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1 Introduction

The last US recession was characterized by a large and persistent decline in consumer spending.1

A growing empirical literature has argued for the importance of house prices and household debt

in explaining consumption patterns both before and during the recession. More broadly, there

is widespread policy concern that boom-bust cycles in housing and consumer debt can end with

large contractions in consumer spending.2 However, the theoretical rationale for house price

effects on consumption is less clear. In particular, it is a commonly held view that these effects

should be small, because increases in the value of an individual’s house are offset by increases

in future implicit rental costs, leaving the lifetime budget constraint unchanged. If households

make consumption decisions based on the lifetime budget constraint, as in a permanent income

hypothesis (PIH) model, then consumption effects are small.3

In this paper, we explore whether models can deliver the large effects found in the empirical

literature and what features are important for doing so. Are house price effects larger when

the household sector is more levered? Is it important that housing can be used as collateral?

Can house price movements independently lead to large consumption swings or do they require

correlated movements in common factors such as income or financial conditions?

We study these questions using a fairly standard class of incomplete market models with

income uncertainty and housing that serves as collateral.4 Our main quantitative conclusions

are: (i) In contrast to PIH intuition, realistic model calibrations produce large consumption

responses to house price changes, in line with the recent empirical literature. (ii) The size of

these responses depends crucially on the economy’s joint distribution of housing and debt.

What generates large consumption responses to house price movements? In our model, in-

creases in house prices affect consumption through four channels: 1) A positive “endowment”

effect which arises from the increase in the value of an individual’s current house. 2) A negative

“income” effect which arises from the increase in current and future implicit rents. 3) A posi-

tive “substitution” effect as households substitute from housing to consumption. 4) A positive

“collateral” effect as increases in house prices relax households’ borrowing constraints.

Given these competing effects, one might expect that consumption responses would be quite

complicated to characterize, but we show this is not the case. The central theoretical result of our

paper is that individual consumption responses to unexpected, permanent house price changes are

given by a simple “sufficient-statistic” formula: the individual marginal propensity to consume

out of temporary income shocks (MPC) times individual housing values. The aggregate response

1See Petev et al. (2012).
2See Cerutti et al. (2015).
3Sinai and Souleles (2005) p. 773 clearly formulate this view: “increases in house prices reflect a commensurate

increase in the present value of expected future rents” and “for homeowners with infinite horizons, this increase in
implicit liabilities would exactly offset the increase in the house value, leaving their effective expected net worth
unchanged.” Similar arguments are made in Buiter (2008) and Campbell and Cocco (2007).

4This class includes PIH and many other classic models as special cases.
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is then determined by the endogenous joint distribution of MPCs and housing; an object which is

measurable in the data.5 This formula helps explain why different versions of our model generate

different responses. In particular, PIH models with no borrowing constraints generate small

MPCs which have little correlation with housing. In models with borrowing constraints, MPCs

increase, and the presence of leverage makes MPCs highly correlated with housing values. Our

formula also explains why, following different shock histories which produce different distributions

of housing and debt, an economy displays different aggregate responses to current shocks.

Our sufficient-statistic tells us that the consumption response to a house price change is

determined by its effect on household endowments times the marginal propensity to consume.

This is the definition of the endowment effect, and so it follows immediately that all channels

except the endowment effect exactly cancel. This in turn means that despite their potential

complexity, one can interpret total house price effects on consumption as working equivalently

to pure dollar transfers.6 Our decomposition also provides additional intuition for why models

with borrowing constraints imply much larger consumption responses than PIH models. With

borrowing constraints, the timing of wealth effects rather than just their present value becomes

relevant. A permanent increase in house prices immediately increases current resources, while

higher implicit rental costs occur in the future. Unlike in a PIH model, borrowing constraints

imply that the current resource effect is dominant for current consumption choices. This holds

with any borrowing constraint, but the fact that houses serve as collateral generates an additional

consumption effect, as increases in house prices relax borrowing constraints.7

Our baseline is a partial equilibrium model calibrated to life-cycle wealth data from the Survey

of Consumer Finances. We show that this model delivers an average elasticity of consumption to

house price shocks of around 0.5. This elasticity is large, even relative to the empirical evidence

outlined below that typically estimates elasticities of around 0.2, and especially relative to PIH

models that generate elasticities near zero.

Two model features explain this large elasticity. First, income uncertainty and precautionary

savings mean that low net worth agents have large MPCs. Second, housing services enter the

utility function, which implies that housing wealth is not proportional to total net worth. In

particular, low net worth agents borrow and so hold housing that is a multiple of net worth.

Therefore, the model generates a joint distribution with a substantial fraction of households with

large housing values, low net worth, and high MPCs. Using our formula, this implies that the

average consumption response to house price shocks is large. Thus, standard incomplete markets

models imply large causal responses of consumption to house price changes and do not require

additional features such as house price movements which are correlated with future income or

5We pursue this measurement exercise in Section 4.
6This does not imply that the other three effects are small in isolation, just that they cancel out with each

other. This is important for interpreting various empirical and theoretical results in the literature.
7In fact, Sinai and Souleles (2005) were careful to acknowledge the potential role of borrowing constraints and

substitution effects in undermining their result.
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other fundamentals to generate these effects.

Our baseline model has no housing transaction costs, long-term debt or rental option. There-

fore, it produces an unrealistic frequency of housing transactions and cannot match the large

fraction of renters in the population. We extend the model to allow for illiquid housing, long-

term mortgage debt with costly refinancing and rentals and show that our sufficient-statistic

no longer holds exactly. However, for realistic parameter choices it still provides a very good

approximation. Somewhat surprisingly, the presence of housing adjustment costs and more real-

istic mortgages has only minor implications for the effect of house prices on consumption. The

main quantitative difference between the baseline and extended model comes from the presence

of renters. In the model with renters the average response over working life falls to around 0.25.

This decline occurs both because some agents do not own a house, and thus have zero endowment

effect, and because agents who choose to rent are precisely the low net worth, high-MPC agents

who would have the biggest responses if they owned.

After showing that the sufficient-statistic approximation is robust to various model specifica-

tions, we take seriously the observation that its components are observable in the data. Estimating

the distribution of MPC×PH in the data (where PH denotes house values) provides an alterna-

tive sufficient-statistic-based measure of housing price effects and can also be interpreted as a test

of our structural consumption model. The main challenge is to estimate MPCs conditional on

housing holdings, which we address by extending the approach of Blundell, Pistaferri and Preston

(2008) to recent PSID data. We find that the micro patterns of MPC ×PH are similar to those

implied by our simulations and that our sufficient-statistic-based measure of housing price effects

is in line with existing estimates using alternative identification strategies. Interestingly, we also

find that splitting the PSID sample into the housing boom and bust delivers house price effects

which are substantially larger in the bust.

In the final section of the paper, we show that this arises naturally in our model by extend-

ing the analysis beyond one-time partial equilibrium house price shocks to a general equilibrium

exploration of boom-bust housing cycles. A typical feature of housing cycles is that residential in-

vestment first increases and then decreases, along with house prices, suggesting an important role

for shifts in housing demand. In order to generate such shifts, we introduce changes in expected

future house price growth in order to generate equilibrium changes in residential investment which

match the data. While these shifts in expectation are crucial for matching residential investment,

we show that they have only mild direct effects on consumption: consumption is primarily driven

by the partial equilibrium house price level effects investigated in the rest of the paper.8 How-

ever, this does not imply that shifts in housing demand are irrelevant for consumption dynamics.

The important channel here is that past shifts in housing demand affect the joint distribution

of housing and debt, and thus determine the magnitude of the house price effect. In particular,

8These results also show that our conclusions are robust to relaxing the assumption of permanent shocks.
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in our simulations, the increase in housing demand during the boom leads to increased leverage,

and this contributes substantially to the consumption contraction caused in the bust.

The boom-bust simulations show that the distribution of housing and debt matters for the

strength of house price effects. This observation is important when interpreting empirical evidence

from different time periods and when contemplating potential policy intervention into housing

markets. Both shocks and policy interventions may have effects on consumption that differ

dramatically depending on the distribution of household state-variables at the time the policy is

enacted. In this sense, our result joins a growing literature arguing that the economy may exhibit

time-varying responses to aggregate shocks.9

Our paper is motivated by the empirical literature studying house price effects on consump-

tion. While methodological and data differences have led to a wide range of estimates for the

relationship between house prices and consumption, the literature has generally found strong re-

lationships. Whether or not such relationships are causal is more contentious, but recent papers

with new sources of identification have argued for such causality.10 We contribute to this debate

both by showing that theory is consistent with large causal effects and by constructing a new

sufficient-statistic based measure of these housing price effects.

The first empirical studies of the relationship between consumption and house prices focused

on aggregate data and typically found elasticities of 0.1 to 0.2.11 The greatest challenge for

these studies is finding exogenous variation in house prices which can be used to separate direct

house price effects from the effects of common factors. In particular, an important concern is

that expectations about future income growth may drive both house prices and consumption.12

This has led to a surge in interest in micro level evidence, which allows for more variation in

consumption and house prices and for alternative sources of identification. For example, Mian et

al. (2013) make progress on identification by using high quality credit card data together with

the Saiz (2010) housing supply instrument to isolate the effects of exogenous changes in house

prices on highly localized measures of spending.13 Their baseline estimates of the non-durable

consumption elasticity are between 0.13 and 0.26.14 We view the elasticities from Mian et al.

9See e.g. Berger and Vavra (2015) for applications to durable goods, Vavra (2014) for applications to prices
and Caballero and Engel (1999) and Winberry (2015) for applications to investment.

10While there are different ways of measuring housing price effects, for consistency we will focus the discussion
on estimates of the consumption elasticity to house prices—the percentage change in non-durable consumption
due to a one percent change in house prices.

11Case et al. (2013) find elasticities from 0.03 to 0.18, with most of the their estimates centered around 0.10,
while Carroll et al. (2011) find an immediate (next-quarter) elasticity of 0.047, with an eventual elasticity of around
0.20. They report results in terms of MPCs of 2 and 9 cents (in 2007 dollars) respectively. In 2007, housing assets
from the Flow of Funds were $28,369 billion and personal consumption expenditures from the BEA were $9,750.5
billion. This delivers the reported elasticities.

12See Attanasio and Weber (1994).
13See also Campbell and Cocco (2007) and Attanasio et al. (2009) for other recent micro studies.
14They report estimates between 0.5-0.8. However, given their methodology these estimates need to be scaled

by housing wealth/total wealth to be comparable to the other estimates listed above. Since the mean housing
wealth to total wealth ratio in their data is between 0.25-0.33, this implies elasticity estimates ranging from 0.13
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(2013) as the closest empirical analogue to the direct house price effects in our theory, so we will

often compare our theoretical results to these numbers. Several recent papers such as Kaplan

et al. (2015) and Stroebel and Vavra (2015) also arrive at similar numbers using new scanner

spending data and additional identification strategies.

Our paper is part of a large and growing literature studying the theoretical response of con-

sumption to house prices in quantitative models with heterogeneous agents. A number of papers

have calibrated and simulated increasingly rich models with housing and debt, using them to

both address aggregate questions and draw cross sectional predictions, e.g., Carroll and Dunn

(1998), Campbell and Cocco (2007), and Attanasio et al. (2011). More recently, models with

these features have been embedded into general equilibrium frameworks, to study the role of

households’ balance sheets and debt capacity in the Great Recession.15 In particular, several

papers have pointed to house values as prime determinants of households’ debt capacity.16 Gorea

and Midrigan (2015) studies the effects of illiquid housing on consumption and savings. Huo and

Ŕıos-Rull (2013) and Kaplan et al. (2015) are two recent papers that study heterogeneous agent

general equilibrium models with endogenous house prices, consumption and income.

We view our theoretical analysis as highly complementary to this line of work. Our sufficient-

statistic formula and decompositions help identify the channels at play and show the crucial role

of the endogenous distribution of housing and debt for the size of house price effects. The ma-

jority of our analysis is conducted in partial equilibrium. As emphasized by Kaplan et al. (2015),

house prices are equilibrium objects, which complicates the interpretation of correlations between

house prices and consumption. This is because structural shocks which move house prices may

themselves have direct effects on consumption so that the simple correlation between house prices

and consumption will reflect both the causal effect of house prices on consumption plus any con-

founding effect from the underlying structural shock. In this paper, we are interested in whether

housing markets themselves play an important role in shaping consumption and propagating un-

derlying shocks. As such, we want to isolate the causal effects of house price movements, which

fundamentally require modeling housing, from any confounding effects of structural shocks on

consumption, which occur independently of housing. The partial equilibrium analysis used in

much of our paper holds constant all possible confounding effects, and so shows that there is

indeed an important causal effect of house prices on consumption in many models.

Importantly, our sufficient-statistic formula measures the strength of this causal effect and

how it changes with economic conditions or across models. It does not provide a formula for the

to 0.26. Although these estimates can be interpreted as consumption responses to exogenous house price shocks,
it is important to note that they are not pure partial equilibrium responses, since they reflect both direct house
price effects plus any local general equilibrium responses. In particular, they include the additional effect on
consumption due to increases in local incomes driven by greater non-tradable spending.

15Good examples are Favilukis et al. (2015) and Chen et al. (2013). Early work in this direction—that does not
model housing—includes Hall (2011), Guerrieri and Lorenzoni (2011), Eggertsson and Krugman (2012).

16See, Midrigan and Philippon (2011) and Justiniano et al. (2015).
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simple correlation between house prices and consumption in equilibrium, which will depend on

the underlying structural shocks which drive house prices. Nevertheless, our boom-bust exercise

shows that our formula can even match this simple correlation when house prices are driven by

expectations of future house price growth, since these structural shocks have little direct effect

on consumption. Interestingly, Kaplan et al. (2015) run a horse-race between various structural

shocks and conclude that exactly this type of shock best explains the data.17

Our emphasis on sufficient statistics connects our paper to recent work by Auclert (2015).

Work in public finance has widely developed the use of sufficient statistics to characterize welfare

effects and optimal policy (see Chetty (2009)). In macro, the idea is to use this approach to express

some aggregate response, which may be hard to measure, in terms of individual responses, which

may be easier to identify in micro data. Of course, some further steps may be necessary to

translate these aggregate partial equilibrium responses into general equilibrium effects. However,

we see this as a promising avenue to investigate increasingly complex heterogeneous agents models

and connect them to the data.

The remainder of the paper proceeds as follows: In Section 2 we present the baseline model,

derive our sufficient-statistic formula, and show baseline results. In Section 3 we show that our

sufficient statistic remains accurate for the extended model that includes adjustment costs, renters

and more realistic mortgages and discuss the effects of these features on the size of housing price

effects. In Section 4 we take our formula directly to micro data to construct a new empirical

measure of house price effects. Finally, in Section 5 we simulate a housing boom-bust episode

in equilibrium and show that it leads to substantial time-variation in the strength of house price

effects.

2 Model

We consider a dynamic, incomplete markets model of household consumption. Households have

finite lives and face uninsurable idiosyncratic income risk. The main distinguishing feature of the

model is that households trade houses that provide housing services and can borrow against the

value of their houses.

2.1 Set up

Time is discrete and runs forever. There is a constant population of overlapping generations of

households, each living for J periods. The first Jy periods correspond to working age, the next

17They also show that our sufficient-statistic formula can match the correlation between house prices and
consumption in their model in response to this shock, again since it has little direct effect on consumption.
Unsurprisingly, since our formula is designed to capture only causal effects, it does not match the simple correlation
between consumption and house prices when house prices are driven by structural shocks, such as income, which
more directly affect consumption.

6



Jo periods to retirement.

Households invest in two assets: a risk-free asset and housing. Let Ait and Hit denote the

holdings of the two assets by household i at time t. The risk-free asset is perfectly liquid and yields

a constant interest rate r. The housing stock yields housing services one-for-one, depreciates at

rate δ, and trades at the price Pt. For most of our analysis we focus on the case of constant house

prices, Pt = P , and study the effects of an unanticipated, permanent shock to P . However, in

Appendix 3, we also consider the case in which Pt is stochastic and follows a random walk and, in

Section 5, the case in which the expected price path is deterministic but not constant.18 In both

cases results are extremely similar to those obtained with the simpler one-time unanticipated

shock.

Households born at time t maximize the expected utility function

E

[
J∑
j=1

βjU(Cit+j, Hit+j) + βJ+1B(W̃it+J+1)

]
,

where Cit is consumption of non-durable goods and W̃it+J+1 is the offspring’s real wealth. The

per-period utility function and the bequest function are, respectively,

U (Cit, Hit) =
1

1− σ
(Cα

itH
1−α
it )1−σ, B(W̃it+J+1) = Ψ

1

1− σ
W̃ 1−σ
it+J+1.

The offspring’s real wealth is

W̃it+J+1 =
Γit+J+1 + Pt+J+1(1− δ)Hit+J + (1 + r)Ait+J

PXt+J+1

,

where Γit+J+1 is the offspring’s human wealth and will be specified shortly, Pt+J+1(1− δ)Hit+J +

(1 + r)Ait+J are bequests, and PXt+J+1 = ΩP 1−α
t+J+1 is a price index that adjusts for changes in

the cost of housing.19

The assumption of Cobb-Douglas preferences for non-durable consumption and housing ser-

vices plays an important role in our baseline results. While estimates of the elasticity of sub-

stitution between non-durables and housing based on macro data are somewhat varied, more

relevant evidence from micro data consistently finds support for an elasticity of substitution close

to unity (Piazzesi et al. (2007), Davis and Ortalo-Magné (2011), and Aguiar and Hurst (2013)).

Furthermore, in Appendix 2 we obtain similar quantitative results using CES preferences with

elasticity of substitution in a reasonable range.

Households face an exogenous income process. When the household works, income is given

18The focus on permanent shocks has a good empirical motivation. Real house prices exhibit values of annual
persistence around 0.94 in Case-Shiller and OFHEO house price data from 1960-2014, and a random walk cannot
be rejected.

19In particular, Ω = α−α(1− α)−(1−α)(1− (1−θ)(1−δ)eg
1+r )
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by

Yit = exp{χ(jit) + zit},

where χ(jit) is a deterministic age-dependent parameter, jit is the age of household i at time t,

and zit is a transitory shock that follows an AR(1) process

zit = ρzit−1 + εit.

When the household is retired, income is given by a social security transfer, which is a function

of income in the last working-age period, which we specify following Guvenen and Smith (2014).

The per-period budget constraint is

Cit + Pt (Hit − (1− δ)Hit−1) + Ait = Yit + (1 + r)Ait−1.

Households can borrow, but they have to satisfy the borrowing constraint

−Ait ≤ (1− θ)1− δ
1 + r

Pt+1Hit, (1)

where (1− θ) is the fraction of a house’s future value that can be used as collateral.

2.2 The Permanent-Income Case

We begin with a special case that can be solved analytically and gives us a reference permanent-

income-hypothesis (PIH) result, with small house price effects on consumption.

Consider the case of a deterministic income process (σε = 0), no borrowing constraints, and

constant house prices Pt = P . Assume:

(1 + r)β = 1, Ψ = (1− β)−σ.

Under these assumptions, there is perfect consumption smoothing: consumption of non-durable

goods and housing are constant over the lifetime. Moreover, non-durable consumption is equal

to a fixed fraction α(1 − β) of total wealth, which includes human wealth, housing wealth, and

financial wealth:20

Cit = α(1− β)

[
t+J−j∑
τ=t

(1 + r)−τYit+τ + (1− δ)PHit−1 + (1 + r)Ait−1

]
.

Now consider the effect of an unexpected, permanent shock to the house price P . The elasticity

20For simplicity, we set the human wealth of offspring to zero.
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of consumption to this shock is equal to the share of housing in total wealth:

dCit/Cit
dP/P

=
(1− δ)PHit−1∑t+J−j

τ=t (1 + r)−τYit+τ + (1− δ)PHit−1 + (1 + r)Ait−1

. (2)

What are the quantitative implications of this case? To assess this, note that equation (2) also

holds in the aggregate and thus each quantity on the right-hand side can be measured directly

using aggregate data. For consistency with the rest of the paper let us use aggregates from the

2001 Survey of Consumer Finances (SCF). We then get (1 − δ)PH = 2.15Y and A = −.32Y ,

where H is average housing, A is average liquid wealth net of debt, and Y is average earnings.

Using an interest rate of r = 2.5% and an infinite horizon approximation, human wealth is equal

to Y/r = 40Y . The aggregate elasticity of non-durable consumption implied by the model is

then 0.0514, a small number relative to empirical housing price effects. Moreover, this elasticity

is insensitive to the level of indebtedness of the household sector. For example, suppose that

household debt goes up by 0.5Y so that A = −0.82Y , holding all else equal. This is a very

large increase in debt but yields a nearly identical and still small elasticity of 0.0520. Finally,

this simple model implies that elasticities will be higher for older households, since they have a

smaller fraction of human wealth to total wealth.

What drives the consumption response to house prices in the PIH model? The response can be

decomposed into three effects: a substitution effect, an income effect, and an endowment effect.21

It is then possible to interpret equation (2) in two ways.

First, due to the Cobb-Douglas assumption, the income and substitution effects exactly cancel

out. Since only the endowment effect remains, this implies that the change in consumption in (2)

can be interpreted as a pure endowment effect.

However, an alternative interpretation is possible. In this model consumption of housing

services is constant over time. Hence, at any point after the first period of life, an increase in the

price of housing raises the value of an agent’s housing endowment, but at the same time it raises

the net present value of the future implicit rental cost on housing services by roughly the same

amount.22 The detailed derivations behind these statements are in Appendix 1. Therefore, the

effect in (2) can also be interpreted as an (almost) pure substitution effect, with the income and

endowment effects canceling out. This interpretation is consistent with the view discussed in the

introduction that housing price effects must be small, because of the increase in future implicit

rental costs. It is important to note that both interpretations of (2) are correct. However, the

21A permanent increase in P increases the service cost of housing in all future periods. The substitution effect
is the shift from housing services in all future periods towards current consumption, keeping the present value of
future expenditures constant. The income effect is the change in current consumption due to a reduction in the
present value of expenditures arising from the increased cost of housing in all future periods. The endowment
effect is the change in current consumption due to an increase in the present value of expenditures arising from
the increase in the value of the initial housing stock.

22The effects are not exactly equal due to depreciation δ. When δ = 0 they are exactly equal.
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first interpretation will be especially useful in what follows as it survives in richer versions of the

model.

2.3 Sufficient-Statistic Formula

Return now to the general model with income uncertainty and borrowing constraints, and assume

house prices follow the geometric random walk with drift

Pt = xtPt−1,

where xt is an i.i.d. shock with E[xt] = eg. In this setup, we derive our main analytical result: the

individual consumption response to a permanent house price shock is given by a simple formula,

the individual marginal propensity to consume out of temporary income shocks times the value

of the housing stock.

To set the stage for the result, we first represent the household problem recursively. Define

total wealth Wit ≡ (1 − δ)PtHit−1 + (1 + r)Ait−1. The household’s Bellman equation can be

written as

V (Wit, zit, jit, Pt) = max
Cit,Hit,Ait

U (Cit, Hit) + βE [V (Wit+1, zit+1, jit + 1, xt+1Pt)] (3)

subject to Cit + PtHit + Ait = Yit +Wit,

Wit+1 = (1− δ)xt+1PtHit + (1 + r)Ait ∀xt+1,

(1− θ) (1− δ)xt+1PtHit + (1 + r)Ait ≥ 0 ∀xt+1.

The bequest motive gives the terminal condition:

V (Wit, zit, J + 1, Pt) =
Ψ

1− σ

(
Γit +Wit

PXt

)1−σ

.

We are now ready to prove our main analytical result.

Proposition 1 The individual response of non-durable consumption to the permanent house price

shock xt is

MPCit × (1− δ)Pt−1Hit−1, (4)

where MPCit is the individual marginal propensity to consume out of transitory income shocks.

Proof. First, we prove by induction that the value function can be written as

V (W, z, j, P ) = P−(1−σ)(1−α)v (W, z, j) ,
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for all W, z, j, P , where for j < J + 1 the function v satisfies the Bellman equation

v(W, z, j) = max
C,H̃,A,W ′

U(C, H̃) + βE
[
x−(1−σ)(1−α)v (W ′, z′, j + 1)

]
,

subject to C + H̃ + A = Y (s) +W,

W ′ = (1− δ)xH̃ + (1 + r)A,

(1− θ) (1− δ)xH̃ + (1 + r)A ≥ 0,

z′ = ρz + ε.

The property holds immediately for V (W, z, J + 1, P ) since PXt = ΩP 1−α
t . Next, we prove that

if the property holds for V (W, z, j + 1, P ) then it holds for V (W, z, j, P ). Rewrite the Bellman

equation (3) in terms of the variable H̃t = PtHt. The property U(C, H̃/P ) = P−(1−σ)(1−α)U(C, H̃)

and the induction hypothesis imply that the expression P
−(1−σ)(1−α)
t can be factored out of the

objective function and does not affect the optimization problem. This completes the induction

step.

Let C (W, z, j) denote the policy function associated with this optimization problem and notice

that it is independent of the current price P . Therefore, Cit responds to the shock xt only through

its effect on Wit and the response is

∂C (Wit, zit, jit)

∂W
(1− δ)Pt−1Hit−1.

To complete the argument notice that ∂C (Wit, zit, jit) /∂W is also equal to the response to a

transitory income shock, denoted by MPCit.

The result can immediately be restated in terms of the individual elasticity of non-durable

consumption to house prices

ηit = MPCit ·
(1− δ)Pt−1Hit−1

Cit
.

The consumption response to house price changes can be measured in different ways. The elas-

ticity ηit has the advantage of being unit free. The expression (4), which captures the response in

dollar terms to a percentage increase in house values has the advantage that it can be aggregated

over individuals to yield the economy-wide response of consumption to a uniform percentage

change in house values. Finally the consumption response can be measured in dollar-per-dollar

terms, as the response of consumption to a one dollar increase in house values, in which case

Proposition 1 states that the response is equal to MPCit. In the rest of the paper, we refer to

all these three measures, but tend to favor the elasticity.

Notice that Proposition 1 can be easily extended to characterize the response to any permanent
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component of price shocks in models with general stochastic processes for Pt. The responses to

transitory shocks and to shocks that affect the expected future growth rate of house prices will

be discussed in Section 5.

The simple formula in Proposition 1 contains two objects that are both endogenous, so it

does not deliver a closed form solution. However, the formula is useful for understanding how

endogenous forces determine the sensitivity of an economy to house price shocks. In particular,

house price shocks will have bigger effects when MPCs are larger, when gross housing wealth is

larger, and when there is a stronger correlation between MPCs and housing values in the economy.

In Section 3, we show that the formula continues to hold approximately in richer versions

of the model with adjustment costs, more realistic mortgages and the option to rent. Hence,

it can provide intuition in substantially more complicated environments. Furthermore, given

empirical estimates of MPCs conditional on housing wealth, the formula can be used as a sufficient

statistic for the model-implied response of consumption to house price shocks, without the need

to structurally estimate the full model. We explore this approach in Section 4.

At first sight, formula (4) may appear tautological. The non-obvious content arises from two

sources. First and most importantly, a shock to house prices is a shock to current endowments,

but also changes relative prices and the tightness of borrowing constraints so it is not trivial that

responses would take this simple form. Second, the relevant MPC is the marginal propensity to

consume out of temporary income shocks, not out of housing wealth. To better understand the

result it is useful to think about the underlying forces at work. As previewed in the introduction,

when house prices increase, there are four effects: (1) a substitution effect that makes households

substitute away from housing—which is now more expensive—towards non-durable consumption;

(2) an income effect, which makes households poorer overall because the implicit rental cost of

housing is higher today and in all future dates; (3) a collateral effect, arising from the fact that

higher collateral values allow households to increase borrowing, today and in the future; (4) an

endowment effect, which comes directly from the increase in the value of the house owned when

the shock hits.23 Formula (4) tells us that the first three effects exactly cancel out, so only

the endowment effect remains. We will return to this decomposition in Subsection 2.6, after

calibrating and simulating our model, to look at the relative magnitude of these four effects.

The Cobb-Douglas assumption on preferences clearly plays an important role in the proof

of Proposition 1. In Appendix 2, we examine the case of general CES preferences and show

that our main quantitative conclusions survive as long as the elasticity of substitution between

consumption and housing is not too far from one.

23To formally define income and substitution effects requires extending these notions to the dynamic, incomplete
markets environment analyzed here. The details are presented in Appendix 1.
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2.4 Calibration

We now calibrate the model in order to assess its quantitative implications for consumption

responses to house prices, and we use Proposition 1 to interpret the results.

The baseline model parameters are shown in Table 1. The model is annual. We interpret

the first period of life as age 25.24 Households work for Jy = 35 years (between 25 and 59) and

are retired for Jo = 25 years (between 60 and 84). We set the interest rate r = 2.4%.25 In our

baseline calibration, we use a coefficient of relative risk aversion σ equal to 2.26

House prices are constant except for an unexpected, permanent shock. We choose a depre-

ciation rate of housing δ = 2.2% to match the depreciation rate in BEA data from 1960-2014.

The collateral constraint parameter θ determines the minimum mortgage down payment, and we

choose a conservative value of 0.25.27

Table 1: Parameter Values

Parameter σ r δ θ ρz σz α β Ψ Ξ
Value 2 2.4% 2.2% 0.25 0.91 0.21 0.854 0.9331 1, 353 3.4137

The income process during working age has a life-cycle component and a transitory component.

The life-cycle component is chosen to fit a quadratic regression of yearly earnings on age in the

PSID as in Kaplan and Violante (2010). Following Floden and Lindé (2001), the temporary

component z follows an AR1 process with autocorrelation ρz = 0.91 and standard deviation

σz = 0.21 to match the same statistics in PSID earnings (after taking out life-cycle components).

In retirement, households receive a social security income payment which is modeled as in Guvenen

and Smith (2014).

The three remaining parameters to calibrate are: the coefficient α on housing services, the

discount factor β, and the bequest parameter Ψ. We choose these parameters jointly to match

life-cycle profiles of housing and non-housing wealth in the data. Namely, from the 2001 Survey of

Consumer Finances (SCF) we compute average housing wealth and average liquid wealth net of

debt for households in 9 age bins (25-29, 30-34, ..., 60-64, 65 and over). Our model is very stylized

for retired agents since they face no sources of risk. Therefore, we prefer to focus our calibration

and predictions on working-age agents. Our notion of liquid wealth net of debt includes all assets

in SCF excluding retirement accounts for agents before retirement, but including retirement

accounts for agents above age 60. In the model, we assume that retirement accounts take the

24We begin the model at this age in order to abstract from complications with schooling decisions.
25We target interest rates from 1990-2000, which we view as the steady-state for our simulations but results are

not sensitive to the level r.
26Using log utility or other values of σ does not substantively change our conclusions on the effect of a price

level shock. In Section 5 we discuss how σ affects the model response to anticipated price changes.
27Lowering θ amplifies the size of consumption responses.
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form of a lump sum transfer at retirement, which is calibrated to equal a fraction Ξ of labor

income prior to retirement.

We initialize the model by giving agents of age 25 holdings of housing and liquid assets and

income to match the distribution of age 23-27 households in the 2001 SCF.28 We then choose the

parameters α, β,Ψ and Ξ to minimize the quadratic distance between the sequences of housing

and liquid wealth by age bin in the data and the corresponding sequences generated by the model.

We target liquid wealth rather than total non-housing wealth because this delivers MPCs which

are more in line with empirical estimates. This is consistent with the observation in Kaplan

and Violante (2014) that many households are “wealthy-hand-to-mouth”. While it would be

desirable to separately model liquid and illiquid wealth in addition to the choice of housing, this

would substantially complicate the analysis. The majority of non-housing illiquid wealth is held

in retirement accounts, which have large withdrawal penalties prior to retirement but become

fully liquid after retirement. Thus, we believe that our calibration strategy reasonably matches

the fraction of wealth that can be easily accessed both prior to and after retirement.29

Figure 1: Housing and Net Liquid Wealth over the Life Cycle: Data vs Model
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Figure 1 shows the fit of the calibrated model in terms of average housing wealth (top panel)

and average liquid wealth net of debt (bottom panel), by age bin.30 The blue circles are the

model predictions and the green squares are from the 2001 SCF. Despite its simplicity the model

delivers a reasonable fit, the main discrepancy being too little housing in the early periods and

too much debt in the mid 30s and 40s.

28Using only age 25 households would give us a small sample and introduce large measurement error.
29Nevertheless, targeting total wealth rather than liquid wealth still produces large elasticities.
30The point for the age bin 65 and over is plotted at age 70.
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2.5 The effects of a permanent house price shock

We now turn to the model predictions for our main comparative static exercise. Namely, we look

at the instantaneous response of non-durable consumption to a negative, unexpected, permanent

1% reduction in house prices.31

Figure 2: Elasticities over the Life Cycle: Frictionless Model
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Figure 3: Understanding the Life Cycle: Frictionless Model
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31Results are very similar for larger house price declines as well as house price increases.
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The average elasticity of consumption over working life is 0.47. Figure 2 reports elasticities

for different ages, with values as high as 0.6 for agents in their late 20s. Elasticities are higher for

younger agents and decline steadily after 30. The main takeaway is that magnitudes are much

larger than in the PIH model and are declining rather than increasing with age. In fact, the

elasticities obtained here are considerably larger than empirical estimates in the literature. In

the following section, we show that adding more realistic features to the model, and in particular

adding the option to rent, yields elasticities more in line with empirical estimates.

We can use our formula (4) to interpret this result. In Figure 3 we separately plot the two

elements of the formula: MPCs and housing values, averaged by age. The high elasticities of

young agents are driven by the fact that they have a high MPC and, at the same time, hold

substantial amounts of housing. In a precautionary saving model the MPC depends on total net

worth W and is decreasing in W due to concavity of the consumption function. Young agents

own houses but finance them with debt, so they have low net worth despite having relatively

high levels of housing. This explains the joint presence of high MPCs and high levels of housing.

Interestingly, our finding that young homeowners, who are more levered, exhibit larger responses

to house prices than old homeowners, who are less levered, is consistent with the empirical finding

in Attanasio et al. (2009).

2.6 Decomposing The House Price Effect

To conclude this section, we return to the decomposition of the consumption response introduced

in Subsection 2.3 and discuss its connection with the existing literature. As mentioned before, the

response can be decomposed into four effects: substitution, income, collateral, and endowment.

Proposition 1 shows that the first three effects exactly cancel and the response of consumption to

a house price shock can be interpreted as purely driven by the endowment effect. However, this

does not imply that each of the other effects is individually small in absolute value. In Appendix

1 we develop a methodology to distinguish the four effects, extending definitions form classical

demand theory to models with uninsurable risk. The effects are reported by age in Figure 4. For

this particular figure we report the response of the consumption level to a 1% change in house

prices rather than elasticities because the decomposition is additive in levels and so aggregates

easily across agents.

One can see from Figure 4 that the income effect cancels with the sum of the substitution

and collateral effects. This implies that, as shown by our sufficient-statistic formula, the total

consumption response can be interpreted as a pure endowment effect. However, an alternative

interpretation of the same figure is that the total consumption response reflects the sum of three

effects which are each important and similar in magnitude: the net wealth effect, which is given

by the endowment effect minus the income effect, the substitution effect, and the collateral effect.

Both interpretations are correct and useful for different reasons: The latter interpretation
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Figure 4: Decomposition of The House Price Effect
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shows that many competing effects are at work, and each is relevant on its own for determining

the total consumption response. The former interpretation shows that these effects are tightly

linked together through optimizing behavior and that the net effect can be summarized by the

product of two easily interpretable empirical objects: the MPC and the house value.

To illustrate the usefulness of both interpretations, consider the large consumption response

in our model relative to the PIH model. Part of the large response in our model directly reflects

the addition of the collateral channel. In addition, unlike in the PIH model, the endowment

effect no longer approximately cancels with the income effect. Instead, the net wealth effect of

a house price increase is positive and sizable. The intuition for this result is that a permanent

increase in house prices leads to an immediate positive endowment effect while the increase in

implicit rental costs occurs mostly in the future. Even though house price movements remain

roughly neutral for a household’s lifetime budget constraint, borrowing constraints mean that

consumption responds more to current than future income, so the endowment effect dominates.

Thus, the greater consumption response in our model relative to the PIH model can be interpreted

as an increase in the net wealth effect, with an additional collateral channel. Alternatively, using

our sufficient-statistic interpretation, it is immediate to see that the small consumption response

in the PIH model simply reflects the fact that this model implies a very small MPC.

The fact that borrowing constraints change the strength of the net wealth effect is also im-

portant when using PIH intuition to empirically identify house price shocks on consumption. For

example, Attanasio et al. (2009) find that consumption of the young is more correlated with house

prices than that of the old and interpret this as evidence against housing wealth shocks, since in

a PIH framework, older households should respond more strongly to changes in wealth due to
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their shorter planning horizon. Attanasio et al. (2011) validate this prediction in a sophisticated

quantitative model which relaxes the stylized PIH assumptions, but our results show that this

theoretical relationship does not hold in general and can be somewhat sensitive to particular

modeling choices. In our baseline results, the young respond much more strongly to house price

shocks. In the following section, we allow for rental markets and find that consumption responses

become largely independent of age. Our theoretical results show that the age-profile of consump-

tion responses will be determined by the age-profile of MPC×PH, which our quantitative results

show is theoretically ambiguous.32 Ultimately, this age-profile is an empirical question, which we

address in Section 4.

Our theoretical decomposition of housing price effects also helps reconcile our large elasticities

with the intuition of the “small house-price-effects” view mentioned in the introduction. This view

builds on the PIH model by arguing that, since changes in housing asset values are offset by future

changes in the user-cost of housing, “housing wealth is not real wealth” and should have little

effect on consumption. For example, Sinai and Souleles (2005) argue that this should be true when

house price movements are perfectly correlated since everyone must live somewhere. However, in

their model there is no precautionary motive, which implies that income and endowment effects

exactly cancel; there are no substitution effects, as housing holdings are fixed; and there are no

collateral effects. Therefore, the three channels identified above are absent.

Finally, our results have implications for the empirical literature measuring the strength of

the various channels through which house prices affect consumption. Each channel in our model

is large in isolation, so our model is quite consistent with the conclusions in DeFusco (2015) and

Mian et al. (2013) that there is a significant consumption response to housing collateral changes

and that the poorest and most indebted households respond most significantly to house price

movements through this channel. In particular, the collateral channel in our model implies a

marginal propensity to borrow of just over 10 cents, which is in line with the evidence in DeFusco

(2015). Nevertheless, it is important to note that the collateral effect in our model is tightly

linked to the other three effects, and that their sum eventually boils down to the endowment

effect alone, so the interpretation of the collateral effect in isolation must be done with care.

3 Extended Model

In this section, we extend the model by relaxing various simplifying assumptions in order to get

a better quantitative assessment of housing price effects. In particular, we progressively enrich

the model by introducing adjustment costs to housing, the option to rent, and more realistic

mortgage contracts.

32This theoretical ambiguity might also help explain why some other studies such as Kaplan et al. (2015) and
Campbell and Cocco (2007) find stronger effects for the old.
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In terms of our sufficient-statistic approach, our main conclusion is that the formula derived in

Proposition 1 provides a good approximation for all realistic calibrations explored in this section.

This does not mean that the quantitative implications are insensitive to the different specifications

analyzed, since different specifications have different implications for the joint distribution of

housing wealth and MPCs. It just means that we can use the formula to interpret the results

obtained under all of our calibrations.

In terms of magnitudes, we still find fairly large elasticities under all the calibrations explored.

The fully enriched model produces elasticities that are roughly half of what we found in the

baseline, and is thus closer to the empirical estimates. This is mostly due to the introduction of

the rental option, as we explain shortly.

3.1 Housing Transaction Costs

The assumption that housing can be traded frictionlessly is clearly counterfactual: search costs

and brokers’ fees make it costly to sell and buy houses, and indeed households trade houses only

infrequently.33 We model adjustment costs as a fixed cost, incurred whenever the household

changes its stock of housing. In particular, if household i decides to trade housing at time t, it

pays a cost proportional to the value of the house sold

κit = F · PtHit−11Hit 6=Hit−1
,

where 1 is an indicator function equal to 1 iff Hit 6= Hit−1 and where we set F = 0.05. This

transaction cost is equal to the value of housing adjustment costs calibrated in Dı́az and Luengo-

Prado (2010) and is close to the adjustment costs of 0.0525 estimated in Berger and Vavra (2015)

for a broad measure of durable spending. In addition, we show below that our conclusions are

not particularly sensitive to changes in the size of this cost.

The presence of fixed adjustment costs substantially complicates the household optimization

problem, as households’ policy functions are now highly non-linear and characterized by (S,s)

style inaction regions. In Appendix 4, we provide a detailed description of the numerical solution

method. We follow the same calibration strategy as in the baseline and report the parameters in

Appendix 5.

Once we introduce transaction costs, Proposition 1 no longer holds. In Figure 5 the solid

blue line shows the computed average elasticity of non-durable consumption as a function of age

and the dashed green line shows the sufficient-statistic-implied elasticity from Proposition 1. The

figure shows that even though the formula does not give the exact elasticity anymore, it remains

a quite accurate approximation.

33Berger and Vavra (2015) show that the average annual frequency of housing adjustment in the PSID is 4.3%
in data from 1968-1996 and 5.8% in data from 1999-2011.
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Figure 5: Elasticities over the Life Cycle: Model with Adjustment Costs
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The shape of the average elasticity over the life cycle is similar to the one in the baseline

model: it is high for the young agents who have high MPCs as well as substantial housing and

falls as households age and accumulate assets. Households can borrow to finance houses early in

life, so the life-cycle profile of housing is flatter than that of the MPC. The presence of housing

transaction costs further amplifies the incentive to purchase a large house when young, using

leverage, rather than slowly accumulating housing. This explains why the elasticities for young

households are larger in Figure 5 than in Figure 2.

How robust is the accuracy of the approximation formula in Proposition 1 to alternative

environments? Figure 6 compares the computed average elasticity with the sufficient-statistic-

implied elasticity for different values of the fixed cost F and of the downpayment parameter θ.

The panels on the left keep θ at its baseline value and change F , the panels on the right keep F

at its baseline value and change θ.

The figure shows that the formula of Proposition 1 is an accurate approximation for a range of

values of F and θ. In particular, increasing F barely affects the accuracy of the approximation as

long as θ remains low. The intuition is that, as long as households can borrow against their house

values, consumption can respond even if transaction costs substantially reduce house trading.

The consumption response becomes much more muted than what is implied by the MPC × PH
formula only when unrealistically high values of F and θ are combined, so that households can

no longer respond to the increased house price by either selling or borrowing.
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Figure 6: Robustness to Different Fixed Costs and Downpayment Parameters
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3.2 Rental Markets

Roughly one third of US households rent rather than owning, and their wealth is not affected

by changes in house prices. Therefore, it is important to introduce a rental option. To do so,

we assume that in each period a household must choose whether to be a homeowner or a renter.

Renters pay a flow rental cost Rt per unit of housing services. Rental housing can be adjusted

costlessly but cannot be used as collateral. We assume that the rental cost Rt is proportional

to house prices, Rt = φPt, so that house price movements are passed proportionally into rental

costs. That is, in our baseline results, we assume a constant price-rent ratio. In Appendix 5, we

show that elasticities are mildly amplified if we instead make the opposite extreme assumption

that Rt is fixed while Pt varies, so that our baseline choice is relatively conservative.

Households face a trade-off when choosing between renting and owning. The advantage of

renting is that it allows the household to keep its savings in the form of liquid assets, thus providing

a better buffer against income shocks. The disadvantage is that renting is costlier, as we assume

φ > (r + δ)/(1 + r),34 and rental housing cannot be used as collateral.35 Young households who

are more financially constrained are the ones who benefit more from the flexibility of renting and

so will disproportionally choose to rent.

The rental-to-price ratio φ is an additional parameter of the model. We follow the previous

34Notice that (r+ δ)/(1 + r)P is the user cost of housing services for a homeowner facing a constant house price
P .

35The latter advantage is not enough, on its own, to induce households to own, because renting reduces the
need for borrowing more than it reduces the availability of collateral, since θ < 1.
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calibration strategy for all other parameters and choose φ to target the life-cycle profile of home-

ownership rates. The parameters are reported in Appendix 5.36 Figure 7 shows that we are still

able to match the life-cycle profile of housing and liquid wealth reasonably well. In addition, the

model can fairly well match the upward slope and subsequent flattening of homeownership rates

over the life cycle.

Figure 7: Life-Cycle Moments: Data vs Model
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How does the addition of the rental option affect the size of consumption responses to house

prices and the accuracy of our approximation? Figure 8 shows the actual average elasticity over

the life cycle for the model with and without the rental option (solid blue line and solid red line).

The figure also shows the sufficient-statistic approximation for both models (dashed blue line

and dashed red line). There are two takeaways from this figure. The first is that even with the

rental option, the sufficient-statistic formula of Proposition 1 remains a good approximation of

the true model elasticity. The second is that the addition of a rental option substantially lowers

the response of consumption to house prices, especially for the young households. The average

elasticity over working life goes from 0.43 in the model without the rental option to 0.24 in the

model with rentals.37 Therefore, the introduction of rentals brings us closer to the estimates from

the empirical literature discussed in the introduction.

36At retirement, income risk falls to zero. This substantially changes the trade-off between liquid and illiquid
assets. With a constant rental rate this would imply a large jump up in the homeownership rate at retirement.
To eliminate this jump, we introduce a different rental-to-price ratio at retirement φ̂ < φ. This is isomorphic to a
lower utility of housing in retirement, perhaps due to no longer having children at home or to greater challenges
to home maintenance. At any rate, since we concentrate on results for working-age households, the choice of φ̂
has little effect on any of our results.

37If we include retired households average elasticities fall from 0.40 to 0.21 when introducing rental markets.
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Figure 8: Elasticities over the Life Cycle
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Figure 9: Understanding the Life Cycle
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Our MPC×PH formula helps to provide intuition for why the elasticity falls when households

have the option to rent. First, since renters do not own a house, their consumption does not

respond to house price movements. Hence, if we match the homeownership rate in our dataset

of roughly 70%, the average elasticity of consumption to house prices will mechanically fall, even
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if all households are otherwise identical. However, not all households are identical and home

ownership is not randomly distributed in the population. Figure 9 shows the life-cycle profile

of housing and MPCs in the model with the option to rent. Notice that the young households

with high MPCs are the ones who choose to rent and thus have low levels of housing.38 This

in turn lowers their consumption elasticity. Furthermore, within every age group, households

with high MPCs tend to choose to rent, given that they are closer to being constrained and thus

prefer liquid wealth over illiquid housing. Thus, our model rationalizes the empirical findings in

Campbell and Cocco (2007) and Guiso et al. (2005) that renters of all ages exhibit small responses

of consumption to house price movements.

Figure 10: Robustness to Different Downpayments and Fixed Costs
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Finally, Figure 10 assesses the accuracy of the sufficient-statistic formula under a range of

alternative parameter values. As in the model with no rental option, the accuracy of the approx-

imation is little affected by changes in the size of housing adjustment costs. It is again somewhat

more sensitive to changes in the amount of housing which can be collateralized, but is still quite

accurate for reasonable values of this parameter. In particular, as θ rises, the elasticity falls.

This is now the combination of two factors. First, household leverage falls, which reduces MPCs

for a given housing value. More importantly, in these comparative statics exercises we do not

recalibrate the model. Thus, as we raise the required down payment while keeping φ constant,

home ownership becomes less and less attractive. In our baseline results with F = 0.05 and

θ = 0.25, we match the average homeownership rate in the data of 70%, but as we raise θ to 1,

38Indeed, in both the model and the data, the life-cycle profile of homeownership is steeply upward sloping. By
age 45 the models with and without rental markets are nearly identical.
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the homeownership rate in the model falls to 23%. Therefore, most of the decline in the elasticity

as θ increases occurs because the homeownership rate is driven to counterfactually low levels.

3.3 More realistic mortgages

So far we have modeled borrowing as one-period loans subject to a collateral constraint. We now

briefly discuss extensions that more realistically capture how households borrow against their

houses’ value. While we do not attempt to model the details of fixed-rate mortgages and home-

equity loans, we can easily increase the model’s realism by introducing costly equity extraction

together with asymmetric adjustments to the borrowing limit. In both exercises presented below,

we keep the adjustment cost and the rental option introduced above.

We have so far assumed that households can costlessly increase borrowing as long as they meet

the collateral constraint. In reality, there are costs associated with extracting housing equity by

refinancing. This means that even in the model with transaction costs on housing adjustment,

our model probably overstates the liquidity of housing wealth. We now assess the robustness of

our results to introducing a cost of “cash-out refinancing”. In particular, we extend the model by

making the following assumption: if a household chooses positive holdings of the risk-free asset

At or if it chooses any At ≥ At−1 it can do so at no cost; but if the household chooses a negative

At smaller than At−1—i.e., if it increases its debt level—it must pay a fixed cost.

Since the majority of refinancing costs do not depend on loan size, we model this cost as a fixed

numeraire amount, in contrast to the housing transaction cost which is proportional to the size

of the house.39 We pick this cost of refinancing to match the fraction of refinancing observed in

Bhutta and Keys (2014), which implies a fixed cost of 0.005.40 In the model with no refinancing

cost, roughly 30% of households increase debt each year while with the refinancing cost, this

number falls to a realistic 10%.41 Thus, refinancing costs substantially reduce the number of

households who extract equity. However, the top panel of Figure 11, compared to Figure 8,

shows that this modification has negligible effects on the size of elasticities.42 The top panel of

Figure 11 also shows our sufficient-statistic approximation remains accurate in this extension.

Mortgages are long-term loans. This introduces an asymmetry in the response of the borrowing

limit to house price shocks. When house prices rise and households gain equity, households have

39We have also solved versions of the model with refinancing costs proportional to the size of the house and
results were extremely similar.

40Since income is normalized to 1, this refinancing cost is 0.5% of average annual income, but even using much
larger values produces similar results. For example, we have solved a version of the model where equity can only
be extracted by buying/selling one’s house. Even in this extreme case, results are quite similar to Figure 11.

41Our model has no distinction between forms of equity extraction, so we match total shares.
42This is due to extensive margin effects which arise in environments with fixed adjustment costs. Adjustment

costs reduce cash-out refinancing substantially, but this reduction is concentrated amongst households who would
have only extracted small amounts of equity with small resulting effects on consumption. Any household who
needs to extract substantial housing equity in order to increase consumption will still choose to do so even in the
presence of adjustment costs.
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Figure 11: Elasticities over the Life Cycle: More Realistic Mortgage Models
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the option to extract this equity and borrow more. In contrast, when house prices fall, lenders

cannot force households to put up additional collateral. That is, households are not forced to

repay their mortgage faster, even if their loan-to-value ratios go above the maximum allowed for

new loans.43 To capture this asymmetry, we consider a variant of the model in which instead of

(1) we have the collateral constraint:

−Ait ≤ max{−Ait−1, (1− θ)
1− δ
1 + r

Pt+1Hit}.

The bottom panel of Figure 11 shows the elasticity to a 1% decline in house prices under this

specification. This variant leads to slightly lower, but quite similar elasticities to those in Figure

8. Once more, the sufficient-statistic approximation remains valid.44

4 Sufficient Statistic: Empirical Evidence

The previous sections show that a simple sufficient-statistic formula provides a good approxima-

tion for the consumption response to a permanent house price shock for a wide class of life-cycle

models with uninsurable idiosyncratic income risk and borrowing constraints. In this section, we

attempt to directly estimate the sufficient-statistic formula using micro data. This provides a new

measure of housing price effects that does not rely on the specific parameters used to calibrate

43In our model, given constant house prices, the maximum loan-to-value ratio is (1− θ)(1− δ)/(1 + r).
44We have also experimented with a larger price drop of 10% and the effect of the modified constraint is still

small.
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the model, but only on the model’s general structure. We then show that our estimate is not far

from existing measures obtained with different approaches.

4.1 BPP approach

Estimating our sufficient statistic requires data on both the MPC out of a transitory income shock

and on home values. While home values are easily obtained, estimating MPCs is more difficult.

To estimate MPCs we follow the identification approach of Blundell et al. (2008) (henceforth

BPP).45

BPP show that if income follows a process with a permanent and an i.i.d. component, then,

given individual level panel data on income and consumption, one can identify the MPC out

of transitory shocks. In particular, assume that log income is yit = zit + εit, where zit follows

a random walk with innovation ηit and εit is an i.i.d. shock. It follows that the change in log

income is equal to ∆yit = ηit + ∆εit.
46 Given this income process, the true MPC (in logs) out of

a transitory shock is equal to

MPCt = cov(∆cit,εit)
var(εit)

.

Under the assumption that households have no advanced information about future shocks, a

consistent estimator of this MPC is

M̂PCt = cov(∆cit,∆yit+t)
cov(∆yit,∆yit+1)

.

With panel data containing at least three time periods, one can implement this estimator with

an instrumental variable regression of the change in consumption ∆cit on the change in income

∆yit, instrumenting for the current change in income with the future change in income, ∆yit+1.47

Since this requires individual level panel data on income and consumption, we use data from the

Panel Study of Income Dynamics (PSID).48

4.2 PSID data

Implementing our sufficient statistic empirically requires a longitudinal dataset with information

on income, consumption, and housing values at the household level. Starting from the 1999 wave,

45Kaplan and Violante (2010) show that BPP is highly robust at recovering the true MPC to temporary shocks
parameter in a variety of models. However, they do not explore models with housing, so one might wonder whether
BPP recovers the true MPC to temporary income shocks in our environment. We have performed exercises similar
to KV and found that this procedure continues to work well even in the presence of housing with transaction costs
and rental markets.

46Abowd and Card (1989) show that this parsimonious specification fits income data well.
47We then convert this MPC in logs to the MPC in levels relevant for our theory by multiplying by C/Y .
48An alternative approach to estimate MPCs, used by Johnson et al. (2006), uses random government rebate

timing and CEX data. Unfortunately, it is well known that the resulting standard errors on MPCS are large since
CEX data has smaller sample sizes than PSID, no panel structure to disentangle true changes in consumption from
measurement error, and covers a smaller fraction of consumption. Large standard errors are especially problematic
for us, since we need to estimate MPCs conditional on different levels of housing wealth.
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the PSID contains the necessary data. The PSID started collecting information on a sample of

roughly 5,000 households in 1968. Thereafter, both the original families and their split-offs

(children of the original family forming a family of their own) have been followed. The survey

was annual until 1996 and became biennial starting in 1997. In 1999 the survey augmented the

consumption information available to researchers so that it now covers over 70 percent of all

consumption items available in the Consumer Expenditure Survey (CEX). This is why we use

1999 as the first year of our sample.

Since we use almost the same underlying sample as Kaplan et al. (2014), our description of

the PSID closely mirrors theirs. We start with the PSID Core Sample and drop households with

missing information on race, education, or state of residence, and those whose income grows more

than 500 percent, falls by more than 80 percent, or is below $100. We drop households who have

top-coded income or consumption. We also drop households that appear in the sample fewer than

three consecutive times, because identification of the coefficients of interest requires a minimum

of three periods. In our baseline calculations, we keep households where the head is 25-60 years

old. Our final sample has 30,462 observations over the pooled years 1999-2011 (seven sample

years).

We use the same consumption definition as Blundell et al. (2014), which covers approximately

70% of NIPA consumption. We define income as the sum of labor income and government

transfers. We purge the data of non-model features by regressing ln cit and ln yit on year and cohort

dummies, education, race, family structure, employment, geographic variables, and interactions

of year dummies with education, race, employment, and region.

4.3 Results

Since our formula is equal to the product of the MPC and the value of housing, we first examine

how the MPC varies with the value of housing. To do this, we estimate the MPC using the

BPP methodology separately in 6 housing bins. The first bin includes only renters—that is,

households who own zero housing. The other five bins are constructed as the quintiles of the

home value distribution and so are of equal size by construction. In total, in our database we

have approximately 11,000 renters and 19,000 home owners.

Figure 12 shows the relationship between the MPC and home values. Overall the relationship

between home values and the MPC is flat or slightly declining (though this decline is not statisti-

cally significant). Therefore, housing-rich households in the data still display high MPCs, which

will contribute to a large aggregate elasticity. Figure 13 translates these results into elasticities

by bins, which are computed by multiplying the MPC by bin in Figure 12 times the ratio of

average home values over average consumption in the same bin. Elasticities for homeowners are

non-monotone in housing and range between 0.11 and 0.63.

Using these estimates we can compute the aggregate elasticity of non-durable consumption
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Figure 12: MPC and Housing
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for the whole sample, which is equal to 0.33.49 In addition to the heterogeneity by housing size

shown above, this overall average also masks significant time-series variation: the elasticity is

0.31 during the housing boom (2002-2006) and 0.45 during the housing bust (2008-2010). We

will show in the next section that our model naturally generates larger consumption responses

when housing booms change to busts.

This sufficient-statistic based measure of housing price effects provides an alternative to the

standard empirical strategies for estimating such effects. Existing evidence of the importance of

house price movements for consumption relies either on strong time-series identification assump-

tions or on the identification of “exogenous” changes in house prices at the micro level. Amongst

49This value is given by (
∑
kMPCk × PHk)/C, where MPCk is the estimated MPC in bin k, PHk is the

average home value for bin k, and C is aggregate consumption.
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the latter style, the series of papers by Mian and Sufi using the elasticity of housing supply to

instrument for local house price movements has probably been the most influential in arguing for

the causal effects of house prices on consumption. However, some recent papers such as David-

off (2013) have questioned the validity of supply elasticity in this context and by extension the

evidence for causal housing price effects. Our sufficient-statistic based measure of housing price

effects relies on a completely different source of identification, so it does not require us to take

any stance on the validity of this IV strategy. Nevertheless, despite our alternative identification

approach, we ultimately find consumption elasticities to house price changes that are large and

similar to those in Mian et al. (2013).50

Figure 14: Elasticity and Age
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Next, we explore the relationship between the non-durable consumption elasticity and the life

cycle. Ideally, we would like to estimate an elasticity for each age. However, due to the limited

sample size, we group agents into the following four age bins: 25-34, 35-44, 45-54 and 55-64. The

results are reported in Figure 14, which shows a pronounced hump shape in the relation between

age and the elasticity of consumption to house prices. This hump shape reflects two separate

forces. First, homeownership rates and housing holdings are hump shaped in age. Second, MPCs

are slightly hump shaped in age.

Recall, from Figure 8, that the model also displays a hump-shaped relation between elasticity

and age. The size of the elasticities produced by the model is fairly close to the data although

50Although it is important to note the caveat from footnote 14, that the Mian et al. (2013) measures include
local general equilibrium effects. Notice also that our theoretical result validates the housing wealth measure in
Mian et al. (2013). In that paper, they measure local changes in housing net worth as ∆logH,i06−09 ∗Hi

2006/NW
i
2006,

where Hi
2006 is the value of the housing stock owned by households in zip code i in 2006. That is, their housing

net worth shock multiplies the change in house prices by the gross value of housing rather than by housing equity.
One might intuitively think that the strength of housing price effects for a given house price change might depend
on housing equity rather than gross housing, but our simple formula shows that this intuition is incorrect.
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the hump shape is somewhat more pronounced in the data.51

5 A Boom-Bust Episode

So far we have focused on the partial equilibrium response of consumption to a one-time ex-

ogenous change in house prices. In this section, we extend the analysis to a simple dynamic

general equilibrium exercise. The main objective of the exercise is to show that the large partial

equilibrium responses obtained so far in our baseline model with fixed costs and a rental option

can also lead to large general equilibrium responses.52 An additional objective of the exercise is

to show that the response of an economy to a change in house prices depends on the history of

past shocks. In particular, we show that an economy coming from a boom in house prices is more

sensitive to a following reduction in prices.

To determine house prices in general equilibrium, we combine the model developed so far with

a competitive construction sector which transforms consumption goods into houses. Given that

our focus is on the demand side, we use a very stylized model of housing supply. The construction

technology is described by the quadratic cost function G(It, ζt) = ζtIt + (κ/2)I2
t , where G(It, ζt)

are the consumption goods needed as inputs to build It new housing units and ζt is a supply

shock. Optimization by firms in the construction sector implies Pt = κIt + ζt. Market clearing in

the housing market requires It = Ht− (1− δ)Ht−1, where Ht is the aggregate demand for housing

by households.53

On the demand side, we introduce a shock to agents’ expectations, capturing a form of irra-

tional bubble. We assume that the economy starts in steady state with no shocks. At date t = 0,

agents become optimistic about future house price growth, this leads to an increase in housing

demand and thus to an actual increase in house prices today. Agents remain optimistic for a

number of periods and eventually revert to zero expected house price appreciation.54 Expecta-

tions are modeled as follows. In each period t, households observe the current price Pt and form

51The model does not generate enough middle-aged consumers with high housing values and high MPCs, or,
in the parlance of Kaplan and Violante (2014), enough wealthy-hand-to-mouth consumers. This occurs in part
because while Kaplan and Violante (2014) rule out borrowing against the illiquid asset, we allow for such borrowing,
subject to a refinancing cost calibrated to match cash-out shares in the data. It is an interesting open question
how to produce wealthy-hand-to-mouth behavior while allowing for realistic access to home equity financing.

52Naturally, this conclusion depends on the nature of the shock and on the way in which the general equilibrium
model is specified. Kaplan et al. (2015) make this point clear by looking at the effects of a variety of shocks in a
related model. See the introduction for additional discussion of the relationship between our results.

53Here we are only endogenizing house prices and not the interest rate or household incomes Yit. We can think
of our general equilibrium economy as a small open economy that takes the world interest rate r as given and
where households’ incomes are unaffected by domestic spending. Of course, a full understanding of the relation
between house prices and real activity would require a richer general equilibrium model that also endogenizes
interest rates and incomes.

54Changes in expected house appreciation are consistent with recent empirical work by Case et al. (2012),
Burnside et al. (2016) and Bailey et al. (2016).
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deterministic expectations of future prices:

Et[Pt+j] = Pte
gt

1−λj
1−λ for j = 1, 2, .... (5)

Households expect prices to grow at the rate gt in the next period and to keep growing gradually

towards the long-run level Pte
gt/(1−λ). Expectations are not rational here, as they do not match

the realized equilibrium path.

Given a sequence {gt, Pt}, the optimization problem of the household can be solved at each

t, using (5) to form expectations. An equilibrium is then given by a sequence of prices Pt and a

sequence of joint distributions of housing and non-housing wealth, such that households optimize,

construction firms optimize, the housing market clears in each period, and the distribution of

housing and non-housing wealth at t + 1 is given by the distribution at t and by the agents’

optimal policies.55

The parameters for the households’ side are exactly as in the full model with rentals and

housing transaction costs of Section 3.56 The parameter κ in the supply equation is set at 36.9.57

The values for the demand and supply shocks gt, ζt are chosen to match the dynamics of house

prices and aggregate residential investment in the US in 2000-2013. For house prices, we use the

average US home price series from Shiller (2015).58 The residential investment rate is taken from

NIPA.59 The value of λ in the expectation equation (5) is set at 0.5.

Figure 15 reports the results of the exercise (solid blue lines). For comparison with the previous

sections, we also compute responses with no expected appreciation, that is, we let prices follow

the path in the top-left panel and assume consumers perceive each change in Pt as unexpected

and permanent, so gt = 0 for all t. The dashed red lines correspond to this case.

Figure 15 leads us to two main observations: the introduction of the gt shocks leads to very

different predictions regarding housing demand, but to relatively similar predictions regarding

consumption.

The first observation comes from comparing the solid blue and the dashed red lines in the

bottom-right panel. When gt = 0 the model predictions for housing demand are completely

counterfactual, with the demand for residential investment falling in the boom and increasing in

the bust. To produce a boom-bust in residential investment, the model asks for a demand shock

55This definition of equilibrium without rational expectations is analogous to the temporary general equilibrium
notion of Grandmont (1977), which was recently revived by Piazzesi and Schneider (2008).

56In Appendix 5 we do the same exercise in the frictionless model and show that it delivers similar but quanti-
tatively larger effects.

57The number comes from a simple linear regression of It on Pt in 2000-2005.
58We use the Real Home Price Index from www.econ.yale.edu/ shiller/data, file Fig2-1.xls.
59In the model, the residential investment rate is Ht+1/Ht − (1− δ). In the data, it is measured by residential

investment (BEA Fixed Asset Table 1.5, line 8) divided by the stock of private residential capital (BEA Fixed
Assets Table 1.1, line 14). Since the model has no long-run growth, the steady-state investment rate is δ = 0.022,
which is lower than the data average of 0.046 (in the period 1960-2013). We adjust for unmodeled growth by
subtracting 0.024 from the investment rate in the data.
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Figure 15: Boom-Bust Simulation
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on the household side. The expectation shock gt provides such a shock.

What are the consumption implications of a combined boom in house prices together with a

positive shock to housing demand? The answer to this question is in the bottom-left panel of

Figure 15, which shows the behavior of consumption over the house price boom-bust with and

without g shocks. Overall, shocks to g result in a modest dampening of the consumption boom

followed by an amplification of the consumption bust, so that consumption falls substantially

further below steady-state as prices return to normal than in the economy with no housing

demand shocks. Notice also that the difference between the two economies grows over the boom-

bust period. Overall, this reflects the fact that g has little direct effect on consumption and mainly

works indirectly by changing the endogenous distribution of wealth in the economy. Importantly,

this small direct effect of g means that our sufficient-statistic remains useful even in general

equilibrium, since it implies that consumption is mostly determined by the partial equilibrium

house price changes analyzed in the rest of the paper.

Let us provide some intuition for why the introduction of the gt shock has large direct effects

on housing demand but small direct effects on consumption. Figure 16 shows what happens on

impact to an economy in steady-state hit by an unexpected, one-time change in g. The top

panel shows the response of consumption, the bottom panel shows the response of residential

investment. The figure shows that an increase in g tends to mildly reduce consumption for given

initial wealth, while it dramatically increases residential investment. The intuition is as follows:

an increase in g implies an expected increase in the cost of housing services in the future and thus
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Figure 16: Effects of Expected House Price Appreciation
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an expected increase in the overall CPI. This has both an intertemporal substitution effect, which

increases current consumption, and an income effect, which lowers it. When σ > 1 the income

effect dominates and consumption falls. However, as long as σ is not too large, the net effect

is small. The effect of g on spending on housing services is of the same sign and magnitude as

the effect on non-durable consumption, due to Cobb-Douglas preferences. Spending on housing

services is, in terms of implicit rental costs,[
1− eg 1− δ

1 + r

]
PH.

So while this expression overall is decreasing slightly, the level of H increases since the expression

in square brackets is strongly decreasing in g. This comparative statics exercise helps explain

why in Figure 15, the introduction of the gt shocks has large effects on residential investment and

modest effects on consumption.

To further understand the consumption responses in Figure 15, we make two additional re-

marks on the dynamics.

First, notice that in the previous sections, we have focused on the impact effect of a house price

change on consumption. However, our model predicts that the effect of a permanent house price

change on consumption is transitory : as households converge back to their target wealth levels,

consumption gradually reverts to its steady-state level, which is independent of P . Therefore,

when we look at the cumulative effect of a sequence of house price increases, such as the one
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Figure 17: Response to a House Price Drop: The Effect of the Initial Distribution
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between 2000 and 2006, the total increase in consumption is smaller than the sum of the impact

effects.60 The drop in consumption after 2006 is larger than the prior increase (and is roughly in

line with the decline in consumption observed in the recession). This occurs for three reasons:

first, absent price changes, as we just argued, consumption would already be on a downward

path reverting to its steady-state; second, a price drop actually takes place and is faster than the

increase; third, the reduction in housing wealth, for given debt levels, leads to larger MPCs. The

third effect is especially interesting and we discuss it now in more detail.

In a dynamic equilibrium the endogenous change in the distribution of state variables Ait, Hit

means that the same current shock will have different effects depending on the history of past

shocks. Figure 17 compares the consumption response in the bust period in our exercise (solid

blue) to a counterfactual response if we assume that the distribution of households’ net worth at

the beginning of the bust is unchanged from the initial steady-state (dashed red line). The figure

confirms that the endogenous change in the wealth distribution over the boom has a quantitatively

important effect in the bust, leading to a deeper and more prolonged contraction in consumption.

This occurs because the boom leads to an accumulation of housing wealth and of debt, as shown in

Figure 18. This simultaneously increases MPC and H and thus makes household balance sheets

more sensitive to a drop in house prices through the mechanism explored in previous sections.

Notice that the presence of the gt shocks amplifies the importance of these effects, since increases

60This explains why, even in the partial equilibrium exercise, a total price increase of 60% yields a total increase
in consumption of about 5%, which is smaller than the predictions one would get from the impact elasticity. Using
the impact elasticity in the model with rentals and adjustment costs would give 14.4% = 0.24× 60%.
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Figure 18: Boom-Bust Simulation: Housing Wealth and Debt
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in gt lead to greater accumulation of housing and debt in the boom phase.

Thus, a useful lesson from this exercise is that endogenous time-variation in the distribution

of debt leads to changes in the strength of house price effects on consumption. This implies that

accounting for variation in micro level heterogeneity across time is crucial for making accurate

predictions about the aggregate effects of housing market shocks. This can help rationalize why

studies using data from different time periods often arrive at substantially different conclusions

as to the importance of housing price effects. For example, Case et al. (2013) finds substantially

larger housing price effects when using data from 1975-2012 than in their otherwise identical

previous study, Case et al. (2005), which only included data through 1999.

The overall take-out from the boom-bust exercise is as follows: Introducing shocks to expected

appreciation can deliver a boom-bust in residential investment together with a boom-bust in

house prices. The direct effect of shocks to expected appreciation is to mildly dampen the

boom-bust in consumption through intertemporal channels. However, the same shocks have a

significant indirect effect, which tends to amplify the boom-bust through endogenous changes in

the distribution of housing and debt. Since the direct effect is small, our earlier formula remains

useful.

The analysis in this section also indirectly sheds light on the effect of transitory shocks to

house prices in out model. Transitory shocks can be interpreted as the combination of a one-time

increase in P combined with a negative g shock. In our calibration, we just saw that a negative g

shock mildly increases current consumption, so a temporary house price shock will have a larger
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impact effect on consumption than a permanent shock. On the other hand, the effect will go

away more quickly, when house prices start to fall in the periods following the initial increase.

6 Conclusion

In this paper, we explore the implications of consumption theory for understanding housing

price effects on consumption. While a large and growing empirical literature documents strong

responses of consumption to identified house price movements, a large theoretical literature argues

that this response should be small.

We show that a relatively standard incomplete markets consumption model with idiosyncratic

risk actually implies quite large elasticities, and we derive a new sufficient statistic to provide

intuition for this large value. This sufficient statistic continues to work well in more realistic

models, and we show that these models deliver elasticities closely in line with empirical evidence.

We then take our sufficient statistic directly to micro data and show it yields similar conclusions.

Not only is our sufficient statistic useful for understanding why elasticities in our model are large,

it also provides good intuition for why some previous models have found small elasticities. These

models often either imply counterfactually small MPCs or shut down some of the theoretical

channels through which house prices can affect consumption.

Our results also imply that the size of housing price effects may vary substantially across

households and time. Indeed, we find large variation over the boom-bust in our model and

find that elasticities vary substantially with age and home ownership status. The presence of

this time-variation and heterogeneity may help reconcile various empirical results and should be

accounted for when predicting the aggregate consequences of housing market policies.
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Appendix

House Prices and Consumer Spending

D. Berger, V. Guerrieri, G. Lorenzoni, J. Vavra

1 Decomposition

In this section we derive decompositions of the total house price effect into income, substitution,

collateral and endowment effects and discuss their interpretation both for the simple PIH model

of Subection 2.2 and for the general baseline model treated in the rest of Section 2.

1.1 PIH model

For simplicity, we focus on the infinite-horizon version of the model and drop the individual

subscript i. The household’s utility function is
∑∞

t=0 β
tU (Ct, Ht). The per-period budget con-

straints, with a no Ponzi condition, can be aggregated into the intertemporal budget constraint

at date 0:

∞∑
t=0

qt [Ct + [Pt − q (1− δ)Pt+1]Ht − Yt] = (1 + r)A−1 + (1− δ)P0H−1,

where q ≡ 1/ (1 + r). Define the implicit rental rate

Rt ≡ Pt − q (1− δ)Pt+1.

Suppose that the house price is initially constant at P so that the implicit rental rate is then

R = (1− q (1− δ))P . We then want to decompose the response of C0 to a permanent change in

P .

Define the Marshallian demand for C0

C0 = C0,m (R, I) ,

which comes from maximizing
∑
βtU (Ct, Ht) subject to

∑
qt [Ct +RHt] = I. Similarly, define

the Hicksian demand

C0 = C0,h (R,U) ,

which comes from minimizing
∑
qt [Ct +RHt] subject to

∑
βtU (Ct, Ht) ≥ U . The effect of a

permanent change dR is equivalent to summing the effects of identical changes in the price of

housing services dRt. So the standard decomposition result also applies and implies that the total
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response of consumption to a change in P satisfies

dC0

dP
= [1− q (1− δ)] ∂C0,h (R,U)

∂R
−[1− q (1− δ)] ∂C0,m (R, I)

∂I

∑
qtHt+

∂C0,m (R, I)

∂I
(1− δ)H−1.

The first term is the substitution effect, the second the income effect, the third the endowment

effect.

Under the assumption of Cobb-Douglas preferences and q = β, the solution to the household

problem gives a constant level of housing Ht = H0 and of consumption Ct = C0 with

C0 = α
r

1 + r

[
(1 + r)A−1 + (1− δ)P0H−1 +

∑
qtYt

]
.

Now consider a household that starts at H−1 = H0 (which applies for small changes in R, for

a household that started life at any time t < 0). Then the sum of the income and endowment

effects is

∂C0,m (R, I)

∂I

{
− [1− q (1− δ)]

∑
qt + (1− δ)

}
H = − δ

1− q
∂C0,m (R, I)

∂I
H < 0.

The net effect is small if δ is small, and exactly zero if δ = 0. This capture the Sinai and Souleles

(2005) intuition that when the price of houses increases, and the net present value of implicit

rental cost increases by the same amount, then there are small wealth effects. That the net effect

is actually negative reflects the fact that the consumer is a net buyer of housing since he needs

to replace the depreciated fraction of housing in all periods.

At the same time, we know that

dC0

dP
= α

r

1 + r
(1− δ)H−1 =

∂C0,m (R, I)

∂I
(1− δ)H−1 > 0.

This implies that the total effect can be interpreted in two ways:

• a substitution effect that more than compensates for the negative net of income and en-

dowment effects derived above;

• a pure endowment effect, with the substitution and income effects canceling each other.

1.2 General model with no adjustment costs

Given the household’s optimization problem on page 10, with Pt = P for all t, let C(W, s;P, θ)

denote the optimal consumption policy. Consider the effects of an unexpected, permanent change

in price from P0 to P1. Let (H−, A−) denote the household initial holdings of housing and of the
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risk-free asset. Household net wealth is then

W0 = P0 (1− δ)H− + (1 + r)A−

before the shock, and

W1 = P1 (1− δ)H− + (1 + r)A−

after the shock. The total consumption change is

∆C ≡ C(W1, s;P1, θ)− C(W0, s;P0, θ).

To compute the collateral effect choose θ̂ such that

(1− θ)P1 =
(

1− θ̂
)
P0,

that is consider a change in the collateral requirement that exactly offsets the change in price.

The collateral effect is then defined as

CE ≡ C
(
W0, s;P0, θ̂

)
− C (W0, s;P0, θ) .

Next, find the value of initial wealth Ŵ such that V
(
Ŵ , s;P1, θ

)
= V

(
W0, s;P0, θ̂

)
. That is,

we find the wealth that keeps utility unchanged after a change in the price of housing. Here, we

are adapting the logic of Hicksian compensation to our dynamic, incomplete-markets problem.

We define the substitution effect as

SE ≡ C
(
Ŵ , s;P1, θ

)
− C

(
W0, s;P0, θ̂

)
,

where the change in θ is introduced to mute the collateral effect and the change in W is introduced

to mute the income effect. The income effect is given by

IE ≡ C (W0, s;P1, θ)− C
(
Ŵ , s;P1, θ

)
.

Finally, the endowment effect is just given by

EE ≡ C (W1, s;P1, θ)− C (W0, s;P1, θ) ,

and elementary algebra gives

∆C = SE + IE + CE + EE,
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and since C(W, s;P, θ) is independent of P , as shown in Proposition 1, we have ∆C = EE. Notice

that the exact result of the decomposition, for discrete changes in P , depends on the ordering

(e.g., here we started from the collateral effect).

2 Extension: CES Preferences

In this section, we extend the analysis to CES preferences for consumption and housing. In

the body of the paper, we assume Cobb-Douglas utility—i.e., elasticity of substitution equal to

1—and use that assumption to derive Proposition 1. Here we show that the proposition can be

extended to the case of CES preferences if we make the additional assumption of θ = 0, that is,

if we consider a very loose collateral requirement. In that case, our sufficient statistic formula

extends naturally by adding a new term that is positive in the case of elasticity of substitution

bigger than 1 and negative in the opposite case. We then provide numerical results for the case

θ > 0, calibrated as in the main text, and show that, for reasonable values of the elasticity of

substitution between consumption and housing, our amended sufficient-statistic formula provides

a good approximation and the additional term has small effects if the elasticity of subsitution is

in the range 0.8− 1.25. Overall, under plausible parametrizations the magnitude of the elasticity

remains large.

Let the utility function be:

U (Cit, Hit) =
1

1− σ

(
αC

ε−1
ε

it + (1− α)H
ε−1
ε

it

) ε(1−σ)
ε−1

where ε is the intra-temporal elasticity of substitution between non-durable consumption and

housing services.

Proposition 2 Consider the model with CES preferences, liquid housing wealth, and θ = 0. The

individual response of non-durable consumption to an unexpected, permanent, proportional change

in house prices dP/P is

(ε− 1)
r+δ
1+r

PHit

Cit + r+δ
1+r

PHit

Cit +MPCit · (1− δ)PHit−1.

Proof. With constant prices, the user cost of housing (or implicit rental rate) is r+δ
1+r

P . So we

can define total spending on non-durables and housing services

Xit ≡ Cit +
r + δ

1 + r
PHit,
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and the price index

PX ≡

[
αε + (1− α)ε

(
r + δ

1 + r
P

)1−ε
] 1

1−ε

.

The household’s optimization problem can then be decomposed into an intertemporal optimiza-

tion problem, characterized by the Bellman equation

V (W, s) = max
1

1− σ

(
X

PX

)1−σ

+ βE [V (W ′, s′)] ,

subject to

W ′ = (1 + r) [W + Y (s)−X] ≥ 0,

and an intratemporal utility maximization problem. The solution to the intertemporal problem

is independent of PX as it only appears as a multiplicative constant in the objective function. So

the policy X (W, s) is independent of P . The solution to the intratemporal problem gives

C =
αε

αε + (1− α)ε( r+δ
1+r

P )1−ε
X, H =

(1− α)ε( r+δ
1+r

P )−ε

αε + (1− α)ε( r+δ
1+r

P )1−ε
X.

The response of C to P conditional on X is then

∂C

∂P
= (ε− 1)

r + δ

1 + r

H

X
C.

Combining this effect with the effect on X through W , yields the desired result.

An elasticity of substitution different from one implies that there is an additional term, pro-

portional to the implicit share of housing services in the total consumption basket. In the model,

this share is tightly linked to the ratio of house values to consumption. For example, take an agent

with housing-to-consumption ratio 3.5—which is the roughly the average for agents in the 40s

bin. With r = 2.4% and δ = 2.2% this implies a share of housing services to total spending equal

to 0.13. For such an agent if ε = 1.1, the additional term is equal to 0.1 × 0.13 = 0.013. If the

same agent has an MPC of 0.1 the magnitude of the baseline sufficient statistic is 0.1×3.5 = 0.35,

so the additional term plays a minor role quantitatively.

For the case θ > 0 analytical results are not available and we turn to simulations. Namely,

for different values of ε we re-calibrate the model to hit the same targets as in the baseline

and compute the elasticity of consumption to house prices. In Figure 19 we plot the computed

elasticity for different age bins, together with our baseline formula and our amended formula. We

present results for two cases which bound typical empirical estimates, ε = 0.8 and ε = 1.2. The

amended formula provides a good approximation and the baseline still gives magnitudes close to

the true responses.
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Figure 19: CES
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3 Extension: Stochastic House Prices

In this section, we explore the robustness of our baseline results (see Section 2.5) when house

prices are stochastic. In particular, we assume that house prices follow a random walk with normal

innovations. We calibrate this house price series using aggregate date from Corelogic from the

period 1979-present. In this series the standard deviation of house prices is 0.05, the value we

use. Other than allowing house prices to follow a random walk, we calibrate the stochastic price

model to match the same targets as in the constant price model. See Section 2.4 for full details.

The calibrated parameter values are shown in Table 2.

Table 2: Parameter Values

Parameter σ r δ θ ρz σz α β Ψ Ξ
Value 2 2.4% 2.2% 0.25 0.91 0.21 0.8521 0.9299 1, 556 3.1002

Figure 20 shows the fit of the calibrated model in terms of average housing wealth (top panel)

and average liquid wealth net of debt (bottom panel), by age bin.61 The blue circles are the

model predictions and the orange squares are from the 2001 SCF. As in the baseline model, the

stochastic price model delivers a reasonable fit to the data.

We now turn to the model predictions for consumption responses and look at the instantaneous

response of non-durable consumption to a 1% shock to house prices.

61The point for the age bin 65 and over is plotted at age 70.
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Figure 20: Housing and Net Liquid Wealth over the Life Cycle: Data vs Model
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The results are shown in Figure 21. For ease of comparison, both the results from the baseline

model (dashed blue line) and stochastic price model (solid orange line) are shown. The figure

shows that the addition of house price risk barely changes the magnitude of the consumption

elasticities. The average elasticity changes from 0.474 in our baseline model to 0.467 in the

stochastic price model. Thus, allowing house prices to follow a random walk does not materially

affect our main quantitative result.

Figure 21: Elasticities over the Life Cycle: Frictionless Model

Age
30 35 40 45 50 55

0.35

0.4

0.45

0.5

0.55

0.6

Constant P
Stochastic P

7



4 Description of Computational Procedures

In this appendix, we describe the solution to the model with transaction costs and rental described

in the body of the text. The household state vector is s ≡ (A,H, z, j), and the model is solved

by backward induction from the final period of life. When working, households solve:

V (s) = max
{
V adjust(s), V noadjust(s), V rent(s)

}
.

The three value functions, for adjusters, non-adjusters, and renters, are given by

V adjust(s) = max
C,A′,H′

U (C,H ′) + βE [V (s′)|z]

s.t. A′ + PH ′ + C = (1 + r)A+ Y (z) + (1− F ) (1− δ)PH,

A′ ≥ − (1− θ) 1− δ
1 + r

PH ′, s′ = (A′, H ′, z′, j + 1),

V noadjust(s) = max
C,A′

U (C,H) + βE [V (s′)|z]

s.t. A′ + C = (1 + r)A+ Y (z)− δPH,

A′ ≥ − (1− θ) 1− δ
1 + r

PH, s′ = (A′, H, z′, j + 1),

V rent(s) = max
C,A′,H̃

U
(
C, H̃

)
+ βE [V (s′)|z]

s.t. A′ + C + φPH̃ = (1 + r)A+ Y (z) + (1− F ) (1− δ)PH,

A′ ≥ 0, s′ = (A′, 0, z′, j + 1).

The problem for a retired household is identical except that social security benefits replace labor

earnings. At the age of retirement households also receive an additional lump sump transfer to

match the level of retirement wealth which is now liquid, as described in the text. At the time of

death households’ continuation value is given by the bequest motive in the text.

To solve the model numerically, we proceed as follows. First, in order to rectangularize

the choice set and simplify the computational problems imposed by the endogenous liquidity

constraint, we follow Dı́az and Luengo-Prado (2010) and reformulate our problem in terms of

voluntary equity, defined as

Q ≡ A+ (1− θ) 1− δ
1 + r

PH.

After substituting the budget constraint into the utility function to eliminate C as a choice

variable, the value function can then be rewritten in terms of the two non-negative state variables
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Q′ and H ′. Note that A′ and H ′ are chosen prior to next period shocks to house prices. Thus,

shocks to house prices imply that realized voluntary equity will differ from the value chosen in the

previous period. Namely, given a chosen pair Q′, H ′, the realized value of Q next period will be

Q′+(1− θ) 1−δ
1+r

H ′∆P , where ∆P is the house price shock. This implies that although households

are constrained to always choose Q′ ≥ 0, realized voluntary equity can be negative, for a large

enough negative house price shock. To account for this, we solve the model for states that include

negative voluntary equity even though households are constrained to choose non-negative values

for this variable.62

We discretize the problem so it can be solved on the computer by first discretizing z using the

algorithm of Tauchen (1986). We use 13 grid points for z. We then approximate the functions

V adjust
j , V noadjust

j , and V rent
j as mulitlinear functions in the endogenous states. In our benchmark

calculation, we use 120 knot points for Q (we space these points more closely together near the

constraint) and 40 knot points for H. The presence of fixed adjustment costs on housing together

with the borrowing constraint make the household policy function highly non-linear. For this

reason, we follow Berger and Vavra (2015) and compute optimal policies for a given state-vector

using a Nelder-Meade algorithm initialized from 3 different starting values, to reduce the problem

of finding local maxima. The value of adjusting, not adjusting and renting are then compared to

generate the overall policy function. We proceed via backward induction from the final period of

life.

To simulate the model, we initialize cohorts to match the values of the SCF for age 22-27

year old households. First, we randomly split the sample into two groups to match the fraction

of homeowners and renters. Then within each group, we split the sample into 4 income bins and

assign the median value of housing and liquid assets from the SCF in that same income bin. (By

definition, the value of housing for the renter groups is always zero). The model is simulated with

100,000 households and house price impulse responses are computed for each cohort.

In the boom-bust episode, house price expectations become an additional state-variable, and

the model is solved and simulated for the combination of each age-calendar time pair.

5 Additional Quantitative Results and Calibration De-

tails

This section shows a number of numerical results and details which are suppressed from the main

text for brevity.

Table 3 shows the best fit parameters for the model with transaction costs but no rental

market, and Figure 22 shows the corresponding model fit.

62Shocks to house prices in the model are not large enough to ever reach a situation where realized Q is so
negative that households would be unable to choose Q′ ≥ 0 without having negative consumption.
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Figure 22: Housing and Net Liquid Wealth over the Life Cycle: Data vs Model
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Table 3: Parameter Values for Model with Fixed Costs and No Rent

Parameter σ r δ θ ρz σz α β Ψ Ξ
Value 2 2.4% 2.2% 0.25 0.91 0.21 0.875 0.922 2, 300 1.75

Table 4 shows the best fit parameters for the model with transaction costs and rental markets.

See Figure 7 in the main text for corresponding model fit.

Table 4: Parameter Values for Model with Fixed Costs and Rent

Parameter σ r δ θ ρz σz α β Ψ Ξ φ
Value 2 2.4% 2.2% 0.25 0.91 0.21 0.86 0.922 2, 300 2.25 .0605

In most of our model results, we assume that the price-rent ratio is fixed so that rents change

proportionately with house prices. It is straightforward to instead make the assumption that rents

are fixed when house prices move so that the price-rent ratio moves one-for-one with house prices.

Figure 23 compares the elasticities in the model with rentals under the constant and the variable

price-rent ratio. It shows that elasticities are modestly amplified when the price-rent ratio moves

with house prices. This is because if house prices go up but rents remain constant, homeowners

can sell their houses, switch to renting and increase their consumption. It is also worth noting

that the sufficient-statistic approximation continues to work well, although now it underestimates
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Figure 23: Comparing Assumptions on Price-Rent Ratio
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rather than overestimating the true elasticity.63 In reality, the elasticity of rents to prices depends

on the time-horizon but are neither completely fixed nor exhibit complete pass-through.

Figure 24: Boom-Bust Simulation in Frictionless Model
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Finally, Figure 24 shows the boom-bust patterns for the frictionless model. Consumption

responses are larger in the frictionless model, which is consistent with the larger elasticities

63Note that the approximation formula does not depend on how the price-rent ratio moves, in a model where
households assume that prices are constant, neither MPCs nor housing values are affected by unanticipated changes
in these ratios. Thus, there is only a single approximation line since it is equal in the two models.
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derived in our partial equilibrium analysis. Another noticeable difference is that, with frictionless

adjustment, residential investment is more sensitive to growth rate shocks, so fitting residential

investment movements in the data requires smaller gt shocks (the gt shocks in the full model with

frictions and rentals look more in line with survey evidence).
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