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1 Introduction

The economics literature is replete with models that assume independent random matching

among a continuum of agents.1 Agents in these models are usually motivated to focus their

searches toward those types of counterparties that offer greater gains from interaction, or toward

those types that are less costly to find. However, there has been no demonstration of a model

of independent2 directed random matching supporting the common appeal to a law of large

numbers, by which the realized quantity of matches of a given pair of types is supposed to be

equal to the corresponding expected quantity.3

We fill this gap by providing rigorous foundations for independent random matching

that is “directed,” in the sense that the probability qkl that an agent of type k is matched to

an agent of type l can vary with the respective types k and l, from some type space S. We

first show, in Theorem 1, the existence of directed random matching in which counterparty

types are independent across agents. It follows from the exact law of large numbers that the

proportion of type-k agents matched with type-l agents is almost surely pkqkl, where pk is

the proportion of type-k agents in the population. By allowing the matching probabilities

{qkl}k,l∈S to depend on the underlying cross-sectional type distribution p, we also encompass

the “matching-function” approach that has frequently been applied in the labor literature,

as surveyed by Petrongolo and Pissarides (2001) and Rogerson, Shimer and Wright (2005), as

well as over-the-counter trading models, as in Maurin (2015).

In typical dynamic settings for random matching, once two agents are matched, their

types change according to some deterministic or random rule. For example, when an unem-

ployed worker meets a firm with one vacant job, the worker changes her type to “employed.”

Random mutation of agent types is also a common model feature, allowing for shocks to pref-

erences, productivity, or endowments.4

In practice, and in an extensive part of the literature, once a pair of agents is matched,

they may stay matched for some time. Typical examples include the relationships between

employer and employee, or between two agents that take time to bargain over their terms

of trade.5 In this paper, we develop the first mathematical model for independent random

1Hellwig (1976) is the first, to our knowledge, to have relied on the effect of the exact law of large
numbers for random pairwise matching in a market. Other examples include Binmore and Samuelson
(1999), Currarini, Jackson and Pin (2009), Duffie, Gârleanu, and Pedersen (2005), Green and Zhou (2002),
Kiyotaki and Wright (1989), Lagos and Rocheteau (2009), Vayanos and Weill (2008), and Weill (2007).

2In this context, independence is in general viewed as a behavioral assumption. That is, when agents conduct
searches without explicit coordination, it is reasonable to assume independence.

3Previous work by Duffie and Sun (2007, 2012) considers only the case of “un-directed” search, in the sense
that when a given agent is matched, the paired agent is drawn uniformly from the population of other agents to
be matched.

4See, for example, Duffie, Gârleanu, and Pedersen (2005) and Lester, Postlewaite and Wright (2012).
5See, for example, Acemoglu and Wolitzky (2011), Andolfatto (1996), Diamond (1982),
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matching that allows the potential for enduring partnerships by introducing a per-period type-

dependent break-up probability for matched agents.

We present a model of independent dynamic directed random matching that incorpo-

rates the effects of random mutation, random matching with match-induced type changes, and

with the potential for enduring partnerships. The agents’ types are shown to be independent

discrete-time Markov processes. By the exact law of large numbers, the multi-period cross-

sectional distribution of agents’ types is deterministic. For the special time-homogeneous case,

we obtain a stationary joint cross-sectional distribution of agent types, incorporating both

unmatched agent types and pairs of currently matched types. Many previously studied search-

based models of money, over-the-counter financial markets, and labor markets have relied on

the properties that we demonstrate for the first time.6

We illustrate the potential applications of our model of directed random matching with

four examples taken, respectively, from Duffie, Malamud and Manso (2014) in financial eco-

nomics; Kiyotaki and Wright (1989) and Matsuyama, Kiyotaki and Matsui (1993) in monetary

economics; and Andolfatto (1996) in labor economics. These examples7 show how our model

can be used to provide rigorous foundations for matching models that are commonly used in

the respective literatures.

The remainder of the paper is organized as follows. In Section 2, we describe an in-

dependent static directed random matching model. We present the corresponding existence

result along with an application to a typical random-matching model used in finance. In order

to capture the effect of enduring partnerships, we must consider the separate treatments of

existing matched pairs of agents and newly formed matched pairs of agents. In other words, we

need to keep track of agents and their matched partners at each step (mutation, matching and

type changing), in every time period. This extension of dynamic directed random matching

to the case of enduring partnerships is considerably more difficult to analyze than the case

in which the matched agents break up immediately. Its exposition is therefore postponed to

Appendix A. In Section 3, we treat the relatively simpler case of a dynamical system with

random mutation, directed random matching, match-induced type changing, but without en-

during partnerships. This section includes results covering the existence and exact law of large

numbers for a dynamical system with Markov conditional independence as well as applications

to some matching models in monetary economics.

The major part of the proofs for our results make extensive use of tools from nonstandard

Mortensen and Pissarides (1994), Tsoy (2014), and the references in the surveys of Petrongolo and Pissarides
(2001) and Rogerson, Shimer and Wright (2005).

6The earlier results of Duffie and Sun (2007, 2012) address only the case of “un-directed” search with time-
homogeneous parameters and without enduring partnerships.

7See Examples 1, 2, 3, and Subsection A.5 below.
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analysis.8 Proofs are located in Appendix B. Section 4 offers some concluding remarks.

2 Static Directed Random Matching

This section begins with some mathematical preliminaries. Then a static model of directed

random matching is formally given in Subsection 2.2. Here, we present the exact law of large

numbers and the existence of independent directed random matching. Finally, in Subsection

2.3, we show how to interpret our results so as to provide rigorous probabilistic foundations

for the notion of a “matching function” that is commonly used in the search literature of labor

economics.

2.1 Mathematical preliminaries

Let (Ω,F , P ) be a probability space. An element of Ω is a state of the world. A measurable

subset B of Ω (that is, an element of F) is an event, whose probability is P (B). The agent

space is an atomless probability space (I,I, λ). An element of I represents an agent. The mass

of some measurable subset A of agents is λ(A). Because the total mass of agents is 1, we can

also treat λ(A) as the fraction of the agents that are in A. As noted in Proposition 2, I could

be taken to be the unit interval [0, 1], I an extension of the Lebesgue σ-algebra L, and λ an

extension of the Lebesgue measure.

While a continuum of independent random variables, one for each of a large population

such as I, can be formalized as a mapping on I × Ω, such a function can never be measurable

with respect to the completion of the usual product σ-algebra I ⊗F , except in the trivial case

in which almost all of the random variables are constants.9 As in Sun (2006), we shall therefore

work with an extension of the usual product probability space that retain the crucial Fubini

property
∫

I

∫

Ω
f(i, ω) dP (ω) dλ(i) =

∫

Ω

∫

I

f(i, ω) dλ(i) dP (ω),

for any correspondingly integrable function f on the underlying extended product probability

space. To reflect the fact that such an extended product probability space has (I,I, λ) and

(Ω,F , P ) as its marginal spaces, as required by the Fubini property, it will be denoted by

(I × Ω,I ⊠ F , λ⊠ P ).10

The Fubini extension could include a sufficiently rich collection of measurable sets to

allow applications of the exact law of large numbers that we shall need. An I ⊠F-measurable

function f will be called a “process,” each fi will be called a random variable of this process,

and each fω will be called a sample function of the process.

8The reader is referred to the first three chapters of Loeb and Wolff (2015) for basic nonstandard analysis.
9See, for example, Proposition 2.1 in Sun (2006).

10For a formal definition, see Definition 2.2 in Sun (2006).
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2.2 Static directed random matching

We follow the notation in Subsection 2.1. Let S = {1, 2, . . . ,K} be a finite space of agent types

and α : I → S be an I-measurable type function, mapping individual agents to their types.

For any k in S, we let pk = λ({i : α(i) = k}) denote the fraction of agents of type k. We can

view p = (pk)k∈S as an element of the space ∆ of probability measures on S. Because (I,I, λ)

has no atoms, for any type distribution p ∈ ∆, one can find an I-measurable type function

with distribution p.

A function q : S × S → R+ is a matching probability function for the type distribution

p if, for any k and l in S,

pk qkl = pl qlk,
∑

r∈S

qkr ≤ 1. (1)

The matching probability qkl specifies the probability that an agent of type k is matched to

an agent of type l. Thus, ηk = 1 −
∑

l∈S qkl is the associated no-matching probability for an

agent of type k.

Definition 1 Let α, p, and q be given as above, and J a special type representing no-matching.

(i) A full matching φ is a one-to-one mapping from I onto I such that, for each i ∈ I,

φ(i) 6= i and φ(φ(i)) = i.

(ii) A (partial) matching ψ is a mapping from I to I ∪{J} such that for some subset B of I,

the restriction of ψ to B is a full matching on B, and I \B = ψ−1({J}). This means that

agent i is matched with agent ψ(i) for i ∈ B, whereas any agent i not in B is unmatched,

in that ψ(i) = J .

(iii) A random matching π is a mapping from I×Ω to I ∪{J} such that (a) πω is a matching

for each ω ∈ Ω; (b) after extending the type function α to I ∪ {J} so that α(J) = J , and

letting g = α(π), the function g is measurable from (I × Ω,I ⊠F , λ⊠ P ) to S ∪ {J}.

(iv) A random matching π from I × Ω to I ∪ {J} is “directed,” and has parameters (p, q), if

for λ-almost every agent i of type k, P (gi = J) = ηk and P (gi = l) = qkl.

(v) A random matching π is said to be independent if the type process g is essentially pairwise

independent.

For an agent i ∈ I who is matched, the random variable gi = g(i, · ) is the type of her

matched partner. Part (iv) of the definition thus means that for λ-almost every agent i of type

k, her probability of being matched with a type-l agent is qkl, while her no-matching probability

is ηk.
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The following result is a direct application of the exact law of large numbers. In par-

ticular, letting Ik = {i ∈ I : α(i) = k}, the result follows from Theorem 2.8 of Sun (2006) by

working with the process gIk = g|Ik×Ω on the rescaled agent space Ik.

Proposition 1 Let π be an independent directed random matching with parameters (p, q).

Then, for P -almost every ω ∈ Ω, we have

(i) For k ∈ S, λ({i ∈ I : α(i) = k, gω(i) = J}) = pkηk.

(ii) For any (k, l) ∈ S × S, λ({i : α(i) = k, gω(i) = l}) = pkqkl.

Let κ be the probability measure on S × (S ∪ {J}) defined by letting κ(k, l) = pkqkl for

any (k, l) ∈ S × S and κ(k, J) = pkηk for k ∈ S. Proposition 1 says that the cross-sectional

joint type distribution of (α, gω) is κ with probability one.

Theorem 1 For any type distribution p on S and any matching probability function q for p,

there exists a Fubini extension (I ×Ω,I ⊠F , λ⊠P ) on which is defined a type function α and

an independent directed random matching π with parameters (p, q).

The proof of Theorem 1 will be given in Subsection B.1 for the case of a Loeb measure

space of agents via the method of nonstandard analysis.11 Since the unit interval and the

class of Lebesgue measurable sets with the Lebesgue measure provide the archetype for models

of economies with a continuum of agents, the next proposition shows that one can take an

extension of the classical Lebesgue unit interval as the agent space for the construction of an

independent directed random matching.

Proposition 2 For any type distribution p on S and any matching probability function q for

p, there exists a Fubini extension (I × Ω,I ⊠ F , λ⊠ P ) such that:

1. The agent space (I,I, λ) is an extension of the Lebesgue unit interval (L,L, χ).

2. There is defined on the Fubini extension a type function α and an independent directed

random matching π with parameters (p, q).

The following example provides an illustrative application of Theorem 1 and Proposition

1 to a model of the over-the-counter financial markets.

11A standard treatment of nonstandard analysis is given by the book Loeb and Wolff (2015). We note that the
proof of Theorem 1 is substantially different from the corresponding existence result for the case of “undirected”
search in Duffie and Sun (2007).
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Example 1 In Duffie, Malamud and Manso (2014), the economy is populated by a continuum

of risk-neutral agents. There areM different types of agents that differ according to the quality

of their initial information, their preferences for the asset to be traded, and the likelihoods with

which they meet each of other types of agents for trade. The proportion of type-l agents is

ml, where l = 1, . . . ,M . Any agent of type l is randomly matched with some other agent

with probability λl ∈ [0, 1). This counterparty is of type-r with probability κlr. Viewed in

our model, we can take the matching probability qlr = λlκlr for any l, r ∈ S. Theorem 1

guarantees the existence of independent directed random matching with the given parameters

ml, κlr. Proposition 1 implies that the total quantity of matches of agents of a given type

l with the agents of a given type r is almost surely mlλlκlr = mrλrκrl. (See page 7 in

Duffie, Malamud and Manso (2014).)

2.3 Matching functions

Proposition 1 and Theorem 1 also provide a rigorous probabilistic foundation for the “matching-

function” approach that is widely used in the literature of search-based labor markets. Matching

functions allow the probabilities of matching to be directed and to depend on an endogenously

determined cross-sectional distribution of types.

In models of search-based labor markets, it is typical to suppose that firms and workers

are characterized by their types. A commonly used modeling device in this setting is a matching

function mkl : [0, 1]× [0, 1] → [0, 1] that specifies the quantity of type-k agents that are matched

with type-l agents, for any k and l in S. (See Petrongolo and Pissarides (2001) for a survey of

the matching-function approach.) Clearly one must require that for any k and l in S and any

p in ∆,

mkl(pk, pl) = mlk(pl, pk),
∑

r∈S

mkr(pk, pr) ≤ pk. (2)

Let qkl = mkl(pk, pl)/pk for pk 6= 0, and let qkl = 0 for pk = 0. Then the requirements for a

matching probability function are satisfied by q. By Theorem 1, there exists an independent

directed random matching π with parameters (p, q). It follows from Proposition 1 that the

cross-sectional joint type distribution of (α, gω) is κ with probability one, where, for any k and

l in S,

κ(k, l) = pkqkl = mkl(pk, pl).

That is, the mass of type-k agents that are matched with type-l agents is indeed mkl(pk, pl)

with probability one. This means that any matching function satisfying Equation (2) can be

realized through independent directed random matching, almost surely. For the special case

of only two types of agents (say, types 1 and 2), any nonnegative matching function m(p1, p2)

with m(p1, p2) ≤ min(p1, p2) can be realized through independent directed random matching.
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For this, one can simply take q12 = m(p1, p2)/p1 and q21 = m(p1, p2)/p2. More general cases

are considered in Footnote 17.

A common parametric specification is the Cobb-Douglas matching function, for which

mUV (pU , pV ) = ApαU p
β
V ,

for parameters α and β in (0, 1), and a non-negative scaling parameter A. We emphasize that

for some parameters α, β, and A, the inequality ApαU p
β
V ≤ min(pU , pU ) may fail for some

(pU , pV ) ∈ ∆. In that case, one can let m(pU , pV ) = min(ApαUp
β
V , pU , pV ).

3 Dynamic Directed Random Matching

In this section we show how to construct a dynamical system that incorporates the effects

of random mutation, directed random matching, and match-induced type changes with time-

dependent parameters. As in Section 2, we fix an atomless probability space (I,I, λ) rep-

resenting the space of agents, a sample probability space (Ω,F , P ), and a Fubini extension

(I × Ω,I ⊠ F , λ⊠ P ).

We first define such a dynamical system in Subsection 3.1. The key condition of Markov

conditional independence is formulated in Subsection 3.2. Based on that condition, we prove

in Subsection 3.3 an exact law of large numbers for such a dynamical system. The section ends

with the existence of Markov conditionally independent dynamic directed random matching.

3.1 Definition of dynamic directed random matching

As in Section 2, let S = {1, 2, . . . ,K} be a finite set of types and let J be a special type repre-

senting no-matching. We shall define a discrete-time dynamical system D0 with the property

that at each integer time period n ≥ 1, agents first experience a random mutation and then

random matching with directed probability. Finally, any pair of matched agents are randomly

assigned new types whose probabilities may depend on the prior types of the two agents.

At period n ≥ 1, each agent of type k ∈ S first experiences a random mutation, becoming

an agent of type l with a given probability bnkl, with
∑

r∈S b
n
kr = 1. At the second step, every

agent conducts a directed search for counterparties. In particular, for each (k, l) ∈ S × S, the

directed matching probability is determined by a function qnkl on the space of type distributions

∆, with the property that, for all k and l in S, the function that maps the type distribution

p ∈ ∆ to pkq
n
kl(p) is continuous and satisfies, for all p ∈ ∆,

pk q
n
kl(p) = pl q

n
lk(p) and

∑

r∈S

qnkr(p) ≤ 1. (3)

The intention is that, if the population type distribution in the current period is p, then an agent

of type k is matched to an agent of type l with probability qnkl(p). Thus, η
n
k (p) = 1−

∑

l∈S q
n
kl(p)
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is the associated probability of no match. When an agent of type k is matched at time n to an

agent of type l, the agent of type k becomes an agent of type r with probability νnkl(r), where
∑

r∈S ν
n
kl(r) = 1. The primitive model parameters are (b, q, ν).

Let α0 be the initial S-valued type process on the Fubini extension (I×Ω,I⊠F , λ⊠P ).

For each time period n ≥ 1, the agents’ types after the random mutation step are given by

a process hn from (I × Ω,I ⊠ F , λ ⊠ P ) to S. Then, a random matching is described by a

function πn from I × Ω to I ∪ {J}. The end-of-period types are given by a process αn from

(I × Ω,I ⊠ F , λ⊠ P ) to S.

At period n, a type-k agent first mutates to an agent with type l with probability bnkl.

The post-mutation type function hn satisfies

P (hni = l |αn−1
i = k) = bnkl. (4)

For the directed random matching step, let gn be an I ⊠ F-measurable function defined by

gn(i, ω) = hn(πn(i, ω), ω), with the property that for any type k ∈ S, for λ-almost every i and

P -almost every ω ∈ Ω,

P (gni = l |hni = k, p̄n) = qnkl(p̄
n(ω)), (5)

where p̄n(ω) = λ(hn(ω))−1 is the post-mutation type distribution realized in state ω. The

end-of-period agent type function αn satisfies, for λ-almost every agent i,

P (αn
i = r |hni = k, gni = J) = δk(r) and P (α

n
i = r |hni = k, gni = l) = νnkl(r). (6)

Thus, we have inductively defined the properties of a dynamical system D0 incorporating the

effects of random mutation, directed random matching, and match-induced type changes with

given parameters (b, q, ν).

3.2 Markov conditional independence (MCI)

We now add independence conditions on the dynamical system D0, along the lines of those

in Duffie and Sun (2007, 2012). The idea is that each of the just-described steps (mutation,

random matching, match-induced type changes) are conditionally independent across almost

all agents.

We say that the dynamical system D0 is Markov conditionally independent (MCI) if, for

λ-almost every i and λ-almost every j, for every period n ≥ 1, and for all types k and l in S,

the following four properties apply:

• Initial independence: α0
i and α0

j are independent.
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• Markov and independent mutation:

P (hni = k, hnj = l |α0
i , . . . , α

n−1
i ;α0

j , . . . , α
n−1
j ) = P (hni = k |αn−1

i )P (hnj = l |αn−1
l ).

• Markov and independent random matching:

P (gni = k, gnj = l |α0
i , . . . , α

n−1
i , hni ;α

0
j , . . . , α

n−1
j , hnj ) = P (gni = k |hni )P (g

n
j = l |hnj ).

• Markov and independent matched-agent type changes:

P (αn
i = k, αn

j = l |α0
i , . . . , α

n−1
i , hni , g

n
i ;α

0
j , . . . , α

n−1
j , hnj , g

n
j )

= P (αn
i = k |hni , g

n
i )P (α

n
j = l |hnj , g

n
j ).

3.3 The exact law of large numbers for MCI dynamical systems

For a p in ∆, we let p̄k(p) =
∑

l∈S plb
n
lk for k ∈ S. We define a sequence Γn of mappings from

∆ to ∆ such that, for each p ∈ ∆,

Γn
r (p1, . . . , pk) = p̄r(p)η

n
r (p̄(p)) +

∑

k,l∈S

p̄k(p)q
n
kl(p̄(p))ν

n
kl(r).

The following theorem presents an exact law of large numbers for the agent type processes

at the end of each period, and gives a recursive calculation for the cross-sectional joint agent

type distribution pn at the end of period n.

Theorem 2 A Markov conditionally independent dynamical system D0 with parameters (b, q, ν),

for random mutation, directed random matching and match-induced type changes, satisfies the

following properties.

(1) For each time n ≥ 1, let pn(ω) = λ(αn
ω)

−1 be the realized cross-sectional type distribution

at the end of the period n. The expectation E(pn) is given by

E(pnr ) = Γn
r (E(p

n−1)) = p̄nr η
n
r (p̄

n) +
∑

k,l∈S

p̄nkq
n
kl(p̄

n)νnkl(r),

where p̄nk =
∑

l∈S E(pn−1
l )bnlk.

(2) For λ-almost every agent i, the type process {αn
i }

∞
n=0 of agent i is a Markov chain with

transition matrix zn at time n− 1 defined by

znkl = ηnl (p̄
n)bnkl +

∑

r,j∈S

bnkrq
n
rj(p̄

n)νnrj(l).

10



(3) For λ-almost every i and λ-almost every j, the Markov chains {αn
i }

∞
n=0 and {αn

j }
∞
n=0 are

independent.

(4) For P -almost every state ω, the cross-sectional type process {αn
ω}

∞
n=0 is a Markov chain

with transition matrix zn at time n− 1.

(5) For P -almost every state ω, at each time period n ≥ 1, pn(ω) = λ(αn
ω)

−1, and the realized

cross-sectional type distribution after random mutation λ(hnω)
−1 is p̄n.

(6) If there is some fixed p̈0 ∈ ∆ that is the probability distribution of the initial type α0
i of

agent i for λ-almost every i, then the probability distribution ζ = p0 ⊗∞
n=1 z

n on S∞ is

equal to the sample-path distribution of the Markov chain αi = {αn
i }

∞
n=0 for λ-almost every

agent i. For P -almost every state ω, ζ is also the cross-sectional distribution λ(α(ω))−1

of the sample paths of agents’ type processes.

(7) Suppose that the parameters (b, q, ν) are time independent. Then there exists a type

distribution p∗ ∈ ∆ such that p∗ is a stationary distribution for any Markov conditionally

independent dynamical system D0 with parameters (b, q, ν), in the sense that for every

period n ≥ 0, the realized cross-sectional type distribution pn at time n is p∗ P -almost

surely, and P (αn
i )

−1 = p∗ for λ-almost every agent i. In addition, all of the relevant

Markov chains are time homogeneous with a constant transition matrix z1 having p∗ as

a fixed point.

3.4 Existence of MCI dynamic directed random matching

The following theorem provides for the existence of a Markov conditionally independent (MCI)

dynamical system with random mutation, random matching, and match-induced type changes.

Theorem 3 For any primitive model parameters (b, q, ν) and for any type distribution p̈0 ∈ ∆,

there exists a Fubini extension (I × Ω,I ⊠ F , λ ⊠ P ) on which is defined a dynamical system

D0 with random mutation, random matching, match-induced type changes, that is Markov con-

ditionally independent with these parameters (b, q, ν), and with the initial type distribution p0

that is p̈0 with probability one. These properties can be achieved with an initial type process α0

that is deterministic, or i.i.d. across agents.12

3.5 Applications in monetary economics

This subsection illustrate two example applications of dynamic directed random matching.

These examples provide a mathematical foundation for the dynamic matching models used in

12This means that the process α0 is essentially pairwise independent, and α0

i has distribution p̈0 for λ-almost
all i ∈ I .
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Kiyotaki and Wright (1989), Kehoe, Kiyotaki and Wright (1993) andMatsuyama, Kiyotaki and Matsui

(1993) in monetary economics.

The first example in this subsection is from Kiyotaki and Wright (1989) and Kehoe, Kiyotaki and Wright

(1993).

Example 2 As in Model A of Kiyotaki and Wright (1989), three indivisible goods are labeled

1, 2, and 3. There is a continuum of agents of unit total mass. A given type of agent consumes

good k and can store one unit of good l, for some l 6= k. This type is denoted (k, l). The

economy is thus populated by agents of 6 distinct types (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2),

which form our type space S. In order to avoid confusion over differences in terminology13 with

Kiyotaki and Wright (1989), we say that an agent who consumes good k has “trait” k. There

are equal proportions of agents with the three respective traits.

In each period n, every agent randomly matches with some other agent. When matched,

two agents decide whether or not to trade. If there is no trade between the matched pair, they

keep their goods. If there is a trade, and if the agent who consumes good k gets good k from

the other, then that agent immediately consumes good k and produces one unit of good k + 1

(modulo 3), so that his type becomes (k, k + 1) (modulo 3, as needed). If there is a trade and

an agent with trait k gets good l for l 6= k, then his type becomes (k, l). Kiyotaki and Wright

(1989) and Kehoe, Kiyotaki and Wright (1993) consider the given matching model in terms of

stationary and non-stationary trading strategies respectively.

We can use our model of dynamic directed randommatching to give a mathematical foun-

dation for the matching models in Kiyotaki and Wright (1989) and and Kehoe, Kiyotaki and Wright

(1993) by choosing suitable parameters (b, q, ν) governing random mutation, random matching

and match-induced type changing. At period n, let bn(k1,l1)(k2,l2) = δk1(k2)δl1(l2) be the muta-

tion probabilities, and qn(k1,l1)(k2,l2)(p) = p(k2,l2) the matching probabilities for p ∈ ∆. We will

need to specify the match-induced type changing probabilities in both cases.

First, a stationary trading strategy in (Kiyotaki and Wright, 1989, p. 931) is described

by some τ : {1, 2, 3} × {1, 2, 3} → {0, 1} that implies a trade, τk(l, r) = 1, if a trait-k agent

actually wants to trade good l for good r, and results in no trade, τk(l, r) = 0, otherwise. Thus

τ determines determines the match-induced type changes. Because the consumption traits of

agents do not change, the type of a matched agent cannot change to a type with a different

trait. Thus, for the type changing probability νn of an agent with trait k1, the probability for

the target types is concentrated on only two types, (k1, k1+1) and (k1, k1+2). This means that

it suffices to define the type changing probability for only the target type (k1, k1 +1). Suppose

13In Kiyotaki and Wright (1989), agents have three types. However, the meaning of “type” in
Kiyotaki and Wright (1989) is different from that in our present paper. Here, we use the word “trait” to
mean what Kiyotaki and Wright (1989) call “type.”
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that an agent i of type (k1, k1 +1) is matched with an agent j of type (k2, l2). For l2 = k1 +1,

there is no need to trade. When l2 = k1 and there is a trade, agent i will consume good k1,

produces a unit of good k1 + 1, and keeps the same type (k1, k1 + 1). (This applies trivially

for the no-trade case.) When l2 = k1 + 2, the probability ν(k1,k1+1)(k2,l2)(k1, k1 + 1) that agent

i has a type change is the probability of no trade between agents i and j. The probability of

having a trade between agents i and j is τk1(k1 + 1, l2)τk2(l2, k1 + 1). We therefore have

νn(k1,k1+1)(k2,l2)
(k1, k1 + 1) =

{

1 if l2 6= k1 + 2

1− τk1(k1 + 1, l2)τk2(l2, k1 + 1) if l2 = k1 + 2.

By similar arguments, we have

νn(k1,k1+2)(k2,l2)
(k1, k1 + 1) =

{

0 if l2 = k1 + 2

τk1(k1 + 2, l2)τk2(l2, k1 + 2) if l2 6= k1 + 2.

Next, we consider the case of non-stationary trading strategies as in Sections 3 and 6

of Kehoe, Kiyotaki and Wright (1993). Suppose that (s1(n), s2(n), s3(n)) is a time-dependent

mixed strategy at period n, where sk(n) is the probability that an agent with trait k trades

good k+1 for k+2. Based on (s1(n), s2(n), s3(n)), one can compute the probability Pn
(k1,k2)

(k3)

that an agent with type (k1, k2) trades for good k3.

What we need is to define the match-induced type changing probabilities corresponding

to the given time-dependent mixed strategy (s1(n), s2(n), s3(n)). Suppose that an agent i of

type (k1, k1+1) is matched with an agent j of type (k2, l2). For cases with l2 = k1 or l2 = k1+1,

the arguments used in Section 2 imply the type changing probability νn(k1,k1+1)(k2,l2)
(k1, k1+1) =

1. When l2 = k1+2, the probability of a trade between agents i and j is Pn
(k1,k1+1)(l2)P

n
(k2,l2)

(k1+

1). We can therefore obtain that

νn(k1,k1+1)(k2,l2)
(k1, k1 + 1) =

{

1 if l2 6= k1 + 2

1− Pn
(k1,k1+1)(l2)P

n
(k2,l2)

(k1 + 1) if l2 = k1 + 2.

Similarly,

νn(k1,k1+2)(k2,l2)
(k1, k1 + 1) =

{

0 if l2 = k1 + 2

Pn
(k1,k1+2)(l2)P

n
(k2,l2)

(k1 + 2) if l2 6= k1 + 2.

Our next example is from Matsuyama, Kiyotaki and Matsui (1993). Here, agents are

divided into two groups. Agents are more likely to be matched to a counterparty of their own

group than to a counterparty of a different group.

Example 3 The economy is populated by a continuum of infinitely-lived agents of unit total

mass. Agents are from two regions, Home and Foreign. Let p ∈ (0, 1) be the size of the Home
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population. There are K ≥ 3 kinds of indivisible commodities. Within each region, there are

equal proportions of agents with the K respective traits. An agent with trait k derives utility

only from consumption of commodity k. After he consumes commodity k, he is able to produce

one and only one unit of commodity k + 1 (mod K) costlessly, and can also store up to one

unit of his production good costlessly. He can neither produce nor store other types of goods.

In addition to the commodities described above, there are two distinguishable fiat monies,

objects with zero intrinsic worth, which we call the Home currency and the Foreign currency.

Each currency is indivisible and can be stored costlessly in amounts of up to one unit by any

agent, provided that the agent does not carry his production good or the other currency. This

implies that, at any date, the inventory of each agent consists of one unit of the Home currency,

one unit of the Foreign currency, or one unit of his production good, but does not include more

than one of these objects in total at any one time.

For some β ∈ (0, 1), in each period n, a Home agent is matched to a Home agent with

probability p, and is matched to a Foreign agent with probability β(1 − p). The probability

with which he is not matched is thus (1−β)(1− p). Similarly, a Foreign agent is matched to a

Home agent with probability βp, is matched to a Foreign agent with probability (1 − p), and

is unmatched with probability (1− β)p.

The type space S is the set of ordered tuples of the form (a, b, c), where a ∈ {H,F},

b ∈ {1, . . . ,K}, and c ∈ {g, h, f}. Here, H represents Home, F represents Foreign, g represents

good, h represents Home currency, and f represents Foreign currency.

An agent chooses a trading strategy to maximize his expected discounted utility, taking as

given the strategies of other agents and the distribution of inventories. Matsuyama, Kiyotaki and Matsui

(1993) focused on pure strategies that depend only on an agent’s nationality and the objects

that he and his counterparty have as inventories. Thus, the Home agent’s trading strategy can

be described simply as

τHab =

{

1 if he agrees to trade object a for object b

0 otherwise,

where a and b are in {g, h, f}. The Foreign agent’s trading strategy can similarly be described

as

τFab =

{

1 if he agrees to trade object a for object b

0 otherwise.

For example, τHgf = 0 means that a Home agent does not agree to trade his production good

for the Foreign currency, while τFhg = 1 means that a Foreign agent agrees to trade the Home

currency for his consumption good.

We can apply our model of dynamic directed random matching with immediate break-up

to give a mathematical foundation for the matching model in Matsuyama, Kiyotaki and Matsui
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(1993) by choosing suitable time-independent parameters (b, q, ν) governing random mutation,

random matching, and match-induced type changing. To this end, we take mutation probabil-

ities

b(a1,b1,c1)(a2,b2,c2) = δa1(a2)δb1(b2)δc1(c2).

The directed search probabilities are given by

q(a1,b1,c1)(a2,b2,c2)(p) =

{

p(a2,b2,c2) if a1 = a2

β · p(a2,b2,c2) if a1 6= a2,

for a cross-sectional agent type distribution p ∈ ∆. Because the nationality and consumption

traits of agents do not change, a matched agent cannot change to a type with a different

nationality or trait. Thus, for the type changing probability ν of an agent with nationality

a1 and trait b1, search is directed to the three counterparty types (a1, b1, g), (a1, b1, f) and

(a1, b1, h).

Suppose that agent i is of type (a1, b1, g) and is matched with agent j, who has type

(a2, b2, c2). The probability that agent i changes type to (a1, b1, h) is ν(a1,b1,g)(a2,b2,c2)(a1, b1, h).

We note that the good carried by an agent of type (a1, b1, g) must be b1 + 1. For b2 6= b1 + 1

(mod K), the good that agent i carries is not the consumption good of agent j, which means

that there is no trade, so the probability ν(a1,b1,g)(a2,b2,c2)(a1, b1, h) is 0. When c2 6= h, agent i

cannot get the Home currency from j, so ν(a1,b1,g)(a2,b2,c2)(a1, b1, h) is also 0. When b2 = b1 +1

and c2 = h, ν(a1,b1,g)(a2,b2,c2)(a1, b1, h) is the probability that agent i trades with an agent with

the type of agent j, which is τa1gh · τa2hg . We therefore have

ν(a1,b1,g)(a2,b2,c2)(a1, b1, h) =

{

τa1gh · τa2hg if b2 ≡ b1 + 1 (mod K) and c2 = h

0 otherwise.

The following type-change probabilities can be obtained by similar arguments:

ν(a1,b1,g)(a2,b2,c2)(a1, b1, f) =

{

τa1gf · τa2fg if b2 ≡ b1 + 1 (mod K) and c2 = f

0 otherwise;

ν(a1,b1,g)(a2,b2,c2)(a1, b1, g) = 1− ν(a1,b1,g)(a2,b2,c2)(a1, b1, h)− ν(a1,b1,g)(a2,b2,c2)(a1, b1, f);

ν(a1,b1,h)(a2,b2,c2)(a1, b1, g) =

{

τa1hg · τa2gh if b2 ≡ b1 − 1 (mod K) and c2 = g

0 otherwise;

ν(a1,b1,h)(a2,b2,c2)(a1, b1, f) =

{

τa1hf · τ
a2
fh c2 = f

0 otherwise;

ν(a1,b1,h)(a2,b2,c2)(a1, b1, h) = 1− ν(a1,b1,h)(a2,b2,c2)(a1, b1, g)− ν(a1,b1,h)(a2,b2,c2)(a1, b1, f);

ν(a1,b1,f)(a2,b2,c2)(a1, b1, g) =

{

τa1fg · τ
a2
gf if b2 ≡ b1 − 1 (mod K) and c2 = g

0 otherwise;
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ν(a1,b1,f)(a2,b2,c2)(a1, b1, h) =

{

τa1fh · τa2hf if c2 = h

0 otherwise;

ν(a1,b1,f)(a2,b2,c2)(a1, b1, f) = 1− ν(a1,b1,f)(a2,b2,c2)(a1, b1, h)− ν(a1,b1,f)(a2,b2,c2)(a1, b1, g).

4 Concluding Discussion

Previous results concerning the existence and law of large numbers for independent random

matching, such as those of Duffie and Sun (2007, 2012), were limited by the assumption that

the partner of a matched agent is drawn uniformly from the population of matched agents.14

The main purpose of this paper is to provide a suitable search-based model of markets in which

agents direct their searches, causing relatively higher per-capita matching probabilities with

specific types of counterparties. Although models with directed search are common in the

literatures covering money, labor markets, and over-the-counter financial markets, prior work

has simply assumed that the exact law of large numbers would lead to a deterministic cross-

sectional distribution of agent types, and that this distribution would obey certain properties.

We provide a model that justifies this assumed behavior, down to the basic level of random

contacts between specific individual agents. We provide the resulting transition distribution

for the Markov processes for individual agents’ types, and for the aggregate cross-sectional

distribution of types in the population, and show the close relationship between these two

objects.

By incorporating directed search, we are also able to provide the first rigorous proba-

bilistic foundation for the notion of a “matching function” that is heavily used in the search

literature of labor economics.

A secondary objective is to allow for random matching with enduring partnerships. The

durations of these partnerships can be random or deterministic, and can be type dependent.

Earlier work providing mathematical foundations for random matching presumes that partner-

ships break up immediately after matching. Enduring partnerships are crucial for search-based

labor-market search models, such as those cited in Footnote 5, in which there are episodes

of employment resulting from a match between a worker and a firm, eventually followed by

14Footnote 4 of McLennan and Sonnenschein (1991) showed the non-existence of a type-free (static) random
full matching that satisfies a number of desired conditions when the agent space is taken to be the unit in-
terval with the Borel σ-algebra and Lebesgue measure. That problem is resolved through the construction of
an independent type-free random full matching with a suitable agent space as in Duffie and Sun (2007) and
Podczeck and Puzzello (2012); see also Duffie and Sun (2012) and Podczeck and Puzzello (2012) regarding im-
plications for independent random full matching with general type spaces. Xiang Sun (2016) extended the results
on independent (static) random partial matching in Duffie and Sun (2007) from finite type spaces to general
type spaces. All of these cited papers address the case of “undirected” search. For a detailed discussion of the
literature on “non-independent” random matching, see Section 6 of Duffie and Sun (2012).
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a random separation.15 In some of these models, separation is iid across periods of employ-

ment. This is the case, for example, in Cho and Matsui (2013), Merz (1999), Pissarides (1985),

Shi and Wen (1999), Shimer (2005), and Yashiv (2000), among many other papers. In other

cases, the separation probability depends on the vintage of the match, and can depend on the

quality of the match between the worker and the firm. Since the separation probabilities in

our general model depend on the types of the matched agents, our results can cover such cases

by introducing new types.

We have verified that our results can be extended under mild revisions of the proofs

to settings in which agents have countably many types, and can enter and exit (for example,

through “birth” and “death”), allowing for a total population size that is changing over time

without a fixed bound as in Yashiv (2000).16 It is also straightforward to allow for a background

Markov process that governs the parameters determining probabilities for mutation, matching,

and type change (as well as enduring match break-ups). In this case, the background Markov

state causes aggregate uncertainty, but conditional on the path of the background state, the

cross-sectional distribution of population types evolves deterministically, almost surely.
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Appendices

Some of the following appendix material could ultimately be placed in a separate online

document.

A Dynamic Directed Random Matching with Enduring Partnerships

This appendix extends the model of dynamic directed random matching found in Section 3

so as to allow for enduring partnerships and for correlated type changes of matched agents.

Unlike the more basic model of Section 3, in order to capture the effect of enduring partnerships

we now must consider the separate treatments of existing matched pairs of agents and newly

formed matched pairs of agents.

We first define such a dynamical system in Subsection A.1. The key condition of Markov

conditional independence is formulated in Subsection A.2. Based on that condition, Subsection

A.3 presents an exact law of large numbers for such a dynamical system. Subsection A.4

provides results covering the existence of Markov conditionally independent dynamical system

with directed random matching and with partnerships that have randomly time breakups. In

the final subsection, we illustrate the random break-up of partnerships through an example

drawn from labor economics.

Theorem 2 in Section 3 is a special case of Theorem 4 and Proposition 3 in Subsection

A.3, while Theorem 5 in Subsection A.4 extends Theorem 3 in Section 3. Hence the proofs

of Theorems 2 and 3 are omitted. We prove all the results stated in this section in the next

section.

As in Sections 2 and 3, we fix an atomless probability space (I,I, λ) representing the space

of agents, a sample probability space (Ω,F , P ), and a Fubini extension (I × Ω,I ⊠ F , λ⊠ P ).

We will show that all of our results can be obtained for an agent space that is a Loeb measure

space as constructed in nonstandard analysis, or is an extension of the classical Lebesgue unit

interval. This section has self-contained notation. In particular, some of the notation used in

this section may have a meaning that differs from its usage in Section 3.

A.1 Definition of dynamic directed random matching with enduring partnerships

As in Sections 2 and 3, let S = {1, 2, . . . ,K} be a finite set of types and let J be a special

type representing no-matching. The “extended type” space is Ŝ = S × (S ∪ {J}). An agent

with an extended type of the form (k, l) has underlying type k ∈ S and is currently matched

to another agent of type l in S. If the agent’s extended type is instead of the form (k, J), then

the agent is “unmatched.” The space ∆̂ of extended type distributions is the set of probability

distributions p̂ on Ŝ satisfying p̂(k, l) = p̂(l, k) for all k and l in S.
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Each time period is divided into three steps: mutation, random matching, match-induced

type changing with break-up. We now introduce the primitive parameters governing each of

these steps.

At the first (mutation) step of time period n ≥ 1, each agent of type k ∈ S experiences

a random mutation, becoming an agent of type l with a given probability bnkl, a parameter of

the model. By definition, for each type k we must have
∑

l∈S b
n
kl = 1.

At the second step, any currently unmatched agent conducts a directed search for coun-

terparties. For each (k, l) ∈ S × S, let qnkl be a function on ∆̂ into R+ with the property that

for all k and l in S, the function p̂kJq
n
kl( p̂ ) is continuous in p̂ ∈ ∆̂ and satisfies, for any p̂ in ∆̂,

p̂kJ q
n
kl(p̂) = p̂lJ q

n
lk(p̂) and

∑

r∈S

qnkr(p̂) ≤ 1. (7)

Whenever the underlying extended type distribution is p̂, the probability17 that an unmatched

agent of type k is matched to an unmatched agent of type l is qnkl(p̂). Thus, ηnk (p̂) = 1 −
∑

l∈S q
n
kl(p̂) is the no-matching probability for an unmatched agent of type k.

At the third step, each currently matched pair of agents of respective types k and l

(including those who have just been paired at the matching step) breaks up with probability

θnkl, where

θnkl = θnlk. (8)

If a matched pair of agents of respective types k and l stays in their partnership, they become

a pair of agents of types r and s, respectively, with a specified probability σnkl(r, s), where

∑

r,s∈S

σnkl(r, s) = 1 and σnkl(r, s) = σnlk(s, r) (9)

for any k, l, r, s ∈ S. The second identity is merely a labeling symmetry condition. If a matched

pair of agents of respective types k and l breaks up, the agent of type k becomes an agent of

type r with probability ςnkl(r), where

∑

r∈S

ςnkl(r) = 1. (10)

17Let ϕ be any continuous function from ∆̂ to itself. Assume that: (1) for any k, l ∈ S, ϕkl(p̂) ≥ p̂kl; (2)
for any p̂ ∈ ∆̂, ϕ(p̂) and p̂ have the same marginal measure on S, that is, for any k ∈ S,

∑
r∈S∪{J}ϕkr(p̂) =

∑
r∈S∪{J} p̂kr. For any k, l ∈ S, let qkl(p̂) = (ϕkl(p̂)− p̂kl) /p̂kJ if p̂kJ > 0 and qkl(p̂) = 0 if p̂kJ = 0. Then,

the function q satisfies the continuity condition as well as Equation (7), as required for a matching probability
function. In fact, any matching probability function can be obtained in this way. For the special case that all of
the matched agents break up at the end of each period, we need only consider continuous functions from ∆ to
∆̂. Let φ be any such continuous function with the property that for any p ∈ ∆, ϕ(p) has the marginal measure
p on S. That is, for any k ∈ S,

∑
l∈S∪{J}ϕkl(p) = pk. For any k, l ∈ S, let qkl(p) = φkl(p)/pk if pk > 0 and

qkl(p) = 0 if pk = 0. Then, the function q satisfies the continuity condition as well as Equation (3), as required
for a matching probability function. Again, any matching probability function for this particular setting can be
obtained in this way.

22



We now give an inductive definition of the properties defining a dynamical system D for

the behavior of a continuum population of agents experiencing, at each time period: random

mutations, matchings, and match-induced type changes with break-up. We later state condi-

tions under which such a system exists. The state of the dynamical system D at the end of

each integer period n ≥ 0 is defined by a pair Πn = (αn, πn) consisting of:

• An agent type function αn : I×Ω → S that is I⊠F-measurable. The corresponding end-

of-period type of agent i is αn(i) ∈ S. For technical convenience, we always augment the

agent and type spaces by including the element J , with αn(J) = J (that is, αn(J, ω) = J

for all ω ∈ Ω).

• A random matching πn : I × Ω → I ∪ {J}, describing the end-of-period agent πn(i) to

whom agent i is currently matched, if agent i is currently matched. If agent i is not

matched, then πn(i) = J . The associated partner-type function gn : I × Ω → S ∪ J

provides the type gn(i) = αn(πn(i)) of the agent to whom i is matched, if i is matched,

and otherwise specifies gn(i) = J . As a matter of definition, we require that gn is I ⊠F-

measurable.

We take the initial condition Π0 = (α0, π0) of D as given. The initial condition may, if

desired, be deterministic (constant across Ω). The joint cross-sectional extended type distribu-

tion p̂n at the end of period n is λ(βn)−1. That is, p̂n(k, l) is the fraction of the population at

the end of period n that has type k and is matched to an agent of type l. Likewise, p̂n(k, J) is

the fraction of the population that is of type k and is not matched.

For the purpose of the inductive definition of the dynamical system D, we suppose that

Πn−1 = (αn−1, πn−1) has been defined for some n ≥ 1, and define Πn = (αn, πn) as follows.

Mutation. The post-mutation type function ᾱn is I ⊠F-measurable, and satisfies, for any

k1, k2, l1, and l2 in S, for any r ∈ S ∪ {J}, and for λ-almost-every agent i,

P (ᾱn
i = k2, ḡ

n
i = l2 |α

n−1
i = k1, g

n−1
i = l1) = bnk1k2b

n
l1l2

(11)

P (ᾱn
i = k2, ḡ

n
i = r |αn−1

i = k1, g
n−1
i = J) = bnk1k2δJ(r). (12)

Equation (11) means that a paired agent and her partner mutate independently. The post-

mutation partner-type function ḡn is defined by ḡn(i, ω) = ᾱn(πn−1(i, ω), ω), for any ω ∈ Ω.

We assume that ḡn is I ⊠ F-measurable. The post-mutation extended-type function is β̄n =

(ᾱn, ḡn). The post-mutation extended type distribution that is realized in state ω ∈ Ω is

p̌n(ω) = λ
(

β̄nω
)−1

.

Matching. Let π̄n : I × Ω → I ∪ {J} be a random matching with the following properties.
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(i) For each state ω ∈ Ω, let Aω = {i : πn−1(i, ω) 6= J} be the set of agents who are matched.

For P -almost all ω ∈ Ω, we take

π̄nω(i) = πn−1
ω (i) for i ∈ Aω, (13)

meaning that those agents who were already matched at the end of period n− 1 remain

matched (to the same partner) at this step, which implies that the post-matching partner-

type function ¯̄gn, defined by ¯̄gn(i, ω) = ᾱn(π̄n(i, ω), ω), satisfies

P (¯̄gni = r | ᾱn
i = k, ḡni = l) = δl(r), (14)

for any k and l in S and any r ∈ S ∪ {J}, where δc(d) is zero if c 6= d and is one if c = d.

(ii) ¯̄gn is I ⊠ F-measurable.

(iii) Given the post-mutation extended type distribution p̌n, an unmatched agent of type k is

matched to a unmatched agent of type l with conditional probability qnkl(p̌
n), in that, for

λ-almost every agent i and P -almost every ω,

P (¯̄gni = l | ᾱn
i = k, ḡni = J, p̌n) = qnkl(p̌

n(ω)), (15)

which also implies that

P (¯̄gni = J | ᾱn
i = k, ḡni = J, p̌n) = ηnk (p̌

n(ω)). (16)

The extended type of agent i after the random matching step is ¯̄βni = (ᾱn
i , ¯̄g

n
i ).

Type changes of matched agents with break-up. This step determines an end-of-period

random matching πn, an I ⊠F-measurable agent type function αn, and an I ⊠F-measurable

partner-type function gn so that we have gn(i, ω) = αn(πn(i, ω), ω) for all (i, ω) ∈ I × Ω, and

so that, for λ-almost every agent i and for any k1, k2, l1, l2 ∈ S and r ∈ S ∪ {J},

πn(i) =

{

π̄n(i), if gn(i) 6= J

J, if gn(i) = J,
(17)

P (αn
i = l1, g

n
i = r | ᾱn

i = k1, ¯̄g
n
i = J) = δk1(l1) δJ (r), (18)

P (αn
i = l1, g

n
i = l2 | ᾱ

n
i = k1, ¯̄g

n
i = k2) = (1− θnk1k2)σ

n
k1k2

(l1, l2), (19)

P (αn
i = l1, g

n
i = J | ᾱn

i = k1, ¯̄g
n
i = k2) = θnk1k2ς

n
k1k2

(l1). (20)

Equations (17) and (18) mean that unmatched agents stay unmatched without changing types,

while Equations (19) and (20) specify the type changing probabilities for a pair of matched
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agents who stay together or break up. The extended-type function at the end of the period is

βn = (αn, gn).

Thus, we have inductively defined the properties of a dynamical system D = (Πn)∞n=1

incorporating the effects of random mutation, directed random matching, and match-induced

type changes with break-up, consistent with given parameters (b, q, θ, σ, ς). The initial condition

Π0 of D is unrestricted. We next turn to the key Markovian independence properties for such a

system, and then to the exact law of large numbers and existence of a dynamical system with

these properties.

A.2 Markov conditional independence

We now add independence conditions on the dynamical system D = (Πn)∞n=0, along the lines of

those in Duffie and Sun (2007), Duffie and Sun (2012), and Section 3. The idea is that each of

the just-described steps (mutation, random matching, and match-induced type changes with

break-up) are conditionally independent across almost all agents. In the following definition,

we will refer to objects, such as the intermediate-step extended type functions β̄n and ¯̄βn, that

were constructed in the previous sub-section.

We say that the dynamical system D is Markov conditionally independent (MCI) if, for

λ-almost every i and λ-almost every j, for every period n ≥ 1, and for all k1, k2 ∈ S, and

l1, l2 ∈ S ∪ {J}, the following five properties apply:

• Initial independence: β0i and β0j are independent.

• Markov and independent mutation:

P
(

β̄ni = (k1, l1), β̄
n
j = (k2, l2)

∣

∣ (βti )
n−1
t=0 , (β

t
j)

n−1
t=0

)

= P
(

β̄ni = (k1, l1)
∣

∣ βn−1
i

)

P
(

β̄nj = (k1, l1)
∣

∣ βn−1
j

)

. (21)

• Markov and independent random matching:

P
(

¯̄βni = (k1, l1),
¯̄βnj = (k2, l2)

∣

∣ β̄ni , β̄
n
j , (β

t
i )

n−1
t=0 , (β

t
j)

n−1
t=0

)

= P
(

¯̄βni = (k1, l1)
∣

∣ β̄ni

)

P
(

¯̄βnj = (k2, l2)
∣

∣ β̄nj

)

. (22)

• Markov and independent matched-agent type changes with break-up:

P
(

βni = (k1, l1), β
n
j = (k2, l2)

∣

∣

¯̄βni ,
¯̄βnj , (β

t
i )

n−1
t=0 , (β

t
j)

n−1
t=0

)

= P
(

βni = (k1, l1) |
¯̄βni

)

P
(

βnj = (k2, l2) |
¯̄βnj

)

. (23)
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A.3 The exact law of large numbers for MCI dynamical systems with enduring
partnerships

For each period n ≥ 1, we define a mapping Γn from ∆̂ to ∆̂ by

Γn
kl(p̂) =

∑

(k1,l1)∈S2

p̃nk1l1(1− θnk1l1)σ
n
k1l1

(k, l) +
∑

(k1,l1)∈S2

p̃k1J q
n
k1l1

(p̃)(1− θnk1l1)σ
n
k1l1

(k, l)

Γn
kJ(p̂) = p̃kJη

n
k (p̃) +

∑

(k1,l1)∈S2

p̃nk1l1θ
n
k1l1

ςnk1l1(k) +
∑

(k1,l1)∈S2

p̃k1J q
n
k1l1

(p̃)θnk1l1ς
n
k1l1

(k),

where p̃kl =
∑

(k1,l1)∈S2 p̂k1l1b
n
k1k
bnl1l and p̃kJ =

∑

l∈S p̂lJb
n
lk.

The following theorem, which extends Theorem 3.3, presents an exact law of large num-

bers for the joint agent-partner type processes at the end of each period. The result also

provides a recursive calculation of the cross-sectional joint agent-partner type distribution p̂n

at the end of period n.

Theorem 4 Let D be a dynamical system with random mutation, random matching, and

match-induced type changes with break-up whose parameters are (b, q, θ, σ, ς). If D is Markov

conditionally independent, then:

(1) For each time period n ≥ 1, the expected cross-sectional type distribution p̃n = E(p̌n) after

the mutation step and E(p̂n) at the end of the period are given by, respectively, E(p̌nkl) =
∑

k1,l1∈S
E(p̂n−1

k1l1
)bnk1kb

n
l1l

and E(p̌nkJ) =
∑

l∈S E(p̂n−1
lJ )bnlk, and by E(p̂n) = Γn(E(p̂n−1)).

(2) For λ-almost every agent i, the extended-type process {βni }
∞
n=0 is a Markov chain in Ŝ

whose transition matrix zn at time n− 1 is given by

zn(kJ)(k′J) = bnkk′η
n
k′(p̃

n) +
∑

k1,l1,∈S

bnkk1q
n
k1l1

(p̃n)θnk1l1ς
n
k1l1

(k′),

zn(kl)(k′J) =
∑

k1,l1∈S

bnkk1b
n
ll1
θnk1l1ς

n
k1l1

(k′),

zn(kJ)(k′l′) =
∑

k1,l1∈S

bnkk1q
n
k1l1

(p̃n)(1 − θnk1l1)σk1l1(k
′, l′),

zn(kl)(k′l′) =
∑

k1,l1∈S

bnkk1b
n
ll1
(1− θnk1l1)σ

n
k1l1

(k′, l′). (24)

(3) For λ-almost every i and λ-almost every j, the Markov chains {βni }
∞
n=0 and {βnj }

∞
n=0 are

independent.

(4) For P -almost every ω ∈ Ω, the cross-sectional extended-type process {βnω}
∞
n=0 is a Markov

chain18 with transition matrix zn at time n− 1.

18For a given sample realization ω ∈ Ω, {βn
ω}

∞
n=0 is defined on the agent space (I,I, λ), which is a probability

space itself. Thus, {βn
ω}

∞
n=0 can be viewed as a discrete-time process.
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(5) For P -almost all ω ∈ Ω, at each time period n ≥ 1, the realized cross-sectional type

distribution after random mutation λ(β̄nω)
−1 is equal to its expectation p̃n, and the realized

cross-sectional type distribution at the end of the period n, p̂n(ω) = λ(βnω)
−1, is equal to

its expectation E(p̂n).

(6) If there is some fixed p̈0 ∈ ∆̂ that is the probability distribution of the initial extended

type β0i of agent i for λ-almost every i, then for λ-almost every i the Markov chain

βi = {βni }
∞
n=0 has the sample-path probability distribution ξ = p̈0 ⊗∞

n=1 z
n on the space

Ŝ∞. Moreover, in this case, ξ = λ(βω)
−1 for P -almost every ω. That is, for any subset

A =
∏∞

n=0An ⊂ Ŝ∞ of sample paths, the probability ξ(A) of the event

{βi ∈ A} = {β0i ∈ A0, β
1
i ∈ A1, . . .}

is equal, for P -almost every ω ∈ Ω, to the fraction λ({i : βi(ω) ∈ A}) of agents whose

extended type process has a sample path in A in state ω.

For the time-homogenous case, in which the parameters (b, q, θ, σ, ς) do not depend on

the time period n ≥ 1), the following proposition shows the existence of a stationary extended

type distribution.

Proposition 3 Suppose that the parameters (b, q, θ, σ, ς) are time homogeneous. Then there

exists an extended-type distribution p̂∗ ∈ ∆̂ that is a stationary distribution for any MCI dy-

namical system D with parameters (b, q, θ, σ, ς), in the sense that:

(1) For every n ≥ 0, the realized cross-sectional extended-type distribution p̂n at time n is p̂∗

P -almost surely;

(2) All of the relevant Markov chains in Theorem 4 are time homogeneous with a constant

transition matrix z1 having p̂∗ as a fixed point;

(3) If the initial extended type process β0 is i.i.d. across agents, then, for λ-almost every i,

the extended type distribution of agent i at any period n ≥ 0 is P (βni )
−1 = p̂∗.

A.4 Existence of MCI dynamic directed random matching with enduring part-
nerships

The following theorem provides for the existence of a Markov conditionally independent (MCI)

dynamical system with random mutation, random matching, and match-induced type changes

with break-up. Theorem 3 is a special case.
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Theorem 5 For any primitive model parameters (b, q, θ, σ, ς) and for any extended type dis-

tribution p̈0 ∈ ∆̂, there exists a Fubini extension (I × Ω,I ⊠ F , λ ⊠ P ) on which is defined a

dynamical system D = (Πn)∞n=0 with random mutation, random matching, and match-induced

type changes with break-up, that is Markov conditionally independent with these parameters

(b, q, θ, σ, ς), and with the initial extended type distribution p̂0 being p̈0 with probability one.

These properties can be achieved with an initial condition Π0 that is deterministic, or alterna-

tively with an initial extended type β0 that is i.i.d. across agents.19

In the next proposition, we show that the agent space (I,I, λ) in Theorem 5 can be an

extension of the classical Lebesgue unit interval (L,L, χ). That is, we can take I = L = [0, 1]

with a σ-algebra I that contains the Lebesgue σ-algebra L, and so that the restriction of λ to

L is the Lebesgue measure χ.

Proposition 4 Fixing any model parameters (b, q, θ, σ, ς) and any initial cross-sectional ex-

tended type distribution p̈0 ∈ ∆̂, there exists a Fubini extension (I × Ω,I ⊠ F , λ ⊠ P ) such

that:

(1) The agent space (I,I, λ) is an extension of the Lebesgue unit interval (L,L, χ).

(2) There is defined on the Fubini extension a dynamical system D = (Πn)∞n=0 that is Markov

conditionally independent with the parameters (b, q, θ, σ, ς), where the initial extended type

distribution p̂0 is p̈0 with probability one.

(3) These properties can be achieved with an initial condition Π0 that is deterministic, or

alternatively with an initial extended type process β0 that is i.i.d. across agents.

A.5 Matching in labor markets with multi-period employment episodes

This example is taken from Andolfatto (1996), whose Section 1 considers a discrete-time labor-

market-search model. The agents are workers and firms. Each firm has a single job position.

Section 2 of Andolfatto (1996) works with stationary distributions. We can use the model

of dynamic directed random matching with enduring partnership developed in this section

to capture the search process leading to Equation (1) of Andolfatto (1996) in the stationary

setting.

The agent type space is S = {E,U,A, V,D}. Here, E and U represent respectively

employed workers and unemployed workers while A, V and D represent active, vacant and

19This means that the process β0 is essentially pairwise independent, and that β0

i has distribution p̈0 for
λ-almost every agent i.
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dormant jobs respectively. Dormant job positions are neither matched with a worker nor

immediately open. The proportion of agents that are workers is w > 0.

At the beginning of each period, each vacant firm may mutate to a dormant job and

each dormant job may mutate to a vacant job. Let p̌
UJ

and p̌
V J

be the respective proportions

of unemployed workers and vacant firms after the mutation step. In the stationary setting,

the quantity M(p̌
V J
, e · p̌

UJ
) of new job matches in a given period is governed by a continuous

aggregate matching function M : [0, 1] × R+ → [0, 1] that incorporates20 the search effort e

applied by each worker seeking employment with M(p̌
V J
, e · p̌

UJ
) ≤ min{p̌

V J
, p̌

UJ
}. Job-worker

pairs that have existed for at least one period are assumed to break up with probability θ̄ in

each period. Newly formed pairs cannot break up in the current period. While a job-worker

pair maintain their partnership, their current types (A,E) do not change. On the other hand,

if they break up, the job becomes vacant and the worker becomes unemployed.

Equation (1) in Andolfatto (1996) in the stationary setting is

E∗ = (1− θ̄)E∗ +M(V ∗, e · (w − E∗)), (25)

where E∗ and V ∗ are the respective fractions of employed workers and vacant jobs in the

particular case.21

Viewed in terms of our model, the corresponding time-independent parameters are given

as follows. Vacant firms could mutate to dormant, and vice versa. Workers and active firms

do not mutate. For any k and l in S, let

bkl =











1−w−E∗−V ∗

1−w−E∗ if k = V or D and l = D
V ∗

1−w−E∗ if k = V or D and l = V

δk(l) otherwise.

Matching occurs only between unemployed workers and vacant jobs. The matching probabilities

are defined as follows. For any k and l in S, define

qkl(p̌) =















M(p̌
V J

, e·p̌
UJ

)

p̌
UJ

if (k, l) = (U, V ) and p̌
UJ

> 0
M(p̌

V J
, e·p̌

UJ
)

p̌
V J

if (k, l) = (V,U) and p̌
UJ

> 0

0 otherwise.

Next, we consider the step of type changing with break-up. For any k, l, r, s ∈ S, we have

θkl =

{

θ̄ if (k, l) = (E,A) or (A,E)

0 otherwise;
(26)

20The mass of workers is assumed to be one in Andolfatto (1996). Since the matching function in Andolfatto
(1996) is assumed to have constant returns to scale, one can re-scale the total worker-firm population to be one,
with a proportion w of agents being workers.

21See (P6′) on page 120 of Andolfatto (1996) for the steady state equation with the Cobb-Douglas matching
function.
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σkl(r, s) =











δE(r)δA(s) if k = U and l = V

δA(r)δE(s) if k = V and l = U

δk(r)δl(s) otherwise;

(27)

ςkl(r) =











δU (r) if k = E and l = A

δV (r) if k = A and l = E

δk(r) otherwise.

(28)

Equation (26) means that an employed worker has probability θ̄ of losing her job. When two

agents are newly matched in the current period, the worker-firm types change from (U, V ) to

(E,A). For those paired agents who were matched in a previous period, their types do not

change while they stay together. Finally, the worker-firm pair of types from (E,A) to (U, V )

when they break up. Equations (27) and (28) express these ideas.

Taking the equilibrium search effort e as given, Theorem 4 and Proposition 3 imply that

any stationary type distribution satisfies

p̂∗
EA

= Γ(p̂∗)
EA
. (29)

We take a stationary type distribution p̂∗ corresponding to the given fractions of employed

workers and vacant jobs E∗ and V ∗ as in Equation (25), which means that p̂∗
EA

= E∗ and

p̂∗
V J

= V ∗. By the formulas above the statement of Theorem 4, we obtain that

Γ
EA

(p̂∗) = p̃
EA

(1− θ̄) + p̃
UJ
q
UV

(p̃),

p̃
UJ

= p̂∗
UJ

= w − p̂∗
EA

= w − E∗,

p̃
V J

= p̂∗
V J
b
V V

+ p̂∗
DJ
b
DV

= p̂∗
V J
b
V V

+ (1− w − p̂∗
EA

− p̂∗
V J

)b
DV

= V ∗.

Substituting the above terms into Equation (29), we derive

E∗ = p̂∗
EA

= (1− θ̄)E∗ +M (V ∗, e · (w − E∗)) .

Thus the stationary distribution of employed workers and vacant jobs considered in Andolfatto

(1996) can be derived from our model of dynamic directed random matching with enduring

partnership with appropriate parameters.

B Proofs

The main existence results in this paper are Theorems 1 and 5, which are proved in Subsections

B.1 and B.3 respectively. The proofs of Theorem 4 and Proposition 3 will be given in Subsection

B.2. Subsection B.4 presents the proofs of Propositions 2 and 4.

30



In Subsections B.1 and B.3, nonstandard analysis is used extensively. In particular, the

space of agents used in those two subsections will be based on a hyperfinite Loeb counting

probability space (I,I, λ) that is the Loeb space (see Loeb and Wolff (2015)) of the internal

probability space (I,I0, λ0), where I = {1, . . . , M̂}, M̂ is an unlimited hyperfinite integer in

∗
N∞, I0 its internal power set, and λ0(A) = |A|/|I| for any A ∈ I0 (that is, λ0 is the internal

counting probability measure on I).

We shall also need to work with some hyperfinite internal probability space as the sample

space in Subsections B.1 and B.3. A general hyperfinite internal probability space is an ordered

triple (Θ,A0, τ0), where Θ = {ϑ1, ϑ2, . . . , ϑγ}, for some unlimited hyperfinite natural number γ,

A0 is the internal power set on Θ, and τ0(B) =
∑

1≤j≤γ,ϑj∈B
τ0({ϑj}) for any B ∈ A0. When the

weights τ0({ϑj}), 1 ≤ j ≤ γ are all infinitesimals, (Θ,A0, τ0) is said to be atomless, and its Loeb

space (Θ,A, τ), as a standard probability space, is atomless in the usual sense. Keisler’s Fubini

Theorem (see (Loeb and Wolff, 2015, p. 214)) shows that the Loeb space (I ×Θ,I ⊠A, λ⊠ τ)

of the internal product probability space (I ×Θ,I0 ⊗A0, λ0 ⊗ τ0) is a Fubini extension.

B.1 Proof of Theorem 1

As mentioned in the beginning of Appendix B, let I = {1, . . . , M̂} be a hyperfinite set with M̂

an unlimited hyperfinite integer in ∗
N∞, I0 the internal power set on I, λ0 the internal counting

probability measure on I0. The corresponding Loeb counting probability space (I,I, λ) will be

our space of agents. In the setting of directed random matching as in Theorem 1, all agents are

initially unmatched. On the other hand, when one considers dynamic directed randommatching

with enduring partnership as in Theorem 5, only the unmatched agents will conduct directed

random searches for counterparties while those existing paired agents will not participate in

the search process. The following lemma will be used to prove both Theorems 1 and 5.

Lemma 1 As above, let (I,I0, λ0) be the hyperfinite internal counting probability space with

its Loeb space (I,I, λ). Then, there exists a hyperfinite internal set Ω with its internal power

set F0 such that for any initial internal type function α0 from I to S and initial internal

partial matching π0 from I to I ∪ {J} with g0 = α0 ◦ π0 internal extended type distribution

ρ̂ = λ0
(

α0, g0
)−1

, and for any internal matching probability function q from S×S to ∗
R+ with

∑

r∈S qkr ≤ 1 and ρ̂kJqkl ≃ ρ̂lJqlk (i.e., ρ̂kJqkl − ρ̂lJqlk is an infinitesimal) for any k, l ∈ S,

there exists an internal random matching π from I × Ω to I ∪ {J} and an internal probability

measure P0 on (Ω,F0) with the following properties.

(i) Let H = {i : π0(i) 6= J}. Then P0

(

{ω ∈ Ω : πω(i) = π0(i) for any i ∈ H}
)

= 1.

(ii) Let g be the internal mapping from I ×Ω to S ∪ {J}, defined by g(i, ω) = α0(π(i, ω)) for
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any (i, ω) ∈ I×Ω. Then, for any k, l ∈ S, P0(gi = l) ≃ qkl for λ-almost every agent i ∈ I

satisfying α0(i) = k and π0(i) = J .

(iii) Denote the corresponding Loeb probability spaces of the internal probability spaces (Ω,F0, P0)

and (I × Ω,I0 ⊗ F0, λ0 ⊗ P0) respectively by (Ω,F , P ) and (I × Ω,I ⊠ F , λ ⊠ P ). The

mapping g is an essentially pairwise independent process from (I ×Ω,I⊠F , λ⊠P ) to S.

To reflect their dependence on (α0, π0, q), π and P0 will also be denoted by π(α0,π0,q) and

P(α0,π0,q).

Proof. For each k ∈ S, let ηk = 1 −
∑

r∈S qkr, and Ik = {i ∈ I : α0(i) = k, π0(i) = J}.

For each agent i ∈ Ik, define a probability ζi on S ∪ {J} such that ζi(l) = qkl for l ∈ S and

ζi(J) = ηk. For each agent i ∈ I such that π0(i) 6= J , define a probability ζi on S ∪ {J}

such that ζi(l) = δJ(l) for l ∈ S ∪ {J}. Let Ω0 = (S ∪ {J})I be the internal set of all the

internal functions from I to S ∪ {J}, and µ0 the internal product probability measure Πi∈Iζi

on (Ω0,A0).

Let Ω1 = {A1 × · · · × AK2 : Ak ⊆ I and Ak is internal, where 1 ≤ k ≤ K2}. For each

ω0 ∈ Ω0, k, l ∈ S, let Āω0

kl = {i ∈ Ik : ω0(i) = l}, and B̄ω0

k = {i ∈ Ik : ω0(i) = J}. For k, l ∈ S

with k 6= l, let

Cω0

kl = {A : A ⊆ Āω0

kl , A is internal and |A| = min{|Āω0

kl |, |Ā
ω0

lk |}}.

For k ∈ S, let Cω0

kk =
{

Āω0

kk\{i} : i ∈ Āω0

kk

}

if |Āω0

kk| is odd and Cω0

kk =
{

Āω0

kk

}

if |Āω0

kk| is even.

Denote the product space
∏

k,l∈S C
ω0

kl by Cω0 . For any Aω0 ∈ Cω0 , let Bω0

k = Ik\(
⋃

l∈S A
ω0

kl ),

which is equal to B̄ω0

k ∪
⋃

l∈S

(

Āω0

kl \ A
ω0

kl

)

. Let Bω0 = ∪K
k=1B

ω0

k . Define an internal probability

measure µ1 on Ω0 ×Ω1 by letting µ1(ω0, A) = µ0(ω0)×µω0(A) for ω0 ∈ Ω0 and A ∈ Ω1, where

µω0 is the internal counting probability on Cω0 , and µω0(A) = 0 for A /∈ Cω0 . Note that we

also use ω to represent a singleton set {ω}.

Fix any ω0 ∈ Ω0 and Aω0 ∈ Cω0 . For each k ∈ S, let Ωω0,A
ω0

kk be the internal set of all

the internal full matchings on Aω0

kk, and µ
ω0,A

ω0

kk the internal counting probability measure on

Ωω0,A
ω0

kk . For k, l ∈ S with k < l, let Ωω0,A
ω0

kl be the internal set of all the internal bijections

from Aω0

kl to Aω0

lk , and µ
ω0,A

ω0

kl the internal counting probability on Aω0

kl . Let Ω2 be the internal

set of all the internal partial matching from I to I ∪ {J}, and Ωω0,A
ω0

2 the set of φ ∈ Ω2, with

(i) the restriction φ|H = π0|H , where H = {i : π0(i) 6= J};

(ii) {i ∈ Ik : φ(i) = J} = Bω0

k for each k ∈ S;

(iii) the restriction φ|Aω0

kk
∈ Ωω0,A

ω0

kk for k ∈ S;
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(iv) for k, l ∈ S with k < l, φ|Aω0

kl
∈ Ωω0,A

ω0

kl .

Define an internal probability measure µω0,A
ω0

2 on Ω2 such that

(i) for φ ∈ Ωω0,A
ω0

2 , µω0,A
ω0

2 (φ) =
∏

1≤k≤l≤K µω0,A
ω0

kl (φ|Aω0

kl
);

(ii) φ /∈ Ωω0,A
ω0

2 , µω0,A
ω0

2 (φ) = 0.

Define an internal probability measure P0 on Ω = Ω0 ×Ω1 ×Ω2 with the internal power

set F0 by letting

P0 ((ω0, F, ω2)) =

{

µ1(ω0, F )× µω0,F
2 (ω2) if F ∈ Cω0

0 otherwise.

For (i, ω) ∈ I × Ω, let π(i, (ω0, F, ω2)) = ω2(i), and g(i, ω) = α0(π(i, ω), ω). Denote the

corresponding Loeb probability spaces of the internal probability spaces (Ω,F0, P0) and (I ×

Ω,I0 ⊗F0, λ0 ⊗ P0) respectively by (Ω,F , P ) and (I ×Ω,I ⊠F , λ⊠P ). Since π is an internal

function from I × Ω to I ∪ {J}, it is I ⊠ F-measurable.

Denote the internal set
{

(ω0, F, ω2) ∈ Ω : ω0 ∈ Ω0, F ∈ Cω0 , ω2 ∈ Ωω0,F
2

}

by Ω̂. By the

construction of P0, it is clear that P0

(

Ω̂
)

= 1. By its construction, it is clear that π is a

random matching as in Definition 1 (iii) and satisfies part (i) of the lemma. It remains to prove

parts (ii) and (iii) of the lemma.

Define an internal process f from I × Ω to S ∪ {J} such that for any (i, ω) ∈ I × Ω,

f(i, ω) =

{

ω0(i) if π0(i) = J

α0(π0(i)) if π0(i) 6= J.

It is clear that if α0(i) = k and π0(i) = J , then P (fi = J) = ◦ηk and P (fi = l) = ◦qkl,

where ◦x is the standard part of a bounded hyperreal number x ∈ ∗
R. It is also obvious that

for i 6= j in I, fi and fj are independent random variables on the sample space (Ω,F , P ).

The exact law of large number as in Theorem 2.8 in Sun (2006)) implies that for P -almost all

ω = (ω0, F, ω2) ∈ Ω, λ({α0(i) = k, π0(i) = J, ω0(i) = l}) = ◦ρ̂kJ · ◦qkl holds for any k, l ∈ S,

and λ({α0(i) = k, π0(i) = J, ω0(i) = J}) = ◦ρ̂kJ · ◦ηk, which means that

|Āω0

kl |

M̂
≃ ρ̂kJqkl ≃ ρ̂lJqlk ≃

|Āω0

lk |

M̂
and

|B̄ω0

k |

M̂
≃ ρ̂kJηk. (30)

Let Ω̃ be the set of ω = (ω0, F, ω2) ∈ Ω such that Equation (30) holds. Then, P
(

Ω̃
)

= 1, and

hence P
(

Ω̂ ∩ Ω̃
)

= 1.

Fix any ω = (ω0, F, ω2) ∈ Ω̂ ∩ Ω̃; then F = Aω0 for some Aω0 ∈ Cω0 and ω2 ∈ Ωω0,A
ω0

2 .

For any k 6= l ∈ S, we have

|Aω0

kl |

M̂
= min(

|Āω0

kl |

M̂
,
|Āω0

lk |

M̂
) ≃ ρ̂kJqkl ≃

|Āω0

kl |

M̂
and

|Aω0

kk|

M̂
≃

|Āω0

kk|

M̂
≃ ρ̂kJqkk, (31)

33



which also implies
|B

ω0

k
|

M̂
≃ ρ̂kJηk ≃

|B̄
ω0

k
|

M̂
. For any i ∈ Ik, i ∈ Aω0

kl if and only if π(ω0, A
ω0 , ω2) =

ω2(i) ∈ Aω0

lk ; and i ∈ Bω0

k if and only if π(ω0, A
ω0 , ω2) = ω2(i) = J . Hence, for the fixed

ω = (ω0, A
ω0 , ω2), and for any k, l ∈ S, we can obtain that if i ∈ Aω0

kl ⊆ Āω0

kl , f(i, ω) = ω0(i) =

l = α0(ω2(i)) = g(i, ω); if i ∈ B̄ω0

k ⊆ Bω0

k , f(i, ω) = ω0(i) = J = α0(ω2(i)) = g(i, ω). For any

i ∈ I\(∪k∈SIk) which means π0(i) 6= J , we can obtain that f(i, ω) = α0(π0(i)) = α0(π(i, ω)) =

g(i, ω). It is clear that the set {i ∈ I : f(i, ω) 6= g(i, ω)} is a subset of
⋃

l∈S

(

Āω0

kl \ A
ω0

kl

)

, which

has λ-measure zero by Equation (31).

By the fact that P
(

Ω̂ ∩ Ω̃
)

= 1, we know that for P -almost all ω ∈ Ω,

λ (i ∈ I : f(i, ω) = g(i, ω)) = 1.

Since (I ×Ω,I⊠F , λ⊠P ) is a Fubini extension, the Fubini property implies that for λ-almost

all i ∈ I, g(i, ω) is equal to f(i, ω) for P -almost all ω ∈ Ω. Hence g satisfies part (ii) of the

lemma. Let Ĩ be an I-measurable set with λ(Ĩ) = 1 such that for any i ∈ Ĩ, gi(ω) = fi(ω) for

P -almost all ω ∈ Ω. Therefore, by the construction of f , we know that the collection of random

variables {gi}i∈Ĩ is mutually independent in the sense that any finitely many random variables

from that collection are mutually independent. This also implies part (iii) of the lemma.

Proof of Theorem 1: We follow Lemma 1. Let α0 be an internal type function from I to

S such that λ0
(

{α0(i) = k}
)

≃ pk for any k ∈ S.22 Let π0(i) = J for any i ∈ I. Given that

matching probability function q from S × S to R+ with
∑

r∈S qkr ≤ 1 and pkqkl = plqlk for

all k, l ∈ S, the condition ρ̂kJqkl ≃ ρ̂lJqlk in the statement of Lemma 1 is obviously satisfied.

It is clear that the random matching π and the probability measure P constructed in Lemma

1 satisfies all the conditions in Theorem 1. Let α be α0. Then, α and π, which are defined

on a Fubini extension (I × Ω,I ⊠ F , λ ⊠ P ), are a type function and an independent directed

random matching with respective parameters p and q.

B.2 Proofs of Theorem 4 and Proposition 3

Before proving Theorem 4, we need to prove a few lemmas. To prove that the agents’ extended

type processes are essentially pairwise independent in Lemma 3 below, we need the following

elementary lemma, which is Lemma 5 in Duffie and Sun (2012).

Lemma 2 Let φm be a random variable from (Ω,F , P ) to a finite space Am, for m = 1, 2, 3, 4.

If the random variables φ3 and φ4 are independent, and if, for all a1 ∈ A1 and a2 ∈ A2,

P (φ1 = a1, φ2 = a2 | φ3, φ4) = P (φ1 = a1 | φ3)P (φ2 = a2 | φ4), (32)

then the two pairs of random variables (φ1, φ3) and (φ2, φ4) are independent.

22For any given p ∈ ∆, the atomless property of λ0 implies the existence of such an α0.
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The following lemma is useful for applying the exact law of large numbers for discrete

time processes in Theorem 2.16 of Sun (2006) to our setting.

Lemma 3 Assume that the dynamical system D is Markov conditionally independent. Then,

the discrete time processes {βni }
∞
n=0, i ∈ I, are essentially pairwise independent. In addition,

for each fixed n ≥ 1, the random variables β̄ni , i ∈ I ( ¯̄βni , i ∈ I) are also essentially pairwise

independent.

Proof. Let E be the set of all (i, j) ∈ I × I such that Equations (21), (22) and (23) hold for

all n ≥ 1. Then, by grouping countably many null sets together, we obtain that for λ-almost

all i ∈ I, λ-almost all j ∈ I, (i, j) ∈ E, i.e., for λ-almost all i ∈ I, λ(Ei) = λ({j ∈ I : (i, j) ∈

E}) = 1.

We can use induction to prove that for any fixed (i, j) ∈ E, (β0i , . . . , β
n
i ) and (β0j , . . . , β

n
j )

are independent for n ≥ 0, so are the pairs β̄ni and β̄nj ,
¯̄βni and ¯̄βnj for n ≥ 1. The case of

n = 0 is simply the assumption of initial independence in Subsection A.2. Suppose that it

is true for the case n − 1, i.e., (β0i , . . . , β
n−1
i ) and (β0j , . . . , β

n−1
j ) are independent, so are the

pairs β̄n−1
i and β̄n−1

j , ¯̄βn−1
i and ¯̄βn−1

j . Then, the Markov conditional independence condition

and Lemma 2 imply that (β0i , . . . , β
n−1
i , β̄ni ) and (β0j , . . . , β

n−1
j , β̄nj ) are independent, so are

the pairs (β0i , . . . , β
n−1
i , β̄ni ,

¯̄βni ) and (β0j , . . . , β
n−1
j , β̄nj ,

¯̄βnj ), and (β0i , . . . , β
n−1
i , β̄ni ,

¯̄βni , β
n
i ) and

(β0j , . . . , β
n−1
j , β̄nj ,

¯̄βnj , β
n
j ). Hence, the random vectors (β0i , . . . , β

n
i ) and (β0j , . . . , β

n
j ) are inde-

pendent for all n ≥ 0, which means that {βni }
∞
n=0 and {βnj }

∞
n=0 are independent. It is also clear

that for each n ≥ 1, the random variables β̄ni and β̄nj are independent, so are ¯̄βni and ¯̄βnj . The

desired result follows.

The following lemma shows how to compute the expected cross-sectional type distribu-

tions E(p̂n) and E(p̌n).

Lemma 4 The following hold:

1. For each n ≥ 1, E(p̂n) = Γn(E(p̂n−1)).

2. For each n ≥ 1, the expected cross-sectional type distribution p̃n = E(p̌n) immediately

after random mutation at time n, satisfies E(p̌nkl) =
∑

k1,l1∈S
E(p̂n−1

k1l1
)bnk1kb

n
l1l

and E(p̌nkJ) =
∑

l∈S E(p̂n−1
lJ )bnlk.

Proof. Fix any k, l ∈ S. Equations (11) and (12) imply respectively that for any k1, l1 ∈ S,

P
(

β̄ni = (k, J) |βn−1
i = (k1, l1)

)

= 0, and P
(

β̄ni = (k, l) |βn−1
i = (k1, J)

)

= 0. (33)
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The Fubini property will be used extensively in the computations below. We shall illustrate its

usage in Equation (34). It then follows from the Fubini property, and Equations (11) and (33)

that

p̃nkl =

∫

Ω
λ
(

i ∈ I : β̄nω(i) = (k, l)
)

dP (ω) =

∫

I

P
(

β̄ni = (k, l)
)

dλ(i)

=

∫

I

∑

k1,l1∈S

P
(

β̄ni = (k, l), βn−1
i = (k1, l1)

)

dλ(i)

=

∫

I

∑

k1,l1∈S

P
(

β̄ni = (k, l) |βn−1
i = (k1, l1)

)

P
(

βn−1
i = (k1, l1)

)

dλ(i)

=
∑

k1,l1∈S

E(p̂n−1
k1l1

)bnk1kb
n
l1l
. (34)

By Equations (12) and (33), we obtain that

p̃nkJ =

∫

I

P
(

β̄ni = (k, J)
)

dλ(i) =

∫

I

∑

k1∈S

P
(

β̄ni = (k, J), βn−1
i = (k1, J)

)

dλ(i)

=

∫

I

∑

k1∈S

P
(

β̄ni = (k, J) |βn−1
i = (k1, J)

)

P
(

βn−1
i = (k1, J)

)

dλ(i)

=
∑

k1∈S

∫

I

bnk1kP
(

βn−1
i = (k1, J)

)

dλ(i)

=
∑

k1∈S

E(p̂n−1
k1J

)bnk1k. (35)

By Lemma 3, β̄n is essentially pairwise independent process. The exact law of large

numbers in Corollary 2.9 of Sun (2006) implies that p̌n(ω) = E(p̌n) = p̃n for P -almost all

ω ∈ Ω. Combining with Equations (15) and (16), we can obtain that for any l ∈ S,

P (¯̄gni = l | ᾱn
i = k, ḡni = J) = qnkl (p̃

n) , and P (¯̄gni = J | ᾱn
i = k, ḡni = J) = ηnk (p̃

n) . (36)

It follows from Equations (18) and (19) that

E(p̂nkl) =

∫

I

P (βni = (k, l)) dλ(i) =

∫

I

∑

k1,l1∈S

P
(

βni = (k, l), ¯̄βni = (k1, l1)
)

dλ(i)

=

∫

I

∑

k1,l1∈S

P
(

βni = (k, l) | ¯̄βni = (k1, l1)
)

P
(

¯̄βni = (k1, l1)
)

dλ(i)

=

∫

I

∑

k1,l1∈S

(1− θnk1l1)σ
n
k1l1

(k, l)P
(

¯̄βni = (k1, l1)
)

dλ(i)

=
∑

k1,l1∈S

(1− θnk1l1)σ
n
k1l1

(k, l)

∫

I

P
(

¯̄βni = (k1, l1)
)

dλ(i). (37)
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Equations (14) and (36) imply that
∫

I

P
(

¯̄βni = (k, l)
)

dλ(i) =

∫

I

∑

k1,l1∈S

P
(

¯̄βni = (k, l) | β̄ni = (k1, l1)
)

P
(

β̄ni = (k1, l1)
)

dλ(i)

+

∫

I

∑

k1∈S

P
(

¯̄βni = (k, l) | β̄ni = (k1, J)
)

P
(

β̄ni = (k1, J)
)

dλ(i)

=

∫

I

P
(

¯̄βni = (k, l) | β̄ni = (k, l)
)

P
(

β̄ni = (k, l)
)

dλ(i)

+

∫

I

P
(

¯̄βni = (k, l) | β̄ni = (k, J)
)

P
(

β̄ni = (k, J)
)

dλ(i)

= p̃nkl + qnkl (p̃
n) p̃nkJ . (38)

By substituting Equation (38) into Equation (37), we can express E(p̂nkl) in terms of E(p̌n):

E(p̂nkl) =
∑

k1,l1∈S

p̃nk1l1(1− θnk1l1)σ
n
k1l1

(k, l) +
∑

k1,l1∈S

p̃nk1Jq
n
k1l1

(p̃n) (1− θnk1l1)σ
n
k1l1

(k, l). (39)

Similarly, Equations (18) and (20) imply the second and third identities while Equations (36)

and (38) imply the last identity in the following equation:

E(p̂nkJ) =

∫

I

P (βni = (k, J)) dλ(i)

=

∫

I

P
(

βni = (k, J), ¯̄βni = (k, J)
)

dλ(i) +

∫

I

∑

k1,l1∈S

P
(

βni = (k, J), ¯̄βni = (k1, l1)
)

dλ(i)

=

∫

I

P
(

¯̄βni = (k, J)
)

dλ(i) +

∫

I

∑

k1,l1∈S

θnk1l1ς
n
k1l1

(k)P
(

¯̄βni = (k1, l1)
)

dλ(i)

=

∫

I

P
(

¯̄βni = (k, J) | β̄ni = (k, J)
)

P
(

β̄ni = (k, J)
)

dλ(i)

+
∑

k1,l1∈S

θnk1l1ςk1l1(k)

∫

I

P
(

¯̄βni = (k1, l1)
)

dλ(i)

= p̃nkJη
n
k (p̃

n) +
∑

k1,l1∈S

p̃nk1l1θ
n
k1l1

ςnk1l1(k) +
∑

k1,l1∈S

p̃nk1Jq
n
k1l1

(p̃n)θnk1l1ς
n
k1l1

(k) (40)

By combining Equations (34), (35),(39) and (40), we obtain that E(p̂n) = Γn(E(p̂n−1)).

The following lemma shows the Markov property of the agents’ extended type processes.

Lemma 5 Suppose the dynamical system D is Markov conditional independent. Then, for

λ-almost all i ∈ I, the extended type process for agent i, {βni }
∞
n=0, is a Markov chain with

transition matrix zn at time n− 1.

Proof. Fix n ≥ 1, by summing over all the (k2, l2) ∈ S̃ in Equation (21), we obtain that for

λ-almost all i ∈ I,

P
(

β̄ni = (k1, l1) | (β
t
i )

n−1
t=0

)

= P
(

β̄ni = (k1, l1) | β
n−1
i

)

. (41)
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By grouping countably many null sets together, we know that for λ-almost all i ∈ I, Equation

(41) holds for all n ≥ 1.

Similarly, Equations (22) and (23) imply that for λ-almost all i ∈ I,

P
(

¯̄βni = (k1, l1) | β̄
n
i , (β

t
i )

n−1
t=0

)

= P
(

¯̄βni = (k1, l1) | β̄
n
i

)

,

P
(

βni = (k1, l1) |
¯̄βni , (β

t
i )

n−1
t=0

)

= P
(

βni = (k1, l1) |
¯̄βni

)

hold for all n ≥ 1. A simple computation shows that for λ-almost all i ∈ I,

P (βni = (k1, l1) | β
0
i , . . . , β

n−1
i ) = P (βni = (k1, l1) | β

n−1
i )

for all a1 ∈ S, r1 ∈ S ∪ {J} and n ≥ 1. Hence, for λ-almost all i ∈ I, agent i’s extended type

process {βni }
∞
n=0 is a Markov chain.

By combining Equations (34), (35) and (39), we can obtain that

E(p̂nkl) =
∑

k1,l1,k′∈S

bk′k1q
n
k1l1

(p̃n)(1− θnk1l1)σ
n
k1l1

(k, l)E(p̂n−1
k′J )

+
∑

k1,l1,k′,l′∈S

bnk′k1b
n
l′l1

(1− θnk1l1)σ
n
k1l1

(k, l)E(p̂n−1
k′l′ ),

Since the transition probabilities zn(k′l′)(kl) and zn(k′J)(kl) from time n − 1 to time n are the

respective coefficients of E(p̂n−1
k′l′ ) and E(p̂n−1

k′J ) for any k, l, k′, l′ ∈ S, we can obtain that

zn(k′l′)(kl) =
∑

k1,l1∈S

bnk′k1b
n
l′l1

(1− θnk1l1)σ
n
k1l1

(k, l),

zn(k′J)(kl) =
∑

k1,l1∈S

bk′k1q
n
k1l1

(p̃n)(1 − θnk1l1)σ
n
k1l1

(k, l),

which follow the corresponding formulas in Equation (24). Similarly, by combining Equations

(34), (35) and (40), we can obtain that

E(p̂nkJ) =
∑

k′∈S

bnk′kη
n
k (p̃

n)E(p̂n−1
k′J ) +

∑

k1,l1,k′,l′∈S

bnk′k1b
n
l′l1
θnk1l1ς

n
k1l1

(k)E(p̂n−1
k′l′ )

+
∑

k1,l1,k′∈S

bnk′k1q
n
k1l1

(p̃n)θnk1l1ς
n
k1l1

(k)E(p̂n−1
k′J )

Since the transition probabilities zn(k′l′)(kJ) and zn(k′J)(kJ) from time n − 1 to time n are the

respective coefficients of E(p̂n−1
k′l′ ) and E(p̂n−1

k′J ) for any k, k′, l′ ∈ S, we can obtain that

zn(k′l′)(kJ) =
∑

k1,l1∈S

bnk′k1b
n
l′l1
θnk1l1ς

n
k1l1

(k),

zn(k′J)(kJ) = bnk′kη
n
k (p̃

n) +
∑

k1,l1∈S

bnk′k1q
n
k1l1

(p̃n)θnk1l1ς
n
k1l1

(k),
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which follow the corresponding formulas in Equation (24).

Now, for each n ≥ 1, we view each βn as a random variable on I × Ω. Then {βn}∞n=0 is

a discrete-time stochastic process.

Lemma 6 Assume that the dynamical system D is Markov conditionally independent. Then,

{βn}∞n=0 is also a Markov chain with transition matrix zn at time n− 1.

Proof. We can compute the transition matrix of {βn}∞n=0 at time n − 1 by using Lemma 5

and the Fubini property. Fix any k1, k2 ∈ S and any l1, l2 ∈ S ∪ {J}. We have

(λ⊠ P )(βn = (k2, l2), β
n−1 = (k1, l1))

=

∫

I

P (βni = (k2, l2) | β
n−1 = (k1, l1))P (β

n−1
i = (k1, l1)) dλ(i)

=

∫

I

zn(k1l1)(k2l2)P (β
n−1 = (k1, l1)) dλ(i)

= zn(k1l1)(k2l2) · (λ⊠ P )(βn−1 = (k1, l1)), (42)

which implies that (λ⊠ P )(βn = (k2, l2) | β
n−1 = (k1, l1)) = zn(k1l1)(k2l2).

Next, for any n ≥ 1, and for any (a0, . . . , an−2) ∈ (S × (S ∪ {J}))n−1, we have

(λ⊠ P )
(

(β0, . . . , βn−2) = (a0, . . . , an−2), βn−1 = (k1, l1), β
n = (k2, l2)

)

=

∫

I

P
(

(β0i , . . . , β
n−2
i ) = (a0, . . . , an−2), βn−1

i = (k1, l1), β
n
i = (k2, l2)

)

dλ(i)

=

∫

I

P
(

βni = (k2, l2) | β
n−1
i = (k1, l1)

)

P
(

(β0i , . . . , β
n−2
i ) = (a0, . . . , an−2), βn−1

i = (k1, l1)
)

dλ(i)

= zn(k1l1)(k2l2) · (λ⊠ P )((β0, . . . , βn−2) = (a0, . . . , an−2), βn−1 = (k1, l1)), (43)

which implies that

(λ⊠ P )(βn = (k2, l2) | (β
0, . . . , βn−2) = (a0, . . . , an−2), βn−1 = (k1, l1)) = zn(k1l1)(k2l2).

Hence the discrete-time process {βn}∞n=0 is indeed a Markov chain with transition matrix zn

at time n− 1.

Proof of Theorem 4: Properties (1), (2), and (3) of the theorem are shown in Lemmas 4, 5,

and 3 respectively.

By the exact law of large numbers for discrete time processes in Theorem 2.16 of Sun

(2006), we know that for P -almost all ω ∈ Ω, (β0ω, . . . , β
n
ω) and (β0, . . . , βn) (viewed as random

vectors) have the same distribution for all n ≥ 1. Since, as noted in Lemma 6, {βn}∞n=0 is a

Markov chain with transition matrix zn at time n − 1, so is {βnω}
∞
n=0 for P -almost all ω ∈ Ω.

Thus property (4) is shown.
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Since the processes β̄n and βn are essentially pairwise independent as shown in Lemma

3, the exact law of large numbers in Corollary 2.9 of Sun (2006) implies that at time period

n, for P -almost all ω ∈ Ω, the realized cross-sectional distribution after the random mutation,

p̌n(ω) = λ(β̄nω)
−1 is the expected cross-sectional distribution E(p̌n), and the realized cross-

sectional distribution at the end of period n, p̂n(ω) = λ(βnω)
−1 is the expected cross-sectional

distribution E(p̂n). Thus, property (5) is shown.

Assume that there exists p̈0 ∈ ∆̂ such that P
(

β0i
)−1

= p̈0 holds for λ-almost every i ∈ I.

The exact law of large numbers in Corollary 2.9 of Sun (2006) implies that p̈0 = E(p̂0). For λ-

almost all i ∈ I, since the transition matrix of {βni }
∞
n=1 is {zn}∞n=1, the Markov chains {βni }

∞
n=0

induce the same distribution on Ŝ∞ as ξ. For P -almost all ω ∈ Ω, the Markov chains {βnω}
∞
n=0

induce the same distribution on Ŝ∞ as ξ. Thus, property (6) is shown.

Proof of Proposition 3: Given that the parameters (b, q, θ, σ, ς) are time independent, the

mapping Γn from ∆̂ to ∆̂ in Subsection A.3 is time independent, and will simply be denoted by

Γ. By the continuity assumption in the sentence above Equation (7), p̂kJq
n
kl( p̂ ) is continuous

in p̂ ∈ ∆̂ for any k, l ∈ S. For any k1, l1 ∈ S, since p̃k1J =
∑

r∈S p̂rJb
n
rk1

is continuous in p̂ ∈ ∆̂,

we can also obtain that p̃k1J q
n
k1l1

(p̃) is continuous in p̂ ∈ ∆̂. Therefore, Γ is a continuous

function from ∆̂ to itself. By Brower’s Fixed Point Theorem, Γ has a fixed point p̂∗. In this

case, E(p̂n) = p̂∗, zn = z1 for all n ≥ 1. Hence the Markov chains {βni }
∞
n=0 for λ-almost all

i ∈ I, {βn}∞n=0, {β
n
ω}

∞
n=0 for P -almost all ω ∈ Ω are time-homogeneous.

If the initial extended type process β0 is i.i.d., then the extended type distribution of

agent i at time n = 0 is P
(

β0i
)−1

= p̂∗ for λ-almost every i ∈ I. By (6) of Theorem 4, for any

n ≥ 1, βni induce the same distribution on Ŝ for λ-almost all i ∈ I. Therefore, for any n ≥ 1,

P (βni )
−1 = p̂∗ for λ-almost all i ∈ I.

B.3 Proof of Theorem 5

What we need to do is to construct sequences of internal transition probabilities, internal

type functions, and internal random matchings. Since we need to consider random mutation,

random matching and random type changing with break-up at each time period, three internal

measurable spaces with internal transition probabilities will be constructed at each time period.

Let T0 be the hyperfinite discrete time line {n}Mn=0 and (I,I0, λ0) be the agent space,

where I = {1, . . . , M̂}, I0 is the internal power set on I, λ0 is the internal counting probability

measure on I0,M and M̂ are unlimited hyperfinite numbers in ∗
N∞. We transfer the sequences

of numbers bn, θn, σn, ςn, n ∈ N to the nonstandard universe to obtain bn, θn, σn, ςn, n ∈ ∗
N.

The transfer of the sequence of functions qn, n ∈ N to the nonstandard universe is denoted

by ∗qn, n ∈ ∗
N. Then, for any k, l ∈ S, ∗qnkl is an internal function from ∗∆̂ to ∗[0, 1]. Let
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q̂nkl(ρ̂) = (∗qnkl)(ρ̂) and η̂
n
k = 1 −

∑

l∈S q̂
n
kl(ρ̂) for any k, l ∈ S and ρ̂ ∈ ∗∆̂. Note that an object

with an upper left star means the transfer of a standard object to the nonstandard universe.

We shall first consider the case of an initial condition Π0 that is deterministic. Let

{Akl}(k,l)∈S̃ be an internal partition of I such that |Akl|

M̂
≃ p̈kl for any k ∈ S and l ∈ S ∪ {J},

and |Akl| = |Alk| and |Akk| are even for any k, l ∈ S. Let α0 be an internal function from

(I,I0, λ0) to S such that α0(i) = k if i ∈
⋃

l∈S∪{J}Akl. Let π
0 be an internal partial matching

from I to I ∪ {J} such that π0(i) = J on
⋃

k∈S AkJ , and the restriction π0|Akl
is an internal

bijection from Akl to Alk for any k, l ∈ S. Let g0(i) = α0(π0(i)). It is clear that λ0({i : α
0(i) =

k, g0(i) = l}) ≃ p̈0kl for any k ∈ S and l ∈ S ∪ {J}.

Suppose that the construction for the dynamical system D has been done up to time

period n−1 ∈ ∗
N. That is, {(Ωm,Fm, Qm)}3n−3

m=1 and {αl, πl}n−1
l=0 have been constructed, where

each Ωm is a hyperfinite internal set with its internal power set Fm, Qm an internal transition

probability from Ωm−1 to (Ωm,Fm), αl an internal type function from I × Ω3l−1 to the type

space S, and πl an internal random matching from I ×Ω3l to I ∪ {J}.23 Here, Ωm =
∏m

j=1Ωj,

and {ωj}
m
j=1 will also be denoted by ωm when there is no confusion. Denote the internal

product transition probability Q1⊗Q2⊗· · ·⊗Qm by Qm, and ⊗m
j=1Fj by Fm (which is simply

the internal power set on Ωm). Then, Qm is the internal product of the internal transition

probability Qm with the internal probability measure Qm−1.

We shall now consider the constructions for time n. We first work with the random

mutation step. Let Ω3n−2 = SI (the space of all internal functions from I to S) with its

internal power set F3n−2. For each i ∈ I, ω3n−3 ∈ Ω3n−3, if αn−1(i, ω3n−3) = k, define a

probability measure γω
3n−3

i on S by letting γω
3n−3

i (l) = bnkl for each l ∈ S. Define an internal

probability measure Qω3n−3

3n−2 on (SI ,F3n−2) to be the internal product measure
∏

i∈I γ
ω3n−3

i . Let

ᾱn :
(

I ×
∏3n−2

m=1 Ωm

)

→ S be such that ᾱn
(

i, ω3n−2
)

= ω3n−2(i). Let ḡ
n :

(

I ×
∏3n−2

m=1 Ωm

)

→

S ∪ {J} be such that

ḡn
(

i, ω3n−2
)

= ᾱn(πn−1(i, ω3n−3), ω3n−2).

Let ρ̌n
ω3n−2 = λ0

(

ᾱn
ω3n−2 , ḡ

n
ω3n−2

)−1
be the internal cross-sectional extended type distribution

after random mutation.

Next, we consider the step of directed random matching. Let (Ω3n−1,F3n−1) = (Ω̄, F̄),

where (Ω̄, F̄) is the measurable space constructed in the proof of Lemma 1. For any given

ω3n−2 ∈ Ω3n−2, the type function is ᾱn
ω3n−2( · ) while the partial matching function is πn−1

ω3n−3( · ).

We can construct an internal probability measure Qω3n−2

3n−1 = P
ᾱn

ω3n−2
,πn−1

ω3n−3
,q̂n(ρ̌n

ω3n−2
) and a

directed random matching π
ᾱn

ω3n−2
,πn−1

ω3n−3
,q̂n(ρ̌n

ω3n−2
) by Lemma 1. Let π̄n :

(

I ×
∏3n−1

m=1 Ωm

)

→

23To handle the deterministic case at the initial step with l = 0 (3l−1 = −1 and 3l = 0), one can let Ω0 = Ω−1

be a singleton set.
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I ∪ {J} be such that

π̄n
(

i, ω3n−1
)

= π
ᾱn

ω3n−2
,πn−1

ω3n−3
,q̂n(ρ̌n

ω3n−2
)(i, ω3n−1),

¯̄gn(i, ω3n−1) = ᾱn(π̄n(i, ω3n−1), ω3n−2).

Now, we consider the final step of random type changing with break-up for matched

agents. Let Ω3n = (S×{0, 1})I with its internal power set F3n, where 0 represents “unmatched”

and 1 represents “paired”; each point ω3n = (ω1
3n, ω

2
3n) ∈ Ω3n is an internal function from I to

S × {0, 1}. Define a new type function αn : (I × Ω3n) → S by letting αn(i, ω3n) = ω1
3n(i). Fix

ω3n−1 ∈ Ω3n−1. For each i ∈ I, (1) if π̄n(i, ω3n−1) = J (i is not paired after the matching step at

time n), let τω
3n−1

i be the probability measure on the type space S×{0, 1} that gives probability

one to the type
(

ᾱn(i, ω3n−2), 0
)

and zero for the rest; (2) if π̄n(i, ω3n−1) 6= J (i is paired after

the matching step at time n), ᾱn(i, ω3n−2) = k, π̄n(i, ω3n−1) = j and ᾱn(j, ω3n−2) = l, define

a probability measure τω
3n−1

ij on (S × {0, 1}) × (S × {0, 1}) such that τω
3n−1

ij ((k′, 1), (l′, 1)) =

(1−θnkl)σ
n
kl(k

′, l′) and τω
3n−1

ij ((k′, 0), (l′, 0)) = θnklς
n
kl(k

′)ςnlk(l
′) for k′, l′ ∈ S, and zero for the rest.

Let An
ω3n−1 = {(i, j) ∈ I × I : i < j, π̄n(i, ω3n−1) = j} and Bn

ω3n−1 = {i ∈ I : π̄n(i, ω3n−1) = J}.

Define an internal probability measure Qω3n−1

3n on (S × {0, 1})I to be the internal product

measure
∏

i∈Bn

ω3n−1

τω
3n−1

i ⊗
∏

(i,j)∈An

ω3n−1

τω
3n−1

ij .

Let

πn(i, ω3n) =

{

J if π̄n(i, ω3n−1) = J or ω2
3n(i) = 0 or ω2

3n(π̄
n(i, ω3n−1)) = 0

π̄n(i, ω3n−1) otherwise.

and gn(i, ω3n) = αn(πn(i, ω3n), ω3n). It is clear that πn is a random matching and Equation

(17) holds.

Keep repeating the construction. We can then construct a hyperfinite sequence of in-

ternal transition probabilities {(Ωm,Fm, Qm)}3Mm=1 and a hyperfinite sequence of internal type

functions and internal random matchings {(αn, πn)}Mn=0.

Let (I×Ω3M ,I0⊗F3M , λ0⊗Q
3M ) be the internal product probability space of (I,I0, λ0)

and (Ω3M ,F3M , Q3M ). Denote the Loeb spaces of (Ω3M ,F3M , Q3M ) and the internal product

(I ×Ω3M ,I0 ⊗F3M , λ0 ⊗Q3M ) by (Ω3M ,F , P ) and (I ×Ω3M ,I ⊠F , λ⊠ P ) respectively. For

simplicity, let Ω3M be denoted by Ω, Q3M be denoted by P0.

In the following, we will often work with functions or sets that are measurable in

(Ωm,Fm, Qm) or its Loeb space for some m ≤ 3M , which may be viewed as functions or

sets based on (Ω3M ,F3M , Q3M ) or its Loeb space by allowing for dummy components for the

tail part. We can thus continue to use P to denote the Loeb measure generated by Qm for
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convenience. Since all the type functions, random matchings and the partners’ type functions

are internal in the relevant hyperfinite settings, they are all I ⊠F-measurable when viewed as

functions on I ×Ω.

For n = 0, the initial independence condition in the definition of Markov conditional

independence in Subsection A.2 is trivially satisfied. Suppose that the Markov conditional

independence are satisfied up to period n− 1 ∈ N. It remains to check the Markov conditional

independence for period n.

For the mutation step in period n, fix any (a1, r1), (a2, r2) and k
t
1, l

t
1), (k

t
2, l

t
2), t = 1, . . . , n−

1 in S̃. For any agents i and j with i 6= j, we can obtain that

P
(

β̄ni = (a1, r1), β̄
n
j = (a2, r2), β

t
i = (kt1, l

t
1), β

t
j = (kt2, l

t
2), t = 1, . . . , n− 1

)

≃

∫

D3n−3

ij

Qω3n−3

3n−2

(

β̄n(i, ω3n−2) = (a1, r1), β̄
n(j, ω3n−2) = (a2, r2)

)

dQ3n−3(ω3n−3)

=

∫

D3n−3

ij

Qω3n−3

3n−2

(

β̄n(i, ω3n−2) = (a1, r1), β̄
n(j, ω3n−2) = (a2, r2)

)

dQ3n−3(ω3n−3)

+

∫

D
3n−3

ij

Qω3n−3

3n−2

(

β̄n(i, ω3n−2) = (a1, r1), β̄
n(j, ω3n−2) = (a2, r2)

)

dQ3n−3(ω3n−3),

where

D3n−3
ij = {ω3n−3 : βt(i, ω3t) = (kt1, l

t
1), β

t(j, ω3t) = (kt2, l
t
2), t = 1, . . . , n− 1},

D3n−3
ij = {ω3n−3 : πn−1(i, ω3n−3) 6= j, βt(i, ω3t) = (kt1, l

t
1), β

t(j, ω3t) = (kt2, l
t
2), t = 1, . . . , n− 1},

D
3n−3
ij = {ω3n−3 : πn−1(i, ω3n−3) = j, βt(i, ω3t) = (kt1, l

t
1), β

t(j, ω3t) = (kt2, l
t
2), t = 1, . . . , n− 1}.

Fix any agent i ∈ I. It is clear that D
3n−3
ij ∩D

3n−3
ij′ = ∅ for different j and j′. Then there are at

most countably many j ∈ I such that P (D
3n−3
ij ) > 0. Let F 3n−3

i = {j ∈ I : j 6= i, P (D
3n−3
ij ) =

0}; then λ(F 3n−3
i ) = 1. Fix any j ∈ F 3n−3

i . The probability for agents i and j to be partners is

zero at the end of period n− 1. When agents i and j are not partners, their random extended

types will be independent by the construction of Qω3n−3

3n−2 . Hence, we can obtain that

P
(

β̄ni = (a1, r1), β̄
n
j = (a2, r2), β

t
i = (kt1, l

t
1), β

t
j = (kt2, l

t
2), t = 1, . . . , n− 1

)

≃

∫

D3n−3

ij

Qω3n−3

3n−2

(

β̄n(i, ω3n−2) = (a1, r1), β̄
n(j, ω3n−2) = (a2, r2)

)

dQ3n−3(ω3n−3)

=

∫

D3n−3

ij

Qω3n−3

3n−2

(

β̄n(i, ω3n−2) = (a1, r1)
)

Qω3n−3

3n−2

(

β̄n(j, ω3n−2) = (a2, r2)
)

dQ3n−3(ω3n−3)

=

∫

D3n−3

ij

B3n−2
kn−1

1
ln−1

1

(a1, r1)B
3n−2
kn−1

2
ln−1

2

(a2, r2)dQ
3n−3(ω3n−3)

≃ P (D3n−3
ij )B3n−2

kn−1

1
ln−1

1

(a1, r1)B
3n−2
kn−1

2
ln−1

2

(a2, r2),
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where

B3n−2
kl (r, s) =











bnkrb
n
ls if l, s ∈ S

bnkr if l = s = J

0 otherwise.

Thus, for λ-almost all agent j ∈ I,

P
(

β̄ni = (a1, r1), β̄
n
j = (a2, r2) |β

t
i = (kt1, l

t
1), β

t
j = (kt2, l

t
2), t = 1, . . . , n− 1

)

= B3n−2
kn−1

1
ln−1

1

(a1, r1)B
3n−2
kn−1

2
ln−1

2

(a2, r2). (44)

Note that for any i ∈ I,

P (β̄ni = (a1, r1), β
n−1
i = (kn−1

1 , ln−1
1 )) ≃

∫

E3n−3

i

Qω3n−3

3n−2

(

β̄n(i, ω3n−2) = (a1, r1)
)

dQ3n−3(ω3n−3)

=

∫

E3n−3

i

B3n−2

kn−1

1
ln−1

1

(a1, r1)dQ
3n−3(ω3n−3) ≃ P (E3n−3

i )B3n−2

kn−1

1
ln−1

1

(a1, r1),

where E3n−3
i = {ω3n−3 : βn−1(i, ω3n−3) = (kn−1

1 , ln−1
1 )}. Then, we have

P (β̄ni = (a1, r1) |β
n−1
i = (kn−1

1 , ln−1
1 )) = B3n−2

kn−1

1
ln−1

1

(a1, r1). (45)

Hence, Equations (11) and (12) in the definition of dynamical system are satisfied. By Equation

(44), we can obtain for each i ∈ I, and for λ-almost all j ∈ I,

P
(

β̄ni = (a1, r1), β̄
n
j = (a2, r2) |β

t
i = (kt1, l

t
1), β

t
j = (kt2, l

t
2), t = 1, . . . , n− 1

)

= P
(

β̄ni = (a1, r1) |β
n−1
i = (kn−1

1 , ln−1
1 )

)

P
(

β̄nj = (a2, r2) |β
n−1
j = (kn−1

2 , ln−1
2 )

)

. (46)

Hence, Equation (21) in the definition of Markov conditional independence is satisfied.

For the random matching step in period n, fix any (a1, r1), (a2, r2) in S × S and any

kt1, l
t
1), (k

t
2, l

t
2) in S̃ for t = 1, . . . , n − 1. Fix any ω3n−2 ∈ Ω3n−2. Let Aω3n−3

= {i ∈ I :

πn−1
ω3n−3(i) 6= J}. By Lemma 1 (i), we know that

Qω3n−2

3n−1

(

ω3n−1 ∈ Ω3n−1 : π̄
n
(

i, (ω3n−2, ω3n−1)
)

= πn−1
(

i, ω3n−3
)

for any i ∈ Aω3n−3
)

= 1,

which implies that Equation (13) holds.

Lemma 2 and Equation (46) imply that the extended type process β̄n is essentially

pairwise independent. It follows from the exact law of large numbers in Corollary 2.9 of Sun

(2006) that for P -almost all ω3n−2 ∈ Ω3n−2,

ρ̌n(ω3n−2) ≃ p̌n(ω3n−2) = λ
(

β̄nω3n−2

)−1
= E

(

p̌n
(

ω3n−2
))

= p̃n ≃ E (ρ̌n) . (47)

Then Equation (15) is equivalent to

P (¯̄gni = l | ᾱn
i = k, ḡni = J) = qnkl (p̃

n) .
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Since paired agents do not match in this step, their extended types will not change. Thus, to

verify Equation (22), we only need to prove

P
(

¯̄βni = (a1, r1),
¯̄βnj = (a2, r2) | β̄

n
i = (a1, J), β̄

n
j = (a2, J),

βti = (kt1, l
t
1), β

t
j = (kt2, l

t
2), t = 1, . . . , n− 1

)

= P
(

¯̄βni = (a1, r1) | β̄
n
i = (a1, J)

)

P
(

¯̄βnj = (a2, r2) | β̄
n
j = (a2, J)

)

.

Fix any k ∈ S. If p̃nkJ =
∫

I
P (β̄ni = (k, J))dλ(i) = 0, then P (β̄ni = (k, J)) = 0 for λ-almost all

agent i ∈ I, which means that Equation (22) automatically holds. It follows from the continuity

requirement above Equation (47) that

ρ̌na1J q̂
n
a1r1

(ρ̌n) ≃ p̃na1Jq
n
a1r1

(p̃n)

for P -almost all ω3n−2 ∈ Ω3n−2. Suppose p̃na1J > 0 and p̃na2J > 0. Hence, we can obtain that

for P -almost all ω3n−2 ∈ Ω3n−2, q̂na1r1(ρ̌
n) ≃ qna1r1 (p̃

n), and q̂na2r2(ρ̌
n) ≃ qna2r2 (p̃

n).

We can now derive
∫

I

∫

I

∣

∣

∣
P
(

¯̄βni = (a1, r1),
¯̄βnj = (a2, r2), β̄

n
i = (a1, J), β̄

n
j = (a2, J),

βti = (kt1, l
t
1), β

t
j = (kt2, l

t
2), t = 1, . . . , n − 1

)

−qna1r1 (p̃
n) qna2r2 (p̃

n)P (D3n−2
ij )

∣

∣

∣
dλ(j)dλ(i)

≃

∫

I

∫

I

∣

∣

∣

∫

D3n−2

ij

(

Qω3n−2

3n−1

(

¯̄gn(i, ω3n−1) = r1, ¯̄g
n(j, ω3n−1) = r2

)

−q̂na1r1
(

ρ̌n(ω3n−2)
)

q̂na2r2
(

ρ̌n(ω3n−2)
)

)

dQ3n−2(ω3n−2)
∣

∣

∣
dλ0(j)dλ0(i)

≤

∫

I

∫

I

∫

Ω3n−2

1
D3n−2

ij
(ω3n−2)

∣

∣

∣
Qω3n−2

3n−1

(

¯̄gn(i, ω3n−1) = r1, ¯̄g
n(j, ω3n−1) = r2

)

−q̂na1r1
(

ρ̌n(ω3n−2)
)

q̂na2r2
(

ρ̌n(ω3n−2)
)

∣

∣

∣
dQ3n−2(ω3n−2)dλ0(j)dλ0(i)

=

∫

Ω3n−2

∫

I

∫

I

1D3n−2

ij
(ω3n−2)

∣

∣

∣
Qω3n−2

3n−1

(

¯̄gn(i, ω3n−1) = r1, ¯̄g
n(j, ω3n−1) = r2

)

−q̂na1r1
(

ρ̌n(ω3n−2)
)

q̂na2r2
(

ρ̌n(ω3n−2)
)

∣

∣

∣
dλ0(j)dλ0(i)dQ

3n−2(ω3n−2), (48)

where

D3n−2 = {(ω3n−2, i, j) : β̄n(i, ω3n−2) = (a1, J), β̄
n(j, ω3n−2) = (a2, J),

βt(i, ω3t) = (kt1, l
t
1), β

t(j, ω3t) = (kt2, l
t
2), t = 1, . . . , n− 1},

D3n−2
ij is the (i, j)-section of D3n−2, and 1D3n−2

ij
is the indicator function of the set 1D3n−2

ij
in

Ω3n−2. By Lemma 1 (iii), it is clear that for λ-almost all i ∈ I, for λ-almost all j ∈ I, and for

any ω3n−2 ∈ D3n−2
ij , we have

Qω3n−2

3n−1

(

¯̄gn(i, ω3n−1) = r1, ¯̄g
n(j, ω3n−1) = r2

)

≃ q̂na1r1
(

ρ̌n(ω3n−2)
)

q̂na2r2
(

ρ̌n(ω3n−2)
)

.
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Hence, the last term of Equation (48) is equal to an infinitesimal. Therefore, the first term of

Equation (48) is equal to zero, which implies that for λ-almost all i ∈ I

P
(

¯̄βni = (a1, r1),
¯̄βnj = (a2, r2) | β̄

n
i = (a1, J), β̄

n
j = (a2, J),

βti = (kt1, l
t
1), β

t
j = (kt2, l

t
2), t = 1, . . . , n− 1

)

= qna1r1 (p̃
n) qna2r2 (p̃

n) (49)

for λ-almost all j ∈ I.

For i ∈ I, let E3n−2
i = {ω3n−2 : β̄n(i, ω3n−2) = (a1, J)}. We can obtain that for λ-almost

all i ∈ I, and for any ω3n−2 ∈ E3n−2
i ,

P
(

¯̄βni = (a1, r1), β̄
n
i = (a1, J)

)

≃

∫

E3n−2

i

Qω3n−2

3n−1

(

¯̄gn(i, ω3n−1) = r1
)

dQ3n−2(ω3n−2),

and Qω3n−2

3n−1

(

¯̄gn(i, ω3n−1) = r1
)

≃ q̂na1r1
(

ρ̌n(ω3n−2)
)

. Hence, we can obtain that for λ-almost all

i ∈ I,

P
(

¯̄βni = (a1, r1), β̄
n
i = (a1, J)

)

≃

∫

E3n−2

i

Qω3n−2

3n−1

(

¯̄gn(i, ω3n−1) = r1
)

dQ3n−2(ω3n−2)

≃

∫

E3n−2

i

q̂na1r1
(

ρ̌n(ω3n−2)
)

dQ3n−2(ω3n−2) ≃ P (E3n−2
i )qna1r1 (p̃

n) .

Therefore, we have for λ-almost all i ∈ I,

P
(

¯̄βni = (a1, r1) | β̄
n
i = (a1, J)

)

= qna1r1 (p̃
n) . (50)

Since p̌n(ω3n−2) ≃ p̃n for P -almost all ω3n−2 ∈ Ω3n−2, Equation (50) implies Equation (15).

Combining Equations (49) and (50) together, we have

P
(

¯̄βni = (a1, r1),
¯̄βnj = (a2, r2) | β̄

n
i = (a1, J), β̄

n
j = (a2, J),

βti = (kt1, l
t
1), β

t
j = (kt2, l

t
2), t = 1, . . . , n− 1

)

= qna1r1 (p̃
n) qna2r2 (p̃

n)

= P
(

¯̄βni = (a1, r1) | β̄
n
i = (a1, J)

)

P
(

¯̄βnj = (a2, r2) | β̄
n
j = (a2, J)

)

.

Hence, Equation (22) in the definition of Markov conditional independence is satisfied.

For the step of type changing with break-up in period n, fix any (a1, r1), (a2, r2), (x1, y1), (x2, y2),
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and kt1, l
t
1), (k

t
2, l

t
2), t = 1, . . . , n− 1 in S̃. For any agents i and j with i 6= j, we can obtain that

P
(

βni = (a1, r1), β
n
j = (a2, r2),

¯̄βni = (x1, y1),
¯̄βnj = (x2, y2),

βti = (kt1, l
t
1), β

t
j = (kt2, l

t
2), t = 1, . . . , n− 1

)

≃

∫

D3n−1

ij

Qω3n−1

3n

(

βn(i, ω3n) = (a1, r1), β
n(j, ω3n) = (a2, r2)

)

dQ3n−1(ω3n−1)

=

∫

D3n−1

ij

Qω3n−1

3n

(

βn(i, ω3n) = (a1, r1), β
n(j, ω3n) = (a2, r2)

)

dQ3n−1(ω3n−1)

+

∫

D
3n−1

ij

Qω3n−1

3n

(

βn(i, ω3n) = (a1, r1), β
n(j, ω3n) = (a2, r2)

)

dQ3n−1(ω3n−1),

where

D3n−1
ij = {ω3n−1 : ¯̄βni = (x1, y1),

¯̄βnj = (x2, y2),

βt(i, ω3t) = (kt1, l
t
1), β

t(j, ω3t) = (kt2, l
t
2), t = 1, . . . , n− 1},

D3n−1
ij = {ω3n−1 : π̄n(i, ω3n−1) 6= j, ¯̄βni = (x1, y1),

¯̄βnj = (x2, y2),

βt(i, ω3t) = (kt1, l
t
1), β

t(j, ω3t) = (kt2, l
t
2), t = 1, . . . , n − 1},

D
3n−1
ij = {ω3n−1 : π̄n(i, ω3n−1) = j, ¯̄βni = (x1, y1),

¯̄βnj = (x2, y2),

βt(i, ω3t) = (kt1, l
t
1), β

t(j, ω3t) = (kt2, l
t
2), t = 1, . . . , n − 1}.

Fix any agent i ∈ I. It is clear that D
3n−1
ij ∩ D

3n−1
ij′ = ∅ for different j and j′. Then

there are at most countably many j ∈ I such that P (D
3n−1
ij ) > 0. Let F 3n−1

i = {j ∈ I : j 6=

i, P (D
3n−1
ij ) = 0}; then λ(F 3n−1

i ) = 1. Next, fix any j ∈ F 3n−1
i . The probability for agents

i and j to be partners is zero at the matching step in period n. When agents i and j are

not partners, their random extended types will be independent by the construction of Qω3n−1

3n .

Hence, we can obtain that

P
(

βni = (a1, r1), β
n
j = (a2, r2),

¯̄βni = (x1, y1),
¯̄βnj = (x2, y2),

βti = (kt1, l
t
1), β

t
j = (kt2, l

t
2), t = 1, . . . , n− 1

)

≃

∫

D3n−1

ij

Qω3n−1

3n

(

βn(i, ω3n) = (a1, r1), β
n(j, ω3n) = (a2, r2)

)

dQ3n−1(ω3n−1)

=

∫

D3n−1

ij

Qω3n−1

3n

(

βn(i, ω3n) = (a1, r1)
)

Qω3n−1

3n

(

βn(j, ω3n) = (a2, r2)
)

dQ3n−1(ω3n−1)

=

∫

D3n−1

ij

B3n
x1y1

(a1, r1)B
3n
x2y2

(a2, r2)dQ
3n−1(ω3n−1)

≃ P (D3n−1
ij )B3n

x1y1
(a1, r1)B

3n
x2y2

(a2, r2),
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where

B3n
kl (r, s) =











(1− θnkl)σ
n
kl(r, s) if l, s ∈ S

θnklς
n
kl(r) if l ∈ S and s = J

δk(r)δJ(s) if l = J.

Therefore, for any i ∈ I, and for λ-almost all j ∈ I,

P
(

βni = (a1, r1), β
n
j = (a2, r2) |

¯̄βni = (x1, y1),
¯̄βnj = (x2, y2), (51)

βti = (kt1, l
t
1), β

t
j = (kt2, l

t
2), t = 1, . . . , n − 1

)

= B3n
x1y1

(a1, r1)B
3n
x2y2

(a2, r2). (52)

Note that for any agent i ∈ I,

P (βni = (a1, r1),
¯̄βni = (x1, y1)) ≃

∫

E3n−1

i

Qω3n−1

3n

(

βn(i, ω3n) = (a1, r1)
)

dQ3n−1(ω3n−1)

=

∫

E3n−1

i

B3n
x1y1

(a1, r1)dQ
3n−3(ω3n−3) ≃ P (E3n−1

j )B3n
x1y1

(a1, r1),

where E3n−1
i = {ω3n−1 : ¯̄βn(i, ω3n−1) = (x1, y1)}, which implies that P (βni = (a1, r1) |

¯̄βni =

(x1, y1)) = B3n
x1y1

(a1, r1). Hence, Equations (18), (19) and (20) in the definition of the dynamical

system D are satisfied. By Equation (51), we can obtain for each i ∈ I, and for λ-almost all

j ∈ I,

P
(

βni = (a1, r1), β
n
j = (a2, r2) |

¯̄βni = (x1, y1),
¯̄βnj = (x2, y2),

βti = (kt1, l
t
1), β

t
j = (kt2, l

t
2), t = 1, . . . , n − 1

)

= P
(

βni = (a1, r1) |
¯̄βni = (x1, y1)

)

P
(

βnj = (a2, r2) |
¯̄βnj = (x2, y2)

)

.

Hence, Equation (23) in the definition of Markov conditional independence is satisfied.

In summary, we have shown the validity of Equations (11) to (20), and (21) to (23).

Hence D is a dynamical system with the Markov conditional independence property, where the

initial condition Π0 is deterministic.

Finally, we consider the case that the initial extended type process β0 is i.i.d. across

agents. We shall use the construction for the case of deterministic initial condition. We choose

n = −1 to be the initial period so that we can have some flexibility in choosing the parameters

in period 0. Assume that at n = −1, all agents have type 1, and no agents are matched.

Namely, the initial type function is α−1 ≡ 1 while the initial matching is π−1 ≡ J .

Denote
∑

r∈S∪{J} p̈
0
kr by p̈0k. For the parameters in period 0, let

b0kr =

{

p̈0r if k = 1

δk(r) if k 6= 1,
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q0kl(p̂) =











min(
p̈0
kl

p̂kJ

p̈0
k

,
p̈0
kl

p̂lJ

p̈0
l

)

p̂kJ
if p̂kJ 6= 0, p̈0k 6= 0 and p̈0l 6= 0

0 otherwise,

σ0kl(k
′, l′) = δk(k

′)δl(l
′), ς0kl(k

′) = δk(k
′) and θ0kl = 0 for any k, k′, l, l′ ∈ S. Following the

construction for the case of deterministic initial condition, there exists a Fubini extension

(I × Ω,I ⊠ F , λ ⊠ P ) on which is defined a dynamical system D = (Πn)∞n=−1 that is Markov

conditionally independent with the parameters (bn, qn, σn, θn)∞n=0.

By Lemma 4, p̃0kl = δJ(l)p̈
0
k. It follows from part (2) of Theorem 4 that,

z0(1J)(kl) = p̈0k
p̈0kl
p̈0k

= p̈0kl,

z0(1J)(kJ) = 1−
∑

l∈S

z0(1J)(kl) = 1−
∑

l∈S

p̈0kl = p̈0kJ .

Therefore, for λ-almost all i ∈ I,

P (β0i = (k, l)) = P (β0i = (k, l) |β−1
i = (1, J))P (β−1

i = (1, J)) = z0(1J)(kl) = p̈0kl

for any k ∈ S, l ∈ S ∪ {J}. Part (3) of Theorem 4 implies the essential pairwise independence

of β0. Thus, we can simply start the dynamical system D from time zero instead of time −1

so that we can have an i.i.d. initial extended type process β0.

B.4 Proofs of Propositions 2 and 4

In this subsection, the unit interval [0, 1] will have a different notation in a different context.

Recall that (L,L, χ) is the Lebesgue unit interval, where χ is the Lebesgue measure defined on

the Lebesgue σ-algebra L. We shall prove Proposition 4 first. The proof of Proposition 2 then

follows easily.

Note that the agent space used in the proof of Theorem 5 is a hyperfinite Loeb counting

probability space. Using the usual ultrapower construction as in Loeb and Wolff (2015), the

hyperfinite index set of agents can be viewed as an equivalence class of a sequence of finite sets

with elements in natural numbers, and thus this index set of agents has the external cardinality

of the continuum. The purpose of Proposition 4 is to show that one can find some extension

of the Lebesgue unit interval as the agent space so that the associated version of Theorem 5

still holds.

Fix a Fubini extension (Î × Ω, Î ⊠ F , λ̂⊠ P ) as constructed in the proof of Theorem 5.

Following Appendix A of Sun and Zhang (2009) and Appendix B in Duffie and Sun (2012), we

can state the following lemma.24

24Parts (2) and (3) of Lemma 7 are taken from Lemma 11 in Duffie and Sun (2012).
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Lemma 7 There exists a Fubini extension (I × Ω,I ⊠ F , λ⊠ P ) such that:

(1) The agent space (I,I, λ) is an extension of the Lebesgue unit interval (L,L, χ).

(2) There exists a surjective mapping ϕ from I to Î such that ϕ−1(̂i) has the cardinality of

the continuum for any î ∈ Î and ϕ is measure preserving, in the sense that for any A ∈ Î,

ϕ−1(A) is measurable in I with λ[ϕ−1(A)] = λ̂(A).

(3) Let Φ be the mapping (ϕ, IdΩ) from I × Ω to Î × Ω, that is, Φ(i, ω) = (ϕ, IdΩ)(i, ω) =

(ϕ(i), ω) for any (i, ω) ∈ I ×Ω. Then Φ is measure preserving from (I ×Ω,I ⊠F , λ⊠P )

to (Î × Ω, Î ⊠ F , λ̂ ⊠ P ) in the sense that for any V ∈ Î ⊠ F , Φ−1(V ) is measurable in

I ⊠ F with (λ⊠ P )[Φ−1(V )] = (λ̂⊠ P )(V ).

Denote the MCI dynamical system with parameters (b, q, σ, ς, θ) and a deterministic

initial condition, as constructed in proof of Theorem 5 by D̂. For that dynamical system, we

add a hat to the relevant type processes, matching functions, and partners’ type processes. We

shall follow the proof of Theorem 4 in Duffie and Sun (2012).

Proof of Proposition 4: Based on the dynamical system D̂ on the Fubini extension (Î ×

Ω, Î ⊠ F , λ̂ ⊠ P ), we shall now define, inductively, a new dynamical system D on the Fubini

extension (I × Ω,I ⊠ F , λ⊠ P ).

For any î, î′ ∈ Î with î 6= î′, let Θî,̂i′ be a bijection from ϕ−1(̂i) to ϕ−1(̂i′), and Θî′ ,̂i be

the inverse mapping of Θî,̂i′ . This is possible since both ϕ−1(̂i) and ϕ−1(̂i′) have cardinality of

the continuum.

Let α0 be the mapping α̂0(ϕ) from I to S,

π0(i) =

{

J if π̂0(ϕ(i)) = J

Θϕ(i), π̂0(ϕ(i))(i) if π̂0(ϕ(i)) 6= J ,

and g0(i) = α0
(

π0(i)
)

= ĝ0(ϕ(i)). By the measure preserving property of ϕ in Lemma 7, we

know that β0 = (α0, g0) is I-measurable type function with distribution p̂0 on S × (S ∪ {J}).

For each time period n ≥ 1, let ᾱn and αn be the respective mappings ˆ̄αn(Φ) and α̂n(Φ)

from I×Ω to S. Define mappings π̄n, and πn from I×Ω to I such that for each (i, ω) ∈ I×Ω,

π̄n(i, ω) =

{

J if ˆ̄πnω(ϕ(i)) = J

Θϕ(i), ˆ̄πn
ω(ϕ(i))(i) if ˆ̄πnω(ϕ(i)) 6= J ,

πn(i, ω) =

{

J if π̂nω(ϕ(i)) = J

Θϕ(i), π̂n
ω(ϕ(i))(i) if π̂nω(ϕ(i)) 6= J .

When πnω(ϕ(i)) 6= J , πnω defines a full matching on ϕ−1(Ĥn
ω ), where Ĥ

n
ω = Î −{i : π̂ω(i)

n = J},

which implies that πnω(i) 6= i. Hence, πn is a well-defined mapping from I × Ω to I ∪ {J}. π̄n

is also well-defined for the same reason.
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Since Φ is measure-preserving and ˆ̄αn and α̂n are measurable mappings from (Î ×Ω, Î⊠

F , λ̂⊠ P ) to S. By the definitions of ᾱn and αn, it is obvious that for each i ∈ I,

ᾱn
i = ˆ̄αn

ϕ(i) and α
n
i = α̂n

ϕ(i). (53)

Next, we consider the property of π̄n and πn. Fix any ω ∈ Ω. Let Hn
ω = I−{i : πni = J};

then Hn
ω = ϕ−1(Ĥn

ω ). Pick any i ∈ Hn
ω and denote πnω(i) by j. Then, ϕ(i) ∈ Ĥn

ω . The

definition of πn implies that j = Θϕ(i), π̂n
ω(ϕ(i))(i). Since Θϕ(i), π̂n

ω(ϕ(i)) is a bijection between

Cϕ(i) and Cπ̂n
ω(ϕ(i))

, it follows that ϕ(j) = ϕ(πnω(i)) = π̂nω(ϕ(i)) by the definition of ϕ. Thus,

j = Θϕ(i), ϕ(j)(i). Since the inverse of Θϕ(i), ϕ(j) is Θϕ(j), ϕ(i), we know that Θϕ(j), ϕ(i)(j) = i.

By the full matching property of π̂nω, ϕ(j) 6= ϕ(i), ϕ(j) ∈ Ĥn
ω and π̂nω(ϕ(j)) = ϕ(i). Hence, we

have j 6= i, and

πnω(j) = Θϕ(j), π̂n
ω(ϕ(j))(j) = Θϕ(j), ϕ(i)(j) = i.

This means that the composition of πnω with itself on Hn
ω is the identity mapping on Hn

ω , which

also implies that πnω is a bijection on Hn
ω . Therefore πnω is a full matching on Hn

ω = I − {i :

πni = i}.

We define gn : I × Ω → S ∪ {J} by gn(i, ω) = αn(πn(i, ω), ω). As noted in the above

paragraph, for any fixed ω ∈ Ω, ϕ(πnω(i)) = π̂nω(ϕ(i)) for i ∈ Hn
ω . When i /∈ Hn

ω , we have

ϕ(i) /∈ Ĥn
ω , and π

n
ω(i) = J , π̂nω(ϕ(i)) = J . Therefore, ϕ(πnω(i)) = π̂nω(ϕ(i)) for any i ∈ I. Then,

gn(i, ω) = α̂n(ϕ(πn(i, ω)), ω) = α̂n(π̂n(ϕ(i), ω), ω) = ĝn(ϕ(i), ω) = ĝn(Φ)(i, ω).

We can prove that ḡn(i, ω) = ˆ̄gn(Φ)(i, ω) and ¯̄gn(i, ω) = ˆ̄̄gn(Φ)(i, ω) in the same way. Hence,

the measure-preserving property of Φ implies that gn is I ⊠F-measurable. The previous three

identities on the partners’ processes also mean that for any i ∈ I,

gni (·) = ĝnϕ(i)(·), ḡ
n
i (·) = ˆ̄gnϕ(i)(·), ¯̄g

n
i (·) =

ˆ̄̄gnϕ(i)(·).

Since ᾱn = ˆ̄αn(Φ) and ḡn(i, ω) = ˆ̄gn(Φ)(i, ω), Equation (11) implies that for λ-almost all i ∈ I,

P (ᾱn
i = k2, ḡ

n
i = l2 |α

n−1
i = k1, g

n−1
i = l1)

= P ( ˆ̄αn
ϕ(i) = k2, ˆ̄g

n
ϕ(i) = l2| α̂

n−1
ϕ(i) = k1, ĝ

n−1
ϕ(i) = l1)

= bnk1k2b
n
l1l2
.

Similarly, we can obtain that for λ-almost all i ∈ I,

P (ᾱn
i = k2, ḡ

n
i = r |αn−1

i = k1, g
n−1
i = J) = bnk1k2δJ(r),

P (¯̄gni = l | ᾱn
i = k, ḡni = J, p̌n) = qnkl(p̌

n(ω)),
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P (αn
i = l1, g

n
i = r | ᾱn

i = k1, ¯̄g
n
i = J) = δk1(l1) δJ (r),

P (αn
i = l1, g

n
i = J | ᾱn

i = k1, ¯̄g
n
i = k2) = θnk1k2ς

n
k1k2

(l1),

P (αn
i = l1, g

n
i = l2 | ᾱ

n
i = k1, ¯̄g

n
i = k2) = (1− θnk1k2)σ

n
k1k2

(l1, l2).

Therefore, D is a dynamical system with random mutation, directed random matching and

type changing with break-up and with the parameters (p0, b, q, σ, ς, θ).

It remains to check the Markov conditional independence for D. Since the dynamical

system D̂ is Markov conditionally independent, for each n ≥ 1, there is a set Î ′ ∈ Î with

λ̂(Î ′) = 1, and for each î ∈ Î ′, there exists a set Êî ∈ Î with λ̂(Êî) = 1, with Equations (21)

to (23) being satisfied for any î ∈ Î ′ and any ĵ ∈ Êî. Let I ′ = ϕ−1(Î ′). For any i ∈ I ′, let

Ei = ϕ−1(Ê ϕ(i)). Since ϕ is measure-preserving, λ(I ′) = λ(Ei) = 1. Fix any i ∈ I ′, and any

j ∈ Ei. Denote ϕ(i) by î and ϕ(j) by ĵ. Then, it is obvious that î ∈ Î ′ and ĵ ∈ Êî. Therefore

Equations (21) to (23) are satisfied for any i′ ∈ I ′ and any j′ ∈ Ei′ . Therefore the dynamical

system D is Markov conditionally independent.

By using exactly the same proof as in the end of the proof of Theorem 5, we can have

an i.i.d. (instead of deterministic) initial extended type process β0 in the statement of this

proposition.

Proof of Proposition 2: In the proof of Proposition 4, take the initial type distribution

p̂0kl = pkδJ(l). Assume that there is no genuine random mutation. Then, it is clear that

p̃0kl = pkδJ(l) for any k ∈ S. Consider the random matching π1 in period one.

Fix an agent i with α0(i) = k, then P (ᾱ1
i = k) = 1, P

(

¯̄g1i = l
)

= qkl and P
(

¯̄g1i = J
)

= ηk.

Similarly, Equation (22) implies that the process ¯̄g1 is essentially pairwise independent. By

taking the type function α to be α0, the matching function π to be π̄1, and the associated

process g to be ¯̄g1, the proposition holds.
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