NBER WORKING PAPER SERIES

IT'S ABOUT TIME: EFFECTS OF THE AFFORDABLE CARE ACT DEPENDENT COVERAGE MANDATE ON TIME USE

Gregory Colman Dhaval Dave

Working Paper 21725 http://www.nber.org/papers/w21725

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 November 2015

The authors are very grateful to Grace Bagwell-Adams, Erin George, Jennifer Kohn, and Jim Marton for helpful comments. The authors would also like to thank session participants at the 2014 Southern Economic Association Conference, 2015 Eastern Economic Association Conference, 2015 World Congress of the International Health Economics Association, and 2015 Conference of the International Atlantic Economic Society for valuable feedback and suggestions. Dave thanks Bentley University for research support. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been peerreviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.

© 2015 by Gregory Colman and Dhaval Dave. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

It's About Time: Effects of the Affordable Care Act Dependent Coverage Mandate On Time Use Gregory Colman and Dhaval Dave NBER Working Paper No. 21725 November 2015 JEL No. H0,I1,J2

ABSTRACT

One of the main purposes of the Patient Protection and Affordable Care Act (ACA) is to enable Americans to make more productive use of their time. This is apparent in the rationale given for the ACA's extension of dependent care coverage, which requires employer-sponsored insurance plans that cover the children of insured workers to continue to cover these dependents until they turn 26. A number of studies have examined the effect of the dependent care coverage provision on insurance coverage, health, healthcare utilization, and labor supply among young adults. None that we are aware of has directly examined effects on time use. If, as suggested by prior work, the provision reduced the amount of time young adults work, the question arises, what have these adults done with the extra time? A related question is whether the change made them better off. We use the American Time Use Survey from 2003-2013 to answer these two main questions, providing several contributions to the literature on the ACA. Models are based on a difference-in-differences framework, and the results suggest that the ACA's dependent coverage provision has reduced job-lock, as well as the duration of the average doctor's visit, including time spent waiting for and receiving medical care, among persons ages 19-25. The latter effect is consistent with a substitution from hospital ER utilization to greater routine physician care. The extra time has gone into socializing, and to a lesser extent, into education and job search. Availability of insurance and change in work time appear to have increased young adults' subjective well-being, enabling them to spend time on activities they view as more meaningful than those they did before insurance became available.

Gregory Colman Pace University Department of Economics 41 Park Row, 11th Floor New York, NY 10038 and NBER gcolman@pace.edu

Dhaval Dave Bentley University Department of Economics 175 Forest Street, AAC 195 Waltham, MA 02452-4705 and NBER ddave@bentley.edu

I. Introduction

One of the main purposes of the Patient Protection and Affordable Care Act (ACA), signed into law in March, 2010, is to enable Americans to make more productive use of their time. This is apparent in the rationale given for the ACA's extension of the dependent care coverage mandate (DCM), which went into effect on September 23, 2010 and requires employer-sponsored insurance plans that cover the children of insured workers to continue to cover these dependents until they reach the age of 26. In the Federal Register, the Administration states that providing health insurance for these dependents will permit "greater job mobility for this population as their health coverage will no longer be tied to their own jobs or student status" (FR Vol. 75, No. 92, 2010/05/13 p. 27130). The assumption is that improved job mobility will enable young persons to find jobs they view as more rewarding and where they can apply their skills more productively.

The Federal Register further notes that the coverage mandate should "decrease the cost-shifting of uncompensated care onto those with coverage, increase the receipt of preventive health care and *provide more timely access* to high quality care" (italics added). Prevalence of insurance coverage among young adults has been historically low. Prior to the ACA and the Great Recession, for instance, about 30% of younger adults (ages 19-26) lacked health insurance compared with 17% of older adults (ages 27-64).¹ Good health, higher risk tolerance, unaffordability (due to lower earnings, job turnover, and/or higher premiums), and reduced access to employer-sponsored benefits are important factors in young adults' decision to forgo coverage. Although young adults are generally healthier, they also exhibit non-trivial rates of certain risk factors such as being overweight or obese,

¹ Authors' calculation from the 2007 March Current Population Survey, referring to information from the previous year.

HIV and other sexually transmitted diseases, and chronic conditions such as asthma and hypertension for which access to timely care is particularly important. Lack of insurance disrupts this access, with 60% of uninsured young adults reporting that they had foregone medical care despite need (Collins et al. 2012).² Thus, it was hoped that the dependent coverage mandate would reduce these barriers to healthcare by expanding insurance coverage among young adults.

A number of studies have examined the effect of the ACA's dependent care coverage provision on uninsurance rates, health, and health care utilization among persons ages 19 to 25 (Blumenthal, Collins 2014; Barbaresco, Courtemanche, Qi 2015; Saloner, Lê Cook 2014) and on labor supply (Antwi, Moriya, Simon 2013). None that we are aware of has directly examined the effect of the dependent care provision on time use. If, as suggested by Antwi, Moriya, and Simon (2013), the provision reduced the amount of time young adults work, the question arises, what have these young adults done with the time they used to spend working? A related question is, has the change made them better off? The answer to this last question is not obvious, to judge by views of the ACA revealed in public opinion polls. For instance, according to a poll conducted by Gallup, 53% of Americans disapprove of the ACA and 46% think that the law will make things worse; only 16% believe it has helped them.³

² Specifically, these young adults reported that they either did not fill a prescription, skipped recommended tests, treatment, or follow-up, had a medical problem and did not visit the doctor or clinic, or did not get needed specialist care. In comparison, 29% of insured young adults reported at least one of these access problems.

³ <u>http://www.gallup.com/poll/182318/americans-slightly-positive-toward-affordable-care-act.aspx</u> <u>http://www.gallup.com/opinion/polling-matters/178619/american-public-attitudes-toward-affordable-care-act-frozen-negative-state.aspx</u>

We utilize the American Time Use Survey (ATUS) from 2003 through 2013 to answer these two main questions, providing a number of contributions to the literature on the ACA. First, we provide the most accurate estimates of the effect of the dependent care provision on time spent working. The accuracy reflects two factors: 1) the greater precision of the ATUS in measuring time use in comparison with surveys such as the Survey of Income and Program Participation (SIPP) and the Current Population Survey (CPS); 2) our data extend through 2013, while prior work, such as Antwi, Moriya, and Simon (2013), use data only through 2011, before the provision reached its full effect. Second, we are the first to examine the effects of the provision on time use other than working, such as going to school, obtaining medical care, and pursuing leisure activities. Third, we measure the effect of the provision on young adults' self-reported levels of stress, happiness, sadness, sense of accomplishment, and tiredness, factors that are collectively referred to as "subjective wellbeing", as reported in the 2010, 2012, and 2013 rounds of the ATUS. Studies, such as those mentioned above, of the effect of gaining insurance on young adults' objective well-being (as measured by their health and finances) are certainly necessary, though an equally valid question and component into cost-benefit calculus relates to whether the beneficiaries of the law themselves reveal it has improved their lives – and if it has not, such a finding may undermine a rationale for the policy shift.

II. Background

Prior Studies

Studies of the dependent care provision have consistently found that rates of insurance coverage have increased, though the magnitude of the increase varies. Using the CPS from 2004 to 2011, Lloyd, DeLia, Cantor, and Monheit (2014) find that uninsurance

rates for non-students 19 to 25 years old declined by 4.5 percentage points when compared with 27- to 30-year-olds, reflecting an increase of 7.2 percentage points in parental employer-sponsored insurance (ESI) and a decline of 2.8 percentage points in own- or spousal-coverage.⁴ The change increases with income and declines with health. Using the SIPP from 2008 through 2011, Antwi, Moriya, and Simon (2013) find a net decline of 3 percentage points in comparison with 27- to 29-year-olds, reflecting a similar increase of 7 percentage points in parental ESI and a decline of 3 percentage points in own-ESI and another one percentage point in individually-purchased or government coverage. Using the Behavioral Risk Factor Surveillance System (BRFSS) from 2008 to 2012, Barbaresco, Courtemanche, and Qi (2015) find a drop in uninsurance of 6.2 percentage points among 23- to 25-year-olds, compared with 27- to 29-year-olds. Since the control groups are basically the same in all three studies, the larger decline found in the latter study likely reflects an additional year since the passage of the ACA. Using the National Health Interview Survey for 2005 through 2011, Sommers, Buchmueller, Decker, Carey, and Kronick (2013) find a decrease in uninsurance of 4.7 percentage points among 19- to 25-year-olds compared with 26- to 34-year-olds. Thus, prior studies indicate a median decline of 4 to 5 percentage points in uninsurance rates, using data mainly through 2011.

In order to frame our estimates for labor supply and time use, we require some such estimate of the impact on insurance coverage. However, since our data extend two years further, to 2013, during which time the dependent care provision may have reduced uninsurance rates further, we also generate our own estimate of the effect of the provision with a simple difference-in-differences specification using the American Community Survey

⁴ This suggests a crowd-out (of own for parent-based coverage) rate of about 39%.

(ACS) from 2003 through 2013. The ACS analysis is in line with the prior studies and suggests a decline in uninsurance of 5.3 percentage points among young adults ages 23-25 (relative to older adults ages 27-29).

A number of studies have also examined whether gaining insurance increases emergency room visits. This is relevant to our study because we assess effects on the duration of medical visits, and visits to the hospital emergency department tend to consume more time than visits to doctors' offices. Such studies show mixed results. Medicaid expansions and health insurance lotteries, such as the Rand Health Insurance Experiment, appear to increase emergency room visits (Newhouse 1993, Currie & Gruber 1996; Taubman et al. 2012). In contrast, the expansion of health insurance to large nonpoor populations, as in Massachusetts in 1996 (Miller 2011) and among young adults in the ACA (Hernandez-Boussard 2014), appears to reduce emergency room visits.

The only study we know of that estimates the effect of the ACA on time spent at work is Antwi, Moriya, and Simon (2013), which finds that persons 19 to 25 years of age reduced their work hours by about 48 minutes per week, or 10 minutes per day, compared with persons 27 to 29 years old.⁵ No study we are aware of has examined the effect of gaining insurance on other uses of time.

Contributions

We use information from the American Time Use Survey to answer four key questions, providing several contributions to the literature. By delinking the availability of

⁵ In contrast, Bailey and Chorniy (2015) do not look at work time but rather at job mobility in the Current Population Surveys, studying whether the respondent switched jobs, and they find no evidence that the ACA's DCM had any effect on this measure of job mobility. Bailey (2013) looks at self-employment and also finds no robust evidence that the DCM raised self-employment. These two studies conclude that job-lock may not be a major concern for young adults, and lack of health insurance may not be an impediment to entrepreneurship among this age group.

low-cost health insurance from work, the DCM would be expected to affect the marginal valuation of time spent on non-work activities and thus affect the tradeoff between labor and leisure. Specifically, optimization of the labor-leisure tradeoff predicts a decrease in labor supply associated with the DCM. First, we confirm this prediction using detailed data on time use, following the only other prior study on labor supply (Antwi, Moriya, and Simon 2013).

Second, given that the provision reduced the amount of time young adults work, the question arises, what have these adults done with the extra time? The reduction in labor supply and the associated decrease in earnings have potentially reinforcing income and substitution effects.⁶ This may cause young adults to allocate more of their freed-up non-work time towards activities that are relatively more time-intensive and less intensive in market-based inputs, and we therefore expect an increase in activities that require more time inputs (such as job search, education, and socializing) and a decrease in the demand for activities that are complementary to market inputs (such as time spent shopping and purchasing goods and services). We provide the first estimates on how the DCM has affected these other uses of time.

Third, we provide some of the first evidence on time spent receiving and waiting for medical care, which would capture shifts in the use of medical care inputs (for instance, from hospital emergency room care to routine physician care) associated with a shift from being uninsured to gaining insurance coverage. A priori, effects on time spent receiving medical care are ambiguous. On the one hand, there may be a scale effect as expansion of

⁶ The DCM may also be associated with a positive income effect as uninsured young adults gain coverage and experience a reduction in out-of-pocket medical spending. While this may moderate the negative income effect from the reduction in labor supply, the net income effect is still likely to be negative since we find that virtually all of the reduction in the labor supply is occurring at the extensive margin (see results).

coverage to uninsured individuals raises the demand for medical care -- both emergency department (ED) visits as well as for a regular source of care. On the other hand, there is also a substitution effect from unscheduled ED-based care to scheduled and routine physician office-based care; thus, it is likely that visits to a regular source of care probably increased more than visits to emergency rooms, which may reduce the average time spent receiving medical care. This effect would also predict that there would be a decrease in the time spent waiting for medical care.

Finally, a related question is whether these changes have made young adults better off. Those taking advantage of the ACA's DCM would be the ones who would presumably benefit from it, and the reallocation of time is presumably optimal from the standpoint of utility maximization. We assess this prediction with a novel module on subjective wellbeing which measures adults' self-reported levels of stress, happiness, sadness, sense of accomplishment, and tiredness *associated with the activities that they were performing*. While measuring effects of gaining insurance on young adults' *objective* well-being (i.e., health and finances) are certainly necessary, an equally valid question and key component into the cost-benefit calculus relates to whether the beneficiaries of the law themselves reveal that it has improved their lives.

III. Data

We use the American Time Use Survey (ATUS) from 2003 through 2013, the period which enveloped the enactment of the DCM and which allows us to observe responses over three years post-enactment. The ATUS is a subsample of the Current Population Survey (CPS), which interviews about 60,000 households per year. Each household in the CPS is interviewed for four months, left out for eight months, and then re-interviewed for four

additional months. Thus each household, if it does not dissolve or move, is interviewed eight times. Each month about one-eighth of the sample is being interviewed for the first time, and one-eighth, for the final time. Two months after households complete their eighth CPS interview, they become eligible for selection into the ATUS sample. About half of the households invited to participate in the ATUS choose to do so. African-Americans, Hispanics, and households with young children are oversampled for the ATUS. About 10% of the sample is randomly assigned to report on each weekday, and 25%, on each weekend day. The day on which they report is called the "diary day". Sampling weights are provided to account for the oversampling of the different demographic groups and of weekends, as well as for non-response. Hence, as the CPS, the ATUS is nationally representative of the civilian, noninstitutional population residing in occupied households.

Participants are interviewed the day after the diary day to minimize recall errors. The time diary component of the interview contains a detailed account of the respondent's activities, starting at 4 a.m. the previous day and ending at 4 a.m. on the interview day. Each activity in the time diary component is assigned a six-digit classification code. The first two digits represent one of 17 major activity codes (ranging from personal care to household services to exercise and sports); the next two digits represent the second-tier level of detail, and the final two digits represent the third, most detailed level of activity. For example, the ATUS code for "Using health and care services outside the home" is 080401, which is part of code 0804, "Medical care and services", which is part of code 08, "Professional & Personal Care Services".

From the reported measures of time use we construct the following outcomes capturing time spent in various activities, at the extensive and intensive margins:

- Minutes working, including time spent actually working; other work-related activities, such as socializing, eating, and drinking related to work (for salespeople, etc.); and other income-generating activities, such as hobbies, performances, and renting assets. This variable excludes time spent job searching and interviewing.
- A dichotomous indicator that equals one if the respondent is employed, zero otherwise.
- 3) Work minutes conditional upon working at least one minute.
- 4) Minutes spent searching and interviewing for jobs
- 5) Minutes spent on recreational exercise
- 6) Minutes receiving and waiting for medical care outside the home
- 7) Minutes receiving medical care outside the home
- 8) Minutes receiving medical care conditional on receiving at least one minute
- 9) Minutes waiting for medical care
- 10)Minutes waiting for medical care conditional on receiving at least one minute of care
- 11)Minutes spent on education, including going to class, studying, researching, and homework, as well as dealing with the school administration.
- 12)Sleeping
- 13) Eating and Drinking
- 14)Purchasing goods and services
- 15) Socializing and relaxing, excluding watching television

We also use the 2010, 2012, and 2013 Well-Being Supplement to the ATUS, in which all respondents to the ATUS are included. Respondents are asked about three randomly selected activities from the diary day, and for each activity, to report using scales of 0 to 6 their happiness, sadness, pain, stress, and tiredness, as well as how meaningful the respondent considers the activity. We create a measure of the average level of each affect over the respondent's three activities using the time spent in each activity. For example, the average happiness of respondent *i* is

$$H_i = \frac{\sum_{k=1}^3 t_{ik} H_{ik}}{\sum_{k=1}^3 t_k}$$
(1)

where t_{ik} refers to the time person *i* spent in activity *k*, and H_{ik} is the degree of happiness of person *i* during activity *k*.

All models include various controls for the respondent's socio-demographic characteristics, including education, marital status, race and ethnicity, and gender. We match data on the unemployment rate, from the Bureau of Labor Statistics (BLS), based on the respondent's state of residence, and month and year of interview. In addition, we construct and control for a dummy variable for incomplete interviews, that equals 1 if the respondent did not account for all of his or her activities during the day. About 88% of the sample have incomplete reports (reporting <24 hours), though 94% of the sample report on at least 23 of the past 24 hours. Excluding incomplete interviews from the analyses does not materially change the results or conclusions.

IV. Empirical Framework

The objective of this study is to assess how the ACA's dependent coverage mandate affected labor supply and various other measures of time use in healthcare and non-

healthcare activities among young adults. We empirically frame this question within a difference-in-differences (DD) analysis, comparing conditional trends pre- and post-DCM for groups affected and not affected by the policy. Specifically, we follow the literature and define the "treatment" group as comprising young adults between the ages of 19-25, the age group targeted by the DCM. Individuals, between the ages of 27-34 constitute the control group, who because of being older than 26 years of age are not eligible to obtain health insurance under the DCM.⁷

Our primary specification takes the following form:

$$y_{ijtmd} = \alpha \cdot Age1925_{ijtmd} + \gamma \cdot Post_{ijtmd} + \delta \cdot Age1925_{ijtmd} \cdot Post_{ijtmd} + X_{ijtmd} \cdot \beta + \pi \cdot U_{jtm} + \mu_j + \theta_t + \tau_m + \varphi_d + \varepsilon_{ijtmd}$$
(2)

where *Post* refers either to after 2010 or after 2011. We expect the effects to be larger when the treatment period is further from the enactment date. The vector X_{ijtmd} includes demographic controls and the indicator for an incomplete diary. The variable U_{jtm} refers to the unemployment rate in the respondent's state *j* of residence, in year *t* and month *m*.

All specifications further control for state fixed effects (μ), which account for any unobserved time-invariant state-specific factor, as well as time fixed effects. Insurance status had been trending downwards prior to the ACA both among 19- to 25-year-olds and among 27- to 34-year-olds. Also, the Great Recession has caused fluctuations in work and other time use. It is likely that only some of these trends are picked up by the state unemployment rate. The year indicators (θ) would capture any such national trends in time use and in insurance status independent of the changes caused by the ACA, most

⁷ We follow the literature and exclude 26 year olds from either the treatment or control groups in order to minimize any measurement error as this is a transition period and some 26 year olds may be shifting coverage in anticipation of aging out.

notably shocks to the labor and healthcare markets from recent economic downturn. We also include month dummies (τ) because many activities, such as exercise, as well as mood, vary substantially by season, and we include day-of-the-week dummies (φ) to control further for changes in time use and mood over the week. As an obvious example, most work time occurs during the week, while most exercise and socializing occur during the weekend. Also, subjective well-being varies noticeably over the week, with respondents reporting being least happy, saddest, most tired, most stressed, but engaged in their most meaningful activity, on Wednesday. In our primary specification, we do not control for school enrollment or for health status, as these are two of the likely outcomes of the change in the law we are analyzing.

Some research suggests that the effects of the ACA on labor and health outcomes found in the prior literature may be spurious, reflecting different trends in the control and treatment groups prior to the ACA taking effect (Slusky 2015). The validity of difference-indifferences analysis, of course, depends on common trends between the control group and the treatment group had the treatment group not been treated. Figures 1-3 present these trends for our outcomes. Due to sample size limitations (a limitation not exclusive to our study, but also pervasive in most of the ACA literature), the trends are noisy. The commonality of trends cannot be tested after the new policy takes effect, since the policy will itself affect the trend of the treated group. However, the parallel trends assumption can be tested prior to that time. We therefore formally test for differential trends in two ways, which also serve as placebo checks.

First, we estimate equation (2), adding the interaction of the treatment dummy and a variable that equals the year if the year is prior to 2010, and equals zero afterwards. The

p-value on this variable indicates whether linear trends in the treatment and control groups differed in the pre-treatment period. Our second test follows Slusky (2015), wherein we estimate our main equation (2) above but define the treatment period from 2007 to 2009 or to 2008, and the control period, from 2003 to 2007. Since the law only went into effect in 2010, we should find no effect of the pseudo-treatment when the sample is limited to period prior to implementation of the DCM.

As a third check on our specification, we redefine the treatment group as only persons between the ages of 23 and 25. This reduces our sample size by about half, but creates a treatment group that is more attached to the labor market, less likely to be still enrolled in school, and in general more similar to the control group of persons 27 to 34 (Table 1).

Prior to the passage of the ACA in 2010, 37 states had laws protecting the insurance coverage of dependent children⁸, the great majority having been passed after 2005. Monheit et al. (2011) find that the state laws had little net effect on the insurance coverage of young adults. To gauge if state dependent coverage laws might affect our results, we estimate equation (2) only on young adults who would not be eligible for coverage under these state regulations.

In our final specification, we include state-specific linear trends to evaluate if our estimates are driven by unobserved state level heterogeneity and systematic differential trends. All models are estimated with OLS, as the outcomes are in general continuous.⁹

⁸ <u>http://www.ncsl.org/research/health/dependent-health-coverage-state-implementation.aspx</u>

⁹ The ATUS oversamples weekends and certain demographic groups and provides sampling weights to generate population-based estimates. Because we include dummy variables for demographic characteristics as well as day of the week of the survey, we do not use survey weights in our estimates (DuMouchel & Duncan 1983; Solon, Haider, Wooldridge 2015). We also use OLS for dichotomous outcomes, and confirm that the results are not sensitive to estimation via logit or probit regression.

Since we include state effects and the policy change is at the national level starting in the September of 2010, we assume that the error terms (denoted by ε in equation 2) are correlated within single year of age and month. In fact, the variance of the coefficient matrix hardly changes whether we assume merely heteroskedasticity, or heteroskedasticity combined with the clustering described above.

V. Results

Table 1 reports the means of the variables used in the main analyses, across the two treatment groups (ages 19-25 and ages 23-25) and the control group (ages 27-34). Time use clearly differs between 19- to 25-year-olds and 27- to 34-year-olds. The older group spends more time working, but less time in exercise, education, sleep, and socializing. The 23- to 25-year-old group is closer to the older group in work-related activities, but closer to the younger group in the other activities. With respect to time spent receiving medical care, this is somewhat larger among 27-34 year olds, particularly in relation to the 23-25 year olds, consistent with a larger prevalence of insurance among the older group. However, among those who receive medical care, time spent waiting to receive care is higher among the younger adults (12-14 minutes) relative to the older adults (10 minutes), which is consistent with uninsured younger adults receiving more of their healthcare through non-scheduled clinic or ED visits. All three groups are quite similar in demographic characteristics and in levels of happiness, sadness, stress, tiredness, and meaningfulness of their activities.

Table 2 reports estimates from our main DD models (equation 2) on the effects of the DCM on labor supply. Specifications 1-4 utilize the full treatment group (ages 19-25), and specifications 5-7 utilize the narrowly-defined treatment group (23-25) who are more

likely to have finished schooling and entered the labor force. As found by Antwi, Moriya, and Simon (2013), the availability of insurance reduces time spent working, though our baseline estimate (specification 1) —about 18 minutes per day or about 9% (relative to the treatment group mean) — is about double that found in the prior study. This could be due to a longer time period since the ACA took effect, as well as a different measure of work time, and a different comparison group, as we use persons ages 27 to 34. In fact, the effect size increases in magnitude (23 minutes decline) the further we get from implementation (specification 2, which allows for a lag and defines the post-period as post-2011 compared with specification 1 which defined the treatment period as post-2010). This suggests that the DCM may have gradually changed behavior, which speaks to the value of using more post-policy data to assess its' cumulative and full effects.

Next, we decompose whether this decrease in labor supply is occurring at the extensive and/or the intensive margin by separately assessing effects on employment and on work time conditional on employment. Most of the decline appears to reflect declines at the extensive rather than intensive margin, as we find insignificant and much smaller effects on labor supply among those who are currently employed and a significant decline in employment status of 4-6 percentage points. It is validating that this effect is quite consistent with the 4-6 percentage points net increase in insurance coverage found in prior work (Barbaresco et al. 2015; Lloyd et al. 2014; Sommers et al. 2013) and our own estimates based on the ACS.¹⁰ Furthermore, the magnitude of the observed decline in work minutes (18-23 minutes daily) is also consistent with and can be fully explained by the observed decline in employment (4-6 percentage points). If there are no major effects on

¹⁰ That is, as most coverage in the U.S. is through one's employer, we would expect effects in employment to more or less mirror effects on net insurance coverage, ceteris paribus.

labor supply at the intensive margin, as there does not seem to be, then inflating the work minutes estimates by a factor of 17-25 (reciprocal of the estimates of employment) yields an average implied work day of about 7-7.5 hours among those who shifted status from employment to non-employment. This is virtually identical to the Census estimate of 7.5 average hours worked daily by employed persons in 2010. In this as in almost all the outcomes we examine, the effects are stronger when the outcome period is limited to 2012 and 2013, suggesting stronger cumulative effects.

The final row of results suggests an increase in time spent looking for new jobs. While the coefficient on time spent searching and interviewing for jobs is insignificant using the full sample, it is significant at the 5 percent level when the outcome period is limited to post-2011, after the law had more time to take effect. Among 23- to 25-yearolds, who would have a stronger attachment to the labor force and more likely to have completed their schooling, the effects were larger and more precisely estimated in both time periods.

Table 2 also reports on some of our specification checks. First, the results are generally robust to the inclusion of state-specific linear trends (model 4) and to limiting the sample to young adults who would be ineligible for coverage under state laws (models 3 and 7). In fact, as expected, the effect of the ACA is a bit stronger for these state-ineligible young adults, though the loss in sample sizes also reduces the precision of our estimates.¹¹ Table 2 also reports one of our placebo checks, whether there are any systematic differences in the trends in each reported outcome between the treatment and control

¹¹ Monheit et al. (2011) find little effects of these pre-ACA state laws on the insurance coverage of young adults, which we confirm with the ACS data as well. Thus, we would not expect a substantially larger effect of the ACA's DCM when omitting those individuals who would be eligible under the state laws since if these individuals had not substantially expanded their insurance status prior to the ACA, they would be potentially impacted by the DCM and would be a valid inclusion in the treatment group.

groups prior to 2010. The p-value for this test is reported in the square brackets. It is validating that none of the trend differences are significant at conventional levels. Overall the results for labor-market outcomes in Table 2 appear to confirm the benefits of nonwork-related health insurance in reducing job-lock. We also find suggestive evidence of an increase in job-searching, which is consistent with the availability of insurance outside of employment allowing young adults to take longer to possibly search for more suitable jobs.

Table 3 reports estimates for time spent receiving and waiting for medical services. These results suggest a decline in these uses of time, though the point estimates are generally statistically insignificant. However, in some cases they do represent a somewhat sizeable decline. For instance, the estimates for total time receiving care suggest a decline of about 20-25% relative to the baseline mean. Estimates for total time waiting for medical care are statistically insignificant for the broad treatment groups (ages 19-25) but significant for young adults ages 23-25, suggestive of a decline in waiting time of about 0.4 minutes daily on average. We find most solid evidence that these effects are being realized at the intensive margin. That is, conditional on receiving any medical care, the DCM is significantly associated with a drop in the time spent both obtaining medical care (by about 25-30 minutes on average) and in the time spent waiting for medical care (by about 10-20 minutes on average).

These estimates are generally robust when we control for state-specific trends (model 4) or omit individuals from the sample who may be eligible for dependent coverage under state laws prior to the ACA's DCM (models 3 and 7). As with our models for labor supply, we do not find any statistically significant differences in pre-policy trends between the treatment and control groups (p-values for this test reported in square brackets).

The findings in Table 3 lend support to the view that making insurance more easily available to non-poor households with working parents reduces the use of emergencyroom care (Hernandez-Boussard et al. 2014; Akosa Antwi et al. 2015). Young adults between the ages of 19-25 have the highest prevalence of ER use among adults; in 2008, 26% of young adults had obtained some care in the hospital ER (National Health Interview Survey – NHIS). Non-adjusted estimates from the NHIS also suggest a decline in the prevalence of care at the hospital emergency department (ED) by about 2-3 percentage points among the treatment group relative to the control group.

The decrease in time spent receiving medical care may also reflect an improvement in the quality of medical care, both from a substitution from ER-based healthcare to a more routine source of physician care, and also since time spent with the physician is generally lower with more expensive specialist doctors. Similarly, time spent waiting to receive medical care declined substantially among those who received care. One explanation for this is that a number of young persons switched their regular source of care from the emergency room to the doctor's office. Even if emergency room visits overall may have increased because of the law, average waiting time will have decreased if visits to doctors' offices increased by a greater proportion.

The estimates in Tables 2 and 3 suggest that the ACA's DCM likely reduced employment among those eligible for dependent coverage, and also reduced the time spent obtaining and receiving medical care services particularly at the intensive margin. To some extent, some of this time was spent in looking for new jobs. The question remains how those no longer working used the rest of their freed-up time. Table 4 reports estimates for the other uses of time. Young adults (ages 19-25) spent more time in education, an

additional 6 to 8 minutes daily on average, which translates into a 15-20% increase relative to the baseline treatment group mean. As expected, the effect on education is smaller for 23- to 25-year-olds since fewer individuals in this group are enrolled in school; it is also insignificant. It is still, however, positive, and the lower precision is to be expected with the much smaller sample size. We also find some decrease in the time spent purchasing goods and services (3-5 minutes daily; 10-15%), which is expected given the negative income effect associated with the reduction in employment. Most of the freed-up time from the reduction in labor supply (at least 50% or so) is reallocated into socializing and relaxing – an additional 9-13 minutes daily (8-10% relative effect size). Significant coefficients on the differential pre-policy time trends for all outcomes are generally rejected for all of these outcomes among all subgroups within a Type 1 error. Our overall conclusion that the DCM was associated with an increase in time spent on education and socializing is also robust to controlling for state-specific trends and restricting the sample to those young adults who would be ineligible for dependent coverage under pre-ACA laws.

Table 5 shows the results of our placebo regressions. Almost all of the coefficients become insignificant and often have different signs from our main results. In particular, the effect on being employed among those in the treatment group drops to zero and is insignificant in all but one subgroup, in which its sign is opposite to that of Table 2. The effect on total work time also changes sign, but is significant in some subgroups. The magnitude and significance of the coefficients, however, vary so much as to suggest that the results are largely due to chance. Given the results of our specification tests, we conclude that the ACA likely reduced employment among those eligible for dependent coverage

As mentioned above, young persons spent much of the time they were no longer working in socializing and relaxing. This may or may not necessarily represent a positive shift from the point of view of the former worker. During the Great Recession it was also found that persons who lost their jobs socialized more than before (Colman and Dave 2013), but their levels of sadness and stress rose. Thus the question remains whether those obtaining insurance and working less view the change as positive. For this we consider effects on the measures of subjective well-being reported in Table 6. Consistent with the view that unlinking insurance status with working full-time provides more flexibility, the significant change in well-being is an increase in the sense that the respondent is doing something he or she finds meaningful. Further, measures of happiness increase significantly, and of tiredness and stress decline, though the latter changes were not significant (except among young adults ages 23-25 in the restricted sample in specification 7). We note the caveat that sample sizes are reduced for these models due to the well-being modules not being available in all of the ATUS waves, which is driving some of the imprecision. The effect magnitudes suggest about a 3-5% increase in happiness and meaningfulness, and overall these patterns are consistent with a general increase in subjective well-being associated with the shift in activities due to the ACA's DCM.¹²

VI. Discussion

Two major rationales underlying the dependent care coverage mandate of the Affordable Care Act were to provide more timely access to high quality care and to enable Americans to make more productive uses of their time. Prior studies have assessed and

¹² The Well-Being Supplement began in 2010, which we take to be our control year. But as suggested by Antwi, Moriya, and Simon (2013), many insurance companies announced as soon as the ACA was passed that they would allow dependent adults to remain on their parents' insurance plan until 26. Thus, if anything, our estimates for subjective well-being would be conservative and biased toward zero.

confirmed that the DCM led to a net increase in insurance coverage among eligible younger adults, and one study has shown that it was also associated with a decrease in labor supply. We broaden the lens and evaluate the effects of the ACA's DCM on several outcomes, not studied heretofore, which inform on how effective the DCM was in fulfilling its stated objectives. First, we add to the very sparse evidence and provide a more precise analysis of labor supply outcomes based on the American Time Use Surveys. The precision reflects the collection of work-time measures based on time diaries and also the incorporation of data up to 2013, spanning three years post-policy implementation (compared to data up to 2011 in most prior work). We find robust evidence that the DCM reduced labor supply at the extensive margin by about 5 percentage points. It is validating that this estimate is fully consistent with prior estimates of a net increase in insurance coverage on the order of 4-6 percentage points. We also find a suggestive increase in time spent searching for a job, which together with the labor supply estimates may reflect a reduction in job lock and an increase in time spent potentially searching for more suitable work.

Second, we provide the first estimates on how the DCM affected both time spent receiving and waiting for medical care – which directly speak to both of the stated goals of the DCM. These results suggest that, particularly at the intensive margin, the duration of both of these activities declined significantly. This decrease may reflect an improvement in the quality of medical care, both from a substitution from ER-based healthcare to a more routine source of physician care. Furthermore, any decrease in time spent waiting for medical care would represent a more productive shift. The decrease in labor supply and time spent waiting for and receiving medical care has freed up time for young adults to allocate towards other activities.

To the best of our knowledge, we also provide the first estimates on these other uses of time. Specifically, we find that, in addition to job search, this extra time has flowed into socializing, and to a lesser extent, into educational activities. We further contribute to the literature by assessing whether these shifts in activities are welfare-improving from the respondent's own standpoint. Here, we find that the availability of insurance and change in work time appears to have increased the subjective well-being of young adults, enabling them to spend time on activities that they view as more meaningful than those they did before insurance became available. It should be noted that the DCM was a mandate for insurers, but opting to obtain coverage under their parents' plans, now made possible by the DCM, was of course voluntary. Thus, those taking advantage of the DCM would be the ones who would presumably benefit from it, and the reallocation of time is presumably optimal from the standpoint of utility maximization. This is consistent with our results suggesting that the shift in activities is associated with an increase in subjective well-being. Further study should assess the effects of having insurance on those who had not chosen to enroll in their parents' insurance but who since 2014 have faced the law's stricter mandate. Overall, the results from this study suggest that the ACA's dependent care coverage mandate has shifted labor supply outcomes and uses of time, and raised the reported wellbeing of young adults, in ways that are consistent with economic theory. Thus, delinking insurance from employment can lead to a broader shift in time reallocation and non-work activities.

Bibliography

- Antwi, Y. A., Moriya, A. S., & Simon, K. (2013, November). Effects of Federal Policy to Insure Young Adults: Evidence from the 2010 Affordable Care Act's Dependent-Coverage Mandate. *American Economic Journal: Economic Policy*, *5*(4), 1-28. Retrieved from https://ideas.repec.org/a/aea/aejpol/v5y2013i4p1-28.html
- Antwi, Y. A., Moriya, A. S., & Simon, K. I. (2015). Access to health insurance and the use of inpatient medical care: evidence from the Affordable Care Act young adult mandate. *Journal of health economics, 39*, 171-187.
- Barbaresco, S., Courtemanche, C. J., & Qi, Y. (2015). Impacts of the Affordable Care Act dependent coverage provision on health-related outcomes of young adults. *Journal of health economics*, *40*, 54-68.
- Cantor, J. C., Monheit, A. C., DeLia, D., & Lloyd, K. (2012, July). *The Role of Federal and State Dependent Coverage Eligibility Policies on the Health Insurance Status of Young Adults.* Working Paper, National Bureau of Economic Research. Retrieved from http://www.nber.org/papers/w18254
- Collins, S. R., Robertson, R., Garber, T., & Doty, M. M. (2012). Young, uninsured, and in debt: why young adults lack health insurance and how the Affordable Care Act is helping. *Issue Brief (Commonwealth Fund)*.
- Colman, G., & Dave, D. (2013). Exercise, physical activity, and exertion over the business cycle. *Social Science & Medicine*, 93, 11-20.
- Currie, J., & Gruber, J. (1996). Health insurance eligibility and Child Health: lessons from recent expansions of the Medicaid program. *Quarterly Journal of Economics*, *111*(2), 431-466.
- DuMouchel, W. H., & Duncan, G. J. (1983). Using sample survey weights in multiple regression analyses of stratified samples. *Journal of the American Statistical Association, 78*(383), 535-543.
- Hamel, M. B., Blumenthal, D., & Collins, S. R. (2014). Health care coverage under the Affordable Care Actle progress report. *New England Journal of Medicine, 371*(3), 275-281.
- Hernandez-Boussard, T., Burns, C. S., Wang, N. E., Baker, L. C., & Goldstein, B. A. (2014). The Affordable Care Act reduces emergency department use by young adults: evidence from three states. *Health Affairs*, *33*(9), 1648-1654.
- Miller, S. (2012). The effect of insurance on emergency room visits: an analysis of the 2006 Massachusetts health reform. *Journal of Public Economics, 96*(11), 893-908.
- Newhouse, J. P., & Group, R. C. (1993). Free for all?: lessons from the RAND health insurance experiment. Harvard University Press.
- Saloner, B., & L– Cook, B. (2014). An ACA Provision Increased Treatment For Young Adults With Possible Mental Illnesses Relative To Comparison Group. *Health Affairs, 33*(8), 1425-1434.
- Slusky, D. J. (2014). Measuring the ACAS Parental Mandate Using Difference-in-Öã-A⁺A & Available at SSRN 2177436.

- Solon, G., Haider, S. J., & Wooldridge, J. M. (2015). What are we weighting for? *Journal of Human Resources*, *50*(2), 301-316.
- Sommers, B. D., Buchmueller, T., Decker, S. L., Carey, C., & Kronick, R. (2013). The Affordable Care Act has led to significant gains in health insurance and access to care for young adults. *Health affairs, 32*(1), 165-174.
- Taubman, S. L., Allen, H. L., Wright, B. J., Baicker, K., & Finkelstein, A. N. (2014). Medicaid increases emergency-department use: evidence from Oregon's Health Insurance Experiment. *Science*, 343(6168), 263-268.

ATUS 2003		A 02 - 05	
Variable	Ages 19 to 25	Ages 23 to 25	Ages 27 to 34
Work excluding job search (in minutes)	213.4	250.0	264.7
	(344.8)	(359.9)	(371.3)
Respondent employed (%)	72.2	78.1	80.1
	(0.6)	(0.6)	(0.5)
Work time among workers (in minutes)	438.1	455.6	466.2
	(216.3)	(209.5)	(226.6)
Job Search and Interviewing (in minutes)	3.2	3.1	2.4
	(36.9)	(38.5)	(31.9)
Exercise (in minutes)	22.2	20.3	15.8
	(85.6)	(89.2)	(65.6)
Medical Care (receiving & waiting) (in minutes)	1.7	1.7	1.8
	(23.4)	(21.1)	(23.8)
Receiving Medical Care (in minutes)	1.5	1.4	1.6
	(22.2)	(19.4)	(21.0)
Time spent receiving medical if medical >0 (in	77.3	74.7	77.6
minutes)			
	(94.0)	(80.7)	(89.8)
Waiting for medical services (in minutes)	0.2	0.3	0.3
	(4.9)	(5.7)	(6.4)
Time waiting for medical if medical>0 (in minutes)	11.9	14.3	10.0
The watching for modelar it modelars o (in minutes)	(29.7)	(36.3)	(27.6)
Education (in minutes)	51.9	32.8	14.6
	(210.8)	(175.5)	(116.4)
Sleep (in minutes)	539.6	530.2	510.5
Sheep (in minutes)	(201.4)	(192.4)	(170.6)
Eating & drinking (in minutes)	60.0	62.5	64.7
Eating & armking (in minutes)	(69.9)	(73.6)	(69.0)
Purchasing goods & services (in minutes)	25.1	24.7	28.6
r drendsnig goods & services (in minutes)	(65.9)	(63.7)	(69.0)
Socializing & relaxing except television (in minutes)	125.9	112.5	92.0
Socializing & relaxing except television (in minutes)			(170.4)
Hanninger (0, 6)	(215.9) 4.3	(204.9) 4.3	
Happiness (0-6)			4.3
Maaringfulness (0, 6)	(1.8)	(1.9)	(1.9)
Meaningfulness (0-6)	4.0	4.0	4.2
	(2.3)	(2.4)	(2.2)
Sadness (0-6)	0.4	0.4	0.5
	(1.1)	(1.2)	(1.5)
Stress (0-6)	1.4	1.5	1.6
	(2.0)	(2.2)	(2.2)
Tiredness (0-6)	2.4	2.5	2.5
	(2.2)	(2.2)	(2.2)
Female (%)	49.6	51.1	50.2
	(0.7)	(0.7)	(0.7)
High School (%)	30.7	27.9	26.3
	(0.6)	(0.6)	(0.6)
Some college (%)	42.4	33.2	25.3
	(0.7)	(0.7)	(0.6)

Table 1Sample StatisticsATUS 2003 – 2013

College or more (%)	14.8	27.3	37.4				
	(0.5)	(0.6)	(0.7)				
Widowed (%)	0.0	0.0	0.2				
	(0.0)	(0.0)	(0.1)				
Divorced (%)	2.3	3.6	7.7				
	(0.2)	(0.2)	(0.3)				
Never married (%)	81.4	70.5	34.3				
	(0.5)	(0.6)	(0.7)				
Hispanic (%)	20.5	19.5	19.3				
	(0.5)	(0.5)	(0.5)				
Non-Hispanic black (%)	12.6	11.8	11.4				
	(0.4)	(0.4)	(0.4)				
Non-Hispanic other (%)	6.3	6.8	7.3				
	(0.4)	(0.4)	(0.4)				
Time diary incomplete (%)	12.5	12.1	12.8				
	(0.5)	(0.5)	(0.4)				
Observations	9852	4834	20951				
Notes: Weighted means are reported. Standard deviations are reported in parentheses. Number of							
observations represents maximum sample size. For some variables, the sample size is smaller due to							
missing information. For the subjective well-being measures, the sample size is 2160, 1071, and 4887 for							
the 3 respective samples (see text). Minutes refers to minutes per day.							

Model	1	2	3	4	5	6	7
Treatment group	Ages 19-25				Ages 23-25		
Post indicator represents:	Post-2010	Post-2011	Post-2011	Post-2011	Post-2010	Post-2011	Post-2011
Sample	All	All	State Ineligible	All	All	All	State Ineligible
Work excluding job search	-17.82*** (6.67) [0.85]	-23.20*** (7.95) [0.85]	-20.86* (11.47) [0.37]	-17.02** (6.68) [0.78]	-15.67* (8.59) [0.39]	-25.33** (10.42) [0.39]	-11.64 (13.98) [0.21]
Respondent employed	-0.04*** (0.01) [0.08]	-0.06*** (0.02) [0.08]	-0.05** (0.02) [0.70]	-0.04*** (0.01) [0.08]	-0.06*** (0.02) [0.29]	-0.08*** (0.02) [0.29]	-0.07*** (0.02) [0.39]
Work time among workers	-5.19 (8.40) [0.90]	-0.30 (10.11) [0.90]	6.58 (14.19) [0.37]	-5.21 (8.44) [0.95]	11.49 (10.08) [0.68]	14.40 (12.18) [0.68]	24.83 (15.58) [0.34]
Job Search and Interviewing	0.95 (0.90) [0.69]	2.70** (1.25) [0.69]	-0.14 (1.19) [0.74]	0.91 (0.90) [0.69]	2.23* (1.32) [0.81]	4.07** (1.88) [0.81]	0.48 (1.48) [0.80]
State indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Month indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Day indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
State-specific linear trends	No	No	No	Yes	No	No	No

 Table 2

 Effect of the ACA DCM on Labor Supply

Notes: Coefficients on the interaction between the treatment group and the post-indicator are reported. Each coefficient represents a separate regression model. Clustered standard errors are in parentheses (see text). Square brackets report the p-values on the interaction of a linear year trend and the treatment group indicator for 2003 through 2010. All coefficients represent changes in minutes except for the dummy for employed, which shows the percentage point change associated with the law. Asterisks denote statistical significance as follows: *** $0.01 \ge p$ -value; ** $0.05 \ge p$ -value > 0.01; * $0.10 \ge p$ -value > 0.05.

Effect of the ACA DCM on Time Receiving & Waiting for Medical Care							
Model	1	2	3	4	5	6	7
Treatment group	Ages 19-25						
Post indicator represents:	Post-2010	Post-2011	Post-2011	Post-2011	Post-2010	Post-2011	Post-2011
Sample	All	All	State Ineligible	All	All	All	State Ineligible
Medical Care	-0.19	-0.43	0.09	-0.19	-0.51	-0.67	-0.41
(receiving & waiting)	(0.40) [0.69]	(0.50) [0.69]	(0.65) [0.35]	(0.40) [0.60]	(0.46) [0.56]	(0.55) [0.56]	(0.70) [0.25]
Receiving Medical Care	-0.03	-0.21	0.11 (0.54)	-0.02	-0.20 (0.39)	-0.27	-0.05
	(0.36) [0.93]	(0.44) [0.93]	[0.44]	(0.36) [0.95]	[0.87]	(0.48) [0.87]	(0.63) [0.38]
Receiving medical care	-35.09**	-35.16*	-34.30	-28.92	-36.80*	-25.46	-45.14*
(medical care>0)	(16.38) [0.44]	(19.06) [0.44]	(23.69) [0.15]	(18.05) [0.44]	(20.39) [0.41]	(22.13) [0.41]	(25.66) [0.11]
Waiting for medical care	-0.18 (0.13) [0.34]	-0.23 (0.17) [0.34]	-0.05 (0.24) [0.26]	-0.18 (0.13) [0.33]	-0.35* (0.19) [0.42]	-0.43* (0.22) [0.42]	-0.39* (0.20) [0.15]
Waiting for medical care (medical care>0)	-15.91** (7.19) [0.44]	-17.96** (9.08) [0.44]	-6.82 (12.08) [0.20]	-10.00 (7.28) [0.40]	-19.43* (10.95) [0.59]	-22.41* (12.51) [0.59]	-22.43** (10.25) [0.10]
State indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Month indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Day indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
State-specific linear trends	No	No	No	Yes	No	No	No

Table 3Effect of the ACA DCM on Time Receiving & Waiting for Medical Care

Notes: Coefficients on the interaction between the treatment group and the post-indicator are reported. Each coefficient represents a separate regression model. Clustered standard errors are in parentheses (see text). Square brackets report the p-values on the interaction of a linear year trend and the treatment group indicator for 2003 through 2010. All coefficients represent changes in minutes. Asterisks denote statistical significance as follows: *** $0.01 \ge p$ -value; ** $0.05 \ge p$ -value > 0.01; * $0.10 \ge p$ -value > 0.05.

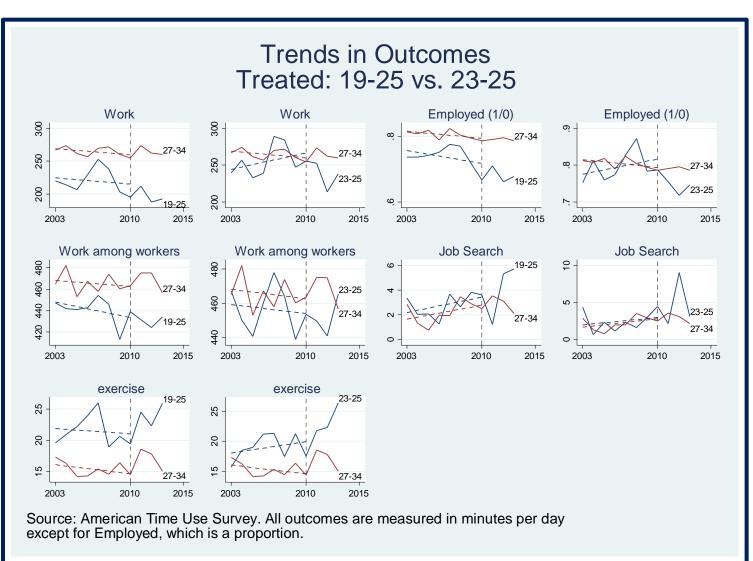
Model	1	2	CA DCM on Oth	4	5	6	7
Treatment group	1		19-25	-	5	Ages 23-25	,
Post indicator represents:	Post-2010	Post-2011	Post-2011	Post-2011	Post-2010	Post-2011	Post-2011
i ost indicator represents.	1050 2010	1050 2011	1050 2011	1050 2011	1051 2010	1050 2011	1050 2011
Sample	All	All	State Ineligible	All	All	All	State Ineligible
Exercise	-0.55	0.49	-3.94	-0.66	-1.25	0.72	-2.60
	(1.84)	(2.18)	(2.71)	(1.84)	(2.27)	(2.89)	(3.27)
	[0.23]	[0.23]	[0.85]	[0.27]	[0.13]	[0.13]	[0.47]
Education	6.41**	7.97**	4.81	6.35*	3.16	4.01	2.04
	(3.26)	(3.92)	(2.97)	(3.25)	(3.48)	(4.00)	(3.24)
	[0.26]	[0.26]	[0.19]	[0.27]	[0.28]	[0.28]	[0.12]
Sleep	2.02	1.47	4.34	1.75	2.20	0.86	-0.27
	(4.24)	(5.24)	(7.52)	(4.23)	(5.23)	(6.66)	(8.51)
	[0.19]	[0.19]	[0.06]	[0.19]	[0.12]	[0.12]	[0.03]
Eating & drinking	-1.24	-0.95	-3.43	-1.24	-1.86	-2.16	-4.34
	(1.51)	(1.79)	(2.37)	(1.51)	(1.99)	(2.30)	(2.71)
	[0.72]	[0.72]	[0.36]	[0.77]	[0.27]	[0.27]	[0.30]
Purchasing goods & services	-2.14	-3.28*	-4.98**	-2.21	-2.40	-2.53	-4.65
	(1.51)	(1.78)	(2.52)	(1.51)	(1.85)	(2.21)	(2.94)
	[0.11]	[0.11]	[0.85]	[0.09]	[0.03]	[0.03]	[0.47]
Socializing & relaxing	8.80**	12.96**	7.63	8.88**	3.63	10.01	3.09
(except TV)	(4.41)	(5.49)	(7.07)	(4.43)	(5.34)	(6.66)	(8.44)
-	[0.84]	[0.84]	[0.14]	[0.81]	[0.60]	[0.60]	[0.37]
State indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Month indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Day indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
State-specific linear trends	No	No	No	Yes	No	No	No

Table 4Effect of the ACA DCM on Other Uses of Time

Notes: See Table 3.

2003 – 2008/2009							
Model	1	2	3	4	5	6	7
Treatment group	Ages 19-25			Ages 23-25			
Post indicator represents:	2007-2009	2007-2009	2007-2008	2007-2009	2007-2009	2007-2008	2007-2009
Sample	All	All	State Ineligible	All	All	All	State Ineligible
Work excluding job search	12.09*	19.84**	24.60**	11.46	15.31*	23.74**	12.27
	(7.27)	(8.56)	(11.19)	(7.27)	(8.44)	(10.58)	(12.71)
Respondent employed	0.00	0.01	0.00	0.00	0.02	0.04**	0.00
	(0.01)	(0.02)	(0.02)	(0.01)	(0.02)	(0.02)	(0.02)
Work time among workers	0.95	8.99	7.44	0.81	5.12	7.20	-0.60
-	(8.38)	(9.68)	(12.50)	(8.43)	(9.86)	(11.78)	(14.05)
Job search & interviewing	-0.48	-0.46	-0.17	-0.47	-1.13*	-1.33*	-0.11
_	(0.63)	(0.77)	(0.88)	(0.63)	(0.67)	(0.76)	(0.93)
Exercise	2.48	3.88*	1.77	2.33	3.26	4.06	2.28
	(1.92)	(2.23)	(2.92)	(1.91)	(2.51)	(2.96)	(3.21)
Medical Care	0.11	0.36	-0.57	0.13	0.34	0.42	-1.12
(receiving & waiting)	(0.43)	(0.49)	(0.66)	(0.43)	(0.57)	(0.67)	(0.75)
Receiving medical care	-0.10	0.07	-0.34	-0.07	0.16	0.23	-0.64
-	(0.35)	(0.38)	(0.53)	(0.35)	(0.40)	(0.45)	(0.56)
Receiving medical Care	-10.08	0.84	-11.61	-6.50	-16.90	5.35	-48.38
(medical care>0)	(16.59)	(19.35)	(27.79)	(16.68)	(21.44)	(23.55)	(34.84)
Waiting for medical care	0.20	0.29	-0.26	0.19	0.19	0.23	-0.52*
C	(0.17)	(0.22)	(0.23)	(0.17)	(0.26)	(0.33)	(0.30)
Waiting for medical care	7.66	17.10	-5.31	8.53	-6.63	0.85	-25.92*
(medical care>0)	(8.37)	(10.51)	(14.13)	(9.07)	(10.46)	(12.48)	(15.13)
Education	2.19	0.15	-3.02	2.15	-4.24	-6.09	-5.80**
	(3.60)	(4.16)	(2.42)	(3.59)	(3.76)	(4.20)	(2.84)
Sleep	-6.39	-13.02***	-9.17	-6.61	-11.34**	-15.85***	-6.78
1 I	(4.52)	(5.00)	(6.75)	(4.53)	(5.31)	(5.97)	(7.11)
Eating & drinking	-1.22	-0.82	0.41	-1.31	0.74	1.15	-0.98
	(1.52)	(1.72)	(2.37)	(1.52)	(2.00)	(2.26)	(2.76)
Purchasing goods & services	1.50	1.52	-3.42	1.70	2.64	2.07	-3.64
	(1.70)	(1.89)	(2.66)	(1.70)	(2.00)	(2.23)	(3.02)
Socializing & relaxing	-9.24**	-10.14*	-5.31	-8.95**	-5.29	-7.67	0.61
(except TV)	(4.41)	(5.23)	(6.87)	(4.44)	(5.48)	(6.56)	(8.15)

Table 5 Placebo Models 2003 – 2008/2009


Notes: Coefficients on the interaction between the treatment group and the post-indicator are reported. Each coefficient represents a separate regression model. Clustered standard errors are in parentheses (see text). See Tables 2-4. Asterisks denote statistical significance as follows: *** $0.01 \ge p$ -value; ** $0.05 \ge p$ -value > 0.01; * $0.10 \ge p$ -value > 0.05.

Effect of the ACA DCM on Subjective wen-being							
Model	1	2	3	4	5	6	7
Treatment group	Ages 19-25			Ages 23-25			
Post indicator represents:	Post-2010	Post-2011	Post-2011	Post-2011	Post-2010	Post-2011	Post-2011
Sample	All	All	State Ineligible	All	All	All	State Ineligible
Happiness	0.14** (0.07)	0.14** (0.07)	0.18 (0.14)	0.14** (0.07)	0.11 (0.09)	0.11 (0.09)	0.13 (0.16)
Meaningfulness	0.19** (0.09)	0.19** (0.09)	0.25 (0.17)	0.17* (0.09)	0.03 (0.11)	0.03 (0.11)	0.11 (0.19)
Sadness	-0.00 (0.06)	-0.00 (0.06)	-0.01 (0.09)	0.00 (0.06)	-0.08 (0.08)	-0.08 (0.08)	-0.05 (0.11)
Stress	-0.00 (0.08)	-0.00 (0.08)	-0.09 (0.15)	0.02 (0.08)	-0.05 (0.10)	-0.05 (0.10)	-0.06 (0.16)
Tiredness	-0.04 (0.09)	-0.04 (0.09)	-0.20 (0.15)	-0.04 (0.09)	-0.11 (0.12)	-0.11 (0.12)	-0.33* (0.18)
State indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Month indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Day indicators	Yes	Yes	Yes	Yes	Yes	Yes	Yes
State-specific linear trends	No	No	No	Yes	No	No	No


Table 6Effect of the ACA DCM on Subjective Well-being

Notes: Coefficients on the interaction between the treatment group and the post-indicator are reported. Each coefficient represents a separate regression model. Clustered standard errors are in parentheses (see text). All coefficients represent changes in the weighted measure of each affect, which ranges from 0 to 6. The Well-being outcomes have only one row (and no pre-ACA interactions) because the Well-being Supplement was administered only in 2010, 2012, and 2013. Asterisks denote statistical significance as follows: *** $0.01 \ge p$ -value; ** $0.05 \ge p$ -value > 0.01; * $0.10 \ge p$ -value > 0.05.

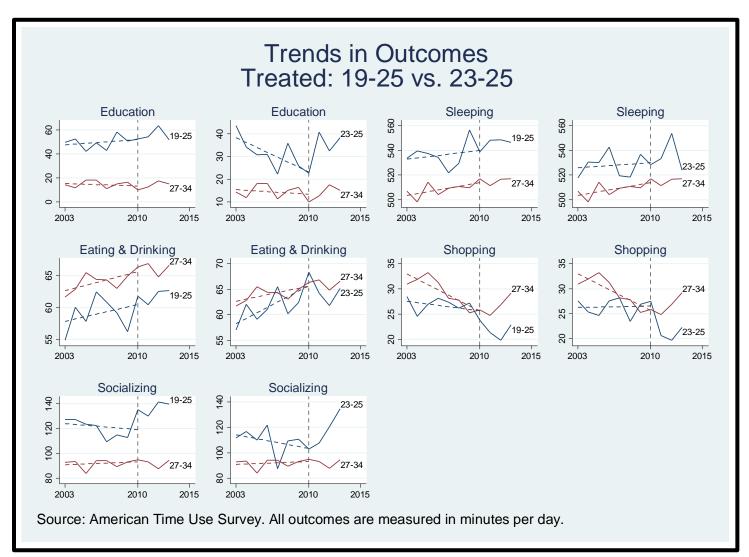


Figure 3	3
-----------------	---

