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I. Introduction 

 

“We believe that every industrial company will become a software company.” 

- GE CEO Jeffrey Immelt, in his annual letter to GE shareholders, 2014. 
 

This paper documents a significant change in the nature and direction of invention in four 

“traditional” manufacturing industries. In autos and auto parts, aerospace and defense, medical 

devices, and pharmaceuticals, inventors and product developers are increasingly using software, 

rather than more traditional mechanical or chemical engineering, to differentiate products, 

enhance product performance, and increase user utility.   Engineers and industry experts in these 

sectors have provided anecdotal evidence of a software-biased shift in the trajectory of 

innovation, but this evidence has generally rested on a relatively small number of possibly 

unrepresentative firms and products. Using much more comprehensive patent and patent citation 

data, we present new statistical evidence showing that this software-biased shift is persistent, 

systematic, and increasingly pervasive. We also point to other indicators suggesting that this shift 

extends far beyond the boundaries of our four target industries. 

If software has indeed become an increasingly important input into the creation of new 

inventions, then firms that take advantage of this software-biased shift should become better 

innovators than their industry peers who do not. Our empirical analysis suggests this is exactly 

what has happened. Using an unbalanced panel of publicly traded firms in our four target 

industries over the period 1981-2005, we show that the firms in these industries that have taken a 

more software-intensive approach to innovation have increasingly outperformed their less 

software-intensive peers in terms of patent productivity (patents per R&D dollar) and the market 

value of their R&D investment.1We also show that the relative performance of software-

                                                
1 This is distinct from (but complementary to) the idea that the adoption and use of IT has made firms more 
productive in their manufacturing and service processes.  A large literature explores this the extent, persistence, and 
variance of this relationship across firms and countries.  Brynjolfsson and Hitt (1995) and Bloom, Sadun, and Van 
Reenen (2012) are just a few of the important papers in this literature.  For an interesting study on the impact of 
“data analytics” on firm productivity, see Brynjolfsson and McElheran (2015). 
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intensive firms improves at the same time that the software-intensity of innovation in these 

sectors grows. Using a variety of robustness checks, we demonstrate that we can exclude several 

competing explanations for the observed outperformance of the software-intensive firms. 

 Why is it that some firms were able to take advantage of this software-biased shift in 

technological change while others were not? We provide suggestive evidence that geographic 

differences in the abundance of skilled software engineers have been an important factor in 

determining sample firms’ software intensity and innovation performance. Drawing upon 

multiple data sources, we present new estimates of the numbers of IT / software engineers 

available for hire in the major national labor markets where our sample firms are based. We 

supplement these estimates with data on flows of immigrant IT professionals and the magnitude 

of offshoring of software engineering. We find large and growing asymmetries across countries 

in the endowments of software engineering human resources, providing a partial explanation for 

the differences in the software intensity of R&D that we observe in firms headquartered in 

different countries. 

This paper is structured as follows. Section II reviews research from the engineering and 

management literatures that points to a significant increase in the importance of software as an 

enabler of innovation in four “traditional” manufacturing sectors. While suggestive, this research 

tends to be somewhat anecdotal, relying heavily on the experience of a small number of firms 

and a highly selected sample of recent product development efforts. Section III presents new 

statistical evidence based on patent citation data that suggests the software-biased shift in the 

direction of technological change suggested by the engineering and managerial literatures is real, 

broad-based, and economically and statistically significant. Section IV empirically examines the 

implications of this shift in software intensity for the innovation performance of firms in the four 

manufacturing sectors that are the focus of our study. Section V discusses several possible 

explanations for the trends we observe in our data and ties them to the existing literature. Section 

VI concludes with a summary of key results and avenues for future research. 

II. The Changing Technology of Technological Change in Four Manufacturing Sectors 

A survey of the engineering literature suggests a pronounced increase in the importance of 

software for product development and innovation across a range of manufacturing industries.  In 
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this paper, we focus on automobiles and auto parts, aerospace and defense, medical devices, and 

pharmaceuticals. However, there is evidence indicating this trend extends to construction 

equipment, farm implements, IT hardware, and power generation and transmission, among other 

industries.2   

In the automotive industry, the amount of software in cars has been steadily rising over the 

past two decades, and competitive differentiation is increasingly realized through software-based 

capabilities (Grimm, 2003; Frischkorn, 2004). Up to 40% of the cost of a new vehicle is now 

determined by its electronics and software content (Shorey, 2011). This percentage is likely to 

rise further; some industry observers contend that more than 70% of all innovations in the 

contemporary automotive sector are driven by software (Grimm, 2003; Shorey, 2011). Today, 

premium cars are equipped with up to 70-80 microprocessors, connected by 5-6 internal digital 

networks (Nelson, 2004), and the latest electric vehicles such as the Chevrolet Volt rely upon 

more than 10 million lines of computer code, easily surpassing the numbers of lines of computer 

code required to run Boeing's 787 Dreamliner or the new F-35 fighter.  

In a modern passenger vehicle, software manages everything from its powertrain, fuel and 

ignition, and carbon emissions, to the car’s power antenna. As a consequence, automotive and 

auto parts companies are increasingly investing in the internal acquisition of software capabilities 

through rapid hiring of software engineers (Waterman, 2011) and are building outside 

competencies by working closely with software firms.3 Software design teams have become 

increasingly prominent decision-makers at the product design stage (Mustapic et al, 2004). The 

high degree of interest in autonomous vehicles suggests these trends have much farther to go. 

A similar trend is apparent in the aerospace and defense arena. According to many industry 

                                                
2 For a qualitative overview of the impact of these trends in farm implements and electric power, see Biba (2014) 
and Clancy (2014), respectively.  The rising importance of software in construction and mining equipment was 
verified by direct conversations with Carnegie Mellon-affiliated robotics experts and profiled in Green (2012).  See 
Arora, Branstetter, and Drev (2012) for an econometric examination of the rising role of software in IT hardware 
product development.  Our decision to focus on the four sectors examined in this paper was driven, in part, by data 
availability.  As we discuss in the paper, the limited availability of R&D expenditure data was a major constraint.   
3 Interviews with an engineer employed by a leading multinational auto parts producer indicated that this firm had 
undertaken a major investment in software capabilities, hired thousands of software engineers, and built up research 
facilities in regions as diverse as Pittsburgh (PA) and India in order to tap the right skills for its increasingly 
software-intensive approach to product development. 
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experts, the entire aviation industry has been undergoing a process of transformation away from 

dependence on traditional manufacturing towards something that “looks more like IBM and 

Microsoft with wings” (Hughes, 1998). The Boeing 777 contains 1,280 onboard processors that 

use more than 4 million lines of computer code. Blackhawk helicopters contain almost 2,000 

pounds of wire connecting the on-board computers and sensors, and experts claim that designing 

the electronic systems for this aircraft was more difficult than designing the aircraft itself. Many 

modern aircraft cannot fly without their onboard computer systems (e.g. F-16 and F-117), air 

traffic control systems are wholly dependent on software systems, and modern aircraft and 

spacecraft systems seldom work alone - they are usually part of a system of systems (Long, 

2008). While aerospace products have included embedded software at least since the 1970s, 

when digital electronics and software first came into use for onboard engine control on 

commercial aircraft (Potocki de Montalk, 1993), this trend has been quickly accelerating since 

the 1990s (Holloway and Hayhurst, 2003). As a result, software costs are major components of 

product innovation and design for large aerospace companies. Boeing, for example, has 

significantly increased the amount of money invested in software as part of more recent product 

development efforts, and outlays per product generation are now in the billions of dollars (Long, 

2012).  

Experts agree that software has also become ubiquitous in medical devices and is the source 

of critical capabilities in products ranging from digital thermometers, insulin pumps, 

pacemakers, and cardiac monitors to anesthesia machines, large ultrasound imaging systems, 

MRI scanners, chemistry analyzers, and proton beam therapy systems (Sandler et al, 2010; 

Bakal, 2011; Jones, Jetley, and Abraham, 2010). Mai-Duc (2011) reports that more than 50% of 

marketed medical devices contain software. A current state-of-the-art pacemaker contains up to 

80,000 lines of software code, while a simple infusion pump can contain upwards of 170,000 

lines of code (Jones, Jetley, and Abraham, 2010). Kahn (1991) and Holden (1986) assert that the 

trend of software utilization in medical devices and equipment has been in place at least since the 

mid-1980s when first devices with key capabilities enabled by microprocessors and controlled by 

embedded software came to market. However, the software intensity of medical devices has been 
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accelerating particularly quickly in the past decade (Wasden, 2011).4 

 As medical device manufacturers reposition themselves by bundling physical devices with 

value-added software-based features, they require an expanding array of specialized software 

skillsets (Joglekar and Rosenthal, 2003). As a consequence, these firms are increasingly forced to 

focus on software engineering and to adopt rigorous software development processes (Denger et 

al, 2007). This is particularly important because software failures are becoming one of the main 

sources of medical device recalls and litigation (Jones, Jetley, and Abraham, 2010; Mai-Duc, 

2011). Firms in the medical device industry are responding both by building closer connections 

to external software suppliers and by hiring large numbers of software engineers, while giving 

software development teams a much larger stake in the product development and strategic 

decision-making in the industry (Bakal, 2011).  

Similarly, pharmaceutical firms have also witnessed an increasing dependence on software in 

product development and innovation, predominantly in the form of bioinformatics and 

computational biology. Bioinformatics and related domains have become key tools in drug 

development, even if their deployment has not prevented an apparent decline in pharmaceutical 

research productivity (Searls, 2000).5 Computer models and simulations now play crucial roles in 

the discovery of new substances with potential therapeutic benefits. While in the early 1990s 

large drug discovery screening programs produced approximately 200,000 data points annually 

(Drews, 2000), nowadays software advances have enabled typical pharmaceutical labs to 

generate more than 100 gigabytes of data in a single day (Gassmann, Reepmeyer, and Von 

Zedwitz, 2010). As a consequence, pharmaceutical and biotechnology companies rely on 

increasingly complex algorithms and software packages to deal effectively with this proliferation 

of information (Duardo-Sanchez, Patlewicz, and Lopez-Diaz, 2008).      

In summary, technologists and industry practitioners assert that software has become an 
                                                
4 We confirmed these trends through interviews with engineering professors who have closely followed 
technological trends across a range of medical device technologies.   
5 It is important to note that, in most of our target industries, software has become increasingly embedded in the 
products themselves. However, in the pharmaceutical industry, software has significantly affected the innovation 
process but not the products. This significant difference led us to rerun our main empirical specifications without 
including pharmaceutical firms – results confirm that our main results are not qualitatively affected by the inclusion 
or exclusion of this industry. 
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increasingly crucial input into innovation and product differentiation across a wide array of 

manufacturing industries far beyond the traditional definition of electronics and information 

technology.  However, the engineering literature documenting this shift has tended to be largely 

anecdotal, relying heavily on a small sample of probably unrepresentative products and firms.  In 

the next section, we use far more comprehensive patent and patent citation data drawn from these 

industries to support these assertions, finding evidence of statistically significant trends in the 

data that are consistent with the rising importance of software as an input into invention and 

product development. 

III.  Measuring the Shift in the Technology of Technological Change  

A. Approach 

If innovation in autos and auto parts, aerospace and defense, medical devices, and 

pharmaceuticals has increasingly come to rely on software as an input into the production of new 

knowledge, then we would expect this fact to be reflected in patent data. Specifically, we should 

observe that more recent cohorts of patents generated by these industries cite software 

technologies with increasing intensity, and we would expect this to be the case even after we 

control for the changes over time in the volume of software patents.  

The use of patent citations is common in the economic and management literatures as 

researchers have used patent citations as a measure of knowledge flows for decades (Jaffe and 

Trajtenberg, 2002). Following the approach in Arora, Branstetter, and Drev (2013), which builds 

on the seminal work undertaken by Caballero and Jaffe (1993) and Jaffe and Trajtenberg (1996, 

2002), we employ a citation function model in which we model the probability that a particular 

patent p, granted in year t, cites another patent, P, granted in year T.  

In line with previous work, this citation probability is modeled as the product of an 

exponential process by which knowledge diffuses and a second exponential process by which 

knowledge becomes superseded by subsequent research. The resulting probability, Pr(p,P), is 

thus a function of the attributes of the citing patent p and the cited patent P, captured by the term 

α(p, P) below, as well as the time lag between the grant years of the two patents, (t-T): 

(1)                     Pr 𝑝,𝑃 =  𝛼 𝑝,𝑃  exp (−𝛽! 𝑡 − 𝑇 ) ∙ (1− exp −𝛽! 𝑡 − 𝑇 ) 
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All potentially citing patents and all potentially cited patents are sorted into cells 

corresponding to their patent attributes.  The measured attributes of the citing patents consist of 

the citing patent’s grant year, the primary industry of the assignee’s firm, and a binary measure 

of the patent’s technology field (software or non-software). The measured attributes of the cited 

patents consist of the cited patent’s grant year and its technology field. As a result, the expected 

number of citations from a group of citing patents with a particular set of attributes to a group of 

cited patents with a particular set of attributes can be written out as follows: 

(2)          𝐸 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛!"#$% =  𝑛!"#𝑛!"𝛼!"#$%  exp (−𝛽! 𝑡 − 𝑇 ) ∙ (1− exp −𝛽! 𝑡 − 𝑇 ) 

where the dependent variable measures the number of citations made by patents with grant 

year t, industry a and technology field b to patents with grant year T and technology field c. The 

alpha terms are multiplicative effects estimated relative to a benchmark or “base” group of citing 

and cited patents, and ntab and nTc are the counts of patents in the respective categories. 

Rewriting equation (2) gives us the Jaffe – Trajtenberg (2002) version of the citation function, 

expressing the average number of citations from one category of patents to another: 

(3)  𝑃 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛!"#$% = ! !"#$#"%!!"#$%
!!"#∙!!"

= 𝛼!"#$% ∙ exp (−𝛽! 𝑡 − 𝑇 ) ∙ (1− exp −𝛽! 𝑡 − 𝑇 )      

If we add an error term to this expression, as in equation (4) below, then we can estimate it 

using a nonlinear least squares approach. 

(4)    𝑃 𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛!"#$% = 𝛼! ∙ 𝛼! ∙ 𝛼! ∙ 𝛼! ∙ 𝛼! ∙ exp −𝛽! 𝑡 − 𝑇 ∙ 1 − exp −𝛽! 𝑡 − 𝑇 + 𝜀!"#$% 

When estimating the empirical version of equation (4), we have to also adjust for 

heteroskedasticity by weighting the observations by the square root of the product of potentially 

cited patents and potentially citing patents corresponding to a particular cell, namely 

(5)                                                         𝑤 = 𝑛!"# (𝑛!")  

B. Data 

In this analysis, we use utility patents granted by the United States Patent and Trademark 

Office (USPTO) between 1985 and 2005. To identify firms active in each of the chosen 

industries, we used the Compustat database and the North American Industry Classification 
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System (NAICS). First, we selected the top 100 publicly traded firms in each industry measured 

by the amount of sales as identified in Compustat.6 Since Compustat is skewed toward North 

American firms, we used other data sources in order to ensure coverage of important firms 

outside the United States, including Amadeus, the Development Bank of Japan's Corporate 

Finance Database, the TS2000 and FS2000 Databases from the Korean Listed Companies 

Association (KCLA), and the U.K. R&D Scorecard.7   

In the next step, we connected the identified firms to their U.S. patent portfolios using the 

updated NBER patent database.8  We only retained firms whose total number of patents between 

1981 and 2005 is at least 10 in order to make sure our sample includes firms that are active 

producers of patented inventions.9  The U.S. patent portfolios of the retained firms constitute our 

set of potentially citing patents. The set of potentially cited patents is the universe of patents 

granted by the USPTO from 1981 through 2005.  

Next, we identified software related patents, which is a perennial challenge in the empirical 

literature. In this paper, we have taken an approach similar to that of Arora, Branstetter, and Drev 

(2013). First, we generated a set of patents, granted after January 1st 1985 and before December 

31st 2005 that used a set of keywords associated with software-based technologies (e.g. 

“computer program” or “software”), as defined in Bessen and Hunt (2007). Second, we 

identified patents that fell into the narrow set of IPC categories as defined in Graham and 

Mowery (2003). We then defined the population of software patents for the purposes of this 

paper as the union of these two sets of patents. This yielded 353,038 patents, 21,752 of which 

were assigned to firms in our sample. 

As is the case in most studies that rely on patent data, our inference will need to be guided by 

                                                
6 We used sales in 2010. The choice of base year had little impact on our sample. Using sales data from 2000 or 
2005 produced a list very similar to our target firms. 
7 The lack of R&D data for firms based outside the United States was a major constraint. Our measures of R&D 
productivity require data on R&D expenditure. U.S. accounting practices require publicly traded firms to fully 
disclose their R&D expenditures, but this principle is not widely followed outside the United States. A number of 
non-U.S. firms have been excluded from our data set due to a lack of publicly available information on R&D 
expenditures.   
8 We were forced to exclude firms that do not appear in the NBER patent database from the sample. The updated 
NBER database accounts for firm mergers, acquisitions, and spin-offs through 2006, albeit with some errors and 
omissions discussed by Lerner and Seru (2015). 
9 This accounting is based on patent grant years. 
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an awareness of our data limitations. In the early years of our sample, the U.S. patent system 

operated under legal guidelines that held “pure” software inventions to be unpatentable. As that 

legal doctrine changed, the number of patented software inventions grew sharply.10  This makes it 

imperative that we directly control for the expansion in the pool of software patents over time, 

which is exactly what the citation function approach allows us to do. Our analysis relies on 

patents granted by a single authority – the USPTO – to measure invention for both the United 

States and foreign firms in our sample. However, the foreign firms in our sample tend to be 

reasonably large entities with significant sales in the United States. For that reason, we can 

expect the foreign firms in our sample to have strong incentives to protect their inventions in the 

U.S. market with U.S. patents.11 To the extent that this assumption holds, foreign firms will 

patent their more important inventions in the United States, providing us with data sufficiently 

rich to capture important changes in their technological trajectories.   

C. Results 

We first look at the descriptive results presented in Figure 1, which show a stark increase over 

time in the software intensity of innovation for firms in our sample industries. As a total, the 

share of software patents in their patent portfolios increased from 3.5% to 18% over the sample 

period, a fivefold increase. Similarly, the share of citations going to software increased threefold 

over the sample period from 4.5% to 14%, with a particularly striking increase in the period 

following the year 2000.12  Importantly, we observe the same trend when we look at the share of 

software citations coming from non-software (e.g. chemical, mechanical, and electrical 

engineering) patents. This suggests that that the observed sharp increase in the software intensity 

of innovation by our sample firms over the sample period is not entirely driven by the 

proliferation of software patents. 

[ Insert Figure 1 Here ] 

                                                
10 Graham and Mowery (2003) and Bessen and Hunt (2004) provide excellent overviews of the evolution of the 
patentability of software inventions in the United States, as well as the various approaches to defining software 
patents. 
11 U.S. patents have been used to measure inventive output in Britain (Griffith, Harrison, and Van Reenen, 2006), 
Japan (Branstetter and Sakakibara, 2002), Israel (Trajtenberg, 2001), and a number of other countries. 
12 The NBER Patent Database ends with patents granted in 2006. We are currently working to update our data set 
through 2012. Preliminary analysis based on updated patent data shows that the qualitative results identified in this 
paper continue to obtain in the years after 2012.   
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Estimation results for the patent citation functions are presented in Table I. The unit of 

analysis is an ordered pair of citing and cited patent categories. Coefficients are reported as 

deviations from the baseline category – thus a positive coefficient indicates an increased citation 

probability relative to that category, while a negative coefficient indicates a decreased citation 

probability relative to the baseline category.    

Our results indicate that newer cohorts of patented inventions in our sample industries are 

increasingly likely to cite prior patented inventions, even after controlling for increases in their 

volume. Importantly, we see that software patents are much more likely to be cited than non-

software patents. The cited software dummy in the first column is positive, large, and statistically 

significant, indicating that patents belonging to our sample firms are 21% more likely to cite 

software patents than non-software patents, controlling for the sizes of available software and 

non-software patent pools.  

Estimation results reported in the third and fourth columns further solidify the point that there 

has been a sharp increase in the likelihood of citing software patents from 1986 to 2005.13 In 

these specifications, we restrict the population of potentially cited patents to include only 

software patents. The key result is illustrated in Figure 2 below, which plots the coefficients from 

the third column of Table I, along with their 95% confidence intervals. This figure shows a 

striking increase in the propensity of non-software patents generated by our sample firms to cite 

software prior art, even controlling for the expansion of software patents that occurred over this 

period. This trend emerges in the late 1990s, and accelerates through the end of our sample 

period, displaying a timing that is almost perfectly coincident with the rising importance of 

software articulated by the industry experts and engineering studies cited in the previous section. 

We see that a non-software patent belonging to a firm in one of the industries we study in the 

year 2004 is more than three times more likely to cite a software patent than a similar patent 

granted in the year 1986, with a high degree of statistical significance. These results align closely 

with the descriptive trends reported in Figure 1. We see this as strong evidence that the trajectory 

of technological change in our sample industries has become substantially more software-

                                                
13 Because our data end with the 2006 grant year, we run into difficulties associated with the truncation in our 
citation data.  Few patents applied for in 2005 are granted by 2006.  The most recent citing grant year coefficient we 
can estimate cleanly is for 2004. 
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intensive. 

[Insert Figure 2 Here] 

In results not shown in the paper, we also run a variant of our citation function regressions 

that uses “forward” citations (citations received) instead of “backward” citations, seeking to 

measure how often the inventions of our sample firms are themselves cited by subsequent 

software inventions.   We find that newer cohorts of patents belonging to firms in our sample are 

increasingly likely to be cited by subsequent software inventions, suggesting that our sample 

firms' R&D is increasingly embedded in and relevant to software-related technologies. 

IV. Comparing Firm-Level Innovation Performance 

In the previous section, we showed that there has been a software-biased shift in the nature of 

technical change in an array of industries, especially since the mid-1990s. Can we use this 

underlying trend to explain the relative innovative performance of firms in these industries? We 

expect that firms with a higher degree of software competence will exhibit relatively better 

innovative and economic performance than firms with a lower degree of software competence. If 

software becomes more important over time, then we should expect that the performance 

difference between more and less software intensive firms has grown in recent years.  

In order to empirically explore these connections, we use two separate (but related) 

approaches: the innovation (patent) production function and the market valuation of R&D 

(Tobin’s Q) model.  

A. Innovation (Patent) Production Function	

The premise of this empirical approach is based on Pakes and Griliches (1984) and Hausman, 

Hall, and Criliches (1984). We use a log-log form of the patent production function. 

(6)                                                               𝑃!" = 𝑟!"
!𝜙!" 𝑒!"!! 

(7)                                                             where 𝜙!" = 𝑒 !!!!!  

In equation (6), 𝑃!"  are patents taken out by firm i in period t, 𝑟!"  are research and 

development expenditures, ∅!"  represent measures of innovation-sector-specific technological 
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opportunity, and 𝑆𝑊! indicates if the firm is software-intensive. In equation (7), 𝐷! represents 

patenting propensity differences across c different innovation sectors. We derive our estimating 

equation by substituting (7) into (6) and taking logs of both sides, thus yielding: 

(8)                                         ln 𝑃!" =  𝛽 ln 𝑟!" +  𝛿!𝐷!! + 𝜔𝑆𝑊! +  𝜇!" 

The error term is defined below: 

(9)                                                                 𝜇!" =  𝜉! + 𝑢!" 

We allow the error term in (9) to contain a firm-specific component 𝜉!, which accounts for the 

intra-industry firm-specific unobserved heterogeneity, as well as an 𝑖𝑖𝑑 random disturbance 𝑢!".   

While 𝑆𝑊! would be swept out in a linear model with firm fixed effects, because it is time 

invariant, we can interact 𝑆𝑊! with dummy variables corresponding to subperiods of our 1981-

2005 time frame and estimate the coefficients on the interaction terms.14  If we find that the 

coefficients on our interaction terms are statistically significant and rising over time, this would 

constitute evidence that the relative performance of firms that are software-intensive throughout 

our sample is increasing as innovation itself has become more software-intensive.  Since the 

dependent variable is a count variable, we use the negative binomial estimator developed by 

Hausman, Hall, and Griliches (1984) to estimate (8).   

B. Market Value (Tobin’s Q) and Shadow Value of R&D	

Since the late 1960s (Brainard and Tobin, 1968; Tobin, 1969), Tobin’s Q has been widely 

used to measure the relationship between a firm’s market value and the replacement value of its 

book equity. The value of Tobin’s Q is affected by both a firm’s tangible capital and its 

intangible capital. A firm’s intangible capital (stock of knowledge measured by its R&D stock) 

has been found to have a positive relationship with the market value of a firm (Griliches, 1981). 

Following Griliches’ seminal work, hundreds of academic papers in a variety of industry and 

national contexts have used a firm’s R&D stock as a measure of its intangible capital in order to 

investigate its relationship with market value.  

                                                
14 Note that the fixed effects negative binomial estimation routine supplied by STATA will estimate a coefficient, 
even on a firm-specific variable that does not change over time.  This is because the fixed effects negative binomial 
estimator is not exactly analogous to the linear version.  See Hausman, Hall, and Griliches (1984). 
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Following previous work, we assume an additively separable linear specification (Griliches, 

1981; Hall and Kim, 2000).15 Let 𝑉!" and 𝐴!" be the market value and the replacement cost of 

tangible assets of firm 𝑖 at time 𝑡, respectively. Then the relationship between the two variables 

can be written as follows: 

(10)                                                 𝑉!" 𝐴,𝐾 = 𝑞! 𝐴!" + 𝛾!𝐾!" !! 

where 𝐾!"  represents the replacement cost of the firm’s stock of knowledge, typically 

measured by stocks of R&D expenditures, 𝑞! represents the average market valuation coefficient 

of the firm’s total assets, 𝛾!  is the shadow value of the firm’s technological knowledge 

measuring the firm’s private returns to R&D, and 𝜎! determines returns of scale. Following 

standard practice in the literature, we transform the above equation by taking natural logarithms 

(e.g. Hall and Oriani, 2006) as follows: 

(11)                                     𝑙𝑛𝑉!" = 𝑙𝑛 𝑞! +  𝜎! 𝑙𝑛𝐴!" +  𝜎!𝑙𝑛 (1+ !!!!"
!!"

) 

By assuming 𝜎! equals one (constant returns to scale) and subtracting 𝑙𝑛 𝐴!" on both sides, we 

can obtain the following equation: 

(12)                                           𝑙𝑛(𝑉!"/𝐴!") = 𝑙𝑛 𝑞! + 𝑙𝑛 (1+ !!!!"
!!"

) 

Finally, we define Tobin’s Q as the ratio of the market value to the replacement cost of 

tangible assets and rewrite the equation as follows: 

(13)                                            𝑙𝑛(𝑄!") = 𝑙𝑛 𝑞! + 𝑙𝑛 [1+ 𝛾!
!!"
!!"

] 

Following Hall and Kim (2000) and Arora, Branstetter, and Drev (2013), we estimate 

equation (13) using nonlinear least squares estimators (NLS).16 In order to capture the difference 

in the market's valuation of the private returns to R&D between firms with a higher and lower 

degree of software intensity, we add software intensity dummies to the model. We also include 

time dummies to account for a secular time trend. As a robustness check, we also estimate the 
                                                
15 Our notation follows Hall and Kim (2000).  
16 Fixed effects and random effects estimators are used. For robustness checks, we estimated a linearized version of 
equation (13) using firm fixed effects.  



14 

equation using a linearized version of the model, with firm fixed effects, and, in these models, 

we can interact our time dummies with our software intensity dummies, as we did in the previous 

patent production function analysis. 

C. Data and Variables	

Sample Firms.—The procedure used to identify our sample firms was already delineated in the 

previous section (see p. 8). In the regressions reported below, we were forced to drop those firms 

for which stock market value information was not available, as well as those which lacked 

sufficient information on R&D expenditures.17 This yielded an unbalanced panel of 231 firms 

from 17 countries for patent production function analysis. For the Tobin’s Q analysis, the 

unbalanced panel data contains 154 firms from 14 countries.18  While the number of firms is not 

large, the share of global output represented by our sample firms in their respective industries is 

substantial. By the early 21st century, many of these industries had become increasingly 

consolidated, with a handful of multinational incumbents constituting a large fraction of total 

global sales.   

Software Intensity Variable.—We construct two software intensity variables to classify our 

sample firms into those who exhibit high degrees of software intensity of innovation and those 

who exhibit low degrees of software intensity. The first software intensity variable is based on 

the share of software patents in a firm’s total patent portfolio. The value of this variable equals 

the ratio of the number of software patents generated by the firm from 1981 to 2005 to the total 

number of patents generated by the firm. The second software intensity variable is constructed 

using the share of citations to software patents in total citations made by a firm’s patent portfolio. 

More precisely, it is the ratio of the number of backward citations to software patents made by 

the patents generated by the firm from 1981 to 2005 to the number of backward citations to all 

patents made by the patents generated by the firm from 1981 to 2005. Therefore, the value of this 

variable varies across firms but not over time. For Tobin’s Q analysis, we constructed both kinds 

of firm-specific software intensity variables for each of the following time periods: 1981-1988, 
                                                
17 For innovation (patent) production analysis, we drop a firm if it has less than five years of R&D flow information. 
We exclude a firm if it has less than five years of R&D stock information for Tobin’s Q analysis. Changing these 
thresholds does not change our results significantly.  
18 We are currently working to update and extend our financial data in order to expand the coverage of our Tobin’s 
Q analysis. We note that the results of our patent production function regressions do not qualitatively change if we 
restrict our set of observations to those used in the Tobin’s Q analysis. 
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1989-1996, and 1997-2005.  

At a first glance, it might seem counterintuitive to construct software intensity variables by 

averaging across time periods as opposed to simply using annual software intensity measures. 

However, this was necessary for several reasons. First, some firms do not report patent 

applications in some years. Second, firm-level software intensity measures can fluctuate 

significantly from year to year, especially for firms with limited patent output, but it is not 

reasonable to assume that these short-term fluctuations always reflect real changes in a firm’s 

innovation process. For example, if a firm applied for a software patent and a non-software 

patent in 1990, the observed share of software patents in its total annual portfolio would be 50%. 

Suppose, however, that in 1991 this same firm applied for two non-software patents and no 

software patents. Then, the observed share of software patent in that year would be 0%. Finally, 

if the firm applied only for a single software patent in 1992, then the share of observed software 

patents would be 100%. As we do not believe these annual fluctuations are necessarily reflective 

of an underlying drastic change in the software intensity of this firm’s innovation process, so we 

prefer to average software intensity measures over a longer period of time.  

In order to operationalize software intensity measures, we create a binary measure that 

classifies sample firms into two groups: (1) the above-median software intensity group and (2) 

the below-median software intensity group. For Tobin’s Q regression analysis, we also construct 

period-specific software intensity dummy variables that allow firms to switch between the two 

groups.  

Sample Firms.— Patents: Patent data were obtained from the United States Patent and 

Trademark Office (USPTO) and the National Bureau of Economic Research (NBER). The 

NBER patent database allows us to match firms with their patent portfolios through the year 

2006. For those firms that were not included in the database’s firm-assignee matching 

correspondence, we manually matched their names to patent assignee codes.  

R&D Expenditure: Annual R&D investment data were collected from several sources. 

Compustat provides most of the U.S. firms’ R&D data as well as data for some non-U.S. firms 

whose shares trade in the U.S. The R&D Scoreboard also contains R&D data for a number of top 
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global R&D companies and top UK R&D firms.19 We exploit the EDGAR database to collect 

R&D information for some firms that are not captured in Compustat or the R&D Scoreboard. 

Japanese firms’ R&D data comes mainly from the Kaisha Shiki Ho Survey database. South 

Korean firms’ data is collected from the Korea Listed Companies Association. We deflate R&D 

expenditure using several alternative deflators, checking for consistency and robustness.20 We 

found our results are not sensitive to the choice of deflator.  

R&D Stock: Following Arora, Branstetter, and Drev (2013) and others, we use the perpetual 

inventory method to calculate R&D stocks. A fifteen percent depreciation rate was used 

(Griliches, 1984; Hall, 1990).21 The initial R&D stock was calculated using the previous five 

years’ worth of R&D expenditure flows.22 In order to impute R&D expenditures in years for 

which data were unavailable, we used a linear extrapolation based on the first five years of 

available R&D expenditures.23  

Market Value: We estimate the market value of a firm by following the method proposed by 

Perfect and Wiles (1994). We define the market value as the sum of market values of the firm’s 

equity and debt. For the firms whose data is taken from Compustat, we estimated the market 

value of the firm’s equity as the sum of (1) year-close price of outstanding common shares 

multiplied by the year-close number of outstanding common shares and (2) year-close 

liquidating value of preferred capital. For the Japanese firms from the Development Bank of 

Japan (DBJ) database, we calculated the market value of the firm’s equity as the mean value of 

year-high and year-low stock prices multiplied by the number of outstanding stocks. The value 

of preferred capital was not available in DBJ database. This, however, should not cause a 

problem if the values of preferred capital are not systematically different across time and 
                                                
19 The Department for Business, Innovation & Skills (BIS) of the United Kingdom has published the data from 1991 
to 2010. The most recent year’s publication, the 2010 R&D scoreboard, contains global top 1000 R&D firms and 
UK top 1000 R&D firms.  
20 The deflators are Consumer Price Index (CPI), GDP deflator, and Producer Price Index (PPI). This paper includes 
the estimation results using CPI. The estimation results using other deflators are available from authors by request.  
21 Different depreciation rates between 10% and 30% were applied for constructing the R&D stock. This paper 
reports the estimation results using 15% depreciation. Applying the different rates did not alter our results 
significantly. The estimation results using other depreciation rates are available from the online appendix on the 
NBER working paper website at http://www.nber.org/papers/w21752. 
22 For example, R&D stock in 1990 is the sum of the R&D expenditure in 1990 and depreciated R&D expenditures 
from 1986 to 1989.  
23 For instance, assuming that R&D expenditure in 1980 is missing, we get the projected R&D expenditure in 1980 
by "backcasting" using R&D expenditure data from 1981 to 1985.  
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technology sectors (Arora, Branstetter, and Drev, 2013). We define the market value of the 

firm’s debt to be equal to the sum of long-term debt and short-term debt. For the firms from 

Compustat, we used total long-term debt and debt in current liabilities. For Japanese firms from 

the DBJ database, we used fixed liabilities as a proxy for the value of the firm’s debt.24  

Replacement Value of the Firm’s Assets: It is not easy to estimate the replacement value of a 

firm’s assets mainly because there is often no structured and active market for used capital goods. 

However, Perfect and Wiles (1994) show that replacement values calculated using different 

methods are relatively robust. In this paper, we use the book value of a firm’s total assets as a 

proxy for their replacement value.  

D. Innovation Production Function Results	

In the previous section, we showed that patented inventions in an array of manufacturing 

industries increasingly rely on software-related prior art, even after controlling for the increased 

pool of citable software patents over time. Now we go a step further and investigate how firm-

level innovation productivity is determined by a firm’s software competence (intensity). We 

have to go beyond a descriptive analysis as many factors, such as differences in R&D 

investment, can influence any observed changes in inventive output. As a consequence, we want 

to see whether firms with a higher degree of software intensity produce more patented inventions 

per dollar of R&D than firms with a lower degree of software intensity. Furthermore, in order to 

make sure differences in the quality of patented inventions between the two groups of firms are 

not driving our results, we also control for patent quality. We follow the literature and use quality 

corrections based on the number of claims found in a patent document and the number of 

forward citations that a patent receives. 

Table II presents our first set of key patent production function estimation results. The 

magnitudes of the key coefficients from the second column of Table II are graphically 

represented in Figure 3, where the bars represent how much the above-median software intensity 

firms increased their innovative productivity relative to the below-median software intensity 

firms in each period, relative to the base period of the early 1980s (1981-1985). We observe an 

increasing R&D productivity gap over time in favor of more software intensive firms across all 

                                                
24 See Perfect and Wiles (1994) for a detailed discussion of measurement error issues when using book values.  
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industries in our sample. Consistent with the notion that the importance of software as an input 

into the creation of new technology has increased in recent years, we observe the most 

significant relative patent productivity gains by above-median software intensity firms in the last 

two periods in our sample (1996-2000 and 2001-2005). These firms became 14% and 22% more 

productive than their below-median software intensity peers in the late 1990s and early 2000s.  It 

would be reasonable to expect that the R&D productivity gap between highly software intensive 

firms and their less software intensive peers has continued to widen over the past decade, and 

preliminary analysis with updated data appears to confirm this hypothesis.  

[ Insert Figure 3 Here ] 

The results reported in Table II were estimated using a negative binomial model, though our 

results are robust to the exact choice of specification.25 The first and second columns report 

regression results obtained where the total number of patents applied for by firm 𝑖 in year 𝑡 is the 

dependent variable. The third and fourth columns report regression results using the number of 

claims within firm i’s cohort of patents applied for in year t as the dependent variable. The fifth 

and sixth columns report results using the number of forward citations received by firm i’s 

cohort of patents applied for in year t as the dependent variable. The citation data set extended 

through 2010.  

The R&D productivity coefficients are very similar across the columns. They provide 

evidence that highly software-intensive firms started to produce more patents per R&D dollar 

than less software intensive firms over our sample period, without sacrificing the quality of their 

patent portfolios.26 Most of the coefficients on our key variables are statistically significant at the 

5% level. Furthermore, most of the coefficients in the recent time periods including 1996-2000 

and 2001-2005 are statistically significant at the 1% level. Random effects and fixed effects 

models produce similar estimates. This suggests that our regression results are unlikely to be 

driven by time-invariant unobserved firm-specific differences in research productivity or 

propensity to patent. We conducted separate regressions using two subsamples; U.S. firms and 

non-U.S. firms. The results from both regressions are qualitatively the same with the results in 

                                                
25 Use of a Poisson regression model yields similar coefficients.   
26 We regard the number of claims and the number of citations as proxies of the quality of the patent.  
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Table II. We also re-estimated the regressions reported in Table II, but where software intensity 

was measured by the share of patent citations made to software prior art rather than the share of 

software patents. The results obtained were qualitatively similar, showing a statistically 

significant increase in patent productivity in the later periods. Finally, we allowed both measures 

of software intensity to vary within firms over time and re-estimated our specifications, again 

obtaining results showing that the patent intensive firms become significantly more productive, 

and this result strengthens over time. All of these additional results are available from the online 

appendix.27    

As an additional robustness check, we also conducted a series of falsification estimations in 

which we replaced our firm-level metric of software intensity with alternative firm-level 

characteristics that one could possibly expect would be driving our results. We report the results 

of one such exercise in Table V, in which we estimated our base patent production function 

specification, but replaced software intensity with a measure of firm size. The key variable does 

not show any significant results, suggesting that firm size does not impact the patent productivity 

of our sample firms. This is significant as it invalidates a key alternative explanation for our 

results – namely, that larger firms are both more productive in their inventive activities and more 

software-intensive.  

E. Private Returns to R&D	

 While we have already shown that more software intensive firms exhibit increasingly 

higher R&D productivity as measured by production of patented inventions than their less 

software intensive peers, we would also like to investigate whether the R&D investment of these 

firms receives a higher valuation from equity market investors than the R&D investments of their 

less software-intensive peers. Tobin’s Q regressions allow us to do just that: establish how the 

software intensity of a firm is associated with the equity market's valuation of the private returns 

to its R&D investment. Table III reports estimation results for our base Tobin’s Q specification 

shown in equation (13) using nonlinear least squares (NLS) estimators. Figure 4 graphically 

depicts the average difference in the estimated private returns to R&D between above- and 

                                                
27 The online appendix is available at http://www.nber.org/papers/w21752. 
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below-median software intensity firms.28  In Table III and Figure 4, software intensity is inferred 

from the share of software patents in a firm’s total patents.    

[ Insert Figure 4 Here ] 

Figure 4 shows that above-median software intensity firms exhibit a higher estimated return to 

R&D investment and that this trend has accelerated in more recent time periods.29 At the 

beginning of our sample period (1981-1988), the estimated (private) return to R&D investment 

for above-median software intensity firms was not materially different from that of below-

median software intensity firms. The effects of a software biased technology shift thus did not 

become apparent until the mid-1990s. Above-median software intensity firms in this period 

(1989-1996) started exhibiting higher estimated returns to R&D investment than their below-

median software intensity peers. The difference exploded in the most recent period (1997-2005). 

This trend, which is strikingly similar to that reported by innovation production function 

estimations, shows that firms which started producing more software-intensive inventions have 

become increasingly rewarded by stock market investors with higher market valuations. 

The results of Tobin’s Q estimations are robust to a variety of robustness checks. For 

example, we estimated a linearized version of equation (13) using ordinary least squares (OLS) 

with firm-level fixed effects, and found the results using OLS/FE to be qualitatively robust. This 

is reported in Table IV. The trends in measured private returns to R&D for above-median 

software intensity firms relative to below-median firms were qualitatively similar to those 

obtained from the NLS specifications. We also replicated Table III and Table IV by running 

regressions using two subsamples; U.S. firms and non-U.S. firms. The results from both 

regressions are qualitatively the same as the results reported in Table III and Table IV. Finally, 

we re-ran the regressions in Tables III and IV, measuring software intensity with the share of 

patent citations directed to software prior art. The results are quite similar to those show in the 

paper. The results of all of these robustness checks are available from the online appendix.30  

                                                
28 It is calculated as the difference between the below-median software intensity group subtracted from above-
median software intensity group. 
29 Time periods are somewhat different from the patent production function analysis. We added additional years for 
each period because of the limited number of observations.  
30 Refer to the online appendix on the NBER working paper website. 
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V. Discussion 

Two key facts can be derived from our analysis. First, there exists robust empirical evidence 

indicating the growing importance of software-related technologies and skills for successful 

innovation in fields far beyond the traditional borders of information technology and electronics.  

Software is increasingly central to innovation in automobiles and auto parts, aerospace and 

defense, medical devices, and pharmaceuticals. Secondly, firms in these industries which rely 

less on software in their R&D activity are increasingly being outperformed by their more 

software-intensive peers in terms of their innovative activity, as measured by patents and by the 

stock market’s valuation of R&D investment. To the best of our knowledge, this is the first paper 

that documents the extent and pervasiveness of this shift. 

However, these observations lead to an obvious question: if software is so important for 

successful innovation in the more traditional manufacturing sectors that are the subject of our 

study, then why are not all firms exploiting it in equal measure? One obvious response is that 

low R&D productivity and low software intensity are both consequences of managerial failure.  

Firms with progressive managers recognize the opportunity presented by the rising importance of 

software and create capabilities within the firm that allow it to exploit this opportunity. Firms 

with less adept managers neither recognize the opportunity, nor build the capabilities necessary 

to exploit it. A stream of the recent management literature has focused on how managerial mind-

sets, formed through years of inexperience, affect the (in)ability of firms to make strategic shifts 

when firm environments change (Bettis and Hitt, 1995). In the economics literature, Nick 

Bloom, John Van Reenen, and their coauthors have shown that persistent performance 

differences across firms based in different countries could be driven by differences in 

management practices (Bloom et al., 2012; Bloom and Van Reenen, 2007, 2010). The papers 

also show that multinationals tend to bring their management practices, both good and bad, with 

them when they set up subsidiaries abroad.  Cole (2006) and Cole and Fushimi (2011) argue that 

the striking international decline of Japan’s once formidable IT industry stems from managerial 

failure – the “hardware-centric” managers of Japan’s IT firms simply could not recognize the 

software-biased shift in technological opportunity in IT, nor adapt to it. 

The prior work of Arora, Branstetter, and Drev (2013) suggests an alternative explanation for 

the relatively poor performance of Japan’s IT industry that is rooted in resource constraints.  
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These authors used statistics on university graduates by discipline and immigration by 

occupation to create a rough statistical portrait of the human resource pool available for 

employment in software and related disciplines for the U.S. and Japan. They show that Japan 

consistently lagged the U.S. in terms of human resources in this domain, and that the gap 

between the two countries widened enormously in the mid-to-late 1990s as global demand for 

this specialized human capital intensified. This dramatic widening of the human resource gap 

was driven mostly by differences in immigration, especially the entry into the U.S. labor market 

by Indian-born software professionals under the auspices of America’s H1-B visa program.31  

Data on software “offshoring” by U.S.-based and Japan-based multinationals is less 

comprehensive, but any consideration of offshoring would only widen the implied human 

resource gap. 

The current paper features data on firms based in a wider range of countries, but five of the 

most significant home bases for our sample firms are Japan, Germany, the United Kingdom, 

France, and the United States. Using data from the national statistical agencies on university 

graduates by discipline and the immigration of IT professionals, we measure the software 

engineering labor pools in Figure 5, which portrays implied “flows” of IT workers in these four 

countries and the United States. What is immediately apparent is that the U.S. has a sizable 

human resource advantage in this domain, and it widens considerably over time. Immigration 

into the U.S., especially from India, plays an important role in enlarging and maintaining this 

advantage, even in more recent years, when a statutory “quota” has limited the number of H1-B 

visas issued. Any consideration of software offshoring expands the gap even more, and any 

reasonable estimate of the “stock” of software engineers implied by these flows paints an even 

more overwhelming picture of American dominance.32   

[ Insert Figure 5 Here ] 

This suggests that firms headquartered in the United States have a “built-in” advantage in 

software-centric research. This is significant, because when we examine which firms in our 

                                                
31 See Hunt and Gauthier-Loiselle (2010) and Kerr and Lincoln (2010) for studies highlighting the important role of 
immigrants in American innovation. 
32 A discussion of the multiple sources of these data is provided in the supplementary online appendix on the NBER 
working paper website. 
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sample are in the top quartile in terms of measured software intensity, these firms are 

disproportionately American, and that is true across all four sectors that are the target of our 

current study. Foreign firms rising into the top quartile are generally large multinationals. In a 

moment, we will present evidence suggesting that foreign firms use their U.S.-based research 

labs to exploit local abundance in software talent. 

The existence of a human resource gap in favor of U.S.-based firms is not surprising. The 

U.S. has held a lead in software since the early days of computing. The leading schools of 

computer science are all located in the U.S., and America, through its H1-B visa program and 

strong historical ties to centers of Indian software activity, has been able to attract large numbers 

of foreign software workers to the U.S., even in periods when the global demand for 

professionals with these skills exceeded the supply in every country. More recently, U.S. 

multinationals have set up large software engineering centers in India, allowing them to tap this 

talent without relocating the workers. Multinationals based in other countries have followed suit, 

but with a lag, and they generally encounter greater cultural barriers.33  The managerial literature 

highlights the challenges that arise when firms seek to do strategically significant R&D abroad 

(Anchordoguy, 2000).34  

 Of course, not all the software engineers who graduate or immigrate into these various 

national labor markets are employed in new product development, nor are all of these engineers 

capable of paradigm-shattering innovation. The point we are making is that a larger resource 

pool can ease the constraints on the productivity of the top tier of software engineering talent. 

Large software engineering projects are labor-intensive, and tend to require a "pyramid" of 

software engineering talent, with very highly trained software architects at the apex of the 

pyramid, and large numbers of more narrowly trained programmers at the lower levels.  In the 

sense that trade economists use the term, the U.S. is relatively abundantly endowed in nearly all 

tiers of software engineering talent, relative to the other major industrial economies. We posit 

that firms around the world are seeking to become more software-intensive, and that firms in the 
                                                
33 Language barriers can also play a role in hiring foreign software engineers. These issues appear to constrain the 
ability of firms headquartered in some European countries (Germany, Norway and the Netherlands) to recruit highly 
skilled foreign workers (McLaughlan and Salt, 2002). 
34 Jaffe, Trajtenberg, and Henderson (1993) find that national boundaries limit knowledge spillovers.  Branstetter 
(2006) finds that Japanese FDI facilitates knowledge spillovers between U.S. and Japanese inventors, but the impact 
is limited.   
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U.S. face lower barriers in doing so. The highly uneven geographic distribution of key human 

resources helps generate the differences in software intensity across firms captured in our data.  

From the perspective of our sample firms, these differences are at least partly exogenous. This 

line of reasoning suggests an empirical test which can help us distinguish between an explanation 

of our results based on managerial failure and one based on geographically variant resource 

constraints.   

If we believed our results were primarily driven by cross-firm (but geography-independent) 

differences in firms’ ability to identify and take advantage of the software-biased technology 

shift, then we would expect to find that firms vary in how software intensive their inventions are, 

but we would not necessarily expect to find large differences in the software intensity of R&D 

conducted by the same firm in different geographic regions. If, however, we believe that 

geographic differences in the abundance of affordable skilled software labor have been a major 

factor producing variation in software-intensity across firms, then we would expect to find that 

firms strategically allocate software intensive inventive activities to those regions where skilled 

software labor is most abundant.  

Figure 6 below presents the results of such an exercise, where we use sample firms’ U.S. 

utility patents drawn from the years 1981 through 2005. Pooling across all of our sample 

industries, we find stark differences in software intensity of patented inventions across regions. 

While U.S. firms in our sample conduct significantly more software intensive innovation at 

home than abroad, the exact opposite is true for Japanese and European firms. When European 

firms invent at home, for example, the share of software patents in their patent portfolios is only 

about 6%. However, when these same firms conduct innovation abroad, which is primarily in the 

United States, this share rises to about 19%, even surpassing the share of software patents in the 

patent portfolios of US firms inventing at home (13%). Further disaggregation of the data by 

industry and location of foreign R&D supports the view that local human resource abundance 

has a significant impact on the software intensity of multinational R&D. We get a similar picture 

if we measure software intensity by patent citations to software prior art. 

[ Insert Figure 6 Here ] 

We close this section with an anecdote from our own hometown. In recent years, the German 
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auto parts giant Bosch has set up a research facility in the Pittsburgh area – principally motivated 

by the desire to tap into Carnegie Mellon’s software engineering expertise. In personal 

interviews with some of the managers of this facility, we learned that Bosch’s Pittsburgh 

research facility is just one small part of a major effort by the firm to acquire the software 

engineering capability that it feels will be essential to its continued competitiveness in auto parts 

and components. Bosch has set up another software-focused research facility near Stanford and 

has a major development center in India. Back in the early 1990s, according to our source, the 

“fuel injection” business unit employed about 7,000 R&D personnel worldwide, of whom only 

about 150 (2.1%) were software engineers. By the mid-2000s, total global R&D personnel had 

risen to 11,000, and about 5,000 of these were software engineers (45%). By 2011, Bosch’s fuel 

injection unit employed 4,500 software engineers in India alone. Bosch did not let its German 

home base prevent it from acquiring the necessary capabilities, but it had to venture quite far 

from that home base in order to do so, hiring a nontrivial number of U.S.-based and India-based 

researchers in the process.   

Of course, software is not the only important capability required for successful product 

development in auto parts or in any of the other industries we examine in this paper, and the 

proximity of American firms to the world’s best software engineering labor pool does not 

guarantee the success of individual American producers. The struggles of the American auto 

industry in adapting their relatively fuel-inefficient product line to the oil shock of the mid-2000s 

provides a useful counterexample. In addition, our analysis focuses on innovation and new 

product development – it says nothing about the prospects for the United States as a 

manufacturing location or its prospects as an exporter of manufactured goods. Nevertheless, 

other things being equal, America’s relative abundance in software engineering, which was 

achieved and maintained, in large part, due to a relatively open immigration regime, has been a 

source of advantage for U.S.-based firms, and it has also served as a magnet for FDI by 

knowledge-intensive foreign firms. The trends visible in our preliminary analysis of data through 

2012 suggest that this advantage will become more important, not less, in the foreseeable future.  

VI. Conclusions, Implications, and Next Steps 

This paper documents the existence of a software-biased shift in the direction and nature of 

technological change across a range of manufacturing industries far beyond the traditional 
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boundaries of information technology and electronics.  An emerging research stream in the 

engineering and product development literatures suggests the existence of this shift in 

automobiles and auto parts, aerospace and defense, medical devices, and pharmaceuticals, but 

much of this evidence is anecdotal, based on comparisons of small and possibly unrepresentative 

samples of recent products and components. Drawing upon standard patent citation analysis 

methods, a broad sample of important firms in these industries, and comprehensive data on the 

U.S. patent grants awarded to these firms, we find strong statistical evidence for the growing 

importance of software-related technologies for successful innovation in this diverse array of 

non-IT sectors. To the best of our knowledge, this is the first paper in the economics literature 

that provides detailed empirical evidence for the existence of this important technology trend.  

Next, using a panel of the largest publicly traded firms in these industries in the period from 

the early 1980s to the mid-2000s, we show that firms which draw more upon software-related 

technologies in their inventive activity are increasingly outperforming their less-software 

intensive peers. This widening gap is evident both when we investigate the average patent 

productivity of R&D and when we examine equity market investors' valuations of the firms' 

R&D investments.  

Finally, our paper explores the connection between the measured software intensity of our 

sample firms and the relative availability of specialized human resources in different national 

labor markets. Firms in the highest quartile of measured software intensity are disproportionately 

American. Using publicly available data on university graduates by discipline and immigrants by 

occupational category, we document large, persistent, and growing differences in the availability 

of software engineering human resources across the economies that are the most important home 

markets of our sample firms. The U.S., which has always been relatively abundant in software 

related human resources, has significantly expanded its advantage over our sample period. The 

presence within our data set of firms conducting R&D in multiple countries allows us to further 

explore the connection between local software engineering human resource abundance and the 

nature and direction of multinational R&D. We find that U.S. multinationals do significantly less 

software-intensive R&D in Europe and Japan than they do at home, whereas the opposite obtains 

for European and Japanese multinationals. This provides additional evidence for the notion that 

differences in measured software intensity are at least partly driven by labor market constraints.  
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However, more work is certainly needed to fully determine the causal mechanisms underlying 

our results. 

Taken together, our results may provide some interesting implications for the literature on the 

economics of innovation, for managers, and for policymakers. First, the nature of technological 

change has shifted in ways that the economics literature -- and perhaps some managers -- have 

not yet recognized. While a full assessment of the active and sometimes acrimonious debate over 

the appropriateness of software patents is beyond the scope of this paper, our results suggest that 

patented software technology is an increasingly central input into the creation of new products 

across a wide range of industries. The growing centrality of software may suggest the need for 

caution in any movement to narrow or restrict the ability of software inventions to benefit from 

patent protection, much less any movement to abolish software patents altogether. Second, the 

rise of software as an innovation enabler across the manufacturing space raises the salience of 

the highly skewed distribution of software human resources across national labor markets and 

highlights the importance of high levels of in-migration of software engineers into the U.S. in 

maintaining the competitiveness of U.S. firms in innovation and new product development.  

Arora, Branstetter, and Drev (2013) suggested that this was a key factor in driving the 

competitive resurgence of the U.S. IT industry (and the striking competitive decline of the 

Japanese IT industry) in recent years. The current paper’s results suggest that the impact of 

software extends much farther, into industries typically thought of as rather distant from IT.  

Ending legislative barriers that currently prevent even higher levels of in-migration of foreign 

software engineers would likely have benefits that extend far beyond the boundaries of the 

conventionally defined IT industries.   

Ongoing research efforts seek to expand our data set in breadth and time. We are currently 

updating our patent data to include patents granted through 2012. Preliminary analyses suggests 

that the trends documented herein have continued (and strengthened) in more recent years, but 

further confirmation must await a careful accounting of the mergers, acquisitions, divestitures, 

and new entry that has occurred in our sample industries. Our econometric approach requires 

data on R&D expenditure, which has proved challenging to obtain for firms located outside the 

U.S. and the U.K., where current accounting standards require disclosure of “material” levels of 

R&D expenditure. We are continuing our efforts to expand the set of firms for which we have 
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reasonably high quality R&D data, and we are also expanding the set of firms for which we have 

the full set of financial variables required for the calculation of Tobin’s Q. Finally, it is apparent 

that the general trend towards more software-intensive innovation extends far beyond the 

industries we have yet studied, and we are currently investigating the possibility of extending our 

analysis further. As is always the case in economics, more work remains to be done. 
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FIGURE 1:  SOFTWARE INTENSITY OF PATENT PORTFOLIOS OF FIRMS ACTIVE IN FOUR MANUFACTURING INDUSTRIES – 

(1) SHARE OF SOFTWARE PATENTS, (2) TOTAL SHARE OF CITATIONS DIRECTED AT SOFTWARE PATENTS, AND (3) 
SHARE OF CITATIONS DIRECTED AT SOFTWARE PATENTS BY NON-SOFTWARE PATENTS 

 

 

FIGURE 2: PROPENSITY OF NON-SOFTWARE PATENTS IN FOUR MANUFACTURING INDUSTRIES TO CITE PRIOR PATENTED 
SOFTWARE ART 
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FIGURE 3: AVERAGE PATENT PRODUCTIVITY DIFFERENCE BETWEEN ABOVE-MEDIAN AND BELOW-MEDIAN 
SOFTWARE INTENSIVE FIRMS 

 

  

FIGURE 4: AVERAGE DIFFERENCE IN STOCK MARKET'S VALUATION OF R&D INVESTMENT BETWEEN ABOVE- AND 
BELOW-MEDIAN SOFTWARE INTENSITY FIRMS 
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FIGURE 5:  ICT HUMAN RESOURCES IN THE U.S., JAPAN, GERMANY, THE U.K., AND FRANCE / INFLOWS OF NEW 

WORKERS BY YEAR 

  
FIGURE 6: SOFTWARE INTENSITY OF PATENTED INVENTIONS (SHARE OF SOFTWARE PATENTS), BY GEOGRAPHY OF 

INVENTION AND COUNTRY OF OWNERSHIP - US, EU AND JAPAN 
Note:  In this figure, the different shades denote patents assigned to MNCs headquartered in the U.S., Japan, and the EU, respectively.  The first 

three columns show the relative software intensity of inventions taken out by U.S., Japanese, and EU firms where the inventor location is in the 

U.S.  The next three columns denote inventor location in Japan.  The last set of columns denote patents invented in the EU. 
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Table I: Citation Function Results 

  

Full Model Citations from NSW to SW Citations from SW to SW 

Column 1 Column 2 Column 3 Column 4 

Coefficient Std.Error Coefficient Std.Error Coefficient Std.Error Coefficient Std.Error 

Citing Grant Year                 

1987 0.187 0.281 0.658* 0.255 -0.0567 0.244 0.756*   0.379 

1988 0.147 0.249 0.295 0.191 0.145 0.258 0.291    0.268 

1989 0.248 0.249 0.513* 0.204 0.116 0.234 0.510    0.287 

1990 0.288 0.240 0.748*** 0.220 0.207 0.236 0.760*   0.312 

1991 0.214 0.213 0.534** 0.182 0.0673 0.199 0.487    0.250 

1992 0.289 0.210 0.578*** 0.175 0.0983 0.191 0.489*   0.234 

1993 0.385 0.209 0.518** 0.158 0.179 0.191 0.379    0.204 

1994 0.551* 0.215 0.662*** 0.160 0.302 0.195 0.464*   0.201 

1995 0.831*** 0.231 0.972*** 0.174 0.451* 0.200 0.707**  0.215 

1996 0.996*** 0.229 1.225*** 0.179 0.406* 0.181 0.918*** 0.222 

1997 1.143*** 0.221 1.435*** 0.179 0.622** 0.189 1.083*** 0.223 

1998 1.310*** 0.212 1.384*** 0.160 0.656*** 0.175 0.948*** 0.193 

1999 1.583*** 0.208 1.505*** 0.156 0.748*** 0.170 0.950*** 0.185 

2000 2.380*** 0.230 2.016*** 0.166 1.624*** 0.211 1.251*** 0.194 

2001 2.834*** 0.222 2.659*** 0.177 1.605*** 0.194 1.746*** 0.210 

2002 3.308*** 0.209 3.146*** 0.183 2.067*** 0.202 2.021*** 0.220 

2003 4.093*** 0.203 3.694*** 0.193 2.490*** 0.209 2.279*** 0.233 

2004 5.128*** 0.209 5.109*** 0.226 3.173*** 0.235 3.424*** 0.281 

Cited Grant Year                 

1986 -0.0473 0.048 -0.102** 0.033 -0.140* 0.060 -0.110*   0.048 

1987 -0.0683 0.049 -0.120*** 0.034 -0.183** 0.057 -0.116*   0.049 

… … … … … … … … … 

2003 -0.933*** 0.018 -0.969*** 0.007 -0.953*** 0.016 -0.968*** 0.011 

2004 -0.956*** 0.021 -0.982*** 0.009 -0.968*** 0.021 -0.981*** 0.015 

Citing patent: Firm industry                 

Aerospace and Defense 0.248*** 0.030 0.115*** 0.020 0.0916* 0.037 0.0883**  0.029 

Medical Devices 1.322*** 0.047 0.476*** 0.026 0.806*** 0.052 0.235*** 0.035 

Pharmaceutical -0.128*** 0.025 -0.412*** 0.018 -0.504*** 0.028 -0.516*** 0.026 

Software Patent                 

Citing from Software Patent     -0.156*** 0.031         

Cited Software Patent 0.209*** 0.020 -0.252*** 0.034         

Citing from Software Patent 

X 

Cited Software Patent 

    5.870*** 0.106         

Obsolescence 0.297*** 0.012 0.340*** 0.008 0.310*** 0.013 0.340*** 0.012 

Diffusion 4.35E-6*** 1.03E-06 8.29E-6*** 1.34E-06 6.15E-6*** 1.50E-06 6.89E-5*** 1.57E-05 

Adj R-Squared 0.913 0.859 0.893 0.908 

Number of Obs 1680 3360 840 840 

The data for regression estimations presented in this table are drawn from the CASSIS patent database maintained by the United 
States Patent and Trademark Office and from the NBER Patent Data Project database. Regression specifications are estimated in 
STATA using the nonlinear least squares algorithm. The dependent variable is an empirical measure of the probability a citing 
patent with given attributes cites a cited patent with a particular set of attributes. All presented coefficients are relative to base 
categories, which are the following: citing patent grant year = 1986, cited patent grant year = 1985, citing firm industry = 
“Automobiles." The rest of the base categories are model specific. * p<0.10, ** p<0.05, *** p<0.01 
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Table II: Innovation (Patent) Production Function Regressions, Negative Binomial, 

Random Effects and Fixed Effects 

Dependent Variable 
Number of Patents Number of Claims Number of Citations 

NB: RE NB: FE NB: RE NB: FE NB: RE NB: FE 

  (1) (2) (3) (4) (7) (8) 

Log R&D 
0.0851*** 0.0582*** 0.183*** 0.165*** 0.173*** 0.155*** 

(0.0132) (0.0134) (0.0107) (0.0110) (0.0112) (0.0116)    

Software Intensity 

Dummy 

-0.315*** -0.302*** -0.245** -0.255** -0.201* -0.204*   

(0.114) (0.116) (0.119) (0.120) (0.117) (0.118)    

Software Intensity 

Dummy * 1986-1990 

0.306** 0.320** 0.366** 0.379*** 0.372*** 0.385*** 

(0.128) (0.129) (0.143) (0.143) (0.136) (0.136)    

Software Intensity 

Dummy * 1991-1995 

0.350*** 0.369*** 0.268** 0.274** 0.295** 0.304**  

(0.122) (0.123) (0.135) (0.135) (0.129) (0.129)    

Software Intensity 

Dummy * 1996-2000 

0.431*** 0.446*** 0.374*** 0.374*** 0.381*** 0.393*** 

(0.116) (0.117) (0.129) (0.129) (0.125) (0.125)    

Software Intensity 

Dummy * 2001-2005 

0.506*** 0.524*** 0.450*** 0.461*** 0.322** 0.335**  

(0.121) (0.121) (0.132) (0.133) (0.131) (0.131)    

1986-1990 
-0.116 -0.104 -0.197* -0.191* -0.211** -0.207*   

(0.0989) (0.0995) (0.112) (0.112) (0.107) (0.107)    

1991-1995 
-0.00535 0.0192 -0.00211 0.0169 -0.0830 -0.0679    

(0.0941) (0.0946) (0.105) (0.105) (0.101) (0.101)    

1996-2000 
0.375*** 0.410*** 0.462*** 0.494*** 0.0544 0.0778    

(0.0909) (0.0915) (0.101) (0.101) (0.0986) (0.0988)    

2001-2005 
-0.240** -0.197** -0.269*** -0.245** -0.992*** -0.963*** 

(0.0956) (0.0963) (0.104) (0.104) (0.104) (0.104)    

Industry Dummies Yes Yes Yes Yes Yes Yes 

Number of Obs 3935 3924 3935 3924 3935 3924    

The software intensity is based on the share of software patents. The patent-related data for regression estimations presented in 
this table are drawn from the CASSIS patent database maintained by the United States Patent and Trademark Office and from the 
NBER Patent Data Project database. Firm-level R&D data are collected from Compustat database, Edgar database, Amadeus 
database, the Kaisha Shiki Ho Survey database, R&D scoreboard, TS 2000 database (the Korea Listed Companies Association), 
and firm annual reports. * p<0.10, ** p<0.05, *** p<0.01
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Table III: Tobin’s Q regressions, Nonlinear Least Squares, 1981-2005 

lnQ 
Full Sample 1981-1988 1989-1996 1997-2005 

NLS NLS NLS NLS 

          

RD/Assets 
-0.0938* -0.0257 -0.134* 0.0969    

(0.0562) (0.187) (0.0789) (0.0768)    

RD/Assets * 0.822*** 0.152 0.392** 1.777*** 

 Software Intensity (0.142) (0.298) (0.163) (0.317)    

Software Intensity 
-0.259*** -0.606*** -0.162*** -0.256*** 

(0.0435) (0.0801) (0.0572) (0.0667)    

Industry Dummies Yes Yes Yes Yes 

Year Dummies Yes Yes Yes Yes 

Number of Obs 2363 371 732 1260    

Adj R-Squared 0.417 0.488 0.420 0.507    

The software intensity is based on the share of software patents. The patent-related data for regression estimations presented in 
this table are drawn from the CASSIS patent database maintained by the United States Patent and Trademark Office and from the 
NBER Patent Data Project database. Firm-level R&D data are collected from Compustat, Edgar, Amadeus, the Kaisha Shiki Ho 
Survey database, R&D scoreboard, TS 2000 database (the Korea Listed Companies Association), and firm annual reports. Other 
firm-level financial data (such as assets, long-term debt, short-term debt, the number of stocks and the price of stocks) are drawn 
from Compustat, the Development Bank of Japan (BDJ) database, and the TS 2000 (the Korea Listed Companies Association). * 
p<0.10, ** p<0.05, *** p<0.01 

Table IV: Tobin’s Q regressions, OLS with Firm Fixed Effects, 1981-2005 

lnQ 
Full Sample 1981-1988 1989-1996 1997-2005 

OLS/FE OLS/FE OLS/FE OLS/FE 

          

RD/Assets 
-0.297* 1.633* -0.222 -0.147    

(0.178) (0.951) (0.288) (0.108)    

RD/Assets * 0.250 -1.218 0.634 0.611*** 

 Software Intensity (0.253) (1.016) (0.398) (0.213)    

Year Dummies Yes Yes Yes Yes 

Number of Obs 2363 371 732 1260    

Adj R-Squared 0.096 0.093 0.026 0.012    

The software intensity is based on the share of software patents. The data for the estimations presented in this table are drawn 
from the CASSIS patent database maintained by the United States Patent and Trademark Office and from the NBER Patent Data 
Project database. Firm-level R&D data are collected from the Compustat, EDGAR, the Kaisha Shiki Ho Survey database, R&D 
scoreboard, TS 2000 database (the Korea Listed Companies Association), and firm annual reports. Other firm-level financial data 
(such as assets, long-term debt, short-term debt, the number of stocks and the price of stocks) are drawn from Compustat 
database, the Development Bank of Japan (BDJ) database, and the TS 2000 database (the Korea Listed Companies Association). 
* p<0.10, ** p<0.05, *** p<0.01 
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Table V: Falsification Regressions, Negative Binomial, Random Effects and Fixed Effects 

Dependent Variable 
Number of Patents Number of Claims Number of Citations 

NB: RE NB: FE NB: RE NB: FE NB: RE NB: FE 

  (1) (2) (3) (4) (7) (8) 

              

Log R&D 
0.0546*** 0.0355** 0.0661*** 0.0511*** 0.0834*** 0.0683*** 

(0.0142) (0.0145) (0.0123) (0.0126) (0.0129) (0.0134)    

Firm Size Dummy 
-0.123 -0.258** 0.0835 0.0178 0.0820 0.00407    

(0.121) (0.121) (0.119) (0.119) (0.112) (0.112)    

Firm Size Dummy * 

1986-1990 

-0.0869 -0.0924 -0.0625 -0.0638 0.0456 0.0437    

(0.124) (0.122) (0.131) (0.131) (0.115) (0.114)    

Firm Size Dummy * 

1991-1995 

-0.175 -0.195* -0.149 -0.169 -0.113 -0.132    

(0.119) (0.118) (0.125) (0.125) (0.112) (0.111)    

Firm Size Dummy * 

1996-2000 

-0.121 -0.158 -0.0660 -0.103 0.118 0.0834    

(0.116) (0.114) (0.121) (0.121) (0.111) (0.110)    

Firm Size Dummy * 

2001-2005 

-0.356*** -0.379*** -0.256** -0.274** -0.0910 -0.0796    

(0.119) (0.118) (0.123) (0.123) (0.119) (0.119)    

1986-1990 
0.217** 0.230** 0.271** 0.278** 0.128 0.132    

(0.106) (0.104) (0.111) (0.110) (0.0982) (0.0968)    

1991-1995 
0.316*** 0.347*** 0.412*** 0.437*** 0.184* 0.208**  

(0.102) (0.0996) (0.105) (0.104) (0.0949) (0.0936)    

1996-2000 
0.554*** 0.606*** 0.745*** 0.784*** -0.0442 0.00101    

(0.100) (0.0979) (0.103) (0.102) (0.0950) (0.0939)    

2001-2005 
0.307*** 0.355*** 0.476*** 0.509*** -0.990*** -0.966*** 

(0.103) (0.101) (0.105) (0.104) (0.101) (0.100)    

Industry Dummies Yes Yes Yes Yes Yes Yes 

Number of Obs 3206 3205 3206 3205 3206 3205    

Sales data are used to define firm’s size. Firm size dummy is defined as one if the firm’s sale is above median. The average value 
of sales from 1996 to 2005 is calculated because of the following reasons: (1) some firms have missing sales value in the 1980s 
and (2) sales tend to increase over time. The regression results using the average value of sales from 1981 to 2005 are 
qualitatively identical. The results are available from the authors by request.  * p<0.10, ** p<0.05, *** p<0.01 


