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“A new scientific truth does not triumph by
convincing its opponents and making them see
the light, but rather because its opponents
eventually die, and a new generation grows up
that is familiar with it.”

Max Planck

Scientific Autobiography and Other Papers

1 Introduction

Knowledge accumulation—the process by which new research builds upon ideas developed

in prior research—has been long understood to be of central importance to scientific progress

and economic growth (Mokyr 2002). In deference to Sir Isaac Newton, this cumulative

process is often referred to as “standing on the shoulders of giants,” but is conceptualized

more prosaically as the way in which researchers in one generation learn from and build upon

prior research. Yet the literature is largely silent on the mechanisms that shape this slowly

evolving process.1

What guides researchers when choosing between various approaches to study a given

problem? Does science evolve according to autonomous laws, or is the direction of science

influenced by individuals, incentives, and institutions? Philosophers and historians have

long debated the extent to which the pragmatic success of a scientific theory determines

how quickly it gains adherents, or its longevity (e.g., Kuhn [1970], Laudan [1977], and their

many detractors). The epigraph of this paper encapsulates the jaundiced view, attributed

to Planck, that the idiosyncratic stances of individual scientists can do much to alter, or at

least delay, the course of scientific advance. Yet, the proposition that established scientists

are slower than younger ones in accepting novel theories has received little empirical support

whenever it has been put to the test (Hull et al. 1978; Gorham 1991; Levin et al. 1995).

Moreover, in contrast to technology development where market forces shape the direction of

research effort (however imperfectly, cf. Acemoglu [2012]), the choice of a problem-solving

approach in basic research is less informed by market signals, and thus necessarily depends

on a more nuanced system of non-pecuniary incentives (Feynman 1999; Foster et al. 2015).

1This stands in contrast to “paradigm shifts” (Kuhn 1970), which are exceedingly rare but garner far more
scholarly attention. Bramoullé and Saint-Paul (2010) provide an equilibrium model of scientific revolutions
with a Kuhnian flavor.
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In this paper, we use a difference-in-differences setup to test “Planck’s Principle” by

examining how the premature death of 452 eminent academic life scientists alter the vital-

ity (measured by publication rates and funding flows) of treated subfields in which these

scientists actively published in the years immediately preceding their passing, compared to

matched control subfields in which no eminent scientist dies. In contrast with prior work

that focused on collaborators (Azoulay et al. 2010; Oettl 2012; Jaravel et al. 2015), our

work leverages new tools to define scientific subfields in order to provide the first evidence

on the response by non-collaborators. To our surprise, it is not competitors from within

the field that assume the mantle, but rather outsiders that step in to fill the void created

by a star’s absence. Importantly, this surge in contributions from outsiders draws upon a

different scientific corpus and is disproportionately likely to be highly cited. Thus, consistent

with the contention by Planck, the loss of a luminary provides an opportunity for fields to

evolve in new directions that advance the frontier of knowledge within them. The rest of the

manuscript tries to elucidate the mechanisms responsible for this phenomenon.

It does not appear to be the case that stars use their influence over financial or editorial

resources to block entry into their fields, but rather that the very prospect of challenging

a luminary in the field serves as a deterrent for entry by outsiders. Indeed, most of the

entry we see occurs in those fields that lost a star who was especially accomplished. Even

in those fields that have lost a particularly bright star, entry can still be regulated by key

collaborators left behind. We find suggestive evidence that this is true in fields that have

coalesced around a narrow set of techniques or ideas or where collaboration networks are

particularly tight-knit. We also find that entry is more anemic when key collaborators of the

star are in positions that allow them to limit access to funding or publication outlets and

to those outside the club that once nucleated around the star. Though stars may have been

a source of dynamism while alive, the turnover in leadership enables the injection of fresh

ideas into the subfield, but only in those areas whose topology offers a less hostile landscape

for the support and acceptance of “foreign” ideas.

To our knowledge, this manuscript is the first to examine the dynamics of scientific

evolution using the standard empirical tools of applied microeconomics.2 We conceptualize

the death of eminent scientists as shocks to the structure of the intellectual neighborhoods in

2Considerable work outside of economics has examined the evolution of scientific fields through data
visualization techniques (cf. Chavalarias and Cointet (2013) for a recent example). While interesting, this
work has been largely descriptive and mostly silent regarding the behavioral mechanisms that might explain
the birth, fusion, split, or death of scientific fields.
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which they worked several years prior to their death, and implement a procedure to delineate

the boundaries of these neighborhoods in a way that is scalable, transparent, and does not

rely on ad hoc human judgment. The construction of our dataset relies heavily on the

PubMed Related Citations Algorithm [PMRA], which groups scientific articles into subfields

based on their intellectual content using very detailed keyword information as well as the

relative frequencies of these keywords in the scientific corpus.3 As such we are able to define

circumscribed areas of scientific inquiry that are independent of training, personal relations,

or self-proclaimed areas of expertise.

In addition to providing evidence regarding a central question for scholars studying the

scientific process, our paper is a departure for the field of the economics of science in that

it can attend to the ways in which scientists position themselves simultaneously in an in-

tellectual space as well as a social space, whose boundaries do not overlap (Borjas and

Doran 2015). As such, our work can be understood as integrating the traditional concerns of

economists—understanding how incentives and institutions influence the rate of knowledge

production or diffusion—with those of cognate disciplines such as sociology and philosophy,

who have traditionally taken the direction of scientific change as the central problem to be

explained.

The rest of the paper proceeds as follows. In the next section, we examine the institutional

context and lay out our broad empirical strategy. In section 3, we then turn to data, methods

and descriptive statistics. We report the results in section 4. Section 5 concludes by outlining

the implications of our findings for future work.

2 Institutional Context and Empirical Design

Our empirical analyses are centered on the academic life sciences. The merits of this

focus are several fold. First, the field has been an important source of scientific discovery

over the past half century. Many modern medical therapies can trace their origins to research

conducted in academic laboratories (Sampat and Lichtenberg, 2011). These discoveries, in

turn, have generated enormous health and welfare gains for economies around the world.

3Unlike in economics, keywords for all publications indexed by PubMed (most of the life sciences) are
assigned by staff at the National Library of Medicine and are drawn from a controlled vocabulary thesaurus.
Thus, concerns about strategic or endogenous keyword choices are minimized in this setting (cf. Appendix C
for additional evidence on this point).
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Second, the life science research workforce is exceedingly large and specialized. Academic

medical centers in the United States employ 150,000 faculty members. Moreover, scientific

discoveries over the past half-century have greatly expanded the knowledge frontier, neces-

sitating increasing specialization by researchers and a greater role for collaboration (Jones

2009). If knowledge and techniques remain at least partially tacit long after their initial dis-

covery, tightly-knit research teams may be able to effectively control entry into intellectual

domains. The size and maturity of this sector, including its extensive variety of narrowly-

defined subfields, makes it an ideal candidate for an inquiry into the determinants of the

direction of scientific effort in general, and how it is influenced by elite scientists in particular.

Third, the academic research setting also offers the practical benefits of an extensive

paper trail of research inputs, outputs, and collaboration histories. On the input side,

reliance of researchers on one agency for the majority of their funding raises the possibility

that financial gatekeeping by elite scientists could be used to regulate entry into scientific

fields. Data on NIH funding at the individual level, as well as membership in “study sections”

(the peer-review panels that evaluate the scientific merits of grant applications) will allow us

to examine such concerns directly. Most importantly for our study, the principal output of

researchers—publications—are all indexed by a controlled vocabulary of keywords managed

by the National Library of Medicine. This provides the raw material that allows us to define

scientific subfields in a way that is stripped of “social baggage” (the specifics of this process

will be described in detail in Section 3.2).

Lastly, while accounts by practicing scientists indicate that collaboration plays a large

role in both the creation and diffusion of new ideas (Reese 2004), historians of science have

long debated the role of controversies and competition in shaping the direction of scien-

tific progress and the process through which new subfields within the same broad scientific

paradigm are born and grow over time (Hull 1988; Morange 1998; Shwed and Bearman

2010). Our study presents a unique opportunity to test some of their insights in a way that

is more systematic and can yield generalizable insights on the dynamics of field evolution.

3 Empirical Design, Data, and Descriptive Statistics

Below, we provide a detailed description of the process through which the matched scien-

tist/subfield dataset used in the econometric analysis was assembled. We begin by describing

the criteria used to select our sample of superstar academics, with a particular focus on “ex-
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tinction events”; the set of subfields in which these scientists were active prior to their death

and the procedure followed to delineate their boundaries. Finally, we discuss the matching

procedure implemented to identify control subfields associated with eminent scientists who

did not pass away but are otherwise similar to our treatment group.

3.1 Superstar sample

Our basic approach is to rely on the death of “superstar” scientists as a lever to estimate

the extent to which the production of knowledge in the fields in which they were active

changes after their passing. The study’s focus on the scientific elite can be justified both on

substantive and pragmatic grounds. The distribution of publications, funding, and citations

at the individual level is extremely skewed (Lotka 1926; de Solla Price 1963) and only a tiny

minority of scientists contribute, through their published research, to the advancement of

science (Cole and Cole 1972). Stars also leave behind a corpus of work and colleagues with a

stake in the preservation of their legacy, making it possible to trace back their careers, from

humble beginnings to wide recognition and acclaim.

The elite academic life scientist sample includes 12,935 individuals, which corresponds to

roughly 5% of the entire relevant labor market. In our framework, a scientist is deemed elite

if they satisfy at least one of the following criteria for cumulative scientific achievement: (1)

highly funded scientists; (2) highly cited scientists; (3) top patenters; and (4) members of

the National Academy of Sciences or of the Institute of Medicine. Since these four criteria

are based on extraordinary achievement over an entire scientific career, we augment this

sample using additional criteria to capture individuals who show great promise at the early

and middle stages of their scientific careers. These include: (5) NIH MERIT awardees;

(6) Howard Hughes Medical Investigators; and (7) early career prize winners. Appendix A

provides additional details regarding these seven metrics of “superstardom.”

For each scientist in the sample, we reconstruct their career from the time they obtained

their first position as independent investigators (typically after a postdoctoral fellowship)

until 2006. Our dataset includes employment history, degree held, date of degree, gender,

and department affiliations as well as complete list of publications, patents and NIH funding

obtained in each year by each scientist.4

4Appendix B details the steps taken to ensure that the list of publications is complete and accurate, even
in the case of stars with frequent last names. Though we apply the term of “star” or “superstar” to the
entire group, there is substantial heterogeneity in intellectual stature within the sample (see Table 1).
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The 452 scientists who pass away prematurely, and who are the particular focus of this

paper, constitute a subset of this larger pool of 12,935. To be included in our sample, their

deaths must intervene between 1975 and 2003 (this allows us to observe at least three years’

worth of scientific output for every subfield after the death of a superstar scientist). Although

we do not impose any age cutoff, the median and mean age at death is 61 with 85% of these

scientists having passed away before the age of 70 (we will explore the sensitivity of our

results to the age at death later). We also require evidence, in the form of published articles

and/or NIH grants, that these scholars were still in a scientifically active phase of their career

in the period just preceding their death (this is the narrow sense in which we deem their

deaths to have occurred prematurely).

Within this sample, 229 (51%) of these scientists pass away after a protracted illness,

whereas 185 (41%) die suddenly and unexpectedly. We were unable to ascertain the particu-

lar circumstances of 37 (8.20%) death events.5 Appendix G provides the full list of deceased

superstars, together with their year of birth, year of death, institutional affiliation at the

time of their passing, and a short description of their research expertise.

Table 1 provides descriptive statistics for the deceased superstar sample. The median

star received his degree in 1957, died at 61 years old and was associated with 4 distinct

subfields in the five years leading up to his/her death. On the output side, the stars each

received an average of roughly 16.6 million dollars in NIH grants, and published 138 papers

that garnered 8,347 citations over the course of their careers (as of early 2014).

3.2 Delineating Research Fields

The source of the publication data is PubMed, an online resource from the National

Library of Medicine that provides fast, free, and reliable access to the biomedical research

literature. PubMed indexes more than 40,000 journals within the life sciences.

To delineate the boundaries of the research fields in which each deceased star was active,

we develop an approach based on topic similarity as inferred by the overlap in keywords

between each article the star published in the five years prior to his/her death, and the rest

of the scientific literature. Specifically, we use the PubMed Related Citations Algorithm

5We exclude from the sample one scientist who took his own life, and a further two for whom suicide
could not be ruled out.
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(PMRA) which relies heavily on Medical Subject Headings (MeSH). MeSH terms constitute

a controlled vocabulary maintained by the National Library of Medicine that provides a very

fine-grained partition of the intellectual space spanned by the biomedical research literature.

Importantly for our purposes, MeSH keywords are assigned to each scientific publication

by professional indexers and not by the authors themselves.6 We then use the “Related

Articles” function in PubMed to harvest journal articles that are intellectually proximate to

star scientists’ own papers.7

To fix ideas, consider “The transcriptional program of sporulation in budding yeast”

[PubMed ID 9784122], an article published in the journal Science in 1998 originating from the

laboratory of Ira Herskowitz, an eminent UCSF biologist who died in 2003 from pancreatic

cancer. As can be seen in Appendix Figure C1, PMRA returns 72 original related journal

articles for this source publication.8 Some of these intellectual neighbors will have appeared

before the source to which they are related, whereas others will have only been published after

the source. Some will represent the work of collaborators, past or present, of Herskowitz’s,

whereas others will represent the work of scientists in his field he may never have come in

contact with during his life, much less collaborated with. The salient point is that nothing

in the process through which these related articles are identified biases us towards (or away

from) articles by collaborators, frequent citers of Herskowitz’s work, or co-located researchers.

Rather, the only determinants of relatedness are to be found in the overlap in MeSH keywords

between the source and its potential neighbors.

Consider now the second most-related article to Herskowitz’s Science paper listed in Fig-

ure C1, “Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific

transcription factor Ndt80 is dependent on Ime2.” Figure C2 in Appendix C displays the

MeSH terms that tag this article along with its source. As a byproduct, PMRA also pro-

vides a cardinal dyadic measure of intellectual proximity between each related article and

its associated source article. In this particular instance, the relatedness score of “Phospho-

6The algorithm also uses as inputs title and abstract words, which are obviously selected by authors,
rather than by NLM staff. However, neither the choice of MeSH keywords nor the algorithm depend on cited
references contained in publications.

7To facilitate the harvesting of PubMed-related records on a large scale, we have developed an open-
source software tool that queries PubMed and PMRA and stores the retrieved data in a MySQL database.
The software is available for download at http://www.stellman-greene.com/FindRelated/.

8Appendix C provides more details on the rules that govern the cut-off for the number of articles returned
by PMRA for any given source article.
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rylation...” is 94%, whereas the relatedness score for the most distant related article in

Figure C1, “Catalytic roles of yeast...” is only 62%.

In the five years prior to his death (1998-2002), Herskowitz was the last author on 12 pub-

lications, the publications most closely associated with his position as head of a laboratory.9

For each of these source publications, we treat the set of publications returned by PMRA

as constituting a distinct subfield, and we create a subfield panel dataset by counting the

number of related articles in each of these subfields in each year between 1975 and 2006. An

important implication of this data construction procedure is that the subfields we delineate

are quite limited in scope. One window into the degree of intellectual breadth for subfields

is to gauge the overlap between the articles that constitute any pair of subfields associated

with the same star. In the sample, the 452 deceased stars account for 3,074 subfields, and

21,633 pairwise combination of subfields (we are only considering pairs of subfields associ-

ated with the same individual star). Appendix Figure C3 displays the histogram for the

distribution of overlap, which is extremely skewed. A full half of these pairs exhibit exactly

zero overlap, whereas the mean of the distribution is 0.06. To find pairs of subfields that

display substantial amounts of overlap (for example, half of the articles in subfield 1 also

belong in subfield 2), one must reach far into the right tail of the distribution, specifically,

above the 98th percentile.

As such, the subfields we delineate are relatively self-contained. Performing the analysis

at the level of the subfield—rather than lumping together all the subfields of an individual

star—will provide us with an opportunity to exploit variation in the extent of participation

of the star within each of his/her subfields. We will also check the validity of the main results

when rolling the data up from the subfield level to the star level. Finally, since even modest

amounts of overlap entail that the observations corresponding to the subfields of individual

stars will not be independent in a statistical sense, we will cluster standard errors at the

level of the star scientist.

9A robust social norm in the life sciences systematically assigns last authorship to the principal investi-
gator, first authorship to the junior author who was responsible for the conduct of the investigation, and
apportions the remaining credit to authors in the middle of the authorship list, generally as a decreasing
function of the distance from the extremities of the list.
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3.3 Identification Strategy

Given our interests in the effect of superstar death on entry into scientific subfields, our

empirical strategy is focused on changes in published research output after the superstar

passes away, relative to when s/he was still alive. To ensure that we are estimating the effect

of interest and not some other influence that is correlated with the passage of time, our

specifications include age and period effects, as is the norm in studies of scientific productivity

(Levin and Stephan 1991). These temporal controls are tantamount to using subfields that

lost a superstar in earlier or later periods as an implicit control when estimating entry into

subfields that currently experienced the death of a superstar. If the death of a superstar

only represented a one-time shift in the level of entry into the relevant subfields, this would

not be problematic. But if these unfortunate events affect trends—and not simply levels—of

scientific activity, this approach may not suffice to filter out the effect of time-varying omitted

variables, even when flexible age and calendar time controls are included in the econometric

specification (Borusyak and Jaravel 2016). One tangible concern about time-varying effects

relates to the life-cycle of subfields, where productive potential may initially increase over

time before peaking and then slowly declining.

To mitigate this threat to identification, our preferred empirical strategy relies on the

selection of a matched scientist/subfield for each treated scientist/subfield. These control

observations are culled from the universe of subfields in which superstars who do not die are

active (see Section 3.1 and Appendix D). Combining the treated and control samples enables

us to estimate the effect of superstar death in a difference-in-differences framework. Appendix

Figure D1 illustrates the procedure used to identify control subfields in the particular case

of the Herskowitz publication highlighted above.

We begin by looking at all the articles that appeared in the same journal and in the same

year as the treated source articles. From this set of articles, we keep only those that have

one of the still-living superstars in the last authorship position. Then, using a “coarsened

exact matching” procedure detailed in Appendix D, the control source articles are selected

such that (1) the number of authors in the treated and control are approximately similar;

(2) the age of the treated and control superstars differ by no more than five years; and

(3) the number of citations received by the treated and source article are similar. For the

Herskowitz/“sporulation in budding yeast” pair, we can select 10 control articles in this

way. All of these controls were also published in Science in 1998, and have between five and
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seven authors. One of these controls is “Hepatitis C Viral Dynamics in Vivo...,” whose last

author is Alan Perelson, a biophysicist at Los Alamos National Lab. Perelson and Herskowitz

obtained their PhD only a year apart. The two papers had received 514 and 344 citations

respectively by the end 2003. Though this is a large difference, this places both well above

the 99th percentile of the citation distribution for 5-year old articles published in 1998.

One potential concern with the addition of this “explicit” control group is that control

subfields could be affected by the treatment of interest. What if, for instance, a control

source article happens to be related (in a PMRA sense) with the treated source? Because

the subfields identified by PMRA are narrow, this turns out to be an infrequent occurrence.

Nonetheless, we remove all such instances from the data. We then find all the intellectual

neighbors for these control source articles using PMRA; a control subfield is defined by the

set of related articles returned by PMRA, in a manner that is exactly symmetric to the

procedure used to delineate treated subfields. When these related articles are parsed below

to distinguish between those published by collaborators vs. non-collaborators of the star,

or between those by intellectual outsiders vs. insiders, treated and control observations will

always be defined with perfect symmetry.

3.4 Descriptive Statistics

The procedure described above yields a total of 34,216 distinct subfields; 3,074 subfields

correspond to one of the 452 dead scientists, whereas 31,142 subfields correspond to one of

5,809 still-living scientists. Table 2 provides descriptive statistics for control and treated

subfields in the baseline year, i.e., the year of death for the deceased scientist.10

Covariate balance. In the list of variables displayed in Table 2, a number of covariates are

balanced between treated and control subfields solely by virtue of the coarsened exact match-

ing procedure—for instance, (star) investigator year of degree, the source article number of

authors, or the source article number of citations at baseline. However, there is nothing

mechanical to explain the balance between treated and control subsamples with respect to

the stock of our main outcome variable: the number of articles in the star’s field. Appendix

Figure D2 compares the distributions of the cumulative number of articles published in our

sample of subfields up to the year of death, broken down by treatment status. Overall, one

10We can assign a counterfactual year of death for each control subfield, since each control subfield is
associated with a particular treated subfield through the matching procedure described above.
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can observe a great deal of overlap between the two histograms; the means are virtually

identical, but the median is higher for control subfields (65) than for treated subfields (58).

Of course, balance in the levels of the outcome variable is not technically required for the

validity of the empirical exercise.11 Yet, given the ad hoc nature of the procedure used to

identify control subfields, this degree of balance is reassuring.

Another happy byproduct of our matching procedure is that treated and control scientists

also appear quite similar in the extent of their eminence at the time of (counterfactual) death,

whether such eminence is measured through NIH funding, the number of articles published,

or the number of citations these articles received.

Collaborators vs. non-collaborators. One critical aspect of the empirical analysis

is to distinguish between collaborators and non-collaborators of the star when measuring

publishing activity in a subfield. It is therefore crucial to describe how this distinction can

be made in our data. Information about the superstars’ colleagues stems from the Faculty

Roster of the Association of American Medical Colleges (AAMC), to which we secured

licensed access for the years 1975 through 2006, and which we augmented using NIH grantee

information (cf. Azoulay et al. [2010] for more details).

An important implication of our reliance on these sources of data is that we can only iden-

tify authors who are faculty members in U.S. medical schools, or recipient of NIH funding.

We cannot systematically identify scientists working for industrial firms, or scientists em-

ployed in foreign academic institutions.12 The great benefit of using AAMC data, however,

is that they ensure we have at our disposal both demographic and employment information

for every individual in the relevant labor market: their (career) age, type of degree awarded,

place of employment, gender, and research output, whether measured by publications or

NIH grants.

To identify authors, we match the authorship roster of each related article in one of our

subfields with the AAMC roster.13 We tag as a collaborator any author who appeared as a

11What is required is that the trends in publication activity be comparable between treated and control
subfields up until the death of the treated scientist. We verify that this is the case below.

12We can identify trainees who later go on to secure a faculty position, but not those who do not stay in
academia.

13We limit ourselves to authors with relatively infrequent names. Though this may create some measure-
ment error, there is no reason to suspect that the wrongful attribution of articles to authors will impact
treated and control subfields in a differential way.
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co-author of the star associated with the subfield on any publication prior to the death. Each

related article is therefore assigned to one of two mutually-exclusive bins: the “collaborator”

bin comprises the set of publications with at least one identified author who coauthored

with the star prior to the year of death (or counterfactual death); the “non-collaborator”

bin comprises the set of publications with no identified author who coauthored with the star

prior to the year of death (or counterfactual death).14 As can be seen in Table 2, roughly

12% of the publication activity at baseline can be accounted for by collaborators. Moreover,

this proportion is very similar for control and treated subfields.15

A first look at subfield activity. Figure E1 in Appendix E confirms that the treated and

control subfields are on similar trajectories in publication activity up to the time of superstar

death (though they diverge after the death event). This provides suggestive evidence for the

validity of our research design, and is notable since the coarsened exact matching procedure

that generated the sample of control subfields did not make any use of these outcomes.

Moreover, the absence of differential trends can be observed for overall activity, for activity

restricted to collaborators of the star, and for the publishing activity of non-collaborators.

More boldly, we can use these averages in the raw data to examine changes in outcomes

after the death. For both treated and control subfields, the curves exhibit a pronounced

inverted U-shaped pattern, with entry first increasing until it reaches a peak roughly two

years before the death of the star (or counterfactual death for the control subfields and their

associated stars). Activity then decreases steadily, but the slope of the decrease is more

pronounced for control subfields, relative to treated subfields (Panel A). This pattern is

flipped when examining activity due to collaborators (Panel B): the relative decline is much

more pronounced for treated subfields, which is consistent with the results in Azoulay et al.

(2010). Panel C, which focuses on subfield activity limited to non-collaborators, provides

the first non-parametric evidence that the downward-sloping part of the activity curve is less

steep for treated subfields.

Figure E1 provides a transparent illustration of subfield publication activity over time

which proceeds directly from averaging the raw data, but the evidence it provides should be

14We identify the publications in the subfield for which the superstar is an author and eliminate them
from these calculations. As a result, any decrease in activity within the subfield cannot be ascribed to the
mechanical effect of its star passing away.

15We define collaboration status by looking at the authorship roster for the entire corpus of work published
by the star before or in the year of death, and not only with respect to the articles of the star that belong
to the focal subfield.
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handled with an abundance of caution. First, it conflates calendar time and experimental

time, when in actuality the death events in the data occur at varying frequencies between

the years 1975 and 2003. Second, covariates like field age are not perfectly balanced across

the treated and control groups, since the number of control subfields is not identical across

treated subfields. Finally, it abstracts away from robust inference, and particularly from

clustering: one would expect the subfield outcomes associated with an identical star to be

correlated. Our econometric framework, described below, addresses these limitations and as

a result provides a more solid foundation for the estimation of the causal effect of star death

on the dynamics of subfield activity.

4 Results

The exposition of the econometric results proceeds in stages. After a review of method-

ological issues, we provide results that pertain to the main effect of superstar death on

subfield growth, measured by publication rates and funding flows. Second, we attempt to

elucidate the mechanism (or set of mechanisms) at work to explain our most robust finding,

that of relative subfield growth in the wake of a star’s passing, a growth entirely accounted

for by contributions from non-collaborators. We do so by examining the characteristics of

the articles published by non-collaborators, before turning to the characteristics of their au-

thors. We also explore heterogeneity in the treatment effect through the interaction of the

post-death indicator variable with various attributes of the stars.

4.1 Econometric Considerations

Our estimating equation relates publication or funding activity in subfield i in year t to

the treatment effect of losing a superstar:

E [yit|Xit] = exp
[
β0 + β1AFTER DEATHit

+ β2AFTER DEATHit × TREATi + f(AGEit) + δt + γi

] (1)

where y is a measure of subfield activity, AFTER DEATH denotes an indicator variable

that switches to one in the year after the superstar (real or placebo) associated with i passes

away, TREAT is an indicator variable for treated subfields, f(AGEit) corresponds to a

flexible function of the field’s age, the δt’s stand for a full set of calendar year indicator
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variables, and the γi’s correspond to subfield fixed effects, consistent with our approach to

analyze changes in activity within subfield i following the passing of a superstar.16

The subfield fixed effects control for many time-invariant characteristics that could influ-

ence research activity, such as the need for capital equipment or the extent of disease burden

(e.g., for clinical fields). A pregnant metaphor for the growth of scientific knowledge has

been that of biological evolution (Hull 1988; Chavalarias and Cointet 2013): a field is born

when new concepts are introduced, resulting in an accelerating production of “offspring”

(articles), until the underlying scientific community loses its thematic coherence, ushering in

an era of decline (or alternatively, splitting or merging events). To flexibly account for such

life cycle effects, we include subfield age indicator variables, where subfield age is computed

as the number of years since the year of publication for the source article. The calendar year

effects filter out the effects of the general expansion of the scientific enterprise as measured

by the number of journals and articles published each year.17

We follow Jaravel et al. (2015) in including in our specification an indicator for the timing

of death that is common to treated and control subfields (whose effect will be identified by the

coefficient β1) in addition to the effect of interest, an interaction between AFTER DEATH

and TREAT (whose effect will be identified by the coefficient β2). The effects of these two

variables are separately identified because (i) death events are staggered across our obser-

vation period and (ii) control subfields (respectively placebo stars) inherit a counterfactual

date of death because they are uniquely associated with a treated subfield (respectively de-

ceased star) through the matching procedure described in section 3.3. The inclusion of the

common term addresses the concern that age, calendar year, and subfield fixed effects may

not fully account for shifts in subfield activity around the time of the star’s passing. If this

is the case, AFTER DEATH will capture the corresponding transitory dynamics, while

AFTER DEATH × TREAT will isolate the causal effect of interest. Empirically, we find

that in some specifications, the common term has substantial explanatory power, though its

inclusion does not radically alter the magnitude of the treatment effect.

16To avoid confusion, we have suppressed any subscript for the superstars. This is without loss of generality,
since each subfield is uniquely associated with a single star.

17It is not possible to separately identify calendar year effects from age effects in the “within subfield”
dimension of a panel in a completely flexible fashion, because one cannot observe two subfields at the same
point in time that have the same age but were born in different years (Hall et al. 2007).
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Estimation. The dependent variables of interest, including publication counts and NIH

grants awarded, are skewed and non-negative. For example, 31.40% of the subfield/year

observations in the data correspond to years of no publication activity; the figure climbs to

56.70% if one focuses on the count of NIH grants awarded. Following a long-standing tradi-

tion in the study of scientific and technical change, we present conditional quasi-maximum

likelihood estimates based on the fixed-effect Poisson model developed by Hausman et al.

(1984). Because the Poisson model is in the linear exponential family, the coefficient esti-

mates remain consistent as long as the mean of the dependent variable is correctly specified

(Gouriéroux et al. 1984).

Inference. QML (i.e., “robust”) standard errors are consistent even if the underlying data

generating process is not Poisson. In fact the Hausman et al. estimator can be used for any

non-negative dependent variables, whether integer or continuous (Santos Silva and Tenreyro

2006), as long as the variance/covariance matrix is computed using the outer product of the

gradient vector (and therefore does not rely on the Poisson variance assumption). Further,

QML standard errors are robust to arbitrary patterns of serial correlation (Wooldridge 1997),

and hence immune to the issues highlighted by Bertrand et al. (2004) concerning inference

in DD estimation. We cluster the standard errors around superstar scientists in the results

presented below.

Dependent Variables. Our primary outcome variable is publication activity in a subfield.

However, we go beyond this raw measure by assigning the related articles that together

constitute the subfield into a variety of bins. For instance, we can decompose publication

activity in the subfield into two mutually exclusive subfields: articles that appear in presti-

gious journals (Journal Impact Factor [JIF] higher than two) and those that appear in less

prestigious journals (JIF lower than two); or articles with a superstar on the authorship

roster vs. articles without a superstar; etc. Articles in each bin can then be counted and

aggregated up to the subfield/year level.

Capturing funding flows at the field level is slightly more involved. PubMed systemati-

cally records NIH grant acknowledgements using grant numbers. Unfortunately, these grant

numbers are often truncated and omit the grant cycle information that could enable us to

pin down unambiguously the particular year in which the grant was awarded. When it is

missing, we impute the award year using the following rule: for each related publication

that acknowledges NIH funding, we identify the latest year in the three-year window that
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precedes the publication during which funding was awarded through either a new award or

a competitive renewal. To measure funding activity in a subfield, we create a count variable

that sums all the awards received in particular year, where these awards ultimately generate

publications in the focal subfield.

4.2 Main effect of superstar death

Table 3 and Figure 1 present our core results. Overall, we find that publication activity

increases slightly following the death of a star scientist who was an active contributor to it,

but the magnitude of the effect is modest (about 4.7%) and imprecisely estimated (column 1).

Yet, this result conceals a striking pattern that is uncovered when we distinguish between

publications by collaborators and non-collaborators. The decline in publication activity ac-

counted for by previous collaborators of the star is large, on the order of 20.3% (column 2).

This evidence is consistent with previous findings, which showed that coauthors of super-

star scientists who die suffer a drop in output, particularly if their non-collaborative work

exhibited strong keyword overlap with the star, i.e., if they were intellectually connected in

addition to being coauthors (Azoulay et al. 2010, Table VI, column 2).

A limitation of the previous work focusing on the fate of collaborators after the loss of

an eminent scientist always lied in the failure to distinguish between social and intellectual

channels of influence, since every treated scientist was by definition a collaborator, even

if merely a casual one. In this study, we can relax this constraint, and when we do, we

find that publication activity by non-collaborators in the subfield increases by a statistically

significant 7.9% (column 3).18

We also explore the dynamics of the effects uncovered in Table 3. We do so by estimating

a specification in which the treatment effect is interacted with a set of indicator variables

corresponding to a particular year relative to the superstar’s death, and then graphing the

effects and the 95% confidence interval around them (Panels A, B, and C of Figure 1 corre-

spond to columns 1, 2, and 3 in Table 3).19

18The number of observations varies ever so slightly across columns because the conditional fixed effects
specification drops observations corresponding to subfields for which there is no variation in activity over
the entire observation period. This is true as well for the results reported in Tables 4 through 8.

19In these specifications, the AFTER DEATH term which is common to treated and control subfields is
also interacted with a complete series of lags and leads relative to the year of death or counterfactual death.
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With treatment events staggered over time, a concern with these dynamic specifications

is that the magnitude of the treatment effect might not be stable over time. Because our

observation period stops in 2006, the lead terms far away from death are identified by only

a subsample of the data. Could such heterogeneity confound true dynamics, for example if

deaths that occurred earlier in the sample have a bigger effect? To address this concern, we

extend the observation period used to generate the event study graphs in Figure 1 from 2006

to 2012, resulting in a sample that is almost perfectly balanced in a window of ten years

before to ten years after the death of a superstar.20

Two features of the figure are worthy of note. First, the dynamics amplify the pre-

vious results in the sense that we see the effects increasing (in absolute value) monotoni-

cally over time—there is no indication that the effects we estimated in Table 3 are merely

transitory. Five years after a star’s death, the relative increase in publication activity by

non-collaborators is large enough in magnitude to fully offset the decline in activity by col-

laborators. Second, there is no discernible evidence of an effect in the years leading up to

the death, a finding that validates ex post our identification strategy.

Nevertheless, the case for the exogeneity of death events with respect to the course of

knowledge growth and decline within a subfield is stronger for sudden causes of deaths than

for anticipated causes of death. Figure E2 in Appendix E provides a version of Figure 1,

Panel C (event study graphs for non-collaborators) broken down by causes of death (antici-

pated vs. sudden). While there is more variability in the estimated path of outcomes in the

years leading up to the death event in the anticipated case (Panel A) than in the sudden

case (Panel B), it is imprecisely estimated and non-monotonic. In both panels, however,

one can observe a slow but steady increase after the event in the rate of contributions by

non collaborators in treated subfields, relative to control subfields. We explore further the

distinction between sudden and anticipated events in section 4.4.

The last three columns of Table 3 focus on funding flows from the National Institutes

of Health (NIH) rather than publication flows. More precisely, the outcome variable in

columns 4, 5, and 6 is the number of distinct NIH awards that acknowledge a publication

in the subfield in the three-year window before the year of publication for the related article

20We quickly revert to studying the unbalanced sample for the rest of the manuscript, for three reasons.
First, many of the covariates we need to explore heterogeneity of the treatment effect are not available after
2006. Second, though we can account precisely for the employment status of the control superstars up to
2006, some may retire, or even die in the years that follow. Third, the version of Figure 1 estimated in the
unbalanced sample looks substantially the same as the one estimated in the balanced sample.
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(counting grant amounts, as opposed to the number of grants, yields similar results). The

patterns are very similar to those obtained in the case of publication activity, both in terms

of magnitudes and in terms of statistical significance.21

4.3 Understanding subfield growth patterns induced by a star’s
passing

In the remainder of the manuscript, we seek to characterize the kind of contribution, and

the type of investigators that give rise to the novel empirical regularity we uncovered: that

of relative growth for subfields following the death of their superstar anchor, a phenomenon

entirely accounted for by research activity undertaken by scientists who never collaborated

with the star while alive. As a consequence, all the results below pertain to entry into the

field by non-collaborators; any article with even one author who collaborated with the star

is excluded from the count of articles that constitute the dependent variable.

Article Characteristics. What characterizes the additional contributions that together

lead to increased activity in a subfield after a star has passed on? Are these in fact important

contributions to the subfield? Do they focus on core issues, or should they be understood as

taking the intellectual domain in a novel direction? Tables 4 and 5 explore these issues. In

Table 4, we parse every related article in the subfields to assign them into one of six mutually

exclusive bins, based on their vintage-specific long-run citation impact: articles that fall in

the bottom quartile of the citation distribution; in the second quartile; in the third quartile;

articles that fall above the 75th percentile, but below the 95th percentile; articles that fall

above the 95th percentile, but below the 99th percentile; articles that fall above the 99th

percentile of the citation distribution.22

Panel A of Table 4 produces a battery of estimates corresponding to each of these six

bins in columns 2 through 7 (column 1 simply replicates the effect for all papers, regardless

21The event study graphs corresponding to the dynamics of funding flows are available from the authors,
but also show close similarity to those displayed in Figure 1.

22A vintage is comprised of all the articles published in a given year. When we are referring to the vintage-
specific, article-level distribution of citations, the relevant universe to compute quantiles is not limited to
the articles that constitute the subfields in our data. Rather, the relevant universe includes the entire set of
17,276,676 articles that can be cross-linked between PubMed and the Web of Science. As a result, there is
no reason to suspect that individual stars, or even our entire set of stars, could ever alter the shape of these
distributions. For example, the article by Sopko et al. highlighted on Figure C2 (in Appendix C) received
39 citations from other articles in PubMed by 2014. This puts this article above the 76th percentile of the
citation distribution for articles published in 2002.
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of impact, that was previously displayed in Table 3, column 3). A startling result is that the

magnitude of the treatment effect increases sharply as we focus on the rate of contributions

with higher impact. In contrast, the number of lower-impact articles contributed by non-

collaborators contracts slightly, though the effect is not precisely estimated.

Panels B and C break down these results further by examining separately the growth

of subfields by cause of death (anticipated vs. sudden). As mentioned earlier, the case for

exogeneity is stronger for sudden death, since when the death is anticipated, it would be the-

oretically possible for the star to engage in “intellectual estate planning,” whereby particular

scientists (presumably close collaborators) are anointed as representing the next generation

of leaders in the subfield. The results in column 1 imply that there is an important difference

between the two type of events—subfield growth is more pronounced when the death of the

star was anticipated. Decomposing this effect across the quantile bins as above reveals that

these differences can be accounted for by shifts in activity for low-impact contributions. In

the right tail of the distribution, there is very little evidence that the manner of superstar

death matters at all for the fate of their subfields. In both cases, non-collaborators increase

their contribution sharply—on the order of 40%. Because of this convergence in the up-

per tail, the remainder of the manuscript will lump together anticipated and unanticipated

events.23

Table 5 parses the related articles in each subfield to ascertain whether contributions by

non-collaborators constitute a genuine change in intellectual direction. Panel A distinguishes

between contributions that are proximate in intellectual space to the source article from those

that are more distant (though still part of the subfield as construed by PMRA). Because

we have at our disposal both a cardinal and an ordinal measure of intellectual proximity,

we present four different estimates. In both cases, the magnitude of the treatment effect

pertaining to publication activity by proximate articles is approximately twice as large as

the magnitude corresponding to more distant articles. These differences, however, are not

themselves statistically significant at conventional levels. But we can at least rule out the

conjecture that non-collaborators enter the field from the periphery. Their contributions

seem to lie smack-dab in the middle of the subfield as it existed when the star was still alive.

23The most salient results reported below continue to hold when analyzed separately by cause of death.
However, we gain statistical power from pooling these observations, and some empirical patterns would be
estimated less precisely if we chose to focus solely on observations corresponding to subfields for which the
star died suddenly and unexpectedly.
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Panel B sheds light on the intellectual direction of the field, by examining the cited

references contained in each related article. The first two columns separate related articles in

two groups. The first contains only publications that cite at least some work which belongs

to the subfield identified by PMRA for the corresponding source. The second contains

publications that cite exclusively out of the PMRA subfield. Only articles in the second

group appear to experience growth in the post-death era. The next two columns proceed

similarly, except that the list of references is now parsed to highlight the presence of articles

authored by the star, as opposed to all other authors. We find that subfield growth can be

mostly accounted for by articles from non-collaborators who do not build on the work of

the star. Finally, we investigate the vintage of the references cited by related articles. The

last two columns in Panel B indicate that the new contributions are more likely to build on

science of a more recent vintage.

Taken together, the results in Panels A and B of Table 5 paint a nuanced picture of

directional change in the wake of superstar passing. The new contributions do not represent

a radical departure from the subfield’s traditional questions—their MeSH keywords over-

lap with those of the source article even more than is typical for the “average” article in

the subfield. At the same time, the citation evidence makes it clear that these additional

contributions often draw from more recent and different sources of knowledge for inspiration.

Related Author Characteristics. The next step of the analysis is to investigate the type

of scientists who publish the articles that account for subfield growth in the wake of a star’s

death. Table 6 reports these results. Perhaps the simplest author characteristic is age. For

each related article in the subfield, we match the authorship roster to the AAMC Faculty

Roster. Then, we compute the mean career age over matched authors for each related article.

Since the median career age for matched authors turns out to be 16, we assign each article

to one of two bins, the first comprising all related articles with an “older” authorship team

(mean author career age greater than 16), the second comprising all related articles with

a “younger” authorship team (mean author career age less than or equal to 16). We then

compute publication activity separately for these two groups by aggregating these data up

to the subfield/year level of analysis. As can be observed in the first two columns of Table 6,

there really is not any difference in the magnitude of the post-death effect across these two

groups.
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The second step is to distinguish between the related articles with at least one eminent

author from related articles for which none of the authors is particularly famous at the time

of its publication. To do this, we use two distinct measures of eminence. The first is whether

a matched author belongs to our sample of 12,935 stars. The second is whether a matched

author belongs to an even more elite set comprising Nobel Prize winners, Howard Hughes

Medical Investigators, and members of the National Academy of Sciences. In the final four

columns to Table 6, we find that the effect is driven by related articles where none of the

authors is particularly famous. This is consistent with the idea that non-elite scientists have

stronger incentives to explore outside of their existing research trajectory, relative to more

established scientists.

Finally, we examine the proximity in intellectual space between the non-collaborators

in the subfield and the deceased superstar. One possibility is that non-collaborators are

competitors of the star, with much of their publication activity falling into the subfield when

the star was alive. Another possibility is that they are recent entrants into the subfield—

intellectual outsiders. To distinguish these different types of authors empirically, we create a

metric of intellectual proximity for each matched author, by computing the fraction of their

publications that belongs to the star’s subfields up to the year before the publication of each

related article.24 The distribution of this field overlap measure is displayed on Panel A of

Figure 2, separately for authors on publications in the treated and control subfields. These

distribution are extremely skewed, with a pronounced mass point at the origin: a full 50%

of the related articles turn out to have authors with exactly zero intellectual overlap with

the star’s subfield. In addition to the bottom two quartiles, we create ten bins for every five

percentiles above the median (50th to 55th percentile, 55th to 60th percentile,. . . , 95th to 99th

percentile), as well as top percentile bin. We then compute the corresponding measures of

subfield activity by aggregating the data up to the subfield/year level. We opt to present

the results graphically in Figure 2, Panel B. Each dot corresponds to the magnitude of the

treatment effect in a separate regression with the outcome variable being the number of

articles in each subfield that belong to the corresponding bins.25

24Whenever we match more than one author on a related article, we assign to that article the highest
proximity score for any of the matched authors.

25Table E4 in Appendix E corresponds to a simplified version of Figure 2 (with only four bins: below the
median degree of field overlap, in the third quartile, in the top quartile but below the top ventile, and in
the top ventile) presented as a table. Because some models failed to converge with the fixed-effects Poisson
estimator, in both Figure 2 and Table E4, all coefficients stem from OLS regressions (with subfield fixed
effects and the same set of controls as equation 1].
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A striking pattern emerges. The authors driving the growth in publication activity

following a star’s death are largely outsiders. They do not appear to have been substantially

active in the subfield when the star was alive. To borrow a term from industrial organization,

they are new entrants into these subfields, though the evidence presented above also shows

that they are not especially likely to be younger scientists overall.

4.4 The Nature of Entry Barriers

The evidence so far points to fields of deceased stars enjoying bursts of activity after

the death event. The influx of outsiders documented above suggests that stars may be

able to regulate entry into their field while alive. In this section, we attempt to uncover

the precise nature of barriers to entry into the subfields where the stars were prominent

prior to their untimely demise. Methodologically, we do so by splitting the sample of fields

across the median of a series of relevant covariates. Because there is no presumption that

death events are exogenous with respect to subfield growth and decline within the strata

delineated by these covariates, it should be clear that we will only be able to document

conditional correlations, and not causal effects in what follows.26

While it is tempting to envisage conscious effort by the stars to block entry through the

explicit control of key resources, such as funding and/or editorial goodwill (Li 2015; Brogaard

et al. 2014), this explanation appears inconsistent with the facts on the ground. In the five-

year window before death, only three of our stars (out of 452) were sitting on study sections,

the funding panels that evaluate the scientific merits of NIH grant applications. Another

three were journal editors in the same time window. This handful of individuals could not

possibly drive the robust effects we have uncovered.27 If barriers to entry are not the result

of explicit control by stars, what is discouraging entry?

Goliath’s shadow. One possibility is that outsiders are simply deterred by the prospect of

challenging a luminary in the field. The existence of a towering figure may skew the cost-

26Instead of interacting the treatment effect with covariates, we prefer to estimate our benchmark spec-
ifications on subsamples corresponding to below and above the median of these covariates. For these two
approaches to yield comparable results, one would need to also saturate the specification with interaction
terms between the covariates and year/field age effects. In practice, we have found that the fixed-effects
Poisson models fail to converge with this full set of interactions. An alternative is to report OLS specifica-
tions, but we prefer sticking with Poisson models estimated by Quasi-maximum likelihood because of the
large number of zeros the outcome variable exhibits.

27We verified that omitting these scientists from the sample hardly change the core results.
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benefit calculations from entry by outside scholars toward delay or alternative activities.

Table 7 examines this role of implicit barriers to entry by focusing on the eminence of

the star. Eminence is measured through the stars publication count, the stars cumulative

number of citations garnered up to the year of death, and the stars cumulative amount of NIH

funding. We also have a local measure of eminence: the star’s importance to the field, which

is defined as the fraction of papers in the subfield that have the star as an author. Splitting

the sample at the median of these measures reveals a consistent pattern of results. Stars

that were especially accomplished appear to be an important deterrent to entry, with their

passing creating a larger void for non-collaborators to fill. Rather than directly thwarting

the efforts of potential entrants, it appears that the mere presence of a preeminent scholar

is sufficient to dissuade intellectual outsiders from engaging with the field.

Of course, the accomplishment of the star alone may not be the only factor influencing

entry. We next turn our attention to how the characteristics of the field and the stars

coauthors may also modulate this relationship. Since entry is largely confined to those

fields that have lost an eminent star, the analysis that follows limits attention only to those

subfields in which the most eminent among the stars were active, as measured by our citations

measure in Table 7.28

Intellectual closure. Entry into a field, even after it has lost its star, may be deterred

if the subfield appears unusually coherent to outsiders. A subfield is likely to be perceived

as intellectually coherent, when the researchers active in it agree on the set of questions,

approaches, and methodologies that propel the field forward. To explore the notion of

“paradigmatic closure” as a barrier to field entry we develop two measures of intellectual

coherence.

The first index of intellectual coherence leverages PMRA to capture the extent to which

articles in the subfield pack themselves into a crowded scientific neighborhood. Recall that

for each article in a subfield, we have at our disposal both a cardinal and an ordinal measure

of intellectual proximity with the source article from which all other articles in the subfield

radiate. Focusing only on the set of articles published in the subfield before the year of

death, we measure intellectual coherence as the cardinal ranking (expressed as a real number

28More precisely, Table 8 below drops from the sample subfields associated with stars who fall below the
median of cumulative citations garnered by the year of death. Results are qualitatively similar when focusing
on the most eminent stars as defined by publications or NIH funding.
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between zero and one) for the 25th most related article in the subfield.29 According to this

metric, subfields exhibit wide variation in their degree of intellectual coherence, with a

mean and median equal to 0.62 (sd = 0.13). The second index of intellectual coherence

exploits the list of references cited in each article in the subfield before the star’s death.

We simply compute the proportion of these references that fall within the subfield. Our

contention is that fields that are more self-referential will tend to dissuade outsiders from

entering. Once again, we observe meaningful variation across subfields using this second

index (mean = 0.081;median = 0.067; sd = 0.059).

Social closure. Alternatively, a field might be perceived as socially coherent, when the

researchers active in it form a tightly-knit clique, often collaborating with each other, and

perhaps also reviewing each other’s manuscripts. To explore this barrier we develop two

additional measures of coherence, only in this case those designed to capture social cohesion

rather than paradigmatic closure.

A natural way to capture endogamy within a subfield is to focus on the extent to which the

star trained a large number of the junior scientists within it. We conjecture that the fields of

stars who produced many intellectual “offspring” would be less welcoming to outsiders than

those in which the stars did not train many graduate students or postdoctoral fellows. To

identify trainees, we focus on the subset of coauthors who occupy the first author position

in articles where the star occupies the last position; with the added stipulation that the

coauthored publication appears in a window of ± three years around the year in which

the collaborator’s highest degree was received. Our first index of social coherence at the

subfield level is then simply the count of the number of investigators trained by the star

before his/her (possibly counterfactual) death. Our second measure of social coherence

summarizes the degree of subfield “cliquishness” by computing the clustering coefficient in

its coauthorship network. The clustering coefficient is simply the proportion of closed triplets

within the network, an intuitive way to measure the propensity of scientists in the field to

choose insiders as collaborators.30

29The choice of the twenty fifth-ranked article is arbitrary, and also convenient. After purging from each
subfield reviews, editorials, and articles appearing in journals not indexed by WoS, 95% of the subfields
contain 25 articles or more in the period that precedes the star’s death. In those rare cases where the
number of articles is less than twenty-five, we choose as our measure of coherence the cardinal measure for
the least-proximate article in the subfield.

30The clustering coefficient is based on triplets of nodes (authors). A triplet consists of three authors that
are connected by either two (open triplet) or three (closed triplet) undirected ties. The clustering coefficient
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Panel A of Table 8 investigates the role of these intellectual and social barriers in modu-

lating the post-death expansion of fields. We find tentative evidence of a role for both types

of barriers, in that the magnitude of the treatment effect for coherent fields is always smaller

than the magnitude for less coherent fields, regardless of how coherence is measured. In

fact, in the subsamples of unusually coherent subfields, we find no statistical evidence of a

publication influx after the passing of a star.31

Incumbent resource control. While we noted earlier that stars do not appear especially

well positioned to directly block entry through the control of key resources, it is possible

that those resources can be controlled indirectly through the influence of collaborators. If

incumbent scholars within a field serve as gatekeepers of funding and journal access, they may

be able to effectively stave off threats of entry from outsiders. The same may be implicitly

true if collaborators are the recipients of the lions share of funding within the field. To

assess financial gatekeeping, we use information regarding the composition of NIH funding

panels, to tabulate, for each star, the number of collaborators who were members of at least

one of these committees in the five years preceding the death of the star. We would like to

proceed in a similar fashion using the composition of editorial boards, but these data are

not easily available for the set of PubMed-indexed journals and the thirty-year time period

covered by our sample. As an alternative, we develop a proxy for editorial position based

on the number of editorials or comments written by every collaborator of the star.32 We

then sum the number of editorials written by coauthors in the five years before the death.

Together, the editorial and study section information allow us to distinguish between the

stars whose coauthors were in a position to channel resources towards preferred individuals

or intellectual approaches from those stars whose important coauthors had no such power.

Panel B of Table 8 presents the evidence on the role of indirect control. The results paint

a consistent, if not always statistically significant, picture. While subfield expansion is the

is the number of closed triplets over the total number of triplets (both open and closed, cf. Luce and Perry
[1949]).

31We acknowledge that the difference between the estimates for more or less coherent subfields in unlikely
to reach statistical significance at conventional levels. What seems notable, however, is that the magnitudes
are consistently ordered across the measures we consider.

32We investigated the validity of this proxy as follows. In the sample of deceased superstars, every indi-
vidual with five editorials or more was an editor. In a random sample of 50 superstars with no editorials
published, only one was an editor (for a field journal). Finally, among the sixteen superstars who wrote
between one and four editorials over their career, we found two whose CV indicate they were in fact editors
for a key journal in their field. We conclude that their appears to be a meaningful correlation between the
number of editorials written and the propensity to be an editor.
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rule, it appears more pronounced when stars have relatively few collaborators in influential

positions. The results based on the fraction of funding in a field that is held by collaborators

are even stronger. Indirect control therefore appears to be a potential mechanism through

which superstars can exert influence on the evolution of their fields, even from beyond the

grave. Coauthors, either through their direct effort to keep the star’s intellectual flame alive

or simply by their sheer (financial) dominance in the field, erect barriers to entry into those

fields that prevent its rejuvenation by outsiders.

Taken together, these results suggest that outsiders are reluctant to challenge hegemonic

leadership within a field when the star is alive. They also highlight a number of factors that

constrain entry even after she is gone. Intellectual, social, and resource barriers all impede

entry, with outsiders only entering subfields whose topology offers a less hostile landscape

for the support and acceptance of “foreign” ideas.

4.5 Robustness checks and extensions

Appendix E presents results pertaining to robustness analyses and extensions. In Ta-

ble E1, we probe the robustness of the core results presented in Table 3, Panel A after

rolling up the data to the level of the star scientist (deceased or control). To do so, we

simply proceed by lumping all related articles for each star together as if they belonged to

a single subfield. The cost of this approach is that the sample of control stars that fol-

lows does not inherit an unambiguous date of death, since the same control star can act as

control for subfields associated with different treated stars. As a result, the corresponding

specifications do not include the AFTER DEATH term common to controls and treated

stars as in equation 1. Nevertheless, the results in Table E1 are very similar to those in

Table 3, both in terms of magnitude and statistical significance. As explained in Section 3.2,

we strongly prefer the subfield level of analysis, primarily because the subfields delineated

by the PubMed Related Citations Algorithm exhibit very limited overlap (see Figure C3 in

Appendix C).

The first three columns of Table E2 drop from the sample all the control subfields, but are

otherwise analogous to the core results presented in Table 3, Panel A. In these specifications,

subfields who were treated in the past or will be treated in the future serve as implicit controls

for the subfields currently experiencing the death of their associated star. The results are

qualitatively similar to those displayed in Table 3 in the case of non-collaborators, but not
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in the case of activity by collaborators: the treatment effect is positive and imprecisely

estimated in this case. Moreover, the corresponding event study graphs (unreported) clarify

that dropping the control group from the estimation sample produces pre-event trends that

cast doubt on a research design based on a single level of difference. This provides a clear

reason to add to the specification an additional level of difference—that provided by control

subfields.

The last three columns of Table E2 display coefficients estimated by ordinary least

squares, rather than the fixed effects Poisson model of Hausman et al. (1984). The pattern

of coefficients is similar to that observed in Table 3 with respect to their sign and levels of

statistical significance. The magnitudes cannot be readily compared, but can be reconciled

easily. For instance, the mean of the dependent variable in the last column of Table E2 is

3.09; the point estimate implies that non-collaborators increase the level of their contribution

to treated subfields, relative to control subfields by 0.335 article per year on average. This

represents an increase of 10.8% at the mean of the data, which is close—but not identical—to

the rate of increase estimated in the third column of Table 3 (7.9%).

Impact of star age and experience. As explained earlier, we do not impose a strict

age cutoff for the deceased star, we merely insist that they exhibit tangible signs of re-

search activity, such as publishing original articles (rather than simply reviews, editorials,

or comments), obtaining NIH grants, and training students. Among our 452 departed su-

perstars, the median age at death is 61, the seventy-fifth percentile 67, and the top decile

73. How do the core results change when the scientists who passed away at an advanced

age are excluded from the sample? As can be observed on Table E3 (which focuses only on

publication activity in subfields by non-collaborators of the star), the subfields of stars who

passed away more prematurely are responsible for most of the effect. The effect for the fields

associated with older stars is small in magnitude and imprecisely estimated. We choose to

keep these older stars in the sample because a larger sample size affords us opportunities

to explore mechanisms without losing power to detect nuanced effects statistically. The last

two columns of Table E3 investigate whether a star’s experience in the field (measured as

the number of years between her first contribution in it and the year of death) moderates the

core result. The median age in the field at the time of death is seven. We find no difference

in the magnitude of the treatment effect along this dimension.
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Effects on prior agenda. We find that non-collaborators of the star increase their publi-

cation activity in the fields in which the superstar was active prior to her death. Appendix F

examines whether there is evidence of commensurate declines in publication activity for these

related authors in the fields where they were active but the star was not. This investigation

entails a change in the level of analysis, from the subfield level to the related author level.

A practical difficulty is that a related author can be—and is in fact frequently—related to

more than a single star. To get around this issue and pin down for each related author a

single year of treatment and a clear demarcation between in-field and out-of-field output,

we build a panel dataset of related authors and their publication output using two different

methods. In the first method, we associate each related author with the star who died (pos-

sibly counterfactually) in the earliest year of all possible years of treatment. In the second

method, we associate each related author with their most-related star (i.e., the star for whom

the cardinal relatedness score between her source article and the author’s related article is

highest). Regardless of method, we divide each related author’s output according to whether

it belongs to one of the fields of the star with whom s/he is associated, or whether it belongs

to none of these fields.33 Table F1 then examines how these measures of output shift after

the death event, relative to before, for treated authors, relative to control authors. We also

distinguish between the overall number of publications, the number of publications where

the related author is in the middle of the authorship roster, and the number of publications

where the related author is pivotal (in either first or last authorship position).

Panel A corresponds to the results obtained following the “earliest treating star” method.

Panel B corresponds to the results obtained following the “most-related treating star”

method. Regardless of the method employed, some stable patterns emerge. We can de-

tect large effects on the rate of production of in-field articles, consistent with the results

obtained when performing our analysis at the subfield level. Conversely, the magnitudes for

the treatment effect on out-of-field output are typically much smaller, imprecisely estimated,

and not always of the same sign. Figure F1 presents the corresponding event-study graphs

(only for out-of-field publication output). The main takeaway is that we cannot detect any

evidence of displacement. Non-collaborating related authors appear to increase their overall

output modestly in the wake of a superstar’s premature passing.34

33Since the universe of fields in large, it is important to note that our simple counts of activity outside of
a star’s fields will not be able to detect moderate shifts in foci within that set of activities.

34The absence of displacement is reassuring from one standpoint: if authors and indexers were just changing
keywords opportunistically to position themselves strategically with respect to subfields that have lost their
stars, but without really changing the content of their investigations, then we would expect to observe
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5 Conclusion

In this paper, we leverage the applied economist’s toolkit, together with a novel approach

to delineate the boundaries of scientific fields, to explore the effect that the passing of an

eminent scientist exerts on the dynamics of growth—or decline—for the fields in which

s/he was active while alive. We find that publications and grants by scientists that never

collaborated with the star surge within the subfield, absent the star. Interestingly, this surge

is not driven by a reshuffling of leadership within the field, but rather by new entrants that

are drawn from outside of it. Our rich data on individual researchers and the nature of their

scholarship allows us provide a deeper understanding of this dynamic.

In particular, this increase in contributions by outsiders appears to tackle the mainstream

questions within the field but by leveraging newer ideas that arise in other domains. This

intellectual arbitrage is quite successful—the new articles represent substantial contributions,

at least as measured by long-run citation impact. Together, these results paint a picture of

scientific fields as scholarly guilds to which elite scientists can regulate access, providing them

with outsized opportunities to shape the direction of scientific advance in that space.

We also provide evidence regarding the mechanisms that enable the regulation of entry.

While stars are alive, entry appears to be effectively deterred where the shadow they cast

over the fields in which they were active looms particularly large. After their passing, we

find evidence for influence from beyond the grave, exercised through a tightly-knit “invisible

college” of collaborators (de Solla Price and Beaver 1966; Crane 1972). The loss of an elite

scientist central to the field appears to signal to those on the outside that the cost/benefit

calculations on the avant-garde ideas they might bring to the table has changed, thus en-

couraging them to engage. But this occurs only when the topology of the field offers a

less hostile landscape for the support and acceptance of “foreign” ideas, for instance when

the star’s network of close collaborators is insufficiently robust to stave off threats from

intellectual outsiders.

In the end, our results lend credence to Planck’s infamous quip that provides the title

for this manuscript. Yet its implications for social welfare are ambiguous. While we can

document that eminent scientists restrict the entry of new ideas and scholars into a field,

gatekeeping activities could have beneficial properties when the field is in its inception; it

decreases in out-of-field activity commensurate with the increase in within-field contributions. This does not
appear to be the case.
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might allow cumulative progress through shared assumptions and methodologies, and the

ability to control the intellectual evolution of a scientific domain might, in itself, be a prize

that spurs much ex ante risk taking. Because our empirical exercise cannot shed light on

these countervailing tendencies, we must remain guarded in drawing policy conclusions from

our results. Yet, the fact that the presence of a tutelar figurehead can freeze patterns of

participation into a scientific field increases the appeal of policies that bolster access to less

established or less well-connected investigators. Example of such policies include caps on

the amount of funding a single laboratory is eligible to receive, “bonus points” for first-time

investigators in funding programs, emeritus awards to induce senior scientists to wind down

their laboratory activities, and double-blind refereeing policies (Kaiser 2011, Berg 2012, Deng

2015).

Our work leaves many questions unanswered. What is the fate of the fields that these

new entrants departed? Do they decay, or instead “merge” with those whose star departed

prematurely? Given a finite supply of scientists and the adjustment costs involved in switch-

ing scientific focus, one would expect some other field to contract on the margin in the wake

of a superstar’s passing. Is this marginal field more novel, or already established? We are

pursuing these questions in ongoing work.
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Figure 1 
Effect of Star Scientist Death on Subfield Growth and Decline 

 
 

A. All Authors B. Collaborators C. Non-Collaborators 

  

Note: The solid blue lines in the above plots correspond to coefficient estimates stemming from conditional (subfield) fixed effects Poisson specifications in which publication 
flows in subfields are regressed onto year effects, subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/after 
the death event (the indicator variable for treatment status interacted with the year of death is omitted). The specifications also include a full set of lead and lag terms 
common to both the treated and control subfields to fully account for transitory trends in subfield activity around the time of the death. The sample used to estimate 
these specifications differs in one respect from our main sample: it has been extended from 2006 to 2012, which ensures that at least nine years of data are available to 
identify the treatment effects far away from death (the latest date of death in our sample is 2003). Our main sample stops the observation window in 2006, since many 
of the covariates needed to generate the estimates in Tables 5 through 8 are not available after 2006. When the analysis is restricted to the years 1970-2006 (i.e., with 
an unbalanced sample), the event study graphs look substantially similar to those above. The 95% confidence interval (corresponding to (QML) robust standard errors, 
clustered around star scientist) around these estimates is plotted with dashed red lines; Panel A corresponds to a dynamic version of the specification in column (1) of 
Table 3; Panel B corresponds to a dynamic version of the specification in column (2) of Table 3; Panel C corresponds to a dynamic version of the specification in 
column (3) of Table 3. 
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Figure 2 
Characteristics of Related Authors: Competitors or Outsiders? 

 
A. Distribution of Field Overlap B. Entering Authors & Field Overlap

Note: Panel A displays the distribution of field overlap for every combination of source article (authored by the star in the 5 years before her passing) and related 
article. We create a metric of intellectual proximity for each matched author on a related article, by computing the fraction of their publications that 
belongs to the star’s subfield up to its year of publication. Whenever we can match more than one related author to the AAMC Faculty Roster on a given 
article, it is the most proximate scientist on the authorship roster which determines the particular bin within which an article falls. Slightly more than half 
of related articles have authors with zero overlap, i.e., this related article is their first contribution to the star’s subfield. Using this information, we aggregate 
the number of related articles in a particular subfield and in a particular year, e.g., “the number of articles in the subfield in year t that have authors above 
the 95th percentile in our measure of field overlap.” In Panel B, each dot corresponds to the magnitude of the treatment effect in a separate regression where 
the dependent variable is the number of articles in each subfield authored by scientists who belong to a particular bin of intellectual proximity, as measured 
by field overlap above. Appendix Table E4 displays these results in regression form. 
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Table 1: Summary Statistics — Deceased Superstar Scientists (N=452) 
 Mean Median Std. Dev. Min. Max. 
Year of Birth 1930.157 1930 11.011 1899 1959 
Degree Year 1957.633 1957 11.426 1928 1986 
Year of Death 1991.128 1992 8.055 1975 2003 
Age at Death 60.971 61 9.778 34 91 
Female 0.102 0 0.303 0 1 
MD Degree 0.403 0 0.491 0 1 
PhD Degree 0.489 0 0.500 0 1 
MD/PhD Degree 0.108 0 0.311 0 1 
Sudden Death 0.409 0 0.492 0 1 
Nb. of Subfields 6.801 4 7.298 1 57 
Career Nb. of Pubs. 138.221 112 115.704 12 1,380 
Career Nb. of Citations 8,341 5,907 8,562 120 72,122 
Career NIH Funding $16,637,919 $10,899,139 $25,441,933 0 $329,968,960 
Sits on NIH Study Section 0.007 0 0.081 0 1 
Career Nb. of Editorials 0.131 0 0.996 0 17 

Note: Sample consists of 452 superstar life scientists who died while still actively engaged in research. See Appendix A for more details on 
sample construction. 

 
  



36 
 

Table 2: Summary Statistics — Control & Treated Subfields at Baseline 
 Mean Median Std. Dev. Min. Max.
Control Subfields(N=31,142)  
Baseline Stock of Related Articles in the Field 69.638 65 36.780 1 216 
Baseline Stock of Related Articles in the Field, Non-Collaborators 61.406 57 33.459 1 208 
Baseline Stock of Related Articles in the Field, Collaborators 8.232 7 6.946 0 77 
Source Article Nb. of Authors 3.970 3 1.793 1 15 
Source Article Citations at Baseline 16.333 6 28.066 0 354 
Source Article Long-run Citations 70.437 46 93.274 1 1505 
Investigator Gender 0.067 0 0.167 0 1 
Investigator Year of Degree 1960.546 1962 10.920 1926 1989 
Death Year 1991.125 1991 7.970 1975 2003 
Age at Death 58.100 58 8.796 34 91 
Years of Experience in the Field 8.162 8 4.290 0 37 
Investigator Cumulative Nb. of Publications 164 142 100 1 861 
Investigator Cumulative NIH Funding at Baseline $18,783,603 $14,291,121 $20,016,978 0 $220,856,880 
Investigator Cumulative Nb. of Citations 12,143 9,897 9,996 9 143,383 
Treated Subfields (N=3,074)  
Baseline Stock of Related Articles in the Field 69.398 58 46.644 0 225 
Baseline Stock of Related Articles in the Field, Non-Collaborators 61.250 50 43.282 0 219 
Baseline Stock of Related Articles in the Field, Collaborators 8.148 5 8.850 0 62 
Source Article Nb. of Authors 3.987 4 1.907 1 14 
Source Article Citations at Baseline 16.694 8 36.334 0 920 
Source Article Long-run Citations 70.432 35 180.528 1 6598 
Investigator Gender 0.099 0 0.299 0 1 
Investigator Year of Degree 1960.141 1961 10.898 1928 1986 
Death Year 1991.125 1991 7.970 1975 2003 
Age at Death 58.100 58 8.796 34 91 
Years of Experience in the Field 8.392 7 5.915 0 38 
Investigator Cumulative Nb. of Publications 170 143 118 12 1,380 
Investigator Cumulative NIH Funding at Baseline $17,637,726 $12,049,690 $24,873,018 0 $329,968,960 
Investigator Cumulative Nb. of Citations 11,580 8,726 10,212 120 72,122 

Note: The sample consists of subfields for 452 deceased superstar life scientists and their matched control subfields. See Appendix D for details on the 
matching procedure. All time-varying covariates are measured in the year of superstar death. 
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Table 3: Main Effect of Superstar Death 

 Publication Flows  NIH Funding Flows (Nb. of Awards) 

 All Authors Collaborators 
Only 

Non-
Collaborators 

Only 

 
All Authors Collaborators 

Only 

Non-
Collaborators 

Only 
 (1) (2) (3)  (4) (5) (6) 

After Death 0.046† -0.228** 0.076**  0.043 -0.253** 0.105** 
(0.026) (0.057) (0.026)  (0.034) (0.076) (0.032) 

Nb. of Investigators 6,260 6,111 6,260  6,213 5,673 6,200 
Nb. of Fields 34,211 33,094 34,211  33,891 29,175 33,785 
Nb. of Field-Year Obs. 1,258,911 1,217,857 1,258,911  1,049,285 903,224 1,046,021 
Log Likelihood -2,722,190 -712,808 -2,602,697  -1,312,147 -464,353 -1,186,098 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications 
in a subfield in a particular year (columns 1, 2, and 3), or the total number of NIH grants that acknowledge a publication in a subfield 
(columns 4, 5, and 6). All models incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated 
and control subfields that switches from zero to one after the death of the star, to address the concern that age, year and individual fixed 
effects may not fully account for trends in subfield entry around the time of death. Exponentiating the coefficients and differencing from 
one yield numbers interpretable as elasticities. For example, the estimates in column (3) imply that treated subfields see an increase in 
the number of contributions by non-collaborators after the superstar passes away—a statistically significant 100×(exp[0.076]-1)=7.90%. 
The number of observations varies slightly across columns because the conditional fixed effects specification drops observations 
corresponding to subfields for which there is no variation in activity over the entire observation period. This is also true for the results 
reported in Tables 4 through 8. 

Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table 4: Breakdown by Long-run Citation Impact [Non-collaborators Only] 

 All Pubs Bttm. Quartile 2nd Quartile 3rd Quartile Btw. 75th and 
95th pctl. 

Btw. 95th and 
99th pctl. 

Above 99th 
pctl. 

 (1) (2) (3) (4) (5) (6) (7) 

Panel A: All causes of death 

After Death 0.076** -0.051 -0.005 0.020 0.112** 0.226** 0.322** 
(0.026) (0.034) (0.031) (0.029) (0.033) (0.047) (0.076) 

Nb. of Investigators 6,260 6,202 6,259 6,258 6,256 6,149 5,256 
Nb. of Fields 34,211 33,353 34,197 34,206 34,201 33,161 21,532 
Nb. of Field-Year Obs. 1,258,911 1,227,580 1,258,399 1,258,726 1,258,541 1,220,256 792,238 
Log Likelihood -2,602,697 -547,597 -1,063,216 -1,386,147 -1,427,762 -521,702 -148,477 

Panel B: Anticipated 

After Death 0.100** 0.004 0.044 0.060 0.123** 0.173** 0.305** 
(0.034) (0.046) (0.039) (0.037) (0.044) (0.066) (0.109) 

Nb. of Investigators 4,018 3,964 4,017 4,016 4,014 3,936 3,199 
Nb. of Fields 15,084 14,744 15,079 15,082 15,076 14,601 9,434 
Nb. of Field-Year Obs. 554,867 542,462 554,682 554,793 554,571 537,074 346,942 
Log Likelihood -1,162,200 -250,697 -478,506 -615,584 -626,319 -225,876 -64,011 

Panel C: Sudden        

After Death 0.046 -0.106* -0.049 -0.028 0.094† 0.275** 0.361** 
(0.042) (0.051) (0.049) (0.048) (0.052) (0.070) (0.110) 

Nb. of Investigators 4,656 4,594 4,656 4,656 4,656 4,588 3,754 
Nb. of Fields 17,543 17,041 17,534 17,540 17,542 17,045 11,188 
Nb. of Field-Year Obs. 645,545 627,203 645,218 645,434 645,508 627,233 411,686 
Log Likelihood -1,307,660 -268,188 -528,480 -699,583 -733,600 -274,086 -79,021 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications in a subfield 
in a particular year, where these publications fall in a particular quantile bin of the long-run, vintage-adjusted citation distribution for the universe of 
journal articles in PubMed. Panel B and Panel C present the same specifications, but run on two distinct subsamples: In Panel B, the 1,576 subfields 
associated with 229 stars whose death is anticipated (along with the corresponding control subfields); and in Panel C, the 1,342 subfields associated 
with 185 stars whose death is sudden and unexpected (along with the corresponding control subfields). All models incorporate a full suite of year 
effects and subfield age effects, as well as a term common to both treated and control subfields that switches from zero to one after the death of the 
star. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates in column (1), 
Panel A, imply that treated subfields see an increase in the number of contributions by non-collaborators after the superstar passes away—a statistically 
significant 100×(exp[0.076]-1)=7.90%. 

Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table 5: Breakdown by Intellectual Proximity to the Work of the Star [Non-collab. Only] 

Panel A All Pubs  Cardinal Measure  Ordinal Measure 

   
Intllct. Proximate 

Articles 
Intllct. Distant 

Articles  
 

Intllct. Proximate 
Articles 

Intllct. Distant 
Articles 

After Death 0.076**  0.109** 0.059*  0.122** 0.061* 
(0.026)  (0.032) (0.027)  (0.029) (0.027) 

Nb. of Investigators 6,260  6,101 6,214  6,258 6,260 
Nb. of Fields 34,211  30,576 33,780  34,187 34,211 
Nb. of Field-Year Obs. 1,258,911  1,124,963 1,243,169  1,258,023 1,258,911 
Log Likelihood -2,602,697  -880,290 -2,259,464  -1,082,892 -2,303,024 

Panel B In-field vs. Out-of-field 
References  

Backward Citations to 
the Star’s Bibliome  

Average Backward 
Citation Lag 

 
w/ in-field 
references 

w/o in-field 
references 

 
w/ references 
to the star 

w/o references 
to the star 

 Below Median Above Median 

After Death 0.026 0.103**  0.066† 0.146**  0.070* -0.010 
(0.030) (0.028)  (0.034) (0.030)  (0.034) (0.029) 

Nb. of Investigators 6,260 6,257  6,245 6,259  6,260 6,259 
Nb. of Fields 34,209 34,194  34,167 34,137  34,208 34,208 
Nb. of Field-Year Obs. 1,258,837 1,258,290  1,257,297 1,256,200  1,258,810 1,258,816 
Log Likelihood -1,817,724 -1,714,995  -1,825,511 -1,659,982  -1,805,312 -1,691,725 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. In Panel A, the dependent variable is the total number of publications in a 
subfield in a particular year, where these publications can either be proximate in intellectual space to the star’s source publication, or more distant (in the 
PMRA sense). Since PMRA generates both a cardinal and an ordinal measure of intellectual proximity, we parse the related articles using both measures, 
yielding a total of four different specifications (the first column of the table merely replicates the estimate already found in Table 3, column (3), for comparison 
purposes). For the cardinal measure, a related article is deemed proximate if its similarity score is above .70, which corresponds to the top quartile of 
similarity in the sample. For the ordinal measure, a related article is deemed proximate if its similarity rank is below 40, which also corresponds to the top 
quartile of similarity in the sample. In Panel B, we separate the related articles by examining the type of references cited in their bibliography. Each cited 
reference can be either in the source’s PMRA field, or outside of it; it can be a publication of the star scientist, or of someone else’s; and the average lag 
between the related article’s publication year and that of the articles it cites can be either above or below the median (6.5 years). All models incorporate a 
full suite of year effects and subfield age effects, as well as a term common to both treated and control subfields that switches from zero to one after the 
death of the star. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates in the first 
column of Panel A imply that treated subfields see an increase in the number of contributions by non-collaborators after the superstar passes away—a 
statistically significant 100×(exp[0.076]-1)=7.90%. 

Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table 6: Breakdown by Related Author Characteristics [Non-collaborators Only] 

 Author Career Age  Star Author  Elite Author 

 > 16 ≤ 16  With Without  With Without 

After Death 0.091** 0.095**  0.049† 0.094**  0.032 0.076** 
(0.028) (0.031)  (0.027) (0.034)  (0.055) (0.026) 

Nb. of Investigators 6,260 6,259  6,260 6,253  5,582 6,260 
Nb. of Fields 34,207 34,207  34,211 34,151  27,197 34,211 
Nb. of Field-Year Obs. 1,258,763 1,258,763  1,258,911 1,256,714  1,001,131 1,258,911 
Log Likelihood -1,282,393 -1,418,924  -2,190,045 -1,229,336  -279,203 -2,556,867 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications 
in a subfield in a particular year, where these publications have scientists on their authorship roster with certain demographic characteristics. 
The first two columns examine the impact of related author age. Hence, we compute the average career age of every author we could match 
with the AAMC Roster, and compute the average age of the authorship team for the related article, at the time of its publication. We then 
divide related articles according to whether the average career age for identified authors is above or below 16 (the median in our sample), 
and we aggregate up our measure of subfield activity separately for these two groups. We proceed similarly for the middle two columns 
(whether or not a related article has one of our 12,935 stars on its authorship roster) and for the last two columns (whether or not a related 
article has a member of the NAS or an HHMI investigator on its authorship roster). All models incorporate a full suite of year effects and 
subfield age effects, as well as a term common to both treated and control subfields that switches from zero to one after the death of the 
star. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates in the 
first column imply that treated subfields see an increase in the number of contributions by non-collaborators after the superstar passes 
away—a statistically significant 100×(exp[0.091]-1)=9.53%. 

Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table 7: Breakdown by Star Scientist Characteristics [Non-collaborators Only] 

 
Publications  Citations  Funding  Importance 

to the Field 

Below 
Median 

Above 
Median  Below 

Median 
Above 
Median  Below 

Median 
Above 
Median 

 Below 
Median 

Above 
Median 

After Death 0.054 0.103*  0.030 0.119**  0.015 0.137**  0.058* 0.128** 
(0.033) (0.045)  (0.037) (0.036)  (0.035) (0.048)  (0.027) (0.040) 

Nb. of Investigators 2,901 4,836  2,792 4,619  3,047 4,288  5,022 4,462 
Nb. of Fields 17,208 17,003  17,327 16,884  15,726 15,485  16,967 17,244 
Nb. of Field-Year Obs. 632,010 626,901  636,708 622,203  578,087 570,590  624,449 634,462 
Log Likelihood -1,284,625 -1,315,748  -1,273,531 -1,324,678  -1,184,870 -1,185,724  -1,340,763 -1,222,805 
Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications in a subfield in 
a particular year. Each pair of columns splits the sample across the median of a particular covariate for the sample of fields (treated and control) in the baseline 
year. The table examines differences in the extent to which the eminence of the star at death (respectively counterfactual year of death for controls) influences 
the rate at which non-collaborators enter the field after the star passes away. Eminence is measured through the star’s cumulative number of publications, the 
star’s cumulative number of citations garnered up to the year of death, and the star’s cumulative amount of NIH funding. We also have a “local” measure of 
eminence: the star’s importance to the field, which is defined as the proportion of articles in the subfield up to the year of death for which the star is an author. 
All models incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated and control subfields that switches from 
zero to one after the death of the star. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the 
estimate in the second column of implies that treated subfields see an increase in the number of contributions by non-collaborators after the superstar passes 
away—a statistically significant 100×(exp[0.103]-1)=10.85%. 

Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table 8: The Nature of Entry Barriers 
 
Panel A 
 

“Intellectual” Subfield Coherence  “Social” Subfield Coherence 

 
 

PMRA-based definition Citation-based definition  Nb. of Trainees Cliquishness 

 
 

Below 
Median 

Above 
Median  

Below 
Median 

Above 
Median   Below 

Median 
Above 
Median  

Below 
Median 

Above 
Median  

After Death 0.176** 0.063 0.102† 0.086*  0.114* 0.023 0.120* 0.063 
(0.036) (0.042) (0.054) (0.039)  (0.045) (0.057) (0.049) (0.046) 

Nb. of Investigators 3,355 3,202 3,420 3,113  3,248 1,903 2,859 3,557 
Nb. of Fields 9,068 7,816 8,638 8,246  8,607 8,277 8,034 8,850 
Nb. of Field-Year Obs. 334,357 287,846 318,247 303,956  316,937 305,266 296,320 325,883 
Log Likelihood -689,898 -636,190 -654,563 -677,479  -677,872 -667,756 -652,392 -681,321 
 
Panel B 
 

Indirect Control through Collaborators 

 
 Editorial Channel  NIH Study Section Channel  Fraction of Field NIH Funding 

 
 Below Median Above Median  Below Median Above Median   Below Median Above Median 

After Death 0.139** 0.079†  0.139** 0.101*  0.163** 0.069 
(0.051) (0.042)  (0.049) (0.041)  (0.047) (0.049) 

Nb. of Investigators 3,452 2,068  3,396 2,264  3,559 2,521 
Nb. of Fields 11,105 5,779  10,441 6,443  9,861 7,023 
Nb. of Field-Year Obs. 409,839 212,364  385,123 237,080  363,601 258,602 
Log Likelihood -911,698 -426,446  -845,335 -474,501  -807,292 -528,220 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications in a subfield 
in a particular year. The sample is limited to the subfields in which the most eminent among the stars were active (specifically, above the median of 
the “cumulative citations up to the year of death” metric). Each pair of columns splits the sample across the median of a particular covariate for the 
sample of fields (treated and control) in the baseline year. For example, the first two columns of Panel B compare the magnitude of the treatment 
effect for stars whose collaborators have written an above-median number of editorials in the five years preceding the superstar’s death, vs. a below-
median number of editorials. All models incorporate a full suite of year effects and subfield age effects, as well as a term common to both treated and 
control subfields that switches from zero to one after the death of the star. Exponentiating the coefficients and differencing from one yield numbers 
interpretable as elasticities. For example, the estimates in the first column of Panel B imply that treated subfields see an increase in the number of 
contributions by non-collaborators after the superstar passes away—a statistically significant 100×(exp[0.139]-1)=14.91%. 

Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 



Appendix A:
Criteria for Delineating the Set of 12,935 “Superstars”

Highly Funded Scientists. Our first data source is the Consolidated Grant/Applicant File (CGAF) from
the U.S. National Institutes of Health (NIH). This dataset records information about grants awarded to
extramural researchers funded by the NIH since 1938. Using the CGAF and focusing only on direct costs
associated with research grants, we compute individual cumulative totals for the decades 1977-1986, 1987-
1996, and 1997-2006, deflating the earlier years by the Biomedical Research Producer Price Index. We also
recompute these totals excluding large center grants that usually fund groups of investigators (M01 and P01
grants). Scientists whose totals lie above the 95th percentile of either distribution constitute our first group
of superstars. In this group, the least well-funded investigator garnered $10.5 million in career NIH funding
and the most well-funded $462.6 million.i

Highly Cited Scientists. Despite the preeminent role of the NIH in the funding of public biomedical
research, the above indicator of “superstardom” biases the sample towards scientists conducting relatively
expensive research. We complement this first group with a second composed of highly cited scientists
identified by the Institute for Scientific Information. A Highly Cited listing means that an individual was
among the 250 most cited researchers for their published articles between 1981 and 1999, within a broad
scientific field.ii

Top Patenters. We add to these groups academic life scientists who belong in the top percentile of the
patent distribution among academics—those who were granted 17 patents or more between 1976 and 2004.

Members of the National Academy of Science and of the Institute of Medicine. We add to
these groups academic life scientists who were elected to the National Academy of Science or the Institute
of Medicine between 1970 and 2013.

MERIT Awardees of the NIH. Initiated in the mid-1980s, the MERIT Award program extends fund-
ing for up to 5 years (but typically 3 years) to a select number of NIH-funded investigators “who have
demonstrated superior competence, outstanding productivity during their previous research endeavors and
are leaders in their field with paradigm-shifting ideas.” The specific details governing selection vary across
the component institutes of the NIH, but the essential feature of the program is that only researchers holding
an R01 grant in its second or later cycle are eligible. Further, the application must be scored in the top
percentile in a given funding cycle.

Former and current Howard Hughes Medical Investigators (HHMIs). Every three years, the
Howard Hughes Medical Institute selects a small cohort of mid-career biomedical scientists with the potential
to revolutionize their respective subfields. Once selected, HHMIs continue to be based at their institutions,
typically leading a research group of 10 to 25 students, postdoctoral associates and technicians. Their
appointment is reviewed every five years, based solely on their most important contributions during the
cycle.iii

iWe perform a similar exercise for scientists employed by the intramural campus of the NIH. These scientists are not eligible
to receive extramural funds, but the NIH keeps records of the number of “internal projects” each intramural scientist leads. We
include in the elite sample the top five percentiles of intramural scientists according to this metric.

iiThe relevant scientific fields in the life sciences are microbiology, biochemistry, psychiatry/psychology, neuroscience, molec-
ular biology & genetics, immunology, pharmacology, and clinical medicine.

iiiSee Azoulay et al. (2011) for more details and an evaluation of this program.
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Early career prize winners. We also included winners of the Pew, Searle, Beckman, Rita Allen, and
Packard scholarships for the years 1981 through 2000. Every year, these charitable foundations provide seed
funding to between 20 and 40 young academic life scientists. These scholarships are the most prestigious
accolades that young researchers can receive in the first two years of their careers as independent investigators.

Appendix B: Linking Scientists with their Journal Articles

The source of our publication data is PubMed, a bibliographic database maintained by the U.S. National
Library of Medicine that is searchable on the web at no cost.iv PubMed contains over 14 million citations
from 4,800 journals published in the United States and more than 70 other countries from 1950 to the present.
The subject scope of this database is biomedicine and health, broadly defined to encompass those areas of
the life sciences, behavioral sciences, chemical sciences, and bioengineering that inform research in health-
related fields. In order to effectively mine this publicly-available data source, we designed PubHarvester,
an open-source software tool that automates the process of gathering publication information for individual
life scientists (see Azoulay et al. 2006 for a complete description of the software). PubHarvester is fast,
simple to use, and reliable. Its output consists of a series of reports that can be easily imported by statistical
software packages.

This software tool does not obviate the two challenges faced by empirical researchers when attempting
to accurately link individual scientists with their published output. The first relates to what one might
term “Type I Error,” whereby we mistakenly attribute to a scientist a journal article actually authored by
a namesake; The second relates to “Type II error,” whereby we conservatively exclude from a scientist’s
publication roster legitimate articles:

Namesakes and popular names. PubMed does not assign unique identifiers to the authors of the
publications they index. They identify authors simply by their last name, up to two initials, and an optional
suffix. This makes it difficult to unambiguously assign publication output to individual scientists, especially
when their last name is relatively common.

Inconsistent publication names. The opposite danger, that of recording too few publications, also looms
large, since scientists are often inconsistent in the choice of names they choose to publish under. By far the
most common source of error is the haphazard use of a middle initial. Other errors stem from inconsistent
use of suffixes (Jr., Sr., 2nd, etc.), or from multiple patronyms due to changes in spousal status.

To deal with these serious measurement problems, we opted for a labor-intensive approach: the design of
individual search queries that relies on relevant scientific keywords, the names of frequent collaborators,
journal names, as well as institutional affiliations. We are aided in the time-consuming process of query
design by the availability of a reliable archival data source, namely, these scientists’ CVs and biosketches.
PubHarvester provides the option to use such custom queries in lieu of a completely generic query (e.g,
"azoulay p"[au] or "graff zivin js"[au]). As an example, one can examine the publications of Scott A.
Waldman, an eminent pharmacologist located in Philadelphia, PA at Thomas Jefferson University. Waldman
is a relatively frequent name in the United States (with 208 researchers with an identical patronym in the
AAMC faculty roster); the combination "waldman s" is common to 3 researchers in the same database.

ivhttp://www.pubmed.gov/
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A simple search query for "waldman sa"[au] OR "waldman s"[au] returns 377 publications at the time
of this writing. However, a more refined query, based on Professor Waldman’s biosketch returns only 256
publications.v

The above example also makes clear how we deal with the issue of inconsistent publication names. Pub-
Harvester gives the end-user the option to choose up to four PubMed-formatted names under which
publications can be found for a given researcher. For example, Louis J. Tobian, Jr. publishes under "tobian
l", "tobian l jr", and "tobian lj", and all three names need to be provided as inputs to generate a
complete publication listing. Furthermore, even though Tobian is a relatively rare name, the search query
needs to be modified to account for these name variations, as in ("tobian l"[au] OR "tobian lj"[au]).

Appendix C: PubMed Related Citations Algorithm [PMRA]

Traditionally, it has been very difficult to assign to individual scientists, or articles, a fixed address in “idea
space,” and this data constraint explains in large part why bibliometric analyses typically focus on the
determinants of the rate of scientific progress rather than its direction. The empirical exercise in this paper
hinges crucially on the ability to relax this constraint in a way that is consistent across death events and
also requires little, if any, human judgement.

This challenge is met here by the use of the PubMed Related Citations Algorithm [PMRA], a probabilistic,
topic-based model for content similarity that underlies the “related articles” search feature in PubMed.
This database feature is designed to help a typical user search through the literature by presenting a set
of records topically related to any article returned by a PubMed search query.vi To assess the degree of
intellectual similarity between any two PubMed records, PMRA relies crucially on MeSH keywords. MeSH
is the National Library of Medicine’s [NLM] controlled vocabulary thesaurus. It consists of sets of terms
arranged in a hierarchical structure that permit searching at various levels of specificity. There are 27,149
descriptors in the 2013 MeSH edition. Almost every publication in PubMed is tagged with a set of MeSH
terms (between 1 and 103 in the current edition of PubMed, with both the mean and median approximately
equal to 11). NLM’s professional indexers are trained to select indexing terms from MeSH according to a
specific protocol, and consider each article in the context of the entire collection (Bachrach and Charen 1978;
Névéol et al. 2010). What is key for our purposes is that the subjectivity inherent in any indexing task is
confined to the MeSH term assignment process and does not involve the articles’ authors.vii

Using the MeSH keywords as input, PMRA essentially defines a distance concept in idea space such that
the proximity between a source article and any other PubMed-indexed publication can be assessed. The
following paragraphs were extracted from a brief description of PMRA:

The neighbors of a document are those documents in the database that are the most similar to it. The simi-
larity between documents is measured by the words they have in common, with some adjustment for document

v(((("waldman sa"[au] NOT (ether OR anesthesia)) OR ("waldman s"[au] AND (murad OR philadelphia[ad] OR west

point[ad] OR wong p[au] OR lasseter kc[au] OR colorectal))) AND 1980:2013[dp])
viLin and Wilbur (2007) report that one fifth of “non-trivial” browser sessions in PubMed involve at least one invocation of

PMRA.
viiThis is a slight exaggeration: PMRA also makes use of title and abstract words to determine the proximity of any two

pairs of articles in the intellectual space. These inputs are obviously selected by authors, rather than by NLM staff. However,
neither the choice of MeSH keywords nor the algorithm depend on cited references contained in publications.
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lengths. To carry out such a program, one must first define what a word is. For us, a word is basically an
unbroken string of letters and numerals with at least one letter of the alphabet in it. Words end at hyphens,
spaces, new lines, and punctuation. A list of 310 common, but uninformative, words (also known as stopwords)
are eliminated from processing at this stage. Next, a limited amount of stemming of words is done, but no
thesaurus is used in processing. Words from the abstract of a document are classified as text words. Words
from titles are also classified as text words, but words from titles are added in a second time to give them a
small advantage in the local weighting scheme. MeSH terms are placed in a third category, and a MeSH term
with a subheading qualifier is entered twice, once without the qualifier and once with it. If a MeSH term is
starred (indicating a major concept in a document), the star is ignored. These three categories of words (or
phrases in the case of MeSH) comprise the representation of a document. No other fields, such as Author or
Journal, enter into the calculations.

Having obtained the set of terms that represent each document, the next step is to recognize that not all words
are of equal value. Each time a word is used, it is assigned a numerical weight. This numerical weight is
based on information that the computer can obtain by automatic processing. Automatic processing is important
because the number of different terms that have to be assigned weights is close to two million for this system.
The weight or value of a term is dependent on three types of information: 1) the number of different documents
in the database that contain the term; 2) the number of times the term occurs in a particular document; and
3) the number of term occurrences in the document. The first of these pieces of information is used to produce
a number called the global weight of the term. The global weight is used in weighting the term throughout the
database. The second and third pieces of information pertain only to a particular document and are used to
produce a number called the local weight of the term in that specific document. When a word occurs in two
documents, its weight is computed as the product of the global weight times the two local weights (one pertaining
to each of the documents).

The global weight of a term is greater for the less frequent terms. This is reasonable because the presence of a
term that occurred in most of the documents would really tell one very little about a document. On the other
hand, a term that occurred in only 100 documents of one million would be very helpful in limiting the set of
documents of interest. A word that occurred in only 10 documents is likely to be even more informative and
will receive an even higher weight.

The local weight of a term is the measure of its importance in a particular document. Generally, the more
frequent a term is within a document, the more important it is in representing the content of that document.
However, this relationship is saturating, i.e., as the frequency continues to go up, the importance of the word
increases less rapidly and finally comes to a finite limit. In addition, we do not want a longer document to be
considered more important just because it is longer; therefore, a length correction is applied.

The similarity between two documents is computed by adding up the weights of all of the terms the two docu-
ments have in common. Once the similarity score of a document in relation to each of the other documents in
the database has been computed, that document’s neighbors are identified as the most similar (highest scoring)
documents found. These closely related documents are pre-computed for each document in PubMed so that
when one selects Related Articles, the system has only to retrieve this list. This enables a fast response time
for such queries.viii

The algorithm uses a cut-off rule to determine the number of related citations associated with a given source
article. First, the 100 most related records by similarity score are returned. Second, a reciprocity rule is
applied to this list of 100 records: if Publication A is related to Publication B, Publication B must also be
related to publication A. As a result, the set of related citations for a given source article may contain many
more than 100 publications.ix

Given our set of source articles, we delineate the scientific fields to which they belong by focusing on the
set of articles returned by PMRA that satisfy three additional constraints: (i) they are original articles (as
opposed to editorials, comments, reviews, etc.); (ii) they were published in or before 2006 (the end of our
observation period); and (iii) they appear in journals indexed by the Web of Science (so that follow-on
citation information can be collected).

viiiAvailable at http://ii.nlm.nih.gov/MTI/related.shtml
ixThe effective number of related articles returned by PMRA varies between 58 and 2,097 in the sample of 3,074 source

articles published by the 452 star scientists in the five years preceding their death. The mean is 185 related articles, and the
median 141.
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An Example. In Figure C1, we illustrate the use of PMRA with an example taken from our sample.
Consider “The transcriptional program of sporulation in budding yeast” (PubMed ID #9784122), an article
published in the journal Science in 1998 originating from the laboratory of Ira Herskowitz, an eminent UCSF
biologist who died in 2003 from pancreatic cancer. PMRA returns 72 original related journal articles for
this source publication.x Some of these intellectual neighbors appeared before the source to which they are
related, whereas others were published after the source. Some represent the work of collaborators, past or
present, of Herskowitz’s, whereas others represent the work of scientists in his field he may never have come
in contact with during his life, much less collaborated with. The salient point is that nothing in the process
through which these related articles are identified biases us towards (or away from) articles by collaborators,
frequent citers of Herskowitz’s work, or co-located researchers. Rather, the only determinants of relatedness
are to be found in the overlap in MeSH keywords between the source and its potential neighbors.

PubMed ID #9784122 appeared in the October 23rd 1998 issue of the journal Science and lists 15 MeSH terms
and 5 substances. Consider now its second most-related (listed in Figure C1), PubMed ID #12242283 “Phos-
phorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is
dependent on Ime2.” It appeared in Molecular and Cell Biology in October of 2002 and has 24 MeSH terms
(resp. 11 substances). Figure C2 displays the MeSH terms that tag this article along with its source PubMed
ID #9784122. The keywords that overlap exactly have been highlighted in dark blue; those whose close an-
cestors in the MeSH keyword hierarchical tree overlap have been highlighted in light blue. These terms
include common terms such as Saccharomyces cerevisiae and Transcription Factors as well as more
specific keywords including NDT80 protein, S cerevisiae and Gene Expression Regulation, Fungal.

PMRA also provides a cardinal dyadic measure of intellectual proximity between each related article and its
associated source article. In this particular instance, the relatedness score of “Phosphorylation...” is 94%,
whereas the relatedness score for the most distant related article in Figure C1, “Catalytic roles of yeast...”
is only 62%.

Delineating subfields. In the five years prior to his death (1998-2002), Herskowitz was the last author on
12 publications, the publications most closely associate with his position as head of a laboratory. For each
of these source publications, we treat the set of publications returned by PMRA as constituting a distinct
subfield, and we create a subfield panel dataset by counting the number of related articles in each of these
subfields in each year between 1975 and 2006.

An important implication of this procedure is that the subfields we delineate are quite limited in scope. One
window into the degree of intellectual breadth for subfields is to gauge the overlap between the articles that
constitute any pair of subfields associated with the same star. In the sample, the 452 deceased stars account
for 3,074 subfields, and 21,633 pairwise combination of subfields (we are only considering pairs of subfields
associated with the same individual star). Figure C3 displays the histogram for the distribution of overlap,
which is extremely skewed. A full half of these pairs exhibit exactly zero overlap, whereas the mean of the
distribution is 0.06. To find pairs of subfields that display substantial amounts of overlap (for example, half
of the articles in subfield 1 also belong in subfield 2), one must reach far into the right tail of the distribution,
specifically, above the 98th percentile.

Endogenous keyword choice. PMRA is a modern implementation of co-word analysis, a content analysis
technique that uses patterns of co-occurrence of pairs of items (i.e., title words or phrases, or keywords) in a
corpus of texts to identify the relationships between ideas within the subject areas presented in these texts
(Callon et al. 1991; He 1999). One long-standing concern among practitioners of this technique has been the

xWhy exactly 72? In fact, PMRA lists 152 “intellectual neighbors” for PubMed ID 9784122. But once we exclude articles
published after 2006 (the end of our observation period), purge from the list reviews, editorials and other miscellaneous “non-
original” content, and drop a handful of articles that appeared in minor journals not indexed in Thomson-Reuter’s Web of
Science, the number of publications associated with this source article indeed drops to 72.
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“indexer effect” (Whittaker 1989). Clustering algorithm such as PMRA assume that the scientific corpus
has been correctly indexed. But what if the indexers who chose the keywords brought their own “conceptual
baggage” to the indexing task, so that the pictures that emerge from this process are more akin to their
conceptualization than to those of the scientists whose work it was intended to study?

Indexer effects could manifest themselves in three distinct ways. First, indexers may have available a lexicon
of permitted keywords which is itself out of date. Second, there is an inevitable delay between the publication
of an article and the appearance of an entry in PubMed. Third, indexers, in their efforts to be helpful to
users of the database, may use combinations of keywords which reflect the conventional views of the field.
The first two concerns are legitimate, but probably have only a limited impact on the accuracy of the
relationships between articles which PMRA deems related. This is because the NLM continually revises and
updates the MeSH vocabulary, precisely in an attempt to neutralize keyword vintage effects. Moreover, the
time elapsed between an article’s publication and the indexing task has shrunk dramatically, though time
lag issues might have been a first-order challenge when MeSH was created, back in 1963. The last concern
strikes us as being potentially more serious; a few studies have asked authors to validate ex post the quality
of the keywords selected by independent indexers, with generally encouraging results (Law and Whittaker
1992). Inter-indexer reliability is also very high (Wilbur 1998).

In general, indexer effects are not a concern for our identification strategy because one would expect them
to affect treated and control subfields equally. But what if the death of a superstar scientist, in and of itself,
changes the mix of keywords that is used to describe a given set of scientific phenomena, research questions,
or experimental procedures? To some extent, this is an empirical question. We merge every article in the
subfields in our data to the set of MeSH keywords that were assigned to them, and we calculate, for each
keyword, its vintage, i.e., the year in which it was first introduced in the scientific literature (i.e., within
the PubMed universe). With this information, we then compute the average age of MeSH keywords in a
subfield in a given year, and we can reprise the main analysis in the paper with this new outcome variable.
Figure C4 below displays the event study graph (analogous to the one presented in Figure 1, Panel A) using
average MeSH age as the outcome of interest. The point estimates are minuscule, and there is no evidence of
keyword renewal after the death, relative to before the death. The same patterns hold when focusing on the
median age of keywords, or the age of the youngest keywords in a subfield. We also replicate Figure C4 while
limiting the articles to the set of articles by collaborators and non-collaborators separately. In all cases, we
obtain a flat profile for the path of the outcome. This provides suggestive evidence that professional indexers
are not influenced by passing of famous authors, at least as a first-order approximation.
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Figure C1: From Source to Related Articles 

 

Note: We illustrate the process of identifying the related articles through the use of an example. Ira Herskowitz, a superstar scientist in our sample, died in 2003. In 
the five years prior to his death (1998-2002), Herskowitz was the last author on 12 publications. One of these publications is “The transcriptional program of 
sporulation in budding yeast,” an article published in the journal Science in 1998. On the right-hand side panel, one sees that PMRA identifies 72 related 
articles related to this source publication. Each of these related articles can then be parsed in a variety of ways. In particular, their authorship list can be 
matched to the AAMC Faculty Roster, which allows us to distinguish between collaborators of Herskowitz’s and non-collaborators, as well as between the 
subfield’s insiders vs. outsiders.
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Figure C2: PMRA and MeSH Term Overlap—An Example 
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Figure C3: Within-star Pairwise Subfield Overlap 

 
Note: We compute the fraction of articles that overlap between every pair of subfields in which a deceased star is active 

in the five years leading to his/her death. There are 21,633 subfield pairs corresponding to the 3,074 distinct 
subfields for the 452 deceased superstars. The median degree of overlap between subfield pairs is 0, and the mean 
is 0.06. Subfields that overlap by 50% or more belong to the top two percentiles of the pairwise overlap 
distribution. 

 

 

Figure C4: Within-star Pairwise Subfield Overlap 

 
Note: The solid blue line corresponds to coefficient estimates stemming from conditional (subfield) fixed effects Poisson 

specifications in which average MeSH keyword age in subfields are regressed onto year effects, subfield age effects, 
as well as 20 interaction terms between treatment status and the number of years before/after the death event 
(the indicator variable for treatment status interacted with the year of death is omitted). The specifications also 
include a full set of lead and lag terms common to both the treated and control subfields to fully account for 
transitory trends in subfield activity around the time of the death. The 95% confidence interval (corresponding 
to (QML) robust standard errors, clustered around star scientist) around these estimates is plotted with dashed 
red lines. 
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Appendix D: Construction of the Control Group

We detail the procedure implemented to identify the control subfields that help pin down the life-cycle and
secular time effects in our difference-in-differences (DD) specification. Happenstance might yield a sample of
stars clustered in decaying scientific fields. More plausibly, activity in the typical subfield might be subject
to idiosyncratic life-cycle patterns, with their productive potential first increasing over time, eventually
peaking, and thereafter slowly declining. Relying solely on subfields treated earlier or later as an implicit
control group raises the worry that these time-varying omitted variables will not be fully captured by subfield
age controls, particularly since dating the birth of a subfield is a process fraught with hazards.

To address this concern, we create an additional level of difference by selecting control subfields. Recall that
selecting a subfield in our framework is akin to first selecting a source article and then using PMRA to harvest
all the related articles to this source in intellectual space. Since the second step is fully automated, only
the first step is really of concern. Practically, we will recruit control source articles from the set of articles
authored by star scientists who do not die prematurely. But what makes a satisfactory control group? It is
important to distinguish between ex ante vs. ex post criteria. Ex ante, one would like control source articles
to have the following properties:

1. to be published contemporaneously with the source article for the treated subfield;

2. to be unrelated (in both an intellectual and a social sense) to the source article for the treated subfield;

3. to be of similar expected impact and fruitfulness, relative to the source article for the treated subfield;

4. to have a similar number of authors as the source article for the treated subfield;

5. to have a superstar author in the same authorship position and of approximately the same age as
that occupied by the deceased superstar on the authorship roster of the source article for the treated
subfield.

Ex post, it will be important for the control subfields to satisfy an additional condition: the treated and
control subfields should exhibit very similar trends in publication activity and funding flows up to the year
of treatment (i.e., the year of death for the treated superstar).

Coarsened Exact Matching. To meet these goals, we implement a “Coarsened Exact Matching” (CEM)
procedure (Blackwell et al. 2009). The first step is to select a relatively small set of covariates on which
we need to guarantee balance ex ante. This choice entails judgement, but is strongly guided by the set of
criteria listed above. The second step is to create a large number of strata to cover the entire support of the
joint distribution of the covariates selected in the previous step. In a third step, each observation is allocated
to a unique strata, and for each observation in the treated group, control observations are selected from the
same strata.

The procedure is coarse because we do not attempt to precisely match on covariate values; rather, we coarsen
the support of the joint distribution of the covariates into a finite number of strata, and we match a treated
observation if and only if a control observation can be recruited from this strata. An important advantage
of CEM is that the analyst can guarantee the degree of covariate balance ex ante, but this comes at a cost:
the more fine-grained the partition of the support for the joint distribution (i.e., the higher the number of
strata), the larger the number of unmatched treated observations.

Implementation. We identify controls based on the following set of covariates (t denotes the year of
death): star scientist career age; citations received by the article up to year t; number of authors; position
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of the star author on the authorship roster (only last authorship position is considered); journal; and year
of publication. The first three covariates only need to match within relatively coarse bins. For instance, we
create nine career age categories: less than 10 years; between 10 and 20 years; between 20 and 25 years;
between 25 and 30 years; between 30 and 35 years; between 35 and 40 years; between 40 and 45 years;
between 45 and 50 years, over 50 years of career age. Similarly, we coarsen the distribution of citations at
baseline into five mutually exclusive bins: zero citations; between one and 10 citations; between 10 and 50
citations; between 50 and 120 citations; and more than 120 citations. In contrast, we impose an exact match
on journal, publication year, and the star’s authorship position.

We match approximately 75% of the treated source articles in this way. Some further trimming of the control
articles is needed. First, we eliminate any control that shares any author with the treated source. Second,
we eliminate any control article with a dead star scientist on its authorship roster, even if s/he appears in
an intermediate position in the authorship list. Third, we drop every control that also happens to be related
intellectually to its source as per PMRA. Finally, we drop from the data any source article that finds itself an
orphan (i.e., not paired with any control) at the conclusion of this process. Figure D1 provides an illustrative
example.

The final sample has 3,074 treated source articles and 31,142 control source articles. As can be seen in
Figure D2, the distribution of activity levels, measured by cumulative publications up to the baseline year,
is very similar between treated and control subfields. As well, there is no evidence of preexisting trends
in activity, as demonstrated by the coefficient estimates graphed in Figure 1 and E1. In Table 2, treated
and control subfields are very well-balanced on the covariates that formed the basis of the CEM matching
procedure. This is true almost by construction. What is more surprising (and also welcome) is that the
procedure balances a number of covariates that were not used as inputs for matching, such as various metrics
of star eminence. For other covariates, we can detect statistically significant mean differences, though they
do not appear to be substantively meaningful (e.g., 6.7% of control stars vs. 9.9% of treated stars are female).

Sensitivity Analyses. Human judgement matters for the outcome of the CEM procedure insofar as one
must draw a list of “reasonable” covariates to match on, as well as decide on the degree of coarsening to
impose. We have verified that slight variations in the implementation (e.g., varying slightly the number of
cutoff points for the stock of baseline citations for the source; focusing on birth age as opposed to career age
for the stars) have little impact on the main results.
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Figure D1: Matching Procedure to Identify Controls for the Source Articles 

 

Note: The two articles above illustrate the Coarsened Exact Matching (CEM) procedure. These two articles appeared in the journal Science in 1998. They received a 
similar number of citations up to the end of the baseline year (2002, one year before Herskowitz’s death): 514 citations for Chu et al., 344 citations for Neumann 
et al. Note that Alan Perelson and Ira Herskowitz are both in last authorship position. They also obtained their PhD within a year of each other.
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Figure D2: Cumulative Stock of Publications at Time of Death 

 
Note: We compute the cumulative number of publications, up to the year that immediately precedes the year of death 

(or counterfactual year of death), between 3,074 treated subfields and 31,142 control subfields. 
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Appendix E: Robustness Checks and Extensions 
 
 
 
 

Table E1: Main effect of superstar death on publication flows, 
aggregated up to the level of the star scientist 
 All Authors Collaborators Only Non-Collaborators Only 

After Death 0.050** -0.191** 0.069** 
(0.004) (0.016) (0.004) 

Nb. of Investigators 6,117 6,117 6,117 
Nb. of Field-Year Obs. 263,031 263,031 263,031 
Log Likelihood -1,041,849 -273,933 -997,012 

Note:  Estimates stem from conditional (star) fixed effects Poisson specifications. The dependent variable is the total 
number of publications in the collection of subfields in which the star (deceased or not) was active in a particular 
year. All models incorporate a full suite of year effects and star career age effects. Exponentiating the coefficients 
and differencing from one yield numbers interpretable as elasticities. For example, the estimates in column (3) 
imply that treated stars see an increase in the number of contributions by non-collaborators in their fields—a 
statistically significant 100×(exp[0.069]-1)=7.14%. The number of observations varies slightly across columns 
because the conditional fixed effects specification drops observations corresponding to subfields for which there 
is no variation in activity over the entire observation period. 

Robust (QML) standard errors in parentheses. †p < 0.10, *p < 0.05, **p < 0.01. 
 
 
 
 

Table E2: Robustness Checks 
 No Control Subfields  OLS Estimates 

 All 
Authors 

Collabs. 
Only 

Non-
Collabs. 

Only 
 All 

Authors 
Collabs. 

Only 

Non-
Collabs. 

Only 

After Death 0.054† 0.029 0.057†  0.259** -0.076** 0.335** 
(0.029) (0.050) (0.029)  (0.098) (0.025) (0.089) 

Nb. of Investigators 452 431 452  6,260 6,260 6,260 
Nb. of Fields 3,076 2,887 3,076  34,211 34,211 34,211 
Nb. of Field-Year Obs. 111,705 104,791 111,705  1,258,911 1,258,911 1,258,911 
Log Likelihood -242,248 -55,558 -232,518     
Adjusted R2     0.446 0.291 0.414 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications (columns 1, 2, and 3) or OLS 
specifications with subfield fixed effects (columns 4, 5, and 6). The dependent variable is the total number of 
publications in a subfield in a particular year. All models incorporate a full suite of year effects and subfield age 
effects. Columns 4, 5, and 6 also include a term common to both treated and control subfields that switches 
from zero to one after the death of the star, to address the concern that age, year and individual fixed effects 
may not fully account for trends in subfield entry around the time of death for the deceased star. Robust 
standard errors in parentheses, clustered at the level of the star scientist. †p < 0.10, *p < 0.05, **p < 0.01. 
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Table E3: Influence of star age and in-field experience 
  Star Birth Age 

at Time of Death 
Star Experience in the Field 

at Time of Death 

 Younger than 61 61 or Older Recent 
(less than 7 years) 

Established 
(more than 7 years) 

After Death 0.105** -0.006 0.067* 0.078* 
(0.036) (0.038) (0.033) (0.033) 

Nb. of Investigators 5,542 1,936 5,187 4,233 
Nb. of Fields 27,015 7,196 18,079 16,132 
Nb. of Field-Year Obs. 994,891 264,020 664,650 594,261 
Log Likelihood -2,050,942 -545,385 -1,339,319 -1,234,116 

Note:  Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the 
total number of publications in a subfield in a particular year. All models incorporate a full suite of year effects 
and subfield age effects, as well as a term common to both treated and control subfields that switches from zero 
to one after the death of the star, to address the concern that age, year and individual fixed effects may not 
fully account for trends in subfield entry around the time of death for the deceased star. Exponentiating the 
coefficients and differencing from one yield numbers interpretable as elasticities. Robust (QML) standard errors 
in parentheses, clustered at the level of the star scientist. 
†p < 0.10, *p < 0.05, **p < 0.01. 

 
 
 
 

Table E4: Influence of field overlap between related authors and 
the stars on the rate of entry into subfields 

 Below Median Btw. 50th and 
75th pctl. 

Btw. 75th and 
95th pctl. 

Above 95th 
pctl. 

After Death 0.128** 0.077** 0.028 0.012† 
(0.033) (0.017) (0.019) (0.007) 

Nb. of Investigators 6,260 6,260 6,260 6,260 
Nb. of Fields 34,211 34,211 34,211 34,211 
Nb. of Field-Year Obs. 1,258,911 1,258,911 1,258,911 1,258,911 
Adjusted R2 0.299 0.232 0.231 0.144 

Note:  This table displays some of the results depicted in Figure 2, Panel B in regression form. Estimates stem from 
OLS specifications with subfield fixed effects. The dependent variable is the total number of publications in a 
subfield in a particular year, broken into four bins: publications that fall below the median of our measure of 
field overlap between the star and the related investigators identified on these articles’ authorship roster (see 
Figure 2, Panel A); publications that fall in the third quartile of the field overlap measure; publications that fall 
in the fourth quartile but below the top ventile of the field overlap measure; and finally publications that fall in 
the top ventile of the measure. All models incorporate a full suite of year effects and subfield age effects, as well 
as a term common to both treated and control subfields that switches from zero to one after the death of the 
star, to address the concern that age, year and individual fixed effects may not fully account for trends in subfield 
entry around the time of death for the deceased star. Robust standard errors in parentheses, clustered at the 
level of the star scientist. 
†p < 0.10, *p < 0.05, **p < 0.01. 
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Figure E1: Effect of Star Scientist Death on Subfield Growth and Decline 

Raw Data, Balanced Panel 
 

A. All Authors B. Collaborators C. Non-Collaborators 

Note: Panels A, B, and C show the path of mean publication activity for treated and control subfields around the year of star death, broken down by total number of 
publications in the subfield (Panel A), number of publications in the subfield with a coauthor of the star (for treated and control stars alike, Panel B), and number 
of publications in the subfield without any coauthor of the star (Panel C). The sample used to calculate these means differs in one respect from our main sample: 
it has been extended from 2006 to 2012, which results in an almost perfectly balanced sample. 
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Figure E2: Effect of Star Scientist Death on Subfield Growth and Decline 

Non-collaborator Activity Only 
 

 
  

A. Anticipated Death B. Sudden Death 

Note: The graphs in this figure are patterned after Panel C in Figure 1 in the main body of the manuscript. The solid blue lines correspond to coefficient estimates 
stemming from conditional (subfield) fixed effects Poisson specifications in which publication flows in subfields are regressed onto year effects, subfield age 
effects, as well as 20 interaction terms between treatment status and the number of years before/after the death event (the indicator variable for treatment 
status interacted with the year of death is omitted). The specifications also include a full set of lead and lag terms common to both the treated and control 
subfields to fully account for transitory trends in subfield activity around the time of the death. The sample used to estimate these specifications differs in one 
respect from our main sample: it has been extended from 2006 to 2012, which entails that at least nine years of data are available to identify the treatment 
effects far away from death (the latest date of death in our sample is 2003). Our main sample stops the observation window in 2006, since many of the covariates 
needed to generate the estimates in Tables 5 through 8 are not available after 2006. When the analysis is restricted to the years 1970-2006 (i.e., with an 
unbalanced sample), the event study graphs look substantially similar to those above. The 95% confidence interval (corresponding to (QML) robust standard 
errors, clustered around star scientist) around these estimates is plotted with dashed red lines. 
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Appendix F: Effects on Prior Agenda 
 
 
 
Table F1: In-field vs. Out-of-field Publication Activity 

Panel A: 
Earliest 
Treating Star 

In-field  Out-of-field 

All Pubs Middle-
Authored Pubs 

First/Last 
Authored Pubs  All Pubs Middle-

Authored Pubs 
First/Last 

Authored Pubs 

After Death 0.241** 0.235** 0.231**  0.012 0.002 0.025 
(0.035) (0.045) (0.051)  (0.012) (0.012) (0.016) 

Nb. of Investigators 58,433 33,973 26,880  89,270 87,709 86,014 
Nb. of Investigator-Year Obs. 1,009,696 609,185 449,465  1,361,783 1,356,063 1,342,740 
Log Likelihood -173,585 -99,792 -75,283  -2,152,402 -1,725,768 -1,484,472 

Panel B: 
Most Related 
Treating Star 

In-field Out-of-field 

All Pubs Middle-
Authored Pubs 

First/Last 
Authored Pubs  All Pubs Middle-

Authored Pubs 
First/Last 

Authored Pubs 

After Death 0.182** 0.159** 0.182**  -0.002 -0.004 -0.012 
(0.032) (0.041) (0.043)  (0.014) (0.012) (0.018) 

Nb. of Investigators 61,342 36,283 31,862  89,270 87,709 86,007 
Nb. of Investigator-Year Obs. 1,067,915 654,804 558,313  1,361,783 1,356,036 1,342,716 
Log Likelihood -237,517 -140,463 -105,523  -2,144,005 -1,718,901 -1,477,885 

Note:  Estimates stem from conditional (author) fixed effects Poisson specifications. The dependent variable is the publication output for a related, non-
collaborating author in a particular year. The first series of three columns restrict output to publications that fall in the field of the treating star. 
The second series of three columns restrict output to publications that fall outside of the field of the treating star. All models incorporate a full suite 
of year effects and investigator age effects, as well as a term common to both treated and control authors that switches from zero to one after the 
death of the star, to address the concern that age, year and individual fixed effects may not fully account for trends in publication output around 
the time the star’s death. The number of observations varies slightly across columns because the conditional fixed effects specification drops 
observations corresponding to authors for which there is no variation in output over the entire observation period. Exponentiating the coefficients 
and differencing from one yield numbers interpretable as elasticities. For example, the estimates in the first column of Panel B imply that treated 
non-collaborator authors see an increase in the number of their published output in the field of the deceased star after s/he passes away—a statistically 
significant 100×(exp[0.182]-1)=19.96%. 

Robust (QML) standard errors in parentheses. †p < 0.10, *p < 0.05, **p < 0.01. 

 



    xix   

 

 
 
 
 

Figure F1: Effect of Star Scientist Death on Non-collaborating Related Author 
Out-of-Field Publication Output 

 
 
  

A. Earliest Star Death B. Most Related Star 

Note: The solid blue lines in the above plots correspond to coefficient estimates stemming from conditional (author) fixed effects Poisson specifications in which out-
of-field publication output for a related, non-collaborating author is regressed onto year effects, author age effects, as well as 20 interaction terms between 
treatment status and the number of years before/after the death event (the indicator variable for treatment status interacted with the year of death is omitted). 
The specifications also include a full set of lead and lag terms for both the treated and control subfields. The 95% confidence interval (corresponding to robust 
standard errors) around these estimates is plotted with dashed red lines; Panel A corresponds to a dynamic version of the specification in the fourth column of 
Table F1, Panel A; Panel B corresponds to a dynamic version of the specification in the fourth column of Table F1, Panel B. 
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Investigator Name Cause of death if known Institution at the time of death Scientific domain
Richard C. Parker [1952-1986] PhD, 1979 lymphoma Columbia University properties of cellular and viral src genes
Richard E. Weitzman [1943-1980] MD, 1968 cancer Harbor-UCLA Medical Center arginine vasopressin metabolism
Eva U.J. Paucha [1949-1988] PhD, 1976 cancer Dana Farber Cancer Institute mechanism of transformation by SV40 large T antigen
Kiertisin Dharmsathaphorn [1950-1990] MD, 1972 AIDS University of California — San Diego intestinal secretory mechanisms and antidiarrheal drugs
Ernest G. Peralta [1959-1999] PhD, 1986 brain cancer Harvard University signal transduction mechanisms of muscarinic receptors
Roderich Walter [1937-1979] PhD, 1964 malignant melanoma University of Illinois solid-phase peptide synthesis
JoAnn E. Franck [1950-1992] PhD, 1981 cancer University of Washington School of Medicine hippocampal damage as a cause of epilepsy
Thomas K. Tatemichi [1952-1995] MD, 1978 non hodgkin’s lymphoma Columbia University College of Physicians & Surgeons mechanisms and syndromes of dementia related to stroke
Bruce S. Schoenberg [1942-1987] MD, 1968 cancer NIH prevention and control of neurological disorders
George Khoury [1943-1987] MD, 1970 lymphoma NIH genetics of simian virus 40, human papovavirus and HIV
Leonard N. Horowitz [1947-1992] MD, 1972 cancer University of Pennsylvania School of Medicine diagnosing and treatment of ventricular arrythmia
W. Alden Spencer [1931-1977] MD, 1956 long illness Columbia University plasticity of the simplest neuronal pathways
Jerome T. Pearlman [1933-1979] MD, 1957 prolonged illness UCLA laboratory studies of retinal degenerations
Joram Heller [1934-1980] MD/PhD, 1965 brain cancer UCLA biochemical and biophysical investigation of rhodopsin
B. Frank Polk [1942-1988] MD, 1967 brain cancer Johns Hopkins University School of Medicine epidemiology of HIV infection
Ronald D. Fairshter [1942-1988] MD, 1968 rapidly metastatic melanoma University of California — Irvine clinical studies in chronic obstructive pulmonary disease
Cornelia P. Channing [1938-1985] PhD, 1966 breast cancer University of Maryland School of Medicine mechanism of luteinization in vitro and in vivo
Joel D. Meyers [1944-1991] MD, 1970 colon cancer University of Washington/FHCRC infections caused by suppression of the immune system in organ transplant and AIDS patients
Richard L. Lyman [1927-1975] PhD, 1957 terminal illness for months University of California — Berkeley protein, trypsin inhibitors and pancreatic secretion
James N. Gilliam [1936-1984] MD, 1964 cancer University of Texas Southwestern Medical Center at Dallas cutaneous lupus erythematosus pathogenesis mechanisms
Gordon M. Tomkins [1926-1975] MD/PhD, 1953 brain surgery to remove a tumor University of California — San Francisco pleiotypic response in regulation of cell growth
Muriel R. Steele [1930-1979] MD, 1957 metastatic disease University of California — San Francisco surgical treatment of liver trauma
Allastair M. Karmody [1937-1986] MD, 1963 gastric cancer Albany Medical College novel procedures for difficult vascular surgical problems
Chaviva Isersky [1937-1986] PhD, 1967 cancer NIH/NIDDK Characterization of the protein responsible for amyloidosis
Melvin L. Marcus [1940-1989] MD, 1966 colon cancer UMASS cardiology, heart disease, coronary vascular adaptations to myocardial hypertrophy
Alan S. Morrison [1943-1992] PhD, 1972 cancer Brown University Medical School hormones in the epidemiology of prostatic hyperplasia
Sidney Futterman [1929-1979] PhD, 1954 prolonged illness University of Washington School of Medicine biochemistry of the retina and pigment epithelium
Loretta L. Leive [1936-1986] PhD, 1963 cancer NIH/NIDDK role of bacterial cell surface in microbial physiology and pathogenesis
Philip G. Weiler [1941-1991] MD, 1965 terminal illness University of California — Davis coronary heart disease & stroke in the elderly
Ira M. Goldstein [1942-1992] MD, 1966 metastatic lung cancer University of California — San Francisco pancreatitis, complement and lung injury
Harold Weintraub [1945-1995] MD/PhD, 1973 brain cancer University of Washington/FHCRC characterization and function of MyoD gene
Richard K. Gershon [1932-1983] MD, 1959 lung cancer Yale University immunologic responses to tumor grafts
Edward J. Sachar [1933-1984] MD, 1956 stroke three years ago Columbia University psychoendocrine studies of schizophrenic reactions
Catherine Cole-Beuglet [1936-1987] MD, 1962 colon cancer University of California — Irvine ultrasonography of the breast
Theodore S. Zimmerman [1937-1988] MD, 1963 lung cancer Scripps Research Institute platelet/plasma protein interaction in blood coagulation
Markku Linnoila [1947-1998] MD/PhD, 1974 cancer NIH studies on the biological bases of impulsivity and aggression
William J. Mellman [1928-1980] MD, 1952 lymphoma University of Pennsylvania School of Medicine human genetics and pediatrics
Dennis Slone [1930-1982] MD, 1956 long illness Boston University School of Medicine intensive inpatient psychiatric monitoring program
Roger O. Eckert [1934-1986] PhD, 1960 melanoma UCLA ionic and metabolic mechanisms in neuronal excitability
Michael Solursh [1942-1994] PhD, 1968 AIDS University of Iowa School of Medicine extracellular matrix and cell migration
Larry C. Clark [1948-2000] PhD, 1981 prostate cancer University of Arizona nutritional prevention of cancer
Robert F. Spencer [1949-2001] PhD, 1974 gastric carcinoma Medical College of Virginia neuroanatomy of the oculomotor system
Carl C. Levy [1928-1981] PhD, 1957 leukemia NIH/NCI regulation of intracellular messenger RNA
Marshall H. Becker [1940-1993] PhD, 1968 intractable illness University of Michigan, Ann Arbor elaboration of the health belief model
Samuel W. Perry, 3rd [1941-1994] MD, 1967 pancreatic cancer Cornell University — Weill Medical College psychological course of prolonged infection among AIDS patients
Michael A. Kirschenbaum [1944-1997] MD, 1969 long illness University of California — Irvine prostaglandins and kidney medicine
Janis V. Giorgi [1947-2000] PhD, 1977 uterine cancer UCLA cellular immunology of resistance to HIV
Herbert F. Hasenclever [1924-1978] PhD, 1953 cancer NIH/NIAID mannan polysaccharides of pathogenic fungi
Edward C. Franklin [1928-1982] MD, 1950 brain cancer New York University School of Medicine structure and properties of rheumatoid antibodies
Robert M. Joy [1941-1995] PhD, 1969 cancer University of California — Davis pesticide induced changes in central nervous function
Lois K. Miller [1945-1999] PhD, 1972 melanoma University of Georgia genetics and molecular biology of baculoviruses
Gerald T. Babcock [1946-2000] PhD, 1973 cancer Michigan State University bioenergetic mechanisms in multicenter enzymes
John G. Gambertoglio [1947-2001] PharmD, 1972 multiple sclerosis University of California — San Francisco pharmacokinetics in healthy volunteers and subjects with renal insufficiency and on hemodialysis
John C. Cassel [1921-1976] MD, 1946 University of North Carolina at Chapel Hill Contribution of the social environment to host resistance
Ernst A. Noltmann [1931-1986] MD, 1956 severe health problems University of California — Riverside biochemical and physical characterization of phosphoglucose isomerase
Edward A. Smuckler [1931-1986] MD/PhD, 1963 barrett’s disease/oesophagal cancer University of California — San Francisco cytochemical studies in liver injury
Joseph W. St. Geme, Jr. [1931-1986] MD, 1956 cardiac myopathy University of Colorado Health Sciences Center studies of cellular resistance to virus infection
Edwin H. Beachey [1934-1989] MD, 1962 cancer University of Tennessee chemistry and immunology of streptococcal m proteins
Ora M. Rosen [1935-1990] MD, 1960 breast cancer Sloan Kettering Institute for Cancer Research Cloning and characterization of gene for human insulin receptor
Tai-Shun Lin [1939-1994] PhD, 1970 non hodgkin’s lymphoma Yale University synthesis and development of nucleoside analogs as antiviral and anticancer compounds
Judith G. Pool [1919-1975] PhD, 1946 brain tumor Stanford University pathophysiology of hemophilia
Ardie Lubin [1920-1976] PhD, 1951 serious illness for months Naval Health Research Center repeated measurement design in psychopharmacology
William H. Hildemann [1927-1983] PhD, 1956 amyotrophic lateral sclerosis UCLA mechanisms of immunoblocking versus tumor immunity
Murray Rabinowitz [1927-1983] MD, 1950 muscular dystrophy University of Chicago mitochondrial assembly and replication
Paul A. Obrist [1931-1987] PhD, 1958 3 year illness University of North Carolina at Chapel Hill blood pressure control: relation to behavioral stress
C. Richard Taylor [1939-1995] PhD, 1963 heart failure Harvard University locomotion–idling metabolism and gait dynamics
Helene S. Smith [1941-1997] PhD, 1967 breast cancer University of California — San Francisco malignant progression of the human breast/predictors of breast cancer prognosis
Bruce W. Erickson [1942-1998] PhD, 1970 cancer University of North Carolina at Chapel Hill engineering of nongenetic beta proteins
Norton B. Gilula [1944-2000] PhD, 1971 lymphoma Scripps Research Institute cell junction biosynthesis and biogenesis/cell-cell communication
John M. Eisenberg [1946-2002] MD, 1972 high-grade malignant glioma Georgetown University Medical Center health services research
Elizabeth A. Bates [1947-2003] PhD, 1974 pancreatic cancer University of California — San Diego cross-linguistic studies of language development, processing and breakdown in aphasia
Ira Herskowitz [1946-2003] PhD, 1971 pancreatic cancer University of California — San Francisco genetics of yeast mating type
Wallace P. Rowe [1926-1983] MD, 1948 colon cancer NIH genetic basis of disease in murine leukemia viruses
J. Weldon Bellville [1926-1983] MD, 1952 cancer UCLA dynamic isolation studies of control of respiration
Peter W. Lampert [1929-1986] MD, 1955 lymphoma University of California — San Diego pathogenesis of virus-induced brain disease
Sheldon D. Murphy [1933-1990] PhD, 1958 cancer University of Washington School of Medicine biochemical and physiologic response to toxic stress
Allan C. Wilson [1934-1991] PhD, 1961 leukemia University of California — Berkeley use of molecular approaches to understand evolutionary change
Bernard N. Fields [1938-1995] MD, 1962 pancreatic cancer Harvard Medical School/Brigham & Women’s Hospital genetic and molecular basis of viral injury to the nervous system
Priscilla A. Campbell [1940-1998] PhD, 1968 cervical cancer University of Colorado Health Sciences Center/Natl. Jewish Center cell biology of the immune response to bacteria
Ethan R. Nadel [1941-1998] PhD, 1969 cancer Yale University thermoregulation during exercise and heat exposure
Peter A. Kollman [1944-2001] PhD, 1970 cancer University of California — San Francisco free energy perturbation calculations and their application to macromolecules

Appendix G: List of 452 Extinct Superstars
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Investigator Name Cause of death if known Institution at the time of death Scientific domain
David Tapper [1945-2002] MD, 1970 long battle with renal cell carcinoma University of Washington School of Medicine determination of a new growth factor in breast milk
Cyril S. Stulberg [1919-1977] PhD, 1947 multiple sclerosis Wayne State University School of Medicine characterization and preservation of cell strains
Dorothy T. Krieger [1927-1985] MD, 1949 breast cancer Mount Sinai School of Medicine CNS-pituitary-adrenal interactions
Aaron Janoff [1930-1988] PhD, 1959 long illness SUNY HSC at Stony Brook pathology of smoking and emphysema
Wylie J. Dodds [1934-1992] MD, 1960 brain cancer Medical College of Wisconsin esophageal motor function in health and disease
Oscar A. Kletzky [1936-1994] MD, 1961 lung cancer UCLA ameliorating effects of estrogen replacement therapy on cerebral blood flow and sleep
Nelson Butters [1937-1995] PhD, 1964 Lou Gehrig’s disease University of California — San Diego cognitive deficits related to chronic alcoholism
Elizabeth M. Smith [1939-1997] PhD, 1978 cancer Washington University in St. Louis psychiatric problems among disaster survivors
David G. Marsh [1940-1998] PhD, 1964 glioblastoma Johns Hopkins University School of Medicine genetics of allergy and asthma
George C. Cotzias [1918-1977] MD, 1944 lung cancer Cornell University Medical College studies of extrapyramidal & related behavioral disorders
Robert D. Allen [1927-1986] PhD, 1953 pancreatic cancer Dartmouth Medical School cytoplasmic rheology of motile cells
Marilyn Bergner [1933-1992] PhD, 1970 ovarian cancer Johns Hopkins University School of Public Health cost and efficacy of home care for COPD patients
G. Harrison Echols, Jr. [1933-1993] PhD, 1959 lung cancer University of California — Berkeley Genetic and chemical studies of phage lambda development
Milton H. Stetson [1943-2002] PhD, 1970 prolonged and courageous fight with illness University of Delaware environmental regulation of reproduction and the onset of puberty
Nicholas R. DiLuzio [1926-1986] PhD, 1954 extended illness Tulane University School of Medicine role recognition factors and macrophages in neoplasia
Lauran D. Harris [1927-1987] MD, 1947 long illness Boston University School of Medicine sphincter strength–its measurement and control
Charles W. Mays [1930-1990] PhD, 1958 cancer National Cancer Institute reducing cancer risk by radionuclide chelation
Lawrence H. Piette [1932-1992] PhD, 1957 cancer Utah State University electron spin resonance spectroscopy
Mehdi Tavassoli [1933-1993] MD, 1961 heart failure University of Mississippi Medical Center hematopoietic stem cell purification and biology
Howard M. Temin [1934-1994] PhD, 1959 lung cancer University of Wisconsin molecular biology and genetics of tumor viruses
Mette Strand [1937-1997] PhD, 1964 cancer Johns Hopkins University School of Medicine parasite immunochemistry and vaccine development
William L. Chick [1938-1998] MD, 1963 diabetes complications UMASS studies of islet and beta cells in pancreatic transplantation
Robert A. Mendelson, Jr. [1941-2001] PhD, 1968 lung cancer University of California — San Francisco molecular mechanism of muscle contraction
Susan M. Sieber [1942-2002] PhD, 1971 breast cancer National Cancer Institute biochemical epidemiology and cancer
Joachim G. Liehr [1942-2003] PhD, 1968 pancreatic cancer University of Texas Medical Branch at Galveston mechanism of estrogen-induced carcinogenesis
Charles A. Janeway, Jr. [1943-2003] MD, 1969 B-cell lymphoma Yale University innate immunity and T lymphocyte biology
Edward Herbert [1926-1987] PhD, 1953 pancreatic cancer Oregon Health & Science University regulation of expression of opioid peptides and receptors
Thomas W. Smith [1936-1997] MD, 1965 mesothelioma Harvard Medical School/Brigham & Women’s Hospital Mechanism and reversal studies of digitalis
Roy H. Steinberg [1935-1997] MD/PhD, 1965 multiple myeloma University of California — San Francisco pigment epithelium interactions with neural retina
David W. Fulker [1937-1998] PhD, 1967 pancreatic cancer University of Colorado at Boulder adoption studies of development in middle childhood
Donald J. Cohen [1940-2001] MD, 1966 ocular melanoma Yale University Tourette’s syndrome and autism in children
Harvey D. Preisler [1941-2002] MD, 1965 lymphoma Rush Medical College clinical and biological studies of myeloid leukemias
Carl M. Pearson [1919-1981] MD, 1946 cancer UCLA studies in adjuvant-induced arthritis
Morton I. Grossman [1919-1981] MD/PhD, 1944 esophageal cancer UCLA studies on the etiology of peptic ulcer
Mones Berman [1920-1982] PhD, 1957 cancer National Cancer Institute quantitative, model-based problems in metabolism and endocrinology
Henry R. Mahler [1921-1983] PhD, 1948 heart failure Indiana University respiratory enzymes–structure, function, & biosynthesis
Milton Kern [1925-1987] PhD, 1954 lung cancer NIH ribonucleic acids of specifically isolated ribosomes
Thoralf M. Sundt, Jr. [1930-1992] MD, 1959 bone marrow cancer Mayo Clinic surgical techniques for intracranial aneurysms
John C. Liebeskind [1935-1997] PhD, 1962 cancer UCLA behavioral and electrophysiological studies of pain
Marian W. Fischman [1939-2001] PhD, 1972 colon cancer Columbia University behavioral pharmacology of cocaine
David S. Sigman [1939-2001] PhD, 1965 brain cancer UCLA enzymology and gene targeting
Charles D. Heidelberger [1920-1983] PhD, 1946 carcinoma of nasal sinus University of Southern California Keck School of Medicine effects of fluorinated pyrimidines on tumors
Sidney H. Ingbar [1925-1988] MD, 1947 lung cancer Harvard Medical School/Beth Israel Medical Center physiology of the thyroid gland and its clinical diseases
Kiichi Sagawa [1926-1989] MD/PhD, 1958 cancer Johns Hopkins University School of Medicine modelling the mechanics of cardiac chamber contraction
Sydney E. Salmon [1936-1999] MD, 1962 pancreatic cancer University of Arizona quantitative method for evaluating changes in myeloma tumor mass
Eva J. Neer [1937-2000] MD, 1963 breast cancer Harvard Medical School/Brigham & Women’s Hospital regulation and cellular levels of G protein subunits
Lawrence D. Jacobs [1938-2001] MD, 1965 cancer SUNY Buffalo recombinant b interferon as treatment for Multiple Sclerosis
Richard J. Wyatt [1939-2002] MD, 1964 lung cancer NIH biochemistry of schizophrenia
Robert J. Fass [1939-2002] MD, 1964 lung cancer Ohio State University In vitro methods to test antimicrobial susceptibility of infectious agents
Michael Doudoroff [1911-1975] PhD, 1939 cancer University of California — Berkeley taxonomy and phylogeny of pseudomonads
Arnold M. Seligman [1912-1976] MD, 1937 prolonged terminal illness Johns Hopkins University School of Medicine drug development for prostatic carcinoma
Frederick H. Carpenter [1918-1982] PhD, 1944 University of California — Berkeley mechanism of leucine aminopeptidase
Harvey M. Patt [1918-1982] PhD, 1942 University of California — San Francisco ultra-high dose rates in experimental radiotherapy
Teruzo Konishi [1920-1984] MD/PhD, 1955 cancer NIEHS physiological and biophysical functions of the inner ear
Mortimer B. Lipsett [1921-1985] MD, 1951 brain tumor NIH steroid metabolic conversions in human subjects
Andrew C. Peacock [1921-1985] PhD, 1949 cancer NIH/NCI materials and methods for polyacrylamide gel electrophoresis
Harold Edelhoch [1922-1986] PhD, 1947 cancer NIH/NIDDK fluorescence methods for the study of protein structures
Gerald L. Klerman [1928-1992] MD, 1954 diabetes Cornell University — Weill Medical College phsychological studies of depression, schizophrenia and panic and other anxiety disorders
Nina S. Braunwald [1928-1992] MD, 1952 cancer Harvard Medical School/Brigham & Women’s Hospital development of prosthetic heart valves for children
Amico Bignami [1930-1994] MD, 1954 brain cancer Harvard Medical School brain specific protein in astrocytes
Frank A. Oski [1932-1996] MD, 1958 prostate cancer Johns Hopkins University School of Medicine erythrocyte metabolism in the newborn infant
Richard P. Bunge [1932-1996] MD, 1960 esophageal cancer University of Miami schwann cell biology and human spinal cord injury
Harold C. Neu [1934-1998] MD, 1960 glioblastoma Columbia University surface enzymes in bacteria
Jiri Palek [1934-1998] MD, 1958 2 year illness Tufts University membrane properties of abnormal red cells
Irving Kupfermann [1938-2002] PhD, 1964 Creutzfeldt-Jacob’s disease Columbia University Behavioral and neural analysis of learning in aplaysia
Merton Bernfield [1938-2002] MD, 1961 Parkinson’s Disease Harvard Medical School/Children’s Hospital nature and interactions of cell surface proteoglycans during morphogenesis
Eleanor M. Saffran [1938-2002] PhD, 1968 amyotrophic lateral sclerosis Temple University School of Medicine cognitive deficits in brain-damaged patients
Barbara J. Lowery [1938-2002] PhD, 1973 ovarian cancer University of Pennsylvania School of Medicine understanding stress responses of people who were physically ill
Elizabeth Stern [1915-1980] MD, 1940 cancer UCLA effects of steroid contraception on the ovary
Joseph Stokes, 3rd [1924-1989] MD, 1949 cancer Boston University School of Medicine epidemiological studies of coronary heart disease
W. Dean Warren [1924-1989] MD, 1950 cancer Emory University cirrhosis, shunt surgery, and nitrogen metabolism
Edward W. Purnell [1928-1993] MD, 1957 lung cancer Case Western Reserve University School of Medicine study of eye physiology and disease by ultrasound
Leo J. Neuringer [1928-1993] PhD, 1957 cancer MIT NMR studies of normal and transformed cell membranes
Frank Lilly [1930-1995] PhD, 1965 prostate cancer Albert Einstein College of Medicine of Yeshiva University role of hereditary factors in governing susceptibility to cancer-causing agents
Edwin L. Bierman [1930-1995] MD, 1955 bone cancer University of Washington School of Medicine Metabolism of particulate fat in diabetes and atherosclerosis
Kenneth W. Sell [1931-1996] MD/PhD, 1968 complications from diabetes Emory University School of Medicine human tissue banking and transplantation
Edgar Haber [1932-1997] MD, 1956 multiple myeloma Harvard University School of Public Health biological regulation of the renin-angiotensin system
J. Christian Gillin [1938-2003] MD, 1966 esophageal cancer University of California — San Diego serotenergic mechanisms in sleep and depression
Albert Dorfman [1916-1982] MD/PhD, 1944 kidney failure University of Chicago biochemistry of connective tissues
Henry S. Kaplan [1918-1984] MD, 1940 lung cancer Stanford University radiation-induced leukemia in the C57BL mouse
Charlotte Friend [1921-1987] PhD, 1950 lymphoma Mount Sinai School of Medicine tissue studies of murine virus-induced leukemia
William H. Tooley [1925-1992] MD, 1949 long illness University of California — San Francisco prevention and treatment of respiratory distress in neonates
Charles G. Moertel [1927-1994] MD, 1953 Hodgkin’s Disease Mayo Clinic clinical treatments of gastrointestinal cancer
Barbara H. Bowman [1930-1996] PhD, 1959 cancer University of Texas HSC at San Antonio genetic control of the structure of human proteins
J. Calvin Giddings [1930-1996] PhD, 1955 prolonged battle with cancer University of Utah biomedical separations: field-flow fractionation
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Investigator Name Cause of death if known Institution at the time of death Scientific domain
John R. Williamson [1934-2000] PhD, 1959 cancer University of Pennsylvania School of Medicine molecular mechanisms of hormonal signal transduction
John S. O’Brien [1934-2001] MD, 1960 postpolio complications University of California — San Diego discovery of the gene responsible for Tay-Sachs disease
Jon I. Isenberg [1937-2003] MD, 1963 cancer University of California — San Diego duodenal mucosal bicarbonate secretion in human
George G. Glenner [1927-1995] MD, 1953 systemic senile amyloidosis University of California — San Diego molecular structure of the amyloid protein
J. Kiffin Penry [1929-1996] MD, 1955 complications of diabetes Bowman Gray School of Medicine at Wake Forest University controlled clinical trials of anticonvulsant and anti-epileptic drugs
Paul C. MacDonald [1930-1997] MD, 1955 cancer University of Texas Southwestern Medical Center at Dallas origin and interconversion of gonadal and adrenal streoid hormones
John Gibbon [1934-2001] PhD, 1967 cancer Columbia University CNS functions underlying the interval time sense in animals and humans
Donald F. Summers [1934-2001] MD, 1959 cancer NIH composition, assembly and replication of RNA viruses
R. Gordon Gould [1910-1978] PhD, 1933 cancer Stanford University internal medicine and cardiology
Sol Spiegelman [1914-1983] PhD, 1944 pancreatic cancer Columbia University College of Physicians & Surgeons nucleic acid hybridization
Frederick S. Philips [1916-1984] PhD, 1940 cancer Sloan Kettering Institute for Cancer Research pharmacological properties of chemotherapeutic agents and chemical carcinogenesis
Cyrus Levinthal [1922-1990] PhD, 1951 lung cancer Columbia University College of Physicians & Surgeons colinearity of genes and proteins, and the nature of messenger RNA
Sidney Leskowitz [1923-1991] PhD, 1950 brain tumor Tufts University cellular aspects of tolerance & delayed hypersensitivity
Kenneth M. Moser [1929-1997] MD, 1954 cancer University of California — San Diego clinical outcomes after pulmonary thromboendarterectomy
Donald A. Pious [1930-1998] MD, 1956 cancer University of Washington School of Medicine somatic cell genetic analysis of human immune response genes
Louis V. Avioli [1931-1999] MD, 1957 cancer Washington University in St. Louis mineral and skeletal metabolism in diabetes, kidney, and gastrointestinal disorders
Joseph E. Coleman [1930-1999] MD/PhD, 1963 cancer Yale University structure and function of metalloenzyme synthesis
Harvey C. Knowles, Jr. [1915-1984] MD, 1942 cancer University of Cincinnati/Children’s Hospital clinical studies of gestational diabetes
Joseph Cochin [1916-1985] MD/PhD, 1955 leukemia Boston University School of Medicine factors in tolerance to the narcotic analgesics
Albert L. Lehninger [1917-1986] PhD, 1942 complications from asthma Johns Hopkins University School of Medicine structure and function of mitochondria
Charles W. Todd [1918-1987] PhD, 1943 long illness City of Hope Medical Center immunology & immunochemistry of tumor antigens
David H. Blankenhorn [1924-1993] MD, 1947 prostate cancer University of Southern California Keck School of Medicine control of risk factors in atherosclerosis
Paul M. Gallop [1927-1996] PhD, 1953 cancer Harvard Medical School/Children’s Hospital Protein structure and collagen maturation
David J.L. Luck [1929-1998] MD/PhD, 1962 lymphoma Rockefeller University microtubular systems in human cells
Edward W. Moore [1930-1999] MD, 1955 aspergillosis Medical College of Virginia Pathophysiology of the billiary tract and gallbladder
Donald J. Reis [1931-2000] MD, 1956 hepatic cancer Cornell University — Weill Medical College neural control of blood circulation
Julius Marmur [1926-1996] PhD, 1951 lymphoma Albert Einstein College of Medicine of Yeshiva University genetics and biochemistry of cellular regulation
Nemat O. Borhani [1926-1996] MD, 1949 acute leukemia University of Nevada at Reno multicenter clinical studies of hypertension and cardiovascular disease
Russell Ross [1929-1999] DDS/PhD, 1962 cancer University of Washington School of Medicine response-to-injury origins of atherosclerosis
Richard A. Carleton [1931-2001] MD, 1955 cancer Brown University Medical School clinical studies of diet and smoking as cardiovascular disease risk factors
Gilda H. Loew [1931-2001] PhD, 1957 breast cancer Molecular Research Institute computational investigation of the structural and functional aspects of heme proteins and enzymes
N. Raphael Shulman [1925-1996] MD, 1947 cancer NIH/NIDDK mechanisms of autoimmune, alloimmune, and drug-dependent cytopenias
George  Winokur [1925-1996] MD, 1947 pancreatic cancer University of Iowa School of Medicine genetics of bipolar disease, mania, alcoholism and other psychiatric diseases
Giovanni Di Chiro [1926-1997] MD, 1949 lung cancer NIH interventional neuroradiology
Norman P. Salzman [1926-1997] PhD, 1953 pancreatic cancer NIH glycosylation of SIV gp120–role in the immune response
Fritz E. Dreifuss [1926-1997] MD, 1950 lung cancer University of Virginia School of Medicine clinical investigations of childhood epilepsy
Dante G. Scarpelli [1927-1998] MD/PhD, 1960 esophageal adenocarcinoma Northwestern University metabolism of pancreatic carcinogens
Hans J. Müller-Eberhard [1927-1998] MD, 1953 cancer Scripps Research Institute identification of proteins and reaction mechanisms of the complement system
Miriam M. Salpeter [1929-2000] PhD, 1953 thyroid cancer Cornell University neurobiology of myasthenia gravis
Gerald Cohen [1930-2001] PhD, 1955 cancer Mount Sinai School of Medicine H2O2 and oxy-radical stress in catecholamine neurons
James K. McDougall [1931-2003] PhD, 1971 gastric cancer University of Washington/FHCRC role of DNA viruses in cancer
Edward H. Kass [1917-1990] MD/PhD, 1947 lung cancer Harvard Medical School/Brigham & Women’s Hospital mechanism of toxic shock syndrome
Norman Kretchmer [1923-1995] MD/PhD, 1952 kidney cancer University of California — Berkeley regulation of metabolism during developement
Adolph I. Cohen [1924-1996] PhD, 1954 leukemia Washington University in St. Louis biochemistry and pharmacology of the retina
John L. Doppman [1928-2000] MD, 1953 cancer NIH flow dynamics in anterior spinal artery
David E. Green [1910-1983] PhD, 1934 cancer University of Wisconsin molecular biology of membrane systems
Alton Meister [1922-1995] MD, 1945 complications from a stroke Cornell University — Weill Medical College amino acid and glutathione biochemistry
Gisela Mosig [1930-2003] PhD, 1959 undergoing cancer treatment for two years Vanderbilt University dna replication and recombination in bacteriophages
Choh Hao Li [1913-1987] PhD, 1938 cancer of the pharynx University of California — San Francisco isolation and synthesis the human pituitary growth hormone
Robert H. Abeles [1926-2000] PhD, 1955 Parkinson’s disease Brandeis University rational design of small-molecule inhibitors of enzymes
Alfred P. Wolf [1923-1998] PhD, 1953 lengthy illness Brookhaven National Laboratory synthesis of simple molecules in pure form and high specific activity for PET
Marian E. Koshland [1921-1997] PhD, 1949 lung cancer University of California — Berkeley biochemical methods to examine the immune response
Timothy J. Regan [1924-2001] MD, 1952 colon cancer UMDNJ Newark myocardial function and metabolism in chronic disease
Thomas C. Chalmers [1917-1995] MD, 1943 prostate cancer Mount Sinai School of Medicine inter-hospital cooperative studies of cirrhosis
Mortimer M. Elkind [1922-2000] PhD, 1953 long illness Colorado State University cell radiation response of cultured mammalian cells
Hamish N. Munro [1915-1994] MD/PhD, 1956 died in a nursing home. Parkinson Tufts University nutritional regulation of protein metabolism
Ruth Sager [1916-1997] PhD, 1948 bladder cancer Harvard Medical School/DFCI role of tumor suppressor genes in breast cancer
David M. Maurice [1922-2002] PhD, 1951 liver cancer Columbia University College of Physicians & Surgeons interference theory of corneal transparency
Robert A. Good [1922-2003] MD/PhD, 1947 esophageal cancer University of South Florida College of Medicine role of the thymus in immune system development
Harland G. Wood [1907-1991] PhD, 1935 lymphoma Case Western Reserve University School of Medicine heterotrophic carbon dioxide fixation
Hans Popper [1903-1988] MD/PhD, 1944 pancreatic cancer Mount Sinai School of Medicine correlation of structure and function in liver disease
Fritz A. Lipmann [1899-1986] MD/PhD, 1928 natural reasons Rockefeller University glucose transport in normal and malignant cells
Paul J. Scheuer [1915-2003] PhD, 1950 leukemia University of Hawaii structure and properties of spinochromes
Berta V. Scharrer [1906-1995] PhD, 1930 natural causes Albert Einstein College of Medicine of Yeshiva University immunocytochemical study of invertebrate nervous system
Michael W. Pozen [1945-1981] MD/PhD, 1974 heart attack Boston University School of Medicine confirmation parameters to assess EMT’s decisions
Ronald E. Talcott [1947-1984] PhD, 1973 automobile accident University of California — San Francisco carboxylesterases of toxicologic significance
Nathaniel A. Young [1939-1979] MD, 1962 drowned in British Virgin Islands National Cancer Institute oncology and molecular pathology
Ahmad I. Bukhari [1943-1983] PhD, 1971 heart attack Cold Spring Harbor Laboratory life cycle of mutator phage μ
Alan P. Wolffe [1959-2001] PhD, 1984 car accident NIH role of DNA methylation in regulating gene expression in normal and pathological states
Shu-Ren Lin [1936-1979] MD, 1962 plane crash University of Rochester imaging studies of cerebral blood flow after cardiac arrest
William D. Nunn [1943-1986] PhD, 1972 sudden cardiac arrest University of California — Irvine regulation of fatty acid/acetate metabolism in e. coli
John L. Kemink [1949-1992] MD, 1975 murder University of Michigan, Ann Arbor vestibular diagnosis and surgery, acoustic neuromas, and cochlear implants
Stanley R. Kay [1946-1990] PhD, 1980 heart attack Albert Einstein College of Medicine of Yeshiva University symptoms and diagnostic tests of schizophrenia
Roberta D. Shahin [1953-1997] PhD, 1985 sudden accute illness Center for Biologics Evaluation and Research mouse model of respiratory B. pertussis infection in mice
Robert M. Pratt, Jr. [1942-1987] PhD, 1970 died in his sleep NIEHS/University of North Carolina at Chapel Hill craniofacial development of the fetus
Howard J. Eisen [1942-1987] MD, 1969 suicide NIH/NICHD mechanism of action of cortisol and related glucocorticoid hormones
Joaquim Puig-Antich [1944-1989] MD, 1967 asthma attack University of Pittsburgh psychobiology and treatment of child depression
Elizabeth A. Rich [1952-1998] MD, 1977 traffic accident Case Western Reserve University School of Medicine natural history of lymphocytic alveolitis in hiv disease
Jeffrey M. Hoeg [1952-1998] MD, 1977 renal cancer NIH/NHLBI lipoprotein metabolism and its connection to cardiovascular disease
Matthew L. Thomas [1953-1999] PhD, 1981 died while travelling Washington University in St. Louis function and regulation of leukocyte surface glycoproteins
Mu-En Lee [1954-2000] MD/PhD, 1984 complications from routine surgery Harvard Medical School/MGH characterization of vascular smooth muscle LIM protein
Tsunao Saitoh [1949-1996] PhD, 1977 murdered University of California — San Diego altered protein kinases in alzheimer’s disease
James W. Prahl [1931-1979] MD/PhD, 1964 rock climing accident University of Utah structural basis of the functions of human complement
Pokar M. Kabra [1942-1990] PhD, 1972 plane crash University of California — San Francisco application of liquid chromatography to therapeutic drug monitoring
Harold A. Menkes [1938-1987] MD, 1963 car accident Johns Hopkins University School of Medicine occupational and environmental lung disease
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Richard E. Heikkila [1942-1991] PhD, 1969 murder UMDNJ Robert Wood Johnson Medical School oxidation-reduction reactions and the dopamine receptor system
Howard S. Tager [1945-1994] PhD, 1971 heart attack University of Chicago biochemical structure, action, regulation and degradation of the insulin and glucagon molecules
Sukdeb Mukherjee [1946-1995] MD, 1971 short illness Medical College of Georgia neuroleptic effects on regional cerebral blood flow
John J. Wasmuth [1946-1995] PhD, 1973 heart attack University of California — Irvine human-hamster somatic cell hybrids/localization of Hnyington’s disease gene
Richard P. Nordan [1949-1998] PhD, 1983 cerebral aneurysm NIH immunologist and molecular biologist
Roland L. Phillips [1937-1987] MD/PhD, 1971 glider plane accident Loma Linda University School of Medicine role of lifestyle in cancer and cardiovascular disease among Adventists
Samuel A. Latt [1938-1988] MD/PhD, 1971 heart attack Harvard Medical School/Children’s Hospital genetic and cytogenetic studies of mental retardation
Emil T. Kaiser [1938-1988] PhD, 1959 complications from kidney transplant Rockefeller University mechanism of carboxypeptidase action
D. Michael Gill [1940-1990] PhD, 1967 heart attack Tufts University biochemistry of cholera toxin and other pathogenic toxins
John P. Merlie [1945-1995] PhD, 1973 heart failure Washington University in St. Louis molecular genetics of the acetylcholine receptor
Robert S. Krooth [1929-1980] MD/PhD, 1957 suicide/self-inflicted gunshot wound Columbia University College of Physicians & Surgeons biochemical deffects in inherited metabolic disorders
Takeo Kakunaga [1937-1988] PhD, 1966 lung cancer with a brain metastasis NIH/NCI malignant transformation of mammalian cells by chemical carcinogens
Abraham Worcel [1938-1989] MD, 1963 suicide University of Rochester structure of interphase and metaphase chromosomes
Roland D. Ciaranello [1943-1994] MD, 1970 heart attack Stanford University molecular neurobiology and developmental disorders
Gary J. Miller [1950-2001] MD/PhD, 1978 heart attack University of Colorado Health Sciences Center vitamin D receptors in the growth regulation of prostate cancer cells
William B. Reed [1924-1976] MD, 1952 University of Southern California Keck School of Medicine cutaneous genetic disorders
James R. Neely [1936-1988] PhD, 1966 heart attack Penn State University effects of diabetes and oxygen deficiency in regulation of metabolism in the heart
Mary Lou Clements [1946-1998] MD, 1972 airplane crash Johns Hopkins University School of Medicine development of AIDS vaccines
John B. Penney, Jr. [1947-1999] MD, 1973 heart attack Harvard Medical School/MGH receptor mechanisms in movement disorder pathophysiology
Lynn M. Wiley [1947-1999] PhD, 1975 plane crash University of California — Davis morphogenesis in early mammalian embryos
Trudy L. Bush [1949-2001] PhD, 1977 heart attack University of Maryland School of Medicine postmenopausal estrogen/progestins interventions
Arend Bouhuys [1926-1979] MD/PhD, 1956 heart attack Yale University community studies of obstructive lung disease
Erhard Gross [1928-1981] PhD, 1958 automobile collision NIH/NICHD structural analysis of naturally-occuring peptide antibiotics
Richard C. Lillehei [1928-1981] MD/PhD, 1960 died while jogging University of Minnesota mechanisms of RES stimulation in experimental shock
Hymie L. Nossel [1930-1983] MD/PhD, 1962 heart attack Columbia University causes of thrombosis and the nature of hemostasis
James C. Steigerwald [1935-1988] MD, 1961 University of Colorado Health Sciences Center internal medicine / rheumatology
Simon J. Pilkis [1942-1995] MD/PhD, 1971 heart attack University of Minnesota carbohydrate metabolism and diabetes
James Olds [1922-1976] PhD, 1952 swimming accident California Institute of Technology pharmacology of motivational mechanisms
Peter W. Neurath [1923-1977] PhD, 1950 heart attack Tufts University chromosomal variants of cells converted by viruses
Emanuel M. Bogdanove [1925-1979] PhD, 1953 killed in an accident Medical College of Virginia endocrine-influencing centers in the hypothalamus
Harold A. Baltaxe [1931-1985] MD, 1960 heart attack University of California — Davis development of new coronary angiographic techniques
Roy D. Schmickel [1936-1990] MD, 1961 died tragically University of Pennsylvania School of Medicine isolation and characterization of human ribosomal DNA
Fredric S. Fay [1943-1997] PhD, 1969 heart attack UMASS generation and regulation of force in smooth muscle
Roger R. Williams [1944-1998] MD, 1971 airplane crash University of Utah genetics and epidemiology of coronary artery diseases
Jeffrey M. Isner [1947-2001] MD, 1973 heart attack Tufts University therapeutic angiogenesis in vascular medicine, cardiovascular laser phototherapy
Gustavo Cudkowicz [1927-1982] MD, 1952 brief illness SUNY Buffalo controls of proliferation specific for leukemias
John C. Seidel [1933-1988] PhD, 1961 heart attack Boston Biomedical Research Institute actin-myosin interaction in pulmonary smooth muscle
William L. McGuire [1937-1992] MD, 1964 scuba-diving accident University of Texas HSC at San Antonio mechanisms of hormonal control and growth and regression of mammary carcinoma
Eric Holtzman [1939-1994] PhD, 1964 ingestion of potassium cyanide, self-administered Columbia University dynamic of cell membranes
Julio V. Santiago [1942-1997] MD, 1967 heart attack Washington University in St. Louis role of social factors, lifestyle practices, and medication in the onset of type II diabetes
John J. Pisano [1929-1985] PhD, 1955 heart attack NIH/NHLBI isolation of active peptides
Dale E. McFarlin [1936-1992] MD, 1961 heart attack NIH neuroimmunological studies of multiple sclerosis
Walter F. Heiligenberg [1938-1994] PhD, 1964 plane crash University of California — San Diego neuroethological studies of electrolocation
George J. Schroepfer, Jr. [1932-1998] MD/PhD, 1961 heart attack Rice University regulation of the formation and metabolism of cholesterol
Thomas A. McMahon [1943-1999] PhD, 1970 complications from routine surgery Harvard University orthopedic biomechanics
Joseph F. Foster [1918-1975] PhD, 1943 heart attack Purdue University configurational changes in protein molecules
Gerald P. Rodnan [1927-1983] MD, 1949 complications after vascular surgery University of Pittsburgh renal transport if uric acid and protein
George Streisinger [1927-1984] PhD, 1953 scuba-diving accident University of Oregon genetic mutations and the nervous system development in lower vertebrates
Lucien B. Guze [1928-1985] MD, 1951 sudden cardiac arrest UCLA pathogenesis of experimental pyelonephritis
Lubomir S. Hnilica [1929-1986] PhD, 1952 automobile accident Vanderbilt University nuclear antigens in human colorectal cancer
Charles L. Wittenberger [1930-1987] PhD, 1959 motorcycle accident NIH/NINDR regulation of the pathways of intermediary metabolism
D. Martin Carter [1936-1993] MD/PhD, 1971 dissecting aortic aneurysm Rockefeller University susceptibility of pigment and cutaneous cells to DNA injury by UV
Verne M. Chapman [1938-1995] PhD, 1965 died suddenly while attending meeting Roswell Park Cancer Institute/SUNY Buffalo development of cumulative multilocus map of mouse chromosomes
Dolph O. Adams [1939-1996] MD/PhD, 1969 unexpected Duke University development and regulation of macrophage activation
Lee A. Lillard [1943-2000] PhD, 1972 heart attack University of Michigan, Ann Arbor aging and retirement studies
Don C. Wiley [1944-2001] PhD, 1971 accidental fall Harvard University viral membrane and glycoprotein structure
Lonnie D. Russell, Jr. [1944-2001] PhD, 1974 swimming accident Southern Illinois University School of Medicine filament regulation of spermatogenesis
Herbert J. Rapp [1923-1981] PhD, 1955 National Cancer Institute immunologist and cancer research
Eugene C. Jorgensen [1923-1981] PhD, 1953 murdered University of California — San Francisco structure/activity relationships of compounds related to thyroxin
Margaret O. Dayhoff [1925-1983] PhD, 1948 heart attack Georgetown University Medical Center computer study of sequences of amino acids in proteins
Norman Geschwind [1926-1984] MD, 1951 heart attack Harvard Medical School/Beth Israel Medical Center relationship between the anatomy of the brain and behavior
Laurence M. Sandler [1929-1987] PhD, 1956 heart attack University of Washington School of Medicine cytogenetics of meiosis and development in drosophila
L. Rao Chervu [1930-1988] PhD, 1962 brutally murdered Albert Einstein College of Medicine of Yeshiva University improved radiopharmaceuticals for nephrology and urology
Peter M. Steinert [1945-2003] PhD, 1972 heart attack NIH structures and interactions of the proteins characteristic of epithelial cells
Arnold Lazarow [1916-1975] MD/PhD, 1941 brief illness University of Minnesota fetal endocrinology and study of diabetes & pregnancy
Edward V. Evarts [1926-1985] MD, 1948 heart attack NIH electrophysiological activity of in vivo neurons in waking and sleeping states
Anthony Dipple [1940-1999] PhD, 1964 heart attack NIH metabolic activation and DNA interactions of polycyclic aromatic hydrocarbon carcinogens
Gerald L. Stoner [1943-2002] PhD, 1974 complications following a fall NIH/NINDS neuropathology and molecular epidemiology of the human polyomavirus
G. Scott Giebink [1944-2003] MD, 1969 heart attack University of Minnesota pathogenesis of otitis media and immunizations
Daniel A. Brody [1915-1975] MD, 1940 heart attack University of Tennessee generator properties of isolated mammalian hearts
Michelangelo G.F. Fuortes [1917-1977] MD, 1941 NIH/NINDS study of the peripheral visual system in vertebrate animals
Sidney Riegelman [1921-1981] PhD, 1948 drowned while scuba diving University of California — San Francisco intersubject variation in first pass effect of drugs
Lewis W. Wannamaker [1923-1983] MD, 1948 heart attack University of Mississippi Medical Center clinical and epidemiologic aspects of streptococcal infections
Donald J. Magilligan, Jr. [1929-1989] MD, 1965 short illness Henry Ford Health Sciences Center natural history and limitations of porcine heart valves
Ronald G. Thurman [1941-2001] PhD, 1967 massive heart attack University of North Carolina at Chapel Hill hepatic metabolism, alcoholic liver injury and toxicology
F. Brantley Scott, Jr. [1930-1991] MD, 1955 plane crash Baylor University College of Medicine/St. Luke’s Episcopal Hospital development of the penile prosthesis
DeWitt S. Goodman [1930-1991] MD, 1955 pulmonary embolism Columbia University lipid metabolism and its role in the development of heart and artery disease
Donald C. Shreffler [1933-1994] PhD, 1961 heart attack Washington University in St. Louis organization and functions of H-2 gene complex
A. Arthur Gottlieb [1937-1998] MD, 1961 pulmonary embolus following surgery Tulane University School of Medicine role of macrophage nucleic acid in antibody production
John N. Whitaker [1940-2001] MD, 1965 injuries following a bycicle race University of Alabama at Birmingham molecular immunopathogenesis of demyelinating disease
Christopher A. Dawson [1942-2003] PhD, 1969 suddenly Medical College of Wisconsin pulmonary hemodynamics
Maurice S. Raben [1915-1977] MD, 1939 Tufts University humoral and metabolic aspects of cardiac function
Josiah Brown [1923-1985] MD, 1947 tragic accident UCLA biochemical studies of lipid and carbohydrate metabolism
John H. Walsh [1938-2000] MD, 1963 heart attack UCLA gastrointestinal hormones, gastric acid production and peptic ulcer disease
Jerome R. Vinograd [1913-1976] PhD, 1940 California Institute of Technology biochemistry and molecular biology
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Merton F. Utter [1917-1980] PhD, 1942 Case Western Reserve University School of Medicine structure and function of pep carboxykinase isozymes
E. Jack Wylie [1918-1982] MD, 1943 heart attack University of California — San Francisco development of techniques for the treatment and management of chronic visceral ischemia
Kwan C. Tsou [1922-1985] PhD, 1950 heart attack University of Pennsylvania School of Medicine development of serum nuclease isozyme test for cancer
Norbert Freinkel [1926-1989] MD, 1949 heart attack Northwestern University metabolic regulation in normal and diabetic pregnancies
Edgar C. Henshaw [1929-1992] MD, 1956 complications from early-stage cancer treatment University of Rochester intermediary metabolism in animals and in man
Donald T. Witiak [1935-1998] PhD, 1961 stroke University of Wisconsin stereochemical studies of hypocholesterolemic agents
Thomas P. Dousa [1937-2000] MD/PhD, 1968 heart attack Mayo Clinic cellular action of vasopressin in the kidney
Thomas F. Burks, II [1938-2001] PhD, 1967 heart attack University of Texas HSC at Houston central and peripheral neuropeptide pharmacology
Robert M. Macnab [1940-2003] PhD, 1969 accidental fall Yale University sequence analysis and function of bacterial flagellar motor
David Pressman [1916-1980] PhD, 1940 Roswell Park Cancer Institute/SUNY Buffalo structure and function of antibody molecules and tissue antigens of the HLA system
Abraham M. Lilienfeld [1920-1984] MD, 1944 heart attack Johns Hopkins University School of Public Health epidemiological methods for the study of chronic diseases
Marion I. Barnhart [1921-1985] PhD, 1950 traffic accident Wayne State University School of Medicine cellular sites for synthesis of blood proteins
Thomas R. Johns, 2nd [1924-1988] MD, 1948 refractory arrhythmia University of Virginia School of Medicine physiological studies of myasthenia gravis
Gerald D. Aurbach [1927-1991] MD, 1954 hit in a head by a stone NIH bone metabolism and calcium homeostasis
Demetrios Papahadjopoulos [1934-1998] PhD, 1963 adverse drug reaction/multi-organ failure University of California — San Francisco phospholipid-protein interactions, lipid vesicles, and membrane function
Takis S. Papas [1935-1999] PhD, 1970 unexpected and sudden Medical University of South Carolina characterization of ETS genes and retroviral onc genes
John J. Jeffrey, Jr. [1937-2001] PhD, 1965 stroke Albany Medical College mechanism of action and the physiologic regulation of mammalian collagenases
Victor J. Ferrans [1937-2001] MD/PhD, 1963 complications from diabetes NIH myocardial and vascular pathobiology
James N. Davis [1939-2003] MD, 1965 airplane crash SUNY HSC at Stony Brook mechanisms underlying neuronal injury after brain ischemia
Frederick B. Bang [1916-1981] MD, 1939 heart attack Johns Hopkins University School of Medicine cell virus relationships in respiratory mucosae
James M. Felts [1923-1988] PhD, 1955 heart failure University of California — San Francisco synthesis and processing of plasma lipoproteins
Ernst Freese [1925-1990] PhD, 1954 cerebral hemorrhage NIH/NINDS studies of environmental mutagenesis
Lucien J. Rubinstein [1924-1990] MD, 1948 ruptured intracranial aneurysm University of Virginia School of Medicine differentiation and stroma-induction in neural tumors
George B. Craig, Jr. [1930-1995] PhD, 1956 heart attack University of Notre Dame genetics and reproductive biology of aedes mosquitoes
James R. Klinenberg [1934-1999] MD, 1959 intracerebral hemorrhage UCLA pathophysiology of gout and hyperuricemia
Paul B. Sigler [1934-2000] MD/PhD, 1967 heart attack Yale University structural analysis of biological macromolecules
Sandy C. Marks, Jr. [1937-2002] DDS/PhD, 1968 heart attack UMASS vitamin D and bone modeling
Albert H. Coons [1912-1978] MD, 1937 coronary disease and congestive heart failure Harvard Medical School studies on antibody formation
Henry G. Kunkel [1916-1983] MD, 1942 complications after vascular surgery Rockefeller University identification of MHC Class II molecules
Edgar E. Ribi [1920-1986] PhD, 1948 plane crash NIH/NIAID fine structure of immunologically-active cell constituents for the development of vaccines
Bertram Sacktor [1922-1988] PhD, 1949 heart attack National Institute on Aging in Baltimore mechanisms of hormonal regulation of cellular pH and mineral metabolism in the kidney
Lucille S. Hurley [1922-1988] PhD, 1950 complications from open heart surgery University of California — Davis genetic and nutritional interactions in development
Paul Margolin [1923-1989] PhD, 1956 heart attack City College of New York mutation and suppressor studies of a bacterial gene
Zanvil A. Cohn [1926-1993] MD, 1953 aortic dissection Rockefeller University macrophage in cell biology and resistance to infectious disease
Carl Monder [1928-1995] PhD, 1956 brief illness, acute fulminating leukemia Population Council corticosteroid metabolism in juvenile hypertension
Gordon Guroff [1933-1999] PhD, 1959 car accident NIH/NICHD biochemical and molecular biological studies of nerve growth factor
Gerald P. Murphy [1934-2000] MD, 1959 heart attack Roswell Park Cancer Institute/SUNY Buffalo detection, immunotherapy, and prognostic indicators of prostate cancer
Alvito P. Alvares [1935-2001] PhD, 1966 killed by a car Uniformed Services University of the Health Sciences biochemical manifestations of toxicity in gold therapy
Patricia S. Goldman-Rakic [1937-2003] PhD, 1963 struck by a car Yale University development and plasticity of the primate frontal lobe
Stephen W. Kuffler [1913-1980] MD, 1937 heart attack Harvard University microphysiology of synaptic transmission
John P. Merrill [1917-1984] MD, 1942 drowned Harvard Medical School/Brigham & Women’s Hospital role of the immune system in kidney transplantation
Abraham I. Braude [1917-1984] MD/PhD, 1950 heart attack University of California — San Diego pathogenesis and treatment of life-threatening septic shock
Susumu Hagiwara [1922-1989] PhD, 1951 bacterial infection UCLA evolutionary and developmental properties of calcium channels in cell membranes
Daniel Rudman [1927-1994] MD, 1949 complications from brain surgery Medical College of Wisconsin adipokinetic substances of the pituitary gland
Thomas G. Smith, Jr. [1931-1998] MD, 1960 heart attack NIH/NINDS fractal analysis of central nervous system neuron and glial cell morphology
Richard N. Lolley [1933-2000] PhD, 1961 heart attack University of Southern California Keck School of Medicine maturation of metabolism in normal & dystrophic retina
Joseph H. Ogura [1915-1983] MD, 1941 heart attack Washington University in St. Louis physiology of the larynx analog
Manfred M. Mayer [1916-1984] PhD, 1946 heart attack Johns Hopkins University School of Medicine immunochemistry of the complement system
Albert  Segaloff [1917-1985] MD, 1942 brief illness Tulane University School of Medicine hormonal treatment of advanced breast cancer
F. Blair Simmons [1930-1998] MD, 1956 heart attack Stanford University development of a cochlear prothesis system for hearing loss
Henryk M. Wisniewski [1931-1999] MD/PhD, 1960 heart failure SUNY Downstate Medical Center College of Medicine pathogenesis of inflammatory demyelinating diseases
V. Everett Kinsey [1909-1978] PhD, 1937 stroke Institute of Biological Sciences at Oakland University intraocular fluid dynamics
Frederic C. Bartter [1914-1983] MD, 1940 stroke University of Texas HSC at San Antonio interaction between the kidney and various endocrine systems
Nathan O. Kaplan [1917-1986] PhD, 1943 University of California — San Diego isolation and structure determination of coenzyme A
David T. Imagawa [1922-1991] PhD, 1950 heart attack Harbor-UCLA Medical Center morphological conversion with leukemia viruses
Robert H. Williams [1909-1979] MD, 1934 on an airline en route to Philadelphia University of Washington School of Medicine diabetes etiology, pathogenesis, and management
Toichiro Kuwabara [1920-1991] MD/PhD, 1952 heart failure Harvard Medical School ultrastructure of retina and retinal disease
William F. Harrington [1920-1992] PhD, 1952 heart failure Johns Hopkins University School of Medicine myosin thick filament structure and assembly
G. Jeanette Thorbecke [1929-2001] MD/PhD, 1954 stung by a Portuguese man-of-war jellyfish New York University School of Medicine histologic and functional aspects of lymphoid tissue development
Felix T. Rapaport [1929-2001] MD, 1954 coronary heart disease SUNY HSC at Stony Brook induction of unresponsiveness to allografts
Marian W. Kies [1915-1988] PhD, 1944 pancreatitis NIH/MIMH study of experimental allergic encephalomyelitis
Menek Goldstein [1924-1997] PhD, 1955 stroke New York University School of Medicine purification of enzymes in the catecholamine synthetic pathway
Andrew P. Somlyo [1930-2003] MD, 1956 heart attack University of Virginia School of Medicine vasomotor function of smooth muscle and their relation to heart disease
Koloman Laki [1909-1983] PhD, 1936 heart attack NIH/NIDDK purification of fibrinogen
Paul A. Srere [1925-1999] PhD, 1951 complications from liver surgery University of Texas Southwestern Medical Center at Dallas cell metabolism and the krebs tca cycle
D. Eugene Strandness, Jr. [1928-2002] MD, 1954 pulmonary failure University of Washington School of Medicine ultrasonic duplex scanner for noninvasive vascular disease diagnosis
Vincent Massey [1926-2002] PhD, 1953 heart attack University of Michigan, Ann Arbor biological oxidation mechanisms of proteins that contain riboflavin
Murray B. Bornstein [1918-1995] MD, 1952 cardiac aneurysm Albert Einstein College of Medicine of Yeshiva University copolymer as a protective treatment for the exacerbation of multiple sclerosis
Clarence J. Gibbs, Jr. [1924-2001] PhD, 1962 cardiac disease NIH/NINDS infectuous diseases of the nervous system
Russell L. De Valois [1926-2003] PhD, 1952 automobile accident University of California — Berkeley brain mechanisms underlying color vision
Efraim Racker [1913-1991] MD, 1938 stroke Cornell University identifying and purifying Factor 1, the first part of the ATP synthase enzyme
Walsh McDermott [1901-1981] MD, 1934 heart attack Cornell University Medical College latent and dormant microbial infections
Jonas E. Salk [1914-1995] MD, 1939 heart failure Salk Institute effective vaccine for polio
Lawrence Bogorad [1921-2003] PhD, 1949 stroke while on vacation Harvard University determinants of transcript longevity
Herman M. Kalckar [1908-1991] MD/PhD, 1939 pneumonia Boston University School of Medicine genes, enzymes, nucleotides, and carbohydrate patterns
Eugene M. Farber [1917-2000] MD, 1943 brief illness Stanford University biologic effects of photochemotherapy in psoriasis
Henry Rapoport [1918-2002] PhD, 1943 pneumonia University of California — Berkeley total synthesis of heterocyclic drugs
Norman R. Davidson [1916-2002] PhD, 1939 brief illness California Institute of Technology physical chemistry of nucleic acids
Karl A. Folkers [1906-1997] PhD, 1931 heart failure University of Texas at Austin peptide antagonists of LHRH as gonadotropin inhibitors
Margaret J. Sullivan [1957-2001] PhD, 1986 University of Missouri at Columbia role of peptide neurotransmitters in body fluid homeostasis
Leonard R. Axelrod [1927-1975] PhD, 1952 Environmental Protection Agency studies in steroid intermediate metabolism
Sidney R. Cooperband [1931-1979] MD, 1956 Boston University School of Medicine lymphocyte proliferation inhibitory factor
James L. Lehr [1940-1989] MD, 1968 University of Chicago modular computer-mediated radiology system
Alberto DiMascio [1928-1978] PhD, 1966 Tufts University follow-up of maintenance treatment for depression
William B. Kinter [1926-1978] PhD, 1955 Mount Desert Island Biological Lab membrane toxicity theory and environmental pollutants
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Alfred A. Smith [1928-1980] MD, 1956 New York Medical College respiratory-depressive effects of ethanol
Leah M. Lowenstein [1931-1984] MD/PhD, 1958 Thomas Jefferson University Medical College regulation of renal compensatory adaptation
S. Morris Kupchan [1922-1976] PhD, 1945 University of Virginia School of Medicine chemistry of tumor-inhibitory natural products
Edward C. Heath [1930-1985] PhD, 1955 University of Iowa School of Medicine molecular biology of tumor cells
Arnold F. Brodie [1923-1981] PhD, 1952 University of Southern California Keck School of Medicine mechanisms of oxidative energy generation in bacteria
Alvin Nason [1919-1978] PhD, 1952 Johns Hopkins University School of Medicine enzymology of nitrate respiration and assimilation
Andrew G. Morrow [1923-1982] MD, 1946 NIH/NHLBI surgical correction of obstructive subaortic hypertrophy
Elijah Adams [1918-1979] MD, 1942 University of Maryland School of Medicine tyrosinases and tyrosine hydroxylases
Myron L. Bender [1924-1988] PhD, 1948 Northwestern University mechanism of action of proteases
Kenneth J.W. Taylor [1939-2003] MD/PhD, 1975 Yale University diagnostic ultrasound imaging
Brigitte A. Prusoff [1926-1991] PhD, 1978 Yale University follow-up of maintenance treatment for depression
Edwin D. Murphy [1917-1984] MD, 1943 NIH/NCI gene mechanisms in autoimmunity and lymphoproliferation
Henry Kamin [1920-1988] PhD, 1948 Duke University biological oxidations in mitochondria and microsomes
Henry A. Schroeder [1906-1975] MD, 1933 Dartmouth Medical School abnormal trace metals in cardiovascular diseases
Carl L. Larson [1909-1978] MD, 1939 University of Montana at Missoula specific and nonspecific resistance caused by t. bacilli
David F. Waugh [1915-1984] PhD, 1940 MIT protein interactions and physico-chemical properties
John W. Porter [1915-1984] PhD, 1942 University of Wisconsin regulation of lipogenesis by insulin and glucagon
Thomas F. Gallagher [1905-1975] PhD, 1931 Albert Einstein College of Medicine of Yeshiva University metabolic transformation of steroid hormones
Benjamin Alexander [1908-1978] MD, 1934 NY Blood Center coagulation, hemorrhage, and thrombosis
Bernard Saltzberg [1919-1989] PhD, 1972 University of Houston electrophysiological analysis of learning disabilities
Georges Ungar [1906-1977] MD, 1939 University of Tennessee chemical transfer of drug tolerance and learned behavior
Harold Koenig [1921-1992] MD/PhD, 1949 Northwestern University molecular mechanisms of blood-brain barrier dysfunction
Albert S. Kaplan [1917-1989] PhD, 1952 Vanderbilt University metabolism of cells infected with nuclear DNA viruses
Tsoo E. King [1917-1990] PhD, 1949 University of Pennsylvania School of Medicine bioenergetic apparatus in heart mitochondria
Arthur Cherkin [1913-1987] PhD, 1953 Sepulveda VA Medical Center role of cholinergic drugs in reducing the memory loss
Peter D. Klein [1927-2001] PhD, 1954 Baylor College of Medicine metabolism of 13C compounds in digestive diseases
Alex B. Novikoff [1913-1987] PhD, 1938 Albert Einstein College of Medicine of Yeshiva University histochemical studies of the Golgi apparatus
Walter E. Brown [1918-1993] PhD, 1949 American Dental Association Health Foundation chemistry of calcium phosphates
C. Clark Cockerham [1921-1996] PhD, 1952 North Carolina State University the statistics of genetic systems
Leo T. Samuels [1899-1978] PhD, 1930 University of Utah steroid hormone metabolism and tumorogenic action
Peter N. Magee [1921-2000] MD, 1945 Thomas Jefferson University Medical College genetic basis of carconogenesis
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