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1 Introduction

Wealth in the U.S. is unequally distributed, with a Gini coefficient of 0.78. It is skewed to

the right, and displays a thick, right tail: the top 1% of the richest households in the United

States hold over 33% of wealth. At the same time, the U.S. is characterized by a relatively

fast social mobility, with a Shorrocks mobility index in the range of 0.67− 0.88.1 This paper

attempts to quantitatively identify the factors that drive wealth dynamics in the U.S. and

are consistent with the observed cross-sectional distribution of wealth and with the observed

social mobility.

Many recent studies of wealth distribution and measures of inequality in the cross sec-

tional distribution focus on the upper tail. We shall concentrate on three critical factors

previously shown, typically in isolation from each other, to affect the tail of the distribu-

tion, empirically and theoretically. First, a skewed and persistent distribution of earnings

translates, in principle, into a wealth distribution with similar properties. A large litera-

ture in the context of Aiyagari-Bewley economies has taken this route, notably Castañeda,

Ana, Javier Dı́az-Gimı́nez, and José-Vı́ctor Rı́os-Rull (2003) and Kindermann and Krueger

(2015). Another factor which could contribute to generating a skewed distribution of wealth

is differential saving rates across wealth levels, with higher saving and accumulation rates

for the rich. In the literature this factor takes the form of non-homogeneous bequests, be-

quests as a fraction of wealth that are increasing in wealth; see for example Cagetti and

Nardi (2006), and the recent work of Piketty (2014) discussing the saving rates of the rich

directly. Finally, stochastic returns on wealth, or capital income risk, has been shown to

induce a skewed distribution of wealth, in Benhabib et al. (2011); see also Quadrini (2000)

which exploits stochastic returns of entrepreneurs to the same effect.2 While all these factors

1Formally, for a square mobility transition matrix A of dimension m, the Shorrocks index given by

s(A) =
m−

∑
j
ajj

m−1 ∈ (0, 1) , with 0 indicating complete immobility. The U.S. range is from mobility matrices
across 5 years from Klevmarken et al. (2003) for 1994-1999 (see Table 9, p. 342), and generational transitions
estimated by Charles and Hurst (2003) using 1984-89 cohort for parents, Tables 2 and 5.

2This factor is also related to stochastic heterogeneous discount factors or heterogeneous stochastic impa-
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contribute to produce skewed wealth distributions, their relative importance remains to be

ascertained.3

The quantitative analysis we pursue consist in matching the moments generated by a

macroeconomic model of wealth dynamics to the empirical moments of the observed distri-

bution of wealth and social mobility matrix. An advantage of working with formal macroe-

conomic models is that, once we allow for an explicit demographic structure, we obtain im-

plications for social mobility as well as the cross-sectional distribution. Indeed these factors

have distinct effects on social mobility, which then helps to identify their relative importance

in driving wealth dynamics.

A novel contribution of our approach in matching the moments of wealth distribution is

that we simultaneously target moments of wealth mobility across generations, in particular

we target some of the elements of the empirical wealth transition matrix. We explore how the

various mechanisms that shape the distribution of wealth also contribute to social mobility in

wealth, that is we try to jointly explain the distribution of wealth and the movements within

it across generations. This is important for our estimation because certain mechanisms that

can deliver the fat tails of wealth distribution, may also imply too little intergenerational

mobility relative to the data.

We shall argue that all of the three factors are necessary for matching both distribution

and mobility. Each of the factors seems to have a distinct role. Stochastic earnings avoid

poverty traps and allow for upward mobility near the borrowing constraints as random

returns on capital or capital income risk have relatively small effects at low levels of wealth.

Saving rate differentials help match the top tail but they reduce social mobility as the rich

tience adopted by Krusell and Smith (1998). However, such discount factors are non-measurable and hence
we prefer to restrict our analysis to capital income risk. Several papers in the literature include stochastic
length of life (typically, “perpetual youth”) models, to tame explosive accumulation path. We do not include
this in our model as it has manifestly counterfactual demographic consequences: the rich are those agents
who turn out to live relatively longer, as a (modeling) consequence have children later in life, and leave larger
estates.

3See Hubmer et al. (2015) for a related attempt at this, though they have not looked at intergenerational
wealth mobility. The paper is not yet available and hence we refer to later drafts for a discussion of similarities
and differences.
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get richer accumulating at higher rates. Stochastic returns on wealth, or capital income risk,

also contributes to the thick top tail while allowing for social mobility, especially in terms of

speeding up downward mobility.4

The rest of the paper is structured as follows. Section 2 lays out the theoretical framework,

and Section 3 explains our quantitative approach and data sources we use. Section 4 shows

the baseline results with the model fit for both targeted and untargeted moments. Section

5 is our decomposition exercise where we shut down each mechanism at one time and re-

estimate the model. Section 6 is an attempt to check the speed of transition our model

delivers. The last section concludes.

2 Wealth dynamics and stationary distribution

Most models of the wealth dynamics in the literature focus on deriving skewed distributions

with thick tails, e.g., Pareto distribution (power laws).5 While this is also our aim, we more

generally target the whole wealth distribution and its intergenerational mobility properties

by building a simple micro-founded model - a standard macroeconomic model in fact - of

life-cycle consumption and savings. The model exploits the interaction of the three factors

identified in the introduction that tend to induce skewed wealth distributions: stochastic

earnings, differential saving and bequest rates across wealth levels, and stochastic returns on

4Another possible factor which qualitatively would induce skewed wealth distributions but which we do
not address directly is a rate of return on wealth which increases in wealth. It could serve as an important
quantitative factor to explain the observed wealth distribution, working in a similar way to savings rates
that increase in wealth. Such dependence of rates of return on wealth however has not been empirically
documented in U.S. data; see Saez and Zucman (2016) who study returns on large public portfolios. Finally,
precautionary savings could also contribute to distributional characteristics and the lower tail of wealth
distribution under borrowing constraints, as precautionary motives increase savings rates especially of the
poor for whom income risk is more important. The precautionary motive, by increasing the savings rate at
low wealth levels under borrowing constraints and random earnings, works in the opposite direction of savings
rates increasing in wealth and the concavity of the consumption function. We do not exploit this channel for
simplicity, assuming that life-cycle earnings profiles are random across generations but deterministic within
lifetimes.

5We only discuss here those models which are directly relevant to our present analysis, referring to
Benhabib and Bisin (2015) for an extensive survey of the theoretical and empirical literature on the wealth
distribution.
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wealth. These factors also have different implications on wealth mobility.

Each agent’s life span is finite and deterministic, T years. Consumers choose consumption

c and savings every period, subject to a no-borrowing constraint. Consumers leave a bequest

at the end of life and get a warm-glow utility. The per-period utility from consumption, u(c),

and bequests, e(a), are CRRA. Their functional forms, respectively, are

u(c) =
c1−σ

1− σ
, e(a) = A

a1−µ

1− µ
.

Wealth a accumulates from savings and bequests. Idiosyncratic rates of returns r and life-

time labor earnings profiles {wt} are drawn from a distribution at birth, possibly correlated

with those of the parent, deterministic within each generation life.6 We emphasize that r

and {wt} are stochastic over generations only and can be interpreted as heterogeneity within

the life cycle. Lifetime earnings profiles are hump-shaped, with low earnings early in life. As

a consequence, borrowing constraints limit how much agents can smooth lifetime earnings.

Let Vt(at) denote the discounted expected utility of agent with wealth at at the beginning

of period t. The agents’ maximization problem, written recursively, then is

Vt(at) = max
ct,at+1

u(ct) + βVt+1(at+1)

s.t. at+1 = (1 + r)(at − ct) + wt,

0 ≤ ct ≤ at, for t ∈ [0, T ]

VT+1(aT+1) =
1

β
e(aT+1)

Note that within life, there is no uncertainty, hence no expectation is taken. The solution of

6Assuming deterministic earning profiles amounts to disregarding the role of intra-generational life-cycle
uncertainty and hence of precautionary savings; see Huggett et al. (2011), and Cunha et al. (2010) for
evidence that the life-cycle income positions tend to be determined early in life.
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the recursive problem can be represented by a map

aT = g (a0; r, w) ,

which we use to construct the intergenerational wealth dynamics process. Let apex n denote

the generation. The process for the rate of return on wealth and earnings processes over gen-

eration n, (rn, wn) is a finite irreducible Markov Chain with transition P (rn, wn | rn−1, wn−1)

such that (abusing notation):

P
(
rn | rn−1, wn−1

)
= P

(
rn | rn−1

)
,

P
(
wn | rn−1, wn−1

)
= P

(
wn | wn−1

)

Also, the life-cycle structure of the model implies that the initial wealth of the n’th generation

coincides with the final wealth of the n− 1’th generation:

an = an0 = an−1
T .

We can construct then a stochastic difference equation for the initial wealth of dynasties,

induced by the (forcing) stochastic process for (rn, wn), and mapping an−1 into an:

an = g
(
an−1; rn, wn

)
,

where the map g(.) represents indeed the solution of the life-cycle consumption-saving prob-

lem.

It can be shown that under our assumptions, the map g can be characterized as follows:

Case 1. µ = σ, g (a0; r, w) = α(r, w)a0 + β(r, w);

Case 2. instead µ < σ, ∂2g
∂a 2

0
(a0; r, w) > 0.
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In the first case µ = σ, the intergenerational wealth dynamics is governed by a linear

stochastic difference equation in wealth, which has been closely studied in the math literature

(see de Saporta, Benôıte, 2005). Indeed, if µ = σ and (α(rn, wn), β(rn, wn)) satisfy the

restrictions of a reflective process (see Benhabib et al., 2011 for details), the tail of the

stationary distribution of wealth, an is asymptotic to a Pareto law (where Q ≥ 1 is a

constant)

Pr(a > a) ∼ Qa−γ,

where limN→∞E
(∏N−1

n=0 (α(r−n, w−n))γ
) 1

N = 1.

If instead, keeping σ constant, µ < σ, a stationary distribution might not exist; but if it

does,

Pr(a > a) ≥ Q(a)−γ.

If µ = σ, the restrictions of a reflective process which induce a limit stationary distribution

of a require that the contractive and expansive components of the effective rate of return tend

to balance, i.e., that the distribution of α(rn, wn) display enough mass on α(rn, wn) < 1 as

well some as on α(rn, wn) > 1; and that effective earnings β(rn, wn) be positive and bounded,

hence acting as a reflecting barrier (these are the restrictions for a reflective process). In

the general case, µ < σ, saving rates and bequests tend to increase with initial wealth; as a

consequence the model displays a distinct expansive tendency acting against the stationarity

of an.

The stochastic properties of labor income risk, β(rn, wn), have no effect on the tail on

the long-run stationary distribution of wealth, if it exists, as long as they are not very

thick.7 Heavy tails in the stationary distribution require that the economy has sufficient

capital income risk: if µ = σ, for instance, an economy with limited capital income risk,

where α(rn, wn) ≤ α̃ < 1 and where β̃ is the upper bound of β(rn, wn), has a stationary

7This statement is not circular: the precise condition is that the tail of earnings be less thick than the
tail implied by capital income risk under no earnings; see Grey (1994) and Hay et al. (2011).
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distribution of wealth bounded above by β̃
1−α̃ . As long as a stationary distribution exists,

wealth inequality (e.g., the Gini coefficient of the tail) increases with i) the capital income risk

agents face in the economy, as measured by a “mean preserving spread” on the distribution

of α(rn, wn); ii) the bequest motive A, iii) a smaller µ.

3 Quantitative analysis

The objective of this paper, as we discussed in the Introduction, consists in measuring the

relative importance of various factors which determine the wealth distribution and the social

mobility matrix in the U.S. The three factors are the earnings distribution, capital income

risk, and differential savings. These are represented in the model by the properties of the

dynamic process and the distribution of (rn, wn) and by the parameter µ, which implies

differential savings (the rich saving more) when µ < σ. We assume in the following analysis

however that rn and wn are independent, though each is allowed to be serially correlated.

3.1 Methodology

The main assumption of the quantitative exercise is that the wealth and social mobility data

observed in the U.S. are generated by a stationary distribution. We consider it a reasonable

first step, but extend it to the case without assuming stationarity in Section 6 as a robustness

check.8

In detail, we estimate the parameters of the described stochastic process using a Simulated

Moments (MSM) estimator: we fix several parameters of the model (externally calibrated);

we select some relevant moments; and we estimate the remaining parameters by matching the

moments generated by the model and those in the data. Specifically, we fix σ = 2, T = 36,

8Very few studies in the literature deal with the transitional dynamics of wealth and its speed of transition
along the path, though this issue has been put at the forefront of the debate by Piketty (2014). Notable and
very interesting exceptions are Gabaix et al. (2015), Kaymak and Poschke (2015), and Hubmer et al. (2015).
Our preliminary results in Section 6 are encouraging, in the sense that the model seems to be able to capture
the transitional dynamics with parameters estimates not too far from those obtained under stationarity.
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β = 0.97 per annum, the stochastic process for individual income and its transition across

generations, following Chetty et al. (2014).9 The empirical targets are: (i) the following

wealth percentiles: bottom 20%, 20 − 39%, 40 − 59%, 60 − 79%, 80 − 89%, 90 − 94%,

95− 99%, and top 1% (eight moments), and (ii) the diagonal of the social mobility Markov

chain transition matrix with states for bottom 25%, 25−49%, 50−74%, 75−89%, 90−94%,

95 − 99%, and top 1% (seven moments) as the moments to match. We estimate µ,A, a 5-

state Markov Chain grid for rn, and a restricted form of the social mobility matrix consisting

in leaving diagonal elements free and imposing equal probabilities off the diagonal (twelve

parameters summarized in vector θ).

Let mn for n = 1, . . . , N = 15 denote a generic empirical moment, and dn(θ) be the

corresponding model moment that is simulated for a given vector of model parameters, θ.

We simulate the entire wealth process of 100,000 individuals, and we minimize the deviation

between each data target and the corresponding simulated moment. For each moment n,

define

Fn(θ) = dn(θ)−mn

Note that all our moments fall between [0, 1], thus we are not too worried about large

variation in the scales of moments. The MSM estimator is

θ̂ = argmin
θ

F(θ)′WF(θ)

where F(θ) is a column vector in which all moment conditions are stacked, i.e.

F(θ) = [F1(θ), . . . , FN(θ)]
T

9The data in Chetty et al. (2014) refers to the 1980-82 U.S. birth cohort and their parental income.
Originally, it is a 100-state Markov chain: each percentile of income distribution. We reduce it to a 10-state
Markov chain; see Appendix B for the deciles, the transition matrix, and a detailed discussion of several
issues with our measure of individual income.
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We choose an identity matrix for the weighting matrix in the baseline, W = IN . The

objective function is highly nonlinear in general, therefore we employ a global optimization

routine following Guvenen (2016) for the MSM estimation. Further details on the estimation

can be found in Appendix A.

3.2 Data

We discuss the choice of output data for the targeted moments first, then the input data of

labor income processes.

Output data. Matching the model and data generated moments requires wealth distribu-

tion and social mobility data. We take wealth distribution data from the Survey of Consumer

Finances (SCF) 2007. Figure 1 displays the histogram for the wealth distribution, truncated

at 0 on the left and ten million dollars on the right. Again the wealth distribution is very

skewed to the right. We take the fractile shares from the cleaned version in Dı́az-Giménez

et al. (2011).

Figure 1: Wealth distribution in the SCF 2007 (weighted)

Notes: Data source is the 2007 SCF. Net wealth is defined as the sum of net financial wealth
and housing. We restrict the sample to between 0 and 10 million negative wealth in this
plot, but when we calculate the wealth fractile shares we do not apply those restrictions.
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As for wealth transition across generations we take the six-year transition matrix (1983-

1989) in Kennickell and Starr-McCluer (1997) also computed from SCF data. The states of

the matrix are [bottom 25%, 25−49%, 50−74%, 75−89%, 90−94%, top 2−5%, top 1%].

The main reason for using this estimate is that it is the only estimate to our best knowledge

that has a state for the top wealth share in its transition matrix.10

We transform the matrix into a 36 years transition (by raising it to the power 6), and

obtain:

T36 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.316 0.278 0.222 0.118 0.037 0.024 0.005

0.276 0.263 0.240 0.137 0.044 0.031 0.009

0.224 0.242 0.263 0.163 0.054 0.042 0.012

0.196 0.229 0.274 0.176 0.061 0.051 0.013

0.179 0.219 0.275 0.181 0.066 0.061 0.020

0.150 0.198 0.271 0.185 0.074 0.082 0.040

0.112 0.166 0.252 0.182 0.085 0.121 0.083

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the estimation we are only matching the diagonal of the above matrix. We are also

only estimating the diagonal elements of the rates of return process, and we impose the

off-diagonal cells of each row in the transition matrix for the r process to be equal. This

assumption brings down the number of parameters we need to estimate.11

Input data. We use ten deterministic life-cycle household-level income profiles at different

deciles, estimated from the Panel Study of Income Dynamics (PSID), drawn in Figure 2:12

10The qualitative implications regarding social mobility in Kennickell and Starr-McCluer (1997)’s estimates
are robust: the matrix obtained by Klevmarken et al. (2003) with the PSID data is qualitatively similar; see
Appendix C where the matrix is reported. Most importantly, the matrix estimated by Charles and Hurst
(2003) to capture the intergenerational transmission in wealth exploiting information contained in the PSID
about parent-child pairs is also similar; we discuss this point in detail in Section 4.3.

11We also experimented with exponentially decreasing off-diagonal cells, and results are very similar.
12We use household-level labor income, and do not distinguish between single or couple households. More

details are provided in Appendix B.
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Figure 2: Life-cycle income profiles by deciles

−1
0

−8
−6

−4
−2

0

25 30 35 40 45 50 55 60

0−10%

−5
0

5
10

15

25 30 35 40 45 50 55 60

10−20%

5
10

15
20

25

25 30 35 40 45 50 55 60

20−30%

15
20

25
30

35
25 30 35 40 45 50 55 60

30−40%

25
30

35
40

45

25 30 35 40 45 50 55 60

40−50%

30
35

40
45

50
55

25 30 35 40 45 50 55 60

50−60%

35
40

45
50

55
60

25 30 35 40 45 50 55 60

60−70%

40
50

60
70

80

25 30 35 40 45 50 55 60

70−80%

50
60

70
80

90

25 30 35 40 45 50 55 60

80−90%

80
10

0
12

0
14

0
16

0
18

0

25 30 35 40 45 50 55 60

90−100%
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The income levels used in our quantitative exercise are collapsed into six-year averages,

as in Table 1. In all computations we assume an initial distribution of wealth concentrated

on zero assets and an initial distribution of income concentrated on the lowest labor earnings

decile.

Table 1: Life-cycle income profiles

Age range / % 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

1 [25-30] -2.689 9.356 16.87 23.23 29.47 35.48 41.71 49.12 59.52 87.90
2 [31-36] -1.683 12.90 21.88 29.78 37.10 44.21 52.06 61.69 75.01 123.5
3 [37-42] -1.733 13.48 23.84 32.88 41.35 49.64 57.95 68.42 84.67 153.8
4 [43-48] -2.734 13.59 24.54 33.73 42.76 51.46 60.73 72.46 90.04 165.5
5 [49-54] -4.973 10.47 20.95 29.68 38.81 47.98 57.98 69.65 87.23 165.2
6 [55-60] -8.226 1.047 11.31 19.63 28.21 37.60 47.20 59.23 77.07 156.5

Notes: Data source is the PSID cleaned by Heathcote et al. (2010). Income levels are in
thousand dollars. In the actual quantitative exercise we replace negative earnings levels for
the first decile (first column) with a small value (0.001), as our theoretical model does not
allow for borrowing.

4 Estimation results

4.1 Parameter estimates

The baseline results are reported in Table 2. Several features of the estimates are important.

The upper part of the table shows the estimates for the preference parameters. Note that

the elasticity of the CRRA utility for bequests, µ̂ is 1.1860, which is significantly lower than

that of the CRRA utility for normal consumption. µ < σ implies, as we noted, that savings

out of wealth increase with wealth itself: the rich save proportionally more than the poor.

In other words, our estimates point to the existence of the differential saving factor as a

component of the observed wealth dynamics in the U.S.13 Of course, the strength of the

13As we noted, differential saving can in principle, for a theoretical standpoint, make it impossible for a
stationary distribution of wealth. But our estimates are predicated on the assumption that such distribution
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bequest motive has to be evaluated jointly with the intensity parameter A as well. Here we

have an estimated A of 0.0312, which is very low.

Table 2: Parameter estimates: baseline

Parameters
Preferences σ µ A β T

[2] 1.1860 0.0312 [0.97] [36]
(0.0077) (0.1276)

Rate of return
r grid 0.0024 0.0143 0.0234 0.0665 0.0741

(0.0010) (0.0470) (0.0217) (0.0261) (0.0218)
prob. grid 0.1992 0.3876 0.4043 0.2520 0.0414

(0.1243) (0.1602) (0.1984) (0.1772) (0.0136)
stationary prob. grid 0.1812 0.2300 0.2436 0.1940 0.1513

Notes: [] indicates fixed parameters, standard errors computed with numerical derivatives
for the parameter estimates in (). σ is the CRRA elasticity of consumption, µ is the CRRA
elasticity of bequest, and A is the intensity of bequest. β is the annual discount factor, and
T is the number of working periods. The return process follows a standard Markov chain.
The values for the r grid is for an annual return. The whole matrix is reported in Appendix
A. The objective value in the baseline is 0.0295. All the above notations remain the same
throughout parameter estimates tables in the remainder of the paper.

The bottom part of Table 2 lays out the estimates for the rate of return process. Recall

that we set the process as a Markov chain with five states - we do not impose any restriction

on the process, such as assuming an AR(1) or any other distributional assumptions, in order

to allow for sufficient freedom in the estimation.

Most of the parameters are estimated quite precisely with a t statistic greater than 2. To

elaborate, the important curvature parameter µ is statistically very significant, though the

bequest intensity parameter A is not. The bequest motives are jointly significant. Likewise,

some of the r grid values or probabilities are statistically insignificant, yet most of them and

parameters for the whole process are jointly significant.

The first row of the bottom part are the values estimated for these five states, the second

exists. In practice this must limit the possible strength of this factor. We will gauge at this issue better
when we discuss counterfactuals in the next section.
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row are the probabilities on the diagonal of the transition matrix, while the third row are the

corresponding probabilities for the stationary distribution of the Markov chain. The mean

annual rate is 3.35%, and the standard deviation is 40.15%.14 Furthermore, the process is

close to i.i.d. in the stationary distribution, i.e., the probability for each state is close to 0.2.

This should be interpreted as a real, after-tax, growth-detrended rate. We find reassuring

that it is quite consistent with previous estimates by Campbell and Lettau (1999), Campbell

et al. (2001) and Moskowitz and Vissing-Jørgensen (2002), obtained from data on rates of

return to private equity and entrepreneurship. This is particularly striking if we note that

our estimate is obtained to match the wealth distribution and social mobility, with no direct

return data.

4.2 Model fit

The simulations of our estimated model seem to capture the targeted moments quite well,

as shown in Tables 3-4.

Table 3: Wealth fractiles: baseline

Distributional moments
Share of wealth 0-19 20-39 40-59 60-79 80-89 90-94 95-99 99-100 Gini

Data (SCF 2007) -0.002 0.001 0.045 0.112 0.120 0.111 0.267 0.336 0.816
Baseline 0.014 0.048 0.105 0.168 0.102 0.070 0.151 0.341 0.799

14Because we assume that one period is six years in the simulated model, we need to scale up the estimated
standard deviation by

√
6 to convert to the actual standard deviation of an stochastic annual rate (i.e. one

draw is constant throughout six years).
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Table 4: Transition matrix: baseline

Mobility moments
Share of wealth 0-24 25-49 50-74 75-89 90-94 95-99 99-100

Data
Diagonal 0.316 0.263 0.263 0.176 0.066 0.082 0.083
Top 1% 0.112 0.166 0.252 0.182 0.085 0.121 0.083
Shorrocks 0.959

Our Simulation
Diagonal 0.274 0.263 0.269 0.158 0.047 0.041 0.122
Top 1% 0.206 0.303 0.172 0.082 0.030 0.084 0.122
Shorrocks 0.971

To facilitate the reading, we report the fit for the moments we have selected in Figures

3-4. The first one plots the empirical wealth share from the 2007 SCF (in blue) against

the simulated shares from the model (in red). Due to the borrowing constraint, in our

simulation agents display non-negative wealth holdings throughout their lifetime, and thus

the simulated wealth distribution is less skewed than the data’s. We match the top 1% share

right on spot, yet somewhat miss the second top cell for the next 1− 5%.
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Figure 3: Wealth fractiles: baseline
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Notes: On the horizontal axis we mark 8 bars corresponding to the 8 wealth distribution
shares. The red bars are model simulated moments, while the blue bars are the empirical
moments.

Figure 4: Mobility: baseline
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Notes: On the horizontal axis we mark 7 clusters corresponding to the 7 rows of the transition
matrix. Within each cluster, there are 7 bars corresponding to each column of the row. For
example, the first bar of the second group refers to the (2, 1) elements of the matrix.

Figure 4 plots the fit for mobility moments. Recall that we only explicitly target the
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diagonal elements of the Markovian transition matrix. We plot the whole matrix in this

figure in order to get a sense how well we do on the (non-targeted) off-diagonal cells.

Careful reading of the figures indicates that we match the diagonal pretty well, and do

a reasonable job for the off-diagonals. The last cluster, corresponding to the 7th row of the

matrix, is the hardest to match. These are the probabilities of people in the top 1% either

staying within the top 1% or falling down to other positions of the distribution. There is a

lot of movement in the data: the probability of staying is a mere 8.3%, while the probability

of moving down to the bottom 25% is a non-negligible 11.2%. Our simulated probability of

staying is 12.2%, close enough to the empirical one; yet our estimate for the probability of

falling down to the bottom is almost twice its empirical counterpart.

4.3 Independent evidence

We discuss here independent evidence which bears on the fit of the model with regards to

savings, bequests, and wealth mobility. These are essentially moments we have not explicitly

targeted, but we would like to show how well we fare in these regards.

Savings. In order to highlight the effect of the bequest motive on savings, we calculate

the (non-targeted) savings rates for different wealth fractiles in our simulation and compare

them with the empirical values calculated by Saez and Zucman (2016) using 2000-2009 data;

see Table 5. Synthetic saving rates (defined by grouping everyone within a certain wealth

fractile and calculating the ratio between changes in total wealth and total income of this

group) are increasing in with wealth levels both in the data and in our simulation. While

the simulation misses the saving rate of the top 10− 1%, it does reasonably well for the top

1% and the bottom 90%.
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Table 5: Synthetic savings rates comparison

Fractile
Share of wealth Bottom 90 Top 10-1 Top 1
Data 2000-2009 -4% 9% 35%
Simulation -5.65% 29.3% 42.2%

Notes: Data source is Saez and Zucman (2016). Synthetic saving rate for fractile p in year

t is defined as Sp
t =

W p
t+1−W p

t

Y p
t

, also adjusted for changes over time in price of assets in data.

Bequests. The distribution of bequests in our model, without mortality risks, maps closely

the stationary wealth distribution. A crucial implication of our estimates is that the savings

rate, part of which is driven by the bequest motive, is increasing in wealth.15 To examine

whether this feature is also a characteristics of the data, we examine the age profile of

wealth. Figure 5 plots the wealth profiles for the U.S. population above age 55 based on the

Health and Retirement Study (HRS). The three lines correspond to (from bottom to top)

25%, median, and 75% percentiles of the wealth distribution. We see that indeed retirement

savings do not decline along the age path, and that this pattern is more accentuated for the

75% percentile, as our estimates imply.16

15The bequest motive stands on relative solid grounds: it is well documented that retirees do not run down
their wealth as predicted by the classical life-cycle consumption-savings model (Poterba et al., 2011).

16Our model does not have a role for accidental bequests. Therefore, while the literature on retirement
savings distinguishes between precautionary saving motives for uncertain medical expenses (De Nardi, Mari-
acristina, Eric French and John B. Jones, 2010), uncertain and potentially large long-term care expenses
(Ameriks et al., 2015a), family needs (Ameriks et al., 2015b) and the genuine bequest motive, we necessarily
lump all these into aggregate bequests.
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Figure 5: Retirement savings profiles
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Notes: Data source is HRS wave 10 fielded in 2010. Here wealth is defined as net worth of
assets in the household, including net financial wealth and housing.

People have also described the distribution of actual and expected bequests with various

micro-level data. For example, Hurd and Smith (2003) use the HRS to characterize such

distributions and find the bequests are very skewed, just as cross-sectional wealth.

Wealth mobility. The mobility matrix we use from Kennickell and Starr-McCluer (1997) is

based on estimates from a six-year panel data, not necessarily representing intergenerational

mobility. As explained previously, we choose this matrix because its Markov chain has

a state for the top 1% wealth share. However, we ask here whether our estimates are

similar to other intergenerational wealth mobility matrix in the literature. In particular, we

compare our results with the intergenerational wealth mobility matrix estimated by Charles

and Hurst (2003) with the PSID panel data. They have a five-state Markov chain, with each

state representing each quintile share of the wealth distribution. If we only adjust the logs

of parental and child wealth for age, the estimated matrix is:17

17Charles and Hurst (2003) also report another version of the matrix estimates, adjusting logs of parental
and child wealth for age, income, and portfolio choice. We use the one with less conditioning first because
we do not have those elements in our model, and second these aspects such as portfolio choices could be
endogenous.
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TCH,gen =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.23 0.21 0.18 0.21 0.17

0.25 0.17 0.19 0.21 0.19

0.20 0.25 0.20 0.20 0.15

0.15 0.17 0.21 0.21 0.25

0.17 0.20 0.22 0.17 0.24

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

It should be noted that this transition matrix is a doubly stochastic matrix by construction,

as the states are even percentiles. As a consequence, the implied stationary distribution will

be uniform, 0.2 in each cell. The transition matrix estimated by Charles and Hurst (2003)

over only one generation is relatively close to the uniform stationary distribution, which

suggests a high intergenerational wealth mobility: people are churning quite fast in their

wealth ranking across generations.

Our model simulations generate the following corresponding transition matrix which is

very close to what Charles and Hurst (2003) have estimated:

T̂gen =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.20 0.22 0.17 0.22 0.18

0.20 0.22 0.20 0.18 0.19

0.19 0.21 0.21 0.19 0.19

0.21 0.17 0.21 0.20 0.21

0.20 0.18 0.20 0.20 0.22

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In particular, the Shorrocks index for both matrices is exactly the same, 0.988.

21



5 Counterfactual estimates

5.1 Re-estimation results

In this section we perform a set of counterfactual estimates of the model, under restricted

conditions, and the associated simulations. There are three sets of counterfactuals that we

are interested in, corresponding to shutting down each of the three main mechanisms which

can drive the distribution of wealth: (1) stochastic rates of returns, (2) bequest motives

leading to differential saving rates, and (3) stochastic labor income.

The objective of this counterfactual analysis is twofold. First of all we aim at gauging

(and possibly, measuring) the relative importance of the various mechanisms we identified

as possibly driving the distribution of wealth. We also attempt at a better understanding

of which mechanism mostly affects which dimension of the wealth distribution. Second, we

interpret the counterfactuals as informal tests of identification of these mechanisms, lack of

identification implying that shutting down one or more of the mechanism has limited effects

on the fit for the targeted moments.

We examine the counterfactual estimates in detail in the following. In the counterfactual

with no stochastic rates of return, we re-estimate a constant rate of return. The estimated

parameters are in Table 6, the simulation moments in Table 7-8, Line 2. The differential

savings mechanism does not substitute for the random rate of return, as the higher estimated

µ implies. However the saving rate is higher due to a higher relative preference for bequests

reflected in A. Nonetheless, the model now misses completely to match the top 1% of

the wealth fractiles, which is reduced to about 1/6th of the baseline (and the data). The

simulated wealth distribution becomes less skewed but does not entirely collapse, it has less

mass on the top 10% and more of the bottom 80%. The match in mobility is also off: the

top 1-5% has a too low a probability of staying and the the bottom too high.
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Table 6: Parameter estimates: no stochastic rates of return

Markov chain regime
Preferences σ µ A β T

[2] 1.4969 0.3148 [0.97] [36]
Rate of return
r grid 0.034
prob. grid -

Notes: The objective value is 0.2365.

In the counterfactual with homogeneous saving rates, we set the curvature parameter of

the bequest utility, µ, to 2 (which is the curvature value of the normal consumption utility),

such that agents with different wealth would still save at the same rate. The estimated

parameters are in Table 9, the simulation moments in Table 7-8, Line 3. In terms of the

estimates, preferences for bequests are jacked way up, so as to increase the (now constant)

saving rate in the economy. Also the rate of return has a slightly lower mean. Once again,

the model misses to match the top 1% of the wealth fractiles, which is reduced less than

in the counterfactual with constant rate of return of wealth, to about 1/3rd of the baseline

(and the data). A part from the last percentile, the simulated wealth distribution is not

really less skewed, displaying even excessive mass on the top 60%. The match in mobility is

reasonably good, except that the top 1% has still a too low a probability of staying.

Table 7: Wealth fractiles: counterfactual re-estimations

Distributional moments
Share of wealth 0-19 20-39 40-59 60-79 80-89 90-95 95-99 99-100

Data (SCF 2007) -0.002 0.001 0.045 0.112 0.120 0.111 0.267 0.336
Simulation
(1) Baseline 0.014 0.048 0.105 0.168 0.102 0.070 0.151 0.341
(2) Const. r 0.184 0.187 0.191 0.194 0.098 0.050 0.038 0.057
(3) µ = 2 0.021 0.072 0.155 0.223 0.164 0.134 0.160 0.073
(4) Const. low w 0.153 0.174 0.165 0.168 0.157 0.093 0.034 0.057
(5) Const. high w 0.016 0.060 0.081 0.119 0.158 0.125 0.174 0.267
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In the counterfactual with no stochastic labor income, we set a constant labor income

profile. We experiment with both a low and a high profile. The estimated parameters are

in Table 10-11, the simulation moments in Table 7-8, Line 4-5. The differential savings

mechanism now, in either case, substitutes for the random rate of return, as the higher

estimated µ implies. On the other hand the preference for bequests decreases. While the

low w counterfactual completely misses the wealth distribution, which is way less skewed than

the data, the high w does not do badly, and even the top 1%, while lower than in the baseline

and the data, is better than in all the other counterfactuals. A possible interpretation of

these results is that it is the level of the wage, in particular the low wage, which creates a

problem with the ability of the model to generate the observed wealth distribution, because

the poor get stuck and cannot afford to save. When the wage is high, even if it is constant

and not stochastic, the poor can afford to save and move up to better populate the right tail,

and the fit for the targeted moments of the wealth distribution is much better. The match

in mobility is also not good. Interestingly, when w is low, the staying probability of the top

1% is way too low (actually 0), while it is way too high (more than three times that in the

data) when w is high.

Table 8: Diagonal of transition matrix: counterfactual re-estimations

Mobility moments
Share of wealth 0-24 25-49 50-74 75-89 90-94 95-99 99-100

Data 0.316 0.263 0.263 0.176 0.066 0.082 0.083
Simulation
(1) Baseline 0.274 0.263 0.269 0.158 0.047 0.041 0.122
(2) Const. r 0.368 0.257 0.257 0.158 0.008 0.038 0.090
(3) µ = 2 0.276 0.255 0.275 0.188 0.030 0.055 0.177
(4) Const. low w 0.326 0.265 0.248 0.089 0 0.180 0
(5) Const. high w 0.537 0.375 0.284 0.191 0.104 0.223 0.280
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Table 9: Parameter estimates: µ = 2

Parameters
Preferences σ µ A β T

[2] [2] 1.9794 [0.97] [36]
Rate of return
r grid 0.007 0.014 0.026 0.067 .091
prob. grid 0.061 0.411 0.499 0.148 0.137

Notes: The objective value is 0.1246.

Table 10: Parameter estimates: constant low w profile

Parameters
Preferences σ µ A β T

[2] 0.9681 0.0145 [0.97] [36]
Rate of return
r grid 0.003 0.009 0.030 0.046 .088
prob. grid 0.045 0.418 0.395 0.301 0.183

Notes: The objective value is 0.2306.

Table 11: Parameter estimates: constant high w profile

Parameters
Preferences σ µ A β T

[2] 0.2434 0.0935 [0.97] [36]
Rate of return process
r grid 0.005 0.015 0.019 0.050 .068
prob. grid 0.172 0.070 0.039 0.023 0.091

Notes: The objective value is 0.1415.

In a nutshell, all these three mechanisms are crucial for generating the fat right tail of the

wealth distribution and sufficient mobility. A high constant w reduces the fit the least. We

cautiously interpret this result to imply that the stochastic earning mechanism is the least

important in driving the observed distribution of wealth. Furthermore, each of the factors
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seems to have a distinct role. Stochastic earnings avoid poverty traps and allow for upward

mobility near the borrowing constraints as random returns on capital or capital income risk

have relatively small effects at low levels of wealth. Saving rate differentials help match the

top tail but they reduce social mobility as the rich get richer accumulating at higher rates.

Stochastic returns on wealth, or capital income risk, also contributes to the thick top tail

while allowing for social mobility, especially in terms of speeding up downward mobility.

5.2 More on the earnings mechanism

In apparent contrast with our results, several previous papers in the literature have ob-

tained considerable success in matching the wealth distribution in the data with simulated

models fundamentally driven by the stochastic earnings mechanism. This is the case, for

instance, of Kindermann and Krueger (2015). The main difference between our analysis

and Kindermann and Krueger (2015)’s is methodological. While we feed the model with

a distribution of earnings obtained from the data, Kindermann and Krueger (2015) effec-

tively estimate the (tail of the) earning process. More specifically, they use a seven state

Markov chain for earnings constructed from data except in the highest state, which is instead

estimated to fit the wealth distribution data. Their estimates imply that, at the station-

ary distribution of earnings, the average top 0.25% earns somewhere between 400 to 600

times the median income. Translated in dollars (the median earnings are about $50, 000),

the earnings of the top 0.25% amount to at least $20, 000, 000. While substantial uncer-

tainty pervades the data on top earners, this number appears implausibly high: in fact the

top 0.1% have average incomes of about $4, 000, 000, out of which $1, 637, 000 is earnings

(wages, salaries, and pensions), according to the Piketty-Saez World Top Income Database

at http://topincomes.parisschoolofeconomics.eu/#Database:, which is of course more

than the average earnings of the top 0.25%.

Another successful simulation exercise driven by earnings is Castañeda, Ana, Javier Dı́az-
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Gimı́nez, and José-Vı́ctor Rı́os-Rull (2003). They develop a very rich overlapping-generation

model with life-cycle features. Their 4-state stochastic process for labour earnings introduces

a mechanism, sometimes referred to as the addition of an awesome state, to generate a very

high skewness in the distribution.18 Indeed, at the stationary distribution for labor earnings

in the simulation, the top 0.039% earners have 1000 times the average labor endowment

of the bottom 61%. Thus to attain a ratio of a 1000, if the bottom 61% earn $25, 000 on

average, the top 0.0389% would have to earn $25, 000, 000. This also appears implausibly

high according to the Piketty-Saez World Income Database.

More generally, barring other mechanisms contributing to thick tails in wealth, the skew-

ness of the earnings distributions tends to translate one-for-one to the distribution of wealth;

see Benhabib and Bisin (2015). But in the data wealth is substantially more skewed than

earnings,19 making it difficult to match the data with stochastic earnings only, without the

introduction of too awesome a state.

6 Transitional dynamics of the wealth distribution

As we have discussed, our quantitative analysis is predicated on the assumption that the

observed distribution of wealth is a stationary distribution, in the sense that our estimates

are obtained by matching the data with the moments of the stationary distribution generated

by the model. In this section we instead begin studying the implications of our model for

the transitional dynamics of the distribution of wealth.

The exercise we perform is as follows: using the observed SCF 1962-1963 distribution

of wealth as initial condition, we estimate the parameters of the model by matching the

18Dı́az et al. (2003) use an alternative but also excessively skewed earning process relative to the earnings
data (for example relative to administrative data reported by the World Top Income Database compiled by
Piketty and Saez), where roughly 6% of the top earners have 46 times the labor endowment of the median.
Dávila et al. (2012) match the distribution of wealth (their Section 5.2) with the same calibration as in Dı́az
et al. (2003).

19In the SCF 2007, the Pareto tail, an inverse measure of skewness of the distribution, is estimated to be
1.09 for wealth (net worth), 1.71 for total income, 2.13.
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implied distribution after 72 years (two iterations of the model) with the observed SCF

2007 distribution and the transition matrix adopted in the previous quantitative analysis.

While the analysis does not require nor impose any stationarity of the distribution of wealth

over time in the data, it does postulate that the model structure and parameter values stay

constant after 1962.20

Table 12: Parameter estimates

Distribution + Mobility Preferences
Markov chain σ µ A β T

[2] 1.2923 0.0109 [0.97] [36]
Rate of return process

r grid 0.0003 0.0091 0.0212 0.0540 0.0795
prob. grid 0.1596 0.4288 0.2299 0.2731 0.0263
stationary prob. grid 0.1792 0.2636 0.1955 0.2071 0.1546

Distribution only Preferences
Markov chain σ µ A β T

[2] 1.7610 1.2425 [0.97] [36]
Rate of return process

r grid 0.0022 0.0132 0.0256 0.0496 0.0983
prob. grid 0.0445 0.4668 0.2207 0.4824 0.1086
stationary prob. grid 0.1442 0.2584 0.1768 0.2662 0.1545

Notes: The mean annual return is 3.35%, and its standard deviation is 40.15%. The objective
value is 0.1035 in simulation (1) matching both distribution and mobility moments, and
0.5141 in simulation (2) matching only the distribution moments.

Reporting results in Tables 12-14, we distinguish two separate exercises we conducted.

In the first (results in the upper panel of tables) we target both the moments of the wealth

distribution and those of the transition matrix, as in our previous quantitative exercise. In

the second (results in the lower panel) we only targets the moments of the wealth distribution.

We note that the fit with the fractals of the wealth distribution is reasonably close in

20Importantly, we do not feed in the analysis the observed fiscal policy reforms since the ′60′s. Doing so
should improve the fit.
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both cases. In particular, we match the top 1%, which is an indication of how well the model

performs in the tail. As the second case only targets the distributional moments, it performs

slightly better in this regard, as expected. The slightly worse distributional moments match

in the first case is compensated by a better job with the mobility moments. As we can

see, the simulated mobility moments in the second case are much larger than the empirical

counterparts, yet in the first case they are not that off.

This exercise also provides useful information about the implied speed of convergence of

the model. Gabaix et al. (2015) show on the other hand that typically in continuous-time

models the typical models wealth distribution dynamics deliver extremely slow convergence

in simulations. To remedy this they introduce exogenous variability in the growth rate or

drift term of their model. This helps fill the fat tail of the wealth distribution faster, as

the few lucky agents drawing long sequences of high growth rates fill the tail faster. In our

model stochastic returns play the same role and the tail is filled faster. Stochastic discount

rates also help with faster convergence in Hubmer et al. (2015) play the same role.

Table 13: Wealth fractiles
Moments
Share of wealth 0-20% 20-40% 40-60% 60-80% 80-90% 90-95% 95-99% 99-100%
Data (SCF 1962-63) 0.009 0.043 0.094 0.173 0.142 0.115 0.190 0.242
Data (SCF 2007) -0.002 0.001 0.045 0.112 0.120 0.111 0.267 0.336
Simulation
(1) In 2 periods (72 yrs) 0 0 0.002 0.033 0.135 0.172 0.292 0.367
(2) In 2 periods (distr. only) 0 0.003 0.025 0.080 0.155 0.150 0.269 0.319
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Table 14: Diagonal of transition matrix: life cycle

Moments
Share of wealth 0-24% 25-49% 50-74% 75-89% 90-94% 95-99% 99-100%
Data 0.316 0.263 0.263 0.176 0.066 0.082 0.083
Simulation
(1) In 2 periods (72 yrs) 0.347 0.289 0.483 0.333 0.097 0.064 0.200
(2) In 2 periods (distr. only) 0.490 0.549 0.623 0.541 0.295 0.357 0.164

7 Conclusions

We estimated a macroeconomic model of the distribution of wealth in the U.S. While we

assign special emphasis on the tail of the distribution, the model performs well in fitting the

whole distribution of wealth in the data. Importantly, the model is also successful in fitting

the social mobility of wealth in the data.

Our analysis allows us to distinguish the contribution of three critical factors driving

wealth accumulation: a skewed and persistent distribution of earnings, differential saving

and bequest rates across wealth levels, and capital income risk in entrepreneurial activities.

All of these three factors are necessary and empirically relevant in matching both distribution

and mobility, with a distinct role for each, which we identify.

Finally, we begin studying the implications of the model for the transitional dynamics

of the distribution of wealth. While more work is obviously necessary in this respect, our

results are quite encouraging.
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Supplemental Online Appendix

A. Details of Estimation Method

A.1 Numerical solution

We solve the model for value functions and policy functions with the collocation method in Miranda and

Fackler (2004).

A.1.1 Problem

The problem is

V (a, r, w, t) = max
c

1{t < T } {u(c) + βV (a′, r, w, t+ 1)}+ 1{t = T } {u(c) + e(a′)}

s.t.

a′ = (1 + r)(a − c) + w

c ≤ a

c ≥ 0

The problem can be written as

V1(a, r, w) = max
c∈[0,a]

u(c) + βV2((1 + r)(a− c) + w, r, w)

V2(a, r, w) = max
c∈[0,a]

u(c) + βV3((1 + r)(a− c) + w, r, w)

...

VT−1(a, r, w) = max
c∈[0,a]

u(c) + βVT ((1 + r)(a− c) + w, r, w)

VT (a, r, w) = max
c∈[0,a]

u(c) + e((1 + r)(a − c) + w)

The parameters are: {β, T, u(c), e(a)}. Set T = 6 for simplicity and we can increase β to account for the

longer length of periods.

A.1.2 Collocation

The state space is s = (a, z). z = (r, w) is the exogenous state which has the transition matrix P = Pr ⊗Pw.

The state space for z is discrete and so is enumerated k = 1, . . . ,K, where K = Nr ×Nw. Let s = (s1, s2)
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and the choice variable x = c. The choice is consumption x ∈ B(s), where

B(s) = [0, a]

Re-writing this as a system of five value functions

V1(s) = max
x∈B(s)

F1(s, x) + βV2([(1 + r)(s1 − x) + w, s2])

...

VT (s) = max
x∈B(s)

F2(s, x)

This is the system we will solve.

Approximation: Take V1, . . . , VT and approximate them on J collocation nodes s1, . . . , sJ with a spline

with J coefficients c1 = (c11, . . . , c
1
J), c

2, . . . , cT and linear basis φj .

V1(si) =
J∑

j=1

c1jφj(si)

...

VT (si) =
J∑

j=1

cTj φj(si)

Let c = (c1, . . . , cT ) and let v1(c1) = [V1(s1), . . . , V1(sJ )]′ and v2(c2), . . . , vT (cT ) similarly defined for a

given c. With v(c) = [v1(c1)′, . . . , vJ(cJ )′]′ then

v1(s) = Φc1

...

vT (s) = ΦcT

this is the collocation equation.

Substituting the interpolants into the value functions

J∑

j=1

c1jφj(si) = max
x∈B(si)

F1(si, x) + β

J∑

j=1

c2jφj([(1 + r)(si,1 − x) + w, si,2])

J∑

j=1

c2jφj(si) = max
x∈B(si)

F1(si, x) + β

J∑

j=1

c3jφj([(1 + r)(si,1 − x) + w, si,2])
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...
J∑

j=1

cTj φj(si) = max
x∈B(si)

F2(si, x)

The stacked system of value functions is

Φ(s)c1 = F1(s, x(s)) + βΦ([(1 + r)(s1 − x(s)) + w, s2])c
2 =: v1(c

2)

Φ(s)c2 = F1(s, x(s)) + βΦ([(1 + r)(s1 − x(s)) + w, s2])c
3 =: v2(c

3)

...

Φ(s)cT = F2(s, x(s))

The zero system would be Φ̃(s)c− v(c) = 0, where Φ̃ is a block diagonal matrix of Φ′s.

A.2 Estimation procedure

The estimation procedure is described as below in two steps, adapted fromGuvenen (2016). The global stage

is a multi-start algorithm where candidate parameter vectors are uniform Sobol (quasi-random) points. We

typically take about 10,000 initial Sobol points for pre-testing and select the best 200 points (i.e., ranked

by objective value) for the multiple restart procedure. The local minimization stage is performed with the

Nelder-Mead’s downhill simplex algorithm (which is slow but performs well on non-linear objectives).

A.3 Additional results

We report the full mobility matrix here for the baseline:

T̂36 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.274 0.247 0.238 0.152 0.041 0.043 0.005

0.246 0.263 0.254 0.145 0.048 0.036 0.009

0.252 0.233 0.269 0.147 0.058 0.033 0.008

0.238 0.254 0.239 0.158 0.066 0.039 0.009

0.201 0.266 0.262 0.164 0.047 0.049 0.013

0.232 0.250 0.240 0.152 0.040 0.041 0.044

0.207 0.303 0.172 0.082 0.030 0.084 0.122

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The full matrices for all other cases are available upon request.
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B. Input Data Sources

B.1 Labor income levels

The labor income data we use is adapted from the PSID data cleaned by Heathcote et al. (2010), specifically

Sample C in their labeling. We only keep those aged between 25-60 inclusively. Then we construct the

age-dependent decile values in the following order: this order corresponds to several implicit assumptions,

the most important of which is that we allow people to move across bins during their life cycle.

1. for each age calculate the decile values of earnings;

2. for each age bin of six years, calculate the average decile earnings across these six years.

The above order maintains the distributional ranking of model agents across the life cycle.

B.2 Intergenerational labor income transitions

Chetty et al. (2014) provide a 100 by 100 transition matrix linking parental family income and child’s

income in their online data and tables, with each cell corresponding to share of each percentile of the income

distribution.1 The main sample they use is the Statistics of Income (SOI) annual cross-sections from 1980

to 1982 cohorts for children, and the authors link children to their parents using population tax records

spanning 1996-2012 for parent family income. We collapse this big matrix into a 10 by 10 transition matrix,

with each cell corresponding to share of each decile of the income distribution. Note that this matrix captures

intergenerational transition in income.

Online table 2 of Chetty et al. (2014) also provide the average income levels for both parent and child.

However, they are an average income around a particular age (29-30) for both parent and child rather than

an average life cycle income. We would like our income profiles to capture the hump-shaped life cycle feature,

thus calculate our own as explained in the last sub-section.

C. Output Data Sources

C.1 Wealth distributional moments

The wealth distributional moments are taken from Díaz-Giménez et al. (2011). Their calculations are more

cleaned and serve as an official report. Many papers have used their numbers, e.g. in Kindermann and

Krueger (2015). Other estimates are very close.

1See http://equality-of-opportunity.org/images/online_data_tables.xls, online table 1.
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C.2 Intergenerational Wealth mobility moments

There are three papers, to the best of our knowledge, that estimate a transition matrix for wealth mobility.

Kennickell and Starr-McCluer (1997) and Klevmarken et al. (2003) are both estimated using panel data,

i.e. not necessarily transition across generations. The former paper used SCF panel and the latter used

PSID panel. Charles and Hurst (2003) are a transition matrix for generations in particular. Please note the

difference, though I try to argue they yield similar estimates.

Kennickell and Starr-McCluer (1997)calculate the six-year transition matrix from 1983 to 1989 for quar-

tiles and top percentile ranges, and their results are quite similar to Klevmarken et al. (2003). The seven

states are: bottom 25, 25-49, 50-74, 75-89, 90-94, top 2-5, top 1, respectively. Their estimates are (from

Table 7),

TKS,6 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.672 0.246 0.063 0.018 0.001 0.000 0.000

0.246 0.495 0.190 0.042 0.019 0.007 0.000

0.066 0.192 0.480 0.208 0.037 0.016 0.000

0.021 0.082 0.329 0.418 0.113 0.036 0.002

0.011 0.071 0.212 0.301 0.225 0.177 0.004

0.000 0.028 0.164 0.104 0.180 0.430 0.094

0.000 0.031 0.024 0.061 0.045 0.247 0.593

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

When raised to the power of 6 (i.e. 36-year transition matrix), we have

TKS,36 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.316 0.278 0.222 0.118 0.037 0.024 0.005

0.276 0.263 0.240 0.137 0.044 0.031 0.009

0.224 0.242 0.263 0.163 0.054 0.042 0.012

0.196 0.229 0.274 0.176 0.061 0.051 0.013

0.179 0.219 0.275 0.181 0.066 0.061 0.020

0.150 0.198 0.271 0.185 0.074 0.082 0.040

0.112 0.166 0.252 0.182 0.085 0.121 0.083

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We see that the 36-year transition matrix does not necessarily reach the stationary distribution.

Klevmarken et al. (2003)calculate the five-year transition matrix from 1994 to 1999 for quintiles using

PSID data. Note the states for the Markov chain are different. Their estimates are (from Table 6),

TKLS,5 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.583 0.273 0.099 0.031 0.015

0.267 0.435 0.223 0.058 0.016

0.087 0.208 0.419 0.232 0.055

0.048 0.079 0.193 0.481 0.200

0.014 0.022 0.051 0.200 0.713

⎤

⎥⎥⎥⎥⎥⎥⎦

One potential issue with the above transition matrix is that it does not necessarily capture the inter-

generational transmission in wealth. For that argument, let us look at the alternative transition matrix

estimated by Charles and Hurst (2003).2 There are two transition matrices in Table 5. If we only adjust the

2Sample selection: Their sample consists of all PSID parent-child pairs in which (a) the parents were in the survey in 1984–89
and were alive in 1989, (b) the child was in the survey in 1999, (c) the head of the parent family was not retired and was between
the ages of 25 and 65 in 1984, (d) the child was between ages 25 and 65 in 1999, and (e) both the child and the parent had
positive wealth when measured. There were 1,491 such parent-child pairs.
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logs of parental and child wealth for age, the matrix is:

TCH,gen =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.23 0.21 0.18 0.21 0.17

0.25 0.17 0.19 0.21 0.19

0.20 0.25 0.20 0.20 0.15

0.15 0.17 0.21 0.21 0.25

0.17 0.20 0.22 0.17 0.24

⎤

⎥⎥⎥⎥⎥⎥⎦

If we adjust logs of parental and child wealth for “age, income, and portfolio choice,” the corresponding

matrix is:

TCH,gen,adj =

⎡

⎢⎢⎢⎢⎢⎢⎣

0.36 0.29 0.16 0.12 0.07

0.26 0.24 0.24 0.15 0.12

0.16 0.21 0.25 0.24 0.15

0.15 0.13 0.20 0.26 0.26

0.11 0.16 0.14 0.24 0.36

⎤

⎥⎥⎥⎥⎥⎥⎦

with each cell corresponding to a quintile-to-quintile transition probability. Again note the differences in the

states of the Markov chain.
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