NBER WORKING PAPER SERIES

DOES SCIENCE ADVANCE ONE FUNERAL AT A TIME?

Pierre Azoulay
Christian Fons-Rosen
Joshua S. Graff Zivin
Working Paper 21788
http://www.nber.org/papers/w21788
NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
December 2015

Address all correspondence to pazoulay@mit.edu. Azoulay and Graff Zivin acknowledge the financial support of the National Science Foundation through its SciSIP Program (Award SBE-1460344). Fons-Rosen acknowledges financial support by the Spanish Ministry of Economy and Competitiveness (ECO2014-55555-P). Mikka Rokkanen provided additional research assistance. The project would not have been possible without Andrew Stellman's extraordinary programming skills (http://www.stellman-greene.com/). We thank Heidi Williams, Sameer Srivastava, Scott Stern, Bruce Weinberg, and seminar audiences at the NBER, UC Berkeley, National University of Singapore, and Stanford University for useful discussions. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peerreviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.
© 2015 by Pierre Azoulay, Christian Fons-Rosen, and Joshua S. Graff Zivin. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

Does Science Advance One Funeral at a Time?
Pierre Azoulay, Christian Fons-Rosen, and Joshua S. Graff Zivin
NBER Working Paper No. 21788
December 2015
JEL No. I23,O31,O33

Abstract

We study the extent to which eminent scientists shape the vitality of their fields by examining entry rates into the fields of 452 academic life scientists who pass away while at the peak of their scientific abilities. Key to our analyses is a novel way to delineate boundaries around scientific fields by appealing solely to intellectual linkages between scientists and their publications, rather than collaboration or co-citation patterns. Consistent with previous research, the flow of articles by collaborators into affected fields decreases precipitously after the death of a star scientist (relative to control fields). In contrast, we find that the flow of articles by non-collaborators increases by 8% on average. These additional contributions are disproportionately likely to be highly cited. They are also more likely to be authored by scientists who were not previously active in the deceased superstar's field. Overall, these results suggest that outsiders are reluctant to challenge leadership within a field when the star is alive and that a number of barriers may constrain entry even after she is gone. Intellectual, social, and resource barriers all impede entry, with outsiders only entering subfields that offer a less hostile landscape for the support and acceptance of "foreign" ideas.

Pierre Azoulay
MIT Sloan School of Management
100 Main Street, E62-487
Cambridge, MA 02142
and NBER
pazoulay@mit.edu
Christian Fons-Rosen
Universitat Pompeu Fabra and CEPR
Barcelona GSE
Carrer Ramon Trias Fargas, 25-27
08005 Barcelona
SPAIN
christian.fons-rosen@upf.edu

Joshua S. Graff Zivin
University of California, San Diego
9500 Gilman Drive, MC 0519
La Jolla, CA 92093-0519
and NBER
jgraffzivin@ucsd.edu

"A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it."

Max Planck
Scientific Autobiography and Other Papers

1 Introduction

Knowledge accumulation - the process by which new research builds upon ideas developed in prior research - has been long understood to be of central importance to scientific progress and economic growth (Mokyr 2002). In deference to Sir Isaac Newton, this cumulative process is often referred to as "standing on the shoulders of giants," but is conceptualized more prosaically as the way in which researchers in one generation learn from and build upon prior research. Yet the literature is largely silent on the mechanisms that shape this slowly evolving process. ${ }^{1}$ To borrow terminology from the economic pioneers in the field (Nelson 1962), we know far more about the determinants of the rate than that of the direction of scientific progress.

What guides researchers when choosing between various approaches to study a given problem? Does science evolve according to autonomous laws, or is the direction of science influenced by individuals, incentives, and institutions? Philosophers and historians have long debated the extent to which the pragmatic success of a scientific theory determines how quickly it gains adherents, or its longevity (e.g., Kuhn [1970], Laudan [1977], and their many detractors). The epigraph of this paper encapsulates the jaundiced view, attributed to Planck, that the idiosyncratic stances of individual scientists can do much to alter, or at least delay, the course of scientific advance. Yet, the proposition that established scientists are slower than younger ones in accepting novel theories has received little empirical support whenever it has been put to the test (Hull et al. 1978; Gorham 1971; Levin et al. 1995). Moreover, in contrast to technology development where market forces shape the direction of research effort (however imperfectly, cf. Acemoglu [2012]), the choice of a problem-solving approach in basic research is not informed by clear market signals, and thus necessarily

[^0]depends on a more nuanced system of non-pecuniary incentives (Feynman 1999; Foster et al. 2015).

In this paper, we test "Planck's Principle" by examining how the death of 452 eminent academic life scientists alter the vitality (measured by publication rates and funding flows) of the subfields in which these scientists actively published in the years immediately preceding their premature passing. Consistent with prior research (Azoulay et al. 2010; Oettl 2012; Jaravel et al. 2015), we find precipitous declines in publication rates in these subfields, relative to control subfields, when we restrict the publication counts to articles authored by collaborators of the stars. Remarkably, however, these declines are more than offset by increased publication rates when we restrict the publication counts to articles authored by non-collaborators. The rest of the manuscript tries to elucidate the mechanisms responsible for this phenomenon.

Our results indicate that these additional contributions by non-collaborators are disproportionately likely to be highly cited, and to represent their authors' first foray into the extinct star's subfield. They also are less likely to cite previous research in the field, and especially less likely to cite the deceased star's work at all. Though not necessarily younger on average, these scientists are also less likely to be part of the scientific elite at the time of the star's death.

While it is implausible that the extinct stars exerted direct control over entry into their fields, since only a vanishingly small number were journal editors or members of NIH study sections, we do find evidence for several forms of indirect control. Deterrence appears to be largely driven by a reluctance to challenge particularly prominent or committed scholars in the field while they are alive. Even after a field has lost its shining star, entry can be regulated by key collaborators left behind. This is particularly true in fields that have coalesced around a narrow set of techniques or ideas or where collaboration networks are particularly tight-knit. Entry is also deterred when key collaborators of the star are in a position to channel resources (such as editorial goodwill or funding) to insiders. Though stars may have been a source of dynamism while alive, the turnover in leadership enables the injection of fresh ideas into the subfield, but only in those areas whose topology offers a less hostile landscape for the support and acceptance of "foreign" ideas.

To our knowledge, this manuscript is the first to examine the dynamics of scientific evolution using the standard empirical tools of applied microeconomics. ${ }^{2}$ We conceptualize the death of eminent scientists as shocks to the structure of the intellectual neighborhoods in which they worked several years prior to their death, and implement a procedure to delineate the boundaries of these neighborhoods in a way that is scalable, transparent, and does not rely on ad hoc human judgment. The construction of our dataset relies heavily on the PubMed Related Citations Algorithm [PMRA], which groups scientific articles into subfields based on their intellectual content using very detailed keyword information as well as the relative frequencies of these keywords in the scientific corpus. ${ }^{3}$ As such we are able to define circumscribed areas of scientific inquiry that are independent of training, personal relations, or self-proclaimed areas of expertise.

In addition to providing evidence regarding a central question for scholars studying the scientific process, our paper is a departure for the field of the economics of science in that it can attend to the ways in which scientists position themselves simultaneously in an intellectual space as well as a social space, whose boundaries do not overlap (Borjas and Doran 2015). As such, our work can be understood as integrating the traditional concerns of economists - understanding how incentives and institutions influence the rate of knowledge production or diffusion - with those of cognate disciplines such as sociology and philosophy, who have traditionally taken the direction of scientific change as the central problem to be explained.

The rest of the paper proceeds as follows. In the next section, we examine the institutional context and lay out our broad empirical strategy. In section 3, we then turn to data, methods and descriptive statistics. We report the results in section 4 . Section 5 concludes by outlining the implications of our findings for future work.

[^1]
2 Institutional Context and Empirical Design

The setting for our empirical work is the academic life sciences. This sector is an important one to study for several reasons. First, the field has been an enormous source of scientific discovery in the past several decades and continues to play a significant role in the health care economy, which accounts for roughly 15% of US GDP. Much biomedical innovation is science-based (Henderson et al. 1999), with the National Institutes of Health (NIH) providing nearly $\$ 30$ billion in basic science research support in 2014 alone.

Second, the life science research workforce is exceedingly large and specialized. Academic medical centers in the United States employ 150,000 faculty members. Moreover, scientific discoveries over the past half-century have greatly expanded the knowledge frontier, necessitating increasing specialization by researchers and a greater role for collaboration (Jones 2009). If knowledge and techniques remain at least partially tacit long after their initial discovery, tightly-knit research teams may be able to effectively control entry into intellectual domains. The size and maturity of this sector, including its extensive variety of narrowlydefined subfields, makes it an ideal candidate for an inquiry into the determinants of the direction of scientific effort in general, and how it is influenced by elite scientists in particular.

Third, the academic research setting also offers the practical benefits of an extensive paper trail of research inputs, outputs, and collaboration histories. On the input side, reliance of researchers on one agency for the majority of their funding raises the possibility that financial gatekeeping by elite scientists could be used to regulate entry into scientific fields. Data on NIH funding at the individual level, as well as membership in "study sections" (the peer-review panels that evaluate the scientific merits of grant applications) will allow us to examine such concerns directly. Most importantly for our study, the principal output of researchers-publications-are all indexed by a controlled vocabulary of keywords managed by the National Library of Medicine. This provides the raw material that allows us to define scientific subfields in a way that is stripped of "social baggage" (the specifics of this process will be described in detail in Section 2.2).

Lastly, while accounts by practicing scientists indicate that collaboration plays a large role in both the creation and diffusion of new ideas (Reese 2004), historians of science have long debated the role of controversies and competition in shaping the direction of scientific progress and the process through which new subfields within the same broad scientific
paradigm are born and grow over time (Hull 1989; Morange 1999; Shwed and Bearman 2010). Our study present a unique opportunity to test some of their insights in a way that is more systematic and can yield generalizable insights on the dynamics of field evolution.

3 Empirical Design, Data, and Descriptive Statistics

Below, we provide a detailed description of the process through which the matched scientist/subfield dataset used in the econometric analysis was assembled. We begin by describing the criteria used to select our sample of superstar academics, with a particular focus on "extinction events"; the set of subfields in which these scientists were active prior to their death and the procedure followed to delineate their boundaries. Finally, we discuss the matching procedure implemented to identify control subfields associated with eminent scientists who did not pass away but are otherwise similar to our treatment group.

3.1 Superstar sample

Our basic approach is to rely on the death of "superstar" scientists as a lever to estimate the extent to which the production of knowledge in the fields in which they were active changes after their passing. The study's focus on the scientific elite can be justified both on substantive and pragmatic grounds. The distribution of publications, funding, and citations at the individual level is extremely skewed (Lotka 1926; de Solla Price 1963) and only a tiny minority of scientists contribute, through their published research, to the advancement of science (Cole and Cole 1972). Stars also leave behind a corpus of work and colleagues with a stake in the preservation of their legacy, making it possible to trace back their careers, from humble beginnings to wide recognition and acclaim.

We began by demarcating a set of 12,935 "elite" life scientists (roughly 5% of the entire relevant labor market) who are so classified if they satisfy at least one of the following criteria for cumulative scientific achievement: (1) highly funded scientists; (2) highly cited scientists; (3) top patenters; and (4) members of the National Academy of Sciences or of the Institute of Medicine.

These four criteria will tend to select seasoned scientists, since they correspond to extraordinary achievement over an entire scientific career. We combine these measures with three others that capture individuals who show great promise at the early and middle stages
of their scientific careers, whether or not these episodes of productivity endure for long periods of time: (5) NIH MERIT awardees; (6) Howard Hughes Medical Investigators; and (7) early career prize winners. Appendix I provides additional details regarding these seven metrics of "superstardom."

We trace back these scientists' careers from the time they obtain their first position as independent investigators (typically after a postdoctoral fellowship) until 2006. We do so through a combination of curriculum vitæs, NIH biosketches, Who's Who profiles, accolades/obituaries in medical journals, National Academy of Sciences biographical memoirs, and Google searches. For each one of these individuals, we record employment history, degree held, date of degree, gender, and department affiliations. ${ }^{4}$

The 452 scientists who pass away prematurely, and who are the particular focus of this paper, constitute a subset of this larger pool of 12,935 . Their deaths must intervene between 1975 and 2003 (this allows us to observe at least 3 years' worth of scientific output for every subfield after the death of a superstar scientist). Although we do not impose any age cutoff, the median and mean age at death is 61 with 85% of these scientists having passed away before the age of 70 (we will explore the sensitivity of our results to the age at death later). We do require evidence, in the form of published articles and/or NIH grants, that these scientists had not entered a pre-retirement or largely administrative phase of their career prior to the time of their death (this is the narrow sense in which we deem their deaths to have occurred prematurely). We painstakingly investigate each extinction event in the sample to determine its cause. This is less difficult that it might seem, since the vast majority of obituaries mention the cause of death explicitly. ${ }^{5} 229(51 \%)$ of these scientists pass away after a protracted illness, whereas 185 (41\%) die suddenly and unexpectedly. We were unable to ascertain the particular circumstances of 37 (8.20\%) death events. Appendix G provides the full list of extinct superstars, together with their year of birth, year of death, institutional affiliation at the time of their passing, and a short description of their research expertise.

Table I provides descriptive statistics for the extinct superstar sample. The median star received his degree in 1957, died at 61 years old and was associated with 4 distinct subfields

[^2]in the five years leading up to his/her death. On the output side, the stars each received an average of roughly 16.6 million dollars in NIH grants, and published 138 papers that garnered 8,347 citations over the course of their careers (as of early 2014).

3.2 Delineating Research Fields

The source of the publication data is PubMed, an online resource from the National Library of Medicine that provides fast, free, and reliable access to the biomedical research literature. PubMed indexes more than 40,000 journals within the life sciences.

To delineate the boundaries of the research fields in which each deceased star was active, we develop an approach based on topic similarity as inferred by the overlap in keywords between each article the star published in the five years prior to his/her death, and the rest of the scientific literature. Specifically, we use the PubMed Related Citations Algorithm (PMRA) which relies heavily on Medical Subject Headings (MeSH). MeSH terms constitute a controlled vocabulary maintained by the National Library of Medicine that provides a very fine-grained partition of the intellectual space spanned by the biomedical research literature. Importantly for our purposes, MeSH keywords are assigned to each scientific publication by professional indexers and not by the authors themselves. ${ }^{6}$ We then use the "Related Articles" function in PubMed to harvest journal articles that are intellectually proximate to star scientists' own papers. ${ }^{7}$

To fix ideas, consider "The transcriptional program of sporulation in budding yeast" [PubMed ID 9784122], an article published in the journal Science in 1998 originating from the laboratory of Ira Herskowitz, an eminent UCSF biologist who died in 2003 from pancreatic cancer. As can be seen in Figure I, PMRA returns 72 original related journal articles for this source publication. ${ }^{8}$ Some of these intellectual neighbors will have appeared before

[^3]the source to which they are related, whereas others will have only been published after the source. Some will represent the work of collaborators, past or present, of Herskowitz's, whereas others will represent the work of scientists in his field he may never have come in contact with during his life, much less collaborated with. The salient point is that nothing in the process through which these related articles are identified biases us towards (or away from) articles by collaborators, frequent citers of Herskowitz's work, or co-located researchers. Rather, the only determinants of relatedness are to be found in the overlap in MeSH keywords between the source and its potential neighbors.

Consider now the second most-related article to Herskowitz's Science paper listed in Figure I, "Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2." Figure C1 in Appendix C displays the MeSH terms that tag this article along with its source. As a byproduct, PMRA also provides a cardinal dyadic measure of intellectual proximity between each related article and its associated source article. In this particular instance, the relatedness score of "Phosphorylation..." is 94%, whereas the relatedness score for the most distant related article in Figure I, "Catalytic roles of yeast..." is only 62%.

In the five years prior to his death (1998-2002), Herskowitz was the last author on 12 publications. ${ }^{9}$ For each of these publications, we treat the set of publications returned by PMRA as constituting a distinct subfield, and we create a star/field panel dataset by counting the number of related articles in each of these subfields in each year between 1975 and 2006. An important implication of this data construction procedure is that the subfields we delineate are quite limited in scope. One window into the degree of intellectual breadth for subfields is to gauge the overlap between the articles that constitute any pair of subfields associated with the same star. In the sample, the 452 deceased stars account for 3,074 subfields, and 21,633 pairwise combination of subfields (we are only considering pairs of subfields associated with the same individual star). Figure II displays the histogram for the distribution of overlap, which is extremely skewed. A full half of these pairs exhibit exactly zero overlap, whereas the mean of the distribution is 0.06 . To find pairs of subfields that display substantial amounts of overlap (for example, half of the articles in subfield 1 also

[^4]belong in subfield 2), one must reach far into the right tail of the distribution, specifically, above the $98^{\text {th }}$ percentile.

As such, the subfields we delineate are relatively self-contained. Performing the analysis at the level of the subfield-star combination-rather than lumping together all the subfields of an individual star-will provide us with an opportunity to exploit variation in the extent of participation of the star within each of his/her subfields. We will also check the validity of the main results when rolling the data up from the subfield-star level to the star-level. Finally, since even modest amounts of overlap entail that the observations corresponding to the subfields of individual stars will not be independent in a statistical sense, we will cluster standard errors at the level of the star scientist.

3.3 Identification Strategy

A natural starting point to identify the effect of superstar death on entry into scientific subfields is to examine changes in published research output after the superstar passes away, relative to when $\mathrm{s} /$ he was still alive, using a subfield fixed effects specification. Since the extinction effect is mechanically correlated with the passage of time, as well as with a subfield's age, our specifications must include age and period effects, as is the norm in studies of scientific productivity (Levin and Stephan 1991). In this framework, the control group that pins down the counterfactual age and calendar time effects for the subfields that currently experience the death of a superstar consists of subfields whose associated superstar died in earlier periods, or will die in future periods. If the death of a superstar only represented a one-time shift in the level of entry into the relevant subfields, this would not be problematic. But if extinction events affect trends-and not simply levels-of scientific activity, relying solely on subfields treated earlier or later as an implicit control group may not suffice to filter out the effect of time-varying omitted variables, even when flexible age and calendar time controls are included in the econometric specification. This could be the case, inter alia, because some subfields exhibit idiosyncratic life-cycle patterns, with their productive potential first increasing over time, eventually peaking, and thereafter slowly declining.

To mitigate this threat to identification, our preferred empirical strategy relies on the selection of a matched scientist/subfield for each treated scientist/subfield. These control observations are culled from the universe of superstars who do not die (see Section 2.1 and Appendix D). Combining the treated and control samples enables us to estimate the
effect of superstar extinction in a difference-in-differences framework. Figure III illustrates the procedure used to identify control subfields in the particular case of the Herskowitz's publication highlighted above.

We begin by looking at all the articles that appeared in the same journal and in the same year as the treated source articles. From this set of articles, we keep only those that have one of the still-living superstar in the last authorship position. Then, using a "coarsened exact matching" procedure detailed in Appendix D, the control source articles are selected such that (1) the number of authors in the treated and control are approximately similar; (2) the age of the treated and control superstars differ by no more than five years; and (3) the number of citations received by the treated and source article are similar. For the Herskowitz/"sporulation in budding yeast" pair, we can select 10 control articles in this way. All of these controls were also published in Science in 1998, and have between five and seven authors. One of these controls is "Hepatitis C Viral Dynamics in Vivo...," whose last author is Alan Perelson, a biophysicist at Los Alamos National Lab. Perelson and Herskowitz obtained their PhD only a year apart. The two papers had received 514 and 344 citations respectively by the end 2003. Though this is a large difference, this places both well above the $99^{\text {th }}$ percentile of the citation distribution for 5 -year old articles published in 1998.

One potential concern with the addition of this "explicit" control group is that control subfields could be affected by the treatment of interest. What if, for instance, a control source article happens to be related (in a PMRA sense) with the treated source? Because the subfields identified by PMRA are narrow, this turns out to be an infrequent occurrence. Nonetheless, we remove all such instances from the data. We then find all the intellectual neighbors for these control source articles using PMRA; a control subfield is defined by the set of related articles returned by PMRA, in a manner that is exactly symmetric to the procedure used to delineate treated subfields. When these related articles are parsed below to distinguish between those published by collaborators vs. non-collaborators of the star, or between those by intellectual outsiders vs. insiders, treated and control observations will always be defined with perfect symmetry.

3.4 Descriptive Statistics

The procedure described above yields a total of 34,216 distinct subfields; 3,074 subfields correspond to one of the 452 extinct scientists, whereas 31,142 subfields correspond to one
of 5,809 still-living scientists. Table II provides descriptive statistics for control and treated subfields in the baseline year, i.e., the year of death for the extinct scientist. ${ }^{10}$

Covariate balance. In the list of variables displayed in Table II, it is important to remember that a number of covariates are balanced between treated and control subfields solely by virtue of the coarsened exact matching procedure - for instance, (star) investigator year of degree, the source article number of authors, or the source article number of citations at baseline.

However, there is nothing mechanical to explain the balance between treated and control subsamples with respect to the stock of our main outcome variable: the number of articles in the star's field. Figure IV compares the corresponding distribution and also shows a great deal of overlap between the two histograms. Of course, balance in the levels of the outcome variable is not technically required for the validity of the empirical exercise. ${ }^{11}$ Yet, given the ad hoc nature of the procedure used to identify control subfields, this degree of balance is reassuring.

Another happy byproduct of our matching procedure is that treated and control scientists also appear quite similar in the extent of their eminence at the time of (counterfactual) death, whether such eminence is measured through NIH funding, the number of articles published, or the number of citations these articles received.

Collaborators vs. non-collaborators. One critical aspect of the empirical analysis is to distinguish between collaborators and non-collaborators of the star when measuring publishing activity in a subfield. It is therefore crucial to describe how this distinction can be made in our data. Information about the superstars' colleagues stems from the Faculty Roster of the Association of American Medical Colleges, to which we secured licensed access for the years 1975 through 2006, and which we augmented using NIH grantee information (cf. Azoulay et al. [2010] for more details).

An important implication of our reliance on these sources of data is that we can only identify authors who are faculty members in U.S. medical schools, or recipient of NIH funding.

[^5]In particular, we cannot systematically identify trainees (at least not until they secure a faculty position), scientists working for industrial firms, or scientists employed in foreign academic institutions. The great benefit of using these data, however, is that they ensure we know quite a bit about the individuals we are able to identify: their (career) age, type of degree awarded, place of employment, gender, and research output, whether measured by publications or NIH grants.

To identify authors, we match the authorship roster of each related article in one of our subfields with the AAMC roster. ${ }^{12}$ We tag as a collaborator any author who appeared as an author on a publication prior to the death with the star associated with the subfield. Each related article is therefore assigned to one of two mutually-exclusive bins: the "collaborator" bin comprises the set of publications with at least one identified author who coauthored with the star prior to the year of death (or counterfactual death); the "non-collaborator" bin comprises the set of publications with no identified author who coauthored with the star prior to the year of death (or counterfactual death). As can be seen in Table II, roughly 15\% of the publication activity at baseline can be accounted for by collaborators. Moreover, this proportion is very similar for control and treated subfields. ${ }^{13}$

4 Results

The exposition of the econometric results proceeds in stages. After a brief review of methodological issues, we provide results that pertain to the main effect of superstar death on subfield growth, measured by publication rates and funding flows. Second, we attempt to elucidate the mechanism (or set of mechanisms) at work to explain our most robust finding, that of relative subfield growth in the wake of star extinction, a growth entirely accounted for by contributions from non-collaborators. We do so by examining the characteristics of the articles published by non-collaborators, before turning to the characteristics of their authors. We also explore heterogeneity in the treatment effect through the interaction of the post-death indicator variable with various attributes of the stars.

[^6]
4.1 Econometric Considerations

Our estimating equation relates publication or funding activity in subfield i in year t to the treatment effect of losing superstar j :

$$
\begin{equation*}
E\left[y_{i t} \mid X_{i j t}\right]=\exp \left[\beta_{0}+\beta_{1} A F T E R_{-} D E A T H_{j t}+f\left(A G E_{i t}\right)+\delta_{t}+\gamma_{i j}\right] \tag{1}
\end{equation*}
$$

where y is a measure of activity, AFTER_DEATH denotes an indicator variable that switches to one in the year during which superstar j passes away, $f\left(A G E_{i t}\right)$ corresponds to a flexible function of the field's age, the δ_{t} 's stand for a full set of calendar year indicator variables, and the $\gamma_{i j}$'s correspond to subfield/star fixed effects, consistent with our approach to analyze changes in activity within subfield i following the passing of superstar j.

The subfield fixed effects control for many time-invariant characteristics that could influence research activity, such as the need for capital equipment or the extent of disease burden (e.g., for clinical fields). A pregnant metaphor for the growth of scientific knowledge has been that of biological evolution (Hull 1989; Chavalarias and Cointet 2013): a field is born when new concepts are introduced, resulting in an accelerating production of "offsprings" (articles), until the underlying scientific community loses its thematic coherence, ushering in an era of decline (or alternatively, splitting or merging events). To flexibly account for such life cycle effects, we include subfield age indicator variables, where subfield age is computed as the number of years since the year of publication for the underlying article. ${ }^{14}$ The calendar year effects filter out the effects of the general expansion of the scientific enterprise as measured by the number of journals and articles published each year. ${ }^{15}$

Estimation. The dependent variables of interest, including publication counts and NIH grants awarded, are skewed and non-negative. For example, 31.40% of the subfield/year observations in the data correspond to years of no publication activity; the figure climbs to 56.70% if one focuses on the count of NIH grants awarded. Following a long-standing tradition in the study of scientific and technical change, we present conditional quasi-maximum likelihood estimates based on the fixed-effect Poisson model developed by Hausman et al.

[^7](1984). Because the Poisson model is in the linear exponential family, the coefficient estimates remain consistent as long as the mean of the dependent variable is correctly specified (Gouriéroux et al. 1984).

Inference. QML (i.e., "robust") standard errors are consistent even if the underlying data generating process is not Poisson. In fact the Hausman et al. estimator can be used for any non-negative dependent variables, whether integer or continuous (Santos Silva and Tenreyro 2006), as long as the variance/covariance matrix is computed using the outer product of the gradient vector (and therefore does not rely on the Poisson variance assumption). Further, QML standard errors are robust to arbitrary patterns of serial correlation (Wooldridge 1997), and hence immune to the issues highlighted by Bertrand et al. (2004) concerning inference in DD estimation. We cluster the standard errors around superstar scientists in the results presented below.

Dependent Variables. Our primary outcome variable is publication activity in a subfield. However, we go beyond this raw measure by assigning the related articles that together constitute the subfield into a variety of bins. For instance, we can decompose publication activity in the subfield into two mutually exclusive subfields: articles that appear in prestigious journals (Journal Impact Factor [JIF] higher than two) and those that appear in less prestigious journals (JIF lower than two); or articles with a superstar on the authorship roster vs. articles without a superstar; etc. Articles in each bin can then be counted and aggregated up to the subfield/year level.

Capturing funding flows at the field level is slightly more involved. PubMed systematically records NIH grant acknowledgements using grant numbers. Unfortunately, these grant numbers are often truncated and omit the grant cycle information that could enable us to pin down unambiguously the particular year in which the grant was awarded. When it is missing, we impute the award year using the following rule: for each related publication that acknowledges NIH funding, we identify the latest year in the three-year window that precedes the publication during which funding was awarded through either a new award or a competitive renewal. To measure funding activity in a subfield, we create a count variable that sums all the awards received in particular year, where these awards ultimately generate publications in the focal subfield.

4.2 Main effect of superstar extinction

Table III and Figure V present our core results. Overall, we find that publication activity increases slightly following the death of a star scientist who was an active contributor to it, but the magnitude of the effect is not large (about 2%) and imprecisely estimated (column 1). Yet, this result conceals a striking pattern that we uncover when we distinguish between publications by collaborators and non-collaborators. The decline in publication activity accounted for by previous collaborators of the star is massive, on the order of 40% (column 2). This evidence is consistent with our previous findings, which showed that coauthors of superstar scientists who die suffer a drop in output, particularly if their non-collaborative work exhibited strong keyword overlap with the star, i.e., if they were intellectually connected in addition to being coauthors (Azoulay et al. 2010, Table VI, column 2).

A limitation of the previous work focusing on the fate of collaborators after the loss of an eminent scientist always lied in the failure to distinguish between social and intellectual channels of influence, since every treated scientist was by definition a collaborator, even if merely a casual one. In this study, we can relax this constraint, and when we do, we find that publication activity by non-collaborators in the subfield increases by a statistically significant 8.00% (column 3). ${ }^{16}$

We also explore the dynamics of the effects uncovered in Table III. We do so by estimating a specification in which the treatment effect is interacted with a set of indicator variables corresponding to a particular year relative to the superstar's death, and then graphing the effects and the 95% confidence interval around them (Panels A, B, and C of Figure V correspond to columns 1, 2, and 3 in Table III). Two features of the figure are worthy of note. First, the dynamics amplify the previous results in the sense that we see the effects increasing (in absolute value) monotonically over time - there is no indication that the effects we estimated in Table III are merely transitory. Five years after a star's death, the increase in publication activity by non-collaborators is large enough in magnitude to fully offset the decline in activity by collaborators. Second, there is no discernible evidence of an effect in the years leading up to the death, a finding that validates ex post our identification strategy. ${ }^{17}$

[^8]The last three columns of Table III focus on funding flows from the National Institutes of Health (NIH) rather than publication flows. More precisely, the outcome variable in columns 4,5 , and 6 is the number of distinct NIH awards that acknowledge a publication in the subfield in the three-year window before the year of publication for the related article (counting grant amounts, as opposed to the number of grants, yields similar results). The patterns are very similar to those obtained in the case of publication activity, both in terms of magnitudes and in terms of statistical significance. ${ }^{18}$

4.3 Robustness checks and extensions

We check the robustness of our main findings in Appendix E. In a difference-in-differences set up sharing many similarities with our own, Jaravel et al. (2015) raise the concern that individual fixed effects, age effects, and year effects might not fully account for the trends in publication flows around the year of a star's death. Their recommended solution is the inclusion of a full set of leads and lags around star death for both treated and control subfields. These "common" effects can be separately identified from the leads and lags around star death that are specific to the treated fields because (i) extinction events are staggered over time in the data (rather than happening in a single year as in the typical DD setup); and (ii) control subfields can inherit the date of death of the treated subfield that caused them to enter the dataset. We implement their approach in the first three columns of Table E1 (analogous to the first three columns of Table III) and Figure E1 (analogous to Figure V). The point estimates are very similar to those obtained when not including effects common to both treated and control subfields. ${ }^{19}$

Our main results stem from a sample where the total number of articles in a given subfield-year includes the articles published by the star herself (the star is deemed to be her own collaborator). Clearly, part of the decrease in activity by collaborators is mechanically induced by the absence of the star in the post-extinction years. Yet, this is not enough to explain the decrease in activity by the star's collaborators. In the last three columns of Table E1, and in Figure E2, activity in the subfield is computed without taking into account

[^9]any paper that lists the star as an author. Relative to the second column of Table III and Panel B of Figure V, the magnitude of the treatment effect is attenuated (-20.39% vs. -33.77%), but remains large, statistically significant, and permanent, in line with the results presented in Azoulay et al. (2010).

The first three columns of Table E2 and Figure E3 drop from the sample all the control subfields. In these specifications, subfields who were treated in the past or will be treated in the future serve as implicit controls for the subfields currently experiencing the death of their associated star. The results are qualitatively similar to those displayed in Table III and Figure V, though a small upward trend can be discerned in Panel C of Figure E2. This provides a clear reason to add to the specification an additional level of difference - that provided by control subfields. The last three columns of Table E2 and Figure E4 display coefficients estimated by ordinary least squares, rather than the fixed effects Poisson model of Hausman et al. (1984). The results indicate that in steady state, treated fields expand by one additional article per year on average, relative to control fields. The only anomaly presented by this change in estimation method is observed on Figure E4, Panel B. We fail to detect the pronounced downward trend in publication activity on the part of the star's collaborators, whereas this was a salient feature in Figure V.

One last robustness check performs the main analysis after rolling up the data to the starlevel. Because it is difficult to build a control group of deceased stars based solely on starlevel covariates, the star-year level dataset does not include aggregates of fields associated with still-alive stars. Figure E5 presents the event-study graph corresponding to publication activity by non-collaborators. We observe a very pronounced upward trend, both before and after the extinction event (the pre-trend is not precisely estimated, but still relatively large in magnitude). As explained in Section 3.2, we strongly prefer the star/sufield level of analysis, primarily because the subfields delineated by the PubMed Related Citations Algorithm exhibit very limited overlap.

Impact of Star Age and Experience. As explained earlier, we do not impose a strict age cutoff for the deceased star, we merely insist that they exhibit tangible signs of research activity, such as publishing original articles (rather than simply reviews, editorials, or comments), obtaining NIH grants, and training students. Among our 452 extinct superstars, the median age at death is 61 , the seventy-fifth percentile 67 , and the top decile 73 . How do the core results change when the scientists who passed away at an advanced age are excluded
from the sample? As can be observed on Table E3 (which focuses only on publication activity in subfields by non-collaborators of the star), the subfields of stars who passed away more prematurely are driving the bulk of the effect. The effect of the fields associated with older stars is still positive, but imprecisely estimated. We choose to keep these older stars in the sample because a larger sample size affords us opportunities to explore mechanisms without losing power to detect nuanced effects statistically. The last two columns of Table E3 investigate whether a star's experience in the field (measured as the number of years between her first contribution in it and the year of death) moderates the core result. The median age in the field at the time of death is seven. We find no difference in the magnitude of the treatment effect along this dimension.

Displacement Effects. We find that non-collaborators of the star increase their publication activity in the fields in which the superstar was active prior to her death. Appendix F investigates whether there is evidence of commensurate declines in publication activity for these related authors in the fields where they were active but the star was not. These analyses entail a change in the level of analysis, from the subfield level to the related author level. A practical difficulty is that a related author can be - and is in fact frequentlyrelated to more than a single star. To get around this issue and pin down for each related author a single year of treatment and a clear demarcation between in-field and out-of-field output, we build a panel dataset of related authors and their publication output using two different methods. In the first method, we associate each related author with the star who died (possibly counterfactually) in the earliest year of all possible years of treatment. In the second method, we associate each related author with their most-related star (i.e., the star for whom the cardinal relatedness score between her source article and the author's related article is highest). Regardless of method, we divide each related author's output according to whether it belongs to one of the fields of the star with whom s / he is associated, or whether it belongs to none of these fields. Table F1 then examines how these measures of output shift after the death event, relative to before, for treated authors, relative to control authors. We also distinguish between the overall number of publications, and the number of publications falling into various quantiles of the citation distribution.

We present OLS estimates, to ensure that the sample remains identical when examining in-field and out-of-field output. We also display elasticities, together with the mean of the dependent variable to help in comparing magnitudes. Panel A corresponds to the results obtained following the "earliest treating star" method. Panel B corresponds to the results
obtained following the "most-related treating star" method. Regardless of the method employed, some stable patterns emerge. We can detect large effects on the rate of production of in-field articles, consistent with the results obtained when performing our analysis at the subfield level. Conversely, the magnitudes for the treatment effect on out-of-field output are typically much smaller, and sometimes imprecisely estimated. Figure F1 presents the corresponding event-study graphs (only for out-of-field publication output). The main takeaway is that we cannot detect any evidence of displacement. Non-collaborating related authors appear to increase their overall output modestly in the wake of a superstar's premature passing.

4.4 Understanding extinction-induced subfield growth

In the remainder of the manuscript, we seek to understand the mechanisms that might explain the novel empirical regularity we uncovered: that of relative growth for subfields following the death of their superstar anchor, a phenomenon entirely accounted for by research activity undertaken by scientists who never collaborated with the star while alive. As a consequence, all the results below pertain to entry into the field by non-collaborators; any article with even one author who collaborated with the star is excluded from the count of articles that constitute the dependent variable.

Article Characteristics. What characterizes the additional contributions that together lead to increased activity in a subfield following star extinction? Are these in fact important contributions to the subfield? Do they focus on core issues, or should they be understood as taking the intellectual domain in a novel direction? Tables IV and V explore these issues. In Table IV, we parse every related article that constitute the subfields in our data to assign them into one of six mutually exclusive bins, based on long-run citation impact: articles that fall in the bottom quartile of the citation distribution; in the second quartile; in the third quartile; articles that fall above the $75^{\text {th }}$ percentile, but below the $95^{\text {th }}$ percentile; articles that fall above the $95^{\text {th }}$ percentile, but below the $99^{\text {th }}$ percentile; articles that fall above the $99^{\text {th }}$ percentile of the citation distribution. ${ }^{20}$

[^10]Panel A of Table IV produces a battery of estimates corresponding to each of these six bins in columns 2 through 7 (column 1 simply replicates the effect for all papers, regardless of impact, that was previously displayed in Table III, column 3). A startling result is that the magnitude of the treatment effect increases sharply as we focus on the rate of contributions with higher impact. In contrast, the number of lower-impact articles contributed by noncollaborators contracts slightly, though the effect is not precisely estimated.

Panels B and C break down these results further by examining separately the growth of subfields by cause of death (anticipated vs. sudden). As mentioned earlier, the case for exogeneity is stronger in the case of sudden death, since when the death is anticipated, it would be theoretically possible for the star to engage in "intellectual estate planning," whereby particular scientists (presumably close collaborators) are anointed as representing the next generation of leaders in the subfield. The results in column 1 imply that there is an important difference between the two type of events-subfield growth is observed mostly when the death of the star was anticipated. Decomposing this effect across the quantile bins as above reveals that these differences can be accounted for by shifts in activity for low-impact contributions. In the right tail of the distribution, there is very little evidence that the manner of superstar death matters at all for the fate of their subfields. In both cases, non-collaborators increase their contribution sharply - on the order of 40%. Because of this convergence in the upper tail, the remainder of the manuscript will lump together anticipated and unanticipated events. ${ }^{21}$

Table V parses the related articles in each subfield to ascertain whether contributions by non-collaborators constitute a genuine change in intellectual direction. Panel A distinguishes between contributions that are proximate in intellectual space to the source article from those that are more distant (though still part of the subfield as construed by PMRA). Because we have at our disposal both a cardinal and an ordinal measure of intellectual proximity, we present four different estimates. In both cases, the magnitude of the treatment effect pertaining to publication activity by proximate articles is approximately twice as large as the magnitude corresponding to more distant articles. These differences, however, are not themselves statistically significant at conventional levels. But we can at least rule out the

[^11]conjecture that non-collaborators enter the field from the periphery. Their contributions seem to lie smack-dab in the middle of the subfield as it existed when the star was still alive.

Panel B sheds light on the intellectual direction of the field, by examining the cited references contained in each related article. The first two columns separate related articles in two groups. The first contains only publications that cite at least some work which belongs to the subfield identified by PMRA for the corresponding source. The second contains publications that cite exclusively out of the PMRA subfield. Only articles in the second group appear to experience growth in the post-extinction era. The next two columns proceed similarly, except that the list of references is now parsed to highlight the presence of articles authored by the star, as opposed to all other authors. We find that subfield growth can be mostly accounted for by articles from non-collaborators who do not build on the work of the star. Finally, we investigate the vintage of the references cited by related articles. The last two columns in Panel B indicate that the new contributions are more likely to build on science of a more recent vintage.

Taken together, the results in Panels A and B of Table V paint a nuanced picture of directional change in the wake of superstar extinction. The new contributions do not represent a radical departure from the subfield's traditional questions - their MeSH keywords overlap with those of the source article even more than is typical for the "average" article in the subfield. At the same time, the citation evidence makes it clear that these additional contributions often draw from more recent and different sources of knowledge for inspiration.

Related Author Characteristics. The next step of the analysis is to investigate the type of scientists who publish the articles that account for subfield growth in the wake of a star's death. Table VI reports these results. Perhaps the simplest author characteristic is age. For each related article in the subfield, we match the authorship roster to the AAMC Faculty Roster. Then, we compute the mean career age over matched authors for each related article. Since the median career age for matched authors turns out to be 16, we assign each article to one of two bins, the first comprising all related articles with an "older" authorship team (mean author career age greater than 16), the second comprising all related articles with a "younger" authorship team (mean author career age less than or equal to 16). We then compute publication activity separately for these two groups by aggregating these data up to the subfield/year level of analysis. As can be observed in the first two columns of Table VI,
there really is not any difference in the magnitude of the extinction effect across these two groups.

The second step is to distinguish between the related articles with at least one eminent author from related articles for which none of the authors is particularly famous at the time of its publication. To do this, we use two distinct measures of eminence. The first is whether a matched author belong to our sample of 12,935 stars. The second is whether a matched author belongs to an even more elite set comprising Nobel prize winners, Howard Hughes Medical Investigators, and members of the National Academy of Sciences. In the final four columns to Table VI, we find that articles published by non-elite members of the profession appear to account for much of the relative growth for treated subfields. This is consistent with the idea that elite scientists face weaker incentives to deviate from their existing research trajectory, relative to less-established scientists.

Finally, we probe the standing of the non-collaborators in the subfield. One possibility is that they are competitors of the star, with much of their publication activity in the subfield when the star was alive. Another possibility is that they are recent entrants into the subfield—not social outsiders but intellectual outsiders. To distinguish these different types of authors empirically, we create a metric of intellectual proximity for each matched author, by computing the fraction of their publications that belongs to the star's subfields up to the year before the publication of each related article. Whenever we match more than one author on a single related article, we assign to that article the maximum proximity score. A full 50% of the related articles turn out to have authors with exactly zero intellectual overlap with the star's subfield. In addition to the bottom two quartiles, we create 10 bins for every five percentiles above the median ($50^{t h}$ to $55^{t h}$ percentile, $55^{t h}$ to $60^{t h}$ percentile,..., $95^{t h}$ to $99^{\text {th }}$ percentile), as well as top percentile bin. We then compute the corresponding measures of subfield activity by aggregating the data up to the subfield/year level. This time, we opt to present the results graphically in Figure VI. Each dot corresponds to the magnitude of the treatment effect in a separate regression with the outcome variable being the number of articles in each subfield that belong to the corresponding bins.

A striking pattern emerges. The authors driving the growth in publication activity following a star's death are largely outsiders. They do not appear to have been substantially active in the subfield when the star was alive. To borrow a term from industrial organization,
they are new entrants into these subfields, though the evidence presented above also shows that they are not especially likely to be younger scientists overall.

4.5 The Nature of Entry Barriers

The evidence so far points to fields of deceased stars enjoying bursts of activity after the extinction event. The influx of outsiders documented above suggests that stars may be able to regulate entry into their field while alive. While it is tempting to envisage conscious effort by the stars to block entry through the explicit control of key resources, such as funding and/or editorial goodwill (Li 2015; Brogaard et al. 2014), this explanation appears inconsistent with the facts on the ground. In the five-year window before death, only three of our stars (out of 452) were sitting on study sections, the funding panels that evaluate the scientific merits of NIH grant applications. Another three were journal editors in the same time window. This handful of individuals could not possibly drive the robust effects we have uncovered. ${ }^{22}$ If barriers to entry are not the result of explicit control by stars, what is discouraging entry?

Goliath's Shadow. One possibility is that outsiders are simply deterred by the prospect of challenging a luminary in the field. The existence of a towering figure may skew the costbenefit calculations from entry by outside scholars toward delay or alternative activities. Table VII examines this role of implicit barriers to entry by focusing on the importance and commitment of the star in terms of publications and NIH funding within the field. Importance is defined as the fraction of papers (respectively, NIH grant amounts) in the subfield that have the star as an author (principal investigator). Commitment to the field is defined as the fraction of a star's entire corpus of publications (respectively, cumulative NIH grant awards) that falls in the focal subfield. Splitting the sample at the median of these measures reveals an interesting pattern of results.

Stars that were especially important to the field in terms of research output appear to be an important deterrent to entry, with their passing creating a larger void for noncollaborators to fill. In contrast, a stars commitment to the field-the degree to which a star's main research interests lay within the field - does not appear to play a similar role. The last four columns of Table VII underscore the importance of financial resources in regulating entry. When the star commandeers large amounts of funding under either of our measures,

[^12]we see a surge in entry by outsiders after the star's passing, when competition for these resources is presumed to be more vigorous. Together these results suggest that, rather than directly thwarting the efforts of would be entrants, it is the presence of a preeminent scholar that dissuades intellectual outsiders from engaging with the field.

Intellectual Closure. Entry into a field, even after it has lost its shining star, may be deterred if the subfield appears unusually coherent to outsiders. A subfield is likely to be perceived as intellectually coherent, when the researchers active in it agree on the set of questions, approaches, and methodologies that propel the field forward. To explore the notion of "paradigmatic closure" as a barrier to field entry we develop two measures of intellectual coherence.

The first index of intellectual coherence leverages PMRA to capture the extent to which articles in the subfield pack themselves into a crowded scientific neighborhood. Recall that for each article in a subfield, we have at our disposal both a cardinal and an ordinal measure of intellectual proximity with the source article from which all other articles in the subfield radiate. Focusing only on the set of articles published in the subfield before the year of death, we measure intellectual coherence as the cardinal ranking (expressed as a real number between zero and one) for the $25^{\text {th }}$ most related article in the subfield. ${ }^{23}$ According to this metric, subfields exhibit wide variation in their degree of intellectual coherence, with a mean and median equal to $0.62(s d=0.13)$. The second index of intellectual coherence exploits the list of references cited in each article in the subfield before the star's death. We simply compute the proportion of these references that fall within the subfield. Our contention is that fields that are more self-referential will tend to dissuade outsiders from entering. Once again, we observe meaningful variation across subfields using this second index (mean $=0.081 ;$ median $=0.067 ; ~ s d=0.059)$.

Social Closure. Alternatively, a field might be perceived as socially coherent, when the researchers active in it form a tightly-knit clique, often collaborating with each other, and perhaps also reviewing each other's manuscripts. To explore this barrier we develop two

[^13]additional measures of coherence, only in this case those designed to capture social cohesion rather than paradigmatic closure.

A natural way to capture endogamy within a subfield is to focus on the extent to which the star trained a large number of the junior scientists within it. We conjecture that the fields of stars who produced many intellectual "offspring" would be less welcoming to outsiders than those in which the stars did not train many graduate students or postdoctoral fellows. To identify trainees, we focus on the subset of coauthors who occupy the first author position in articles where the star occupies the last position; with the added stipulation that the coauthored publication appears in a window of \pm three years around the year in which the collaborator's highest degree was received. Our first index of social coherence at the subfield level is then simply the count of the number of investigators trained by the star before his/her (possibly counterfactual) death. Our second measure of social coherence summarizes the degree of subfield "cliquishness" by computing the clustering coefficient in its coauthorship network. The clustering coefficient is simply the proportion of closed triplets within the network, an intuitive way to measure the propensity of scientists in the field to choose insiders as collaborators. ${ }^{24}$

Panel A of Table VIII investigates the role of these intellectual and social barriers in modulating the post-death expansion of fields. We find evidence of a large role for both types of barriers, no matter how they are measured. The treatment effect is systematically larger when the subfield is less intellectually coherent (we use a top quartile-split to contrast the effect in more coherent vs. less coherent subfields). The same is true when subfields are less socially coherent. In fact, in the subsample of unusually coherent subfields, we find no statistical evidence of a post-extinction publication influx. ${ }^{25}$

Incumbent Resource Control. While we noted earlier that stars do not appear especially well positioned to directly block entry through the control of key resources, it is possible that those resources can be controlled indirectly through the influence of collaborators. If incumbent scholars within a field serve as gatekeepers of funding and journal access, they may be able to effectively stave off threats of entry from outsiders.

[^14]A practical challenge to assessing this indirect channel is that stars tend to have a large number of collaborators; which among them could be instrumental in shaping the intellectual direction of the field? To gain empirical traction on the concept of indirect control, we delineate two categories of "important" collaborators. The first comprises those individuals who coauthor frequently with the star: five coauthorships or more at the time of the star's death (this corresponds to the top decile of collaborators when ranked by total number of coauthorships). The second uses "extreme" authorship positions, focusing on collaborators who were ever first author when the star was in last position, or last author when the star was in first position. Using information regarding the composition of NIH funding panels, we then tabulate, for each star, the number of important collaborators who were members of at least one of these committees in the five years preceding the death of the star.

We would like to proceed in a similar fashion using the composition of editorial boards, but these data are not easily available for the set of PubMed-indexed journals and the thirtyyear time period covered by our sample. As an alternative, we develop a proxy for editorial position based on the number of editorials or comments written by every collaborator of the star. ${ }^{26}$ We then sum the number of editorials written by important coauthors in the five years before the extinction event. Together, the editorial and study section information allow us to distinguish between the stars whose important coauthors were in a position to channel resources towards preferred individuals or intellectual approaches from those stars whose important coauthors had no such power.

Panel B of Table VIII presents the evidence on the role of indirect control. The eight specifications paint a unified picture - subfield expansion is the rule, but is much more pronounced when stars have relatively few collaborators in influential positions. The differences between estimates in each pair of columns are large, and significantly different from zero at the 5% level of significance in one-tailed tests. Indirect control therefore appears to be a mechanism through which superstars can exert influence on the evolution of their fields, even from beyond the grave. Important coauthors, in their effort to keep the star's intellectual flame alive, erect barriers to entry into those fields that prevent its rejuvenation by outsiders.

[^15]Taken together, these results suggest that outsiders are reluctant to challenge hegemonic leadership within a field when the star is alive. They also highlight a number of factors that constrain entry even after she is gone. Intellectual, social, and resource barriers all impede entry, with outsiders only entering subfields whose topology offers a less hostile landscape for the support and acceptance of "foreign" ideas.

5 Conclusion

In this paper, we exploit the applied economist's toolkit, together with a novel approach to delineate the boundaries of scientific fields, to explore the effect that the passing of an eminent scientist exerts on the dynamics of growth - or decline - for the fields in which s/he was active while alive. Consistent with earlier work (Azoulay et al. 2010), we find that the death of an elite scientist has a negative and seemingly permanent impact on the productivity of their coauthors. In contrast, the productivity of non-collaborators within the same fields appears to increase, at a rate that more than offsets the decline experienced by collaborators. Our rich data on individual researchers and the nature of their scholarship allows us provide a deeper understanding of this dynamic.

While coauthors suffer after the passing of a superstar, it is not simply the case that star scientists in a competing lab assume the leadership mantle. Rather, the boost comes largely from outsiders who appear to tackle the mainstream questions within the field but by leveraging newer ideas that arise in other domains. This intellectual arbitrage is quite successful - the new articles represent substantial contributions, at least as measured by longrun citation impact. Together, these results paint a picture of scientific fields as scholarly guilds to which elite scientists can regulate access, providing them with outsized opportunities to shape the direction of scientific advance in that space.

We also provide evidence regarding the mechanisms that enable the regulation of entry. While stars are alive, entry appears to be effectively deterred where the shadow they cast over the fields in which they were active looms particularly large. After their passing, we find evidence for influence from beyond the grave, exercised through a tightly-knit "invisible college" of collaborators (de Solla Price and Beaver 1966; Crane 1972). The loss of an elite scientist central to the field appears to signal to those on the outside that the cost/benefit calculations on the avant-garde ideas they might bring to the table has changed, thus encouraging them to engage. But this occurs only when the topology of the field offers a less hostile
landscape for the support and acceptance of "foreign" ideas, and specifically when the star's network of close collaborators is insufficiently robust to stave off threats from intellectual outsiders.

In the end, our results lend credence to Planck's infamous quip that provides the title for this manuscript. Yet its implications for social welfare are ambiguous. While we can document that eminent scientists restrict the entry of new ideas and scholars into a field, gatekeeping activities could have beneficial properties when the field is in its inception; it might allow cumulative progress through shared assumptions and methodologies, and the ability to control the intellectual evolution of a scientific domain might, in itself, be a prize that spurs much ex ante risk taking. Because our empirical exercise cannot shed light on these countervailing tendencies, we must remain guarded in drawing policy conclusions from our results. Yet, the fact that the presence of a tutelar figurehead can freeze patterns of participation into a scientific field increases the appeal of policies that bolster access to less established or less well-connected investigators. Example of such policies include caps on the amount of funding a single laboratory is eligible to receive, "bonus points" for first-time investigators in funding programs, emeritus awards to induce senior scientists to wind down their laboratory activities, and double-blind refereeing policies (Kaiser 2011, Berg 2012, Deng 2015).

Our work leaves many questions unanswered. What is the fate of the fields that these new entrants departed? Do they decay, or instead "merge" with those whose star departed prematurely? Given a finite supply of scientists and the adjustment costs involved in switching scientific focus, one would expect some other field to contract on the margin in the wake of superstar extinction. Is this marginal field more novel, or already established? We are pursuing these questions in ongoing work.

References

Acemoglu, Daron. 2012. "Diversity and Technological Progress." In Josh Lerner, and Scott Stern (Eds.), The Rate \& Direction of Inventive Activity Revisited, pp. 319-356. Chicago, IL: University of Chicago Press.
Azoulay, Pierre, Joshua Graff Zivin, and Jialan Wang. 2010. "Superstar Extinction." Quarterly Journal of Economics 125(2): 549-589.
Bertrand, Marianne, Esther Duflo, and Sendhil Mullainathan. 2004. "How Much Should We Trust Differences-in-Differences Estimates?" Quarterly Journal of Economics 119(1): 249-275.
Borjas, George J., and Kirk B. Doran. 2015. "Which Peers Matter? The Relative Impacts of Collaborators, Colleagues, and Competitors." Review of Economics and Statistics 97(5): 1104-1117.
Bramoullé, Yann, and Gilles Saint-Paul. 2010. "Research Cycles." Journal of Economic Theory 145(5): 1890-1920.
Brogaard, Jonathan, Joseph Engelberg, and Christopher Parsons. 2014. "Network Position and Productivity: Evidence from Journal Editor Rotations." Journal of Financial Economics 111(1): 251-270.

Chavalarias, David, and Jean-Philippe Cointet. 2013. "Phylomemetic Patterns in Science Evolution-The Rise and Fall of Scientific Fields." PLoS one 8(2): e54847.
Cole, Jonathan R., and Stephen Cole. 1972. "The Ortega Hypothesis." Science 178(4059): 368375.

Crane, Diana. 1972. Invisible Colleges: Diffusion of Knowledge in Scientific Communities. Chicago, IL: University of Chicago Press.
de Solla Price, Derek J. 1963. Little Science, Big Science. New York: Columbia University Press.
de Solla Price, Derek J., and Donald D. Beaver. 1966. "Collaboration in an Invisible College." American Psychologist 21(11): 1011-1018.

Deng, Boar. 2015. "NIH Ponders Emeritus Grants." Nature 518(7538): 146-147.
Feynman, Richard P. 1999. The Pleasure of Finding Things Out. New York: Basic Books.
Foster, Jacob G., Andrey Rzhetsky, and James A. Evans. 2015. "Tradition and Innovation in Scientists' Research Strategies." American Sociological Review 80(5): 875-908.

Gorham, Geoffrey. 1991. "Planck's Principle And Jeans's Conversion." Studies in History \& Philosophy of Science 22(3): 471-497.
Gouriéroux, Christian, Alain Montfort, and Alain Trognon. 1984. "Pseudo Maximum Likelihood Methods: Applications to Poisson Models." Econometrica 53(3): 701-720.

Hall, Bronwyn H., Jacques Mairesse, and Laure Turner. 2007. "Identifying Age, Cohort and Period Effects in Scientific Research Productivity: Discussion and Illustration Using Simulated and Actual Data on French Physicists." Economics of Innovation and New Technology 16(2): 159-177.
Hausman, Jerry, Bronwyn H. Hall, and Zvi Griliches. 1984. "Econometric Models for Count Data with an Application to the Patents-R\&D Relationship." Econometrica 52(4): 909-938.
Henderson, Rebecca, Luigi Orsenigo, and Gary P. Pisano. 1999. "The Pharmaceutical Industry and the Revolution in Molecular Biology: Interactions Among Scientific, Institutional, and

Organizational Change." In David C. Mowery, and Richard R. Nelson (Eds.), Sources of Industrial Leadership, pp. 267-311. New York: Cambridge University Press.
Hull, David L. 1988. Science as a Process. Chicago, IL: University of Chicago Press.
Hull, David L., Peter D. Tessner, and Diamond. Arthur M. 1978. "Planck's Principle." Science 202(4369): 717-723.
Jaravel, Xavier, Neviana Petkova, and Alex Bell. 2015. "Team-Specific Capital and Innovation." Working Paper, Harvard University.
Jones, Benjamin F. 2009. "The Burden of Knowledge and the ‘Death of the Renaissance Man': Is Innovation Getting Harder?" Review of Economic Studies 76(1): 283-317.
Kaiser, Jocelyn. "Darwinism vs. Social Engineering at NIH." Science 334(6057): 753-754.
Kuhn, Thomas S. 1970. The Structure of Scientific Revolutions. Chicago, IL: University of Chicago Press.
Laudan, Larry. 1998. Progress and its Problems: Towards a Theory of Scientific Growth. Berkeley, CA: University of California Press.
Levin, Sharon G., and Paula E. Stephan. 1991. "Research Productivity over the Life Cycle: Evidence for Academic Scientists." American Economic Review 81(1): 114-32.
Levin, Sharon G., Paula E. Stephan, and Mary Beth Walker. 1995. "Planck's Principle Revisited: A Note." Social Studies of Science 25(2): 275-283.
Li, Danielle. 2015. "Expertise vs. Bias in Evaluation: Evidence from the NIH." Working Paper, Harvard University.
Lotka, Alfred J. 1926. "The Frequency Distribution of Scientific Productivity." Journal of the Washington Academy of Sciences 16(12): 317-323.
Luce, R. Duncan, and Albert D. Perry. 1949. "A Method of Matrix Analysis of Group Structure." Psychometrika 14(2): 95-116.
Mokyr, Joel. 2002. The Gifts of Athena: Historical Origins of the Knowledge Economy. Princeton, NJ: Princeton University Press.
Morange, Michel. 1998. A History of Molecular Biology. Cambridge, MA: Harvard University Press.

Nelson, Richard R. (ed.). 1962. The Rate and Direction of Inventive Activity: Economic and Social Factors. Princeton University Press.
Oettl, Alexander. 2012. "Reconceptualizing Stars: Scientist Helpfulness and Peer Performance." Management Science 58(6): 1122-1140.

Reese, Thomas S. 2004. "My Collaboration with John Heuser." European Journal of Cell Biology 83(6): 243-244.
Santos Silva, J.M.C., and Silvanna Tenreyro. 2006. "The Log of Gravity." Review of Economics and Statistics 88(4): 641-658.
Shwed, Uri, and Peter S. Bearman. 2010. "The Temporal Structure of Scientific Consensus Formation." American Sociological Review 75(6): 817-840.
Wooldridge, Jeffrey M. 1997. "Quasi-Likelihood Methods for Count Data." In M. Hashem Pesaran, and Peter Schmidt (Eds.), Handbook of Applied Econometrics, pp. 352-406. Oxford: Blackwell.

Figure I: From Source to Related Articles

Note: We illustrate the process of identifying the related articles through the use of an example. Ira Herskowitz, a superstar scientist in our sample, died in 2003. In the five years prior to his death (1998-2002), Herskowitz was the last author on 12 publications. One of these publications is "The transcriptional program of sporulation in budding yeast," an article published in the journal Science in 1998. On the right-hand side panel, one sees that PMRA identifies 72 related articles related to this source publication. Each of these related articles can then be parsed in a variety of ways. In particular, their authorship list can be matched to the AAMC Faculty Roster, which allows us to distinguish between collaborators of Herskowitz's and non-collaborators, as well as between the subfield's insiders vs. outsiders.

Figure II: Within-star Pairwise Subfield Overlap

Note: We compute the fraction of articles that overlap between every pair of subfields in which an extinct star is active in the five years leading to his/her death. There are 21,633 subfield pairs corresponding to the 3,074 distinct subfields for the 452 extinct superstars. The median degree of overlap between subfield pairs is 0 , and the mean is 0.06 . Subfields that overlap by 50% or more belong to the top two percentiles of the pairwise overlap distribution.

Figure III: Matching Procedure to Identify Controls for the Source Articles

SCIENCE VOL $282 \quad 2$ OCTOBER 1998

Hepatitis C Viral Dynamics in Vivo and the Antiviral Efficacy of Interferon- α Therapy

Avidan U. Neumann,*+ Nancy P. Lam,* \ddagger Harel Dahari, David R. Gretch, Thelma E. Wiley Thomas J. Layden, Alan 5 . Peretion
To better understand the dynamics of hepatitis C virus and the antiviral effect of interferon- $\alpha-26$ (IFN), viral decline in 23 patients during therapy was anaeffect of IFN is to block virion production or release, with blocking efficacies of 81,95 , and 96% for daily doses of 5,10 , and 15 million international units.

344 citations in 2003;
1,201 citations in 2014 44 related pubs. after 2003

SCIENCE VOL 28223 OCTOBER 1998

The Transcriptional Program of Sporulation in Budding Yeast
 S. Chu,* J. DeRisi,* M. Eisen, J. Mutholland, D. Botstein,

 P. O. Brown, L. HerskowitzDiploid cells of budding yeast produce haploid cells through the developmental program of sporulation, which consists of meiosis and spore morphogenesis. DNA microarrays containing nearly every yeast gene were used to assay changes in gene expression during sporulation. At least seven distinct temporal patterns of induction were observed. The transcription

514 citations in 2003;
1,213 citations in 2014
63 related pubs. after 2003

Ira Herskowitz (1946-2003)
PhD, 1971
Yeast genetics, UCSF
In 2003: 153 pubs., 21,549 citations, $\$ 16.8 \mathrm{mn}$. in NIH funding

Note: The two articles above illustrate the Coarsened Exact Matching (CEM) procedure (Appendix D provides more details). These two articles appeared in the journal Science in 1998. They received a similar number of citations up to the end of the baseline year (2002, one year before Herskowitz's death: 514 citations for Chu et al., 344 citations for Neumann et al. Note that Alan Perelson and Ira Herskowitz are both in last authorship position. They also obtained their PhD within a year of each other.

Figure IV: Cumulative Stock of Publications at Baseline

Note: We compute the cumulative number of publications, up to the year that immediately precedes the year of death (or counterfactual year of death), between 3,074 treated subfields and 31,142 control subfields.

Figure V
 Effect of Star Scientist Death on Subfield Growth and Decline

Note: The solid blue lines in the above plots correspond to coefficient estimates stemming from conditional (subfield) fixed effects Poisson specifications in which publication flows in subfields are regressed onto year effects, subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/elapsed since the extinction event (the indicator variable for treatment status interacted with the year of death is omitted). The 95% confidence interval (corresponding to (QML) robust standard errors, clustered around star scientist) around these estimates is plotted with dashed red lines; Panel A corresponds to a dynamic version of the specification in column (1) of Table III; Panel B corresponds to a dynamic version of the specification in column (2) of Table III; Panel C corresponds to a dynamic version of the specification in column (3) of Table III.

Figure VI: Characteristics of Entering Authors

Note: Each dot corresponds to the magnitude of the treatment effect in a separate regression where the dependent variable is the number of articles in each subfield authored by scientists who belong to a particular intellectual proximity bin. We create a metric of intellectual proximity for each matched author on a related article, by computing the fraction of their publications that belongs to the star's subfield up to its year of publication. Whenever we can match more than one related author to the AAMC Faculty Roster on a given article, it is the most proximate scientist on the authorship roster which determines the particular bin within which an article falls.

Table I: Summary Statistics - Extinct Superstar Scientists (N=452)

	Mean	Median	Std. Dev.	Min.	Max.
Year of Birth	1930.157	1930	11.011	1899	1959
Degree Year	1957.633	1957	11.426	1928	1986
Year of Death	1991.128	1992	8.055	1975	2003
Age at Death	60.971	61	9.778	34	91
Female	0.102	0	0.303	0	1
MD Degree	0.403	0	0.491	0	1
PhD Degree	0.489	0	0.500	0	1
MD/PhD Degree	0.108	0	0.311	0	1
Sudden Death	0.409	0	0.492	0	1
Nb. of Subfields	6.801	4	7.298	1	12
Career Nb. of Pubs.	138.221	112	115.704	8,562	120
Career Nb. of Citations	8,341	5,907	$\$ 25,441,933$	0	1,380
Career NIH Funding	$\$ 16,637,919$	$\$ 10,899,139$	0	0.081	0
Sits on NIH Study Section	0.007	0	0.996	0	122
Career Nb. of Editorials	0.131			$029,968,960$	

Note: Sample consists of 452 superstar life scientists who died while still actively engaged in research. See Appendix A for more details on sample construction.

Table II: Summary Statistics - Control \& Treated Subfields at Baseline

	Mean	Median	Std. Dev.	Min.	Max.
Control Subfields(N=31,142)					
Baseline Stock of Related Articles in the Field	75.503	70	40.597	2	232
Baseline Stock of Related Articles in the Field, Non-Collaborators	62.625	57	35.489	1	222
Baseline Stock of Related Articles in the Field, Collaborators	12.877	11	9.710	0	105
Source Article Nb. of Authors	3.969	3	1.792	1	15
Source Article Citations at Baseline	16.307	6	28.023	0	354
Source Article Long-run Citations	70.464	46	93.259	1	1505
Investigator Gender	0.067	0	0.167	0	1
Investigator Year of Degree	1960.546	1962	10.918	1926	1989
Death Year	1991.113	1991	7.965	1975	2003
Age at Death	58.089	58	8.792	34	91
Years of Experience in the Field	8.247	8	4.412	0	37
Subfield Cliquishness [Clustering Coefficient]	0.775	1	0.102	0	1
Investigator Cuml. Nb. of Publications	164	142	100	1	861
Investigator Cuml. NIH Funding at Baseline	\$18,782,976	\$14,268,500	\$20,025,386	\$0	\$220,856,880
Investigator Cuml. Nb. of Citations	12,120	9,879	9,960	9	143,383
Treated Subfields ($\mathrm{N}=3,074$)					
Baseline Stock of Related Articles in the Field	75.148	62	51.088	1	237
Baseline Stock of Related Articles in the Field, Non-Collaborators	62.374	50	45.749	0	224
Baseline Stock of Related Articles in the Field, Collaborators	12.774	9	12.612	0	94
Source Article Nb. of Authors	3.986	4	1.907	1	14
Source Article Citations at Baseline	16.668	8	36.309	0	920
Source Article Long-run Citations	70.437	35	180.572	1	6598
Investigator Gender	0.099	0	0.299	0	1
Investigator Year of Degree	1960.141	1961	10.898	1928	1986
Death Year	1991.113	1991	7.965	1975	2003
Age at Death	58.089	58	8.792	34	91
Years of Experience in the Field	8.478	7	6.046	0	39
Subfield Cliquishness [Clustering Coefficient]	0.775	1	0.137	0	1
Investigator Cuml. Nb. of Publications	169	143	118	12	1,380
Investigator Cuml. NIH Funding at Baseline	\$17,625,556	\$12,049,690	\$24,878,189	\$0	\$329,968,960
Investigator Cuml. Nb. of Citations	11,561	8,726	10,186	120	72,122

Note: The sample consists of subfields for 452 extinct superstar life scientists and their matched control subfields. See Appendix D for details on the matching procedure. All time-varying covariates are measured in the year of superstar death.

Table III: Main Effect of Superstar Extinction

	Publication Flows			NIH Funding Flows (Nb. of Awards)		
	All Authors	Collaborators Only	NonCollaborators Only	All Authors	Collaborators Only	NonCollaborators Only
	(1)	(2)	(3)	(4)	(5)	(6)
After Death	$\begin{gathered} \hline 0.022 \\ (0.026) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.412^{* *} \\ (0.053) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.077^{* *} \\ & (0.026) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.018 \\ (0.035) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.349^{* *} \\ (0.078) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.106^{* *} \\ & (0.033) \end{aligned}$
Nb. of Investigators	6,261	6,260	6,261	6,216	5,779	6,195
Nb. of Fields	34,216	34,211	34,216	33,899	30,317	33,766
Nb. of Field-Year Obs.	1,261,018	1,260,833	1,261,018	1,049,718	938,741	1,045,617
Log Likelihood	-2,785,278	-876,053	-2,631,744	-1,306,848	-516,137	-1,160,093

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications in a subfield in a particular year (columns 1, 2, and 3), or the total number of NIH grants that acknowledge a publication in a subfield (columns 4, 5, and 6). All models incorporate a full suite of year effects and subfield age effects. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates in column (3) imply that treated subfields see an increase in the number of contributions by non-collaborators after the superstar passes away-a statistically significant $100 \times(\exp [0.077]-1)=8.00 \%$. The number of observations varies slightly across columns because the conditional fixed effects specification drops observations corresponding to subfields for which there is no variation in activity over the entire observation period. This is true as well for the results reported in Tables IV through VIII.
Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. ${ }^{\dagger} p<0.10,{ }^{*} p<0.05,{ }^{* *} p<0.01$

Table IV: Breakdown by Long-run Citation Impact [Non-collaborators Only]

	All Pubs	Bttm. Quartile	$2^{\text {nd }}$ Quartile	$3^{\text {rd }}$ Quartile	Btw. $75^{\text {th }}$ and $95^{\text {th }}$ pctl.	Btw. 95 ${ }^{\text {th }}$ and $99^{\text {th }}$ pctl.	Above $99^{\text {th }}$ pctl.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Panel A: All causes of death							
After Death	$\begin{aligned} & 0.077^{* *} \\ & (0.026) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.047 \\ & (0.033) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.002 \\ & (0.030) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.021 \\ (0.029) \\ \hline \end{gathered}$	$\begin{aligned} & 0.113^{* *} \\ & (0.032) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.226^{* *} \\ & (0.047) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.315^{* *} \\ & (0.076) \\ & \hline \end{aligned}$
Nb. of Investigators	6,261	6,203	6,260	6,259	6,257	6,150	5,263
Nb. of Fields	34,216	33,370	34,202	34,211	34,206	33,172	21,579
Nb. of Field-Year Obs.	1,261,018	1,230,048	1,260,506	1,260,833	1,260,648	1,222,550	795,169
Log Likelihood	-2,631,744	-555,616	-1,074,971	-1,399,434	-1,439,621	-525,960	-150,012
Panel B: Anticipated							
After Death	$\begin{aligned} & 0.108^{* *} \\ & (0.034) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.013 \\ (0.045) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.052 \\ (0.038) \\ \hline \end{gathered}$	$\begin{gathered} 0.067^{\dagger} \\ (0.037) \\ \hline \end{gathered}$	$\begin{aligned} & 0.133^{* *} \\ & (0.044) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.185^{* *} \\ & (0.066) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.307^{* *} \\ & (0.108) \\ & \hline \end{aligned}$
Nb. of Investigators	4,024	3,970	4,023	4,022	4,020	3,942	3,206
Nb. of Fields	15,104	14,768	15,099	15,102	15,096	14,621	9,464
Nb. of Field-Year Obs.	556,629	544,337	556,444	556,555	556,333	538,812	348,695
Log Likelihood	-1,175,376	-254,163	-483,606	-621,393	-631,853	-227,833	-64,739
Panel C: Sudden							
After Death	$\begin{gathered} \hline 0.041 \\ (0.042) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.105^{*} \\ & (0.051) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.053 \\ & (0.049) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.033 \\ & (0.048) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.088^{\dagger} \\ (0.052) \\ \hline \end{gathered}$	$\begin{aligned} & 0.266^{* *} \\ & (0.070) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.339^{* *} \\ & (0.109) \\ & \hline \end{aligned}$
Nb. of Investigators	4,654	4,593	4,654	4,654	4,654	4,586	3,758
Nb. of Fields	17,525	17,031	17,516	17,522	17,524	17,035	11,204
Nb. of Field-Year Obs.	645,751	627,657	645,424	645,640	645,714	627,724	412,813
Log Likelihood	-1,322,946	-272,594	-534,918	-706,742	-739,715	-276,358	-79,811

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications in a subfield in a particular year, where these publications fall in a particular quantile bin of the long-run, vintage-adjusted citation distribution for the universe of journal articles in PubMed. Panel B and Panel C present the same specifications, but run on two distinct subsamples: In Panel B, the 1,576 subfields associated with 229 stars whose death is anticipated (along with the corresponding control subfields); and in Panel C, the 1,342 subfields associated with 185 stars whose death is sudden and unexpected (along with the corresponding control subfields). All models incorporate a full suite of year effects and subfield age effects. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates in column (1), Panel A, imply that treated subfields see an increase in the number of contributions by non-collaborators after the superstar passes away-a statistically significant $100 \times(\exp [0.077]-1)=8.00 \%$.
Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. ${ }^{\dagger} p<0.10,{ }^{*} p<0.05,{ }^{* *} p<0.01$

Table V: Breakdown by Intellectual Proximity to the Work of the Star [Non-collab. Only]

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications. In Panel A, the dependent variable is the total number of publications in a subfield in a particular year, where these publications can either be proximate in intellectual space to the star's source publication, or more distant (in the PMRA sense). Since PMRA generates both a cardinal and an ordinal measure of intellectual proximity, we parse the related articles using both measures, yielding a total of four different specifications (the first column of the table merely replicates the estimate already found in Table III, column 3, for comparison purposes. For the cardinal measure, a related article is deemed proximate if its similarity score is above .70 , which corresponds to the top quartile of similarity in the sample. For the ordinal measure, a related article is deemed proximate if its similarity rank is below 40 , which also corresponds to the top quartile of similarity in the sample. In Panel B, we separate the related articles by examining the type of references cited in their bibliography. Each cited reference can be either in the source's PMRA field, or outside of it; it can be a publication of the star scientist, or of someone else's; and the average lag between the related article's publication year and that of the articles it cites can be either above or below the median (6.5 years). All models incorporate a full suite of year effects and subfield age effects. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates in the first column imply that treated subfields see an increase in the number of contributions by non-collaborators after the superstar passes away-a statistically significant $100 \times(\exp [0.077]-1)=8.00 \%$.

Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. ${ }^{\dagger} p<0.10,{ }^{*} p<0.05,{ }^{* *} p<0.01$

Table VI: Breakdown by Related Author Characteristics [Non-collaborators Only]

	Author Career Age		Star Author		Elite Author	
	> 16	≤ 16	With	Without	With	Without
After Death	$\begin{aligned} & \hline 0.096^{* *} \\ & (0.028) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.095^{* *} \\ & (0.031) \\ & \hline \end{aligned}$	$\begin{gathered} 0.022 \\ (0.034) \\ \hline \end{gathered}$	$\begin{gathered} 0.050^{\dagger} \\ (0.027) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.131^{\dagger} \\ & (0.077) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.068^{* *} \\ & (0.026) \\ & \hline \end{aligned}$
Nb . of Investigators	6,248	6,247	6,247	6,248	5,604	6,248
Nb. of Fields	34,169	34,169	34,146	34,173	27,944	34,173
Nb. of Field-Year Obs.	1,259,281	1,259,281	1,258,436	1,259,429	1,030,092	1,259,429
Log Likelihood	-1,292,332	-1,430,637	-1,295,799	-2,212,397	-308,801	-2,598,287

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications in a subfield in a particular year, where these publications have scientists on their authorship roster with certain demographic characteristics. The first two columns examine the impact of related author age. Hence, we compute the average career age of every author we could match with the AAMC Roster, and compute the average age of the authorship team for the related article, at the time of its publication. We then divide related articles according to whether the average career age for identified authors is above or below 16 (the median in our sample), and we aggregate up our measure of subfield activity separately for these two groups. We proceed similarly for the middle two columns (whether or not a related article has one of our 12,935 stars on its authorship roster) and for the last two columns (whether or not a related article has a member of the NAS or an HHMI investigator on its authorship roster). All models incorporate a full suite of year effects and subfield age effects. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates in the first column imply that treated subfields see an increase in the number of contributions by non-collaborators after the superstar passes away-a statistically significant $100 \times(\exp [0.096]-1)=10.08 \%$.
Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. ${ }^{\dagger} p<0.10,{ }^{*} p<0.05,{ }^{* *} p<0.01$

Table VII: Breakdown by Star Scientist Characteristics [Non-collaborators Only]

	Publications				NIH Funding			
	Importance to the Field		Commitment to the Field		Importance to the Field		Commitment to the Field	
	Below Median	Above Median						
After Death	$\begin{gathered} \hline 0.042 \\ (0.027) \\ \hline \end{gathered}$	$\begin{aligned} & 0.152^{* *} \\ & (0.041) \end{aligned}$	$\begin{gathered} 0.060^{*} \\ (0.030) \end{gathered}$	$\begin{gathered} 0.069^{\dagger} \\ (0.037) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.154 \\ (0.124) \end{gathered}$	$\begin{aligned} & 0.290^{* *} \\ & (0.083) \end{aligned}$	$\begin{gathered} \hline-0.050 \\ (0.075) \end{gathered}$	$\begin{aligned} & \hline 0.306^{* *} \\ & (0.116) \end{aligned}$
Nb . of Investigators	5,025	4,474	4,231	4,780	4,548	3,703	3,894	4,446
Nb. of Fields	16,978	17,238	15,348	18,868	16,418	14,802	13,788	17,432
Nb. of Field-Year Obs.	625,697	635,321	564,924	696,094	605,551	545,203	507,765	642,989
Log Likelihood	-1,359,636	-1,233,123	-1,163,783	-1,462,626	-1,305,072	-1,081,039	-1,049,347	-1,340,970

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications in a subfield in a particular year. Each pair of columns splits the sample across the median of a particular covariate for the sample of fields (treated or control) in the baseline year. Importance to the field is defined as the proportion of articles (respectively, NIH funding) in the subfield up to the year of death for which the star is an author (respectively, that the star received as a grant award). Commitment to the field is defined as the proportion of articles (respectively, NIH funding) accounted for by the subfield relative to the star's entire corpus of published research (respectively, total grant awards). All models incorporate a full suite of year effects and subfield age effects. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimate in the sixth column imply that treated subfields see an increase in the number of contributions by non-collaborators after the superstar passes away-a statistically significant $100 \times(\exp [0.290]-1)=33.64 \%$.
Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. ${ }^{\dagger} p<0.10,{ }^{*} p<0.05,{ }^{* *} p<0.01$

Table VIII: The Nature of Entry Barriers: Social vs. Intellectual Control

Panel A	"Intellectual" Subfield Coherence				"Social" Subfield Coherence			
	PMRA-based definition		Citation-based definition		Nb. of Trainees		Cliquishness	
	Below 75 ${ }^{\text {th }}$ pctl.	Top qrtl.	Below 75 ${ }^{\text {th }}$ pctl.	Top qrtl.	Below 75 ${ }^{\text {th }}$ pctl.	Top qrtl.	Below 75 ${ }^{\text {th }}$ pctl.	Top qrtl.
After Death	$\begin{aligned} & 0.232^{* *} \\ & (0.063) \end{aligned}$	$\begin{gathered} -0.029 \\ (0.080) \\ \hline \end{gathered}$	$\begin{gathered} 0.190^{*} \\ (0.075) \\ \hline \end{gathered}$	$\begin{gathered} 0.010 \\ (0.071) \\ \hline \end{gathered}$	$\begin{aligned} & 0.096^{* *} \\ & (0.030) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.036 \\ (0.049) \\ \hline \end{gathered}$	$\begin{gathered} 0.194^{*} \\ (0.092) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.026 \\ (0.065) \\ \hline \end{gathered}$
Nb. of Investigators Nb. of Fields Nb. of Field-Year Obs. Log Likelihood	5,660 25,655 945,826 $-1,935,275$	3,447 8,561 315,192 $-671,497$	5,817 25,576 942,260 $-1,924,852$	$\begin{gathered} \hline 3,019 \\ 8,640 \\ 318,758 \\ -688,845 \\ \hline \end{gathered}$	5,745 24,159 890,565 $-1,865,247$	1,281 10,057 370,453 $-765,855$	5,396 25,780 950,408 $-2,007,970$	3,700 8,436 310,610 $-598,369$
Panel B	Nb. of Frequent Collaborators (5 Coauthorships or More)				Nb. of "Pivotal" Collaborators (First/Last Authorship Roster Positions)			
	Editorial Channel		NIH Study Section Channel		Editorial Channel		NIH Study Section Channel	
	Below Median	Above Median						
After Death	$\begin{gathered} \hline 0.262^{*} \\ (0.105) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.061 \\ (0.054) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.188^{*} \\ (0.074) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.038 \\ (0.088) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.290^{* *} \\ & (0.099) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.028 \\ (0.053) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.265^{* *} \\ & (0.093) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-0.012 \\ & (0.037) \\ & \hline \end{aligned}$
Nb. of Investigators	4,408	3,624	5,772	1,958	4,149	4,195	4,434	4,112
Nb. of Fields	18,687	15,529	27,511	6,705	16,806	17,410	17,542	16,674
Nb. of Field-Year Obs.	689,852	571,166	1,014,384	246,634	620,752	640,266	647,354	613,664
Log Likelihood	-1,494,893	-1,128,745	-2,156,618	-472,557	-1,367,384	-1,249,056	-1,414,255	-1,208,943

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications in a subfield in a particular year. Each pair of columns splits the sample across the median or top quartile of a particular covariate for the sample of fields (either treated or control) in the baseline year. For example, the first two columns of Panel B compare the magnitude of the treatment effect for stars whose frequent collaborators (five coauthorships or more) have written an above-median number of editorials in the five years preceding the superstar's death, vs. a below-median number of editorials. All models incorporate a full suite of year effects and subfield age effects. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. For example, the estimates in the first column of Panel B imply that treated subfields see an increase in the number of contributions by non-collaborators after the superstar passes away-a statistically significant $100 \times(\exp [0.232]-1)=26.11 \%$.
Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. ${ }^{\dagger} p<0.10,{ }^{*} p<0.05,{ }^{* *} p<0.01$

Appendix A:
 Criteria for Delineating the Set of 12,935 "Superstars"

Highly Funded Scientists. Our first data source is the Consolidated Grant/Applicant File (CGAF) from the U.S. National Institutes of Health (NIH). This dataset records information about grants awarded to extramural researchers funded by the NIH since 1938. Using the CGAF and focusing only on direct costs associated with research grants, we compute individual cumulative totals for the decades 1977-1986, 19871996, and 1997-2006, deflating the earlier years by the Biomedical Research Producer Price Index. We also recompute these totals excluding large center grants that usually fund groups of investigators (M01 and P01 grants). Scientists whose totals lie above the $95^{\text {th }}$ percentile of either distribution constitute our first group of superstars. In this group, the least well-funded investigator garnered $\$ 10.5$ million in career NIH funding and the most well-funded $\$ 462.6$ million. ${ }^{\text {i }}$

Highly Cited Scientists. Despite the preeminent role of the NIH in the funding of public biomedical research, the above indicator of "superstardom" biases the sample towards scientists conducting relatively expensive research. We complement this first group with a second composed of highly cited scientists identified by the Institute for Scientific Information. A Highly Cited listing means that an individual was among the 250 most cited researchers for their published articles between 1981 and 1999, within a broad scientific field. ${ }^{\text {ii }}$

Top Patenters. We add to these groups academic life scientists who belong in the top percentile of the patent distribution among academics - those who were granted 17 patents or more between 1976 and 2004.

Members of the National Academy of Science and of the Institute of Medicine. We add to these groups academic life scientists who were elected to the National Academy of Science or the Institute of Medicine between 1970 and 2013.

MERIT Awardees of the NIH. Initiated in the mid-1980s, the MERIT Award program extends funding for up to 5 years (but typically 3 years) to a select number of NIH-funded investigators "who have demonstrated superior competence, outstanding productivity during their previous research endeavors and are leaders in their field with paradigm-shifting ideas." The specific details governing selection vary across the component institutes of the NIH, but the essential feature of the program is that only researchers holding an R01 grant in its second or later cycle are eligible. Further, the application must be scored in the top percentile in a given funding cycle.

Former and current Howard Hughes Medical Investigators (HHMIs). Every three years, the Howard Hughes Medical Institute selects a small cohort of mid-career biomedical scientists with the potential to revolutionize their respective subfields. Once selected, HHMIs continue to be based at their institutions, typically leading a research group of 10 to 25 students, postdoctoral associates and technicians. Their appointment is reviewed every five years, based solely on their most important contributions during the cycle. ${ }^{\text {iii }}$

[^16]Early career prize winners. We also included winners of the Pew, Searle, Beckman, Rita Allen, and Packard scholarships for the years 1981 through 2000. Every year, these charitable foundations provide seed funding to between 20 and 40 young academic life scientists. These scholarships are the most prestigious accolades that young researchers can receive in the first two years of their careers as independent investigators.

Appendix B: Linking Scientists with their Journal Articles

The source of our publication data is PubMed, a bibliographic database maintained by the U.S. National Library of Medicine that is searchable on the web at no cost. ${ }^{\text {iv }}$ PubMed contains over 14 million citations from 4,800 journals published in the United States and more than 70 other countries from 1950 to the present. The subject scope of this database is biomedicine and health, broadly defined to encompass those areas of the life sciences, behavioral sciences, chemical sciences, and bioengineering that inform research in healthrelated fields. In order to effectively mine this publicly-available data source, we designed PubHarvester, an open-source software tool that automates the process of gathering publication information for individual life scientists (see Azoulay et al. 2006 for a complete description of the software). PubHarvester is fast, simple to use, and reliable. Its output consists of a series of reports that can be easily imported by statistical software packages.

This software tool does not obviate the two challenges faced by empirical researchers when attempting to accurately link individual scientists with their published output. The first relates to what one might term "Type I Error," whereby we mistakenly attribute to a scientist a journal article actually authored by a namesake; The second relates to "Type II error," whereby we conservatively exclude from a scientist's publication roster legitimate articles:

Namesakes and popular names. PubMed does not assign unique identifiers to the authors of the publications they index. They identify authors simply by their last name, up to two initials, and an optional suffix. This makes it difficult to unambiguously assign publication output to individual scientists, especially when their last name is relatively common.

Inconsistent publication names. The opposite danger, that of recording too few publications, also looms large, since scientists are often inconsistent in the choice of names they choose to publish under. By far the most common source of error is the haphazard use of a middle initial. Other errors stem from inconsistent use of suffixes (Jr., Sr., 2nd, etc.), or from multiple patronyms due to changes in spousal status.

To deal with these serious measurement problems, we opted for a labor-intensive approach: the design of individual search queries that relies on relevant scientific keywords, the names of frequent collaborators, journal names, as well as institutional affiliations. We are aided in the time-consuming process of query design by the availability of a reliable archival data source, namely, these scientists' CVs and biosketches. PubHarvester provides the option to use such custom queries in lieu of a completely generic query (e.g, "azoulay p"[au] or "graff zivin js"[au]). As an example, one can examine the publications of Scott A. Waldman, an eminent pharmacologist located in Philadelphia, PA at Thomas Jefferson University. Waldman is a relatively frequent name in the United States (with 208 researchers with an identical patronym in the AAMC faculty roster); the combination "waldman s " is common to 3 researchers in the same database.

[^17]A simple search query for "waldman sa"[au] OR "waldman s"[au] returns 377 publications at the time of this writing. However, a more refined query, based on Professor Waldman's biosketch returns only 256 publications. ${ }^{\text {v }}$

The above example also makes clear how we deal with the issue of inconsistent publication names. PubHarvester gives the end-user the option to choose up to four PubMed-formatted names under which publications can be found for a given researcher. For example, Louis J. Tobian, Jr. publishes under "tobian l", "tobian l jr ", and "tobian 1 j ", and all three names need to be provided as inputs to generate a complete publication listing. Furthermore, even though Tobian is a relatively rare name, the search query needs to be modified to account for these name variations, as in ("tobian l"[au] OR "tobian lj"[au]).

Appendix C: PubMed Related Citations Algorithm [PMRA]

Traditionally, it has been very difficult to assign to individual scientists, or articles, a fixed address in "idea space," and this data constraint explains in large part why bibliometric analyses typically focus on the determinants of the rate of scientific progress rather than its direction. The empirical exercise in this paper hinges crucially on the ability to relax this constraint in a way that is consistent across extinction events and also requires little, if any, human judgement.

This challenge is met here by the use of the PubMed Related Citations Algorithm [PMRA], a probabilistic, topic-based model for content similarity that underlies the "related articles" search feature in PubMed. This database feature is designed to help a typical user search through the literature by presenting a set of records topically related to any article returned by a PubMed search query. ${ }^{\text {vi }}$ To assess the degree of intellectual similarity between any two PubMed records, PMRA relies crucially on MeSH keywords. MeSH is the National Library of Medicine's [NLM] controlled vocabulary thesaurus. It consists of sets of terms arranged in a hierarchical structure that permit searching at various levels of specificity. There are 27,149 descriptors in the 2013 MeSH edition. Almost every publication in PubMed is tagged with a set of MeSH terms (between 1 and 103 in the current edition of PubMed, with both the mean and median approximately equal to 11). NLM's professional indexers are trained to select indexing terms from MeSH according to a specific protocol, and consider each article in the context of the entire collection (Bachrach and Charen 1978; Névéol et al. 2010). What is key for our purposes is that the subjectivity inherent in any indexing task is confined to the MeSH term assignment process and does not involve the articles' authors. ${ }^{\text {vii }}$

Using the MeSH keywords as input, PMRA essentially defines a distance concept in idea space such that the proximity between a source article and any other PubMed-indexed publication can be assessed. The following paragraphs were extracted from a brief description of PMRA:

The neighbors of a document are those documents in the database that are the most similar to it. The similarity between documents is measured by the words they have in common, with some adjustment for document

[^18]lengths. To carry out such a program, one must first define what a word is. For us, a word is basically an unbroken string of letters and numerals with at least one letter of the alphabet in it. Words end at hyphens, spaces, new lines, and punctuation. A list of 310 common, but uninformative, words (also known as stopwords) are eliminated from processing at this stage. Next, a limited amount of stemming of words is done, but no thesaurus is used in processing. Words from the abstract of a document are classified as text words. Words from titles are also classified as text words, but words from titles are added in a second time to give them a small advantage in the local weighting scheme. MeSH terms are placed in a third category, and a MeSH term with a subheading qualifier is entered twice, once without the qualifier and once with it. If a MeSH term is starred (indicating a major concept in a document), the star is ignored. These three categories of words (or phrases in the case of MeSH) comprise the representation of a document. No other fields, such as Author or Journal, enter into the calculations.

Having obtained the set of terms that represent each document, the next step is to recognize that not all words are of equal value. Each time a word is used, it is assigned a numerical weight. This numerical weight is based on information that the computer can obtain by automatic processing. Automatic processing is important because the number of different terms that have to be assigned weights is close to two million for this system. The weight or value of a term is dependent on three types of information: 1) the number of different documents in the database that contain the term; 2) the number of times the term occurs in a particular document; and 3) the number of term occurrences in the document. The first of these pieces of information is used to produce a number called the global weight of the term. The global weight is used in weighting the term throughout the database. The second and third pieces of information pertain only to a particular document and are used to produce a number called the local weight of the term in that specific document. When a word occurs in two documents, its weight is computed as the product of the global weight times the two local weights (one pertaining to each of the documents).

The global weight of a term is greater for the less frequent terms. This is reasonable because the presence of a term that occurred in most of the documents would really tell one very little about a document. On the other hand, a term that occurred in only 100 documents of one million would be very helpful in limiting the set of documents of interest. A word that occurred in only 10 documents is likely to be even more informative and will receive an even higher weight.

The local weight of a term is the measure of its importance in a particular document. Generally, the more frequent a term is within a document, the more important it is in representing the content of that document. However, this relationship is saturating, i.e., as the frequency continues to go up, the importance of the word increases less rapidly and finally comes to a finite limit. In addition, we do not want a longer document to be considered more important just because it is longer; therefore, a length correction is applied.

The similarity between two documents is computed by adding up the weights of all of the terms the two documents have in common. Once the similarity score of a document in relation to each of the other documents in the database has been computed, that document's neighbors are identified as the most similar (highest scoring) documents found. These closely related documents are pre-computed for each document in PubMed so that when one selects Related Articles, the system has only to retrieve this list. This enables a fast response time for such queries. ${ }^{\text {viii }}$

The algorithm uses a cut-off rule to determine the number of related citations associated with a given source article. First, the 100 most related records by similarity score are returned. Second, a reciprocity rule is applied to this list of 100 records: if Publication A is related to Publication B, Publication B must also be related to publication A. As a result, the set of related citations for a given source article may contain many more than 100 publications. ${ }^{\text {ix }}$

Given our set of source articles, we delineate the scientific fields to which they belong by focusing on the set of articles returned by PMRA that satisfy three additional constraints: (i) they are original articles (as opposed to editorials, comments, reviews, etc.); (ii) they were published in or before 2006 (the end of our observation period); and (iii) they appear in journals indexed by the Web of Science (so that follow-on citation information can be collected).

[^19]To summarize, PMRA is a modern implementation of co-word analysis, a content analysis technique that uses patterns of co-occurrence of pairs of items (i.e., title words or phrases, or keywords) in a corpus of texts to identify the relationships between ideas within the subject areas presented in these texts (Callon et al. 1989; He 1999). One long-standing concern among practitioners of this technique has been the "indexer effect" (Whittaker 1989). Clustering algorithm such as PMRA assume that the scientific corpus has been correctly indexed. But what if the indexers who chose the keywords brought their own "conceptual baggage" to the indexing task, so that the pictures that emerge from this process are more akin to their conceptualization than to those of the scientists whose work it was intended to study?

Indexer effects could manifest themselves in three distinct ways. First, indexers may have available a lexicon of permitted keywords which is itself out of date. Second, there is an inevitable delay between the publication of an article and the appearance of an entry in PubMed. Third, indexers, in their efforts to be helpful to users of the database, may use combinations of keywords which reflect the conventional views of the field. The first two concerns are legitimate, but probably have only a limited impact on the accuracy of the relationships between articles which PMRA deems related. This is because the NLM continually revises and updates the MeSH vocabulary, precisely in an attempt to neutralize keyword vintage effects. Moreover, the time elapsed between an article's publication and the indexing task has shrunk dramatically, though time lag issues might have been a first-order challenge when MeSH was created, back in 1963. The last concern strikes us as being potentially more serious; a few studies have asked authors to validate ex post the quality of the keywords selected by independent indexers, with generally encouraging results (Law and Whittaker 1992). Inter-indexer reliability is also very high (Wilbur 1998).

In Table C1, we illustrate the use of PMRA with an example taken from our sample. Ira Herskowitz is a faculty member in our sample who died in 2003. "The transcriptional program of sporulation in budding yeast" (PubMed ID \#9784122) is a publication from his lab which appeared in the October $23^{\text {rd }} 1998$ issue of the journal Science and lists 15 MeSH terms and 5 substances. PubMed ID \#12242283 is its most related paper according to the PMRA algorithm; it appeared in Molecular and Cell Biology in October of 2002 and has 24 MeSH terms (resp. 11 substances). The keywords that overlap exactly have been highlighted in dark blue; those whose close ancestors in the MeSH keyword hierarchical tree overlap have been highlighted in light blue. These terms include common terms such as Saccharomyces cerevisiae and Transcription Factors as well as more specific keywords including NDT80 protein, S cerevisiae and Gene Expression Regulation, Fungal.

Table C1: PMRA and MeSH Term Overlap-An Example

Source Article	PMRA-Linked Article
Chu et al., "The transcriptional program of sporulation in budding yeast." Science, 1998.	Sopko et al. "Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosisspecific transcription factor Ndt80 is dependent on Ime2." $M C B, 2002$.
PMID \#9784122	PMID \#12242283
MeSH Terms	MeSH Terms
Animals	Active Transport, Cell Nucleus
Chromosomes, Fungal	Binding Sites
DNA-Binding Proteins*	Cell Cycle Proteins*
Fungal Proteins	Cell Nucleus
Gene Expression Regulation, Fungal*	DNA-Binding Proteins*
Genes, Fungal	Fungal Proteins*
Genome, Fungal	Gene Expression Regulation, Fungal*
Humans	Genes, Fungal
Meiosis	Intracellular Signaling Peptides and Proteins
Morphogenesis	Meiosis*
Organelles	Phosphorylation
Saccharomyces cerevisiae*	Promoter Regions, Genetic
Spores, Fungal	Protein Kinases*
Transcription Factors	Protein-Serine-Threonine Kinases
Transcription, Genetic*	Recombinant Fusion Proteins
	Saccharomyces cerevisiae
	Saccharomyces cerevisiae Proteins*
	Spores, Fungal
	Substrate Specificity
	Transcription Factors*
	Transcriptional Activation
Substances	Substances
DNA-Binding Proteins	Cell Cycle Proteins
Fungal Proteins	DNA-Binding Proteins
NDT80 protein, S cerevisiae	Fungal Proteins
Saccharomyces cerevisiae Proteins	Intracellular Signaling Peptides and Proteins
Transcription Factors	NDT80 protein, S cerevisiae
	Recombinant Fusion Proteins
	Saccharomyces cerevisiae Proteins
	Transcription Factors
	Protein Kinases
	IME2 protein, S cerevisiae
	Protein-Serine-Threonine Kinases

Appendix D: Construction of the Control Group

We detail the procedure implemented to identify the control subfields that help pin down the life-cycle and secular time effects in our difference-in-differences (DD) specification. Happenstance might yield a sample of stars clustered in decaying scientific fields. More plausibly, activity in the typical subfield might be subject to idiosyncratic life-cycle patterns, with their productive potential first increasing over time, eventually peaking, and thereafter slowly declining. Relying solely on subfields treated earlier or later as an implicit control group raises the worry that these time-varying omitted variables will not be fully captured by subfield age controls, particularly since dating the birth of a subfield is a process fraught with hazards.

To address this concern, we create an additional level of difference by selecting control subfields. Recall that selecting a subfield in our framework is akin to first selecting a source article and then using PMRA to harvest all the related articles to this source in intellectual space. Since the second step is fully automated, only the first step is really of concern. Practically, we will recruit control source articles from the set of articles authored by star scientists who do not die prematurely. But what makes a satisfactory control group? It is important to distinguish between ex ante vs. ex post criteria. Ex ante, one would like control source articles to have the following properties:

1. to be published contemporaneously with the source article for the treated subfield;
2. to be unrelated in both an intellectual and a social sense, to the source article for the treated subfield;
3. to be of similar expected impact and fruitfulness, relative to the source article for the treated subfield;
4. to have a similar number of authors as the source article for the treated subfield;
5. to have a superstar author in the same authorship position and of approximately the same age as that occupied by the extinct superstar on the authorship roster of the source article for the treated subfield.

Ex post, it will be important for the control subfields to satisfy an additional condition: the treated and control subfields should exhibit very similar trends in publication activity and funding flows up to the year of treatment (i.e., the year of death for the treated superstar).

Coarsened Exact Matching. To meet these goals, we implement a "Coarsened Exact Matching" (CEM) procedure (Blackwell et al. 2009). The first step is to select a relatively small set of covariates on which we need to guarantee balance ex ante. This choice entails judgement, but is strongly guided by the set of criteria listed above. The second step is to create a large number of strata to cover the entire support of the joint distribution of the covariates selected in the previous step. In a third step, each observation is allocated to a unique strata, and for each observation in the treated group, control observations are selected from the same strata.

The procedure is coarse because we do not attempt to precisely match on covariate values; rather, we coarsen the support of the joint distribution of the covariates into a finite number of strata, and we match a treated observation if and only if a control observation can be recruited from this strata. An important advantage of CEM is that the analyst can guarantee the degree of covariate balance ex ante, but this comes at a cost: the more fine-grained the partition of the support for the joint distribution (i.e., the higher the number of strata), the larger the number of unmatched treated observations.

Implementation. We identify controls based on the following set of covariates (t denotes the year of death): star scientist career age, citations received by the article up to year t, number of authors; position of the star
author on the authorship roster (only first or last authorship positions are considered); journal; and year of publication. The first three covariates only need to match within relatively coarse bins. For instance, we create nine career age categories: less than 10 years; between 10 and 20 years; between 20 and 25 years; between 25 and 30 years; between 30 and 35 years; between 35 and 40 years; between 40 and 45 years; between 45 and 50 years, over 50 years of career age. Similarly, we coarsen the distribution of citations at baseline into five mutually exclusive bins: zero citations; between one and 10 citations; between 10 and 50 citations; between 50 and 120 citations; and more than 120 citations. In contrast, we impose an exact match on journal, publication year, and the star's authorship position.

We match approximately 75% of the treated source articles in this way. Unfortunately, some further trimming of the control articles is needed. First, we eliminate any control that shares any author with the treated source. Second, we eliminate any control article with a dead star scientist on its authorship roster, even if s/he appears in an intermediate position in the authorship list. Third, we drop every control that also happens to be related intellectually to its source as per PMRA. Finally, we drop from the data any source article that finds itself an orphan (i.e., not paired with any control) at the conclusion of this process. Figure III provides an illustrative example.

The final sample has 3,074 treated source articles and 31,142 control source articles. As can be seen in Figure IV, the distribution of activity levels, measured by cumulative publications up to the baseline year, is very similar between treated and control subfields. As well, there is no evidence of preexisting trends in activity, as demonstrated by the coefficient estimates graphed in Figure V. In Table II, treated and control subfields are very well-balanced on the covariates that formed the basis of the CEM matching procedure. This is true almost by construction. What is more surprising (and also welcome) is that the procedure balances a number of covariates that were not used as inputs for matching, such as various metrics of star eminence. For other covariates, we can detect statistically significant mean differences, though they do not appear to be substantively meaningful (e.g., 6.7% of control stars vs. 9.9% of treated stars are female).

Sensitivity Analyses. Human judgement matters for the outcome of the CEM procedure insofar as one must draw a list of "reasonable" covariates to match on, as well as decide on the degree of coarsening to impose. We have verified that slight variations in the implementation (e.g., varying slightly the number of cutoff points for the stock of baseline citations for the source; focusing on birth age as opposed to career age for the stars) have little impact on the main results.

Appendix E: Robustness Checks and Extensions

Table E1: Robustness Checks

	Jaravel et al. (2015)-style "Common" Effect			Collaborators Exclude the Star		
	All Authors	Collabs. Only	Non-Collabs. Only	All Authors	Collabs. Only	Non-Collabs. Only
After Death	0.021	$-0.410^{* *}$	$0.076{ }^{* *}$	0.047^{\dagger}	-0.228**	$0.077^{* *}$
	(0.026)	(0.054)	(0.027)	(0.026)	(0.056)	(0.026)
Nb . of Investigators	6,261	6,260	6,261	6,261	6,119	6,261
Nb. of Fields	34,216	34,211	34,216	34,216	33,081	34,216
Nb. of Field-Year Obs.	1,261,018	1,260,833	1,261,018	1,261,018	1,219,178	1,261,018
Log Likelihood	-2,785,275	-876,052	-2,631,738	-2,751,838	-716,106	-2,631,744

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications in a subfield in a particular year. All models incorporate a full suite of year effects and subfield age effects. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. ${ }^{\dagger} p<0.10,{ }^{*} p<0.05,{ }^{* *} p<0.01$.

Table E2: Robustness Checks [Cont'd]

No Control Subfields

	All Authors	Collabs. Only	Non-Collabs. Only	All Authors	Collabs. Only	Non-Collabs. Only
After Death	0.036	-0.087	0.058^{\dagger}	0.201^{*}	$-0.147^{* *}$	$0.349^{* *}$
	(0.029)	(0.053)	(0.030)	(0.099)	(0.031)	(0.087)
Nb. of Investigators	452	451	452	6,261	6,261	6,261
Nb. of Fields	3,074	3,070	3,074	34,216	34,216	34,216
Nb. of Field-Year Obs.	112,081	111,933	112,081	$1,261,018$	$1,261,018$	$1,261,018$
Log Likelihood	$-247,024$	$-66,841$	$-234,881$			0.286
Adjusted R^{2}				0.428	0.363	

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications (columns 1, 2, and 3) or OLS specifications with subfield fixed effects (columns 4, 5 , and 6). The dependent variable is the total number of publications in a subfield in a particular year. All models incorporate a full suite of year effects and subfield age effects. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. Robust standard errors in parentheses, clustered at the level of the star scientist. ${ }^{\dagger} p<0.10,{ }^{*} p<0.05,{ }^{* *} p<0.01$.

Table E3: Influence of Star Age and In-field Experience

	Star Birth Age at Time of Death		Star Experience in the Field at Time of Death	
	Younger than 61	61 or Older	Recent (less than 7 years)	Established (more than 7 years)
	$0.123^{* *}$	0.048	0.067^{*}	0.069^{*}
After Death	(0.047)	(0.031)	(0.032)	(0.033)
	4,534	3,911	5,180	4,243
Nb. of Fields	16,189	18,027	18,032	16,184
Nb. of Field-Year Obs.	597,458	663,560	664,093	596,925
Log Likelihood	$-1,245,609$	$-1,376,905$	$-1,344,659$	$-1,256,123$

Note: Estimates stem from conditional (subfield) fixed effects Poisson specifications. The dependent variable is the total number of publications in a subfield in a particular year. All models incorporate a full suite of year effects and subfield age effects. Exponentiating the coefficients and differencing from one yield numbers interpretable as elasticities. Robust (QML) standard errors in parentheses, clustered at the level of the star scientist. ${ }^{\dagger} p<$ $0.10,{ }^{*} p<0.05,{ }^{* *} p<0.01$.

Figure E1: Effect of Star Scientist Death on Subfield Growth and Decline With Jaravel et al. (2015)-style "Common" Leads and Lags

Note: The solid blue lines in the above plots correspond to coefficient estimates stemming from conditional (subfield) fixed effects Poisson specifications in which publication flows in subfields are regressed onto year effects, subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/elapsed since the extinction event (the indicator variable for treatment status interacted with the year of death is omitted). These specifications also include an analogous full set of leads and lags around the year of death that are common to treated and control subfields, as in Jaravel et al. (2015). The 95\% confidence interval (corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with dashed red lines; Panel A corresponds to a dynamic version of the specification in the first column of Table E1; Panel B corresponds to a dynamic version of the specification in the second column of Table E1; Panel C corresponds to a dynamic version of the specification in the third column of Table E1.

Figure E2: Effect of Star Scientist Death on Subfield Growth and Decline Publications by the Star Excluded from Subfield Activity

Note: The solid blue lines in the above plots correspond to coefficient estimates stemming from conditional (subfield) fixed effects Poisson specifications in which publication flows in subfields are regressed onto year effects, subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/elapsed since the extinction event (the indicator variable for treatment status interacted with the year of death is omitted). When computing publication flows into subfields over time, these specifications ignore any article that lists the star (deceased or still-alive) as an author. The 95% confidence interval (corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with dashed red lines; Panel A corresponds to a dynamic version of the specification in the fourth column of Table E1; Panel B corresponds to a dynamic version of the specification in the fifth column of Table E1; PanelC corresponds to a dynamic version of the specification in the sixth column of Table E1.

Figure E3: Effect of Star Scientist Death on Subfield Growth and Decline Single Level of Difference [No Control Subfields]

Note: The solid blue lines in the above plots correspond to coefficient estimates stemming from conditional (subfield) fixed effects Poisson specifications in which publication flows in subfields are regressed onto year effects, subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/elapsed since the extinction event (the indicator variable for treatment status interacted with the year of death is omitted). These specifications exclude all the control subfields. The 95% confidence interval (corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with dashed red lines; Panel A corresponds to a dynamic version of the specification in the first column of Table E2; Panel B corresponds to a dynamic version of the specification in the second column of Table E2; Panel C corresponds to a dynamic version of the specification in the third column of Table E2.

Figure E4: Effect of Star Scientist Death on Subfield Growth and Decline OLS Estimates

Note: The solid blue lines in the above plots correspond to coefficient estimates stemming from OLS specifications (with subfield fixed effects) in which publication flows in subfields are regressed onto year effects, subfield age effects, as well as 20 interaction terms between treatment status and the number of years before/elapsed since the extinction event (the indicator variable for treatment status interacted with the year of death is omitted). The 95% confidence interval (corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with dashed red lines; Panel A corresponds to a dynamic version of the specification in the fourth column of Table E2; Panel B corresponds to a dynamic version of the specification in the fifth column of Table E2; PanelC corresponds to a dynamic version of the specification in the sixth column of Table E2.

Effect of Star Scientist Death on Subfield Growth and Decline-Non-Collaborators, Aggregate Subfields at the Star Level

Note: The solid blue lines in the above plots correspond to coefficient estimates stemming from conditional (subfield) fixed effects Poisson specifications in which publication flows in all subfields associated with a star are regressed onto year effects, star age effects, as well as 20 interaction terms between treatment status and the number of years before/elapsed since the extinction event (the indicator variable for treatment status interacted with the year of death is omitted). The 95% confidence interval (corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with dashed red lines.

Appendix F: Displacement Effects

Table F1: Displacement Effects (91,616 scientists; 1,309,050 scientist-year observations)

Panel A:	In-field					Out-of-field				
Earliest Treating Star	All Pubs	Above Median	Above 75th Pctl.	Above 95th Pctl.	$\begin{gathered} \text { Above } \\ \text { 99th } \\ \text { Pctl. } \\ \hline \end{gathered}$	All Pubs	Above Median	Above 75th Pctl.	Above 95th Pctl.	$\begin{gathered} \hline \text { Above } \\ \text { 99th } \\ \text { Pctl. } \\ \hline \end{gathered}$
After Death	$\begin{aligned} & \hline 0.012^{* *} \\ & (0.002) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.011^{* *} \\ & (0.002) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.009^{* *} \\ & (0.001) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.003^{* *} \\ & (0.001) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 0.001^{*} \\ (0.000) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.045 \\ (0.033) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.076^{* *} \\ & (0.022) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.065^{* *} \\ & (0.014) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.018^{* *} \\ & (0.005) \\ & \hline \end{aligned}$	$0.006^{* *}$ (0.002) 0.107
Elasticity	0.233	0.283	0.402	0.580	0.690	0.017	0.041	0.061	0.073	0.107
Mean of Dependent Variable	0.051	0.038	0.022	0.005	0.001	2.647	1.845	1.060	0.247	0.052
Adjusted R ${ }^{2}$	0.008	0.007	0.005	0.002	0.000	0.036	0.026	0.015	0.004	0.001
Panel B:	In-field					Out-of-field				
Most Related Treating Star	All Pubs	Above Median	Above 75th Pctl.	Above 95th Pctl.	$\begin{gathered} \text { Above } \\ \text { 99th } \\ \text { Pctl. } \end{gathered}$	$\begin{gathered} \text { All } \\ \text { Pubs } \end{gathered}$	Above Median	Above 75th Pctl.	$\begin{gathered} \text { Above } \\ \text { 95th } \\ \text { Pctl. } \end{gathered}$	$\begin{gathered} \hline \text { Above } \\ \text { 99th } \\ \text { Pctl. } \end{gathered}$
After Death	$\begin{aligned} & 0.013^{* *} \\ & (0.002) \end{aligned}$	$\begin{aligned} & 0.012^{* *} \\ & (0.002) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.011^{* *} \\ & (0.001) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.004^{* *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.013^{* *} \\ & (0.002) \end{aligned}$	$\begin{gathered} 0.029 \\ (0.045) \\ \hline \end{gathered}$	$\begin{gathered} 0.046^{\dagger} \\ (0.028) \\ \hline \end{gathered}$	$\begin{aligned} & 0.057^{* *} \\ & (0.017) \end{aligned}$	$\begin{aligned} & 0.025^{* *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & 0.010^{* *} \\ & (0.002) \end{aligned}$
Elasticity	0.177	0.211	0.294	0.405	0.583	0.011	0.025	0.054	0.104	0.199
Mean of Dependent Variable	0.074	0.058	0.036	0.009	0.002	2.624	1.824	1.045	0.243	0.051
Adjusted R ${ }^{2}$	0.007	0.006	0.005	0.003	0.007	0.034	0.025	0.015	0.004	0.001

Note: Estimates stem from OLS specifications with author fixed-effects. The dependent variable is the publication output for a related, non-collaborating author in a particular year. The first series of five columns restrict output to publications that fall in the field of the treating star. The second series of five columns restrict output to publications that fall outside of the field of the treating star. Robust standard errors in parentheses, clustered at the level of the treating star scientist. ${ }^{\dagger} p<0.10,{ }^{*} p<0.05,{ }^{* *} p<0.01$.

Figure F1: Effect of Star Scientist Death on Non-collaborating Related Author Out-of-Field Publication Output

Note: The solid blue lines in the above plots correspond to coefficient estimates stemming from conditional (author) fixed effects Poisson specifications in which out-of-field publication output for a related, non-collaborating author is regressed onto year effects, author age effects, as well as 20 interaction terms between treatment status and the number of years before/elapsed since the extinction event (the indicator variable for treatment status interacted with the year of death is omitted). The 95% confidence interval (corresponding to robust standard errors, clustered around star scientist) around these estimates is plotted with dashed red lines; Panel A corresponds to a dynamic version of the specification in the sixth column of Table F1, Panel A; Panel B corresponds to a dynamic version of the specification in the sixth column of Table F1, Panel B.

Appendix G：List of 452 Extinct Superstars

Institution at the time of death
Columbia University
Harbor－UCLA Medical C
Harbor－UCLA Medical Center
Dana Farber Cancer Institute
Dana Farber CCancer Institute
University of California－San Diego
Harvard University
Harvard University
University of Ilinois
University of Washington School of Medicine
Columbia University College of Physicians \＆Surgeons

Colum
NH
NH

University of Pennsylvania School of Medicine
UCLA
UCLA
Johns Hopkins University School of Medicine
University of California - Irvine
iversity of California－Irvine
University of Waslhington／FHCRC
Univerity of CClifornia－Berkele
University of California－Berkeley
Univesity of exas southwestern Medical Center at Dallas
Univerity of Califoun
Universtitof of Cairiforiaia－San Francisoc
University of California－San Francisco
Albany Medical College
NH／NIDDK
UMASS
Brown University Medical School
University of Washininton School
University of Washington School of Medicine
NHH／NIDEK
University of California－Davis
University of California－San Francisco
University of Washington／FHCRC
Universty of Was
Yale Univesity
Columbia Uuiversi
Columbia University
University of Califorin
University of Cailifonia－Ir
Scrips Research Institute
NIH
NIH
University of Pennsylvania School of Medicine
University of Pennsylvania School of M
Boston University School of Medicine
UCLA
Boston
UCLA
Univer
University of Iowa School of Medicine
University of Arizona
Medical College of Virginia
NIH／NCCI
University of Michigan，Ann Arbo
 University
UCLA
NH／NIAD
New York University School of Medicine
University of Califormia－Davis
University of California－
University of Georgia
University of Georgia
Michign State University
University of Califorvin
University of California－San Francisco
Univerity of North Carolina at Chapel Hill
University of Califonion
Universty of North Carolina at Chape
University of California－Riverside
University of California－San Francisco
UUiveristy of Colorado Health Sciences Center
University of
Universtit of Colorads Health Sciences Center
Univan Kit of ennessee
Soan Ketering nstitute for Cancer Research
Yale Univesity
Stanford Universit
Sate University
Naval Health Research Center
Nent
Naval He
UCLA
University of Chicago
University of North Carolina at Chapel Hill
University of California－San Francisco
University of North Carolina at Chapel H
Scrips Research Institue
Coopsetown Univesity Medical Center
Georgetown Univiserity Medical Center
University of California－－San Diego University of California－San Diego
University of California－San Francisco $\stackrel{\mathrm{NH}}{\mathrm{NCLA}}$
University of California－San Diego
University of Washington School of Medicine
University of California－Berkeley
Harvard Medical School／Brigham \＆Women＇s Hospital Harvard Medical School／Brigham \＆Women＇s Hospital
Univerity
Yale University Corado Health Sciences Center／Natl．Jewish Center Yale Univerity
University of Cali
－San Francisco

```
arginine vasoressin metablil src gen
C
lim
s hippocampal damage as a cause of epileps,
mechaniss and sydromes of dementia related to stroke
genetics of simiman virus 40, human_on, papovovirirs and HIV
diagnosing and treatment of ventricularar.arythma⿱亠⿻⿰丨丨八又⿱亠䒑十
plasticity of the simplest neuronal pathways
laboratory studies of retial degenerations 
```



```
*)
infections caused by suppresion of the immune system in organ transplant and AIDS patients
尔位隹, trypsin inhibitors and pancreatic seretion 
pleietypic response in regulation of cell growth
$ surgical treatment of liver trauma
Charactecization of thiff prutve\ascular surgical problems 
cardiology, heart disease, coronary vascular adaptations to myocardial hypertrophy
liormones in the epidemiology of prostatic hyperplasia
liochemistry of the retina and pigment epithelium
M role of bacterial cell surface in microbial physiology and pathogenesis
年年creatitis, complement and lung injury 
immunologic responses to ti
psychoondocrine studies of schizophrenic reactions
l
Mhuman genetics anc peliatrics 
ionic and metabolic mechanisms in neuronal excitability
nutritional prevention of cancer 
# neuroanatomy of the oculomotor system
l
l
mamnan poly=
structura and propenitieses of pathougenicictangi atibodies
genetics and molecular biology of baculoviruses
bioenergetic mechanisms in multicenter enymes
\mathrm{ Pharmacokinetics in healthy volunteres and subjects with renal insuffficiency and on hemodialysis}
Contribution of the social environment to host resistance 
cytochemical studies in liver injury
#studies of celluar resistance to virus infection
chemistry and immumology of streptococcal m proteins
Cloning and characterization of gene for human insulin receptor
p
mechanisms of immunoblocking versus tumor immunity
Mmitchondrial assembly and\mathrm{ replication}
Mlood pressure control: relation,tcaton behavioral stress
malignant progresion of the human breast/predictors of breast cancer progmosi,
enginering of nongenetic beta protenss
cell juction biosyyhecis and biogenesis/cell-cell communication
c
M
位隹利 ofeast mating type
l
pathogenesis of virusinduced broin dise⿻丷木⿴囗⿱一一⿰亻
biochemical and physilogic response to toxic stres
M use of molecular approaches to understand evolutionary change
genetic and molecular basis of viramilimand evolutionary change 
thermoregulation during exercise and heat exposure
free energy, perturbation calculations and their application to macromolecules
```

Scientific domain

Investigator Name

Institution at the time of deat
University of Washington School of Medicine
Wayne State University School of Medicine
Wayne State Universtity School of
Mount Sinai School of Medicine
SonY HSC at Stony Brook
UCLA
Chasingtonk Hopkins University School of Medicine
dons Hopkins University School of Me
artmounth Mesidicl Medical
Iohns Hopkins University School of Public Health
Univestit of California - Berkeley
University of Delw
Uiversity of Delaware
Soston University School of Medicicine
Vational Cancer Institute
Utah State University
Univesty of Iissisippi Medical Center
Univesty
University of Wisconsin
Johns Hopkins University School of Medicine
ohns Hopkins University School of Medicine
UnAss
Univesity of California - San Francisco
Vational Cancer Institute
University of Texas Medical Branch at Galvestor
ale University
Oreano Health \& Science University
Harrard Medical Schol/ Mrigham \& Women's Hospital
University of California - San Francisco
Harvard Medical School/Brigham \& Won
Univesity oC California - San Francisco
Univesty o Clo
niversity of Colorado at Boulder
Yale University
uush Medical College
UCLA
UCLA
National Cancer Institut
Indiana University
NH
N
NH
$\substack{\text { Mayo } \\ \text { UCLA } \\ \text { Ulinic }}$
CLLA
Clombia University
UCLA
nivesity of Southern Califoria Keck School of Mediciie
Harvard Medical School/Beth Israel Medical Cen
Johns Hopkkis University School of Medicine
niversity yof Arizona
SUNY
NH
Ohio St
hio State University
University of California - Berkeley
ohns Hopkins Universitit Schoolel of Medicine
University of California - Berkeley
University of California - San Francisco
$\stackrel{\text { NEHS }}{\mathrm{NH}}$
NHH
$\mathrm{NH} / \mathrm{NCI}$
$\mathrm{NH} / \mathrm{NIDD}$
ornell University - Weill Medical College
Iarvard Medical School
ohns Hopkins University School of Medicine
University of Miami
Columbia University
Tufts University
Columbia University
Columbia University
Harvard Medical School/Children's Hospital
emple University School of Medicine
School of Medicine
Boston University School of Medicine
Case Western Reserve University School of Medicine
AIIT Albert Einstein College of Medicine of Yeshiva University
nory University School of Medicine
rvard University School of Public Heal
niversity of Califorria - San Diego
University of Chicag
Stanford University
Hount Sinai School of Medicine
Univesity of California - San Francisco
nino Clinic
Mayo Clinic
University of Texas HSC at San Antonio

Scientific domain
Stermination of ane growth factor in treast mind
dharacterization and preservation of
pathology of smoking and emphysema
meliorating effects of estrogen replacement therapy on cerebral blood flow and sleep
ameliorating effects of estrogen replacement the
cognitive deficits related to chronic alcoholism
peschintric
coschiatric problememamong risaster survivors
penetics of allergy and asthma
vin
udies of extrapyramidal $\&$ related
cytoplasmic rheology of motile cells
cost and efficacy of home care for COPD patients
Cost and eificacy of home care for COPD patients
Gentic and chemical studies of phage lambda development
envirommental reenlation of reproduction and the onse of
wivironmental regulation of reproductionion and dteve onset of puberty
le recognition factors and macrophages in neoplasia
educing cancer risk by radionuclide chelation
lectron spin resonance spectroscopy
hematoppoie tic stem cell purifiction and biolo
molecular biology and geneticico of tumor virus
nolecular biology and genetics of tumor viruses
studies of islet and beta cells in pancreatic transplantation
nolecular mechanism of musce contraction
fiochemical epidemiology and cancer
chanism of estrogen-induced carcinogenesi
${ }^{3}$ and receptors
Uechanism and reversal studies of digitalis
gment epithelium interactions with neural ret
loption studies of development in middle childhood
dinical and biological studies of myyloid leenkemis
tudies on the etiology of peptic ulcer
uades on the etiology of peptic ulcer (uantitative, model-based problems in metabolism and endocrinology
espiratory enyymes structure, function, \& biosynthesis
tibonuclecic acids of specifically
isolated ribosomes
surgical techniques for intracranial aneurysms
surgical techimquest sor intracramial anaurysms
behavioral and electropyysiogical studies of pain
behavioural pharmacolony of cociune
enzymology and gene targeting
effects of fluorinated pyrimidines on tumors
physiology of the thyroid gland and its clinical diseases
modedling the mechanics of cardiac chamber contraction
quantitative method for evaluating changes in myeloma tumor mass
regulation and cellular levels of G protein subumits
ecombianininant b intertereron as treatment for Multiple Sclerosis
biochemistry of schizophrenia
vitro methods to test antimicrobial susceptibility of infectious agents
rug development for prostatic carcinoma
mechanism of leucine aminopeptidass
ulltra-high dose rates in experimental
physiological and biophysical functions of the inner ear
eroid metaboic conversions sidwa subjects
Waterias and methods for polyacrylamide gel electrophoresis
horescence methods for the study of protein structures
Thsychological studies of depression, schizophrenia and panic and other anxiety disorders
rain specific protein in astrocytes
rythrocyte metabolism in the newborn infant
chwann cell biology and human spinal cord iniuy
hwann cell biology and human spinal cord injur.
surface enyymes in bacteria
nembrane properties of abnormal red cells
haturioral and interactional analysis of ofl surfarning proteoglycays in during morphogenesis
cognitive deficits in insain-damaged patients
umierstanding stress responses of poople who were physically ill
effects of steroid contraception on the ovary
epidemiological studies of coronary heart disease
cirrhosis,
trrhosis, shunt surgery, and nitrogen metabolism
NME studees of normal and transformed cell membranes
role of hereditary factors in toveruining suscoptibily ty to
Letabolism of particulate fat in in diabetes and atherosclerocis
human tissue banking and transplantation
serotenergic mechanisms in in sleep and depression
iochemistry of connective tissues
ndiation-induced leukemia in the C57BL mouse
tissue studies of murine virussinduced leukemia
prevention and treatment of respiratory distress in neonates
nical treatments of gastrointestinal cancer
netic control of the structure of human proteins
iomedical separations: field-flow fractionation

Investigator Name

John R．Williamson	［1934－2000］	PhD， 1959	
John S．O＇Brien	［1934－2001］	MD． 1960	postpolio complications
Jon I．Isenberg	［1937－2003］	MD， 1963	cancer
George G．Glenner	［1927－1995］	MD， 1953	systemic senile amyloidosis
J．Kiffin Penry	［1929－1996］	MD， 1955	complications of diabetes
Paul C．MacDonald	［1930－1997］	MD， 1955	cancer
John Gibbon	［1933－2001］	PhD， 1967	cancer
Donald F．Summers	［1934－2001］	MD， 1959	cancer
R．Gordon Gould	［1910－1978］	PhD， 1933	cancer
Sol Spiegelman	［1914－1983］	PhD， 1944	pancreatic cancer
Frederick S．Philips	［1916－1984］	PhD， 1940	cancer
Cyrus Levinthal	［1922－1990］	PhD， 1951	lung cancer
Sidney Leskowitz	［1923－1991］	PhD， 1950	brain tumor
Kemneth M．Moser	［1929－1997］	MD， 1954	cancer
Donald A．Pious	［1930－1998］	MD， 1956	cancer
Louis V．Avioli	［1931－1999］	MD， 1957	cancer
Joseph E．Coleman	［1930－1999］	MD／PhD， 1963	cancer
Harvey C．Knowles，Jr．	［1915－1984］	MD， 1942	cancer
Joseph Cochin	［1916－1985］	MD／PhD， 1955	leukemia
Albert L．Lehninger	［1917－1986］	PhD， 1942	complications fron
Chares W．Todd	［1918－1987］	PhD， 1943	long illness
David H．Blankenhorn	［1924－1993］	MD， 1947	prostate can
Paul M．Gallop	［1927－1996］	PhD， 1953	cancer
David J．L．Luck	［1929－1998］	MD／PhD， 1962	lymphoma
Edward W．Moore	［1930－1999］	MD， 1955	aspergillosis
Donald J．Reis	［1931－2000］	MD， 1956	hepatic cancer
Julius Marmur	［1926－1996］	PhD， 1951	lymphoma
Nemat O．Borhani	［1926－1996］	MD， 1949	acute leukemia
Russell Ross	［1929－1999］	DDS／PhD， 1962	cancer
Richard A．Careton	［1931－2001］	MD， 1955	cancer
Gilda H．Loew	［1931－2001］	PhD， 1957	breast cancer
N．Raphael Shulman	［1925－1996］	MD， 1947	cancer
George Winokur	［1925－1996］	MD， 1947	pancreatic cancer
Giovanni Di Chiro	［1926－1997］	MD， 1949	lung cancer
Norman P．Salzman	［1926－1997］	PhD， 1953	pancreatic car
Fritz E．Dreifuss	［1926－1997］	MD， 1950	lung cancer
Dante G．Scarpelli	［1927－1998］	MD／PhD， 1960	esophageal adenocarcinoma
Hans J．Miller－Eberhard	［1927－1998］	MD， 1953	cancer
Miriam M．Salpeter	［1929－2000］	PhD， 1953	thyroid cancer
Gerald Cohen	［1933－2001］	PhD， 1955	cancer
James K．McDougall	［1931－2003］	PhD， 1971	gastric cancer
Edward H．Kass	［1917－1990］	MD／PhD， 1947	lung cancer
Norman Kretchmer	［1923－1995］	MD／PhD， 1952	kidney cancer
John L．Doppman	［1922－2000］	MD， 1953	cancer
David E．Green	［1910－1983］	PhD， 1934	cancer
Alton Meister	［1922－1995］	MD， 1945	complications from a stroke
Gisela Mosig	［1930－2003］	PhD， 1959	undergoing cancer treatment for two ye
Choh Hao Li	［1913－1987］	PhD， 1938	cancer of the pharynx
Robert H．Abeles	［1926－2000］	PhD， 1955	Parkinson＇s disease
${ }^{\text {Alfred P．Woif }}$	［1923－1998］	PhD， 1953	lengthy illness
Marian E．Koshland	${ }^{[1992-1997]}$	PhD， 1949	lung cancer
Timothy J．Regan	［1924－2001］ ［1917－1995］	MD， 1952 MD， 1943	${ }_{\text {colon cancer }}^{\text {cosestate }}$
Mortimer M．Elkind	［1922－2000］	PhD， 1953	long illess
Hamish N ．Murro	［1915－1994］	MD／PhD， 1956	died in a nursing home．Parkinson
Ruth Sager	［1916－1997］	PhD， 1948	bladder cancer
David M．Maurice	［1922－2002］	PhD， 1951	liver cancer
Robert A．Good	［1922－2003］	MD／PhD， 1947	esophageal cancer
Harland G．Wood	［1907－1991］	PhD， 1935	lymphoma
Hans Popper	［1903－1988］	MD／PhD， 1944	pancreatic cancer
${ }_{\text {Fritz a }} \begin{aligned} & \text { Fri．Lipmann } \\ & \text { Paul J Scheuer }\end{aligned}$	${ }_{\text {［ }}$［1899－19866］${ }^{\text {［1903］}}$	MD／PhD， 1928	－ $\begin{aligned} & \text { natural reasons } \\ & \text { leukemia }\end{aligned}$
Paul J．Scheuer Berta V．Scharre	${ }_{\text {c }}{ }^{[19195-2003]}$	PhD， 1950 PhD， 1930	leukemia natural cause
Michael W．Pozen	［1945－1981］	MD／PhD， 1974	heart attack
Ronald E．Talcott	［1947－1984］	PhD， 1973	automobile accident
Nathaniel A．Young	［1939－1979］	MD， 1962	drowned in British Virgin Islands
Ahmad I．Bukhari	［1943－1983］	PhD， 1971	heart attack
Alan P．Wolffe	［1959－2001］	PhD， 1984	car accident
Shu－Ren Lin	［1936－1979］	MD， 1962	plane crash
William D．Num	［1943－1986］	PhD， 1972	sudden cardiac arrest
John L．Kemink	［1949－1992］	MD， 1975	murder
Stanley R．Kay	${ }^{[19464-1990]}$	PhD， 1980	heart attack
Roberta D．Shahin	［1953－1997］	PhD， 1985	sudden accute illness
Robert M．Pratt，Jr．	［1942－1987］	PhD， 1970	died in his sleep
Howard J．Eisen	［1942－1987］	MD， 1969	suicide
Joaquim Puig－Antich	［1944－1989］	MD， 1967	asthma attack
Elizabeth A．Rich	［1952－1998］	MD， 1977	traffic accident
Jeffrey M．Hoog	［1952－1998］	MD， 1977	renal cancer
Matthew L．Thomas	［1953－1999］	PhD， 1981	died while traveling
Mu－En Lee Tsunao Saitoh	${ }^{\text {［1954－200］}}$［1999－1996］	MD／PhD， 1984 PhD， 1977	complications from routine surgery murdered
James W．Prahl	［1931－1979］	MD／PhD， 1964	rock climing accident
Pokar M．Kabra Harold A Menke	${ }_{[1938-1987]}^{[1942-190]}$	PhD， 1972 MD， 1963	$\underset{\substack{\text { plane crash } \\ \text { car accident }}}{ }$

Institution at the time of death
University of Pemsity of Clifonin－ 5 Disor of Medicin
Univessity of California－San Diego
Univesity of California－San Diego
Dital
University of California－San Diego
Bownan Gray School of Medicine at Wake Forest University
niversity of Texas Southwestern Medical Center at Dallas
University of Texas
Columbia University
and
NH
Stanfo
Columbia University College of Physicians \＆Surgeoni
oan Kettering Institute for Cancer Research
Uufts University ${ }^{\text {Cin }}$－Siversity of California－San Diego
University of Caififornia－San Diego
University of Washinton School of Medicine
Wasshinton University in St．Louis
．
Washington University in St．Louis
Yale University
Biversity of Cincinnati／Children＇s Hospital
Boston University School of Medicine
Soston University Sichool of Medicicie
Chy of Hope Medical Center
Univesity of Southern Califronia Keck School of Medicine
Harvard Medical Schol／／Children＇s Hospital
ockefeller Univessity
edical College of Virgin
Cornell University－Weill Medical College
Albert Einstein College of Medicine of Yeshiva University
diversity of Nevada at Reno
Univestity of Nevada at Reno
rown Univessity Medical Schoo
Molecular Res
NHF／NIDK
Univesity of
University of Iowa School of Medicine
$\stackrel{\mathrm{NH}}{\mathrm{Ni}}$
University of Virginia School of Medicine
Northwestern University
Northwestern University
Scripps Research Institute
Scripps Research in
Cornell Univesity
Mount Sinai School
Mount Sinai School of Medicine
Univesity of Washington／FHCRC
Harvard Medical School／／righam \＆Women＇s Hospital
Uiversity of Califormia－－Berkeley
Univesity of California－Berkeley
Washington University in St．Louis
NH
Univesity of Wisconsin
Cornell University－W
anderbilt University Well Medical College
Uivesity of Califorria－San Francisco
Brookhaven National Laboratory
University of California－Berkeley
Mount Sinai School of Medicine
Clorado State Universit
Cutts University
Intts Univessity
Harvar Medical School／DFCI
Columbia University College of Physicians \＆Surgeois
University of South Florida College of Medicine
Case Western Reserve University School of Medicine
Iount Sinai Schoolve of Medicicine
Rockefeller University
Univesity of Hawaii
thert Einstein College of Medicine of Yeshiva University
ston University School of Medicine
Naiversity or Callornia－
Nantional Cancr Intitue
Cold Spring Harbor Laboratory
old Spring Harbor Laboratory
Univesity of Rochester
Univesity of Califoria，－Irvine
Univesity of Michigan，Amn Anbor
Albert Einstein College of Medicine of Yeshiva University
IEHS／Univesity of North Carolinn at Chapel Hill
NH／NTCHD
Case Western Reserve University School of Medicine
Washington University in St．Louis
Warvard Medical School／MCH
Urvard Medical School／MGH
University of Califoriaia－San Diego
University of Utah
Univesity of California－San Francisco
Johns Hopkins University School of Medicine

Scientific domain
scoverry of the gene responsible for Tor Tay－Sachs disiease
odenal mucoosal bicarbonate secretion in hum
ntrolled clinincal trials of anticonvulsant and anti－epileptic druss
rigin and interconversion of gonadal and adrenal streoid hormones
NNS functions underlying the interval time sense in animals and humans
ternal medicine and cardiology
cleic acid hybridization
Wharmacological properties of chemotherapeutic agents and chemical carcinogenes
ellulur aspects of oflerance \＆delayed hypersensitivity
matic cell genetic analysis of human immune response genes
ructure and function of metalloenzyme synthesis
hictors in tolerance to the narcotic analgesics
tructure and function of mitochondria
inmunology \＆immunochemistry of tumor antigens
ontrol of risk factoros in athersosclerosis
icrotubular re ted collagen maturatio
microtubular systems in human cells
Pathophysiology of the billiary tract and gallbladder
neural control of blood dirculation
ponse－to－⿰亻⿱丶injuryy sorigins of a thyerocsclelerosis and cardiovascular disease

hechanisms of autoimmune，alloimmune，and drug－dependent cytopenias
r psychiatric disease
glycosylation of SIV gp120 role in the immune response
inical investigations of childhood epilepss，
retabolism of pancreatic carcinogens
Hentification of proteins and reaction mechanisms of the complement system
neurrobiology of myasthenia gravis
H2O2 and oxy－radical stress in catecholamine neurons
ole of DNA viruses in cancer
mechanism of toxic shock syndrome
regulation of metabolism during developemen
biochemisty
Low dynamics in anterior spinal artery
miceular biology of membrane systems
dna replication and recombination in bacteriophages
solation and synthesis the human pituitary growth h
Solation and synthesis the human ip itutateriop groanes hormone
syinheris osis simple mmall－molececule in inhibitiors of ennzymes
biochemical methods to examine the immune response
nyyocardial function and metabolism in chronic disease
inter－hospital cooperative studies of cirrhosis
ITradiation response of cultured mammalian
ole of tumor suppressor genes in breast cance
nterference theory of corneal transparency
ole of the thymus in immune system developme
eterotrophic carbon dioxide fixation
correation of structure and fucction in liver disease
ncose transport in normal and malignai
ructure and properties of spinochromes
Imunocytochemical study of invertebrate nervous systen
onfirmation parameters to assess EMT＇s decisions
arboxylesterases of toxicologic significance
oncology and molecular patholog
ife cyel of mutator phage
fole of DNA methylation in r r ，
Maging studies of cerebral lood flow eate expression in normal and pathological states
Egulation of fatty acid／acetate metabolism in e．coli
stibular diagnosis and surgery，acoustic neuromas，and cochlear implants
wise model of respiratory B．pertussis infection in mice
nechanism of action of cortisol and related glucocorticoid hormones
naturabl history of y lymphoextic alveolitisis in hiv disease
poprotein metabolism and its comnection to cardiovascular disease
function and regulation of leukocyte surface glycoprotetens
characterization of vascular shmoth muscle LIM
altered protein kinases in alzheimer＇s disease
pplication of liquid chromatography to therapentic drug monitoring

Investigator Name

Investigator			
Richard E. Heikkila	[1942-1991]	PhD, 1969	murder
Howard S. Tager	[1945-1994]	PhD, 1971	heart attack
Sukdeb Mukheriee	[1946-1995]	MD, 1971	short illness
John J. Wasmuth	[1946-1995]	PhD, 1973	heart attack
chard P. Nordan	[1949-1998]	PhD, 1983	cerebral
Roland L. Phillips	[1937-1987]	MD/PhD, 1971	glider plane accident
Samuel A. Latt	[1938-1988]	MD/PhD, 1971	heart attack
Emil T. Kaiser	[1938-1988]	PhD, 1959	complications from kidney transplant
D. Michael Gill	[1940-1990]	PhD, 1967	heart attack
John P. Merlie	[1945-1995]	PhD, 1973	heart failure
Robert S. Krooth	[1929-1980]	MD/PhD, 1957	suicide/self-inflicted gunshot wound
Takeo Kakunaga	[1937-1988]	PhD, 1966	lung cancer with a brain metastasis
Abraham Worcel	[1938-1989]	MD, 1963	suicide
Roland D. Ciaranello	[1943-1994]	MD, 1970	heart attack
Gary J. Miller	[1950-2001]	MD/PhD, 1978	heart attack
William B. Reed	[1924-1976]	MD, 1952	
James R. Neely	[1936-1988]	PhD, 1966	heart attack
Mary Lou Clements	[1946-1998]	MD, 1972	airplane crash
John B. Penney, Jr.	[1947-1999]	MD, 1973	heart attack
Lym M. Wiley	[1947-1999]	PhD, 1975	plane crash
Trudy L. Bush	[1949-2001]	PhD, 1977	heart attack
Arend Bouhuys	[1926-1979]	MD/PhD, 1956	heart attack
Erhard Gross	[1928-1981]	PhD, 1958	automobile collision
Richard C. Lillehei	[1928-1981]	MD/PhD, 1960	died while jogging
Hymie L. Nossel	[1930-1983]	MD/PhD, 1962	heart attack
James C. Steigerwald	[1935-1988]	MD, 1961	
Simon J. Pilkis	[1942-1995]	MD/PhD, 1971	heart attack
James Olds	[1922-1976]	PhD, 1952	swimming accident
Peter W. Neurath	[1923-1977]	PhD, 1950	heart attack
Emanuel M. Bogdanove	[1925-1979]	PhD, 1953	killed in an accident
Harold A. Bataxe	[1931-1985]	MD, 1960	heart attack
Roy D. Schmickel	[1936-1990]	MD, 1961	died tragically
${ }^{\text {Fredric }} \mathrm{S}$. Fay	[1943-1997]	PhD, 1969	heart attack
Roger R. Williams	[1944-1998]	MD, 1971	airplane crash
Jeffrey M. Isner	[1947-2001]	MD, 1973	heart attack
Gustavo Cudkowicz	[1927-1982]	MD, 1952	brief illness
John C. Seidel	[1933-1988]	PhD, 1961	heart attack
William L. McGuire	[1937-1992]	MD, 1964	scuba-diving accident
Eric Holtzman	[1939-1994]	PhD, 1964	ingestion of potassium cyanide, self-admin
Julio V. Santiago	[1942-1997]	MD, 1967	heart attack
John J. Pisano	[1929-1985]	PhD, 1955	heart attack
Dale E. McFarin	[1936-1992]	MD, 1961	heart attack
Walter F. Heiligenberg	[1938-1994]	PhD, 1964	plane crash
${ }^{\text {George J. Schroepfer, Jr. }}$	[1932-1998]	MD/PhD, 1961	heart attack
Thomas A. McMahon	[1943-1999]	PhD, 1970	complications from routine surgery
Joseph F. Foster	[1918-1975]	PhD, 1943	heart attack
Gerald P. Rodnan	[1927-1983]	MD, 1949	complications after vascular surgery
George Streisinger	[1927-1984]	PhD, 1953	scuba-diving accident
Lucien B. Guze	[1928-1985]	MD, 1951	sudden cardiac arrest
Lubomir S. Huilica	[1929-1986]	PhD, 1952	automobile accident
Charles L. Wittenberger	[1930-1987]	PhD, 1959	motorcycle accident
D. Martin Carter	[1936-1993]	MD/PhD, 1971	dissecting aortic aneurysm
Verne M. Chapman	[1938-1995]	PhD, 1965	died suddenly while attending meeting
Dolph O. Adams	[1939-1996]	MD/PhD, 1969	unexpected
Lee A. Lillard	[1943-2000]	PhD, 1972	heart attack
Don C. Wiley	[1944-2001]	PhD, 1971 PhD, 1974	$\underbrace{\text { swimming accident }}_{\text {accidental fall }}$
${ }_{\text {L }}^{\text {Lonmie D . . .ussell, Jr. }}$	${ }_{\text {[1923-1981] }}$ [194200]	PhD, 1955	
Eugene C. Jorgensen	[1923-1981]	PhD, 1953	murdered
Margaret O. Dayhoff	[1925-1983]	PhD, 1948	heart attack
Norman Geschwind	[1926-1984]	MD, 1951	heart attack
Laurence M. Sandler	[1929-1987]	PhD, 1956	heart attack
L. Rao Chervu	[1930-1988]	PhD, 1962	brutally murdered
Peter M. Steinert	[1945-2003]	PhD, 1972	heart attack
Arnold Lazarow	[1916-1975]	MD/PhD, 1941	brief illness
Edward V. Evarts	[1926-1985]	MD, 1948	heart attack
Anthony Dipple	[1940-1999]	PhD, 1964	heart attack
Gerald L. Stoner	[1943-2002]	PhD, 1974	complications following a fall
G. Scott Giebink	[1944-2003]	MD, 1969	heart attack
Daniel A. Brody	[1915-1975]	MD, 1940	heart attack
Michelangelo G.F. Fuortes	[1917-1977]	MD, 1941	
Sidney Riegelman	[1921-1981]	PhD, 1948	drowned while scuba diving
Lewis W. Wamamaker	[1923-1983]	MD, 1948	heart attack
Donald J. Magiligan, Jr.	[1929-1989]	MD, 1965	short ilness
Ronald G . Thurman	[1941-2001]	PhD, 1967	massive heart attack
${ }_{\text {F. Brantey Scott, Jr. }}^{\text {F }}$	[1930-1991]	MD, 1955	plane crash
DeWitt S. Goodman Donald C. Shreffler	${ }^{[1933-1991]}$ [193-1994]	MD, 1955	pulmonary embolism
A. Arthur Gottlieb	[1937-1998]	MD, 1961	pulmonary embolus following surgery
John N. Whitaker	[1940-2001]	MD, 1965	injuries following a bycicle race
${ }_{\text {Chistopher A. Dawson }}$	[1942-2003]	PhD, 1969	suddenly
	${ }_{\text {[1923-995] }}{ }^{\text {[191-197] }}$	MD, 1947	tragic acident
John H. Walsh Jerome R Vinog	${ }^{[19388-2000]}$	MD, 1963 PhD. 1940	heart attack

Institution at the time of death
ical School
University of Chicaoo
Nedical College of Georgia
Uedical College of Georgia
niversity of California - Irvine
${ }_{\text {Lima }}$
Loma Linda University School of Medicine
Harvard Medical School/Children's Hospital
Rockefller University
Tufts University
Washington University in St. Louis
Columbia Univesity College of Physicians $\&$ Surgeons
NHH/NCI
Univesity of Rochester
Stanford University
University of Colorado Health Sciences Center
Univessity of Colorado Health Sciences Center
Univessity of Southerry California Keck School of Medicine
Penn State University
Johms Hopkkins University School of Medicine
arvard Medical School/ MGH
University of Califoromia - Davis
University or Mary
Yale Uiversity
NIH/NICHD
Univesitit of Mimmesota
Columbia University
Univessity of Colorado Health Sciences Center
University of Minuesota
California Institute of Technology
Califomia Institute
Tufts University
Medical College of Virginia
University of Califorinin
University of California - Davis
Univessity of Pennsylvania School of Medicine
UMAss
MMASS of Unersity
Tults University
UNY Buffalo
Soston Biomedical Research Institute
niversity of Texas HSC at San Antonio
Columbia University
Washington
NHH/NHIBI
$\stackrel{\mathrm{NH}}{\substack{\mathrm{NH} \\ \text { Unive } \\ \text { Unin } \\ \hline}}$
niversity of Califormia - San Diego
fice University
Pardue University
University of Pittsburgh
University of Oregon
UCLA
VCLA
IH/RINDR
Rockefeler University
Duke University
University of Michigan, Amn Arbor
Univesity of Michigan, Ann Arbor
Southern lliviosis University School of Medicin
National Cancer Institute
University of Califoriaia
eorgetown University Medical Center
Georgetown Cniversity Medicial Center
Harvard Medical School/Beth Irral Medical Center
University of Washington School of Medicine
Allert Einstein College of Medicine of Yeshiva University
NH
NH Univerity of Minnesota

NH
NH

$\mathrm{NHH} / \mathrm{INDS}$
NHiversity of Min
Unvisity of Minnesota
University of Temnessee
Nit
Uiversity of California - San Francisco
niversity
University of Misisissippi Medical Center
nry Ford Health Sciences Center
University of North Carorina at Chapel Hill
Baysor University College of Medicine/St. Lukes's Episcopal Hospital
Columbia Univerity
olumbia University
Washington University in St. Louis
Tulane University School of Medicine
niversity of Alabama at Birminghan
Tunts Univesity
Tunts
UCLA
UCLA
UCLA

Scientific domain
iochemical structurre, action, reegulation and deradadation of the insulin and glucagon molecule

man-hamster somatic cell hybrids/localization of Hnyington's disease gene
ole of lifestyle in cancer and cardio
enetic and cytogenetic studies of mental retaus dis among Adventists
iochamism of carboxypepptidase action , cholera toxin and other pathogenic toxiu
olecular genetics of the acetylcholine receptor
ochemical deffects in inherited metabolic disorders
tructure of interphase and metaphase chromosomes
phase chromosomes
vtamin D receptors in the growth regulation of prostate cancer cells
fects of diabetese and oxydergen deficiency in regulation of metabolism in the heart
orphogenesis in ensly movement disorder pathophysiology
stmenopausal estrosen/progestins interventio
community studies of obstructive lung disease
echanal analyssis of naturally-occuring peptide antibiotic
iternal medicine / rheumatology
arbohy drate metaboinm and dibetes
pharmacogy of motivational mechanisms
docrinomal variants of cells converted by viruses
endocrine-influen cing certers in the hypothalamus
development of new coronary angiographic cechiques
solation and characterization of human ribosomal DNA
eneration and regulation of force in smooth muscle
herapeutic angiogeneesis in vascular medicicie, carriovascular laser phototherapy
Ontrols of proifieration speciicc for lenkemian
hechanisms of hormonal control and growth and regression of mammary carcinoma
dynamic oc cell membrranes
role of social factors, ifiestyle practices, and medication in the onset of type II diabetes
solation of active peptides
eurroethological studies of ofectrolocation
egtuation of the formatio
rthopedic biomechanics
enfifurational changes in protein molecules
netic mutations and the nervous system development in lower vertebrates
pathogenessis of experimental pyelonephritis
nuclear antigens in human colorectal cancer
regulation of the pathways of intermediary metal
usceptibility of pigment and cuttaneous cells to DNA DNA injury by UV
eveloment of cummulative muttiocus map of mouse
development and regulation of macrophage activation
aging and retirement studies
viral membrane and glycoprotein structure
filament regulation of spermatogenesis
immunologist and cancer research
elationship betwen the anatomy of the brain and bretins behavio
cytogenetics of meiosis and development in drosophila
improved radiopharmaceuticals for nephrology and urology
impor
structures and interactions of the proteins characteristic of epithelial cells
fetal endocrinology and study of diabetes \& pregnanyy
electrophysiologioll activity of in vivo neurons in waking and sleening state
netabolic activation and dDA inturactions of polycyclic aromatic hydrocarbon carcinogens
athogenesis of otitis media and immunizations
nerator properties of isolated mammalian hearts
study of the peripherar visialal system in vertebrate animals
intersubject variation in first pass effect of druas
clinical and epidemiologic aspects of streptococcal infections
natural history and limitations of porcine heart valves
atural history and limitations of porcine heart valves
development of the penile prosthesis
sid metabolism and its role in the development of heart and artery disease
le of macrophage nucleic acid in antibodyp prod
olecular immunopathogenesis of demyelinating disease
umoral and metabolic aspects of cardiac function
hochemical studies of lipid and carbohydrate metabolism
Eastrintestinal hormones, gastric acid production and peptic ulcer disease
Liochemistry and molecular bioiogy

Investigator Name

,			
${ }_{\text {M }}$ Merton F. Utter		PhD, 1942	heart attack
Kwan C. Tsou	[1922-1985]	PhD, 1950	heart attack
Norbert Freinkel	[1926-1989]	MD, 1949	heart attack
Edgar C. Henshaw	[1929-1992]	MD, 1956	complications from early-stage cancer treatm
Donald T. Witiak	[1935-1998]	PhD, 1961	
Thomas P. Dousa	[1937-2000]	MD/PhD, 1968	heart attack
Thomas F. Burks, II	[1938-2001]	PhD, 1967	heart attack
Robert M. Macnab	[1940-2003]	PhD, 1969	accidental fall
David Pressman	[1916-1980]	PhD, 1940	
Abraham M. Lilienfeld	[1920-1984]	MD, 1944	heart attack
Marion I. Barrhart	[1921-1985]	PhD, 1950	traffic accident
Thomas R. Johns, 2nd	[1924-1988]	MD, 1948	refractory arrhythmia
Gerald D. Aurbach	[1927-1991]	MD, 1954	hit in a head by a stone
Demetrios Papahadjopoulos	[1934-1998]	PhD, 1963	adverse drug reaction/multi-organ fail
Takis S. Papas	[1935-1999]	PhD, 1970	unexpected and sudden
John J. Jeffrey, Jr.	[1937-2001]	PhD, 1965	stroke
Victor J. Ferrans	[1937-2001]	MD/PhD, 1963	complications from diabetes
James N. Davis	[1939-2003]	MD, 1965	airplane crash
Frederick B. Bang	[1916-1981]	MD, 1939	heart attack
James M. Fetts	[1923-1988]	PhD, 1955	heart failure
Ersst Frese	[1922-1990]	PhD, 1954	cerebral hemorrhage
Lucien J. Rubinstein	[1924-1990]	MD, 1948	ruptured intracranial aneurysm
George B. Craig, Jr.	[1930-1995]	PhD, 1956	heart attack
James R. Klinenberg	[1934-1999]	MD, 1959	intracerebral hemorrh
Paul B. Sigler	[1934-2000]	MD/PhD, 1967	heart attack
Sandy C. Marks, Jr.	[1937-2002]	DDS/PhD, 1968	heart attack
Albert H. Coons	[1912-1978]	MD, 1937	coronary disease and congestive heart failu
Henry G. Kumkel	[1916-1983]	MD, 1942	complications after vascular surgery
Edgar E. Ribi	${ }^{[19202-1986]}$	PhD, 1948	${ }^{\text {plane crash }}$
Bertram Sacktor	[1922-1988]	PhD, 1949	heart attack
Lucille S. Hurley	[1922-1988]	PhD, 1950	complications from open heart surgery
Paul Margolin	[1923-1989]	PhD, 1956	heart attack
Zanvil A. Cohn	[1926-1993]	MD, 1953	aortic dissectio
Carl Monder	[1928-1995]	PhD, 1956	brief illness, acute fulminating leukemia
Gordon Guroff	[1933-1999]	PhD, 1959	car accident
Gerald P. Murphy	[1934-2000]	MD, 1959	heart attack
${ }^{\text {Alvito P. Alvares }}$	[1935-2001]	PhD, 1966	killed by a car
Patricia S. Goldman-Rakic	[1937-2003]	PhD, 1963	struck by a car
Stephen W. Kuffler	${ }^{\text {[1913-1980] }}$	MD, 1937 MD, 1942	heart attack drowned
John P. Merrill Abraham I. Braude	[1917-1984]	MD, 1942 MD/PhD, 1950	drowned heart attack
Susumu Hagiwara	[1922-1989]	PhD, 1951	bacterial infection
Daniel Rudman	[1927-1994]	MD, 1949	complications from brain surgery
Thomas G. Smith, Jr.	[1931-1998]	MD, 1960	heart attack
Richard N. Lolley	${ }^{\text {[190133-2000] }}$	PhD, 1961 MD, 1941	heart attack heart attack
Joseph H. Ogura Manfred M. Mayer	[1915-1983] [1916-1984]	MD, 1941 PhD, 1946	heart attack heart attack
Albert Segaloff	[1917-1985]	MD, 1942	brief illness
F. Blair Simmons	[1930-1998]	MD, 1956	heart attack
Henryk M. Wisniewski	[1931-1999]	MD/PhD, 1960	heart failure
V. Everett Kinsey	[1999-1978]	PhD, 1937	stroke
Frederic C. Bartter Nathan O. Kaplan	[1914-1983] [1917-1986]	MD, 1940	stroke
David T. Imagawa	[1922-1991]	PhD, 1950	heart attack
Robert H. Williams	[1909-1979]	MD, 1934	on an airline en route to Philadelphia
Toichiro Kuwabara	[1920-1991]	MD/PhD, 1952	heart failure
William F. Harrington	[1920-1992]	PhD, 1952	heart failure
G. Jeanette Thorbecke	[1929-2001]	MD/PhD, 1954	stung by a Portuguese man-of-war jellyfish
Felix T. Rapaport	[1929-2000]	MD, 1954	coronary heart disease
Marian W. Kies	[1915-1988]	PhD, 1944	pancreatitis
Menek Goldstein	${ }^{[19924-1997]}$	PhD, 1955	${ }_{\text {stroke }}$
Andrew P. Somlyo	[1930-2003]	MD, 1956	heart attack
Koloman Laki	[1909-1983]	PhD, 1936	heart attack
Paul A. Srere	[1925-1999]	PhD, 1951	complications from liver surgery
D. Eugene Strandness, Jr.	[1928-2002]	MD, 1954	pulmonary failure
Vincent Massey	${ }^{[19296-2002]}$	PhD, 1953	heart attack cardia aneur
Murray B. Bornstein Clarence J. Gibbs, J	[1918-1995] [1924-2001]	MD, 1952 PhD, 1962	cardiac aneurysm
Russell L. De Valois	[1926-2003]	PhD, 1952	automobile acident
Efraim Racker	[1913-1991]	MD, 1938	stroke
Walsh McDermott	[1901-1981]	MD, 1934	heart attack
Jonas E. Salk	[1914-1995]	MD, 1939	heart failure
Lavrence Bogorad	[1921-2003]	PhD, 1949	stroke while on vacation
Herman M. Kalckar	[1908-1991]	MD/PhD, 1939	preumonia
Eugene M. Farber	[1917-2000]	MD, 1943	brief illness
Henry Rapoport	[1918-2002]	PhD, 1943	preumonia
Norman R. Davidson	${ }^{[19196-2002]}$	PhD, 1939	brief illness heant failure
${ }_{\text {Karl }}^{\text {Kargare J. . Suluers }}$ /ivan	${ }^{[1996-1997-2001]}$	PhD, 1931 PhD, 1986	heart failure
Leonard R. Axelrod	[1927-1975]	PhD, 1952	
Sidney R. Cooperband	[1931-1979]	MD, 1956	
James L. Lehr	[1940-1989]	MD, 1968	
Alberto DiMascio	${ }_{[1929-197978]}^{[1927}$	PhD, 1966 PhD, 1955	

Institution at the time of death
Case Western Reserve University School of Medicine
Univerity of Cialoriai - San Franciso
Univesity of Pemsylvania School of Medicine
Northwestern University
University of Rochester
University of
Mayo Clinic
niversity of Texas HSC at Houston
Yale University
Roswell Park Ca
Roswell Park Cancer Institute/SUNY Buffalo
Wayne State University School of Publicice Healt
Wayne State Univerity School of Medicine
University of Virginia School of Medicine
NIH
University of Califorria - San Francisco
University of California - San Francisco
Medical Univessity of South Carolina
Nthany Medical College
SUNY HSC at Stony Brook
Jhns Hopkins University School of Medicine
University of California - San Francisco
University of Califormia - San Francisco
NiH/NINDS
niversity of Virgima School of Medicine
Univesity of N
CLLA
UR
Yale University
avass
Harvard Medical School
Harvard Medical Scl
Rockefelle Univesit
NHH NIAID
Th/Nitiona Institute on Aging in Baltimore
University of Califoria- Davis
City College of New Yorl
Rockefeller University
Rockeetier Univesit
Population Council
NHH NICHD
Hoswill Park Cancer Institute/SUNY Buffalo
noswermark Cancer Institute)SUNY Buffalo
Uniformed Services Univesity of the Health Sciences
Uniformed Services
Yale University
Harvard Univesity
Harvard Medical School/Brigham \& Women's Hospital
Uiversity of Califormia - San Dieg
CLA
H/MIND
niversity of Southern California Keck School of Medicine
Shinston University in St. Louis
Tlane University School of Medicine
UNY Downstate Medical Center College of Medicine
Istitute of Biilogicial Sciences at Oakland University
niversity of Texas HSC at San Antonio
University of California - San Diego
Harbor-UCLA Medical Center
University of Washington School of Medicine
Univesity of Washington School of Medicine
arvard Medical School
Johns Hopkins Univessity School of Medicine
Vew York University School of Medicine
UNY HSC at Stony Brook
IH/ MITMH
New York University School of Medicine
Univesity of Virginia School of Medicine
NiH NIDK
miversity of Vi
IH NIDDK
Niser
Texas Southwestern Medicine
iversity of Texas Southwestern Medical Center at Dallas
niversity of Washington School of Medicine
bert Einstein College of Medicine of Yeshiva University
H/NINDS
rnell University .
ornell University Medical College
Salk Institute
Boston University School of Medicine
University of Califormia - Berkeley
dilifonia Institute of Technology
University of Texas at Austin
University of Missourr at Columbia
avironmental Protection Agency
Soston University School of Medicine
University of Chicago
unts Univessity
Iount Desert Island Biological Lab

Scientific domain
ructure and fuuction of pep carboxykkinase isozymes
elopment of techniques for the treatment and management of chronic visceral ischemis
netabolic regulation in ormal and diabetic pregnancer
ereochemical studdies of hypocholesterolemic man agents
ellular action of vasopressin in the kidney
sequencuce analysis and furction of bacterial flagellar motor
tructure and fuuction of antibody molecules and tissue antigens of the HLA system
idemiological methods for the study of chronic diseases
physiological studies of myasthenia gravis
hospholipid-protein interactions, lipid vesicles, and membrane function
haraherization of EtS genes and retroviral onc egenes
echanism of action and the physiologic regulation of mammalian collagenas
hechanisms underlying neuronal injury after brain ischemia
cell virus relationships in respiratory mucosae
studies of environmental mutageneesis
enetictics and reproductuctive bioiology of aedes mosaluitoe
netics and reproductive biology of aedes mosquito
structural analysis of biological macromolecules
tudies on antibody formation
dentification of MHC Class 1 II molecules
ne structure of immunologically-active cell constituents for the development of vaciines
nechanisms of hormonal regulation of celluar pH and mineral metabolism in the kidney
benetic and nutrititional interactions in developpent
mutation and suppressor studies of a bacterial gene
nacrophage in cell biology and resistance to infectious disease
orticosteroid metabolism in juvenile hypertension
liotectiocical and motecular himmunotherapy, and prognostostic indicatotors of prostate cancer
Section, immunumotherapy, and manifestations of toxicity in in gold theransy
evelopment and plasticity of the primate frontal lob
ole of the immune system in kidney transplantation
pathogenesis and treatment of life-threatening septic shock
evolutionary and developmental properties of calcium channels in cell membranes
eolutionary and developmental properties of calcium channels in cell memb
dipokinetic substances of the pitututary gland
fractal analysis of central nervous system neuron and glial cell morphology
physiology of the larynx analog
nimunochemistry of the complement system
evelopment of a cochlear prothesis system for hearing loss
pathogenesis of inflamenatory demyyelinating diseases
traocular fluid dynamics
olation and structure determina
orphological conversion with lation of coenzyme A
diabetes etiology, pathogenesis, and managemes
litrastructure of retina and retinal disease
nyosin thick fliament structure and assembl
duction of uresponsiveness to allogratts
tudy of experimental allergic encephalomyelitis
purification of enzymes in the catecholamine synthetic pathway
vasomotor function of smooth muscle and their relation to heart disease
cell metabolism and the krebs tca cycle
litrasonic duplex scanner for noninvasive vascular disease diagnosis
iological oxidation mechanisms of proteins that contain riboflavin
olymer as a protective treatment for the exacerbation of multiple sclerosis
iffectuous diseases of the nervous system
rrain mechanisms underying color vision
dentifying and purifying Factor 1, the first part of the ATP synthase enzyme
effective vaccine for polio
determinants of transcript
Enes, enzymes, nucleotides, and carbohydrate patterns
logic effects of photochemotherapy in psoriasis
hysical chemistry of nucleic acids
peptide antagonists of LHRH as gonadotropin inhibitors
ole of peptide neurotransmitters in body fluid homeostasis
udies in steroid intermediate metabolisn
odulury computer-mediated radiology syster
follow-up of maintenance treatment for depression
nembrane toxicity theory and enviromental polluta

Investigator Name
Alfred A. Smith
Leah M. Lowewntein
S. Morris Kupchan
S. Morris Kupchail
Edward C. Heath
Amold F. Brodie Aruold F. Brodie Alvin Nason
Andere G. Morrow
Elijah Adams Elijah Adams
Myron L. Bender Kyron L. Bender
Krigitte J.W. Traylor
Brusoff Edwin D. Murphy
Henry Kamin Henry Kamin Henry A. Schroeded
Carl L. Larson Carl L. Larson
Dovid F. Waugh
John W. Porter David F. Waugh
John W. Porter
Thomas F. Gallagt Thomas F. Gallagher
Benjamin Alexander Benjamin Alexand
Bernard Saltzperg
Ceorges Unger Georges Ungar
Harold Koenig Albert T. K. Kiplan
Tsoo E. King Tsoo E. King
Arthur Cherki Arthur Cherki
Peter D. Klein
Alex B Nowik Alex B. Novikoff

Walter E. Brown | Walter E. Brown |
| :--- |
| C. Clark Cockerham | Leo T. Samuels

Peter N. Magee

Cause of death if known

 $[1999-1978] \mathrm{MD}, 1$
$[1955-198]$

$[1015-1084]$ | $[1995-19844$ | PhD, 1940 |
| :--- | :--- |
| $[1950-1984]$ | |
| PhD 1992 | |
| $1905-1955]$ | PhD, 1931 | | $[1905-1975]$ | PhD, 1942 |
| :--- | :--- |
| $[1908-1978]$ | |
| MD, 1934 | |

$[1921-1992]$	MD/PhD 19
$[1917-1989$	PhD, 1952
$[1977-1990]$	PhD, 1949

$1918-19933$	PhD, 194
(1921-196]	PhD 195
$1899-1978)$	PhD, 1930

Institation at the time of death
Thomas JJferson Univesity Medical Colleg
University of Virginia School of Medicine
University of Virginia School of Medicine
Univesitit of ofaw School of Medicine
University of Southern California Keck School of Medicine
Johns Hopkins Univesity School of Medicine
NIH/NHLBI
iversity of Maryland School of Medicine
Vorthwestern University
Yale University
Yale UUiversity
NIH
$\mathrm{NHIH} / \mathrm{NCl}$
Duke Univer
${ }^{\text {Durt }}$ Diverth Medicical School
MIT
University of Wisconsin
Albert Einstein College of Medicine of Yeshiva University AY Blood Center
University of Houston
University of Temnessee
University of Tennessee
Northwestern University
Vanderbilt University
University of Pensylvania School of Medicine
University of Pennsylvania School
Sepulveda VA Medical Center
Baylor College of Medicicine
Albert
Albert Einstein Collegege of Medicine of Yeshiva University
American Dental Association Health Foundation
University of Utah University
University of Utah
Thomas J Jefferson University Medical College

Scientific domain
ssive effects of ethan regulation of renal compensatory adaptation
chemistry of tumor-inlibibtory natural products molecular biology of tumor cells
mechanisms of oxidative energy generation in bacteria
enzyymolog of nitrate erppiration surgmical correction of obstructive subbaostic hypert mechanism of action of protexyses
aagnostic ultrasound imaging
follow-up of maintenance treatment for depression
gene mechanisms in autoimmunity and lymphoproliferation
biological oxidations in mitochondria and microsomes abnormal trace metals in cardiovascular diseases specifc and nonspecific resistance caused by t. bacilli
protein interactions and physico-chemical properties protein interactions and physico-chemical properties
regulation of lipogenesis by insulin and glucagon metabain transtomation of steridi hormones
coagulation, hemorrhage, and thrombosis electrophysiological analysisis of learningsis disabilities molecular mechanisms of blood-brain barrier dysfunction metabolism of cells infected with nuclear DNA viruses bioenergetic apparatus in heart mitochondria
role of cholinergic druys in reducing the mem role of cholinerigic drugs in reducing the memory loss
metabolism or 13 C compounds in digestive diseases
histochemical studies of the Golvigi apparatus chemistry of calcium phosphates
the statisticis of genetic systems
steroid hormone metabolism and tumorogenic action
genetic basis of carconogenesis

References

Azoulay, Pierre, Andrew Stellman, and Joshua Graff Zivin. 2006. "PublicationHarvester: An Open-source Software Tool for Science Policy Research." Research Policy 35(7): 970-974.

Azoulay, Pierre, Joshua Graff Zivin, and Gustavo Manso. 2011. "Incentives and Creativity: Evidence from the Academic Life Sciences." RAND Journal of Economics 42 (3): 527-554.

Bachrach, C. A., and Thelma Charen. 1978. "Selection of MEDLINE Contents, the Development of its Thesaurus, and the Indexing Process." Medical Informatics (London) 3(3): 237-254.

Blackwell, Matthew, Stefano Iacus, Gary King, and Giuseppe Porro. 2009. "cem: Coarsened Exact Matching in Stata." The Stata Journal 9(4): 524-546.
Callon, Michel, Jean-Philippe Courtial, and F. Laville. 1991. "Co-word Analysis as a Tool for Describing the Network of Interactions between Basic and Technological Research: The Case of Polymer Chemistry." Scientometrics 22(1): 155-205.
He, Qin. 1999. "Knowledge Discovery Through Co-Word Analysis." Library Trends 48(1): 133-159.
Jaravel, Xavier, Neviana Petkova, and Alex Bell. 2015. "Team-Specific Capital and Innovation." Working Paper, Harvard University.

Law, John, and John Whittaker. 1992. "Mapping Acidification Research: A Test of the Co-word Method." Scientometrics 23(3): 417-461.

Lin, Jimmy, and W. John Wilbur. 2007. "PubMed Related Articles: A Probabilistic Topic-based Model for Content Similarity." BMC Bioinformatics 8(423).
Névéol, Aurélie, Rezarta Islamaj Dogan, and Zhiyong Lu. 2010. "Author Keywords in Biomedical Journal Articles." AMIA Symposium Proceedings 537-541.
Whittaker, John. 1989. "Creativity and Conformity in Science: Titles, Keywords and Co-Word Analysis." Social Studies of Science 19(3): 473-496.

Wilbur, W. John. 1998. "The Knowledge in Multiple Human Relevance Judgments." ACM Transactions on Information Systems 16(2): 101-126.

[^0]: ${ }^{1}$ This stands in contrast to "paradigm shifts" (Kuhn 1970), which are exceedingly rare but garner far more scholarly attention. Bramoullé and Saint-Paul (2010) provide an equilibrium model of scientific revolutions with a Kuhnian flavor.

[^1]: ${ }^{2}$ Considerable work outside of economics has examined the evolution of scientific fields through data visualization techniques (cf. Chavalaris and Cointet (2013) for a recent example). While interesting, this work has been largely descriptive and mostly silent regarding the behavioral mechanisms that might explain the birth, fusion, split, or death of scientific fields.
 ${ }^{3}$ Unlike in economics, keywords for all publications indexed by PubMed (most of the life sciences) are assigned by staff at the National Library of Medicine and are drawn from a controlled vocabulary thesaurus. Thus, concerns about strategic or endogenous keyword choices are minimized in this setting.

[^2]: ${ }^{4}$ Though we apply the term of "superstar" to the entire group, there is substantial heterogeneity in intellectual stature within the elite sample (see Table 1).
 ${ }^{5}$ We exclude from the sample one scientist who took his own life, and a further two for whom suicide could not be ruled out. In ten other instances, the cause of death could not be ascertained from the obituaries and we contacted former collaborators individually to clarify the circumstances of the superstar's passing.

[^3]: ${ }^{6}$ The algorithm also uses as inputs title and abstract words, which are obviously selected by authors, rather than by NLM staff. However, neither the choice of MeSH keywords nor the algorithm depend on cited references contained in publications.
 ${ }^{7}$ To facilitate the harvesting of PubMed-related records on a large scale, we have developed an opensource software tool that queries PubMed and PMRA and stores the retrieved data in a MySQL database. The software is available for download at http://www.stellman-greene.com/FindRelated/.
 ${ }^{8}$ Why exactly 72 ? In fact, PMRA lists 152 "intellectual neighbors" for PubMed ID 9784122 . But once we exclude articles published after 2006 (the end of our observation period), purge from the list reviews, editorials and other miscellaneous "non-original" content, and drop a handful of articles that appeared in minor journals not indexed in Thomson-Reuter's Web of Science, the number of publications associated with this source article indeed drops to 72 . Appendix C provides more details on the rules that govern the cut-off for the number of articles returned by PMRA for any given source article.

[^4]: ${ }^{9} \mathrm{~A}$ robust social norm in the life sciences systematically assigns last authorship to the principal investigator, first authorship to the junior author who was responsible for the conduct of the investigation, and apportions the remaining credit to authors in the middle of the authorship list, generally as a decreasing function of the distance from the extremities of the list.

[^5]: ${ }^{10}$ We can assign a counterfactual year of death for each control subfield, since each control subfield is associated with a particular treated subfield through the matching procedure described above.
 ${ }^{11}$ What is required is that the trends in publication activity be comparable between treated and control subfields up until the death of the treated scientist. We verify that this is the case below.

[^6]: ${ }^{12}$ We limit ourselves to authors with relatively infrequent names. Though this may create some measurement error, there is no reason to suspect that the wrongful attribution of articles to authors will impact treated and control subfields in a differential way.
 ${ }^{13}$ We define collaboration status by looking at the authorship roster for the entire corpus of work published by the star before or in the year of death, and not only with respect to the articles of the star that belong to the focal subfield.

[^7]: ${ }^{14}$ An alternative way to measure subfield age is to date its birth year as the year during which the first related article was published. Though our main results are robust to this alternative parametrization, this is not a desirable way to proceed since it will fail to distinguish subfields that are genuinely long-established from fields that are more recent but happen to have an ancient precursor that PMRA is able to recognize.
 ${ }^{15}$ It is not possible to separately identify calendar year effects from age effects in the "within subfield" dimension of a panel in a completely flexible fashion, because one cannot observe two subfields at the same point in time that have the same age but were born in different years (Hall et al. 2007).

[^8]: ${ }^{16}$ The number of observations varies ever so slightly across columns because the conditional fixed effects specification drops observations corresponding to subfields for which there is no variation in activity over the entire observation period. This is true as well for the results reported in Tables IV through VIII.
 ${ }^{17}$ This finding is reassuring as it suggests that death events are plausibly exogenous to the course of knowledge growth and decline within a subfield. The case for exogeneity is stronger in the case of sudden death than in the case of anticipated death, a distinction that we will examine in more detail below.

[^9]: ${ }^{18}$ The event study graphs corresponding to the dynamics of funding flows are available from the authors, but also show close similarity to those displayed in Figure V.
 ${ }^{19}$ Jaravel et al. (2015) examine the wages and patenting rates for co-inventors of deceased patent inventors-not necessarily eminent ones. As they point out, an inventor must necessarily have invented a patent before the year of death of their co-inventor and is therefore more likely to have been employed at that time, even conditional on a large set of fixed effects. In our setting, it is harder to see why the subfield associated with an extinct superstar would mechanically be more active in the years prior to his/her death.

[^10]: ${ }^{20}$ Note that when we are referring to the citation distribution, we mean the vintage-specific citation distribution for the universe of articles simultaneously indexed by PubMed and the Web of Science. For example, the article by Sopko et al. highlighted on Figure C1 (in Appendix C) received 39 citations from other articles in PubMed by 2014. This puts this article above the $76^{t h}$ percentile of the citation distribution for articles published in 2002.

[^11]: ${ }^{21}$ The most salient results reported below continue to hold when analyzed separately by cause of death. However, we gain statistical power from pooling these observations, and some empirical patterns would be estimated less precisely if we chose to focus solely on observations corresponding to subfields for which the star died suddenly and unexpectedly.

[^12]: ${ }^{22}$ We verified that omitting these scientists from the sample hardly change the core results.

[^13]: ${ }^{23}$ The choice of the twenty fifth-ranked article is arbitrary, and also convenient. After purging from each subfield reviews, editorials, and articles appearing in journals not indexed by WoS, 95% of the subfields contain 25 articles or more in the period that precedes the star's death. In those rare cases where the number of articles is less than twenty-five, we choose as our measure of coherence the cardinal measure for the least-proximate article in the subfield.

[^14]: ${ }^{24}$ The clustering coefficient is based on triplets of nodes (authors). A triplet consists of three authors that are connected by either two (open triplet) or three (closed triplet) undirected ties. The clustering coefficient is the number of closed triplets over the total number of triplets (both open and closed, cf. Luce and Perry [1949]).
 ${ }^{25} \mathrm{~A}$ small caveat pertains to the measure based on the count of trainees. While the magnitudes of the coefficients are ordered in a similar way, the difference between them is not itself statistically significant.

[^15]: ${ }^{26}$ We investigated the validity of this proxy as follows. In the sample of extinct superstars, every individual with five editorials or more was an editor. In a random sample of 50 superstars with no editorials published, only one was an editor (for a field journal). Finally, among the sixteen superstars who wrote between one and four editorials over their career, we found two whose CV indicate they were in fact editors for a key journal in their field. We conclude that their appears to be a meaningful correlation between the number of editorials written and the propensity to be an editor.

[^16]: ${ }^{\mathrm{i}}$ We perform a similar exercise for scientists employed by the intramural campus of the NIH. These scientists are not eligible to receive extramural funds, but the NIH keeps records of the number of "internal projects" each intramural scientist leads. We include in the elite sample the top five percentiles of intramural scientists according to this metric.
 ${ }^{\text {ii }}$ The relevant scientific fields in the life sciences are microbiology, biochemistry, psychiatry/psychology, neuroscience, molecular biology \& genetics, immunology, pharmacology, and clinical medicine.
 ${ }^{\text {iii }}$ See Azoulay et al. (2011) for more details and an evaluation of this program.

[^17]: ${ }^{i v}$ http://www.pubmed.gov/

[^18]: v ((("waldman sa"[au] NOT (ether OR anesthesia)) OR ("waldman s"[au] AND (murad OR philadelphia[ad] OR west point[ad] OR wong p[au] OR lasseter kc[au] OR colorectal))) AND 1980:2013[dp])
 ${ }^{\mathrm{vi}}$ Lin and Wilbur (2007) report that one fifth of "non-trivial" browser sessions in PubMed involve at least one invocation of PMRA.
 ${ }^{\text {vii }}$ This is a slight exaggeration: PMRA also makes use of title and abstract words to determine the proximity of any two pairs of articles in the intellectual space. These inputs are obviously selected by authors, rather than by NLM staff. However, neither the choice of MeSH keywords nor the algorithm depend on cited references contained in publications.

[^19]: viii Available at http://ii.nlm.nih.gov/MTI/related.shtml
 ${ }^{i x}$ The effective number of related articles returned by PMRA varies between 58 and 2,097 in the sample of 3,074 source articles published by the 452 star scientists in the five years preceding their death. The mean is 185 related articles, and the median 141.

