variance of financial uncertainty is the least affected by shocks other

than its own, suggesting that UF is quantitatively the most exogenous variable in the system.

5 Uncertainty in Real Activity and Inflation

The results discussed above suggest that the dynamic relationship between macro uncertainty

and real activity can be quite different from the relation between financial uncertainty and

real activity. However, given the composition of our data χM , macroeconomic uncertainty

itself can be due to uncertainty in real activity variables such as output and unemployment,

to price variables, and to financial market variables. The theoretical uncertainty literature

has focused on modeling exogenous uncertainty shocks that arise specifically in measures of

real economic fundamentals, rather than in prices or financial markets. To better evaluate the

implications of these theoretical models, it is therefore of interest to know how systems defined

by sub-components of broad-based macro uncertainty behave. We first consider systems that

isolate uncertainty about real activity using the URt sub-index that more closely corresponds

to the theoretical literature. We then move on to study systems that use a sub-index of macro

uncertainty focused on price variables, Uπt, which has not been the focus on the uncertainty

literature but may be of independent interest.

5.1 System Xt = (URt, Yt, UFt)
′

We isolate the real activity components of macro uncertainty by aggregating the individual

uncertainty estimates over the 73 real activity variables in the macro dataset XM . The one-

period ahead uncertainty in real activity, denoted URt, is show in Figure 7. This series, like

UMt, is countercyclical though somewhat less so, having a correlation of -0.50 with industrial

production (as compared to -0.66 for UMt). At first glance, URt appears to fluctuate in a manner

similar to macroeconomic uncertainty UMt. The two series have a correlation of 0.71 and exhibit

some overlapping spikes. But URt and UMt also display notable independent variation. Figure

7 shows that there are 43 observations of URt that are at least 1.65 standard deviations above

its mean. These can be organized into five episodes: 1965, 1970, 1975, 1982-83, and 2007. By

contrast, UMt in Figure 1 only exhibits three such episodes. Observe that the URt series exhibits

several spikes before 1970 that are not accompanied by spikes in UMt.

Given the distinctive patterns in the time series behavior of URt and UMt, one might expect to

find different dynamic relationships with the other variables in our systems when UMt is replaced
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by URt. Surprisingly, the impulse responses functions are qualitatively similar to systems studied

above that use broad-based macro uncertainty. Since the responses are qualitatively similar

using all measures of real activity, we only present one representative example in Figure 8,

for the system (URt, empt, UMt)
′. We see that (i) positive shocks to employment cause sharp

declines in URt so that negative shocks cause sharp increases in real economic uncertainty; (ii)

positive real activity shocks eRt do not cause declines in empt; instead the opposite is true; (iii)

positive financial uncertainty shocks eFt lead to sharp declines in employment that are strongly

statistically significant, and (iv) there is no evidence that financial uncertainty is significantly

affected by real activity shocks.

But while these counterfactual dynamic responses are similar to those reported for the

base case when UMt is used, the realized shocks that are uncovered from the historical data

are different. Figure 9 plots the large adverse structural shocks identified from the systems

(URt, Yt, UFt)
′ for Yt = ipt, empt, NOIt, Q1t analogous to Figure 2. The top panel shows that

the real uncertainty shock eRt exhibits no spike in excess of three standard deviations during the

Great Recession for any measure of real activity, despite the fact that URt itself exhibits a large

spike (see Figure 7). Moreover, we see a spike in eRt that exceeds 2 standard deviations only

for the systems using empt and NOIt, but not for the other two systems. This is in contrast

to the behavior of eMt and especially eFt in Figure 2, both of which show much larger spikes

during this episode. This pattern occurs in other recessions as well. In the 1973-75 recession,

the real uncertainty shocks eRt show a large spike only for the system using orders, but not for

the systems using production, employment or Q1t, though all measures of real activity shocks

eip, eemp, eNOI , and eQ1t exhibited large spikes downward. Likewise, the 1982-1983 recession

was characterized by large negative real activity shocks that met or exceeded three standard

deviations from the mean, while real uncertainty shocks eR were comparatively muted.

These episodes serve to reinforce the conclusion that the heightened real economic uncer-

tainty in recessions is more often an endogenous response to other shocks, rather than an

exogenous impulse. Even though there were many large spikes in real uncertainty shocks eRt
pre-1983, there have not been much in the way of large adverse shocks to real economic un-

certainty since 1983, a period that coincides with the so-called Great Moderation. Large real

uncertainty shocks are also absent from the Great Recession. This is an episode characterized

by a large negative eY t and a large increase in eFt. Both adverse shocks are suffi ciently large

to drive URt upward without a large exogenous increase eRt.

One might ask why we find large macro uncertainty shocks eM in the Great Recession,

at least for some measures of real activity, while the corresponding real activity uncertainty

shocks eR are much smaller. Recall that our UM is a broad-based measure of uncertainty and,

as such, contains some 25 financial variables. These are also the most volatile variables in the

large macro dataset used to construct UMt. Hence UM picks up a fair amount of its movement
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from financial variables, which were especially large in this episode. By isolating uncertainty

attributable only to real variables, we can see more clearly the role of uncertainty about real

activity variables in this episode. By the same reasoning, once we control explicitly for financial

uncertainty, it makes little difference whether we use UMt or URt in the SVAR. The impulse

responses are similar, as can be seen from a comparison of the base case IRFs and those in

Figure 8. Controlling for UFt is thus important as it removes the variation in UMt attributable

to financial variable uncertainty. Whether we directly or indirectly control for uncertainty

from financial variables, the main finding is that macroeconomic uncertainty rises in recessions

primarily in response to real activity shocks, while financial uncertainty shocks are exogenous

impulses that have significant negative effects on real activity.

To complete the analysis, we present variance decompositions for the system (URt, Yt, UFt)
′,

with three measures of real activity Yt = ipt, empt, NOIt. These results, presented in Table 4,

share some similarities with the systems that use macro uncertainty UMt shown in Table 3,

but there are at least two important distinctions. First, financial uncertainty shocks decrease

real activity and explain larger fractions of the forecast error variance in two measures of real

activity. At the longest s = ∞ VAR horizon, financial uncertainty shocks explain 80% of

forecast error variance in employment and 63% of the forecast error variance in orders. These

results suggest that financial uncertainty has quantitatively large negative consequences for at

least some measures of real activity.

Second, compared to systems that use UMt, larger fractions of the forecast error variance

in URt are explained by its own shocks. This is consistent with the finding earlier that in

the ten year period from 1970-1980, there are just three cases in which the eMt shock met or

exceeded three standard deviations (see the system using Yt = ipt and Yt = NOIt in Figure

6). By contrast, there are five cases of large eRt shocks as displayed in Figure 9 during this

same period. These findings are also consistent with the time series properties of UMt and URt.

As noted above, there are five episodes in which URt is at least 1.65 standard deviations above

its mean compared to just three such episodes for UMt. The importance of eRt shocks on URt
does not undermine the finding that real activity shocks still have non-trivial consequences for

URt. For example, shocks to industrial production eipt still explain 51% of the one-step-ahead

forecast error variance in URt, though smaller than the 77% found earlier using UMt.

To summarize, countercyclical increases in real uncertainty URt, like macro uncertainty

UMt, are found to be fully an endogenous response to declines in real activity. Indeed, the most

striking episode of heightened uncertainty in the post-war period, the Great Recession, was

characterized by large negative real activity eY shocks and a large positive financial uncertainty

eF shock, but no corresponding large shock to real uncertainty eR. These results underscore the

extent to which the countercyclical variation in URt is often an endogenous response to other

shocks. At the same time, URt exhibits more variation than UMt that is independent of fluctu-
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ations in real activity especially early in the sample, explaining why it is less countercyclical.

5.2 System Xt = (Uπt, Yt, UFt)
′

The preceding subsection investigates the real activity component of macroeconomic uncer-

tainty and its interaction with Yt and UFt. This subsection studies the price component of

macroeconomic uncertainty Uπ which aggregates the 21 uncertainty indicators in the price

block of χM . This block includes consumer and producer prices that tend to be more stable, as

well as the price of oil, commodities, and raw materials that tend to be more volatile. With the

exception of the NAPM commodity price index, the price data are second differenced after log

transformation. Hence, the uncertainty indicators pertain to the change in monthly inflation.

We refer to this measure simply as “price uncertainty.”

The top panel of Figure 10 plots this measure of price uncertainty over our sample. It is

countercyclical and has a correlation with industrial production is -0.51. There are 40 obser-

vations that are 1.65 standard deviations above the unconditional mean. These are clustered

into three episodes: 1974-75, 2006-07, and 2008-09. There is a large spike upward in Uπt visible

during the Great Recession. This spike actually occurs over four months, from 2008:10-2009:01,

during which Uπt was unusually high. Also plotted in Figure 10 is a Ux
π,t uncertainty index that

removes from Uπ,t five of the most volatile price uncertainty series, namely PPI intermediate

materials, PPI crude materials, oil, PPI metals and metal products, and CPI transportation.

The more volatile price series apparently did not contribute to noticeable changes to aggregate

price uncertainty.

Further investigation reveals that the increase in price uncertainty around the Great Re-

cession was broad based, as 13 of the 21 series in the price group had uncertainty risen by at

least three standard deviations above its mean in 2008:11, the peak of the spike. Results not

reported show that these series all exhibited large negative forecast errors in 2008:10-2008:12,

and then a large positive error in 2009:01. The change in inflation across many price series

appears to have been volatile and diffi cult to predict at the peak of the Great Recession. Thus

the Great Recession was hit by the rare occurrence of simultaneous adverse shocks to financial

uncertainty, to real activity, and to price uncertainty.

The bottom panel of 10 plots the large adverse shocks for the systems Xt = (Uπt, Yt, UFt)
′

with Yt = ipt, empt, NOIt, Q1t, and for an alternative set of systems Xt = (Ux
πt, Yt, UFt)

′. No-

tably, most of the spikes are concentrated in the years before 1983. Nonetheless, the price

uncertainty spike in 2008 is evident both eπ and exπ. Together with the results reported earlier,

the broad based nature of the surge in uncertainty in 2008 is unprecedented.

We estimate an SVAR for Xt = (Uπt, Yt, UFt)
′. The responses are again similar for all

measures of Yt so we conserve space by showing just one. Figure 11 shows the dynamic responses
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with Yt = empt. As before, it is exogenous shocks to financial uncertainty that drive real

activity endogenously lower. By contrast, positive shocks to price uncertainty do not decrease

real activity, indeed the opposite is true. We see also that positive shocks to price uncertainty

eπt lead to a sharp increase in financial uncertainty UFt. Financial uncertainty shocks, on the

other hand, have no effect on price uncertainty Uπt.

Figure 11 also shows that employment shocks eemp impact price uncertainty in a manner

that is qualitatively similar to how they impact macro and real economic uncertainty. Positive

(negative) shocks to real activity cause sharp decreases (increases) in price uncertainty, but

have little effect on financial uncertainty. Thus a boom in real activity appears to reduce

macroeconomic uncertainty broadly across many indicators, including uncertainty about price

variables, though not about financial markets.

On the whole, these findings reinforce the notion that financial uncertainty is primarily

an exogenous impulse acting on real activity, while countercyclical uncertainty about other

macroeconomic activity, be it real activity or prices, is primarily an endogenous response to

real activity. But price uncertainty increases financial uncertainty, a finding that is theoretically

consistent with evidence that inflation uncertainty is correlated with higher risk spreads in bond

markets (e.g., Wright (2011)). An interesting direction for future research is to investigate the

dynamic linkages between inflation uncertainty, financial market uncertainty, and term premia.

6 Robustness and Additional Cases

This section presents results for a number of additional cases.

6.1 Different Measures of Real Activity and Different Sample

Rather than using specific real activity measures such as production, employment and orders, we

now use a more broad-based measure of real activity that we construct, namely the real activity

index Q1t. Figure 12 presents impulse responses for Xt = (UMt, Q1t, UFt)
′. The responses are

quite similar to those using Yt = ipt with the main difference being that the standard error

bands are narrower especially for the response of Q1t to UFt shock. Financial uncertainty shocks

lead to large, statistically significant declines in the index of real activity. Moreover, as for the

systems using other measures of real activity, high macro uncertainty in bad times if fully an

endogenous response to declines in real activity, as measured by Q1t.

Given the importance of the Great Recession for the uncertainty series, we asked whether

our main results were affected by stopping the sample at the end of 2007:12. A representative

set of impulse response functions is shown in Figure (A2) for the system Xt = (UMt, empt, UFt)
′

(the other systems show similar responses). The figure shows that the qualitative nature of

all the responses, including standard error bands, is quite similar to the comparable case for
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the full sample (Figure 4). This implies that main findings above are robust to this sample

that excludes the Great Recession and the concomitant financial crisis. Further inspection

indicates that the main difference created by using different samples is evident in the variance

decompositions (not shown): somewhat less of the forecast error variance in UF in the pre-2008

sample is attributable to its own shocks than in the full sample, while correspondingly more

of the forecast error variance in UF is attributable to real activity shocks. For example, in the

full sample, 92% of the one-step-ahead forecast error variance in UF is attributable to its own

shocks in the system with Yt = ipt, whereas this estimate is 82% for the pre-2008 sample. At

the same time, the variance decompositions pertaining to the impact of financial uncertainty

on real activity are little effected by removing the post 2008 part of the sample. This shows

that the negative impact of financial uncertainty shocks for real activity does not hinge on one

episode, and that many episodes prior to 2008 that were characterized by more modest financial

uncertainty shocks also had consequences for real activity.

6.2 One year Uncertainty

So far we have been considering uncertainty about events one-month ahead. To consider a

longer horizon uncertainty, we estimate systems using uncertainty about events 12 months

ahead, denoted UMt (12) and UFt (12). For the dynamic responses, the findings are qualitatively

similar to the benchmark cases with h = 1 period ahead uncertainty. Figure 13 presents a

representative example for the system: Xt = (UMt (12) , empt, UFt (12)). But an inspection

of the variance decompositions suggests some notable differences from the h = 1 uncertainty

systems. Table 5 shows variance decompositions for the systems Xt = (UMt (12) , Yt, UFt (12))

with Yt = ipt, empt, NOIt. One-year financial uncertainty shocks explain smaller fractions of

the variation in all measures of real activity than do one-month uncertainty shocks, especially

over the longer VAR horizons for which their impact is non-trivial. For example, 12-month-

ahead financial uncertainty eFt shocks explain just 25% of the long-run forecast error variance

in ipt. In contrast Table 3 above showed that one-month-ahead financial uncertainty eFt shocks

explain 36% of the long-run forecast error variance in production. Similar comparisons hold for

the other two measures of real activity, empt and NOIt. UFt (12) shocks also explain smaller

fractions of the forecast error variance in macro uncertainty UMt than do UFt (1) shocks. This

result occurs in part because long-run uncertainty is simply much less volatile than short-run

uncertainty. While the level of uncertainty increases with h (on average), the variability of

uncertainty decreases because the forecast tends to the unconditional mean as the forecast

horizon tends to infinity. On the other hand, the impact of macro uncertainty shocks on the

other variables in the system is less affected by the uncertainty horizon h. For example, the

effects of eMt shocks on all measures of real activity are about the same for systems using
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UMt (12) as they are for the systems studied above that use UMt (1).

6.3 Imposing Recursive Identification Restrictions

Recall that the SVARs studied here nest any recursive structure so that by imposing additional

restrictions we can recover any such structure. We can also test the validity of these restrictions.

The results above show that these restrictions are rejected in the data. We now show what

happens to the dynamic responses when we nevertheless impose restrictions consistent with

recursive identification (and freely estimate the rest of the parameters). Figure 14 shows one

case: dynamic responses for the system Xt = (UFt, UMt, ipt)
′ with that ordering. Although

there are many possible recursive orderings, and the estimated IRFs differ in some ways across

these cases, the dynamic responses under recursive identification have one common feature that

is invariant to the ordering and that provides the sharpest contrast with the results generated

by the SVARs identified with external instruments studied here. Specifically, with recursive

identification, macro uncertainty shocks—no matter which ordering—appear to cause a sharp

decline in real activity, while real activity shocks have little effect on macro uncertainty in the

short run and if anything increase it in the long run. This result, evident in Figure 14, is

precisely the opposite of what is reported above and appears to be an artifact of invalid timing

assumptions under recursive identification. Further investigation reveals that the SVARs we

study display non-zero contemporaneous correlations between UFt and Yt, as well as between

UMt and Yt, which is inconsistent with any recursive ordering. Imposing a structure that

prohibits contemporaneous feedback spuriously suggests that macro uncertainty shocks are a

cause of declines in real activity, rather than an endogenous response. This result is robust

across any of the six possible recursive orderings and underscores the challenges of relying

on convenient timing assumptions to sort out cause and effect in the relationship between

uncertainty and real activity.6

7 Conclusion

A growing body of research establishes uncertainty as a feature of deep recessions but leaves

open two key questions: is uncertainty primarily a source of business cycle fluctuations or an

endogenous response to them? And where does uncertainty originate? There is no theoretical

consensus on the question of whether uncertainty is primarily a cause or a consequence of

declines in economic activity. In most theories, it is modeled either as a cause or an effect, but

not both, underscoring the extent to which this question is fundamentally an empirical matter.

The objective of this paper is to address both questions econometrically using small-scale

structural VARs that are general enough to nest the range of theoretical possibilities in empirical

6The figures for these cases are omitted to conserve space but are available upon request.
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tests. Commonly used recursive identification schemes cannot achieve this objective, since by

construction they rule out the possibility that uncertainty and real activity could influence one

another contemporaneously. The econometric model employed in this paper nests the recursive

identification scheme, and we find that it is strongly rejected by the data. An empirical model

in which uncertainty and real activity simultaneously influence each other fits the data far

better than one in which these relationships are restricted by timing assumptions that prohibit

contemporaneous feedback.

To identify dynamic causal effects, this paper takes an alternative identification approach

by using external instruments that we construct in a novel way to be valid under credible inter-

pretations of the structural shocks. In addition, our empirical analysis explicitly distinguishes

macro uncertainty, and uncertainty about real activity, from financial uncertainty, thereby al-

lowing us to shed light on the origins of uncertainty shocks that drive real activity lower, to the

extent that any of them do. The econometric framework allows uncertainty to be an exogenous

source of business cycle fluctuations, or an endogenous response to them, or any combination

of the two, without restricting the timing of these relationships. Underlying our approach is a

maintained theoretical assumption that variables such as stock market returns, while endoge-

nous, are nevertheless driven by distinct sources of stochastic variation, some of which satisfy

exogeneity restrictions required to identify independent structural shocks.

Estimates of the econometric model are used to inform the nature of these dynamic relation-

ships in U.S. data. The results from these estimations show that sharply higher uncertainty

about real economic activity in recessions is fully an endogenous response to business cycle

fluctuations, while uncertainty about financial markets is a likely source of them. Exogenous

declines in economic activity have quantitatively large effects that drive real economic un-

certainty endogenously higher. Financial uncertainty, by contrast, is dominated by its own

shocks, implying that it is primarily an exogenous impulse vis-a-vis real activity and macro

uncertainty. These results reinforce the hypothesis laid out in much of theoretical uncertainty

literature, namely that uncertainty shocks are a source of business cycle fluctuations. But they

also stand in contrast to this literature, which has emphasized the role of uncertainty fluctu-

ations in productivity and other real economic fundamentals. The findings here imply that

the uncertainty shocks that drive real activity lower appear to have their have origins, not in

measures of real activity, but in financial markets.
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Appendix

Closed-Form Solution for B

Lemma 2 The solution to the system (4) exists if E [eFtZ2] 6= 0 and E [eMtZ1] 6= 0

Proof. To facilitate the presentation throughout the proof, let

ηt = Bet

B =

[
BM
3×1

,BY
3×1

,BF
3×1

]
Ω = E (ηtη

′
t)

and we have two external instruments (Z1, Z2) satisfying

E [eFtZ1] ≡ φ1F 6= 0, E [eMtZ1] ≡ φ1M 6= 0 and E [eY tZ3] = 0

E [eFtZ2] ≡ φ2F 6= 0 and E [eMtZ2] = E [eY tZ3] = 0

Then

E [ηtZ2] = E [BetZ2] = B

 0
0
φ2F

 = φ2FBF

Thus BF exists if φ2F 6= 0. Furthermore, observe that

E [ηtZ2]
′Ω−1E [ηtZ2] = Ω−

1
2BFφ

2
2FB′FΩ−

1
2 = φ22F

This implies that the scale φ2F is identified up to a sign by

φ2F = ±
√
E [ηtZ2] Ω

−1E [ηtZ2]. (A.1)

Next,

E [ηtZ1] = E [BetZ1] = B

 φ1M
0
φ1F

 = φ1MBM + φ1FBF

But note that

E [ηtZ2] Ω
−1E [ηtZ1] = φ2FBF ′Ω

−1 (φ1MBM + φ1FBF )

= φ2FBF ′ (BB′)
−1

(φ1MBM + φ1FBF )

= φ2Fφ1F

This implies that φ1F is identified as

φ1F =
E [ηtZ2] Ω

−1E [ηtZ1]

φ2F



which in turn implies

φ1MBM = E [ηtZ1]−
E [ηtZ2]

φ2F
φ1F .

Thus solution to BM exists if φ1M 6= 0. Furthermore, note that(
E [ηtZ1]−

E [ηtZ2]

φ22F
φ1F

)′
Ω−1

(
E [ηtZ1]−

E [ηtZ2]

φ22F
φ1F

)
= Ω−

1
2BMφ

2
1MB′MΩ−

1
2 = φ21M

This implies that the parameter φ1M is identified up to a sign as

φ21M =

(
E [ηtZ1]−

E [ηtZ2]

φ22F
φ1F

)′
Ω−1

(
E [ηtZ1]−

E [ηtZ2]

φ22F
φ1F

)
. (A.2)

It only remains to identify BY . We have

Ω = E [ηtη
′
t] = BB′

This implies that

B′Ω−1B = I.

So BY must satisfy

B′Y Ω−1/2Ω−1/2BY = 1

B′Y Ω−1/2Ω−1/2BM = 0 (A.3)

B′Y Ω−1/2Ω−1/2BF = 0

BY can be solved analytically using (A.3) providing thatBF andBY are identified. In addition,

since the equation (A.3) is quadratic in BY , BY is only unique up to sign. It follows that there

exists a τ such that

BY = τB̃Y (A.4)

where B̃Y is unique conditional on φ2F and φ1M , but the scalar τ is unique up to sign.

As a result, the solution to the system (4) exists if φ2F 6= 0, φ1M 6= 0 and is unique up to

sign.

The system of equations defining B is

0 = E[g1(m1t;β1)] ≡ g1.

The rank condition is satisfied when J ≡∂ET [g1]/∂β
′
1 is full column rank. We check that the

rank condition is satisfied by evaluating J at the estimated parameter values for each case.



Procedure for Bootstrap

The bootstrap follows Krinsky and Robb (1986). We sample repeatedly from the joint distribu-

tion N
(
β̂,Θ̂/T

)
, where Θ̂ is the estimated GMM variance-covariance matrix to obtain B new

sets of parameters β̂
(1)
....β̂

(B)
and calculate the impulse response function values at each draw,

Υ
(1)
s,j , ...,Υ

(B)
s,j , where s indexes the VAR horizon and j the variable being shocked, and where

Υ
(b)
s,j = Υ.

s,j

(
β̂
(b)
)
. The confidence intervals are ranges for Υ

(b)
s,j created by trimming α/2 from

each tail of the resulting distribution of the function values. The parameter B is set to 10,000.
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8 Figures and Tables
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Figure 1: Macro and financial uncertainty over time. The upper panel plots the time series of the
macro uncertainty UM , expressed in standardized units. The lower panel shows the time series of financial

uncertainty UF expressed in standardized units. The vertical lines correspond to the NBER recession dates.

The horizontal line corresponds to 1.65 standard deviations above the unconditional mean of each series (which

has been normalized to zero). Correlations with the 12-month moving average of IP growth are reported. The

black dots represent months when uncertainty is 1.65 standard deviations above its unconditional mean. The

data are monthly and span the period 1960:07 to 2015:04.



Structural Shocks Over Time
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Figure 2: Time series of e shock from SVAR system (UM , ip, UF )
′. The horizontal line corresponds to

3 standard deviations above/below the unconditional mean of each series. The shocks e = B−1ηt are reported,

where ηt is the residual from VAR(6) of (UM , ip, UF )
′ and B = A−1Σ

1
2 . Skewness is defined as s =

∑T
t (et−ē)3/T
V ar(e) .

Kurtosis is defined as κ =
∑T

t (et−ē)4/T
[V ar(e)]2

. The sample spans the period 1960:07 to 2015:04.



Dynamic Responses in SVAR (UM , ip, UF )′
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Figure 3: Dynamic responses to one standard deviation shocks of SVAR (UM , ip, UF )
′. Bootstrapped

90% error bands appear as dashed lines. Response units are reported in percentage points. The sample spans

the period 1960:07 to 2015:04.



Dynamic Responses in SVAR (UM , emp, UF )′
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Figure 4: Dynamic responses to one standard deviation shocks of SVAR (UM , emp, UF )
′. Boot-

strapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Dynamic Responses in SVAR (UM , NOI, UF )′
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Figure 5: Dynamic responses to one standard deviation shocks of SVAR (UM , NOI, UF )
′. Boot-

strapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The sample

spans the period 1960:07 to 2015:04.



Large Shock Episodes in SVAR (UM , Y, UF )′

Positive eM exceeding 2 standard deviations

 

 

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
2

3

4

5

ip
emp

Q1

NOI

Negative eY exceeding 2 standard deviations

 

 

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
2

3

4

5
ip
emp

Q1

NOI

Positive eF exceeding 2 standard deviations

 

 

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
2

3

4

5
ip
emp

Q1

NOI

Figure 6: Time series of e shocks from SVAR system (UM , Y, UF )
′. The figure exhibits shocks that

are at least 2 standard deviations above the unconditional mean for eM and eF and below for eY for three

cases where Y = ip, emp,Q1. The shocks e = B−1ηt are reported, where ηt is the residual from VAR(6) and

B = A−1Σ
1
2 . The horizontal line corresponds to 3 standard deviations shocks. The sample spans the period

1960:07 to 2015:04.
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Figure 7: Real uncertainty over time. This plot shows time series of UR, expressed in standardized units.
The vertical lines correspond to the NBER recession dates. The horizontal line corresponds to 1.65 standard

deviations above the unconditional mean of each series (which has been normalized to zero). Correlations

with the 12-month moving average of IP growth are reported. The black dots represent months when UR is

1.65 standard deviations above its unconditional mean. The data are monthly and span the period 1960:07 to

2015:04.



Dynamic Responses in SVAR (UR, emp, UF )′
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Figure 8: Dynamic responses to one standard deviation shocks of SVAR (UR, emp, UF )
′. Boot-

strapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Large Shock Episodes in SVAR (UR, Y, UF )′
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Figure 9: Time series of e shocks from SVAR system (UR, Y, UF )
′. The figure exhibits shocks that

are at least 2 standard deviations above the unconditional mean for eR and eF and below for eY for three

cases where Y = ip, emp,Q1. The shocks e = B−1ηt are reported, where ηt is the residual from VAR(6) and

B = A−1Σ
1
2 . The horizontal line corresponds to 3 standard deviations shocks. The sample spans the period

1960:07 to 2015:04.
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Figure 10: Price uncertainty over time. The upper panel plots Uπ and Uxπ where the latter excludes
uncertainties for 5 volatile sub-series defined in the text, expressed in standardized units. The middle and lower

panel exhibit shocks that are at least 2 standard deviations above the unconditional mean for Uπ and Uxπ . The

shaded vertical bars correspond to the NBER recession dates. Correlations with the 12-month moving average

of IP growth are reported. The data are monthly and span the period 1960:07 to 2015:04.



Dynamic Responses in SVAR (Uπ, emp, UF )′

0 20 40 60

−4

−2

0

2

Uπ Shock

U
π

0 20 40 60

−0.5

0

0.5

1

Uπ Shock

e
m
p

0 20 40 60

−1

0

1

2

3

4

5
Uπ Shock

U
F

0 20 40 60

−4

−2

0

2

emp Shock

U
π

0 20 40 60

−0.5

0

0.5

1

emp Shock

e
m
p

0 20 40 60

−1

0

1

2

3

4

5
emp Shock

U
F

0 20 40 60

−4

−2

0

2

UF Shock

U
π

0 20 40 60

−0.5

0

0.5

1

UF Shock

e
m
p

0 20 40 60

−1

0

1

2

3

4

5
UF Shock

U
F

Figure 11: Dynamic responses to one standard deviation shocks of SVAR (Uπ, emp, UF )
′. Boot-

strapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Dynamic Responses in SVAR (UM , Q1, UF )′
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Figure 12: Dynamic responses to one standard deviation shocks of SVAR (UM , Q1, UF )
′. Boot-

strapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Dynamic Responses in SVAR (UM (12) , emp, UF (12))′

0 50 100
−1.5

−1

−0.5

0

0.5

1

UM (12) Shock

U
M
(1
2
)

0 50 100

−0.5

0

0.5

UM (12) Shock

e
m
p

0 50 100

0

0.5

1

UM (12) Shock

U
F
(1
2
)

0 50 100
−1.5

−1

−0.5

0

0.5

1

emp Shock

U
M
(1
2
)

0 50 100

−0.5

0

0.5

emp Shock

e
m
p

0 50 100

0

0.5

1

emp Shock

U
F
(1
2
)

0 50 100
−1.5

−1

−0.5

0

0.5

1

UF (12) Shock

U
M
(1
2
)

0 50 100

−0.5

0

0.5

UF (12) Shock

e
m
p

0 50 100

0

0.5

1

UF (12) Shock

U
F
(1
2
)

Figure 13: Dynamic responses to one standard deviation shocks of SVAR (UM (12) , emp, UF (12))
′.

Bootstrapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The

sample spans the period 1960:07 to 2015:04.



Dynamic Responses using Recursive Identification with Order (UF , UM , ip)
′
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Figure 14: Dynamic responses to one standard deviation shocks with recursive identification
using ordering (UF , UM , ip)

′. Bootstrapped 90% error bands appear as dashed lines. Response units are

reported in percentage points. The sample spans the period 1960:07 to 2015:04.



Estimated Statistics for SVAR: (UM , ip, UF )
′

Panel A: Instrument Regression Coeffi cients

rst = α0 + α1q1 + Z1 and rst = α2 + α3q1 + α4UM + Z2

α0 α1 α2 α3 α4

0.0052 −0.3932 0.0626 −1.5635 −0.0870
(2.7914) (−0.6114) (2.7728) (−2.5629) (−2.4785)

[2.9838] [−0.8909] [4.0991] [−2.9104] [−3.7826]

Panel B: Uncertainty shock-Z correlation

ρ (Z1t, εMt) ρ (Z1t, εFt) ρ (Z2t, εFt)

−0.0578 −0.1669 −0.1743
(0.0033) (0.0094) (0.0095)

Panel C: Estimation of Σ
1
2

√
σMM

√
σY Y

√
σFF

0.0242 0.0339 0.0289

(0.0048) (0.0143) (0.0044)

[0.018, 0.032] [0.021, 0.083] [0.023, 0.041]

Table 1: Panel A reports the coeffi cients of instrument regression. Point estimates in first row, GMM t-stats in

bracket, OLS t-stats in parenthesis. Panel B reports the uncertainty shock-Z correlation. Asymptotic standard

error in bracket. Panel C reports the estimation of Σ1/2.
√
σMM ,

√
σRR,

√
σY Y ,

√
σFF are elements of Σ1/2

corresponding to the standard deviation of each structural shocks. Asymptotic standard error in bracket and

Bootstrapped 90 percent confidence interval in parenthesis. The stock return rs,t is measured as the CRSP

value-weighted index return less the one-month Treasury bill rate. The bold indicates significance at 90 percent

level.The data are monthly and span the period 1960:07 to 2015:04.



Test of Recursive Restrictions, Macro Uncertainty

Ordering: (UM , ip, UF )′ (UM (12) , ip, UF (12))′

H0: BRY = BRF = BY F = 0 219.85 320.20

[279.02] [148.81]

H0: BY R = BY F = BRF = 0 234.34 304.24

[352.60] [278.55]

H0: BRY = BRF = BFY = 0 270.37 323.17

[305.57] [164.63]

χ25% (3) 7.81 7.81

(UM , emp, UF )′ (UM (12) , emp, UF (12))′

H0: BRY = BRF = BY F = 0 151.65 239.32

[271.35] [181.89]

H0: BY R = BY F = BRF = 0 27.34 164.54

[149.30] [120.25]

H0: BRY = BRF = BFY = 0 289.84 320.54

[289.51] [206.64]

χ25% (3) 7.81 7.81

Table 2: Tests of validity of recursive restriction. The table reports the Wald test statistic for testing the null hypothesis given in the column .
The bold indicates that Wald test rejects the null at 95 percent level according to χ2(3) distribution. The SVAR system is solved using GMM and delta

method is used for computing the standard error. Estimates of B are based on the SVAR identified with external instruments described in the text. The

mean of bootstrap Wald statistics is reported in parenthesis. The sample size spans 1960:07 to 2015:04.



Variance Decomposition for SVARs with UM and UF

SVAR (UM , ip, UF )′ SVAR (UM , emp, UF )′ SVAR (UM , NOI, UF )′

Fraction variation in UM Fraction variation in UM Fraction variation in UM
s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock NOI Shock UF Shock

1 0.062 0.771 0.167 0.181 0.671 0.147 0.294 0.528 0.178

12 0.111 0.645 0.245 0.269 0.522 0.209 0.385 0.363 0.253

∞ 0.184 0.545 0.271 0.301 0.498 0.201 0.392 0.413 0.194

smax 0.206 0.781 0.273 0.322 0.694 0.220 0.403 0.553 0.257

[0.10, 0.42] [0.48, 0.94] [0.10, 0.57] [0.14, 0.59] [0.38, 0.89] [0.08, 0.49] [0.20, 0.67] [0.33, 0.73] [0.06, 0.54]

Fraction variation in ip Fraction variation in emp Fraction variation in NOI

s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock NOI Shock UF Shock

1 0.785 0.145 0.070 0.638 0.093 0.270 0.518 0.161 0.320

12 0.399 0.309 0.292 0.244 0.182 0.575 0.230 0.200 0.570

∞ 0.151 0.539 0.310 0.029 0.434 0.537 0.228 0.221 0.552

smax 0.792 0.540 0.358 0.658 0.434 0.660 0.603 0.221 0.571

[0.50, 0.89] [0.15, 0.83] [0.06, 0.77] [0.36, 0.86] [0.07, 0.82] [0.25, 0.94] [0.32, 0.79] [0.08, 0.46] [0.31, 0.76]

Fraction variation in UF Fraction variation in UF Fraction variation in UF
s UM Shock ip Shock UF Shock UM Shock emp Shock UF Shock UM Shock NOI Shock UF Shock

1 0.056 0.028 0.917 0.221 0.062 0.718 0.194 0.124 0.682

12 0.129 0.027 0.845 0.347 0.047 0.605 0.304 0.105 0.592

∞ 0.191 0.080 0.728 0.436 0.045 0.519 0.365 0.094 0.541

smax 0.202 0.080 0.920 0.448 0.084 0.720 0.365 0.149 0.688

[0.05, 0.57] [0.04, 0.44] [0.52, 0.99] [0.14, 0.70] [0.03, 0.45] [0.35, 0.95] [0.09, 0.69] [0.05, 0.45] [0.35, 0.89]

Table 3: Decomposition of variance for SVAR with macro uncertainty. Each panel shows the fraction of s-step-ahead forecast-error variance
of the variable given in the panel title that is explained by the shock named in the column heading. The row denoted “s = smax ”reports the maximum

fraction (across all VAR forecast horizons m) of forecast error variance explained by the shock listed in the column heading. The numbers in parentheses

represent the 5th and 95th percentiles of these statistics from bootstrapped samples using the procedure described in the Appendix. The data are monthly

and span the period 1960:07 to 2015:04.



Variance Decomposition for SVARs with UR and UF

SVAR (UR, ip, UF )′ SVAR (UR, emp, UF )′ SVAR (UR, NOI, UF )′

Fraction variation in UR Fraction variation in UR Fraction variation in UR
s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock NOI Shock UF Shock

s = 1 0.376 0.505 0.119 0.541 0.337 0.122 0.746 0.133 0.121

s = 12 0.261 0.468 0.271 0.440 0.245 0.315 0.565 0.094 0.341

s =∞ 0.310 0.413 0.277 0.445 0.220 0.336 0.530 0.083 0.386

s = smax 0.434 0.532 0.278 0.581 0.337 0.336 0.762 0.137 0.386

[0.26, 0.58] [0.36, 0.69] [0.06, 0.60] [0.41, 0.74] [0.18, 0.50] [0.08, 0.62] [0.56, 0.89] [0.08, 0.27] [0.11, 0.63]

Fraction variation in ip Fraction variation in emp Fraction variation in NOI

s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock NOI Shock UF Shock

s = 1 0.364 0.619 0.017 0.330 0.482 0.187 0.134 0.571 0.294

s = 12 0.284 0.507 0.209 0.208 0.281 0.512 0.054 0.322 0.625

s =∞ 0.209 0.374 0.417 0.101 0.094 0.806 0.053 0.317 0.630

s = smax 0.370 0.623 0.417 0.342 0.487 0.806 0.187 0.571 0.630

[0.23, 0.54] [0.41, 0.81] [0.06, 0.79] [0.18, 0.50] [0.28, 0.68] [0.30, 0.96] [0.09, 0.33] [0.29, 0.80] [0.33, 0.79]

Fraction variation in UF Fraction variation in UF Fraction variation in UF
s UR Shock ip Shock UF Shock UR Shock emp Shock UF Shock UR Shock NOI Shock UF Shock

s = 1 0.004 0.040 0.956 0.021 0.175 0.805 0.007 0.268 0.726

s = 12 0.010 0.062 0.929 0.053 0.198 0.748 0.015 0.313 0.673

s =∞ 0.111 0.082 0.807 0.170 0.173 0.657 0.045 0.291 0.665

s = smax 0.111 0.082 0.958 0.172 0.209 0.811 0.045 0.313 0.735

[0.04, 0.34] [0.03, 0.44] [0.66, 0.99] [0.04, 0.42] [0.04, 0.61] [0.47, 0.98] [0.01, 0.25] [0.10, 0.66] [0.45, 0.92]

Table 4: Decomposition of variance for SVAR with real uncertainty. Each panel shows the fraction of s-step-ahead forecast-error variance of
the variable given in the panel title that is explained by the shock named in the column heading. The row denoted “s = smax ”reports the maximum

fraction (across all VAR forecast horizons m) of forecast error variance explained by the shock listed in the column heading. The numbers in parentheses

represent the 5th and 95th percentiles of these statistics from bootstrapped samples using the procedure described in the Appendix. The data are monthly

and span the period 1960:07 to 2015:04.



Variance Decomposition for SVARs with UM (12) and UF (12)

SVAR (UM (12) , ip, UF (12))′ SVAR (UM (12) , emp, UF (12))′ SVAR (UM (12) , NOI, UF (12))′

Fraction variation in UM (12) Fraction variation in UM (12) Fraction variation in UM (12)

s UM (12) Shock ip Shock UF (12) Shock UM (12) Shock emp Shock UF (12) Shock UM (12) Shock NOI Shock UF (12) Shock

1 0.059 0.870 0.071 0.179 0.764 0.057 0.258 0.684 0.058

12 0.227 0.718 0.055 0.331 0.634 0.035 0.514 0.468 0.018

∞ 0.294 0.520 0.186 0.335 0.495 0.169 0.486 0.457 0.057

smax 0.335 0.889 0.190 0.381 0.797 0.169 0.535 0.736 0.058

[0.16, 0.49] [0.56, 0.98] [0.08, 0.53] [0.18, 0.61] [0.46, 0.93] [0.08, 0.44] [0.30, 0.71] [0.47, 0.89] [0.04, 0.39]

Fraction variation in ip Fraction variation in emp Fraction variation in NOI

s UM (12) Shock ip Shock UF (12) Shock UM (12) Shock emp Shock UF (12) Shock UM (12) Shock NOI Shock UF (12) Shock

1 0.874 0.064 0.062 0.639 0.041 0.321 0.544 0.082 0.374

12 0.533 0.265 0.202 0.284 0.164 0.552 0.303 0.242 0.455

∞ 0.169 0.659 0.172 0.048 0.616 0.336 0.310 0.268 0.422

smax 0.874 0.660 0.246 0.639 0.616 0.601 0.573 0.268 0.487

[0.55, 0.95] [0.25, 0.85] [0.06, 0.63] [0.34, 0.92] [0.14, 0.89] [0.23, 0.86] [0.29, 0.85] [0.10, 0.46] [0.27, 0.76]

Fraction variation in UF (12) Fraction variation in UF (12) Fraction variation in UF (12)

s UM (12) Shock ip Shock UF (12) Shock UM (12) Shock emp Shock UF (12) Shock UM (12) Shock NOI Shock UF (12) Shock

1 0.095 0.001 0.904 0.351 0.013 0.636 0.395 0.034 0.571

12 0.193 0.000 0.806 0.486 0.007 0.507 0.552 0.022 0.426

∞ 0.268 0.104 0.628 0.568 0.037 0.395 0.630 0.020 0.350

smax 0.291 0.104 0.904 0.594 0.037 0.636 0.630 0.046 0.587

[0.06, 0.68] [0.04, 0.47] [0.46, 0.99] [0.16, 0.83] [0.02, 0.38] [0.28, 0.91] [0.21, 0.88] [0.01, 0.32] [0.25, 0.85]

Table 5: Decomposition of variance for SVAR with macro uncertainty with horizon h = 12. Each panel shows the fraction of s-step-ahead
forecast-error variance of the variable given in the panel title that is explained by the shock named in the column heading. The row denoted “s = smax

”reports the maximum fraction (across all VAR forecast horizons m) of forecast error variance explained by the shock listed in the column heading.

The numbers in parentheses represent the 5th and 95th percentiles of these statistics from bootstrapped samples using the procedure described in the

Appendix. The data are monthly and span the period 1960:07 to 2015:04.



Appendix Figures and Tables

Test of Recursive Restrictions, Real Uncertainty

Ordering: (UR, ip, UF )′ (UR (12) , ip, UF (12))′

H0: BRY = BRF = BY F = 0 27.36 164.19

[173.05] [150.03]

H0: BY R = BY F = BRF = 0 17.55 244.79

[136.96] [345.17]

H0: BRY = BRF = BFY = 0 26.28 208.34

[170.08] [166.04]

χ25% (3) 7.81 7.81

(UR, emp, UF )′ (UR (12) , ip, UF (12))′

H0: BRY = BRF = BY F = 0 22.30 22.29

[109.09] [113.66]

H0: BY R = BY F = BRF = 0 16.67 16.66

[54.00] [52.46]

H0: BRY = BRF = BFY = 0 21.05 21.04

[105.27] [105.53]

χ25% (3) 7.81 7.81

Table A1: The table reports the Wald test statistic for testing the null hypothesis given in the column . The bold indicates that Wald test rejects the
null at 95 percent level according to χ2(3) distribution. The SVAR system is solved using GMM and delta method is used for computing the standard

error. Estimates of B are based on the SVAR identified with external instruments described in the text. The mean of bootstrap Wald statistics is

reported in parenthesis. The sample size spans 1960:07 to 2015:04.



Dynamic Responses using 1987 Crash Dummies in SVAR (UM , emp, UF )′

0 20 40 60

−2

−1

0

1

UM Shock

U
M

0 20 40 60

−0.5

0

0.5

UM Shock

e
m
p

0 20 40 60
−1

0

1

2

3

4

5
UM Shock

U
F

0 20 40 60

−2

−1

0

1

emp Shock

U
M

0 20 40 60

−0.5

0

0.5

emp Shock

e
m
p

0 20 40 60
−1

0

1

2

3

4

5
emp Shock

U
F

0 20 40 60

−2

−1

0

1

UF Shock

U
M

0 20 40 60

−0.5

0

0.5

UF Shock

e
m
p

0 20 40 60
−1

0

1

2

3

4

5
UF Shock

U
F

Figure A1: Dynamic responses to one standard deviation shocks of SVAR (UM , emp, UF )
′. Boot-

strapped 90% error bands appear as dashed lines. Dummies for 1987:10 and 1989:11 are included in VAR

estimation. Response units are reported in percentage points. The sample spans the period 1960:07 to 2015:04.



Pre-2008 Dynamic Responses in SVAR (UM , emp, UF )′
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Figure A2: Dynamic responses to one standard deviation shocks of SVAR (UM , emp, UF )
′. Boot-

strapped 90% error bands appear as dashed lines. Response units are reported in percentage points. The sample

spans the period 1960:07 to 2007:12.




