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Abstract

Demand for insurance can be driven by high risk aversion or high risk. We

show how to separately identify risk preferences and risk types using only choices

from menus of insurance plans. Our revealed preference approach does not rely

on rational expectations, nor does it require access to claims data. We show

what can be learned non-parametrically from variation in insurance plans, offered

separately to random cross-sections or offered as part of the same menu to one

cross-section. We prove that our approach allows for full identification in the

textbook model with binary risks and extend our results to continuous risks. We

illustrate our approach using the Massachusetts Health Insurance Exchange, where

choices provide informative bounds on the type distributions, especially for risks,

but do not allow us to reject homogeneity in preferences.

1 Introduction

Two key sources of variation in the demand for insurance are variation in risk pref-

erences (e.g., degree of risk aversion) and variation in risk types (e.g., probability of

making a claim). The distinction between the two is crucial for positive and norma-

tive analysis (e.g., Einav, Finkelstein and Cullen 2010, Chetty and Finkelstein 2013).

Adverse selection, in which consumers select into insurance plans based on expected

expenditure, can lead to market unravelling and ineffi ciently low coverage. In contrast

with heterogeneity in risks, preference heterogeneity cannot cause insurance markets to

be adversely selected. In fact, recent empirical work finding advantageous selection (in

∗We would like to thank Richard Blundell, Ian Crawford, Mark Dean, Geert Dhaene, Liran Einav,
Phil Haile, Arthur Lewbell, Bernard Salanié and Frans Spinnewyn for helpful comments and discussions.
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which low risk individuals purchase more generous insurance plans) has been consid-

ered evidence for the importance of preference heterogeneity (e.g., Cutler, Finkelstein,

and McGarry 2008).

A growing empirical insurance literature estimates heterogeneity in both preferences

and in risk types using data on plan choices and insurance claims (see Einav, Finkel-

stein and Levin 2010, Barseghyan, Molinari, O’Donoghue and Teitelbaum 2015a). This

approach is data-demanding compared to standard demand estimation. More impor-

tantly, using this type of data, separate identification of preferences and risks requires

assumptions about individuals’(rational) expectations over the distribution of claims.

Yet in the context of health insurance, for example, consumers may not understand

how different health states map into health expenditures due to the opacity of health

care prices (Leiber 2014). They may be overconfident about their own health states

(Grubb 2015) and underweight small probability events (Johnson et al. 1993). Given

these constraints and biases, it seems reasonable to believe that consumers may have

distorted perceptions of the risk they face. If consumers do not have rational expecta-

tions over the distribution of their future claims, claims data cannot help to separate

a low degree of risk aversion from overoptimistic beliefs about risk.

We present an alternative framework, based on revealed preference, that shows how

to identify individuals’risk perceptions and preferences from choice data alone. Our

approach does not rely on rational expectations, nor does it require claims data, but

exploits variation in the plans from which individuals can choose. This new framework

allows us to revisit the question how important preference heterogeneity is for the

observed variation in insurance choices. It also provides an alternative approach to

estimating perceived risks. Our estimates could be used, in combination with claims

data, to assess the accuracy of risk perceptions, which is relevant for welfare and policy

analysis in insurance markets (Spinnewijn 2012, Handel, Kolstad and Spinnewijn 2015).

The key challenge in inferring risk perceptions and preferences from insurance

choices is that both high risk and risk aversion increase the willingness to buy in-

surance. To overcome this challenge, we use variation in insurance plan characteristics

that differentially attract individuals along the risk and preference dimension. The

identification argument in our model exploits the fact that marginal willingness to buy

insurance is more rapidly decreasing in coverage for individuals with high risk aver-

sion (but low risk) than for individuals with low risk aversion (but high risk). As a

consequence, two plans that differ in their coverage level and premiums can differen-

tially attract individuals along the risk and preference dimension. Our approach can

provide informative bounds on preference and risk types using cross-sectional data on

individuals choosing from a single menu of plans. The approach is more powerful when

applied to choice data from similar populations facing different menus of plans. Such

variation in insurance options for otherwise identical populations might be driven by

differences in the regulatory environment, by differences in costs of insurance provision
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(across states or time), or by differences in market power of insurance providers.1

We convey the key intuition for identification in a simple model with binary risks

and binary choices with cross-sectional variation in the choice sets. In this binary choice

setting, data on insurance choices from a single menu is insuffi cient to reject homogene-

ity in risks or preference (even if heterogeneity was substantial). The observation of

cost realizations cannot help either to reject preference homogeneity if the market is

adversely selected. But with similar individuals facing different menus, the difference

in plan shares under the menus allow us to put bounds on the distribution of both risk

types and risk preferences. In order to achieve this partial identification, individuals

must face a menu in which plans that provide more coverage charge a higher price, but

are cheaper per unit of coverage. As a result, such plans will attract high-risk, but low

risk-aversion types. In the absence of such variation, it is impossible to reject homo-

geneity in preferences, even if claims data is observed and expectations are rational.

Data on plan choices allow us to overcome another challenge when working with claims

data of inferring heterogeneity in (ex ante) risk types from (ex post) risk realizations.

Without additional structure on the heterogeneity in risk types, such inference can only

be made from plan choices.

Remaining with binary risks, we demonstrate the potential of plan variation for

identification in the standard textbook insurance model. Here, individuals decide how

much coverage to buy at a constant price per unit of coverage. This can be represented

as choices among binary sets with high vs. low coverage, but with a large number of

such choice sets this conveniently reduces to the textbook model where individuals may

choose any amount of coverage at the specified unit price. As risk aversion determines

the gradient of the marginal willingness to pay with respect to coverage, it also deter-

mines the change in preferred coverage when the unit price of coverage changes, while

both an individual’s risk and risk aversion determine the agent’s preferred coverage

level. We show how the joint distribution of binary risks and CARA preferences can

be non-parametrically identified exploiting price variation in the textbook model. Full

identification would require infinite price variation. Limited price variation already

suffi ces to identify key moments capturing the heterogeneity in both dimensions.

We then extend the model beyond binary risks and choice sets to settings that more

closely resemble actual health insurance coverage. In practice, health insurance plans

are characterized by deductibles, co-insurance rates and out-of-pocket maxima. Indi-

viduals of different preference and risk types care differentially about covering different

types of expenses. For example, the decreasing returns to coverage imply that individu-

als with high risk aversion care more about reducing high out-of-pocket expenses (e.g.,

a decrease in the out-of-pocket maximum) than the reduction of out-of-pocket expenses

1Standard revealed preference arguments are based on the same individual choosing consumption
bundles at different prices. In insurance markets we rarely have such data: insurance options for
individuals often change when the characteristics of the individual changed and individuals’responses
may not reflect their preference ranking due to inertia (Handel 2013).
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that are already low (e.g., a decrease in the deductible). We also illustrate how the

same plan variation drives identification when all plans are offered within one menu to

a single cross-section of individuals. The key intuition is the same as in the case with

cross-sectional variation in binary choice sets, as different plans need to differentially

attract types along the different dimensions. The obtained bounds are different though.

Within-menu plan variation naturally arises in many practical settings, which is also

what we exploit in our empirical analysis.

We apply our method to choice data from the Massachusetts Health Insurance

Exchange. We find informative bounds on the distribution of preferences and risks ex-

ploiting variation in the features of the contracts offered. Interestingly, we cannot reject

homogeneity in preferences as the different plan choices can be rationalized with only

heterogeneity in risks. However, we do reject homogeneity in risks. The required vari-

ance in risks increases as we restrict the analysis to reasonable preference parameters.

We then compare our bounds to estimates from the existing literature. Our application

shows what can be learned from choice data alone and highlights the strengths of the

revealed preference approach.

Our paper is motivated by a recent, but prominent literature analyzing heterogene-

ity in preferences and risks empirically, reviewed in Einav, Finkelstein and Levin (2010)

and Barseghyan et al. (2015a). This literature started with empirical tests for asym-

metric information in insurance markets, often finding a weak relationship between risk

type and insurance choice (see Chiappori and Salanié, 2014 and Cohen and Siegelman,

2010). This inspired a new series of papers estimating the heterogeneity in risk pref-

erences jointly with the heterogeneity in risk types in different markets. Examples are

auto insurance (Cohen and Einav 2007), annuities (Einav, Finkelstein and Schrimpf

2010) and health insurance (Bundorf, Levin and Mahoney 2012). These studies use

choice and claims data to estimate a structural model of heterogeneity and find sig-

nificant preference heterogeneity. Our work starts from a similar model of consumer

choice in which individuals choose insurance plans that maximize their expected utility

given their specific risk and preference parameters. Our approach, however, does not

require the additional structure on heterogeneity and relaxes the assumption of rational

expectations.

A separate empirical literature documents deviations from the standard model of

insurance demand. For example, Abaluck and Gruber (2011) find that individuals buy-

ing Medicare Part D are over-responsive to prices relative to expected coverage and are

not responsive to the variance in out-of-pocket expenses. Sydnor (2010) demonstrates

that small distorted probabilities could explain deductible choices in auto and house

insurance, while with rational expectations extreme risk aversion would be needed.

The identification challenges in the absence of rational expectations have also been

addressed using survey data about beliefs (Manski 2004). Handel and Kolstad (2015)

complement insurance data with surveys and demonstrate the importance of informa-

4



tion frictions more generally in explaining the choice of health insurance plans. Most

similar in spirit to our paper is Barseghyan et al. (2013), who use insurance choices

to separate probability distortions and risk preferences. They extend their benchmark

analysis to incorporate unobserved heterogeneity, but rely on parametric assumptions

about the joint distribution. In a contemporaneous review of the literature, Barseghyan

et al. (2015a) highlight the use of decreasing returns to coverage to separate risk per-

ception and preference and state how "to date, point identification of multidimensional

heterogeneity in risk preferences has relied upon parametric assumptions about their

joint distribution. It remains a question for future research, to find a field setting and

the proper set of assumptions to obtain nonparametric identification."

Following the Revealed Preference (RP) paradigm, our work uses only choices and

relies on price/plan variation for identification. We aim to recover preferences, but also

risk perceptions. Our methodology is different from standard empirical RP techniques

(see Crawford and De Rock, 2014) and our focus is to uncover heterogeneity in types and

does not require multiple observations of the same individuals.2 ,3 Closely related to our

work, Chiappori et al. (2009) analyze the non-parametric identification of preferences

under risk from discrete choices, using variation in menus, but again relying on data

on risk realizations.4 Choi et al. (2007) find important preference heterogeneity for

choices under risk using experimental variation of prices, but relying on risks with

known probabilities. Barseghyan et al. (2015b) use insurance choices of the same

individual across different domains to partially identify both risk preferences and risk

distortions. Our paper illustrates how both plan variation across menus (offered to

multiple cross-sections) and within a menu (offered to one cross-section) can be used

for identification. We provide conditions for both partial and full identification.

The paper is organized as follows. Section 2 sets up our choice model and defines

our object of interest for identification. Section 3 analyzes the identification of type

heterogeneity in a stylized model with binary risk and binary choices. We briefly extend

these insights beyond our stylized model in Section 4 and apply them using insurance

choices on the Massachusetts Health Exchange in Section 5. We discuss key steps of

our proofs in the main text, and provide the formal proofs in the Appendix.

2 Setup

We consider a model in which agents decide which plan to buy to provide insurance

against a particular risk. Agents differ in two dimensions: the risks they face and the

2Exceptions in the RP literature are Crawford and Pendakur (2013), who study the minimum
number of types necessary to explain observed choices in cross-sectional data, and Dean and Martin
(2015), who study the largest subset of the data which is consistent with homogeneous preferences.

3Recent examples in the RP literature that allow for deviations from rational demand are Crawford
(2010), Adams et al. (2014) and Caplin and Dean (2015).

4Relatedly, Chiappori et al. (2012) and Gandhi and Serrano-Padial (2014) use aggregate data on
horse races to either estimate heterogeneity in preferences or heterogeneity in beliefs.
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preferences they have. The goal is to identify the population heterogeneity in both

dimensions. The identification challenge is that differences in plan choices may be

driven by differences in risks, preferences or both. This section describes the most

general model, while subsequent sections concentrate on prominent special cases.

Risk and Preference. Each agent faces an uncertain cost k ∈ R to which he

assigns cumulative distribution F (k|π). The agent’s perceived risk type is denoted by

π, which ranks agents by their riskiness as defined by first-order stochastic dominance.

This implies that for two types π1 > π2, F (k|π1) ≤ F (k|π2) for all k. Let Π denote

the domain of possible risk types.

An insurance plan X has a premium P and maps each cost k into an out-of-pocket

expense x (k) ≤ k. The agent’s preferences are represented by expected utility with

differentiable Bernoulli-utility function u (−x|σ) for an out-of-pocket expense x. The

agent’s preference type is denoted by σ, which ranks individuals by their preference

for risk following Pratt (1964). This is naturally the case for CARA preferences with

u (−x|σ) = − exp (σx) /σ. That is, for any two individuals, if σ1 > σ2, individual 1 is

more risk-averse than individual 2. We re-scale the preference type σ such that for a

risk-neutral agent σ = 0 and types with σ → ∞ are infinitely risk averse, so that the

domain of possible preference types Σ coincides with R+.5 The expected utility of a

plan X for an agent of risk-preference-type (π, σ) is

U (X|π, σ) ≡
∫
u (−P − x (k) |σ) dF (k|π) . (1)

Choice from Menu We want to infer types from observed choices by different

individuals. Let Ci denote the choice of individual i. The choice is meaningful only

relative to the menu of options that the individual can choose from. If individuals are

offered the choice between insurance plans X1, X2, ..., XN , we denote this by the choice

menu M = {X1, X2, ..., XN}. If different individuals are offered different menus, let
Mi = {Xi

1, X
i
2, ..., X

i
N} denote the menu offered to individual i.We assume either that

different individuals face the same menu as in most of the existing insurance literature,

or we assume that different plans are offered randomly to individuals so that the pool

of individuals that face each menu has the same underlying distribution of preferences

and risks. We drop the agent indicator i when the context is obvious.

Each agent is offered a menuMi before her cost is realized. The agent’s choice Ci

identifies the plan within the menu that gives her the highest expected utility:

Ci ∈ arg max
X∈Mi

U (X|π, σ) . (2)

5Convergence to infinite risk aversion means that for any two gambles where the lowest possible
outcome in the first gamble is higher than the lowest possible outcome in the second, individuals with
high enough risk preference strictly prefer the former.
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We know that a particular choice C from a particular menu M must be made by a

consumer with risk-preference-type that makes this choice optimal. Let B (C|M) be

the set of such consumer types for which we can rationalize this plan choice, that is

B (C|M) =

{
(π, σ) |C ∈ arg max

X∈M
U (X|π, σ)

}
.

Data and Identification Let H(π, σ) denote the (cumulative) distribution of

preference and risk types in the population, i.e., the fraction of people with a risk type

below π and a preference type below σ. This is the object we seek to identify. An

observation in our data set is a tuple zi = (Ci,Mi) where Mi denotes the menu of

plans from which individual i could choose and Ci denotes his or her actual choice. We

use the notation D (·) to refer to empirically observed fractions. D(C,M) is the frac-

tion of individuals observed in the population facing menu M and choosing contract

C. D(C|M) denotes the conditional distribution of choices given a particular menu.

In environments where we see multiple menus, Mi 6= Mj , we assume that these are

randomly distributed in the population. As discussed in the introduction, this arises

naturally in field experimental settings where otherwise identical people are presented

with different menus, but might also arise in other settings where regulations and there-

fore insurance plans might differ for otherwise identical populations.6 We sometimes

suppress the menu when there is no ambiguity. When we discuss utilizing data on cost

realizations, we write zi = (ki, Ci,Mi), with slight abuse of notation, where ki denotes

the cost that actually materialized for this individual. Throughout, we assume that we

observe a continuum of individuals, so that the law of large number convention holds.

We outline the implication of these assumptions next.

We first consider a single cross-section of observed insurance choices in which all

individuals face the same menuM. This follows most of the literature, but we focus on

the case where only choices are observed. Following the law of large number convention,

we say that the observed distribution D can be generated under type distribution H

if the number of observed choices does not exceed the number of types that find it

optimal to make such choices. Formally, we require for any subsetM′ ⊆M that∫
C∈M′

D(C|M)dC ≤
∫

(π,σ)∈U
dH (π, σ) , (3)

where U =∪C∈M′B(C|M). Simply, the fraction of agents who choose an insurance plan

6We do not rely on multiple choice observations per individual as this seems especially unreliable
in insurance settings (see also Footnote 1). Usual revealed preference approaches discussed in the
introduction consider consumption situations where individuals choose more than once at different
relative prices, and have not changed from one choice to the next. This is problematic in insurance
settings for two reasons: first, people might update about their risk type depending on whether they
had a high cost realization or not (while in most standard consumption settings there is no uncertainty)
and second, there is evidence that individuals display inertia. Therefore, we only rely on variation in
choices across individuals.
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within subsetM′ (left-hand side) cannot be larger than the fraction of agents in the set
of types that find it optimal to choose an insurance plan inM′ (right-hand side).7 We
say thatD is permissable if it can be generated under some type distribution. Note that

no data on cost realizations is used here, so our identification results from insurance

choices identify perceived risk type, even if it differs from their true risk. When we

discuss utilizing data on cost realizations, we use the assumption that perceived risks

coincide with the true risks, and say that distribution D is permissable if both the

choices and the empirical frequency of costs can be generated by some distribution H,

assuming that the risk type πi for each individual i is the true risk that generates the

risk realization ki.8

We also consider the possibility that otherwise identical populations are asked to

choose from different menus. In this case, we observe zi = {Ci,Mi} for multiple
contractsMj that are randomly assigned to individuals. That is, we observe a set of

multiple cross-sections of choices {D(C|Mj)}, one for each different menuMj .We say

that these observations can be generated under H if D(C|Mj) can be generated under

H for each menuMj . In other words, a single type distribution rationalizes the choices

across the multiple cross-sections. The overall set of observations is permissable if it

can be generated by some type distribution.

As mentioned earlier, our object of interest is the population heterogeneity captured

by the distribution H. We evaluate whether full or partial identification is possible

depending on the type of data available. The ideal data allows us to point identify the

entire joint distribution H. We introduce the following definition, where the meaning

of a set of observations depends on which of the above settings we are in.

Definition 1 (Full Identification) We say that there is full identification if for each
permissable observed distribution D there is a unique type distribution H that can

generate it.

While identifying the full distribution and correlations between different dimensions

of heterogeneity is clearly important, it is also challenging. A key result already would

be to establish along which dimensions type heterogeneity actually matters . We are

thus interested in the marginal CDFs of risk types and preference types, denoted by Hπ

7 If all agents have a unique optimal choice (i.e., arg maxX∈M U (X|π, σ) is a singleton for any (π, σ)
combination) it can be shown that condition (3) has to hold with equality everywhere by combining
it with the fact that both D and H integrate to one. In general, agents can have multiple optimal
elements in their menu, so the number of agents who find a particular combination optimal can be
larger than their actual choices.

8Formally, we say that the conditional distribution of costs and choices D(k, C|M) can be gener-
ated under H if there exists a probability distribution r(C|M, π, σ) over the set of optimal choices
arg maxC∈M U(C|π, σ) such that D(k, C|M) =

∫
f(k|π)r(C|π, σ,M)dH, where f(k|π) is the proba-

bility of outcome k for risk type π. Note that this implies that the marginal distribution of D over C
satisfies (3) in this case, so it is permissable also when we simply disregard the risk realizations ki. We
make this assumption here to be able to relate our results to the earlier insurance literature. Most of
our work will not use risk realizations, and can therefore back out beliefs πi even if they were biased
relative to the true risk.
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andHσ. We explore whether we can impose any bounds on these marginal distributions

and, in particular, whether we can exclude that the variation in contracts can be

rationalized for some homogeneous risk-type π or preference-type σ, with all variation

arising because of heterogeneity in the other dimension. We introduce the following

two definitions:

Definition 2 (Identification of Bounds on Type Heterogeneity) We say that we
can identify bounds on preference (respectively, risk) heterogeneity for a permissable

distribution of observations D if we can find α > 0 such that any distribution H that

generates D satisfies Hσ (σ̄) ≥ α or 1 − Hσ (σ̄) ≥ α for some σ̄ ∈ R+ (respectively,

Hπ (π̄) ≥ α or 1−Hπ (π̄) ≥ α for some π̄ ∈ Π).

This definition ensures that we can place either lower or upper bounds on the CDF

of preference types (resp. risk types). The lower bound Hσ (σ̄) ≥ α implies that at least
a share α of agents have a preference type weakly smaller than σ̄. The upper bound

Hσ (σ̄) ≤ 1−α implies that at least a share α of agents have a preference type strictly
larger than σ̄. The identification of bounds on the CDF in the preference dimension

alone is not suffi cient to reject homogeneity in that dimension. For that, we would

require both an (informative) lower and upper bound on the CDF for some preference

σ̄. These bounds prevent us from fitting the CDF of a degenerate distribution with all

mass concentrated in one specific type. The same holds of course for risks.

Definition 3 (Inability to Reject Homogeneity) We say that one cannot reject
preference (respectively, risk) homogeneity if for every permissable distribution of ob-

servations D there exists a type distribution H that can generate it and the support of

its marginal distribution Hσ (respectively, Hπ) is a singleton.

This definition refers to settings where no distribution of available data could pos-

sibly reject homogeneity in preferences (respectively risk).

3 Identification in a Stylized Model

We consider a stylized model in which individuals face binary risks and a binary choice.

This stylized model helps us to demonstrate the potential for non-parametric identifi-

cation of type heterogeneity using only choice data, but exploiting plan variation. We

briefly contrast this with the identification challenges using the standard claims-based

approach. In the next section, we then extend the model beyond binary risks and choice

sets to settings that more closely resemble actual health insurance coverage choices to

show the practical implementability of our choice-based approach. In particular, we will

demonstrate how the same plan variation drives identification when plans are offered

jointly as part of the same menu.
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Binary Risk and Choice Set Any individual (ex ante) faces a binary cost dis-

tribution k ∈ {0, L}, either losing L or nothing at all. For instance, the individual could
become sick and require costly treatment, but faces no medical costs when healthy. The

risk type πi of agent i is simply his probability of incurring the cost L.

Any individual chooses from a binary menu M = {X1, X2} that offers the choice
between two insurance options X1 and X2. We focus on the simplest case where

individuals can either choose no insurance (X1 = ∅) or some insurance (X2 = X): the

choice set is simplyM = {∅, X} for all individuals.
Since the risk is binary, a plan is fully determined by the premium P and the

coverage q paid in case of loss, where we restrict attention to P < q (as no plan with

P ≥ q will ever be chosen). The expected utility of a plan X = (P, q) simplifies to

U (X|π, σ) = (1− π)u (−P |σ) + πu (−P − [L− q] |σ) ,

while remaining uninsured gives utility

U (∅|π, σ) = (1− π)u (0|σ) + πu (−L|σ) .

An individual prefers plan X over remaining uninsured if and only if

π

1− π
u (−P − [L− q] |σ)− u (−L|σ)

u (0|σ)− u (−P |σ)
≥ 1. (4)

The insurance plan entails a utility gain due to the coverage provided when the bad

state realizes (with probability π), but entails a utility loss due to the premium paid,

even when the good state realizes. The ratio of the utility gain relative to the utility

loss is increasing in the individual’s risk aversion (Pratt 1964). As a consequence, an

individual’s willingness to buy the plan is not only increasing in the risk type π, but

also in her preference type σ.

For this binary choice environment, the main tool for analysis is the type frontier

T (∅, X) which groups together all types that are indifferent between buying the plan

X and remaining uninsured, i.e.,

T (∅, X) = {(π, σ) |U (X|π, σ) = U (∅|π, σ)}

= B (∅|M) ∩ B (X|M) .

Represented in (π, σ)-space, the type frontier is monotonically decreasing as shown in

Figure 1. A risk-neutral individual (σ = 0) is only willing to buy the plan if her loss

probability exceeds the price per unit of coverage, i.e., π ≥ P/q. If the loss probability
converges to 0, an individual must become infinitely risk-averse to be willing to buy

the insurance plan. We can then state the following result.

Proposition 1 Consider a binary costs k ∈ {0, L} and a binary choice setM = {∅, X}.

10



With a single cross-section of choices and associated observations zi = {Ci,M}, we
cannot put any bounds on the preference heterogeneity. We can neither reject preference

homogeneity nor risk homogeneity.

Proof. See appendix.

The intuition is straightforward. The share of individuals buying insurance, α =

D (X|M), corresponds to the mass of types that lie above the type frontier in the left

panel of Figure 1. We cannot exclude that the variation in the choice to buy the plan

is driven by heterogeneity in risk types only or by heterogeneity in preference types

only. Fix the fraction α of individuals who buy the plan.9 If agents have preference

type σ̄ but differ in risks so that exactly 1 − α of them have a type below π̄, exactly

1 − α would not buy insurance which would clearly rationalize the observed choices.
This case is illustrated by the dashed density above the horizontal gray line, and the

shaded area indicates the mass of individuals with risk type below π̄ that would not

buy insurance. Alternatively we could have assumed that all agents have the same risk

type π̄ but are heterogeneous in preferences such that exactly 1−α of them have types

below σ̄. Again, such a type distribution would rationalize the observed choices, which

is indicated by the dashed-dotted density above the vertical gray line, where again the

gray area indicates those types that would not buy insurance. Therefore, we can rule

out neither preference nor risk heterogeneity.

Only very weak results can be obtained in this setting. Since individuals are risk-

averse, only types with π ≤ P/q would be willing to buy insurance. The share of

uninsured individuals 1− α places a lower bound on the share of individuals with loss
probability lower than P/q, i.e., Hπ (P/q) ≥ 1− α.

While the construction suggests that one could discipline this exercise more by

observing the costs that individuals end up incurring, we show next that it remains

impossible to disentangle the two sources of heterogeneity. We then analyze how iden-

tification becomes possible with variation in the offered plans.

3.1 Standard Approach using Claims Data

We consider the case in which we observe the (ex post) realization k ∈ {0, L} of the
risk the individual decided to insure or not. In order to use this additional data in a

meaningful way we need the assumption that individuals perceive their risk accurately.

We again consider only one cross-section of individuals facing the same menu.

Inferring (ex ante) risk types from (ex post) realizations is challenging. When

individuals face a binary risk and the loss value L is the same for all individuals,

the population distribution of cost realizations is binary as well and identified by the

average loss probability. Let πa ∈ (0, 1) denote the average probability of a loss in the

9 In the right panel of Figure 1 type (σ̄, π̄) is chosen as an arbitrary point on the type frontier,
implying that this type is indifferent between buying the contract or not.
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Figure 1: The left panel shows the type frontier for a binary menu C = {∅, X} in (π, σ)-
space. Types above the frontier buy the plan, while types below the fontier remain
uninsured. The right panel illustrates an indifferent type (σ̄, π̄). If all other individuals
have the same risk type π̄ but a density of preferences as indicated by the dashed line,
choices can be rationalized. Alternatively, all individuals could have same preference
type σ̄, but differ in risks as in the dashed-dotted density, and again choices can be
rationalized.

population. Without further information on people’s insurance choices, the average loss

probability is not helpful in identifying risk heterogeneity. In particular, individuals

could all have the same risk type (i.e., πi = πa for all i), all be certain to face the loss

or not (i.e., πi = 1 for share πa of individuals and πi = 0 for the remaining share 1−πa
of individuals), or anything between as long as the average loss probability equals πa.

Thus, observing costs alone does not establish any bounds on the distribution of risks.

If both cost realizations and plan choices are observed, it is possible to bound

the distribution of risks. Let π∅ = D(L|∅) denote the average probability of a loss
amongst individuals who do not buy insurance and let πX = D(L|X) denote the

average probability among individuals who buy a contract. If these probabilities are

not the same, the population who buys insurance faces a different risk on average than

those who do not. While we can reject homogeneity in risks, we cannot bound the

risk distribution much more, as we cannot identify the risk heterogeneity among those

making the same choice, who again could all have the same risks (i.e., π = π∅ for those

who don’t buy insurance) or might be more heterogeneous with same average.

As long as there is adverse selection (πX ≥ π∅), we will not be able to rule out

preference homogeneity. The reason is simple. Let α be the share of individuals buying

the plan, and let σX and σ∅ be the preference types such that a person with either

type (πX , σX) and type (π∅, σ∅) is indifferent to buying insurance. Any individual with

preference type σ̂ ∈ (σX , σ∅) would buy insurance when having risk type πi = πX ,

but not with risk type πi = π∅. Hence, we can rationalize the observed choices and

costs for any of these preference types simply assigning the risk type πX to share α

of individuals and risk type π∅ to the remaining share. This is summarized in the

12



following proposition:

Proposition 2 Consider a binary cost k ∈ {0, L} and a binary choice setM = {∅, X}.
With a single cross-section of choices and cost realizations zi = {ki, Ci,M}, we cannot
reject preference homogeneity under adverse selection (i.e., D (L|X) ≥ D (L|∅)).

We note that this problem of identifying (ex ante) risk types from (ex post) risk

realizations, even under rational expectations, is a general one that extends beyond

binary risks for any family of distribution functions that is convex in the sense that

a convex combination of any two distributions is still in the family. The standard

approach in the literature, however, is to rely on parametric assumptions about the

type distributions (see Barseghyan et al. 2015a) and thus uses risk realizations to

identify the distribution of risk types as the above property is violated under specific

functional forms.10

3.2 Alternative Approach using Plan Variation: Marginal Variation

The standard approach renders it diffi cult to bound the distribution of preferences

and to reject preference homogeneity. Therefore, we explore whether identification

is possible using variation in the offered plans. The key question in this context is

which types would be willing to pay for more insurance. We explore in this subsection

the differential willingness to pay for a little extra coverage, and return in the next

subsection to the actual choice between alternative options.

We first characterize the types of individuals attracted by more generous coverage.

This can best be analyzed by considering the marginal willingness to pay for coverage

or the rate at which an individual is willing to give up consumption in the "good"

state for more consumption in the "bad" state. An insurance plan X = (P, q) implies

consumption levels in the respective states of mg (X) = −P and mb (X) = −P −
(L− q) .The marginal willingness to pay (MWtP) for an extra unit of coverage equals

MWtP =
dP

dq
|U =

(
−dmg

dmb
|U
)(

1− dmg

dmb
|U
)−1

, (5)

which is a strictly increasing function of the marginal rate of substitution (MRS) across

states:

− dmg

dmb
|U(X|π,σ) =

π

1− π ×
u′ (mb (X) |σ)

u′ (mg (X) |σ)
(6)

∼=
π

1− π ×
{

1− u′′ (mg (X) |σ)

u′ (mg (X) |σ)
[mg (X)−mb (X)]

}
,

10For example, the convex combination of two normal distributions tends to have two peaks and is
no longer normal. In this case the shape of the overall distribution of risks can identify the distribution
of underlying types, but this relies very much on the choice of the underlying family of distributions.
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Figure 2: The solid curve depicts the marginal willingness-to-pay for coverage (MWtP)
for a type (π, σ) on the type frontier and the shaded area depicts this type’s total
willingness to pay. The dashed line shows the MWtP for a type (σ′, π) with higher risk
aversion (σ′ > σ). This type has higher total willingness to pay, so is no longer on the
type frontier. To be on the type frontier the risk has to be lower so that the MWtP is
lowered, as indicated by the dotted line for type (σ′, π′) with π′ < π.

where the second line uses a Taylor approximation for u′ (mb (X) |σ), relying on the

third and higher order derivatives of the utility function being negligible. Since the

MWtP is fully determined by the MRS, we will often refer to expression (6) even when

we are talking about the underlying MWtP.

Expression (6) indicates that both a higher loss probability π and higher risk aver-

sion −u′′/u′ increase the marginal willingness to pay for coverage. However, the relative
weight of risk aversion in determining the marginal willingness to pay is smaller the

more coverage the plan already provides (i.e., the smaller the consumption wedge,

mg (X) − mb (X)). The marginal value of coverage thus decreases more rapidly for

individuals with higher risk aversion. In the extreme case that a plan provides full in-

surance, the willingness to pay for the last unit of coverage equals the loss probability.

The role played by the individual’s risk aversion has become of second order.

It is particularly useful to compare the willingness to pay for additional coverage

amongst those types who are just indifferent about buying some plan X (i.e., for types

(π, σ) on the type frontier T (∅, X)). If we offered a plan that is more generous, but

slightly more expensive, this would attract high risk individuals who are willing to pay

more on the margin. By definition, the total willingness to pay for the original plan X

with coverage q is the same for all individuals on the type frontier. Moreover, it is the

sum of the marginal willingness to pay for increasing coverage from zero to q. Consider

an individual with type (π, σ) on the type frontier. His marginal willingness to pay is

indicated by the solid line in Figure 2, and his total willingness to pay is indicated by

the shaded area. Any other individual on the type frontier must have the same shaded

area.
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Now consider a more risk averse preference type σ′ > σ. If his risk is unchanged, his

marginal willingness is always higher, except at plans that offer full insurance. This is

depicted as the rotation to the more tilted dashed curve in Figure 2. Since for this type

the area under the curve is larger, he would strictly prefer to buy the plan rather than

remaining uninsured. For an individual with preference type σ′ to be indifferent, his

risk must be lower. This shift to a lower risk π′ < π reduces the marginal willingness

to pay proportionally for any coverage level, indicated by the downward shift to the

dotted curve in Figure 2. An initial rotation followed by a downward shift has the

property that at coverage level q, the dotted curve is below the initial curve. The

marginal willingness to pay for any additional coverage beyond what is provided in

contract X is lower for the individual with lower risk (and higher risk aversion). This

will induce the following property amongst individuals that are indifferent between no

insurance and contract X, which we will exploit later on: if contract X is replaced by

a more generous but more expensive contract X ′, there will be a cutoff and those with

higher risks will strictly prefer to buy the new plan while the others strictly prefer not

to (compared to either the old plan or no plan, amongst which they are indifferent).

The previous argument relied on an initial "rotation" of the marginal willingness-

to-pay, as risk preferences matter less closer to full insurance. It was followed by a

"shift" since risk types matter everywhere, even at full insurance. We focus here on

utility functions where the above logic does hold not just close to full insurance, but

for any coverage level:

Assumption 1 We consider families of utility functions with the following property:
Along the type frontier T (∅, X) the marginal rate of substitution π

1−π
u′(mb(X)|σ)
u′(mg(X)|σ) is

increasing in π, and it converges to zero as π goes to zero.

Since CARA preferences are typically adopted in the empirical insurance literature,

we explicitly check this property for this class of preferences:

Lemma 1 Assumption 1 holds for CARA preferences.
Proof. See appendix.

Under Assumption 1, we can study exactly which types of plan variation lead to

crossings of type frontiers which are required to identify bounds on the marginal distri-

butions as we will show shortly. For preferences not satisfying Assumption 1, we would

need to study possibly different variation to obtain crossings and thus identification.

3.3 Between-Menu Variation in Plans

We now introduce discrete variation in the plans offered. We consider two plans Xh and

Xl, where plan Xh provides more coverage than plan Xl (i.e., qh > ql). We continue

to analyze binary menus Mj = {∅, Xj}, with different plans offered separately to
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Figure 3: The solid and dotted line show the type frontiers in (π, σ)-space for the binary
menu C = {∅, Xh} and C = {∅, Xl} respectively. The type frontiers do not intersect as
the high-coverage plan charges the same (or a lower) premium and attracts all types
that would also buy the low-coverage plan.

different cross-sections of individuals. The next section shows that the same logic

drives identification when the different plans are offered jointly to a single cross-section

of individuals.

Consider two randomly selected cross-sections of individuals, where the first cross-

section is offered the menu Mh = {∅, Xh} and the second cross-section is offered the
menu Ml = {∅, Xl}. The share of individuals buying insurance when each plan is
offered separately equals αh = D (Xh|Mh) and αl = D (Xl|Ml) respectively.

If the high-coverage plan charges the same (or a lower) premium, it dominates

the low-coverage plan. All types who would buy insurance when offered the low-

coverage plan also buy insurance when offered the high-coverage plan (i.e., B (Xl|Ml) ⊂
B (Xh|Mh)). The high-coverage type frontier T (∅, Xh) is illustrated by the solid line

in Figure 3. The type frontier lies below the low-coverage type frontier T (∅, Xl)

which is illustrated by the dotted line. We can assign the observed increase in shares

αh − αl to the types in between the two frontiers T (∅, Xl) and T (∅, Xh) (i.e., to

B (Xh|Mh) \B (Xl|Ml)). However, this type of plan variation sheds limited light on

the heterogeneity in either dimension separately. The observed variation in plan choices

could either be explained by risk variation or by preference variation only. The former

is illustrated by the horizontal line in Figure 3, on which all types share the same pref-

erence σ̄. In fact, the observed plan shares still do not allow to put any bounds on the

preference distribution.

If the high-coverage plan Xh is offered at a higher premium, it becomes less attrac-

tive than the low-coverage plan to some individuals, but remains more attractive to

others if the premium increase is relatively small (i.e., B
(
Xj′ |Mj′

)
* B (Xj |Mj) for

j′ 6= j). Assumption 1 implies that among those types that are indifferent at X, those

with high risks prefer to buy more coverage. This implies that that the type frontiers
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Figure 4: The solid and dotted lines show the type frontiers in (π, σ)-space for the
binary menu C = {∅, Xl} and C = {∅, Xh} respectively. The type frontiers intersect at
(π̄, σ̄). The cheaper low-coverage plan charges a higher price per unit of coverage and
differentially attracts types with high risk aversion and low risk.

cross only once, as depicted in Figure 4. The high-coverage type frontier T (∅, Xh),

depicted by the dotted curve, is a clockwise "rotation" around (π̄, σ̄) relative to the

low-coverage type frontier T (∅, Xl), depicted by the solid curve. Low risk types be-

tween the two curves (with π < π̄ and σ > σ̄) buy the cheaper low-coverage plan but

would remain uninsured when offered the more expensive plan, while high risk types

between the two curves (with π > π̄ and σ < σ̄) remain uninsured when offered the

cheaper low-coverage plan, but buy insurance when the plan provides the additional

coverage so long as the premium increase is not too high. Note that the risk-neutral

individual on the type frontier of plan Xj has risk type π = Pj/qj . Only if its price per

unit of coverage remains lower than for the low-coverage contract (Ph/qh < Pl/ql), the

high-coverage contract can differentially attract some types to buy insurance.

Clearly, we could now set identify an individual’s type if we were to observe the

individual’s choice under the two menus. For example, an individual who switches out

of the insurance plan when offered Xh rather than Xl, must have a risk type higher

than σ̄ and a preference type lower than π̄. Even if we observe only one choice per

individual, but two random cross-sections of individuals choosing from the respective

menus, we can put bounds on the mass of the distribution H relative to the intersection

point as stated in the following Lemma.

Lemma 2 Under Assumption 1, the type frontiers for the pairwise menus {∅, Xh}
and {∅, Xl} with qh > ql, have a unique intersection (π̄, σ̄) if and only if Ph > Pl, but

Pl/ql ≥ Ph/qh. Moreover,∫
π≥π̄

∫
σ≤σ̄

dH ≥ αh − αl ≥ −
∫
π≤π̄

∫
σ≥σ̄

dH. (7)
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Proof. See appendix.

Very low risk types along the type frontier for contract Xl have near zero marginal

willingness to pay for insurance, so they will not buy the additional insurance offered

by Xh. This ensures that the dotted curve in Figure 4 lies to the right of the solid curve

at low risks. Moreover, by Assumption 1, the willingness to pay changes monotonically

along the type frontier, so there can only be a unique type where the type frontiers

cross: at that point all lower risks on the type frontier for contract Xl would buy the

additional insurance while all higher risks would not. If Pl/ql > Ph/qh, for risk-neutral

preference (σ = 0) the dotted curve has to be to the left of the solid one, and so there

will be a crossing, as shown in Figure 4. On the other hand, if the expensive insurance

plan offers less coverage per dollar (i.e., Ph/qh > Pl/ql), the dotted curve would lie

completely to the right of the solid curve.11 In this case the type frontiers no longer

intersect as the low-coverage contract dominates the high-coverage contract, and plan

variation does not allow us to put bounds on preferences by a similar logic as that

depicted in Figure 3.12

The Lemma clearly describes the plan variation required for the type frontiers to

intersect: the high-coverage plan needs to be more expensive, but provide coverage at a

lower price per unit. If more people buy the high-coverage plan, the difference in plan

shares αh−αl places a lower bound on the share of individuals with π > π̄ and σ < σ̄.

The additional coverage is relatively more attractive to individuals with higher risk

than to individuals with higher risk aversion. If more people by the low-coverage plan,

the difference αl − αh imposes a lower bound on the share of individuals with π < π̄

and σ > σ̄. The exact shape of the type frontiers could help putting tighter bounds on

the joint distribution, but the more important observation is that the intersection of

the frontiers allows to place bounds on the marginal distributions as well. For example,

if the high-coverage plan is more popular, the share differential places a lower bound

on the share of individuals with lower risk aversion, i.e., Hσ (σ̄) > αh − αl. This is in
contrast to the case discussed before where plan variation induced a shift in the type

frontier (Figure 3) rather than a rotation (as in Figure 4). Intersections of the type

frontiers are crucial for identification and more intersections help us to further tighten

the bounds on the marginal distributions.

Proposition 3 Consider a binary costs k ∈ {0, L} and observations zi =
(
Ci,Mi

)
with Mi ∈ {M1, ..,MJ}. With at least two appropriately chosen menus M1 and M2

offered to random cross-sections of individuals, there are permissable distributions for

which we can identify bounds on preference and risk heterogeneity. With at least three

appropriately chosen menus M1,M2 and M3, there are permissable distributions for

which we can reject preference and risk homogeneity.

11This is true since it lies to the right for both low and for high risks π (and can only cross once).
12Only that here the labels between Xh and Xl are reversed.
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Proof. See appendix.

This proposition follows relatively straightforwardly from Lemma 2. Consider two

menus {∅, Xl} and {∅, Xh} which generate type frontiers as depicted in Figure 4, with
crossing point (π̄, σ̄). Assume an underlying distribution of types such that more agents

choose the low-coverage contract than the high-coverage contract. That means that

there are more types in the shaded area above σ̄ (and below π̄) than in the shaded area

below. This puts a lower bound on the number of agents with preference types above σ̄

(and below π̄), but does not yet rule out that all agents have the same preference or risk

type. Consider Figure 4 with another contract X ′h providing even higher coverage than

Xh and the corresponding type frontier crossing the type frontier of the high-coverage

contract to the south-east of the previous intersection (π̄′ > π̄, σ̄′ < σ̄). If more agents

buy insurance when offered this new generous contract than when offered the original

high-coverage contract, we know that there exists a set of types in the underlying

distribution that have preference types below σ̄′ (and above π̄′). This places bounds on

heterogeneity, since we can be sure that there are agents both with preferences above

σ̄ and below σ̄′. The same holds for risks.

Proposition 3 suggests that more variation in insurance plans will further tighten

bounds as the observation of each additional plan may provide an additional crossing

relative to other plans. While it may not seem straightforward how this could lead to

full identification, the textbook insurance model provides a simple setting that allows

us to do exactly that.

3.4 Full Identification in the Textbook Model

The previous subsection demonstrated how plan variation can place non-parametric

bounds on the distribution of preferences and risks. This subsection turns to the

question whether variation in binary menus M = {X1, X2} across otherwise identical
populations is enough to fully identify the joint distribution H in principle. This

question relates directly to the identification of risks and preferences in the standard

textbook model of insurance choice, which has guided the thinking about insurance

markets for decades.

In our binary setting, recall that a plan Xn is fully characterized by the premium

Pn and the amount of insurance qn. Defining the unit price of insurance as pn = Pn/qn,

one can equivalently characterize the plan by (pn, qn). The question is whether enough

variation in these two components identifies the underlying heterogeneity. This analysis

can be split into two parts. First, one can consider plans with identical unit price pn = p̂

and determine the fraction of agents that choose plan (p̂, q̂) over any other plan (p̂, q)

through pairwise comparisons. Alternatively, one can ask individuals to directly choose

their preferred plan amongst all plans (p̂, q) with unit price p̂. This alternative formu-

lation entails less information, so identification here also implies identification under
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pairwise comparisons.13 The alternative formulation is exactly the setup in textbook

insurance models where individuals choose the optimal quantity of insurance at given

unit price to cover a binary risk (see for example Kreps 1990, Varian 1992, Mas-Colell,

Whinston and Greene 1995, Gravelle and Rees 2004). In our notation, this corresponds

to the selection of an insurance plan from a menuMp̂ = {(P, q) |P/q = p̂, q ∈ R+}, and
from choice data we can observe the fraction of agents D(q|Mp̂) buying an unrestricted

coverage level q ∈ R+ offered at unit price p̂, as well as the cumulative D̃(q|Mp̂) of

agents that choose a coverage level no larger than q. For notational convenience and

to highlight the connection to standard results, we continue with this textbook model,

instead of pairwise plan comparisons.14

This leads to the second step for identification: we also need variation in unit

prices. Observing the fraction of individuals choosing between different coverage levels

at constant unit price is not informative about risk or preference: following the logic of

Lemma 2, the type sets B (q|Mp̂) for any available coverage choice q do not intersect as

the price per unit of coverage remains constant, and we are in a choice environment akin

to those depicted in Figure 3. However, consider randomly assigning groups to different

unit prices. That is, for a first random cross-section we observe their insurance choices

from Mph and for a second cross-section we observe choices from Mpl . Consumers

with the same coverage choice for the price ph may choose different coverage levels at

the reduced price pl < ph. The difference in willingness to buy additional coverage as

prices change depends on the difference in their preferences and risks. In particular,

due to the decreasing returns to coverage, the type with higher risk aversion (but lower

risk) will increase her coverage less when the price decreases to pl. This implies that

the type sets B (q|Mph) will be flatter than the type sets B (q|Mpl) at their respective

intersections and allows us to use the difference in coverage shares to disentangle the

heterogeneity in risk and preferences.

The textbook model allows for a direct illustration of this intuition. An individual
13 Intuitively, for a given agent, pairwise comparisons provide strictly more information, since it

provides pairwise information even for choices that are not optimal to this particular agent. This
intuition does not simply generalize for our comparison: in the textbook model one observes the
optimal choice among many contracts for any given individual, while in the binary comparisions one
does not see the preferred choice for one particular individual but only the relative attractiveness overall
accross individuals. Nevertheless, note that in the textbook model, for a given agent the optimal choice
q∗ is unique as his utility is strictly concave in q. Consider now an agent who has to choose between
two options q′ and q′′ who are either both larger or both smaller then his optimal q∗. Because of
concavity he prefers the choice that is closest to his optimal choice. Now consider a binary choice set
M = {Xq, Xq+ε} where both options have same unit price p but Xq has quantity q while Xq+ε has
quantity q + ε. By the preceeding argument, all agents whose unconstraint choice q∗ is below q prefer
Xq, while those whose unconstrained choice is above q + ε prefer Xq+ε. For ε suffi ciently small, the
mass of agents that prefer the middle vanishes, and we have uncovered the fraction of agents that
have optimal choices below q as those that choose Xq. Formally, considering a sequence of populations
we have limε→0D (Xq+ε|{Xq, Xq+ε}) =

∫ q
D(x|Mp̂)dx. So pairwise comparisions entail at least the

information from the textbook model.
14While, as mentioned before, pairwise plan comparisons provide in this setting at least the same

information as what the textbook model provides, this is not generally true. We will discuss this further
in Section 4.
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chooses the level of coverage such that the marginal rate of substitution for her type

equals the rate at which transfers can be made between the good and the bad state (as

implied by the unit price),

π

1− π
u′ (mb (q) |σ)

u′ (mg (q) |σ)
=

p

1− p . (8)

An individual buys more coverage than another because she faces a higher risk or

because she is more risk-averse. The variation in coverage choices across individuals

at a constant price p could therefore be entirely driven by heterogeneity in preferences

or heterogeneity in risks alone. Now taking logs on both sides of equation (8) and

approximating log [u′ (mb|σ) /u′ (mg|σ)] ∼= −u′′(mg |σ)
u′(mg |σ) [mg −mb], we find an individual’s

demand for coverage as a function of the unit price,

q ∼= A+B log (p/ [1− p]) (9)

with

A = L−
log
(

π
1−π

)
u′′ (mg|σ) /u′ (mg|σ)

and B =
1

u′′ (mg|σ) /u′ (mg|σ)
. (10)

While both higher risk and higher risk aversion increases coverage choices, the response

to a change in the price only depends on risk aversion. Those with higher risk aversion

tend to increase their coverage less and are thus less responsive to a change in the price.

The above approximation is exact for CARA preferences. For such preferences there

is a one-to-one mapping between (A,B) and (π, σ) , since A = L + log (π/(1− π)) /σ

and B = −1/σ. Therefore, the distribution H can be identified from the distribution

of A and B in the population. We will show that suffi cient price variation allows for

such identification. The key step in this argument is to observe that prices determine

the share of people with (A,B) for whom αA+βB ≤ t along any ray defined by α and
β and for any parameter t. In particular,

Pr(αA+ βB ≤ t) = Pr

(
A+

β

α
B ≤ t

α

)
= D

(
t

α
|Mp(α,β)

)
, (11)

where D
(
t
α |Mp(α,β)

)
is the observed share of people that buy no more insurance than

q = t/α for for p(α, β) ≡ exp (−β/α) /[1 + exp (−β/α)]. With suffi cient price variation

this can be observed for any level of α, β and t. This amounts to observing the marginal

distribution (11) of the weighted sum of A and B, for all possible weights.

The remaining question is whether we can learn the joint distribution over A and

B from observing all such marginal distributions over the sums of A and B. Cai,

Zhang and Peng (2005) provide an affi rmative answer based on a proof in the space

of characteristic functions which we replicate in the appendix to make our arguments

self-contained. This yields the following insight:
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Proposition 4 Consider a binary risk k ∈ {0, L}, a choice setMp with constant unit

price and CARA preferences. When observing the distribution of coverage choices in

Mp for each price p ∈ [0, 1], we can fully identify the distribution H for any permissable

set of observations.

Proof. See appendix.

Full identification of the non-parametric type distribution requires infinite variation

in the unit price of insurance. However, with limited price variation, we can still

reject homogeneity in preferences and risks and uncover key moments of the respective

distributions. This can be seen along the following lines. The demand specification in

(9) for CARA preferences implies

V ar (q|p) = V ar (A) + V ar
(
σ−1

)
× p̃2 − 2Cov

(
A, σ−1

)
p̃ (12)

for p̃ = log (p/ [1− p]) . Hence, with two exogenous prices, we obtain

[V ar (q|p1)− V ar (q|p2)] / [p̃1 − p̃2] = V ar
(
σ−1

)
× [p̃1 + p̃2]− 2Cov

(
A, σ−1

)
. (13)

We can use this to test for homogeneity in preferences and risks. This is easy to see

for the preference types - the argument for the risk types is relegated to the appendix.

Whenever the difference in variances in equation (13) is different from 0, we can reject

that σ (or σ−1) is constant and thus that the preference type is homogeneous. For

a constant σ, both V ar
(
σ−1

)
and Cov

(
A, σ−1

)
would be equal to 0. Finally, when

observing three (exogenous) prices, we can also identify the variance of the inverse of

the coeffi cient of absolute risk aversion

V ar
(
σ−1

)
=
[
V ar(q|p1)−V ar(q|p2)

p̃1−p̃2 − V ar(q|p2)−V ar(q|p3)
p̃2−p̃3

]
/ [p̃1 − p̃3] .

To summarize:

Proposition 5 Consider a binary risk k ∈ {0, L}, choice sets Mp with constant unit

price and CARA preferences. Rejecting homogeneity in preferences (risks) is possible

when observing the distribution of coverage choices in Mp for two prices in the unit

interval. We can identify the variance in (inverse) preference types when observing the

distribution of coverage choices inMp for three prices.

Proof. See appendix.

In this textbook model the progress we can make with claims data instead of price

variation is limited, for reasons akin to those mentioned in Section 3.1. Note that

when we restrict attention to CARA preferences like in Proposition 4, claims data

would be suffi cient to reject homogeneity in preferences, but does not allow to identify

any additional moments capturing the variation in preferences or risks. The issue

is that we cannot establish or reject homogeneity in preference or risk types for the
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individuals choosing the same coverage level q at unit price p. The observed share

of losses D (L|q, p) pins down only the average risk type among these individuals and
a preference type that rationalizes the coverage choice given this average risk type.

Hence, there is no way to identify heterogeneity in preferences or risks beyond these

average types that rationalize the respective coverage choices.15

Finally, note that in lieu of simple binary menus we introduced the text-book ap-

proach with several plans offered jointly. However, we restricted the menu to offer

plans with constant unit price, providing limited opportunities for identification within

a single menu. In the next section we discuss how multiple options offered together in

a single menu can help uncover the underlying heterogeneity.

4 From Theory to Practice

In this section, we do two things to show how to implement our identification approach

in practice. First, we move beyond binary risks and simple insurance plans. In practice,

costs can take many values and insurance plans are often complex. The coverage that an

insurance plan provides depends on the size and type of costs. For example, health plans

typically specify deductibles, co-insurance rates and out-of-pocket maxima. Variation

in these plan features helps identify type heterogeneity when (like in the binary case)

these features differentially attract types along different dimensions. The increase in

the dimensionality of the contract space - keeping fixed the dimensionality of the type

space - provides additional opportunities for identification.

Second, we show how within-menu plan variation can be used for identification even

if there is no between-menu plan variation (obtained via random variation in menus

faced by similar individuals). Even choices from a single menu can be informative

enough to place bounds on the distribution of types. This approach is particularly

useful, as within-menu plan variation naturally arises in many settings, while between-

menu variation typically requires experiments or quasi-experimental variation.

4.1 Plans and Expenses in Practice

When costs are continuous, a plan X can in principle specify any out-of-pocket expense

x (k) for each possible cost k ∈ R+. We focus on three pre-dominant coverage features

of insurance plans: a deductible D, below which all costs are paid out-of-pocket by

the individual, an out-of-pocket maximum M above which the out-of-pocket expenses

cannot increase, and a co-insurance rate β determining the individual’s cost share in

15Moreover, when we observe a higher loss probability among the individuals who buy more coverage,
in the spirit of Proposition 2, and we were to allow for any risk-averse preference type represented by
some concave utility function u (.), we can always construct a homogeneous preference type ex post
that rationalizes the choice and claims data with only heterogeneity in risk types.
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between. The out-of-pocket expense equals

x (k) =


k for k ≤ D,
D + β (k −D) for k ∈

[
D, 1

βM −
1−β
β D

]
,

M for k > 1
βM −

1−β
β D.

Simple Plans Covering High Expenses We first show that the logic for iden-

tification remains essentially identical to the arguments from the previous sections if

contracts cover high but not low expenses: consider insurance plans that set the de-

ductible equal to the out-of-pocket maximum (i.e., Z ≡ D = M). This induces full cost

sharing below Z but no cost sharing above Z. Now, the setting resembles our stylized

setting with binary risks studied before. The valuation of the insurance plan depends

crucially on the probability 1− F (Z|π) that the coverage is received.

Both high risk aversion and high expected costs increase the willingness to pay for

such a plan. We can compute the marginal willingness to reduce the threshold Z when

the plan charges a premium P , analogous to (5). Alternatively we can invert this to

get an expression analogous to the marginal rate of substitution (6) that guided our

understanding in the binary risk case:

dP
dZ |U(X|π,σ)

1− dP
dZ |U(X|π,σ)

= − [1− F (Z|π)]u′ (−P − Z|σ)∫ Z
0 u′ (−P − k|σ) f(k|π)dk

= −1− F (Z|π)

F (Z|π)

u′ (−P − Z|σ)

E [u′ (−P − k|σ) |k ≤ Z;π]
. (14)

The basic structure of this expression is very similar to (6) in the binary case. If risk

types can be ranked in a first-order stochastic dominant way (i.e., F (k|πi) ≤ F (k|πj) for
all k), we have that both individuals with higher risk and with higher risk aversion have

a higher willingness-to-pay for additional coverage. However, the returns to coverage

tend to decrease more rapidly for individuals with higher risk aversion. If among the

marginal buyers of a plan, the marginal willingness to pay is indeed higher for those

with higher risk but lower risk aversion, we can again invoke Lemma 2 and establish

rotations of the type frontiers by changing the coverage and price paid.16 Suffi cient

variation in prices and coverage allows us to uncover the underlying heterogeneity in

the spirit of Proposition 4.

Plans Covering High vs. Low Expenses In practice, plans also differ in the

type of expenses they cover: a plan could have lower deductible, but a higher out-of-

pocket maximum, as well as different coinsurance rates. We will see that this can offer

an additional channel for identification.
16Note that a risk-neutral type is indifferent about buying when (1− F (Z|π))E (k − Z|k > Z, π) =

P . By analogy to the binary case, to obtain a crossing of the type frontiers, we would need the expected
coverage to increase by more than the price for this indifferent risk-neutral type.
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The marginal expected utility from lowering the out-of-pocket expense x (k) for a

given cost k equals

dU (X|π, σ) = f (k|π)u′ (x (k) |σ) dx.

The willingness to purchase additional coverage depends on the probability of the

underlying cost (which is determined by the risk type π) and the utility from reducing

the out-of-pocket expense (which is determined by the risk preference σ).

Arbitrary non-linear insurance plans could vary the out-of-pocket expenses for each

cost realization k. Such plan variation allows separating heterogeneity in risk and

preferences. Yet even standard insurance contracts provide valuable identification. Out-

of-pocket maxima, for example, affect the coverage for high expenses, while deductibles

affect coverage for low expenses. For given risks, individuals with high risk aversion

care more about reducing high out-of-pocket expenses than reducing low out-of-pocket

expenses. In particular, a type with extreme risk aversion chooses based on the out-

of-pocket maximum and premium only, trying to reduce spending in the worst case, in

which both are paid. As a result, decreasing the wedge between out-of-pocket maximum

and deductible attracts the more risk-averse and discourages the less risk-averse types

from buying insurance. This tends to rotate the decreasing type frontier counter-

clockwise.

How much individuals with different risk care about reducing the out-of-pocket

maximum rather than the deductible depends on the likelihood ratio of the different

expenses. Starting from a contract for which deductible and out-of-pocket maximum

coincide at Z, the marginal willingness to reduce the deductible relative to the out-of-

pocket maximum simplifies to the product of co-insurance and hazard rate:

dM

dD
|U(X|π,σ) = (1− β)

f (Z|π)

1− F (Z|π)
. (15)

If the hazard rate were to decrease for higher risk types, they care more about reducing

the out-of-pocket maximum.17 Decreasing the wedge between the out-of-pocket max-

imum and deductible then tends to rotate type frontiers clockwise. Whether we can

establish a clean identification result like Lemma 2 will depend on these potentially

opposing forces.

4.2 Within-Menu Plan Variation

In practice, we often observe individuals picking a plan out of a menu providing the

choice between several, different plans. We demonstrate how within-menu variation in

plans can still be exploited for identification and link this to the between-menu variation

17Note that when risk types are ranked by first-order stochastic dominance, this does not imply that
the hazard rate and thus the marginal rate of substitution between D andM is monotone. A monotone
likelihood ratio property for the risk types (i.e., f (k + ε|π) /f (k|π) increasing in π for ε > 0), however,
would imply both a first-order stochastic dominance ranking and a monotone hazard rates.
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in plans analyzed before.

The first practical insight is that if identification is not possible for plans offered

in different menus (i.e. from between-menu variation, as in our previous setting),

identification is not possible either when these plans are offered together (i.e. from

within-menu variation). This is the case when type frontiers do not intersect, as in

Figure 3. Consider again our original binary risk setting, but now with contracts

Xh and Xl offered together in a three-plan menu M = {∅, Xl, Xh}. If contract Xh

provides more insurance at higher unit price (such that T (∅, Xh) lies above T (∅, Xl)),

identification is not possible using choices from this menu, as any different choice can

be explained either by higher risk aversion or higher risk. Starting from a type that

buys no insurance, an agent switches first to the low-coverage plan Xl, when increasing

either her risk or preference type, and eventually to the high-coverage plan Xh.18

The counterpart of this result is that plan variation that leads to identification

across menus can also provide identification when plan are offered together in one

menu. Consider any two plans Xj and Xj′ for which the type frontiers T (∅, Xj) and

T
(
∅, Xj′

)
intersect, as illustrated before in Figure 4. The type (π̄, σ̄) at the intersection

of the two frontiers is indifferent between all three options (including the outside option

∅). This type (π̄, σ̄) is a natural candidate to provide a bound on the support of one

of the two plans.

We illustrate this in our original binary risk setting. Consider again contracts Xh

and Xl, but with Xh providing more coverage at lower price per unit. Figure 5 plots

the different type sets corresponding to the choice of each of the plans when the plans

are offered within the same menuM = {∅, Xl, Xh}. The low-coverage plan provides an
intermediate option, but as it charges a higher price per unit of coverage, this is only

attractive to individuals with relatively high risk aversion (and relatively low risk type).

Such individuals strongly value the basic coverage provided by the low-coverage plan,

but place less value on the additional coverage provided by the high-coverage plan.

Hence, when increasing the risk type of an individual with risk aversion higher than

σ̄, she will first switch from no insurance to the low-coverage plan before eventually

switching to the high-coverage plan. In contrast, individuals with risk aversion lower

than σ̄ will never buy the low-coverage plan. Their marginal valuation of coverage is

more constant. As a consequence, these individuals remain uninsured when their risk

type is low, but switch immediately to the high-coverage plan (charging a low price per

unit) when their risk type is high.

In Figure 5 this gives rise to an area above σ̄ where agents buy Xl, but not below.

As a consequence, the share of individuals buying the low-coverage plan Xl places a

18Note that the agent will switch to the low-coverage plan when crossing the type frontier
T (∅, Xl) and to the high-coverage plan when crossing type frontier T (Xl, Xh). The latter lies above
T (∅, Xh) in this case and does intersect with T (∅, Xl) either. The share of individuals buying the low-
coverage plan Xl allows us to allocate mass to the parameter region in between the loci T (∅, Xl) and
T (Xl, Xh), but this variation is not suffi cient to place any bounds on the heterogeneity in preferences.
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Figure 5: The figure shows the choices for types in (π, σ)-space from the menu
C = {∅, Xl, Xh}. The lines show the type frontiers for any binary choice. All type
frontiers intersect at (π̄, σ̄). Like in Figure 4, the low-coverage plan charges a higher
price per unit of coverage and therefore differentially attracts types with high risk
aversion (and low risk).

lower bound on 1 − Hσ (σ̄). The following Lemma summarizes identification using

within-menu variation, in line with the potential of between-menu variation described

in Lemma 2:

Lemma 3 Under Assumption 1, the three type sets rationalizing the respective plan
choices from the menu M = {∅, Xl, Xh} with qh > ql meet at a unique pair (π̄, σ̄) if

and only if Ph > PL and Pl/ql > Ph/qh. Moreover,∫
π≤π̄

∫
σ≥σ̄

dH ≥ D (Xl|M) .

Proof. See appendix.

Comparing Lemmas 2 and 3, we note two important differences from observing

plan shares when plans are offered jointly rather than pairwise. First, for a given set of

plans, the plan shares when all plans are offered jointly allow for tighter bounds. For

pairwise comparisons the bounds need to be constructed using share differentials. The

rotations of the type frontiers imply that plans differentially attract and discourage

individuals from buying the plan, but we only observe the net differences. Second,

depending on the underlying distribution the net difference may be positive or negative,

which results in either a lower or upper bound on the support. For a given set of

plans, with all plans offered jointly, the bounds only go in one direction, regardless of

the underlying distribution.19 However, this would not be an issue in more complex

19This is due to our restricted contract space in the binary risk framework. The dimensionality of
the contract space and decreasing returns to coverage make that T (∅, Xh) is a clockwise rotation of
T (∅, Xl) if and only if

Ph
qh

< Pl
ql
, which implies that the type frontier T (Xl, Xh) is a clockwise rotation
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contractual environments for which the dimensionality exceeds the dimensionality of

the type space as we demonstrate in our empirical application. Such environments

allow for bounds from both sides, which are necessary to reject homogeneity.

5 Application toMassachusetts’Health Insurance Exchange

In this section, we use health insurance plan choices by consumers on the Massa-

chusetts Health Insurance Exchange (HIX) to illustrate our identification method. We

use within-menu plan variation and derive informative bounds on the CDFs of risk

preferences and expected costs of these consumers.

5.1 Exchange Context and Choice Menu

Established by the 2006 Massachusetts Health Reform, the Massachusetts HIX is the

forerunner of the HIXs established across the U.S. by the 2010 Affordable Care Act

(ACA). Data from the Massachusetts HIX allows us to examine consumer choice from a

menu with a variety of plans, offered at posted prices on a guaranteed issue, non-health

rated basis. We examine the choices of first-time choosers on the exchange, so that

choices are “active choices”uncontaminated by inertia (Ericson 2014, Handel 2013).20

On the HIX, plans are available in multiple tiers based on actuarial value (the

fraction of health care costs that would be insured for a representative sample of the

population). In the time period we consider (January and February 2010), cost-sharing

characteristics were standardized across insurers within each tier of quality: bronze

low, bronze medium, bronze high, silver low, silver medium, gold. As a result, a bronze

low plan would have the same deductible, coinsurance, and maximum out of pocket

spending regardless of which insurer it was offered by.21

The menu of plans was designed by the HIX regulator, while prices were set by

individual insurers. Within each tier, multiple insurers compete, offering plans that

differ in premiums, brand and insurer network. Premiums thus vary by plan tier and

by insurers. However, due to modified community rating regulation, the premium for a

given insurer-plan combo is only allowed to vary by geography and age. In particular,

premiums are only allowed to differ for each 5-year age group. This provides arguably

exogenous price variation for comparable populations around age cut-offs, but one

would need a larger sample to achieve suffi cient statistical power to use this between-

menu plan variation (as analyzed in Subsection 3.3). However, all age groups can

of T (∅, Xh). In a more complex contractual environment, T (X1, X2) can still be a counter-clockwise
rotation of T (∅, X1) when T (∅, X2) is a clockwise rotation of T (∅, X1). This allows for bounds in the
opposite direction.
20The HIX is described in detail in Ericson and Starc (2012a, 2012b).
21Ericson and Starc (2013) describes the standardization process in more detail. The Massachusetts

HIX tiers in this time period are slightly different from the ACA tiers– for instance, gold on the
Massachusetts HIX is similar to Platinum on the ACA exchanges.
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choose from a menu with several plans differing in coverage and price. We use this

within-menu plan variation for identification (as analyzed in Subsection 4.2).

In order to model choice from this menu, we translate each plan design into a sim-

plified plan design characterized solely by a deductible D, a coinsurance rate β, and

maximum out-of-pocket spending M . In a contract characterized solely by these para-

meters, an individual’s out of pocket spending is simply a plan-specific function of their

total spending. However, contracts are in fact quite complex, with per-visit copayments

that vary based on service used and per admission charges to the hospital. Modeling

choice from such a complex contract would require modeling a very detailed level of

health care utilization: for instance, how often consumers expect to use each type of

specialist, each tier of prescription drug, and differentiating between expenditures for

lab tests, durable medical equipment, allergy treatment, and inpatient spending. Our

simplification procedure is also reasonable since it is unlikely that consumers observed,

understood, and had well-formed expectations of the probability that they would use

each of these varied services.

To translate the actual plan design into a simplified plan design X, we entered

the original characteristics of each plan into the Center for Consumer Information &

Insurance Oversight’s (CCIIO) actuarial value calculator– including details such as

per visit copayments, which produced an estimated actuarial value (AV) for that plan.

Then, we solve for the coinsurance rate (given that plan’s actual deductible D and

maximum OOP M) that would produce the same AV for the simplified version of

each plan characterized by (D,β,M).22 We explore results using a variety of other

alternative plan translations in the Empirical Appendix (see Appendix Figure A.2).

Table 1 presents the results of this exercise, while Table A.1 describes the detailed

design of the plans as sold on the Massachusetts HIX.23 Premiums are different for

each 5-year age group; we present the premiums for the lowest and highest priced age

group, and focus our analysis on these groups.24

Plans in the table are ordered by their actuarial value, from least to most generous.

While the actuarial values of the Bronze plans are quite similar, the plans vary in

where they apply coverage: Bronze High has a very low deductible but correspondingly

22However, because the actual plans did indeed provide some coverage for spending below deductible
(e.g. a $100 doctor’s visit resulted in a $30 copay even if the deductible was not met), our method
underestimated the degree of coinsurance. While the results were reasonably representative of the plans’
characteristics, this method produced a 0% coinsurance rate for the Bronze Medium plan, even though
this plan in fact did include cost-sharing after the deductible. We used a corrected coinsurance of 5%
for Bronze Medium, based on dividing the $500 hospital copay (as in the original plan characteristics)
by the mean 2010 hospital stay cost of $9700 (as reported in Pfuntner, Wier and Steiner 2013).
23 In some months, a Silver Medium plan is also offered; when it is, we drop it from our plan menu,

along with the small number of people who choose it from our calculation of market shares. Because
the remainder of the individuals revealed they preferred one of the other plans to Silver Medium,
our bounds are still describing the preferences and beliefs of our sample population. (The bounds we
present are slightly looser than if we had used information about Silver Medium.)
24Premiums are averaged over the two months (there is small variation between January and Febru-

ary) and across zipcodes for all people offered the Neighborhood Health Plan (most people live in the
Boston region).
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higher coinsurance than Bronze Medium; all Bronze plans have the same maximum

OOP. (Note that despite having a slightly higher actuarial value than Bronze Medium,

Bronze High is priced slightly lower.) Silver Low is quite different as it has a lower

maximum OOP, but a higher deductible relative to Bronze High. Silver High and Gold

are quite similar again: both have zero deductible and a maximum OOP of $2000.

While Gold is more generous based on actuarial value and has a lower coinsurance

rate, it has higher premiums.

While multiple insurers offer plans, we focus our analysis on the price menu of the

most popular insurer (Neighborhood Health Plan), which has approximately 50% mar-

ket share. (The price for each plan design varies across insurers; we have explored using

the prices for other insurers, which give similar results.) In all cases, our results apply

to the population of individuals who chose this insurer. We do not explicitly model

individual’s choice of insurers. Tighter bounds could be obtained by modeling indi-

viduals’pattern of substitution between insurers, but we have limited data to identify

these patterns.25

The final columns of Table 1 present market shares for the plan designs, broken

down by broad age groups. Though prices vary by 5 year age groups, we group those

above and below age 45 to get more accurate estimates of market shares (doing so

reduced sampling error). See Appendix Table A.2 for detailed market shares within

each 5 year age bin category.

5.2 Individual Model of Choice

We model individuals as having CARA utility over consumption: u (−P − x (k)) =

− exp (σ (P + x (k))) /σ, where OOP expenses x (k) are a function of the individual’s

healthcare spending k and the insurance plan they choose. Individuals vary on two

dimensions. First, they vary in their CARA coeffi cient σ. Second, they vary in their

beliefs about the distribution of their own healthcare spending. While there are many

dimensions on which individuals might vary in their distributional beliefs, we summarize

variation in expected claims in a single risk-type index, π. For each risk-type π, the

expected claims distribution is assumed to follow a log normal distribution withmean =

π and variance = π
4053

[
1
2 × 10451

]2
. Note that variance of expenditures scales with the

mean expected risk. We take the $4053 mean spending number from the 2010 Medical

Expenditure Panel Survey, persons with private insurance. The standard deviation

25Our model is consistent with a variety of different ways in which individuals trade off their preferred
plan design versus price and preferred insurer. For instance, individuals could make a hierarchical
decision, choosing their preferred insurer first (based on insurer network versus insurer’s average price),
then choosing their preferred plan design. Then, our results simply describe the population of people
whose preferred insurer was Neighborhood Health Plan. Alternatively, an individual may have a more
complex pattern of substitution– for instance, a Blue Cross Bronze High plan may be the closest
substitute to a Neighborhood Health Plan Silver Low plan. In this case, our bounds on preferences and
beliefs still describe the population of individuals whose preferred plan was offered by Neighborhood
Health Plan, since the plan they chose was indeed revealed preferred to all other plans offered by this
insurer.
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of expenses is $10451. Someone with π = 4053 has the population average as his

or her mean claim, but because individuals have information about their own risk

type (age, gender, particular diseases, and expected patterns of care), we assume the

individual’s expected standard deviation is half the population standard deviation.

Little is known about risk types and their structure. Under our assumptions, the

variance of claims is lower for an individual with lower mean expected claims.26 We

have explored alternative variance assumptions, including a model of constant variance

of claims across all risk types.27 Note as well that we have assumed no moral hazard:

expected healthcare spending is the same, regardless of which contract individuals

choose.

To determine what can be learned from consumers choosing from the menu of

options in Table 1, we construct a grid of (π, σ) pairs, with σ ranging from 10−15

to 0.5× 10−2 and π ranging from 1/100 the population expected claims (about $40 in

expected claims) to 5 times the population expected claims (about $20, 000 in expected

claims). Each (π, σ) pair represents a combination of expected healthcare costs and

risk aversion. We then calculate the plan that maximizes expected utility for each pair.

The first column of Figure 6 displays the optimal plan choice for the youngest group

(Panel A, upper panel) and oldest group (Panel B, lower panel). Recall that prices vary

between age groups, and the older group faces a higher marginal cost of more generous

coverage. For both groups, only individuals with relatively low expected costs choose

the Bronze Low (dark black) plan: it is chosen for only the lowest value of π in Panel

A, and the lowest two values of π in Panel B. It is attractive for all individuals with

such low expected costs regardless of risk aversion. Bronze Medium is similar to Bronze

Low but with a lower coinsurance rate and priced slightly higher. It is only chosen by

the older consumers at this set of relative prices (it does not appear in Panel A), and

attracts relatively risk averse, but low-risk individuals. Bronze High is the most popular

plan with a market share of 40.2% and 29.0% for the young and old respectively. The

plan is attractive to relatively risk-neutral individuals with a wide range of expected

claims, and to low expected-cost individuals with a wide range of risk aversion. The

plan has a low deductible ($250 vs. $2000 for the other Bronze plans) and is cheaper

than Bronze Medium, but has a higher co-insurance rate above the deductible.

Turning to Silver plans, we find that individuals with the highest expected costs

choose Silver Low rather than Silver High; individuals with intermediate expected costs

choose Silver High.28 While the two silver plans have the same maximum OOP, the

Silver High plan has a lower deductible but higher coinsurance; from the perspective of

risk averse individuals, paying for first dollar coverage is less valuable than paying for

26For instance, both the mean and variance of medical spending rises with age.
27Appendix Figure A.1 shows how choices would shift if alternative variance structures were assumed.

Intuitively, higher variance at a given amount of expected costs tends to increase demand for insurance.
28Silver High is slightly more generous than Silver Low (both in the sense of actuarial value and of

higher premiums).
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lower coinsurance. Despite the fact that Silver Low is preferred for many (π, σ) pairs,

the market share of Silver Low is relatively small: only about 3%. This indicates that

there is not a large subset of the population with both very high risk aversion and very

high expected claims.

Finally, note that no one in this menu chooses a Gold plan: its only advantage

over Silver High is lower coinsurance, but it has substantially higher premiums. Thus,

even though the Gold plan has the highest actuarial value, it exposes individuals to

a worse worst-case scenario than the Silver plans. Someone who hits the maximum

OOP of $2000 in both Silver High and Gold will spend more in the Gold plan due to

the higher premiums (an additional $1392 at the premiums faced by older individuals).

This explains why Gold is actually less attractive than Silver for someone who is very

risk averse and expects to hit the OOP maximum.29

5.3 Bounds from Plan Choices

From these choices, we can use the plan shares in Table 1 to construct bounds on the

CDFs of π and σ. Column 2 of Figure 6 presents CDFs of each independently. The

upper panel shows that choice provides virtually no restriction on the distribution of

risk preferences in the population facing the young prices. Any single choice of the

risk aversion parameter σ (except the most risk neutral one) could rationalize all the

choices. The only restriction on the distribution is that individuals choosing Silver Low

cannot have the most risk neutral value of σ. This bound, however, is coming from our

restriction on the domain of risk types, having assumed that an individual’s expected

claims cannot exceed $20, 000.

The bottom panel of Figure 6 shows that there must be at least some relatively

risk-averse individuals to rationalize choice for older individuals given the prices they

face. The bound is coming from the difference in plan features between Bronze and

Silver plans which differentially attract types along the risk and preference dimension.

Bronze Medium offers relatively generous coverage for intermediate costs and only

attracts types with risk aversion σ ≥ σ̄I = 9.32× 10−4. Types with lower risk aversion

should either buy Bronze High, providing more generous coverage for low costs, or

Silver Low, providing more generous coverage for high costs. Similarly, we find that

Silver High only attracts types with risk aversion σ ≥ σ̄II = 0.0011.30

In line with Lemma 3, the share of older individuals with risk aversion greater than

σ̄II = 0.0011, 1 − Hσ (σ̄II), is at least as high the market share of Silver High and

thus provides an upper bound on the CDF. The share of individuals with risk aversion

above σ̄I = 9.32 × 10−4 is at least the sum of the market shares of Silver High and

29The market share of Gold is relatively small (only 8% for the old), but non-zero. In exploratory
analysis, we do find that the plan becomes rationalizable under certain menus and variance assumptions.
30Types with lower risk aversion and relatively low risk should buy Bronze, providing lower coverage

but at substantially lower premium. Types with lower risk aversion but high risk should again buy
Silver Low.
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Bronze Medium, providing a tighter upperbound on the CDF for this lower level of

risk aversion. Despite our informative upper bound on the CDF, we cannot reject

homogeneity in risk preferences because the available plan variation does not place any

lower bounds on the CDF. As a consequence, we can fit a degenerate CDF that jumps

from zero to one for risk-aversion levels above σ̄II = 0.0011. So while we can reject

that all individuals would have relatively low risk aversion, we cannot reject that all

individuals have some relatively high yet homogeneous risk aversion.

Turning to the distribution of risk types (π), we note that for each bound on risk

aversion coming from the plan variation corresponds to a bound on risk as well. For

example, Bronze Medium attracts types who not only have relatively high risk aversion

(σ ≥ σ̄I), but also expect low costs (π ≤ π̄I = $1170). Types with higher expected

costs prefer the higher actuarial value of Bronze High or Silver depending on their risk

preferences. The same is true for Silver High, which only attracts types with expected

expenses π ≤ π̄II = $1067. In addition, the choice of Bronze Low, which provides

the lowest coverage, can only be rationalized for types with very low expected costs

(π ≤ π̄III = $383). The cumulative market shares of Bronze Low, Silver High and

Bronze Medium provide a lower bound on the CDF of expected costs at respectively

π̄III , π̄II and π̄I . This is illustrated in the bottom figure of Column 2 of Figure 6

For the distribution of risk types, the market shares can also be used to provide

upper bounds on the CDF. When risk preferences cannot exceed the extremely risk

averse31 σ = 0.005, as illustrated in Column 1 of Figure 6, we find strictly positive

lower bounds on the support of expected expenses for each of the plan choices other

than Bronze Low. The market shares for these plans allow us to construct upper

bounds on the CDF of expected costs. Note that when we relax the constraint on the

preference domain, we still find informative lower bounds on the support for some plans.

For example, for the older individuals, Silver High (Bronze Medium) will only attract

types with expected expenses above $1069 ($383), regardless of the risk preferences.32

The derived upper and lower bounds on the CDF imply that we can reject homo-

geneity in expected expenses. (We cannot fit a degenerate CDF jumping from 0 to

1 for some π.) Hence, while we can rationalize the different plan choices with only

heterogeneity in expected expenses, we can not do it with only heterogeneity in risk

preferences. Note that we have considered a wide candidate range for (σ, π). To the

extent you are willing to put further restrictions on the range of reasonable parameters,

tighter bounds can be obtained.

31For σ = 0.005, an individual is indifferent between getting $139 for certain and a 50-50 gamble for
$10,000 or $0.
32Note that also in the high-variance specification in Panel B of Appendix Figure A.1, we can only

rationalize Bronze Medium for a limited range of risk aversion parameters. The market share of Bronze
Medium thus provides both a lower and upperbound on the CDF.
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Figure 6: Choices and implied bounds on risk preferences and risk perceptions.
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5.4 Discussion

A large empirical literature has argued that heterogeneity in risk preferences is a key

feature of insurance markets and explains why adverse selection is a minor issue in

several markets. The implementation of our non-parametric approach does not allow

us to validate this claim in our empirical context. We cannot reject that all individuals

have the same preferences, while they must differ in their (perceived) risks.

The non-parametric bounds on risk preferences, using only plan variation, do not al-

low us to distinguish between quite extreme forms of preference heterogeneity. A more

structural approach could help to tighten bounds on preferences and prove complemen-

tary to our approach, but the tighter bounds would rely on the validity of the imposed

structure. For comparison, Figure 7 plots our bounds on CARA preferences for the old

group with some well-known examples in the insurance literature of parametric esti-

mates of CARA distributions using standard random utility models. These estimates

are obtained from different contexts and potentially very different populations. Our

bounds do not reject the vast dispersion in risk aversion estimated by Cohen and Einav

(2007), but are also consistent with the more homogeneous distribution estimated in

Handel and Kolstad (2015). Interestingly, this is no longer true for the estimates in

Handel and Kolstad (2015) obtained by augmenting the standard random utility model

with survey data on information frictions. This could indicate that it is not suffi cient

to account for people’s risk perceptions, and that our expected utility model should be

augmented with other informational or behavioral frictions to provide consistent and

tighter bounds on preference heterogeneity. Finally, more plan variation would allow

us to further tighten bounds as well. The regulation of plan features or prices could

provide promising variation for identification.33

6 Conclusion

This paper has shown how to identify both consumer risk preferences and their risk

perceptions, using only insurance choice data. Our method uses variation in insurance

plans that differentially attracts individuals along the preference and risk type dimen-

sions, exploiting the fact that marginal willingness to buy insurance is more rapidly

decreasing in coverage for individuals with high risk aversion (but low risk) than for

individuals with low risk aversion (but high risk).

Our approach allows us to relax strong assumptions about (rational) expectations

and parametric type distributions, as well as to identify preferences and risk percep-

tions when claims data is unavailable. We applied our method to the Massachusetts

33The discussed price variation across age groups would be useful for identification in combination
with within-menu plan variation. Comparing the type sets at the young prices and the old prices reveals
that changes in prices change the parameter values that bound the support of particular plans. When
the price variation is exogenous, plan share differentials may be attributable to particular parameter
ranges and thus provide further bounds.
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Figure 7: Comparing bounds on risk preferences for older individuals on the Massa-
chusetts HIX to estimates from the literature

HIX. For these individuals, we can reject homogeneity in risks, but not homogeneity

in preferences. We estimate bounds on the distribution of preferences that are con-

sistent with other papers. We also highlight the type of variation that is necessary

to obtain tighter bounds on the distribution of preferences, which may be useful for

experimentalists eliciting preferences. Future empirical work could pair our approach

with claims data to directly test the assumption of rational expectations about individ-

uals’distribution of insurance claims. Moreover, future theoretical work could change

the micro-foundations of the choice model (e.g., by adding loss aversion or ambiguity

aversion) and then analyze which type of plan variation would allow to identify the

primitives of that model.
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Table 1: HIX Plan Menu

Monthly Premium Market Share

Deductible Coinsurance Max OOP AV Youngest Oldest Under 45 Over 45

Bronze Low 2000 11.20% 5000 73.1 $193 $388 17.9% 19.9%

Bronze Medium 2000 5.00% 5000 79.8 $210 $420 7.0% 14.9%

Bronze High 250 15.40% 5000 85.2 $202 $405 40.2% 29.0%

Silver Low 1000 2.50% 2000 85.6 $273 $540 3.4% 2.9%

Silver High 0 12.20% 2000 92.2 $275 $543 19.6% 25.4%

Gold 0 10.30% 2000 93 $336 $659 12.0% 8.0%

Note: Deductible and maximum OOP are taken directly from the original plan design. Coinsurance rate calculated as defined in
the text. Actuarial values are calculated from original plan design using the CCIIO calculator. Premiums and market shares are
for Neighborhood Health Plan, Jan. and Feb. 2010. Premiums are averaged across the two sample months and across ZIP codes.40



A.1 Appendices

A.1.1 Proofs

Proof of Proposition 1
Recall that we consider insurance contracts (q ∈ (0, L]) that are in principle ra-

tionalizable (P ∈ (0, q)), and consumers with domain of risk types π ∈ [0, 1] and

risk-averse preference types σ ∈ R+. An individual of type (π, σ) buys plan X if and

only if condition (4) is satisfied.

First, we show that preference homogeneity cannot be rejected. Assume that all

individuals have identical preference type σ > 0. By (4), we can find a suffi ciently low

risk type πl for which it is optimal to remain uninsured (choose ∅) and a suffi ciently
high risk type πh for which it is optimal to buy insurance (choose X). Assigning the

appropriate fractions of agents to each of these risks then rationalizes the observed

choices.

Second, we cannot put any bounds on preferences. Assume a bound of the form

Hσ(σ̄) ≥ α for α > 0. Yet we just showed that any homogeneous σ > 0 can rationalize

any dataset under appropriate risk assumptions, and therefore in particular σ > σ̄.

Such a homogeneous σ then means Hσ(σ̄) = 0, yielding a contradiction. Similarly, for

bound 1−Hσ(σ̄) ≥ α for α > 0, we get a contradiction by rationalizing the observations

for homogeneous σ ≤ σ̄.
Regarding risk types, the restriction to risk-averse preferences implies that risk

types that would buy no insurance are bounded from above by risk type π = P/q,

corresponding to the risk for which a risk-neutral type is indifferent between X and ∅.
Hence, we can use the share of individuals not buying insurance to bound Hπ, but we

can still not reject homogeneity in risks. For any risk type π ∈ [ε, P/q] for ε > 0, by

Assumption 1 we can find a (suffi ciently low) preference type σl for which it is optimal

to remain insured and a (suffi ciently high) preference type σh for which it is optimal to

buy insurance. The former is ensured because the risk-neutral agent is assumed to be in

the domain, and for the latter it is assumed that risks span up to infinite risk aversion.

With homogeneous risk type π but appropriate fractions of agents with preference σl
and σl any fraction of observed choices can be rationalized.�

Proof of Proposition 3
This proof provides rigor to the outline in the main text. Using Lemma 2, we

can find two menus {∅, Xh} and {∅, Xl} with qh > ql that intersect at an interior

intersection (π̄, σ̄). If αh = D (Xh| {∅, Xh}) is higher than αl = D (Xl| {∅, Xl}), we
know that Hσ (σ̄) ≥ αh − αl and thus Hσ (σ) ≥ αh − αl for any σ ≥ σ̄ since the CDF

is (weakly) increasing. At the same time, 1 − Hπ (π̄) ≥ αh − αl and thus Hπ (π) ≤
Hπ (π̄) ≤ 1−[αh − αl] for any π ≤ π̄. Hence, the plan share difference αh−αl provides a
lower bound on the CDF of preferences (for σ ≥ σ̄) and its complement an upper bound
on the CDF of risks (for π ≤ π̄). Similarly, if αh < αl, the plan share difference αl−αh
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places an upper bound on the CDF of preferences (for σ ≤ σ̄) and its complement an

upper bound on the CDF of risks (for π ≥ π̄). Hence, any permissable distribution

with αh 6= αl places a bound on the marginal CDFs.

Consider now a third menu {∅, X ′h}, where the plan X ′h provides more coverage than
the previous high-coverage planXh (i.e., q′h > qh > ql). If the price of the new plan were

set at P ′h such that the price per unit of coverage remains unchanged relative to the old

high-coverage plan (P ′h/q
′
h = Ph/qh), the type (π̄′, σ̄′) that is indifferent between these

two plans is the risk-neutral type (Ph/qh, 0), while otherwise Assumption 1 implies that

the type frontier T {∅, X ′h} would be strictly steeper and therefore strictly above the
type frontier of the previous plan T {∅, Xh}. Instead of this price, assume the price P

′
h

is set slightly lower so that P
′
h/q
′
h < Ph/qh but still P

′
h/q
′
h ≈ Ph/qh. The risk-neutral

type (Ph/qh, 0) now strictly prefers the new plan over the old high-coverage plan, but

by continuity the intersection (π̄′, σ̄′) between T {∅, X ′h} and T {∅, Xh} remains close
to (Ph/qh, 0). Since the intersection (π̄, σ̄) between the original plans T {∅, Xh} and
T {∅, Xl} was placed in the interior of the type space, it had strictly higher risk-aversion
and strictly lower risk than this risk-neutral type, and we have σ̄ > σ̄′ and π̄ < π̄′.

If now for a permissable distribution more agents choose the low contract Xl over

no insurance than choose the high contract Xh over no insurance (αl > αh), but also

more agents choose the new contract X ′h over no insurance than those that choose the

old high contract over no insurance (αh < α′h ≡ D (X ′h| {∅, X ′h})), we will have that
Hσ (σ̄) ≤ 1 − [αl − αh] < 1 while Hσ (σ̄′) ≥ α′h − αh > 0 by the logic of the first

paragraph of this proof. Since a CDF is weakly increasing and σ̄′ < σ̄, we cannot

fit a degenerate CDF between this lower and upper bound. That is, the lower bound

becomes binding at σ̄′, before the upper bound stops binding at σ̄. We can thus reject

homogeneity in preferences. The same is true for risks.

The final step in the proof is to show that such a distribution exists. To do this,

define for any risk π the preference σl(π) that makes the person indifferent between no

insurance and the low contract, i.e., (π, σl(π)) ∈ T {∅, Xl}, when it exists. Otherwise,
σl(π) = 0. Define σh(π) (σ′h(π)) analogously via indifference between no insurance

and the high insurance (new higher insurance) contract. The non-empty set of types

∆l,h = {(π, σ)|σh(π) > σ > σl(π)} then prefer the low contract to no insurance which
they prefer to the original high contract. Similarly, the non-empty set of types ∆h′,h =

{(π, σ)|σh(π) > σ > σ′h(π)} prefer the new contract to no insurance which they prefer to
the old high coverage contract. Now we can construct a type distribution H by placing

strictly positive mass on types both in ∆l,h and in ∆h′,h, but nowhere else. This implies

that αl > 0, α′h > 0 but αh = 0, which fulfills the premise of the previous paragraph

(as do an uncountable number of other distributions with less stark properties).�

Proof of Proposition 4
Equation (11) in the main text showed that F(α,β)(t) = Pr(αA+βB ≤ t) is observed

for all α, β and t. So we observe the marginal distribution F(α,β) of αA+βB, for all α, β.
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Therefore we know its characteristic function F̂(α,β)(τ) for all α and β.We are interested

in the joint cumulative distribution function F (A,B) over A and B, or equivalently in

its characteristic function F̂ (a, b).

The following just recalls the definition of the characteristic function for a random

vector in Rk with cumulative distribution function G(x) with x ∈ Rk. Its characteristic
function Ĝ(ω) with ω ∈ Rk is defined as

Ĝ(ω) =

∫
eiω

T xdG(x)

where ωT is the transpose of ω and i is the imaginary unit.

The remaining identification follows the proof in Cai, Zhang and Peng (2005). At

any value of α and β we can apply the definition of the characteristic function twice

(once for the two-dimensional random vector and once for the one-dimensional marginal

random vector) to obtain

F̂ (ατ, βτ) =

∫
ei(ατA+βτB)dF

=

∫
eiτ(αA+βB)dF = F̂(α,β)(τ).

Therefore, F̂(α,β)(1) varied over all α and β identifies F̂ (α, β) and therefore identifies

F (A,B). Finally, by the one-to-one mapping between (A,B) and (π, σ) in case of

CARA preferences, this identifies the distribution of risk and preference types as well.�

Proof of Proposition 5.
It is left to show that we can test for homogeneity in risks with two prices. For this

we can use equations (12) - (13) for the variance and we can exploit similar expressions

for the average:

E (q|p) = E (A)− E
(
σ−1

)
× p̃, and

E (q|p1)− E (q|p2) = E
(
σ−1

)
× [p̃2 − p̃1] (16)

Using the fact that A = L+ log
(

π
1−π

)
σ−1 under CARA, we know that if the the risk

type π were to be homogenous, we could infer the homogeneous risk type from

E (q|p) = E (A)− E
(
σ−1

)
× p̃

= L+ log

(
π

1− π

)
E
(
σ−1

)
+ E

(
σ−1

)
× p̃,

where we know E
(
σ−1

)
from the difference in coverage choices in (16). For a homoge-
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neous risk type, we also know that

V ar (A) = log

(
π

1− π

)2

V ar
(
σ−1

)
Cov

(
A, σ−1

)
= log

(
π

1− π

)
V ar

(
σ−1

)
.

and thus

V ar (q|pk) = V ar (A) + V ar
(
σ−1

)
× p̃2

k − 2Cov (A,B) p̃k

=

[
log

(
π

1− π

)2

+ p̃2
k − 2 log

(
π

1− π

)
p̃k

]
V ar

(
σ−1

)
.

Hence, we can reject homogeneity in risk types if

V ar (q|p1)

V ar (q|p2)
6=

log
(

π
1−π

)2
+ p̃2

1 − 2 log
(

π
1−π

)
p̃1

log
(

π
1−π

)2
+ p̃2

2 − 2 log
(

π
1−π

)
p̃2

.

�

Proof of Lemma 1.
For CARA preferences u(k|σ) = −e−σk/σ, the marginal rate of substitution (6) can

be written as

MRS ≡ −dmg

dmb
|U(X|π,σ) =

π

1− π
eσ(P+L−q)

eσP
(17)

The type frontier T (∅, X) is the set of types (π, σ) for which (4) holds with equality,

which for CARA preferences reads as:

π

1− π
−eσ(P+L−q) + eσL

−1 + eσP
= 1 (18)

Note that smaller π are associated with larger σ, and π → 0 is associated with σ →∞.
Since we evaluate (17) only along (18), we can substitute the latter into the former to

obtain a marginal willingness to pay along the type frontier of

MRS|(π,σ)∈T (∅,X) =
−1 + eσP

−eσ(P+L−q) + eσL
eσ(P+L−q)

eσP

=
1− e−σP

−1 + eσ(q−P )
.

Since P < q, it is immediate that limσ→∞ MRS|(π,σ)∈T (∅,X) = 1/∞ = 0, which es-

tablishes that MRS goes to zero as π goes to zero. Moreover, MRS is monotonically
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decreasing in σ along the type frontier (and thus monotonically increasing in π) if

d MRS|(π,σ)∈T (∅,X)

dσ
=
Pe−σP

(
−1 + eσ(q−P )

)
− (q − P )eσ(q−P )

(
1− e−σP

)(
−1 + eσ(q−P )

)2
is strictly negative. This arises if the denominator is strictly negative, i.e., if

Pe−σP
(
−1 + eσ(q−P )

)
− (q − P )eσ(q−P )

(
1− e−σP

)
< 0

⇔ −q(1− e−σP ) + P (1− e−σq) < 0

⇔ P
(
1− e−σP

)−1 − q(1− e−σq)−1 < 0.

which holds since P < q and x/(1− e−σx) is increasing in x.�

Proof of Lemma 2.
This proof follows the outline in the main text. We consider the type frontiers for

two menus Mh = {∅, Xh} and Ml = {∅, Xl} with qh > ql. We first establish that if

the two type frontiers intersect, they only intersect once and the high-coverage type

frontier T (∅, Xh) is a clockwise rotation of the low-coverage type frontier T (∅, Xl).

Denote the type at which the two frontiers intersect by (π̄, σ̄). Consider the case where

qh = ql + ε for some small ε. By Assumption 1, any type with higher risk π (lower

preference σ) on T (∅, Xl) than the type at the intersection, who is indifferent between

the high-coverage and low-coverage plan, has higher marginal willingness to pay for the

additional coverage. Therefore, they strictly prefer Xh to both Xl and ∅, which they
are indifferent about. Hence, the type frontier T (∅, Xh) lies to the left of T (∅, Xl)

for π > π̄ and σ < σ̄. Any type with lower risk π (higher preference σ) has lower

willingness to pay for the additional coverage and thus strictly prefers Xl and ∅ to Xh.

Hence, the type frontier T (∅, Xh) lies to the right of T (∅, Xl) for π < π̄ and σ > σ̄.

This proves that T (∅, Xh) intersects T (∅, Xl) once and clockwise, if the two intersect.

Now for a larger difference in coverage, we can find a sequence of contracts Xk with

coverage qk and price Pk, starting from Xl and converging to Xh, such that type (π̄, σ̄)

is indifferent among any two contracts. The reasoning above now applies for any two

consecutive contracts. Our sequence thus corresponds to a sequence of type frontiers

that intersect only once and imply clockwise rotations around (π̄, σ̄). Hence, this is

also true for T (∅, Xh) relative to T (∅, Xl).

We now establish when the two type frontiers intersect. Consider first the case

Ph/qh > Pl/ql (i.e., the average price per unit is higher for the high-coverage contract

Xh). This implies that the risk-neutral type with π = Pl/ql strictly prefers Xl and ∅
(which he is indifferent about) to buying Xh. Hence, the type frontier T (∅, Xh) lies to

the right of the type frontier T (∅, Xl) for σ = 0. This implies that the two frontiers

cannot intersect, since T (∅, Xh) would be a clockwise rotation of T (∅, Xl) and thus to

the left of it for σ = 0 in case the type frontiers were to intersect.
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Consider now the case that Ph/qh ≤ Pl/ql. In this case, the risk neutral type with

π = Pl/ql prefers Xh above Xl and ∅. Moreover, since the marginal willingness to
pay for the additional coverage converges to zero when moving up along the frontier

T (∅, Xl), there is a type with suffi cient low risk (and high preference) that prefers Xl

(and thus ∅) above Xh as long as Ph > Pl. Hence, the two type frontiers intersect.

However, if Ph ≤ Pl, all types on T (∅, Xl) strictly prefer Xh above Xl and thus ∅. The
two type frontiers again do not intersect. This proves the first part of the Proposition.

Since T (∅, Xh) is a clockwise rotation of T (∅, Xl) around (π̄, σ̄), the high-coverage

contract Xh differentially attracts types with high risk, but low preference. Types that

prefer Xh above ∅, but ∅ above Xl (i.e., B (Xh| {∅, Xh}) \B (Xl| {∅, Xl})), need to have
preference σ ≤ σ̄ and risk π ≥ π̄. Only individuals with such types could rationalize

that plan Xh attracts a larger share of the population than plan Xl. Similarly, types

that prefer Xl above ∅, but ∅ above Xh (i.e., B (Xl| {∅, Xl}) \B (Xh| {∅, Xh})), need to
have preference σ ≥ σ̄ and risk π ≤ π̄. Only these types could rationalize that plan Xl

attracts a larger share of the population than plan Xh. Hence, we have∫
π≥π̄

∫
σ≤σ̄

dH ≥
∫
B(Xh|{∅,Xh})\B(Xl|{∅,Xl})

dH

≥
∫
B(Xh|{∅,Xh})\B(Xl|{∅,Xl})

dH −
∫
B(Xl|{∅,Xl})\B(XH |{∅,XH})

dH

= αh − αl
≥ −

∫
B(Xl|{∅,Xl})\B(XH |{∅,XH})

dH

≥ −
∫
π≤π̄

∫
σ≥σ̄

dH,

which proves the second part of the proposition. Note that if the type frontiers do not

intersect, the support of the set of types that prefer the one plan, but not the other,

covers the entire range of the preference domain. The differential plan share no longer

places a bound on the distribution of preferences.�

Proof of Lemma 3.
By Lemma 2, we know that type frontiers T (∅, Xh) and T (∅, Xl) intersect if and

only if Ph/qh ≤ Pl/ql and Ph > Pl. We denote this intersection by (π̄, σ̄). In this

case, the type frontier T (Xh, Xl) intersects both frontiers again at (π̄, σ̄), since this

intersection type is indifferent among both plans and the option not to buy insurance.

Moreover, the type frontier T (Xh, Xl) is a clockwise rotation of T (∅, Xh), which is

a clockwise rotation of T (∅, Xl). Note first that the willingness to choose the high-

coverage plan over the low-coverage plan is increasing in both risk and preference.

The type frontier is monotonically decreasing in (π, σ)-space, just like the original two

frontiers. Now consider a type on the frontier T (∅, Xh) above the intersection (with

low risk, but high preference). This type strictly prefers Xl to ∅ and thus Xh, since
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T (∅, Xh) is to the right of T (∅, Xl). Hence, the type frontier T (Xh, Xl) is to the right

of T (∅, Xh). The set of types choosing Xl above both Xh and ∅, i.e., B (Xl|{∅, Xl, Xh})
corresponds to this region between the two frontiers T (∅, Xl) and T (Xh, Xl) above

(π̄, σ̄). Indeed, consider a type on the frontier T (∅, Xh) below the intersection (with

high risk, but low preference). This type strictly prefers ∅ and thus Xh to Xl. Hence,

the type frontier T (Xh, Xl) is to the left of T (∅, Xh) (and thus to the left of T (∅, Xl)).

This implies that no type with σ < σ̄ or π > π̄ will choose the low-coverage plan. It

immediately follows that the share of individuals buying the low-coverage plan (out of

this 3-options menu) puts the following lower bound,∫
π≤π̄

∫
σ≥σ̄

dH ≥
∫
B(Xl|{∅,Xl,Xh})

dH ≥ D (Xl|C) .

For completeness, the set of types choosing Xh above Xl and ∅, i.e., B (Xh|{∅, Xl, Xh})
corresponds to the region to the right of T (∅, Xh) below (π̄, σ̄) and to the right of

T (Xh, Xl) above (π̄, σ̄), as illustrated in Figure 5.

Note that if Ph ≤ Pl, no type will ever buy the low-coverage plan. Hence, the

only relevant type frontier is T (∅, Xh). If Ph > Pl and Ph/qh > Pl/ql, none of the

type frontiers intersect. The type frontier T (Xh, Xl) now lies to the right of the type

frontier T (∅, Xh), which lies to the right of type frontier T (∅, Xl). Types to the right

of T (Xh, Xl) will buy the high-coverage plan. Types to the left of T (∅, Xl) will buy

no insurance. Types in between will buy the low-coverage plan. Since the support of

any of the choices corresponds to the full preference domain, we can place no bounds

on the distribution of preferences.�
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A.2 Empirical Appendix

In this Appendix, we present the optimal plan choice results under different assump-

tions. In Figure A.1, we model alternative relationships between the mean and vari-

ance of claims. In our main analyses, for risk type π, the expected claims distribu-

tion is assumed to follow a log normal distribution with mean = π and variance =
π

4053

[
1
2 × 10451

]2
For comparison purposes, we show, once again, the optimal choice for each π, σ

pair for older individuals in Panel C of Figure A.1. We then model choice with more

or less variability in claims. In Panel A of Figure A.1, we show the choice assum-

ing that the variance of claims is half of that in our main specifications: variance=
1
2

π
4053

[
1
2 × 10451

]2
. This would correspond to a case in which individuals have addi-

tional information predicting about their expected costs, reducing variability. Then,

in Panel B, we run a high variance specification where variance is twice that in our

main specifications: variance = 2× π
4053

[
1
2 × 10451

]2
. The results are intuitive: more

variability increases the demand for more generous insurance.

We then turn to alternative menu designs in Figure A.2, again showing optimal

choices for older individuals. Panel A examines a modified menu, in which the Bronze

Medium plan has a deductible of $1462 instead of $2000; we make this modification so

that the actuarial value of the Bronze Medium plan as modeled matches the actuarial

value of the more complex Bronze Medium plan on the exchange. This menu leads to

some modest changes in choice as compared to our main specification. In Panel B, we

consider the case in which the Bronze Medium plan has zero coinsurance as produced by

our original method described in the text. Unsurprisingly, this leads to Bronze Medium

being a very favored plan. However, this is unlikely to be a faithful representation of

the Bronze Medium characteristics. Finally, Panel C of Figure A.2 examines a very

different menu design. For Panel C, we construct coinsurance values (for plans that

have copayments instead of coinsurance) by taking the hospital copayment value and

dividing by the mean cost of a hospital admission of $9700. This method, however, does

not do a good job modeling the relative quality of Silver Low, as Silver Low requires

paying the deductible and then has zero hospital copayment. We then drop Silver Low

from this menu. The menu of coinsurance values used in Panel C is given below:
Coinsurance for Panel C of Figure A.2

Bronze Low 0.2

Bronze Medium 0.05

Bronze High 0.35

Silver High 0.05

Gold 0.02
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Figure A.1: Optimal plan choices for older individuals under alternative variance as-
sumptions.
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Figure A.2: Optimal plan choices for older individuals under alternative menu designs.
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Table A.1: Summary of detailed plan parameters, taken from the HIX’s website

Plan Design Deductible Max OOP Doctor Visit Generic Rx Emergency Room Hospital Stay

Bronze Low $2000 $5000 deduct., then $25 copay deduct., then $15 copay deduct., then $100 copay deduct., then 20% co-insurance

Bronze Medium $2000 $5000 $30 copay $10 copay deduct., then $150 copay deduct., then $500 copay

Bronze High $250 $5000 $25 copay $15 copay $150 copay deduct., then 35% co-insurance

Silver Low $1000 $2000 $20 copay $15 copay deduct., then $100 copay deduct., then no copay

Silver High $0 $2000 $25 copay $15 copay $100 copay $500 copay

Gold $0 None $20 copay $15 copay $75 copay $150 copay
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Table A.2: Detailed Plan Shares, among individuals who chose Neighborhood

Health Plan.

Age Group

27-29 30-34 35-39 40-44 45-49 50-54 55+

Bronze Low 13.3% 20.0% 20.0% 18.0% 20.5% 21.6% 18.2%

Bronze Medium 7.1% 7.3% 6.0% 8.0% 10.3% 18.2% 15.5%

Bronze High 49.0% 38.2% 35.0% 38.0% 37.2% 15.9% 33.6%

Silver Low 1.0% 4.5% 5.0% 2.0% 1.3% 3.4% 3.6%

Silver High 19.4% 19.1% 19.0% 22.0% 21.8% 28.4% 25.5%

Gold 10.2% 10.9% 15.0% 12.0% 9.0% 12.5% 3.6%
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