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The Great Recession was a deep downturn with long-lasting e�ects on credit markets, labor

markets and output. Why did output remain below trend long after �nancial markets had

calmed and uncertainty diminished? This recession missed the usual business cycle recovery.

Such a persistent, downward shift in output (Figure 1) is not unique to the 2008 crisis. Financial

crises, even in advanced economies, typically fail to produce the robust GDP rebound needed

to restore output to its pre-crisis trend.1
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Figure 1: Real GDP in the U.S. and its trend.

Dashed line is a linear trend that �ts data from 1950-2007. In 2014, real GDP was 0.12 log points below trend.

Our explanation is that crises produce persistent e�ects because they scar our beliefs. For

example, in 2006, few people entertained the possibility of �nancial collapse. Today, the possi-

bility of another run on the �nancial sector is raised frequently, even though the system today

is probably much safer. Such persistent changes in the assessments of risk came from observing

new data. We thought the U.S. �nancial system was stable. Economic outcomes taught us that

the risks were greater than we thought. It is this new-found knowledge that is having long-lived

e�ects on economic choices.

The contribution of the paper is a simple tool to capture and quantify this scarring e�ect,

which produces more persistent responses from extreme shocks than from ordinary business

cycle shocks. We start from a simple premise: No one knows the true distribution of shocks

in the economy. Consciously or not, we all estimate the distribution using economic data, like

an econometrician would. Tail events are those for which we have little data. Scarce data
1See Reinhart and Rogo� (2009), �g 10.4.
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makes new tail event observations particularly informative. Therefore, tail events trigger larger

belief revisions. Furthermore, because it will take many more observations of non-tail events to

convince someone that the tail event really is unlikely, changes in tail risk beliefs are particularly

persistent. To explore tail risk in a meaningful way, we need to use an estimation procedure

that does not constrain the shape of the distribution's tail. Therefore, we allow our agents to

learn about the distribution of aggregate shocks non-parametrically. Each period, they observe

one more piece of data and update their estimates of the distribution. Section 1 shows that this

process leads to long-lived responses of beliefs to transitory events, especially extreme, unlikely

ones. The mathematical foundation for persistence is the martingale property of beliefs. The

logic is that once observed, the event remains in agents' data set. Long after the direct e�ect of

the shock has passed, the knowledge of that tail event a�ects their estimation. The belief that

tail risks were higher than previously thought persists and restrains the economic recovery.

To illustrate the economic importance of these belief dynamics, Section 2 applies our belief

updating tool to an existing model of the great recession. The model in Gourio (2012, 2013)

is well-suited to our exploration of the persistent real e�ects of �nancial crises because the

underlying assumptions are carefully chosen to link tail events to macro outcomes, in a quanti-

tatively plausible way. It features �rms that are subject to bankruptcy risk from idiosyncratic

pro�t shocks and aggregate capital quality shocks. This set of economic assumptions is not

our contribution. It is simply a laboratory we employ to illustrate the persistent economic

e�ects from observing extreme events. Section 3 describes the data we feed into the model

to discipline our belief estimates. Section 4 combines model and data and uses the resulting

predictions to show how belief updating quantitatively explains the persistently low level of

output colloquially known as �secular stagnation." We compare our results to those from the

same economic model, but with agents who have full knowledge of the distribution, to pinpoint

belief updating as the source of the persistence.

Our main insight about why tail events have persistent e�ects does not depend on the

speci�c economic structure of the Gourio (2012) model, or on the use of a particular shock

process as a driving force. To engage our persistence mechanism, three ingredients are needed.

One is a shock process that captures the extreme, unusual aspects of the Great Recession.

These were evident mainly in real estate and capital markets. Was this the �rst time we have

ever seen such shocks? In our data set, which spans the post-WWII period in the US, yes.

Total factor productivity, measured with or without adjustments, does not meet this criterion.2

The capital quality shock speci�cation is arguably the most direct one that does. Of course,

similar extreme events have been observed before in global history � e.g. in other countries or

2It begins to falls prior to the crisis and by an amount that was not particularly extreme. See Appendix
C.5 for an analysis of TFP shocks.
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during the Great Depression. Section 4.2 explores the e�ect of expanding the data set to include

additional infrequent crises and shows that it does temper persistence, but only modestly.

The second ingredient is a belief updating process that uses new data to estimate the

distribution of shocks, or more precisely, the probability of extreme events. It is not crucial

that the estimation is frequentist.3 It is important that the distribution does not impose thin

tails.

The third necessary ingredient is an economic model that links the risk of extreme events

to real output. The model in Gourio (2012, 2013) has the necessary curvature (non-linearity

in policy functions) to deliver a sizeable output response from modest changes in disaster risk.

The preference and bankruptcy assumptions that make Gourio's model complex are there to

deliver that curvature. This curvature also makes the economy more sensitive to disaster risk

than extreme boom risk. Section 4.4 explores the role of these ingredients, by turning each

on and o�. That exercise shows that even though these assumptions deliver a large drop in

output, they do not in any way guarantee the success of our objective, which is to generate

persistent economic responses. In other words, when agents do not learn from new data, the

same model succeeds in matching the size of the initial output drop, but fails to produce

persistent stagnation.

We use data on the aggregate market value of capital to measure the driving shocks and

quantify the changes in beliefs that took place around the Great Recession. Across a broad range

of macroeconomic and �nancial variables, the model with belief changes outperforms the model

without. Because of the economic environment, both models produces realistic initial drops in

labor and output. However, belief revisions create persistence that is more consistent with data.

While both models miss features of investment behavior, learning substantially improves these

predictions. In addition, the number of tail-risk-related internet searches suggests continued

concern about tail risk. Searches for terms like �economic crisis," ��nancial crisis," �tail risk,"

or �systemic risk" all spike around 2008 and then fall, but return to a level that is permanently

higher than the pre-crisis level.

Finally, data on asset prices and debt are also consistent with an increase in tail risk. At �rst

pass, one might think that �nancial market data are at odds with our story. For instance, Hall

(2015a) objects that stagnation must not come from tail risk because sustained high risk would

show up as high credit spreads. In the data, credit spreads for 2015 � the di�erence between

the return on a risky loan and a riskless one � are only a few basis points higher than what they

were before 2007. Similarly, a rise in risk might suggest that equity prices should be persistely

low, when in fact, they too have recovered. Our model teaches us that when tail risk rises, �rms

3For an example of Bayesian estimation of tail risks in a setting without an economic model, see Orlik and
Veldkamp (2014).
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borrow less to avoid the risk of bankruptcy. By deleveraging, they lower their credit risk and

increase the value of their equity claims. Thus, low credit spreads and a rise in equity prices

are not inconsistent with tail risk. Others point to low interest rates as a potential cause of

stagnation. Our story complements this low interest rate trap narrative by demonstrating how

heightened tail risk makes safe assets more attractive, depressing riskless rates in a persistent

fashion. In sum, none of these patterns disproves our theory about elevated tail risk, though,

in fairness, they also do not distinguish it from others.
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Figure 2: The SKEW Index.

A measure of the market price of tail risk on the S&P 500, constructed using option prices. Source: Chicago

Board Options Exchange (CBOE). 1990:2014.

There are some asset prices which do speak directly to tail risk, in particular out-of-the-

money put options on the S&P 500. The SKEW index uses these to back out the implied

skewness measure or equivalently, probability of a negative tail event. Figure 2 shows that this

option-implied tail risk went up in the aftermath of the crisis and has stayed high. Section

4.3 reviews the asset pricing evidence, explains its connection to the model and shows that the

option-implied and model-implied changes in tail risks are similar.

Comparison to the literature There are many theories now of the �nancial crisis and its

consequences, many of which provide a more detailed account of its mechanics (e.g., Gertler

et al. (2010), Gertler and Karadi (2011), Brunnermeier and Sannikov (2014) and Gourio (2012,

2013)). Our goal is not to add a new explanation for why the crisis arose, or a new theory

of business cycles. Rather, we o�er a mechanism based on belief formation that complements
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these theories by adding endogenous persistence. We explain why extreme events, like the

recent crisis, lead to more persistent responses than milder downturns. In the process, we also

develop a new tool for tying belief revisions �rmly to data that is compatible with modern,

quantitative macro models.

Of course, one could avoid all this complexity and simply assume that the persistence comes

from serial correlation in the driving shock process. But this simpler explanation has two

problems: First, it is inconsistent with our shock data, which shows little persistence. Second,

it doesn't explain why some shocks deliver more persistent responses than others. What is

it about �nancial crises that produces stagnation? Our answer is that such events are a rare

opportunity to learn about tail risk and they invariably teach us that our investments are less

safe than we thought.

A small number of uncertainty-based theories of business cycles also deliver persistent e�ects

from transitory shocks. In Straub and Ulbricht (2013) and Van Nieuwerburgh and Veldkamp

(2006), a negative shock to output raises uncertainty, which feeds back to lower output, which in

turn creates more uncertainty. To get even more persistence, Fajgelbaum et al. (2014) combine

this mechanism with an irreversible investment cost, a combination which can generate multi-

ple steady-state investment levels. These uncertainty-based explanations leave two questions

unanswered. First, why did the depressed level of economic activity continue long after the

VIX and other measures of uncertainty had recovered? Our theory emphasizes tail risk. The

SKEW index data in Figure 2 reveal that tail risk has lingered, making it a better candidate

for explaining continued depressed output. Second, why were credit markets hardest hit and

credit volume most persistently impaired after the crisis? Rises in tail risk hit the volume of

credit because default is particularly sensitive to tail events.

Our belief formation process is similar to the parameter learning models by Johannes et al.

(2015), Cogley and Sargent (2005) and Orlik and Veldkamp (2014) and is advocated by Hansen

(2007). However, these papers focus on endowment economies and do not analyze the potential

for persistent e�ects in a setting with production. Pintus and Suda (2015) embed parameter

learning in a production economy, but feed in persistent leverage shocks and explore the poten-

tial for ampli�cation when agents hold erroneous initial beliefs about persistence. In Moriera

and Savov (2015), learning changes demand for shadow banking (debt) assets. But, again,

agents are learning about a hidden two-state Markov process, which has persistence built in.4

We, on the other hand, have transitory shocks to capital and explore endogenous persistence.

In addition, our non-parametric approach allows us to incorporate beliefs about tail risk.

4Other learning papers in this vein include papers on news shocks, such as, Beaudry and Portier (2004),
Lorenzoni (2009), Veldkamp and Wolfers (2007), uncertainty shocks, such as Jaimovich and Rebelo (2006),
Bloom et al. (2014), Nimark (2014) and higher-order belief shocks, such as Angeletos and La'O (2013) or Huo
and Takayama (2015).
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While this literature has taught us an enormous amount about the mechanisms that trig-

gered declines in lending and output in the �nancial crisis, it assumes rather than explains their

persistence.

Finally, our paper contributes to the recent literature on secular stagnation. Eggertsson and

Mehrotra (2014) argue that a combination of low e�ective demand and the zero lower bound

on nominal rates can generate a long-lived slump. In contrast, Gordon (2014), Anzoategui

et al. (2015) and others attribute stagnation to a decline in productivity, education or shift in

demographics. These are longer-run trends that may be suppressing growth. But they don't

explain the level shift in output associated with the �nancial crisis. Hall (2015a) surveys these

and other theories. While all these alternatives may well be part of the explanation, our simple

idea, that no person could possible know the true distribution of aggregate shocks, reconciles the

recent stagnation with economic, �nancial and internet search evidence suggesting heightened

tail risk.

The rest of the paper is organized as follows. Section 1 describes the belief-formation

mechanism. Section 2 presents the economic model. Section 3 shows the measurement of

shocks and calibration of the model. Section 4 analyzes the main results of the paper while

Section 4.4 decomposes the principal economic forces driving the results. Finally, Section 5

concludes.

1 Belief Formation

A key contribution of this paper is to explain why tail risk �uctuates and why such �uctuations

are persistent. Before laying out the underlying economic environment, we begin by explaining

the novel part � belief formation and the persistence of belief revisions. These insights are more

general than the results derived in the speci�c economic model in the following section, which

is used primarily to quantify the e�ect of belief changes in the aftermath of the Great Recession

on the US economy.

No one knows the true distribution of shocks to the economy. We estimate such distributions,

updating our beliefs as new data arrives. The �rst step is to choose a particular estimation

procedure. A common approach is to assume a normal distribution and estimate its parameters

(namely, mean and variance). While tractable, this has the disadvantage that the normal

distribution, with its thin tails, is unsuited to thinking about changes in tail risk. We could

choose a distribution with more �exibility in higher moments. However, this will raise obvious

concerns about the sensitivity of results to the speci�c distributional assumption used. To

minimize such concerns, we take a non-parametric approach and let the data inform the shape

of the distribution.
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Speci�cally, we employ a kernel density estimation procedure, one of most common ap-

proaches in non-parametric estimation. Essentially, it approximates the true distribution func-

tion with a smoothed version of a histogram constructed from the observed data. By using the

widely-used normal kernel, we impose a lot of discipline on our learning problem but also allow

for considerable �exibility. We also experimented with a handful of other kernel and Bayesian

speci�cations, which yielded similar results.5

Setup Consider a shock φt whose true density g is unknown to agents in the economy. The

agents do know that the shock φt is i.i.d. Their information set at time t, denoted It, includes
the history of all shocks φt observed up to and including t. They use this available data to

construct an estimate ĝt of the true density g. Formally, at every date, agents construct the

following normal kernel density estimator of the pdf g

ĝt (φ) =
1

ntκt

nt−1∑
s=0

Ω

(
φ− φt−s

κt

)

where Ω (·) is the standard normal density function, κt is the smoothing or bandwidth parameter

and nt is the number of available observations of at date t. As new data arrives, agents add the

new observation to their data set and update their estimates, generating a sequence of beliefs

{ĝt}.
The key mechanism in the paper is the persistence of belief changes induced by transitory

φt shocks. This stems from the martingale property of beliefs - i.e. conditional on time-

t information (It), the estimated distribution is a martingale. Thus, on average, the agent

expects her future belief to be the same as her current beliefs. This property holds exactly

if the bandwidth parameter κt is set to zero.6 In line with the literature on non-parametric

5Speci�cally, we estimated our belief process using (i) a non-parametric Epinechnikov kernel, (ii) the Cham-
pernowne transformation (which is designed to better capture tail risk), (iii) semi-parametric estimators, e.g.
with Pareto tails and (iv) the g-and-h family of distributions which allows for a �exible speci�cation of tail
risk using various transformations of the normal distribution. These approaches yielded similar changes in tail
probabilities and therefore, similar predictions for economic outcomes. A Bayesian approach is conceptually
similar � posterior beliefs exhibit the martingale property, the key source of persistence. However, the departure
from normality needed to capture tail risk, requires particle �ltering techniques, making it di�cult to integrate
it into any but the simplest economic environments. For a detailed discussion of nonparametric estimation, see
Hansen (2015).

6As κt → 0, the CDF of the kernel converges to Ĝ0
t (φ) = 1

nt

∑nt−1
s=0 1 {φt−s ≤ φ}. Then, for any φ, j ≥ 1

Et
[
Ĝ0
t+j (φ)

∣∣∣ It] = Et

[
1

nt + j

nt+j−1∑
s=0

1 {φt+j−s ≤ φ}

∣∣∣∣∣ It
]

=
nt

nt + j
Ĝ0
t (φ) +

j

nt + j
Et [1 {φt+1 ≤ φ}| It]

Thus, future beliefs are, in expectation, a weighted average of two terms - the current belief and the distribution
from which the new draws are made. Since our best estimate for the latter is the current belief, the two terms

are exactly equal, implying Et
[
Ĝ0
t+j (φ)

∣∣∣ It] = Ĝ0
t (φ).
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assumption, we use the optimal bandwidth.7 This smoothes the density but also means that the

martingale property does not hold exactly. Numerically, deviations of beleifs from a martingale

are minuscule, both for the illustrative example in this section and in our full model. In other

words, the kernel density estimator with the optimal bandwidth is, approximately, a martingale

Et [ ĝt+j (φ)| It] ≈ ĝt (φ). As a result, any changes in beliefs induced by new information are,

in expectation, permanent. This property plays a central role in generating long-lived e�ects

from transitory shocks.

Example: Capital returns We now illustrate how this belief formation mechanism works

by applying the estimation procedure described above to a time series of returns to non-

residential capital in the US. Since our goal here is purely to illustrate the e�ects of outlier

realizations on beliefs, we could have used any time series with an outlier. We use capital

returns for 2 reasons: (i) it shows very clearly the unusual aspects of the Great Recession,

especially its e�ects on asset prices and (ii) it anticipates the driving force in our economic

model in the following section. In that microfounded setting, returns will be endogenous but,

as we will see, the dynamics of beliefs will turn out to be quite similar to what we preview here.

We measure the return on non-�nancial assets for US corporate business from Flow of Funds

reports published by the Federal Reserve for 1947-2009. The return is de�ned as operating

surplus (expressed as a percentage) plus holding gains from non-�nancial assets (i.e. changes

in the market value of capital).8 The return series is plotted in the �rst panel of Figure 3. It

shows that realized returns during the �nancial crisis were signi�cantly lower than any that were

observed throughout the entire sample. This is driven mostly by large negative realizations for

the holding gain component.

Estimated belief changes The estimated distributions using this data for two dates - 2007

(pre-crisis) and 2009 (post-crisis) - are shown in the second panel of Figure 3. We note that

these adverse realizations lead to an increase in tail risk. The 2009 distribution, ĝ2009 shows a

pronounced hump in the density around the 2008 and 2009 realizations, relative to the pre-crisis

one. Crucially, even though these negative realizations were short-lived, this increase in left tail

risk persists. To see how persistent beliefs are, we ask the following question: What would be

the estimated probability distribution in 2039? To answer this question, we need to simulate

future data. Since our best estimate of the distribution of future data in 2009 is ĝ2009, we draw

many 30-year sequences of future data from this ĝ2009 distribution. After each 30-year sequence,

7See Hansen (2015).
8Operating surplus is obtained from table S.5.a, line FA106402101. Holding gains are from table R.103,

lines FR105035005, FR10501520,5 FR105013765 and FR105020015. Non-�nancial assets are from table B.103,
line FL102010005.
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Figure 3: Estimated Beliefs about Capital Returns.

The �rst panel shows the realized capital returns. The second panel shows the estimated kernel density for 2007

and 2009. The third panel shows the mean belief (along with a 2 standard deviation band) in 2039 (computed

by simulating data for the period 2010-2039 using the estimated distribution in 2009).

we re-estimate the distribution g, using all available data. The shaded area in the third panel

of Figure 3 shows the results from this Monte Carlo exercise. Obviously, each simulated path

gives rise to a di�erent estimated distribution, but averaging across all those paths yields the

2009 distribution (dashed line). This simulation illustrates how tail risk induced by �nancial

crisis may never go away. The left tail �hump" persists. Because we are drawing from the ĝ2009

distribution, every once in a long while, another crisis is drawn, which keeps the left tail from

disappearing. If we instead drew future data from a distribution without tail risk (e.g. ĝ2007),

the hump would still be very persistent, but not permanent (see Section 4).

Thus, every new shock to capital returns (φt), even a transitory one, has a persistent e�ect

on beliefs. This pattern is reminiscent of Figure 2, which showed that price of tail risk in equity

options markets continues to remain high. It is also consistent with rough proxies for beliefs

in the wake of the �nancial crisis. Google searches for the terms �economic crisis," ��nancial

crisis," or �systematic risk" all rose during the crisis and never returned to their pre-crisis

levels (see Appendix C.1). If searches are any indication of concern about an event, then this

evidence suggests the perceived risk of another crisis is elevated in a persistent way. To assess

the implications of these belief changes for macroeconomic outcomes, we need a model that

maps shocks and beliefs into investment, hiring and production decisions. However, we wish to

re-iterate that this �exible, non-parametric approach to belief formation is a simple tool that

can create persistent responses to transitory shocks in many economic environments.
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2 Economic Model

To explore whether our belief formation mechanism can help explain the persistence of the

recent stagnation, we need to embed it in an economic environment. To have a shot at quanti-

tatively explaining the recent episode, our model needs two key features. First, since extreme

shocks create the most persistence, we need a model whose shocks embody the extreme and

unusual aspects of the 2008-'09 recession, such as the unusually low returns to non-residential

capital. To generate these large �uctuations in capital returns, we use a shock to capital qual-

ity. These shocks, which scale up or down the e�ective capital stock, are not to be interpreted

literally. A decline in capital quality captures the idea that a Las Vegas hotel built in 2007 may

deliver less economic value after the �nancial crisis, because lower demand leaves it half-empty.

This lower value would be re�ected in a lower market value, a feature we will exploit later in

our measurement strategy.9 This speci�cation is not intended as a deep explanation of what

triggered the �nancial crisis. Instead, it is a summary statistic that stands in for many possible

explanations and allows the model to speak to both �nancial and macro data. This agnostic

approach to the cause of the crisis also puts the spotlight on our contribution, which is the

ability of learning to generate persistent responses to extreme events.

Second, we need a setting where economic activity is sensitive to the probability of extreme

capital shocks. Gourio (2012, 2013) presents a model optimized for this purpose. Two key

ingredients � namely, Epstein-Zin preferences and costly bankruptcy � combine to generate

signi�cant non-linearity in policy functions. Adding the assumption that labor is hired in

advance with an uncontingent wage increases the e�ective leverage of �rms and therefore,

accentuates the sensitivity of investment and hiring decisions to tail risk. Similarly, preferences

that shut down wealth e�ects on labor avoid a surge in hours in response to crises.

Thus, this combination of assumptions o�ers a laboratory to assess the quantitative poten-

tial of our belief revision mechanism. It is worth emphasizing that none of these ingredients

guarantees persistence, the main focus of this paper. The capital quality shock speci�cation

has a direct e�ect on output upon impact but, absent belief revisions, does not change the

long-run trajectory of the economy. Similarly, the non-linear responses induced by preferences

and debt in�uence the size of the economic response, but by themselves do not generate any

internal propagation. Without these ingredients, our mechanism will still generate persistent

responses. However, the magnitude of the impact, both in the short and long run, would be

di�erent.

9Capital quality shocks have been employed for a similar purpose in Gourio (2012), as well as in a number
of recent papers on �nancial frictions, crises and the Great Recession (e.g., Gertler et al. (2010), Gertler and
Karadi (2011), Brunnermeier and Sannikov (2014)). Their use in macroeconomics and �nance, however, goes
back at least to Merton (1973), who uses them to generate highly volatile asset returns.
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To this setting, we add a novel ingredient, namely our belief-formation mechanism. We

model beliefs using the non-parametric estimation described in the previous section and show

how to discipline this procedure with observable macro data, avoiding free parameters.

2.1 Setup

Preferences and technology: An in�nite horizon, discrete time economy has a representa-

tive household, with preferences over consumption (Ct) and labor supply (Lt):

Ut =

[
(1− β)

(
Ct −

L1+γ
t

1 + γ

)1−ψ

+ βEt
(
U1−η
t+1

) 1−ψ
1−η

] 1
1−ψ

(1)

where ψ is the inverse of the intertemporal elasticity of substitution, η indexes risk-aversion, γ

is inversely related to the elasticity of labor supply, and β represents time preference.10

The economy is also populated by a unit measure of �rms, indexed by i and owned by the

representative household. Firms produce output with capital and labor, according to a standard

Cobb-Douglas production function kαitl
1−α
it . Firms are subject to an aggregate shock to capital

quality φt. A �rm that enters the period t with capital k̂it has e�ective capital kit = φtk̂it.

These capital quality shocks, i.i.d. over time and drawn from a distribution g(·), are the only
aggregate disturbances in our economy. The i.i.d. assumption is made in order to avoid an

additional, exogenous, source of persistence.11

Firms are also subject to an idiosyncratic shock vit. These shocks scale up and down the

total resources available to each �rm (before paying debt, equity or labor)

Πit = vit
[
kαitl

1−α
it + (1− δ)kit

]
(2)

where δ is the rate of capital depreciation. The shocks vit are i.i.d. across time and �rms and

are drawn from a known distribution, F .12 The mean of the idiosyncratic shock is normalized

to be one:
∫
vit di = 1. The primary role of these shocks is to induce an interior default rate

in equilibrium, allowing a more realistic calibration, particularly of credit spreads.

10This utility function rules out wealth e�ects on labor, as in Greenwood et al. (1988). Appendix B.7 relaxes
this assumption.

11The i.i.d. assumption also has empirical support. In the next section we use macro data to construct a
time series for φt. We estimate an autocorrelation of 0.15, statistically insigni�cant. In Appendix B.8, we show
that this generates almost no persistence in the economic response.

12This is a natural assumption - with a continuum of �rms and a stationary shock process, �rms can learn
the complete distribution of any idiosyncratic shocks after one period.
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Labor, credit markets and default: We make two additional assumptions about labor

markets. First, �rms hire labor in advance, i.e. before observing the realizations of aggre-

gate and idiosyncratic shocks. Second, wages are non-contingent - in other words, workers

are promised a non-contingent payment and face default risk. These assumptions create an

additional source of leverage.

Firms have access to a competitive non-contingent debt market, where lenders o�er bond

price (or equivalently, interest rate) schedules as a function of aggregate and idiosyncratic states,

in the spirit of Eaton and Gersovitz (1981). A �rm enters period t+ 1 with an obligation, bit+1

to bondholders and a promise of wit+1lit+1 to its workers. The shocks are then realized and the

�rm's shareholders decide whether to repay their obligations or default. Default is optimal for

shareholders if, and only if,

Πit+1 − bit+1 − wit+1lit+1 + Γt+1 < 0

where Γt+1 is the present value of continued operations. Thus, the default decision is a function

of the resources available to the �rm (Πit+1) and the total obligations of the �rm to both

bondholders and workers (bit+1 + wit+1lit+1 ≡ Bit+1). Let rit+1 ∈ {0, 1} denote the default

policy of the �rm.

In the event of default, equity holders get nothing. The productive resources of a defaulting

�rm are sold to an identical new �rm at a discounted price, equal to a fraction θ < 1 of the

value of the defaulting �rm. The proceeds are distributed pro-rata among the bondholders and

unpaid workers.13

Let qit denote the bond price schedule faced by �rm i in period t. The �rm receives qit in

exchange for a promise to pay one unit of output at date t+ 1.

Debt is assumed to carry a tax advantage, which creates incentives for �rms to borrow. A

�rm which issues debt at price qit and promises to repay bit+1 in the following period, receives

a date-t payment of χqitbit+1, where χ > 1. This subsidy to debt issuance, along with the

cost of default, introduces a trade-o� in the �rm's capital structure decision, breaking the

Modigliani-Miller theorem.14

For a �rm that does not default, the dividend payout is its total available resources times

output shock, minus its payments to debt and labor, minus the cost of building next period's

capital stock (the undepreciated current capital stock is included in Πit), plus the proceeds from

13Default does not destroy resources - the penalty is purely private. This is not crucial - it is straightforward
to relax this assumption by assuming that all or part of the cost of the default represents physical destruction
of resources.

14The subsidy is assumed to be paid by a government that �nances it through a lump-sum tax on the
representative household.
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issuing new debt, including its tax subsidy

dit = Πit −Bit − k̂it+1 + χqitbit+1. (3)

Importantly, we do not restrict dividends to be positive, with negative dividends interpreted

as (costless) equity issuance. Thus, �rms are not �nancially constrained, ruling out another

potential source of persistence.

Timing and value functions:

1. Firms enter the period with a capital stock k̂it, labor lit, outstanding debt bit, and a wage

obligation witlit.

2. The aggregate capital quality shock φt and the �rm-speci�c pro�t shock vit are realized.

Production takes place.

3. The �rm decides whether to default or repay (rit ∈ {0, 1}) its bond and labor claims.

4. The �rm makes capital k̂it+1 and debt bit+1 choices for the following period, along with

wage/employment contracts wit+1 and lit+1. Workers commit to next-period labor supply

lit+1. Note that all these choices are made concurrently.

In recursive form, the problem of the �rm is

V (Πit, Bit, St) = max

[
0, max

dit,k̂it+1,bit+1,wit+1,lit+1

dit + EtMt+1V (Πit+1, Bit+1, St+1)

]
(4)

subject to

Dividends: dit ≤ Πit −Bit − k̂it+1 + χqitbit+1 (5)

Discounted wages: Wt ≤ wit+1qit (6)

Future obligations: Bit+1 = bit+1 + wit+1lit+1 (7)

Resources: Πit+1 = vit+1

[
(φt+1k̂it+1)

αl1−αit+1 + (1− δ)φt+1k̂it+1

]
(8)

Bond price: qit = EtMt+1

[
rit+1 + (1− rit+1)

θṼit+1

Bit+1

]
(9)

The �rst max operator in (4) captures the �rm's option to default. The expectation Et
is taken over the idiosyncratic and aggregate shocks, given beliefs about the aggregate shock

distribution. The value of a defaulting �rm is simply the value of a �rm with no external

obligations, i.e. Ṽ (Πit, St) = V (Πit, 0, St).
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Equation (6) requires that the �rm's wage promise wit+1, multiplied by bond price (recall

that workers are essentially paid in bonds) is at least as large asWt, which is the representative

household's marginal rate of substitution. This object, along with the stochastic discount factor

Mt+1 are de�ned using the representative household's utility function:

Wt =

(
dUt
dCt

)−1
dUt
dLt+1

Mt+1 =

(
dUt
dCt

)−1
dUt
dCt+1

(10)

The aggregate state St consists of (Πt, Lt, It) where Πt ≡ AKα
t L

1−α
t + (1 − δ)Kt is the

aggregate resources available, Lt is aggregate labor input (chosen in t−1) and It is the economy-
wide information set. Equation (9) reveals that bond prices are a function of the �rm's capital

k̂it+1, labor lit+1 and debt Bit+1, as well as the aggregate state St. The �rm takes the aggregate

state and the function qit = q
(
k̂it+1, lit+1, Bit+1, St

)
as given, while recognizing that its �rm-

speci�c choices a�ect its bond price.

Information, beliefs and equilibrium The set It includes the history of all shocks φt

observed up to and including time-t. For now, we specify a general function, denoted Ψ, which

maps It into an appropriate probability space. The expectation operator Et is de�ned with

respect to this space. In the following section, we make this more concrete using the kernel

density estimation procedure outlined in section 1 to map the information set into beliefs.

For a given belief function Ψ, a recursive equilibrium is a set of functions for (i) aggregate

consumption and labor that maximize (1) subject to a budget constraint, (ii) �rm value and

policies that solve (4) , taking as given the bond price function (9) and the stochastic discount

factor and aggregate MRS functions in (10) and are such that (iii) aggregate consumption and

labor are consistent with individual choices.

2.2 Characterization

The equilibrium of the economic model is a solution to the following set of non-linear equations.

First, in the �rm's problem (4), the constraints on dividends (5) and wages (6) will bind at

the optimum. Using them to substitute out for dit and wit leaves us with 3 choice variables

(k̂it, lit, bit1) and a default decision. Optimal default is characterized by a threshold rule in the

idiosyncratic output shock vit:

rit =

{
0 if vit < v (St)

1 if vit ≥ v (St)

It turns out to be more convenient to rede�ne variables and cast the problem as a choice of

15



k̂it+1, leverage, levit+1 ≡ Bit+1

k̂it+1
, and the labor-capital ratio, lit+1

k̂it+1
. We relegate detailed derivations

and the full characterization to Appendix A.1. Since all �rms make symmetric choices for these

3 objects, we can suppress the i subscript and express the optimality condition for k̂t+1 as:

1 + χWt
lt+1

k̂t+1

= E[Mt+1R
k
t+1] + (χ− 1)

Bit+1

k̂t+1

qt − (1− θ)E[Mt+1R
k
t+1h(v)] (11)

where Rk
t+1 = vt+1

φαt+1k̂
α
t+1l

1−α
t+1 + (1− δ)φt+1k̂t+1

k̂t+1

(12)

The term Rk
t+1 is the ex-post per-unit, pre-wage return on capital, while h (v) ≡

∫ v
−∞ vf(v)dv

is the default-weighted expected value of the idiosyncratic shock.

The �rst term on the right hand side of (11) is the usual expected direct return from

investing, weighted by the stochastic discount factor. The other two terms are related to debt.

The second term re�ects the indirect bene�t to investing arising from the tax advantage of debt

- for each unit of capital, the �rm raises Bit+1

k̂it+1
qt from the bond market and earns a subsidy of

χ− 1 on the proceeds. The last term is the cost of this strategy - default-related losses, equal

to a fraction 1− θ of available resources.
The optimal labor choice equates the expected marginal cost of labor,Wt, with its expected

marginal product, adjusted for the e�ect of additional wage promises on the cost of default:

χWt = Et

[
Mt+1 (1− α)φαt+1

(
k̂t+1

lt+1

)α

J l(v)

]
(13)

where J l(v) = 1 +h (v) (θχ− 1)− v2f (v)χ (θ − 1) represents the e�ect of the assumption that

labor is chosen in advance in exchange for a debt-like wage promise. Finally, the �rm's optimal

choice of leverage, levit+1 is

(1− θ)Et
[
Mt+1

levit+1

Rk
t+1

f

(
levit+1

Rk
t+1

)]
=

(
χ− 1

χ

)
Et
[
Mt+1

(
1− F

(
levit+1

Rk
t+1

))]
. (14)

The left hand side is the marginal cost of increasing leverage - it raises the expected losses from

the default penalty (a fraction 1 − θ of the �rm's value). The right hand side is the marginal

bene�t - the tax advantage times the value of debt issued.

The three �rm optimality conditions, (11), (13), and (14) , along with those from the house-

hold side (10), form the system of equations we solve numerically.
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3 Measurement, Calibration and Solution Method

This section describes how we use macro data to estimate beliefs and parameterize the model,

as well as our computational approach. One of the key strengths of our theory is that we can

use observable data to estimate beliefs at each date.

Measuring capital quality shocks Recall from Section 1 that the Great Recession saw

unusually low returns to non-residential capital, stemming from unusually large declines in the

market value of capital. To capture this, we need to map the model's aggregate shock, namely

the capital quality shock, into market value changes. A helpful feature of capital quality shocks

is that their mapping to available data is straightforward. A unit of capital installed in period

t − 1 (i.e. as part of K̂t) is, in e�ective terms, worth φt units of consumption goods in period

t. Thus, the change in its market value from t− 1 to t is simply φt.

We apply this measurement strategy to annual data on non-residential capital held by US

corporates. Speci�cally, we use two time series Non-residential assets from the Flow of Funds,

one evaluated at market value and the second, at historical cost.15 We denote the two series

by NFAMV
t and NFAHCt respectively. To see how these two series yield a time series for φt,

note that, in line with the reasoning above, NFAMV
t maps directly to e�ective capital in the

model. Formally, letting P k
t the nominal price of capital goods in t, we have P k

t Kt = NFAMV
t .

Investment Xt can be recovered from the historical series, P k
t−1Xt = NFAHCt −(1− δ)NFAHCt−1.

Combining, we can construct a series for P k
t−1K̂t:

P k
t−1K̂t = (1− δ)P k

t−1Kt−1 + P k
t−1Xt

= (1− δ)NFAMV
t−1 +NFAHCt − (1− δ)NFAHCt−1

Finally, in order to obtain φt = Kt
K̂t
, we need to control for nominal price changes. To do this,

we proxy changes in P k
t using the price index for non-residential investment from the National

Income and Product Accounts (denoted PINDXt).
16 This yields:

φt =
Kt

K̂t

=

(
P k
t Kt

P k
t−1K̂t

)(
PINDXk

t−1

PINDXk
t

)
=

[
NFAMV

t

(1− δ)NFAMV
t−1 +NFAHCt − (1− δ)NFAHCt−1

](
PINDXk

t−1

PINDXk
t

)
(15)

Using the measurement equation (15), we construct an annual time series for capital quality

15These are series FL102010005 and FL102010115 from Flow of Funds. See Appendix C.3.
16Our results are robust to alternative measures of nominal price changes, e.g. computed from the price

index for GDP or Personal Consumption Expenditure, see Appendix B.1.
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shocks for the US economy since 1950. The left panel of Figure 4 plots the resulting series. The

mean and standard deviation of the series over the entire sample are 1 and 0.03 respectively.

The autocorrelation is statistically insigni�cant at 0.15.

As the graph shows, for most of the sample period, the shock realizations are in a relatively

tight range around 1, but we saw two large adverse realizations during the Great Recession: 0.93

in 2008 and 0.84 in 2009. These re�ect the large drops in the market value of non-residential

capital stock � in 2009, for example, the aggregate value of that stock fell by about 16%. What

underlies these large �uctuations? The main contributor was a fall in the value of commercial

real estate (which is the largest component of non-residential assets).17 Through the lens of

the model, these movements are mapped to a change in the economic value of capital � in the

spirit of the hypothetical example of the Las Vegas hotel at the beginning of Section 2 whose

market value falls due to a fall in demand.

Belief Estimation We then apply our kernel density estimation procedure to this time series

to construct a sequence of beliefs. In other words, for each t, we construct {ĝt} using the

available time series until that point. The resulting estimates for two dates - 2007 and 2009 - are

shown in the right panel of Figure 4. They show that the Great Recession induced a signi�cant

increase in the perceived likelihood of extreme negative shocks. The estimated density for 2007

implies almost zero mass below 0.90, while the one for 2009 attach a non-trivial (approximately

2.5%) probability to this region of the state space.

Calibration A period is interpreted as a year. We choose the discount factor β and de-

preciation δ to target a steady state capital-output ratio of 3.5 (this is taken from Cooley

and Prescott (1995)) and an investment-output ratio of 0.12 (this is the average ratio of non-

residential investment to output during 1950-2007 from NIPA accounts).18 The share of capital

in the production, α, is 0.40, which is also taken from Cooley and Prescott (1995). The re-

covery rate upon default, θ, is set to 0.70, following Gourio (2013). The distribution for the

idiosyncratic shocks, vit is assumed to be lognormal, i.e. ln vit ∼ N
(
− σ̂2

2
, σ̂2
)
with σ̂2 chosen

17One potential concern is that the �uctuations in the value of real estate stem mostly from land price
movements. While the data in the Flow of Funds do not allow us to directly control for changes in the market
value of land, they do suggest a limited role for land. Measured at historical cost, land accounts for less than
5% of total non-residential capital. The observed �uctuations in the value of these assets during 2008-09 are
simply too large to be accounted for by land price movements, even if they are sizable.

18This leads to values for β and δ of 0.91 and 0.03 respectively. These are lower than other estimates in the
literature. However, when we used an alternative calibration strategy with δ = 0.06 (which is consistent with
reported depreciation rates in the Flow of Funds data) and β = 0.95 (which leads to the same capital-output
ratio), the resulting impulse responses were almost identical.
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Figure 4: Capital quality shocks.

The left panel shows the time series of φt measured from the US data using (15). The right panel shows the

estimated kernel densities in 2007 (solid) and 2009 (dashed) respectively. The change in left tail shows the e�ect

of the Great Recession.

to target a default rate of 0.02.19 The labor supply parameter, γ, is set to 0.5, in line with

Midrigan and Philippon (2011), corresponding to a Frisch elasticity of 2.

For the parameters governing risk aversion and intertemporal elasticity of substitution, we

use standard values from the asset pricing literature and set ψ = 0.5 (or equivalently, an IES of

2) and η = 10.20 The tax advantage parameter χ is chosen to match a leverage target of 0.70,

which is obtained by adding the wage bill (approximately 0.2 of the steady state capital stock)

to �nancial leverage (the ratio of external debt to capital, about 0.5 in US data - from Gourio

(2013)). Table 1 summarizes the resulting parameter choices.

Numerical solution method Because curvature in policy functions is an important fea-

ture of the economic environment, our algorithm solves equations (11)− (14) with a non-linear

collocation method. Appendix A.3 describes the iterative procedure. In order to keep the com-

putation tractable, we need one more approximation. The reason is that date-t decisions (policy

functions) depend on the current estimated distribution (ĝt(φ)) and the probability distribu-

tion h over next-period estimates, ĝt+1(φ). Keeping track of h(ĝt+1(φ)), (a compound lottery)

makes a function a state variable, which renders the analysis intractable. However, the approx-

imate martingale property of ĝt discussed in Section 1 o�ers an accurate and computationally

e�cient approximation to this problem. The martingale property implies that the average of

the compound lottery is Et[ĝt+1(φ)] ≈ ĝt(φ), ∀φ. Therefore, when computing policy functions,

we approximate the compound distribution h(ĝt+1(φ)) with the simple lottery ĝt(φ), which is

19This is in line with the target in Khan et al. (2014), though a bit higher than the one in Gourio (2013).
We veri�ed that our quantitative results are not sensitive to this target.

20In Appendix B.6, we examine the robustness of our main results to these parameter choices. See also the
discussion in Gourio (2013).
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Parameter Value Description
Preferences:
β 0.91 Discount factor
η 10 Risk aversion
ψ 0.50 1/Intertemporal elasticity of substitution
γ 0.50 1/Frisch elasticity
Technology:
α 0.40 Capital share
δ 0.03 Depreciation rate
σ̂ 0.25 Idiosyncratic volatility
Debt:
χ 1.06 Tax advantage of debt
θ 0.70 Recovery rate

Table 1: Parameters

today's estimate of the probability distribution. Appendix B.2 uses numerical experiments to

show that this approximation is quite accurate. The reason for the small approximation error

is that h(ĝt+1) results in distributions centered around ĝt(φ), with a small standard deviation.

The shaded area in the third panel of Figure 3 reveals that even 30 periods out, ĝt+30(φ) is still

quite close to its mean ĝt(φ). For 1-10 quarters ahead, where most of the utility weight is, this

standard error is tiny.

To compute our benchmark results, we begin by estimating ĝ2007 using the data on φt

described above. Given this ĝ2007, we compute the stochastic steady by simulating the model

for 1000 periods, discarding the �rst 500 observations and time-averaging across the remaining

periods. This steady state forms the starting point for our results. Subsequent results are in

log deviations from this steady state level. Then, we subject the model economy to two adverse

realizations - 0.93 and 0.84, which correspond to the shocks that we observed in 2008 and 2009.

Using these two additional data points, we re-estimate the distribution, to get ĝ2009. To see

how persistent economic responses are, we need a long future time series. We don't know what

distribution future shocks will be drawn from. Given all the data available to us, our best

estimate is also ĝ2009. Therefore, we simulate future paths by drawing many sequences of future

φ shocks from the ĝ2009 distribution and we plot the mean future path of various aggregate

variables.

4 Main Results

Our contribution, and the model feature that we evaluate quantitatively in this section, is the

assumption that people do not know the true distribution of aggregate economic shocks and
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that they estimate it from available data. This is the source of the persistence at the heart

of the secular stagnation puzzle. Of course, we don't need data to tell us that no person

could possibly know, with certainty, the exact distribution of economic shocks. But, comparing

a model with real-time estimation (learning) to the same model with full knowledge of the

distribution (no learning) can reveal when incorporating this feature matters and the extent

to which it can helps explain features of the data. Our results reveal that when shocks are

not unusual, beliefs change little, and the predictions of models with and without learning are

nearly indistinguishable. This is reassuring for most existing theories, which focus on `normal'

times. It also teaches us that, to understand how learning might matter, we should examine

episodes with unexpected shocks, or tail events. Finally, it explains why the Great Recession

was so much more persistent than other recessions.

Observing a tail event like the �nancial crisis changes beliefs in a persistent way. This in

turn shows up as persistent economic responses. Our �rst set of results compare the predictions

of our model for macro aggregates (GDP, investment and labor) since 2008-'09 to an identical

model without learning. They show that the model with learning does signi�cantly better in

terms of matching the observed behavior of macro variables. Then, to rule out the possibility

that persistence comes primarily from the occurrence of future crises, we show that the economic

responses are extremely persistent, even if no future crises occur. Next, we demonstrate how

learning makes large, unusual recessions di�erent from smaller, more normal ones by comparing

the model's predictions for the response to the Great Recession to a counterfactual smaller

shock. Then, we explore an economy where agents have learned from earlier episodes such

as the Great Depression. We learn that beliefs about tail risk are particularly persistent, not

because tail events were never seen before, but because relevant data on tail events is observed

infrequently. Finally, we show that incorporating learning delivers more realistic equity, bond

and option price predictions.

As described in Section 3, we start the economy at the 2007 steady state, subject it to

the 2008 and 2009 shocks, and then draw many future sequences of shocks from ĝ2009. The

top left panel of Figure 5 shows the the average of all simulated time paths for φt. Then

we solve the model for each sequence of shocks, and average the results. In the remaining

panels, output, investment and employment show a pattern of prolonged stagnation, where the

economy (on average) never recovers from the negative shocks in 2008-'09. Instead, all aggregate

variables move towards the new, lower (stochastic) steady state. These results do not imply

that stagnation will continue forever. The �at response tells us that, from the perspective of

an agent with the 2009 information set, recovery is not expected.

The solid line with circles in Figure 5 plots the actual data (in deviations from their re-
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Figure 5: Persistent responses in output, investment and labor.

Solid line shows the change in aggregates (relative to the stochastic steady state associated with ĝ2007). The

circles show de-trended US data for the period 2008-2014. For the dashed line (no learning), agents believe that

shocks are drawn from ĝ2009 and never revise those beliefs.

spective 1950-2007 trends) for the US economy.21 As the graph shows, the model's predictions

for GDP and labor line up well with the recent data, though none of these series were used in

the calibration or measurement of the aggregate shock φt. The predicted path for employment

lags and slightly underpredicts the actual changes, largely due to the assumption that labor

is chosen in advance. Including shock realizations post-2009 does not materially change these

�ndings (see Appendix B.3).22

For investment, the model performs poorly. It predicts less than half of the observed drop.

However, without learning, the results are much worse. When agents do not learn, investment

surges, instead of plummets. The reason is that the e�ective size of the capital stock was

21Data on output and labor input are obtained from Fernald (2014). Data on investment comes from the
series for non-residential investment from the NIPA published by the Bureau of Economic Analysis, adjusted
for population and price changes. Each series is detrended using a log-linear trend estimated using data from
1950-2007, see Appendix C.4.

22Additional outcomes are reported in Appendix B.11.
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already diminished by the capital quality shock. The shock itself is like an enormous, exogenous

disinvestment. We could solve this problem by adding more features and frictions.23 But our

main point is about learning and persistence. Despite only partially �xing the investment

problem of the capital quality model, Figure 5 clearly demonstrates the quantitative potential

of learning as a source of persistence.

Table 2 summarizes the long-run e�ects of the belief changes, by comparing the stochastic

steady states associated with ĝ2007 and ĝ2009. It shows that capital and labor are 17% and 8%

lower under the latter, which translates into a drop in output and consumption levels of about

12%. Investment is also lower by about 7%. Thus, even though the φt shocks experienced

during the Great Recession were transitory, the resulting changes in beliefs persistently reduce

economic activity.

Stochastic steady state levels Change
ĝ2007 ĝ2009

Output 6.37 5.67 -12 %
Capital 27.52 22.80 -17%
Investment 0.71 0.66 - 7%
Labor 2.40 2.20 -8%
Consumption 5.66 5.01 -12%

Table 2: Belief changes from 2008-'09 shocks lead to signi�cant reductions in eco-

nomic activity.

Columns marked ĝ2007 and ĝ2009 represent average levels in the stochastic steady state of a model where shocks

are drawn from ĝ2007 or ĝ2009 distributions respectively.

Turning o� belief updating To demonstrate the role of learning, we plot average simulated

outcomes from an otherwise identical economy where agents know the �nal distribution ĝ2009

with certainty, from the very beginning (dashed line in Figure 5). Now, by assumption, agents

do not revise their beliefs after the Great Recession. This corresponds to a standard rational

expectations econometrics approach, where agents are assumed to know the true distribution

of shocks hitting the economy and the econometrician estimates this distribution using all the

available data. The post-2009 paths are simulated as follows: each economy is assumed to be

at its stochastic steady state in 2007 and is subjected to the same sequence of shocks � two

large negative ones in 2008 and 2009 and subsequently, sequences of shocks drawn from the

estimated 2009 distribution.

23Financial frictions which impeded investment include those in Gertler and Karadi (2011) and Brunnermeier
and Sannikov (2014). Alternative ampli�cation mechanisms are studied in Adrian and Boyarchenko (2012);
Jermann and Quadrini (2012); Khan et al. (2014); Zetlin-Jones and Shourideh (2014); Bigio (2015); Moriera
and Savov (2015), among others.
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In the absence of belief revisions, the negative shocks lead to an investment boom, as the

economy replenishes the lost e�ective capital. While the curvature in utility moderates the

speed of this transition to an extent, the overall pattern of a steady recovery back to the

original steady state is clear.24 This shows that learning is what generates long-lived reductions

in economic activity.

What if shocks are persistent? An alternative explanation for persistence is that there

was no learning. Instead, the shocks simply had persistently bad realizations. In Appendix B.8,

we show that allowing for a realistic amount of persistence in the φt shocks does not materially

change the dynamics of aggregate variables. This is because the the observed autocorrelation

of the φt process is too low to generate any meaningful persistence.

What if there are no more crises? In the results presented above, we put ourselves on the

same footing as the agents in our model and draw future time paths of shocks using the updated

beliefs ĝ2009. One potential concern is that persistent stagnation comes not from belief changes

per se but from the fact that future paths are drawn from a distribution where crises occur

with non-trivial probability. This concern is not without merit. If we draw future shocks from

the distribution, ĝ2007, where the probability of a crisis is near zero, beliefs are not Martingales.

In that world, beliefs change by the same amount on impact, but then converge back to their

pre-crisis levels. Without the permanent e�ect on beliefs, persistence should fall.
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Figure 6: What if there are no more crises?

Solid (With crisis) line shows the change in aggregates when the data generating process is ĝ2009 and agent

updates beliefs. Dashed line (No more crisis) is an identical model in which future shocks are drawn from ĝ2007.

The circles show de-trended US data for the period 2008-2014.

24 Since the no-learning economy is endowed with the same end-of-sample beliefs as the learning model, they
both ultimately converge to the same levels. But, they start at di�erent steady states (normalized to 0 for each
series).
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However, Figure 6 shows that the persistence over a 30 year horizon is almost the same with

and without future crises (solid and dashed lines). The reason belief e�ects are still so long-

lived is that it takes many, many no-crisis draws to convince someone that the true probability

of a crisis is less than an already-small probability. For example, if one observed 100 periods

without a crisis, this would still not be compelling evidence that the odds are less than 1%. This

highlights that beliefs about tail probabilities are persistent because tail-relevant data arrives

infrequently.

The fact that most data is not relevant for inferring tail probabilities is a consequence of our

non-parametric approach. If instead, we imposed a parametric form like a normal distribution,

then tail probabilities would depend only on the mean and variance of the distribution. Since

mean and variance are informed by all data, tail probability revisions are frequent and small.

As a result, the e�ects of the `08 and `09 shocks are more transitory. See Appendix B.9 for

quantitative results.

4.1 Shock Size and Persistence

The secular stagnation puzzle is not about why all economic shocks are so persistent. The

question is why this recession had more persistent e�ects than others. Assuming that shocks

are persistent does not answer this question. Our model explains why persistent responses arise

mainly after a tail event. Every decline in capital quality has a transitory direct e�ect (it lowers

e�ective capital) and a persistent belief e�ect. Thus, the extent to which a shock generates

persistent outcomes depends on the relative size of these two e�ects. Observing a tail event,

one we did not expect, change beliefs a lot and generates a large persistent e�ect. A small

shock has a negligible e�ect on beliefs and therefore, generates little persistence. This �nding

� that learning does not matter when `normal' shocks hit � is also the reason why we focus

on the Great Recession. We could use the model to explore regular business cycles, but the

versions with and without learning would be almost observationally equivalent, yielding little

insight into the role of learning.

Figure 7 shows the e�ects on output of a small adverse shock (1 standard deviation below

the mean25), again starting from the stochastic steady state associated with ĝ2007. Obviously,

the e�ects are smaller than the baseline model (note the scale on the y-axis). The smaller initial

impact re�ects the non-linearity of the model's policy functions.

More importantly for our mechanism, the e�ect of small shocks is transitory and nearly the

same with or without learning. Learning is still a source of persistence, but quantitatively, it

amounts to very little. The bulk of the persistence from the small shock just comes from agents

25This is roughly the magnitude of the shock observed during the 2001-'02 recession.
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Figure 7: Small shocks create negligible persistence.

The �rst panel shows the estimated density before the shock (solid blue) and after a one standard deviation shock

(dashed red). The second panel shows the response of output to the small shock under learning and no learning.

gradually building the capital stock back up, an e�ect that is there in the no-learning model as

well.

This e�ect is really more about the likelihood than about the size of a shock. The reason

that persistence is so low for small shocks is that beliefs do not change much. The left panel

of Figure 7 shows that the only di�erence in beliefs is a small deviation of the red line from

the blue around 0.97. But if large shocks were observed frequently and small ones infrequently,

then small shocks would be surprising, would change beliefs by more and would have more

persistent e�ects. Thus, our learning mechanism o�ers a novel explanation for why �uctuations

triggered by rare events (like �nancial crises) are particularly persistent.

4.2 Longer data sample and the Great Depression

Since our simulations start in 1950, the Great Depression is not in our agents' information

set. This raises the question: How would access to more data, with large adverse shocks in it,

a�ect the response of beliefs to the recent �nancial crisis? In the limit, as data accumulates,

agents know the true distribution; new data ceases to a�ect beliefs. However, beliefs about

tail events converge more slowly than those elsewhere in the distribution, because of infrequent

observations. In this section, we approximate data extending back to the 19th century and show

that the belief changes induced by the 2008-09 experience continue to have a large, persistent

e�ect on economic activity.

The di�culty with extending the data is that the non-�nancial asset data used in φt is avail-

able only for the post-WW II period. Other macro and �nancial series turn out to be unreliable

proxies.26 But our goal here is not to explain the Great Depression. It is to understand how

26We projected the measured φt series post-1950 on a number of variables and used the estimated coe�cients
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Figure 8: Extending the data sample tempers persistence slightly.

Each panel plots the response of GDP to the 2008-09 shocks under a hypothetical information set, starting

from 1890. To �ll in the data for the period 1890-1949, we use the observed time series from 1950-2009, with

{φ1929, φ1930} = {φε2008, φ
ε
2009}. The parameter λ indexes the extent to which older observations are discounted

where λ = 1 represents no discounting.

having more data, especially previous crises, a�ects learning today. So we use the post-WW II

sample to construct pre-WW II scenarios. Speci�cally, we assume that φt realizations for the

period from 1890-1949 were identical to those in 1950-2009, with one adjustment: The Great

Depression shocks were as bad or worse those in the Great Recession. To make this adjustment,

we set {φ1929, φ1930} = {φε2008, φε2009}, with ε ≥ 1. Recall that φ in 2008 and 2009 are less than

one. So, raising them to a power greater than one makes them smaller.

We then repeat our analysis under the assumption that agents are endowed with this ex-

panded 1890-2007 data series. Now, when the �nancial crisis hits, the e�ect on beliefs is

moderated by the larger data sample, which contains a similar or worse previous crisis.

Once we include data from a di�erent eras, the assumption that old and new data are treated

as equally relevant becomes less realistic. We consider the possibility that agents discount older

observations. This could re�ect the possibility of unobserved regime shifts or experiential learn-

ing with overlapping generations (Malmendier and Nagel, 2011).27 To capture such discounting,

we modify our kernel estimation procedure. Observation from s periods earlier are assigned a

weight λs, where λ ≤ 1 is a parameter. When λ = 1, there is no discounting.

The �rst panel of Figure 8 reveals that, even without discounting (λ = 1), the di�erence

between the model with and without Great Depression data is modest, as of 2016: There is a

to impute values for φt pre-1950. However, this did not produce accurate estimates in-sample. Speci�cally, it
missed crises. We explored a wide range of macro and asset pricing variables - including GDP, unemployment,
S&P returns and the Case-Shiller index of home prices. We also experimented with lead-lag structures. Across
speci�cations, the resulting projections for 1929-1930 showed only modestly adverse realizations.

27This discounting procedure is similar to Sargent (2001), Cho et al. (2002) and Evans and Honkapohja
(2001).
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similar output drop on impact, with attenuated persistence from the additional data. When

older data is discounted by 1% (λ = 0.99, the center panel), this attenuation almost completely

disappears and the impulse responses replicate our baseline estimates.28

Perhaps the true magnitude of the Great Depression shocks is far larger than those seen in

2008-09. Suppose ε = 2, so that (φ1929, φ1930) = (0.86, 0.70). These are very large shocks - 5

and 10 standard deviations below the mean. Taken together, they imply an erosion of almost

50% in the stock of e�ective capital. The third panel of Figure 8 shows that, with 1% annual

discounting (λ = 0.99), persistence is attenuated, but only modestly.

In sum, expanding the information set by adding more data does not drastically alter our

main conclusions, especially once we allow agents to discount older data.

4.3 Evidence from Asset Markets

Our goal in this section is not to address standard shortcomings of macroeconomic models,

but rather to compare the asset pricing predictions of the models with and without learning

to asset price data. Since the e�ect of learning is detectable only after tail events, we consider

the di�erence in asset prices before and after the Great Recession. We �nd that while the

model's predictions for credit spreads and equity prices are broadly consistent with the data,

these variables are not very sensitive to, and therefore, not very informative about tail risk. On

the other hand, option-implied tail risk � the probabilities of extreme events priced into options

� are a much better indicator. On that metric, the model's predictions line up quite well with

the observed changes in those probabilities.

Credit spreads � the di�erence between the interest on a risky and a riskless loan � are

commonly interpreted as a measure of risk. This spread surged at the height of the crisis but

is now back to just slightly above its pre-crisis levels. Hall (2015a) argues that the low spreads

imply low tail risk and therefore, persistent tail risk is not a likely explanation for stagnation.

The results in Table 3 argue against this conclusion. The connection between spreads and

tail risk is weak � our calibrated model predicts a negligible, 2 basis point, rise in spreads. Since

the model without learning predicts no long-run changes in asset prices, the small change in

spread means that credit spreads are not a useful device for divining beliefs about tail risk.

This is due, in part, to equilibrium e�ects: An increase in bankruptcy risk induces �rms to

issue less debt. Debt in the new steady state is about 17% lower.29 In the data, total liabilities

28If we keep increasing the discount, the decline in long-run GDP becomes bigger. Intuitively, with high
enough discounting, the weight of recent observations increases beyond the level in the undiscounted, reduced
sample used for our baseline analysis. For example, with λ = 0.98, GDP drops by about 16% in the new steady
state.

29The leverage ratio (debt and wage obligation divided by total assets) is also slightly lower, by about 0.5%.
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Changes in Model Data

Asset prices and debt

Credit Spreads 0.02% 0.14%
Equity Premium 1.41% 3.27%
Equity (Market value)/Assets 1% 21%
Risk free rate -0.54% -1.42%
Debt -17% -19%
Tail risk for equity

Third moment -0.27% -0.28%
Tail risk 1.48% 2.23%

Table 3: Changes in �nancial market variables, Model vs data.

Model results are log di�erences between the model's 2007 level and the long-run average with future shocks drawn

from ĝ2009. Data reports the 2013-2015 average minus 2005-2007 average. Third moment is E
[(
Re − R̄e

)3]
,

where Re is the return on equity. Tail risk is Prob
(
Re − R̄e ≤ −0.3

)
. Both the expectation and the probability

are taken under the risk-neutral measure. For the no-learning model, all changes are zero.

of non�nancial corporations (relative to trend)30 show a similar change � about 19%. This

de-leveraging lowers default risk and therefore, credit spreads. In the model, the net e�ect of

higher tail risk and lower �rm debt on credit spreads is nearly zero. Thus, the fact that spreads

are back to their pre-crisis levels does not rule out tail risk � one of the surprising predictions

of the model.

Similarly, one might think that equity should be worth less when risk is high. The fact

that equity prices have surged recently and are higher than their pre-crisis levels thus appears

inconsistent with a rise in tail risk. But again, the model teaches us why this logic is incomplete.

When �rms face higher tail risk and reduce debt, equity becomes less risky and thus more

valuable (Modigliani and Miller, 1958). In our model, the market value of a dividend claim

associated with a unit of capital is slightly higher under the post-crisis beliefs than under the

pre-crisis ones. In other words, the combined e�ect of the changes in tail risk and debt is mildly

positive.31 While the magnitudes di�er � we don't claim to solve the equity premium puzzle

here � our point is simply that rising equity valuations are not evidence against tail risk.

Furthermore, the changes in equity premia are in the right ballpark. The model predicts an

30Total liabilities of non�nancial corporate business is taken from series FL104190005 from Table B.103 in
the Flow of Funds. As with the other macro series, we adjust for in�ation and population growth and then
detrend using a simple log-linear trendline. The number reported in the table is the di�erence between the
2013-15 and 2005-07 averages.

31The aggregate market capitalization in our model can be obtained by simply multiplying the value of
the dividend claim by the aggregate capital stock. In the data, the ratio of the market capitalization of the
non-�nancial corporate sector to their (non-�nancial) asset positions shows a much more dramatic increase.
We interpret this discrepancy as re�ecting, at least partly, the limitations of our model as an asset pricing
framework.
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equity premium (the di�erence between expected return on equity and the riskless rate) that is

about 1.5% higher under the 2009 beliefs than under the 2007 beliefs. To compute the analogous

object in the data, we follow the methodology in Cochrane (2011) and Hall (2015b).32 This

approach estimates that equity premia in 2013-15 were about 3.27% higher than in 2005-07. In

other words, tail risk can account for about half of the recent rise in equity premia.

The behavior of riskless rates since 2008-09 is also consistent with the model. Heightened tail

risk increases the premium for safe assets, which depresses riskless rates. Under our calibration,

the change in beliefs induced by the 2008-09 realizations leads to a 54 bp drop in the riskless

rate. In the data, the riskfree real interest rate (computed as the di�erence between nominal

yield of 1-year US treasuries and in�ation) averaged -0.81 % between 2013-15, as against 0.61%

during 2005-07, a drop of about 1.4%. Obviously, we do not want to claim that increased tail

risk is the only force behind the current low level of interest rates.

In sum, none of these trends in asset markets is at odds with the tail risk story we are

advancing. If credit spreads and equity premia are not clear indicators of tail risk, what is?

For that, we need to turn option prices, in particular out-of-the-money put options on the

S&P 500, which can be used to isolate changes in perceived tail risk. A natural metric is the

third moment of the distribution of equity returns. It is straightforward to compute this from

the SKEW and VIX indices reported by the CBOE.33 As Table 3 shows, the market-implied

distribution has became more negatively skewed after the Great Recession. We compute the

same risk-neutral third moment in the model (using the distribution for stock returns under

the 2009 and 2007 beliefs) and the predicted change lines up almost exactly with the data. To

show how this change maps into probabilities of tail events, we also report the change in the

implied risk-neutral odds of a return realization 30% less than the mean.34 The likelihood of

that event increased by about 2.2% in the data and 1.5% in the model.

4.4 Understanding the Economic Response to Belief Changes

What model ingredients are needed for belief to have substantial aggregate e�ects and why?

To answer this, we perform a series of experiments, varying and turning o� speci�c features of

32We estimate one-year ahead forecast from a regression where the left-hand variable is the one-year real
return on the S&P and the right hand variables are a constant, the log of the ratio of the S&P at the beginning
of the period to its dividends averaged over the prior year, and the log of the ratio of real consumption to
disposable income in the month prior to the beginning of the period.

33Formally, the 3rd central moment under the risk-neutral measure is given by

E
(
Re − R̄e

)3
=

100− SKEWt

10
· V IX3

t

For more information, see http://www.cboe.com/micro/skew/introduction.aspx.
34For details of the computation, see Appendix B.10.
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the model � learning about the mean vs higher order moments, curvature in utility and debt

� one-by-one in order to isolate how much each one contributes. The bottom panel of Table 4

shows that removing any of these elements would eliminate between one-fourth and one-half of

our long-run e�ects. 35

2014 Long run
Data −0.12
Benchmark model −0.12 −0.12
Counterfactuals:

Constant mean −0.09 −0.06
No curvature in utility −0.07 −0.07
No debt −0.12 −0.09

Table 4: Change in GDP relative to 2007 steady state.

Learning about the mean capital quality shock. We decompose the total e�ect of belief

revisions into a component attributable to changes in the mean (average φ) and the remaining

attributable to changes in higher moments. To do this, we adjust the estimated distribution

in 2009 so that E2009(φt) = E2007(φt). The change in the mean Et [φt] between 2007 and 2009

is relatively modest, only about 0.4%. Even with the mean change taken out, the long-run

fall in GDP is about 6%, about half of the total e�ect in our baseline case (Figure 9, left

panel). In Appendix B.4, we explore this high sensitivity using a deterministic version of the

model without debt. This simpli�ed model reveals, in closed form, the elasticity of long-run,

steady-state capital to the mean capital quality:

d ln kss
d lnφss

=

(
1 + γ

γ

α

1− α

)
+

(
1

1− α
α + γ

γ

)
(1− δ)

1/β − (1− δ)φss
= 2 + 3(7.5) = 24.5.

Capital, and thus output, is highly sensitive to capital quality because it a�ects current returns

(�rst term) and holdings gains (second term), which come from the undepreciated capital stock.

This sensitivity, which is far greater than to total factor productivity, lies at the heart of the

signi�cant economic e�ects.

Role of curvature in utility Next, we explore the role of curvature in utility, by exploring

an otherwise identical economy with quasilinear preferences. If ψ = η = 0, the utility function

reduces to Ct − L1+γ
t

1+γ
. Because this eliminates risk aversion and the desire for consumption

smoothing, the economy transitions immediately to any new steady state (second panel of

35These patterns are robust to drawing future time paths under the assumption that no future crises occur.
For details, see Table 6 in Appendix B.5.
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Figure 9: Understanding the role of expected return, risk aversion and debt.

Change in ln GDP under 3 di�erent scenarios: (1) the mean capital quality shock E[φt] is held �xed; (2) no

risk aversion, and (3) no debt.

Figure 9). However, belief revisions still have long-lived e�ects � long-run output is about 7%

lower (compared to 12% in the baseline model). In other words, curvature in utility accounts

for roughly 40% of long-run stagnation.

Risk aversion matters because it introduces a risk premium for capital and labor. Tail risk

raises this premium, further dampening incentives to invest and hire. Appendix B.6 shows that

the e�ect of tail risk on macro aggregates is increasing, albeit modestly, in both risk aversion

and the intertemporal elasticity of substitution. These results highlight the role of Epstein-Zin

preferences. With CRRA preferences, high risk aversion implies low intertemporal elasticity,

dampening the drop in long-run economic activity.

Role of debt When we set the tax advantage parameter χ to 1, all investment is �nanced

through equity. Debt and leverage are 0. The third panel of Figure 9 shows that belief revisions

trigger a 9% long-run reduction in output without debt, compared to 12% with debt. Thus,

defaultable debt contributes about a fourth of the long run stagnation.

Debt also plays an important role in one of the main questions of the paper, namely why

some shocks generate more persistent responses than others. The attractiveness of debt (and

therefore, the incentives to borrow) is a�ected disproportionately by perceived tail risk - and

since larger shocks changes belief further out in the tail, they are ampli�ed by debt. Since tail

risk is the source of persistence, by amplifying its e�ects increases persistence as well.

In Figure 10, we subjected our model economy to shocks ranging in size from 1 to 5 standard

deviations and plotted the corresponding long-run GDP e�ect. The responsiveness to small

shocks is almost the same with and without debt. Because debt adds aggregate non-linearity,

larger shocks see signi�cant ampli�cation. Since the risk of a larger shock is what persists, debt

makes the severity and persistence of unusual events di�er from common downturns.
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Figure 10: Debt ampli�es belief revisions from large shocks.

Change in long-run GDP both with (solid line) and without debt (dashed line) in response to negative shocks of

various sizes. The initial condition is the ĝ2007 steady state.

5 Conclusion

No one knows the true distribution of shocks to the economy. Economists typically assume that

agents in their models know this distribution, as a way to discipline beliefs. But assuming that

agents do the same kind of real-time estimation that an econometrician would do is equally

disciplined and more plausible. For many applications, assuming full knowledge has little e�ect

on outcomes and o�ers tractability. But for outcomes that are sensitive to tail probabilities, the

di�erence between knowing these probabilities and estimating them with real-time data can be

large. The estimation error can introduce new, persistent dynamics into a model with otherwise

transitory shocks. The essence of the persistence mechanism is this: Once observed, a shock (a

piece of data) stays in one's data set forever and therefore persistently a�ects belief formation.

The less frequently similar data is observed, the larger and more persistent the belief revision.

When �rms �nance investments with debt, they make investment and output sensitive to

tail risk. Debt is an asset whose payo�s are �at throughout most of the state space, but

very sensitive to the state for left-tail, default events. Therefore, the cost of debt depends

precisely on the probabilities of a tail event, which are hardest to estimate and whose estimates

�uctuate greatly. When debt (leverage) is low, the economy is not very sensitive to tail risk, and

economic shocks will be more transitory. The combination of high debt levels and a shock that

is a negative outlier makes tail risk surge, investment fall and depresses output in a persistent

way.

When we quantify this mechanism and use capital price and quantity data to directly

estimate beliefs, our model's predictions resemble observed macro outcomes in the wake of the

great recession. These results suggests that perhaps persistent stagnation arose because, after

seeing how fragile our �nancial sector is, market participants will never think about tail risk in

the same way again.
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A Model's solution

A.1 Optimality conditions from �rm's problem

Let

Rk
(
lit+1

k̂it+1

, φt+1

)
≡ Πit+1

k̂it+1

= vit

(
φt+1

α

(
lit+1

k̂it+1

)1−α

+ (1− δ)φt+1

)
.

Substituting in dividends and wages from (5) and (6), we can restate the �rm's maximization problem as:

Γit = max
k̂it+1, levit+1,

lit+1

k̂it+1

k̂it+1

(
−1− χWt

lit+1

k̂it+1

+ χqlevit+1 + EMt+1rt+1

(
vitR

k
t+1 − levit+1 +

Γit+1

k̂it+1

))

and

q

(
lit+1

k̂it+1

, levit+1, St

)
= EMt+1

rt+1 + (1− rt+1) θ
vitR

k
t+1 + Γit+1

k̂it+1

levit+1

 .
We guess (and later verify) that Γit = 0.36 Substituting for the bond price function and rearranging terms

yields

Γit = max
k̂it+1, levit+1,

lit+1

k̂it+1

k̂it+1

(
−1− χWt

lit+1

k̂it+1

+ EMt+1J̃
k
t+1

)
where J̃kt+1 = Rkt+1 + levit+1 (χ− 1) rt+1 + (χθ − 1) (1− rt+1) vitR

k
t+1.

From the de�nition of the default threshold, we have Ert+1 = 1 − F (v). Also, note that the threshold is

v = levit+1

Rkt+1

. Hence

J̃kt+1 = Rkt+1 (1 + v (χ− 1) (1− F (v)) + (χθ − 1)h (v))

where h (v) =
∫ v
−∞ vdF (v). Finally, the problem is

Γit = max
k̂it+1, levit+1,

lit+1

k̂it+1

k̂it+1

(
−1− χWt

lit+1

k̂it+1

+ EMt+1R
k
t+1J

k(v)

)
Jk(v) = 1 + (χ− 1) v (1− F (v)) + (χθ − 1)h (v)

v =
levit+1

Rkt+1

Jk(v) re�ects the net e�ect of distortions induced by debt and can be interpreted as a wedge. It distorts

equilibrium capital choice away from the choices of a planner. In the absence of debt (e.g. if χ = 1), Jk(v) = 1,

reducing (11) to a standard Euler equation.

Capital choice: The problem is linear in k̂it+1 therefore in equilibrium we must have that

1 + χWt
lit+1

k̂it+1

= EMt+1R
k
t+1J

k(v),

which implies equation (11) in the main text and in turn it veri�es the guess, Γit = 0.

36Intuitively, given constant returns to scale, the �rm's problem turns out to be linear in capital. In equilib-
rium, therefore, in order for the �rm's value to be bounded, we must have Γit = 0. See Navarro (2014).
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Labor choice: Next, the �rst order condition with respect to lt+1

k̂it+1
is

χWt = EMt+1R
k ∂J

k(v)

∂ lt+1

k̂it+1

+ EMt+1
∂Rk

∂ lt+1

k̂it+1

Jk(v),

Now,

Rkt+1

∂Jk(v)

∂ lt+1

k̂it+1

= Rkt+1

∂v

∂ lt+1

k̂it+1

(
(χ− 1) (1− F (v))− v (χ− 1) f (v) + (χθ − 1)

∂h (v)

∂v

)
∂v

∂ lt+1

k̂it+1

= − levit+1

(Rk)
2

∂Rk

∂ lt+1

k̂it+1

= − v2

levit+1

∂Rk

∂ lt+1

k̂it+1

dh (v)

dv
= vf (v)

∂Rkt+1

∂ lt+1

k̂it+1

= vit (1− α)φt+1
α

(
lit+1

k̂it+1

)−α
.

Rearranging terms yields (13) in the main text:

χWt = EMt+1
∂Rk

∂ lt+1

k̂it+1

J l(v)

J l(v) = 1 + v2f (v)χ (1− θ)− (1− χθ)h (v) ,

Leverage choice: The �rst order condition with respect to leverage is

EMt+1R
k
t+1

∂Jkt+1

∂levit+1
= 0,

where

∂Jkt+1

∂levit+1
=

∂v

∂levit+1
((χ− 1) (1− F (v))− (χ− 1) vf (v) + (χθ − 1) vf (v))

=
1

Rkt+1

((χ− 1) (1− F (v))− χ (1− θ) vf (v)) .

Substituting and re-arranging, we obtain (14) in the main text:

(1− θ)Et [Mt+1vf (v)] =

(
χ− 1

χ

)
Et [Mt+1 (1− F (v))] ,
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A.2 Equilibrium Characterization

Thus, an equilibrium is the solution to the following system of equations:

1 + χWt
Lt+1

K̂t+1

= EMt+1

φαt+1

(
K̂t+1

Lt+1

)α−1

+ (1− δ)φt+1

 Jk(v) (16)

χWt = EMt+1

[
(1− α)φα

(
K̂t+1

Lt+1

)α]
J l(v) (17)

(1− θ)Et [Mt+1vf (v)] =

(
χ− 1

χ

)
Et [Mt+1 (1− F (v))] (18)

Ct = φαt K̂
α
t L

1−α
t + (1− δ)φtK̂t − K̂t+1 (19)

Ut =

[
(1− β) (u (Ct, Lt))

1−ψ
+ βE

(
U1−η
t+1

) 1−ψ
1−η
] 1

1−ψ

(20)

where

v =
levt+1

φαt+1

(
K̂t+1

Lt+1

)α−1

+ (1− δ)φt+1

Jk(v) = 1 + (χ− 1) v (1− F (v)) + (χθ − 1)h (v)

J l(v) = 1 + v2f (v)χ (1− θ)− (1− χθ)h (v)

Mt+1 =

(
dUt
dCt

)−1
dUt
dCt+1

= β
[
E
(
U1−η
t+1

)] η−ψ
1−η

Uψ−ηt+1

(
u (Ct+1, Lt+1)

u (Ct, Lt)

)−ψ
Wt =

(
dUt
dCt

)−1
dUt
dLt+1

=

(
dUt
dCt

)−1

E
dUt
dCt+1

(
E

dUt
dCt+1

)−1
dUt
dLt+1

= Lγt+1EMt+1

A.3 Solution Algorithm

To solve the system described above at any given date t (i.e. after any observed history of φt), we recast it in

recursive form with grids for the aggregate state (Π, L) and the shocks φ. We then use an iterative procedure:

• Estimate ĝ on the available history using the kernel estimator.

• Start with a guess (in polynomial form) for U(Π, L), C(Π, L).

• Solve (16)-(18) for K̂ ′(Π, L), L′(Π, L), lev′(Π, L) using a non-linear solution procedure.

• Verify/update the guess for U,C using (19)-(20) and iterate until convergence.

B Additional Results

B.1 Measurement of φt: Alternative price indices

Figure 11 shows that the measurement of capital quality shocks is una�ected when we use the price index for

GDP or Personal Consumption Expenditure to control for nominal price changes.
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Figure 11: Time series of measured capital quality shocks using di�erent indices to

control for nominal price changes.

B.2 Numerical accuracy of solution method

To test the numerical accuracy of our solution method, we perform the following exercise. Starting from the

steady state of ĝ2007, we simulate time paths for two di�erent economies. In Model I, as new data arrives, we

update beliefs and policy functions at each date and history. In Model II, beliefs and policy functions are �xed

at ĝ2007. In our solution, we essentially assume that agents use Model II as an approximation for Model I,

while evaluating continuation values. Table 5 shows the sample mean and coe�cient of variation for output at

di�erent horizons for these two versions.37 It is easy to see that aggregates (or at least, the �rst two moments

thereof) are very well-approximated by replacing the sequence of future distributions with their conditional

mean. Recall that this numerical procedure works reasonable well thanks to the martingale property of beliefs.

B.3 E�ect of 2010-2014 shocks

Here, we subject our baseline calibrated model to the full sequence of shocks, from 2008 through 2014. Agents'

decisions in each year are a function of the estimated distribution at that date. The resulting time paths are

plotted in Figure 12, along with the de-trended data. We note that the patterns implied by the model are quite

close to the observed ones.

37These are averages over 4000 paths. Other aggregate variables, e.g. capital and labor, show similar patterns.
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Horizon
s = 1 s = 5 s = 10 s = 15

Et [yt+s]
Model I: 6.378 6.385 6.393 6.397
Model II: 6.378 6.385 6.394 6.398
CVt [yt+s]
Model I: 0.010 0.032 0.042 0.046
Model II: 0.010 0.031 0.040 0.044

Table 5: Numerical accuarcy.

The rows labeled Model I show the actual moments under the assumption that beliefs ĝ2007+s are re-estimated

at each date. Model II corresponds to the assumption underlying our solution method, where future beliefs are

replaced by ĝ2007.

B.4 Steady State Analysis

To dig a little deeper into why long-run outcomes are so sensitive to φ, we turn to a special case - a deterministic

version of our economy without debt. The level of steady state capital is given by the following equation38

ln kss = Const. +

(
1 + γ

γ

α

1− α

)
lnφss −

(
1

1− α
α+ γ

γ

)
ln

(
1

β
− (1− δ)φss

)
. (21)

Hence, the e�ect of the mean shock on steady sate capital is given by

d ln kss
d lnφss

=

(
1 + γ

γ

α

1− α

)
+

(
1

1− α
α+ γ

γ

)
(1− δ)

1/β − (1− δ)φss
.

Under our parameterization,

1 + γ

γ

α

1− α
= 2,

1

1− α
α+ γ

γ
= 3,

(
(1− δ)

1/β − (1− δ)φss

)
φss=1

= 7.5

which implies d ln kss
d lnφss

= 2 + 3(7.5) = 24.5. This simple calculation shows the source of the high sensitivity - the

fact that capital quality shock a�ects not just the current return component but also the portion that comes

from the undepreciated stock.

B.5 What if there are no more crises?

The bottom panel of Table 6 reports the change in GDP under the assumption that a crisis never occurs again,

i.e. future time paths are drawn from ĝ2007, under various assumptions about learning and the presence of debt.

For comparison, the middle panel reproduces the corresponding numbers for the baseline version (where time

paths are drawn ĝ2009). Both cases are remarkably similar over a 30 year horizon, underscoring the persistent

38In steady state, Mt = 1 and the intertemporal Euler equation and labor optimality conditions reduce to

1 = β
(
αφαssk

α−1
ss l1−αss + φss (1− δ)

)
lγss = Wss = (1− α)φαssk

α
ssl
−α
ss .

Substituting for lss from the second into the �rst and re-arranging yields the expression (21).
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Figure 12: Model vs data from 2008-2014.

Solid line is the baseline model subjected to the observed sequence of shocks from 2008-2014. The red circles are

US data, in deviations from their pre-crisis trends.

nature of belief revisions, even in the absence of crises.

B.6 Role of Risk Aversion, Intertemporal Elasticity of Substitution

Risk aversion, IES and debt all play a role in determining the magnitude of the e�ects of increased tail risk.

In order to show how much, here we compare our baseline results to a number of alternative parameteriza-

tions/assumptions. The results for the role of recursive preferences and assumptions are collected here in Table

7. The �rst column reproduces our benchmark results, which sets risk aversion = 10 and IES = 2. The next

two columns vary, respectively, risk aversion holding IES constant and IES holding risk aversion constant. The

last 2 columns show results under CRRA utility, with a risk aversion coe�cient of 2 and 0.5 respectively.

Our estimate for the IES was drawn from the macro and asset-pricing literature � see, e.g., Bansal and Yaron

(2004), Barro (2009), Baron et. al. (2014). In order to assess the robustness of our results to this parameter,

we ran the model with an IES of 1 � the results are presented in Column 2. Under this parameterization, the
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2014 2039
Data -0.12
Benchmark: Draws from ĝ2009

Learning, debt -0.12 -0.12
Learning, no debt -0.11 -0.09
No learning, debt -0.9 0.00
No learning, no debt -0.08 0.00

No more crises: Draws from ĝ2007
Learning, debt -0.12 -0.10
Learning, no debt -0.10 -0.06
No learning, debt -0.08 0.00
No learning, no debt -0.07 0.00

Table 6: Changes in GDP (relative to 2007 steady state)

Parameters EZ CRRA
Risk Aversion (η) 10 10 5 0.5 2
IES (1/ψ) 2 1 2 2 0.5
Change in

GDP -0.12 -0.09 -0.09 -0.08 -0.07
Labor -0.18 -0.15 -0.15 -0.12 -0.11
Investment -0.06 -0.03 -0.03 -0.01 0.01

Table 7: Role of risk aversion and intertemporal elasticity of substitution. The second panel reports the
di�erence in the value of the variable in the new (post-crisis) and old (pre-crisis) stochastic steady states.

model predicts a slightly lower, but importantly just as persistent, drop in GDP (9% vs 12% in the benchmark).

This is due to a precautionary channel � agents dislike intertemporal �uctuations in consumption, so faced with

the increased likelihood of a tail event, they have an incentive to hold more capital to mitigate the potential

consumption drop. This channel is stronger, the lower is IES. In fact, as the IES approaches 0, this channel

becomes so powerful that it can overwhelm the disincentives to invest and can lead agents to increase investment

in response to higher tail risk. However, in the region that the macro and asset-pricing literature typically focuses

on, the e�ects of varying IES are relatively modest.

Analogously, column 3 reveals that the size of the drop in economic activity from increased tail risk is lower

when agents are less risk averse. This is intuitive � the extent to which agents dislike the increased riskiness

of investment depends on their aversion to risk. However, as with IES, the magnitude of our e�ects is not

particularly sensitive to this parameter.

The previous two exercises show that the magnitude of e�ects of increased tail risk on the macro economy

are increasing, albeit modestly, in both risk aversion and IES. Under CRRA utility, of course, the two are

tightly (and negatively) linked � a high risk aversion necessarily implies a low IES and vice-versa. For example,

in Column 4 of Table 7, we show results for a CRRA speci�cation with the same IES as the benchmark

parameterization. However, this now comes with a much lower risk aversion (0.5 vs 10), which attenuates the

long-run drop in GDP (from 11% to 8%). Finally, Column 5 shows results for a CRRA speci�cation with an

IES of 0.5 (or equivalently, risk aversion of 2). Now, GDP in the new steady state is lower by about 7%.

8



B.7 Role of GHH preferences

The GHH speci�cation of utility has criticized as being inconsistent with the facts on long run growth, speci�cally

the observation that labor input is more or less constant (or maybe, slightly declining) in most advanced

economies. One resolution is the following speci�cation proposed by Jaimovich and Rebelo (2006):

u(Ct, Lt) = Ct −Xt
L1+γ
t

1 + γ
Xt = X1−%

t−1 C
%
t

Now, on the balanced growth path, the state variable Xt grows at the same rate as wages, ensuring labor stays

constant. The parameter % governs the strength of wealth e�ects on labor supply away from the long run. The

lower value of %, the closer the behavior of the economy is to the GHH speci�cation in the short-to-medium run.

In their baseline calibration, Jaimovich and Rebelo use % = 0.001 at a quarterly frequency.

Solving this version of our model with learning involves an additional state variable and considerable com-

putational complexity. However, a simple back-of-the-envelope calculation suggests that the drop in GDP and

consumption over a 30 year horizon would only be slightly lower than our baseline (GHH) speci�cation (about

10% instead of 12%). To see why, a 10% drop in consumption, along with % = 0.001, implies a change in Xt

over 30 years of approximately 0.1(1 − 0.999120) = 0.011. Assuming that wages change by about the same as

in the baseline, the optimality conditions for labor and capital imply that the drops in Lt and Kt are about

2% lower than under GHH (6% instead of 8% and 15% instead of 17%, respectively), which are consistent with

the conjectured 10% drop in GDP and consumption. Over shorter horizons, e.g. the 7 years or so for which we

actually have data, the two speci�cations would be virtually indistinguishable. 39

B.8 Exogenous persistence in φt

In this section, we show that the observed degree of persistence in the data is just not enough to explain the

prolonged stagnation since 2008-'09 in the absence of learning. To do this, we solved a rational expectations

(i.e. no learning) version of our model where the φt shocks are no longer iid, but follow an AR(1) process

(computationally, this requires an additional state variable). Recall from Section 3 that the autocorrelation of

the observed φt series was 0.15. In Figure 13, we plot the impulse responses from the large negative realizations

observed during 2008-09 in this version of the model, with persistence set to 0.15 . As the graph shows, the

implications are quite similar to the iid, no-learning case � investment surges and the economy slowly but steadily

recovers back to the pre-crisis level. Even if we used a shock process that was twice as persistent (ρ = 0.30) as

the data, the results do not change signi�cantly, as we see in Figure 14. From these results, it seems reasonable

to conclude that persistence of the shock itself is an unlikely explanation for the last 8 years.

B.9 Learning with a Normal distribution

Here, we repeat our analysis under the assumption that agents �t a normal distribution to the available data.

The resulting beliefs revisions are shown in the second panel of �gure 15 (the �rst panel reproduces the baseline

kernel density estimates). The large, negative tail realizations in 2008-09 lowers the mean and increases the

39As an additional robustness exercise, we repeated the steady-state exercise in Appendix B.4 with Cobb-
Douglas preferences: u(Ct, Lt) = Cκ

t (1− Lt)1−κ . The responsiveness of capital and output to a change in the
steady-state level of φ is about 70% of the elasticity in the baseline case. In other words, even with wealth
e�ects on labor supply, the e�ects of increased tail risk in the long run are quite signi�cant.
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Figure 13: No learning model, with persistent shocks (dashed line, ρ = 0.15) vs. learning model
with iid shocks.
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Figure 14: No learning model, with 2× estimated persistence (dashed line, ρ = 0.30) vs.
learning model with iid shocks (solid line).
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variance of the estimated normal distribution. Qualitatively, these belief revisions are also long-lived, for the

same reason as those under the kernel density estimation. The economic implications are also sizable and similar

to our baseline, especially in the short run. This is partly the result of the direct impact of the shock itself and

partly from the fact that changes in the �rst two moments have an substantial e�ect in this highly non-linear

setting.

However, the two procedures imply di�erent time paths for beliefs and economic activity. This is seen most

clearly in the exercise where we simulate the economy by drawing time paths from the pre-crisis distribution. The

third panel compares the average path for GDP when agents estimate a lognormal distribution to the baseline

(kernel density) case. The graph shows faster recovery for macro variables under the former. This is because

realizations anywhere in the support contain information about the mean and variance of the normal distribution.

The kernel estimate of the distribution at a particular point in the support, on the other hand, places relatively

more weight on the observed history close to it, making learning more `local'. The non-parametric procedure

captures the idea that tail events are harder to learn about, because they are, by de�nition, rare. Imposing a

parametric form on the distribution essentially allows the agent to learn about the probability of disasters from

more normal times, and therefore, ties learning about tail risk much more closely to learning about the rest of

the distribution. Obviously, if the parametric form of the distribution was known, this is the e�cient thing to

do, but this exercise illustrates how the assumption can have a signi�cant e�ect.
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Figure 15: Learning with a Normal distribution.

Beliefs under our baseline non-parametric proecudure (�rst panel) and assuming a normal dis-
tribution (second panel). The third panel shows the exercise where we simulate the economy by
drawing time paths from the pre-crisis distribution.

B.10 Computing option-implied tail probabilities

To compute tail probabilities, we follow Backus et al. (2008) and use a Gram-Charlier expansion of the distri-

bution function.40 This yields an approximate density function for the standardized random variable, ω = x−µ
σ :

f (ω) = ϕ (ω)

[
1− γ

(
3ω − ω3

)
6

]
where γ = E

[
x− µ
σ

]3

where ϕ (ω) is the density function of a standard normal random variable and γ is the skewness.41

40The CBOE also follows this method in their white paper on the SKEW Index to compute implied proba-
bilities.

41The Gram-Charlier expansion also includes a term for the excess kurtosis, but is omitted from the expansion
because, as shown by Bakshi et al. (2003), it is empirically not signi�cant.
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The VIX and the SKEW indices provide the standard deviation and the skewness of the implied risk-neutral

distribution of the returns on the S&P 500. The numbers reported for tail probabilities in Table 3 are computed

using this distribution.

B.11 Consumption

Figure 16 shows that the behavior of consumption, as predicted by the model and the corresponding pattern

in the data. The model overpredicts the drop in consumption in the years immediately following impact � the

�ip side of its inability to match the full extent of the drop in investment during that time � but over a longer

horizon, the predicted drop lines up quite well with the data.
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Figure 16: Consumption.

C Other evidence

C.1 Intenet search

Data on internet search behavior lends support to the idea that assessments of tail risk are persistently higher

after the �nancial crisis. Figure 17 shows that the frequency of searches for the terms ��nancial crisis," �economic

crisis," and �systemic risk" spiked during the crisis and then came back down. But this search frequency did

not return to its pre-crisis level. In each case, there was some sustained interest in crises at a higher level than

pre-2007. We �nd similar results for searches on the terms �economic collapse," ��nancial collapse," and �tail

risk" yielded similar results.

C.2 Stock market

One question that often arises is whether other unusual events, such as the large stock market drop in 2008,

might trigger a persistent economic response. Here, we illustrate what belief revisions would look like for agents

learning about the distribution of stock returns. Of course, we acknowledge that this is not the driving force in

our model. It is only intended to further illustrate possible future applications of our persistence mechanism.
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Figure 17: Tail risk-related Google searches rose permanently after 2008.

Search frequency for the terms '�nancial crisis,' 'economic crisis,' and 'systemic risk' world-wide, from December

2003 - September 2016. Each series is normalized so that the highest intensity month is set to 100. Source:

Google trends.

Figure 18 shows the belief revision after observing 2008-09 equity returns, and the distribution of future

beliefs under two di�erent assumptions about the true distribution of shocks. Annual returns 1950-2009 come

from Robert Shiller's website.

What we see is that large negative equity returns during 2008-09 are not all that unusual. The stock market

has plunged many times. Seeing one more drop, while not very common, was not so unusual as to change beliefs

by much. We conclude that while stock returns can also generate some persistence through belief updating,

this force is not a likely candidate for the recent stagnation, relative to the capital quality shock, because the

downturn in stock prices was less unusual.

C.3 Returns during the Great Recession

Not all authors agree that the Great Recession was an unusual event. For example, Gomme et al. (2011)

present a series for returns on capital that show adverse realizations for 2008-09 that are not as extreme as

our measures. The di�erence stems from their measurement strategy. To compute capital gains, they use data

from the NIPA, which values non-residential capital (structures, equipment and software) at replacement cost.

During 2008-09, we saw massive declines in the market value (particularly, for commercial real estate), even

though the replacement cost of structures fell only modestly. While appropriate for their purposes, these NIPA

measures miss one of the unusual aspects of the Great Recession � large declines in the market value of business

capital, notably commercial real estate.

C.4 De-trending

Our learning mechanism generates persistent movements in aggregate variables after extreme events. Therefore,

in order to make a meaningful comparison with the data, the choice of the right de-trending procedure for the

data is very important. We use a log-linear trend, which removes only the lowest-frequency (permanent) part

of the series. A common approach in business cycle analysis is to non-linear �lters (like the Hodrick-Prescott

�lter), which take out more of the persistent movements in the series. By design, what is left will not have much

persistence left. In �gure 19, we illustrate this using aggregate non-residential investment (other aggregate series
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Figure 18: Estimated beliefs about stock market returns.

The �rst panel shows the realized returns on the stock market. The second panel shows the estimated kernel

density for 2007 and 2009. The third panel shows the mean belief (along with a 2 standard deviation band) in

2039 (computed by simulating data for the period 2010-2039 using the estimated distribution in 2009).

show very similar patterns). As the graph reveals, the trend component of the HP �lter (smoothing parameter

100) picks up some of the deviation from the linear trend. Given that our focus is on low-frequency or persistent

components, a linear detrending procedure seems most appropriate.

C.5 Productivity

While a productivity slowdown may have contributed to low output, it does not explain the timing or the

rise in tail risk indicators. Figure 20 shows the time series of raw total factor productivity, constructed as

dtfpt = dYt − αtdkt − (1 − αt)(dhourst + dLQt) from Fernald (2014). When we examine instead utilization-

adjusted TFP, we �nd a slight decline during the recession, but a decline that is will within two-standard

deviation bands of the distribution of TFP changes. Productivity did not have a precipitous decline that could

be considered a tail event.
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Figure 19: Non-residential Investment, with log-linear and HP trends.
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Figure 20: Productivity.
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