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Start's effects are greater for children who would not otherwise attend preschool and for children 
that are less likely to participate in the program.
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I. Introduction

Many government programs provide services that can be obtained, in roughly comparable form, via

markets or through other public organizations. The presence of close program substitutes compli-

cates the task of program evaluation by generating ambiguity regarding which causal estimands are

of interest. Standard intent-to-treat impacts from experimental demonstrations can yield unduly

negative assessments of program effectiveness if most participants would receive similar services

in the absence of an intervention (Heckman et al., 2000). On the other hand, experiments that

artificially restrict substitution alternatives may yield impacts that are not representative of the

costs and benefits of actual policy changes.

This paper assesses the cost-effectiveness of Head Start – a prominent public education program

for which close public and private substitutes are widely available. Head Start is the largest early-

childhood education program in the United States. Launched in 1965 as part of President Lyndon

Johnson’s war on poverty, the program has evolved from an eight-week summer program into a

year-round program that offers education, health, and nutrition services to disadvantaged children

and their families. By 2013, Head Start enrolled about 900,000 3- and 4-year-old children at a cost

of $7.6 billion (US DHHS, 2013).

Views on the effectiveness of Head Start vary widely (Ludwig and Phillips, 2007 and Gibbs,

Ludwig and Miller, 2011 provide reviews). A number of observational studies find substantial short-

and long-run impacts on test scores and other outcomes (Currie and Thomas, 1995; Garces et al.,

2002; Ludwig and Miller, 2007; Deming, 2009; Carneiro and Ginja, forthcoming). By contrast,

a recent randomized evaluation – the Head Start Impact Study (HSIS) – finds small impacts on

test scores that fade out quickly (Puma et al., 2010, 2012). These results have generally been

interpreted as evidence that Head Start is ineffective and in need of reform (Barnett, 2011; Klein,

2011).

Two observations suggest such conclusions are premature. First, research on early childhood

interventions finds long run gains in adult outcomes despite short run fadeout of test score impacts

(Heckman et al., 2010, 2013; Chetty et al., 2011, 2014b). Second, roughly one-third of the HSIS

control group participated in alternate forms of preschool. This suggests that the HSIS may have

shifted many students between different sorts of preschools without altering their exposure to

preschool services. The aim of this paper is to clarify how the presence of substitute preschools

affects the interpretation of the HSIS results and the cost-effectiveness of the Head Start program.

Our study begins by revisiting the experimental impacts of the HSIS on student test scores.

We replicate the fade-out pattern found in previous work but find that adjusting for experimental

non-compliance leads to imprecise estimates of the effect of Head Start participation beyond the

first year of the experiment. As a result, the conclusion of complete effect fadeout is less clear than

naive intent-to-treat estimates suggest. Turning to substitution patterns, we find that roughly one

third of Head Start compliers in the HSIS experiment would have participated in other forms of

preschool had they not been lotteried into the program. These alternative preschools draw heavily

on public funding, which mitigates the net costs to government of shifting children from other
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preschools into Head Start.

These facts motivate a theoretical analysis clarifying which parameters are (and are not) pol-

icy relevant when publicly subsidized program substitutes are present. We work with a stylized

model where test score impacts are valued according to their effects on children’s after-tax lifetime

earnings. We show that, when competing preschool programs are not rationed, the policy-relevant

causal parameter governing the benefits of Head Start expansion is an average effect of Head Start

participation relative to the next best alternative, regardless of whether that alternative is a com-

peting program or home care. This parameter coincides with the local average treatment effect

(LATE) identified by a randomized experiment with imperfect compliance when the experiment

contains a representative sample of program “compliers” (Angrist, Imbens, and Rubin, 1996).

Hence, imperfect compliance and program substitution, often thought to be confounding limita-

tions of social experiments, turn out to be virtues when the substitution patterns in the experiment

replicate those found in the broader population.

We use this result to derive an estimable benefit cost ratio associated with Head Start expan-

sions. This ratio scales Head Start’s projected impacts on the after-tax earnings of children by

its net costs to government inclusive of fiscal externalities. Chief among these externalities is the

cost savings that arise when Head Start draws children away from competing subsidized preschool

programs. While such effects are typically ignored in cost-benefit analyses of Head Start and other

similar programs (e.g., Council of Economic Advisers, 2015), we find via a calibration exercise that

such omissions can be quantitatively important: Head Start roughly breaks even when the cost

savings associated with program substitution are ignored, but yields benefits nearly twice as large

as costs when these savings are incorporated. This appears to be a robust finding – after accounting

for fiscal externalities, Head Start’s benefits exceed its costs whenever short run test score impacts

yield earnings gains within the range found in the recent literature.

A limitation of our baseline analysis is that it assumes changes in program scale do not alter

the mix of program compliers. To address this issue, we also consider “structural reforms” to

Head Start that change the mix of compliers without affecting test score outcomes. Examples

of such reforms might include increased transportation services, marketing efforts, or spending on

program features that parents value. Households who respond to structural reforms may differ from

experimental compliers on unobserved dimensions, including their mix of counterfactual program

choices. Assessing these reforms therefore requires knowledge of parameters not directly identified

by the HSIS experiment. Specifically, we show that such reforms require identification of a variant

of the marginal treatment effect (MTE) concept of Heckman and Vytlacil (1999).

To assess reforms that attract new children, we develop a selection model that parameterizes

variation in treatment effects with respect to counterfactual care alternatives as well as observed

and unobserved child characteristics. We prove that the model parameters are identified, and

propose a two-step control function estimator that exploits heterogeneity in the response to Head

Start offers across sites and demographic groups to infer relationships between unobserved factors

driving preschool enrollment and potential outcomes. The estimator is shown to pass a variety of
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specification tests and to accurately reproduce patterns of treatment effect heterogeneity found in

the experiment. The model estimates indicate that Head Start has large positive short run effects

on the test scores of children who would have otherwise been cared for at home, and insignificant

effects on children who would otherwise attend other preschools – a finding corroborated by Feller

et al. (2014), who reach similar conclusions using principal stratification methods (Frangakis and

Rubin, 2002). Our estimates also reveal a “reverse Roy” pattern of selection whereby children with

unobserved characteristics that make them less likely to enroll in Head Start experience larger test

score gains.

We conclude with an assessment of prospects for increasing Head Start’s rate of return via

outreach to new populations. Our estimates suggest that expansions of Head Start could boost

the program’s rate of return provided that the proposed technology for increasing enrollment (e.g.

improved transportation services) is not too costly. We also use our estimated selection model

to examine the robustness of our results to rationing of competing preschools. Rationing implies

that competing subsidized preschools do not contract when Head Start expands, which shuts down

a form of public savings. On the other hand, expanding Head Start generates opportunities for

new children to fill vacated seats in substitute programs. Our estimates indicate that the effect on

test scores (and therefore earnings) of moving children from home care to competing preschools is

substantial, leading us to conclude that rationing is unlikely to undermine the favorable estimated

rates of return found in our baseline analysis.

The rest of the paper is structured as follows. Section II provides background on Head Start.

Section III describes the HSIS data and basic experimental impacts. Section IV presents evidence on

substitution patterns. Section V introduces a theoretical framework for assessing public programs

with close substitutes. Section VI provides a cost-benefit analysis of Head Start. Section VII

develops our econometric selection model and discusses identification and estimation. Section VIII

reports estimates of the model. Section IX simulates the effects of structural program reforms.

Section X concludes.

II. Background on Head Start

Head Start provides preschool for disadvantaged children in the United States. The program is

funded by federal grants awarded to local public or private organizations. Grantees are required

to match at least 20 percent of their Head Start awards from other sources and must meet a set of

program-wide performance criteria. Eligibility for Head Start is generally limited to children from

households below the federal poverty line, though families above this threshold may be eligible if

they meet other criteria such as participation in the Temporary Aid for Needy Families (TANF)

program. Up to 10 percent of a Head Start center’s enrollment can also come from higher-income

families. The program is free: Head Start grantees are prohibited from charging families fees for

services (US DHHS, 2014). It is also oversubscribed: in 2002, 85 percent of Head Start participants

attended programs with more applicants than available seats (Puma et al., 2010).
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Head Start is not the only form of subsidized preschool available to poor families. Preschool par-

ticipation rates for disadvantaged children have risen over time as cities and states expanded their

public preschool offerings (Cascio and Schanzenbach, 2013). Moreover, the Child Care Develop-

ment Fund program provides block grants that finance childcare subsidies for low-income families,

often in the form of childcare vouchers that can be used for center-based preschool (US DHHS,

2012). Most states also use TANF funds to finance additional childcare subsidies (Schumacher et

al., 2001). Because Head Start services are provided by local organizations who themselves must

raise outside funds, it is unclear to what extent Head Start and other public preschool programs

actually differ in their education technology.

A large non-experimental literature suggests that Head Start produced large short- and long-

run benefits for early cohorts of program participants. Several studies estimate the effects of Head

Start by comparing program participants to their non-participant siblings (Currie and Thomas,

1995; Garces et al., 2002; Deming, 2009). Results from this research design show positive short run

effects on test scores and long run effects on educational attainment, earnings and crime. Other

studies exploit discontinuities in Head Start program rules to infer program effects (Ludwig and

Miller, 2007; Carneiro and Ginja, forthcoming). These studies show longer run improvements in

health outcomes and criminal activity.

In contrast to these non-experimental estimates, results from a recent randomized controlled

trial reveal smaller, less-persistent effects. The 1998 Head Start reauthorization bill included a

congressional mandate to determine the effects of the program. This mandate resulted in the HSIS:

an experiment in which more than more than 4,000 applicants were randomly assigned via lottery

to either a treatment group with access to Head Start or a control group without access in the Fall

of 2002. The experimental results showed that a Head Start offer increased measures of cognitive

achievement by roughly 0.1 standard deviations during preschool, but that these gains faded out

by kindergarten. Moreover, the experiment showed little evidence of effects on non-cognitive or

health outcomes (Puma et al., 2010, 2012). These results suggest both smaller short-run effects

and faster fadeout than non-experimental estimates for earlier cohorts. Scholars and policymakers

have generally interpreted the HSIS results as evidence that Head Start is ineffective and in need

of reform (Barnett, 2011). The experimental results have also been cited in the popular media

to motivate calls for dramatic restructuring or elimination of the program (Klein, 2011; Stossel,

2014).1

Differences between the HSIS results and the non-experimental literature could be due to

changes in program effectiveness over time or to selection bias in non-experimental sibling compar-

1Subsequent analyses of the HSIS data suggest caveats to this negative interpretation, but do not overturn the
finding of modest mean test score impacts accompanied by rapid fadeout. Gelber and Isen (2013) find persistent
effects on parental engagement with children. Bitler et al. (2014) find larger experimental impacts at low quantiles of
the test score distribution. These quantile treatment effects fade out by first grade, though there is some evidence of
persistent effects at the bottom of the distribution for Spanish-speakers. Walters (2015) finds evidence of substantial
heterogeneity in impacts across experimental sites and investigates the relationship between this heterogeneity and
observed program characteristics. Walters finds smaller effects for Head Start centers that draw more children from
other preschools rather than home care, a finding we explore in more detail here.
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isons. Another explanation, however, is that these two research designs identify different parame-

ters. Most non-experimental analyses have focused on recovering the effect of Head Start relative to

home care. In contrast, the HSIS measures the effect of Head Start relative to a mix of alternative

care environments, including other preschools.

III. Data and Experimental Impacts

Before turning to an analysis of program substitution issues, we first describe the HSIS data and

report experimental impacts on test scores and program compliance.

III.A. Data

Our core analysis sample includes 3,571 HSIS applicants with non-missing baseline characteristics

and Spring 2003 test scores. Appendix A describes construction of this sample. The outcome of

interest is a summary index of cognitive test scores that averages Woodcock Johnson III (WJIII)

test scores with Peabody Picture and Vocabulary Test (PPVT) scores, normed to have mean zero

and variance one in the control group by cohort and year. We use WJIII and PPVT scores because

these are among the most reliable tests in the HSIS data; both are also available in each year of

the experiment, allowing us to produce comparable estimates over time.

Table I provides summary statistics for our analysis sample. The HSIS experiment included

two age cohorts: 55 percent of applicants were randomized at age 3 and could attend Head Start

for up to two years, while the remaining 45 percent were randomized at age 4 and could attend

for up to one year. The demographic information in Table I shows that the Head Start population

is disadvantaged. Less than half of Head Start applicants live in two-parent households, and the

average applicant’s household earns about 90 percent of the federal poverty line. Column (2) of

Table I compares these and other baseline characteristics for the HSIS treatment and control groups

to check balance in randomization. The results here indicate that randomization was successful:

baseline characteristics were similar for offered and non-offered applicants.2

Columns (3) through (5) of Table I report summary statistics for children attending Head

Start, other preschool centers, and no preschool.3 Children in other preschools tend to be less

disadvantaged than children in Head Start or no preschool, though most differences between these

groups are modest. The other preschool group has a lower share of high school dropout mothers, a

higher share of mothers who attended college, and higher average household income than the Head

Start and no preschool groups. Children in other preschools outscore the other groups by about

0.1 standard deviations on a baseline summary index of cognitive skills. The other preschool group

2Random assignment in the HSIS occurred at the Head Start center level, and offer probabilities differed across
centers. We weight all models by the inverse probability of a child’s assignment, calculated as the site-specific fraction
of children assigned to the treatment group. Because the numbers of treatment and control children at each center
were fixed in advance, this is an error-free measure of the probability of an offer (Puma et al., 2010).

3Preschool attendance is measured from the HSIS “focal arrangement type” variable, which combines information
from parent interviews and teacher/care provider interviews to construct a summary measure of the childcare setting.
See Appendix A for details.
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also includes a relatively large share of four-year-olds, likely reflecting the fact that alternative

preschool options are more widely available for four-year-olds (Cascio and Schanzenbach, 2013).

III.B. Experimental Impacts

Table II reports experimental impacts on test scores. Columns (1), (4) and (7) report intent-to-

treat impacts of the Head Start offer, separately by year and age cohort. To increase precision,

we regression-adjust these treatment/control differences using the baseline characteristics in Table

I.4 The intent-to-treat estimates mirror those previously reported in the literature (e.g., Puma et

al., 2010). In the first year of the experiment, children offered Head Start scored higher on the

summary index. For example, three-year-olds offered Head Start gained 0.19 standard deviations in

test score outcomes relative to those denied Head Start. The corresponding effect for four-year-olds

is 0.14 standard deviations. However, these gains diminish rapidly: the pooled impact falls to a

statistically insignificant 0.02 standard deviations by year three. Our data includes a fourth year

of follow-up for the three-year-old cohort. Here too, the intent-to-treat is small and statistically

insignificant (0.038 standard deviations).

Interpretation of these intent-to-treat impacts is clouded by noncompliance with random as-

signment. Columns (2), (5) and (8) of Table II report first-stage effects of assignment to Head Start

on the probability of participating in Head Start and Columns (3), (6) and (9) report instrumental

variables (IV) estimates, which scale the intent-to-treat estimates by the first stage estimates.5

These estimates can be interpreted as local average treatment effects (LATEs) for “compliers” –

children who respond to the Head Start offer by enrolling in Head Start. Assignment to Head Start

increases the probability of participation by two-thirds in the first year after random assignment.

The corresponding IV estimate implies that Head Start attendance boosts first-year test scores by

0.247 standard deviations.

Compliance for the three-year-old cohort falls after the first year as members of the control

group reapply for Head Start, resulting in larger standard errors for estimates in later years of the

experiment. The first stage for three-year-olds falls to 0.36 in the second year, while the intent-

to-treat falls roughly in proportion, generating a second-year IV estimate of 0.245 for this cohort.

Estimates in years three and four are statistically insignificant and imprecise. The fourth-year

estimate for the three-year-old cohort (corresponding to first grade) is 0.110 standard deviations,

with a standard error of 0.098. The corresponding first grade estimate for four year olds is 0.081

4The control vector includes gender, race, assignment cohort, teen mother, mother’s education, mother’s marital
status, presence of both parents, an only child dummy, a Spanish language indicator, dummies for quartiles of family
income and missing income, urban status, an indicator for whether the Head Start center provides transportation,
an index of Head Start center quality, and a third-order polynomial in baseline test scores.

5Here we define Head Start participation as enrollment at any time prior to the test. This definition includes
attendance at Head Start centers outside the experimental sample. An experimental offer may cause some children
to switch from an out-of-sample center to an experimental center; if the quality of these centers differs, the exclusion
restriction required for our IV approach is violated. Appendix Table A.I compares characteristics of centers attended
by children in the control group (always takers) to those of the experimental centers to which these children applied.
These two groups of centers are very similar, suggesting that substitution between Head Start centers is unlikely to
bias our estimates.
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with a standard error of 0.060. Notably, the 95-percent confidence intervals for first-grade impacts

include effects as large as 0.2 standard deviations for four-year-olds and 0.3 standard deviations

for three-year-olds. These results show that although the longer-run estimates are insignificant,

they are also imprecise due to experimental noncompliance. Evidence for fadeout is therefore less

definitive than the naive intent-to-treat estimates suggest. This observation helps to reconcile

the HSIS results with observational studies based on sibling comparisons, which show effects that

partially fade out but are still detectable in elementary school (Currie and Thomas, 1995; Deming,

2009).6

IV. Program Substitution

We now turn to documenting program substitution in the HSIS and how it influences our results. It

is helpful to develop some notation to describe the role of alternative care environments. Each Head

Start applicant participates in one of three possible treatments: Head Start, which we label h; other

center-based preschool programs, which we label c; and no preschool (i.e., home care), which we

label n. Let Zi ∈ {0, 1} indicate whether household i has a Head Start offer, and Di(z) ∈ {h, c, n}
denote household i’s potential treatment status as a function of the offer. Then observed treatment

status can be written Di = Di(Zi).

The structure of the HSIS leads to natural theoretical restrictions on substitution patterns. We

expect a Head Start offer to induce some children who would otherwise participate in c or n to

enroll in Head Start. By revealed preference, no child should switch between c and n in response

to a Head Start offer, and no child should be induced by an offer to leave Head Start. These

restrictions can be expressed succinctly by the following condition:

Di(1) 6= Di(0) =⇒ Di(1) = h, (1)

which extends the monotonicity assumption of Imbens and Angrist (1994) to a setting with multiple

counterfactual treatments. This restriction states that anyone who changes behavior as a result of

the Head Start offer does so to attend Head Start.7

Under restriction (1), the population of Head Start applicants can be partitioned into five groups

defined by their values of Di(1) and Di(0):

1. n-compliers: Di(1) = h, Di(0) = n,

2. c-compliers: Di(1) = h, Di(0) = c,

6One might also be interested in the effects of Head Start on non-cognitive outcomes, which appear to be important
mediators of the effects of early childhood programs in other contexts (Chetty et al., 2011; Heckman et al., 2013).
The HSIS includes short-run parent-reported measures of behavior and teacher-reported measures of teacher/student
relationships, and Head Start appears to have no impact on these outcomes (Puma et al., 2010; Walters, 2015). The
HSIS non-cognitive outcomes differ significantly from those analyzed in previous studies, however, and it is unclear
whether they capture the same skills.

7See Engberg et al. (2014) for discussion of related restrictions in the context of attrition from experimental data.
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3. n-never takers: Di(1) = Di(0) = n,

4. c-never takers: Di(1) = Di(0) = c,

5. always takers: Di(1) = Di(0) = h.

The n- and c- compliers switch to Head Start from home care and competing preschools, respec-

tively, when offered a seat. The two groups of never takers choose not to attend Head Start

regardless of the offer. Always takers manage to enroll in Head Start even when denied an offer,

presumably by applying to other Head Start centers outside the HSIS sample.

Using this rubric, the group of children enrolled in alternative preschool programs is a mixture

of c-never takers and c-compliers denied Head Start offers. Similarly, the group of children in home

care includes n-never takers and n-compliers without offers. The two complier subgroups switch

into Head Start when offered admission; as a result, the set of children enrolled in Head Start is a

mixture of always takers and the two groups of offered compliers.

IV.A. Substitution Patterns

Table III presents empirical evidence on substitution patterns by comparing program participation

choices for offered and non-offered households. In the first year of the experiment 8.3 percent of

households decline Head Start offers in favor of other preschool centers; this is the share of c-never

takers. Similarly, column (3) shows that 9.5 percent of households are n-never takers. As can be

seen in column (4), 13.6 percent of households manage to attend Head Start without an offer, which

is the share of always takers. The Head Start offer reduces the share of children in other centers

from 31.5 percent to 8.3 percent, and reduces the share of children in home care from 55 percent

to 9.5 percent. This implies that 23.2 percent of households are c-compliers, and 45.5 percent are

n-compliers.

Notably, in the first year of the experiment, three year olds have uniformly higher participation

rates in Head Start and lower participation rates in competing centers, which likely reflects the

fact that many state provided programs only accept four year olds. In the second year of the

experiment, participation in Head Start drops among children in the three year old cohort with a

program offer, suggesting that many families enrolled in the first year decided that Head Start was

a bad match for their child. We also see that Head Start enrollment rises among those families that

did not obtain an offer in the first round, which reflects reapplication behavior.

IV.B. Interpreting IV

How do the substitution patterns displayed in Table III affect the interpretation of the HSIS test

score impacts? Let Yi(d) denote child i’s potential test score if he or she participates in treatment

d ∈ {h, c, n}. Observed scores are given by Yi = Yi(Di). We shall assume that Head Start offers

affect test scores only through program participation choices. Under assumption (1), IV identifies

a variant of the Local Average Treatment Effect (LATE) of Imbens and Angrist (1994), giving the
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average effect of Head Start participation for compliers relative to a mix of program alternatives.

Specifically, under (1) and excludability of Head Start offers:

E [Yi|Zi = 1]− E [Yi|Zi = 0]

E [1 {Di = h} |Zi = 1]− E [1 {Di = h} |Zi = 0]
= E [Yi(h)− Yi(Di(0))|Di(1) = h,Di(0) 6= h]

≡ LATEh.
(2)

The left-hand side of (2) is the population coefficient from a model that instruments Head Start

attendance with the Head Start offer. This equation implies that the IV strategy employed in Table

II yields the average effect of Head Start for compliers relative to their own counterfactual care

choices, a quantity we label LATEh.

We can decompose LATEh into a weighted average of “subLATEs” measuring the effects of

Head Start for compliers drawn from specific counterfactual alternatives as follows:

LATEh = ScLATEch + (1− Sc)LATEnh, (3)

where LATEdh ≡ E [Yi(h)− Yi(d)|Di(1) = h,Di(0) = d] gives the average treatment effect on

d−compliers for d ∈ {c, n} and the weight Sc ≡ P (Di(1)=h,Di(0)=c)
P (Di(1)=h,Di(0)6=h) gives the fraction of compli-

ers drawn from other preschools.

Column (7) of Table III reports estimates of Sc by year and cohort, computed as minus the ratio

of the Head Start offer’s effect on other preschool attendance to its effect on Head Start attendance

(see Appendix B). In the first year of the HSIS experiment, 34 percent of compliers would have

otherwise attended competing preschools. IV estimates combine effects for these compliers with

effects for compliers who would not otherwise attend preschool.

As detailed in Appendix D, the competing preschools attended by c-compliers are largely

publicly funded and provide services roughly comparable to Head Start. The modal alternative

preschool is a state-provided preschool program, while others receive funding from a mix of public

sources (see Appendix Table A.II). Moreover, it is likely that even Head Start-eligible children at-

tending private preschool centers receive public funding (e.g., through CCDF or TANF subsidies).

We next consider the implications of substitution from these alternative preschools for assessments

of Head Start’s cost-effectiveness.

V. A Model of Head Start Provision

In this section, we develop a model of Head Start participation with the goal of conducting a cost-

benefit analysis that acknowledges the presence of publicly subsidized program substitutes. Our

model is highly stylized and focuses on obtaining an estimable lower bound on the rate of return

to potential reforms of Head Start measured in terms of lifetime earnings. The analysis ignores

redistributional motives and any effects of human capital investment on criminal activity (Lochner

and Moretti, 2004; Heckman et al., 2010), health (Deming, 2009; Carneiro and Ginja, forthcoming),

or grade repetition (Currie, 2001). Adding such features would tend to raise the implied return to
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Head Start. We also abstract from parental labor supply decisions because prior analyses of the

Head Start Impact Study find no short term impacts on parents’ work decisions (Puma et al., 2010,

2012).8 Again, incorporating parental labor supply responses would likely raise the program’s rate

of return.

Our discussion emphasizes that the cost-effectiveness of Head Start is contingent upon assump-

tions regarding the structure of the market for preschool services and the nature of the specific

policy reforms under consideration. Building on the heterogeneous effects framework of the previ-

ous section, we derive expressions for policy relevant “sufficient statistics” (Chetty, 2009) in terms

of causal effects on student outcomes. Specifically, we show that a variant of the Local Average

Treatment Effect concept of Imbens and Angrist (1994) is policy relevant when considering pro-

gram expansions in an environment where slots in competing preschools are not rationed. With

rationing, a mix of LATEs becomes relevant, which poses challenges to identification with the HSIS

data. When considering reforms to Head Start program features that change selection into the

program, the policy relevant parameter is shown to be a variant of the Marginal Treatment Effect

concept of Heckman and Vytlacil (1999).

V.A. Setup

Consider a population of households, indexed by i, each with a single preschool-aged child. Each

household can enroll its child in Head Start, a competing preschool program (e.g., state subsidized

preschool), or care for the child at home. The government rations Head Start participation via

program offers Zi, which arrive at random via lottery with probability δ ≡ P (Zi = 1). Offers are

distributed in a first period. In a second period, households make enrollment decisions. Tenacious

applicants who have not received an offer can enroll in Head Start by exerting additional effort.

We begin by assuming that competing programs are not rationed and then relax this assumption

below.

Each household has utility over its enrollment options given by the function Ui (d, z). The

argument d ∈ {h, c, n} indexes child care environments, while the argument z ∈ {0, 1} indexes offer

status. Head Start offers raise the value of Head Start and have no effect on the value of other

options, so that:

Ui (h, 1) > Ui (h, 0) , Ui (c, z) = Ui (c) , Ui (n, z) = Ui (n).

Household i’s enrollment choice, as a function of its offer status z, is given by:

Di (z) = arg max
d∈{h,c,n}

Ui (d, z) .

It is straightforward to show that this model satisfies the monotonicity restriction (1). Since offers

are assigned at random, market shares for the three care environments can be written P (Di = d) =

8We replicate this analysis for our sample in Table A.III, which shows that a Head Start offer has no effect on
the probability that a child’s mother works or on the likelihood of working full- vs. part-time. Recent work by Long
(2015) suggests that Head Start may have small effects on full- vs. part-time work for mothers of three-year-olds.
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δP (Di (1) = d) + (1− δ)P (Di (0) = d).

V.B. Benefits and Costs

Debate over the effectiveness of educational programs often centers on their test score impacts. A

standard means of valuing such impacts is in terms of their effects on later life earnings (Heckman

et al., 2010, 2013; Chetty et al., 2011, 2014b).9 Let the symbol B denote the total after-tax lifetime

income of a cohort of children. We assume that B is linked to test scores by the equation:

B = B0 + (1− τ) pE [Yi] , (4)

where p gives the market price of human capital, τ is the tax rate faced by the children of eligible

households, and B0 is an intercept reflecting how test scores are normed. Our focus on mean test

scores neglects distributional concerns which may lead us to undervalue Head Start’s test score

impacts (see Bitler et al., 2014).

The net costs to government of financing preschool are given by:

C = C0 + φhP (Di = h) + φcP (Di = c)− τpE [Yi] , (5)

where the term C0 reflects fixed costs of administering the program and φh gives the administrative

cost of providing Head Start services to an additional child. Likewise, φc gives the administrative

cost to government of providing competing preschool services (which often receive public subsidies)

to another student. The term τpE [Yi] captures the revenue generated by taxes on the adult earnings

of Head Start-eligible children. This formulation abstracts from the fact that program outlays must

be determined before the children enter the labor market and begin paying taxes, a complication

we will adjust for in our empirical work via discounting.

V.C. Changing Offer Probabilities

Consider now the effects of adjusting Head Start enrollment by changing the rationing probability

δ. An increase in δ draws additional households into Head Start from competing programs and

home care. As shown in Appendix C, the effect of a change in the offer rate δ on average test scores

is given by:

∂E [Yi]

∂δ
= LATEh︸ ︷︷ ︸

Effect on compliers

× ∂P (Di = h)

∂δ︸ ︷︷ ︸
Complier density

. (6)

In words, the aggregate impact on test scores of a small increase in the offer rate equals the average

impact of Head Start on complier test scores times the measure of compliers. By the arguments

in Section IV, both LATEh and ∂
∂δP (Di = h) = P (Di (1) = h,Di (0) 6= h) are identified by the

9Appendix C considers how such valuations should be adjusted when test score impacts yield labor supply re-
sponses.
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HSIS experiment. Hence, (6) implies that the hypothetical effects of a market-level change in offer

probabilities can be inferred from an individual-level randomized trial with a fixed offer probability.

This convenient result follows from the assumption that Head Start offers are distributed at random

and that δ does not directly enter the alternative specific choice utilities, which in turn implies that

the composition of compliers (and hence LATEh) does not change with δ. Below we explore how

this expression changes when the composition of compliers responds to a policy change.

From (4), the marginal benefit of an increase in δ is given by:

∂B

∂δ
= (1− τ) pLATEh ×

∂P (Di = h)

∂δ
.

The offsetting marginal cost to government of financing such an expansion can be written:

∂C

∂δ
=

 φh︸︷︷︸
Provision Cost

− φcSc︸︷︷︸
Public Savings

− τpLATEh︸ ︷︷ ︸
Added Revenue

× ∂P (Di = h)

∂δ
. (7)

This cost consists of the measure of compliers times the administrative cost φh of enrolling them

in Head Start minus the probability Sc that a complying household comes from a substitute

preschool times the expected government savings φc associated with reduced enrollment in sub-

stitute preschools. The quantity φh − φcSc can be viewed as a local average treatment effect of

Head Start on government spending for compliers. Subtracted from this effect is any extra revenue

the government gets from raising the productivity of the children of complying households.

The ratio of marginal impacts on after-tax income and government costs gives the marginal

value of public funds (Mayshar, 1990; Hendren, 2014), which we can write:

MV PFδ ≡
∂B/∂δ

∂C/∂δ
=

(1− τ) pLATEh
φh − φcSc − τpLATEh

. (8)

The MV PFδ gives the value of an extra dollar spent on Head Start net of fiscal externalities. These

fiscal externalities include reduced spending on competing subsidized programs (captured by the

term φcSc) and additional tax revenue generated by higher earnings (captured by τpLATEh). As

emphasized by Hendren (2014), the MVPF is a metric that can easily be compared across programs

without specifying exactly how program expenditures are to be funded. In our case, if MV PFδ > 1

a dollar of government spending can raise the after-tax incomes of children by more than a dollar,

which is a robust indicator that program expansions are likely to be welfare improving.

An important lesson of the above analysis is that identifying costs and benefits of changes to offer

probabilities does not require identification of treatment effects relative to particular counterfactual

care states. Specifically, it is not necessary to separately identify the subLATEs. This result

shows that program substitution is not a design flaw of evaluations. Rather, it is a feature of the

policy environment that needs to be considered when computing the likely effects of changes to

policy parameters. Here, program substitution alters the usual logic of program evaluation only by
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requiring identification of the complier share Sc, which governs the degree of public savings realized

as a result of reducing subsidies to competing programs.

V.D. Rationed Substitutes

The above analysis presumes that Head Start expansions yield reductions in the enrollment of

competing preschools. However, if competing programs are also over-subscribed, the slots vacated

by c−compliers may be filled by other households. This will reduce the public savings associated

with Head Start expansions but also generate the potential for additional test score gains.

With rationing in substitute preschool programs, the utility of enrollment in c can be written

Ui(c, Zic), where Zic indicates an offered slot in the competing program. Household i’s enrollment

choice, Di(Zih, Zic), depends on both the Head Start offer Zih and the competing program offer.

Assume these offers are assigned independently with probabilities δh and δc, but that δc adjusts to

changes in δh to keep total enrollment in c constant. In addition, assume that all children induced

to move into c as a result of an increase in δc come from n rather than h.

We show in Appendix C that under these assumptions the marginal impact of expanding Head

Start becomes:

∂E [Yi]

∂δh
= (LATEh + LATEnc)×

∂P (Di = h)

∂δh
,

where LATEnc ≡ E [Yi (c)− Yi (n) |Di (Zih, 1) = c,Di (Zih, 0) = n]. Intuitively, every c−complier

now spawns a corresponding n-to-c complier who fills the vacated preschool slot.

The marginal cost to government of inducing this change in test scores can be written:

∂C

∂δh
= [φh − τp (LATEh + LATEnc)]×

∂P (Di = h)

∂δh
.

Relative to (7), rationing eliminates the public savings from reduced enrollment in substitute pro-

grams but adds another fiscal externality in its place: the tax revenue associated with any test

score gains of shifting children from home care to competing preschools. The resulting marginal

value of public funds can be written:

MV PFδ,rat =
(1− τ)p (LATEh + LATEnc · Sc)
φh − τp (LATEh + LATEnc · Sc)

. (9)

While the impact of rationed substitutes on the marginal value of public funds is theoretically

ambiguous, there is good reason to expect MV PFδ,rat > MV PFδ in practice. Specifically, ignoring

rationing of competing programs yields a lower bound on the rate of return to Head Start expansions

if Head Start and other forms of center based care have roughly comparable effects on test scores and

competing programs are cheaper (see Appendix C). Unfortunately, effects for n-to-c compliers are

not nonparametrically identified by the HSIS experiment since one cannot know which households

that care for their children at home would otherwise choose to enroll them in competing preschools.

14



We return to this issue in Section IX.

V.E. Structural Reforms

An important assumption in the previous analyses is that changing lottery probabilities does not

alter the mix of program compliers. Consider now the effects of altering some structural feature f of

the Head Start program that households value but which has no impact on test scores. For example,

Executive Order #13330, issued by President Bush in February 2004, mandated enhancements to

the transportation services provided by Head Start and other federal programs (Federal Register,

2004). Expanding Head Start transportation services should not directly influence educational

outcomes but may yield a compositional effect by drawing in households from a different mix of

counterfactual care environments.10 By shifting the composition of program participants, changes

in f may boost the program’s rate of return.

To establish notation, we assume that households now value Head Start participation as:

Ũi(h, Zi, f) = Ui (h, Zi) + f.

Utilities for other preschools and home care are assumed to be unaffected by changes in f . This

implies that increases in f make Head Start more attractive for all households. For simplicity, we

return to our prior assumption that competing programs are not rationed. As shown in Appendix

C, the assumption that f has no effect on potential outcomes implies:

∂E [Yi]

∂f
= MTEh ×

∂P (Di = h)

∂f
,

where

MTEh ≡E [Yi(h)− Yi (c) |Ui(h, Zi) + f = Ui(c), Ui(c) > Ui(n)]
−→
S c

+ E [Yi(h)− Yi(n)|Ui(h, Zi) + f = Ui(n), Ui(n) > Ui(c)] (1−
−→
S c),

and
−→
S c gives the share of children on the margin of participating in Head Start who prefer the

competing program to preschool non-participation. Following the terminology in Heckman et al.

(2008), the marginal treatment effect MTEh is the average effect of Head Start on test scores

among households indifferent between Head Start and the next best alternative. This is a marginal

version of the result in (6), where integration is now over a set of children who may differ from

current program compliers in their mean impacts. Like LATEh, MTEh is a weighted average

of “subMTEs” corresponding to whether the next best alternative is home care or a competing

preschool program. The weight
−→
S c may differ from Sc if inframarginal participants are drawn from

different sources than marginal ones.

The test score effects of improvements to the program feature must be balanced against the

10This presumes that peer effects are not an important determinant of test score outcomes. Large changes in the
student composition of Head Start classrooms could potentially change the effectiveness of Head Start.
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costs. We suppose that changing program features changes the average cost φh (f) of Head Start

services, so that the net costs to government of financing preschool are now:

C (f) = C0 + φh (f)P (Di = h) + φcP (Di = c)− τpE [Yi] , (10)

where ∂φh (f) /∂f ≥ 0. The marginal costs to government (per program complier) of a change in

the program feature can be written:

∂C (f) /∂f

∂P (Di = h) /∂f
= φh︸︷︷︸

Marginal Provision Cost

+
∂φh (f) /∂f

∂ lnP (Di = h) /∂f︸ ︷︷ ︸
Inframarginal Provision Cost

− φc
−→
S c︸ ︷︷ ︸

Public Savings

− τpMTEh︸ ︷︷ ︸ .
Added Revenue

(11)

The first term on the right hand side of (11) gives the administrative cost of enrolling another child.

The second term gives the increased cost of providing inframarginal families with the improved

program feature. The third term is the expected savings in reduced funding to competing preschool

programs. And the final term gives the additional tax revenue raised by the boost in the marginal

enrollee’s human capital.

Letting η ≡ ∂ lnφ(f)/∂f
∂ lnP (Di=h)/∂f be the elasticity of costs with respect to enrollment, we can write

the marginal value of public funds associated with a change in program features as:

MV PFf ≡
∂B/∂f

∂C (f) /∂f
=

(1− τ) pMTEh

φh (1 + η)− φc
−→
S c − τpMTEh

. (12)

As in our analysis of optimal program scale, equation (11) shows that it is not necessary to sepa-

rately identify the “subMTEs” that compose MTEh to determine the optimal value of f . Rather,

it is sufficient to identify the average causal effect of Head Start for children on the margin of

participation along with the average net cost of an additional seat in this population.

VI. A Cost-Benefit Analysis of Program Expansion

We next use the HSIS data to conduct a formal cost-benefit analysis of changes to Head Start’s

offer rate under the assumption that competing programs are not rationed (we consider the case

with rationing in Section IX). Our analysis focuses on the costs and benefits associated with one

year of Head Start attendance.11 This exercise requires estimates of each term in equation (7). We

estimate LATEh and Sc from the HSIS, and calibrate the remaining parameters using estimates

11Children in the three-year-old cohort who enroll for two years generate additional costs. As shown in Table
III, a Head Start offer raises the probability of enrollment in the second year by only 0.16, implying that first-year
offers have modest net effects on second-year costs. Enrollment for two years may also generate additional benefits,
but these cannot be estimated without strong assumptions on the Head Start dose/response function. We therefore
consider only first-year benefits and costs.
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from the literature. Calibrated parameters are listed in panel A of Table IV. To be conservative,

we deliberately bias our calibrations towards understating Head Start’s benefits and overstating its

costs in order to arrive at a lower bound rate of return. Further details of the calibration exercise

are provided in Appendix D.

Panel B of Table IV reports estimates of the marginal value of public funds associated with an

expansion of Head Start offers (MV PFδ). To account for sampling uncertainty in our estimates

of LATEh and Sc we report standard errors calculated via the delta method. Because asymptotic

delta method approximations can be inaccurate when the statistic of interest is highly nonlinear

(Lafontaine and White, 1986), we also report bootstrap p-values from one-tailed tests of the null

hypothesis that the benefit/cost ratio is less than one.12

The results show that accounting for the public savings associated with enrollment in substitute

preschools has a large effect on the estimated social value of Head Start. We conduct cost-benefit

analyses under three assumptions: φc is either zero, 50%, or 75% of φh. Our preferred calibration

uses φc = 0.75φh, reflecting that fact that roughly 75 percent of competing centers are publicly

funded (see Appendix D). Setting φc = 0 yields a MV PFδ of 1.10. Setting φc equal to 0.5φh and

0.75φh raises the MV PFδ to 1.50 and 1.84, respectively. This indicates that the fiscal externality

generated by program substitution has an important effect on the social value of Head Start.

Bootstrap tests decisively reject values of MV PFδ less than one when φc = 0.5φh or 0.75φh.

Notably, our preferred estimate of 1.84 is well above the estimated rates of return of comparable

expenditure programs summarized in Hendren (2014, Table 1), and comparable to the marginal

value of public funds associated with increases in the top marginal tax rate (between 1.33 and 2.0).

To assess the sensitivity of our results to alternative assumptions regarding the relationship

between test score effects and earnings, Table IV also reports “breakeven” relationships between

test scores and earnings that set MV PFδ equal to one for each value of φc. When φc = 0 the

breakeven earnings effect is 9 percent per test score standard deviation, only slightly below our

calibrated value of 10 percent. This indicates that when substitution is ignored, Head Start is

close to breaking even and small changes in assumptions will yield values of MV PFδ below one.

Increasing φc to 0.5φh or 0.75φh reduces the breakeven earnings effect to 8 percent or 7 percent,

respectively. The latter figure is well below comparable estimates in the recent literature, such

as estimates from Chetty et al.’s (2011) study of the Tennessee STAR class size experiment (13

percent; see Appendix Table A.IV). Therefore, after accounting for fiscal externalities, Head Start’s

costs are estimated to exceed its benefits only if its test score impacts translate into earnings gains

at a lower rate than similar interventions for which earnings data are available.

12This test is computed by a non-parametric block bootstrap of the studentized t-statistic that resamples Head
Start sites. We have found in Monte Carlo exercises that Delta method confidence intervals for MV PFδ tend to
over-cover, while bootstrap-t tests have approximately correct size. This is in accord with theoretical results from
Hall (1992) that show bootstrap-t methods yield a higher-order refinement to p-values based upon the standard delta
method approximation.
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VII. Beyond LATE

Thus far, we have evaluated the return to a marginal expansion of Head Start under the assumption

that the mix of compliers can be held constant. However, it is likely that major reforms to Head

Start would entail changes to program features such as accessibility that could in turn change the

mix of program compliers. To evaluate such reforms, it is necessary to predict how selection into

Head Start is likely to change and how this impacts the program’s rate of return.

VII.A. Instrumental Variables Estimates of SubLATEs

A first way in which selection into Head Start could change is if the mix of compliers drawn from

home care and competing preschools were altered while holding the composition of those two groups

constant. To predict the effects of such a change on the program’s rate of return we need to estimate

the “subLATEs” in equation (3).

One approach to identifying subLATEs is to conduct two-stage least squares (2SLS) estimation

treating Head Start enrollment and enrollment in other preschools as separate endogenous variables.

A common strategy for generating instruments in such settings is to interact an experimentally as-

signed program offer with observed covariates or site indicators (e.g., Kling, Liebman and Katz,

2007; Abdulkadiroglu et al., 2014). Such approaches can secure identification in a constant effects

framework but, as we demonstrate in Appendix E, will typically fail to identify interpretable pa-

rameters if the subLATEs themselves vary across the interacting groups (see Kirkeboen et al., 2014

and Hull, 2015 for related results).

Table V reports 2SLS estimates of the separate effects of Head Start and competing preschools

using as instruments the Head Start offer indicator and its interaction with 8 student- and site-

level covariates likely to capture heterogeneity in compliance patterns.13 These instruments strongly

predict Head Start enrollment but induce relatively weak independent variation in enrollment in

other preschools, with a partial first stage F-statistic of only 1.8. The 2SLS estimates indicate

that Head Start and other centers yield large and roughly equivalent effects on test scores of

approximately 0.4 standard deviations. This finding is roughly in line with the view that preschool

effects are homogeneous and that program substitution simply attenuates instrumental variables

estimates of the effect of Head Start relative to home care. Cautioning against this interpretation

is the 2SLS overidentification test, which strongly rejects the constant effects model, indicating the

presence of substantial effect heterogeneity across covariate groups.

A separate source of variation comes from experimental sites: the HSIS was implemented at

hundreds of individual Head Start centers, and previous studies have shown substantial variation

in treatment effects across these centers (Bloom and Weiland, 2015; Walters, 2015). Using site

13Previous analyses of the HSIS have shown important effect heterogeneity with respect to baseline scores and first
language (Bitler et al., 2014; Bloom and Weiland, 2015) so we include these in the list of student level interactions. We
also allow interactions with variables measuring whether a child’s center of random assignment offers transportation
to Head Start, whether the center of random assignment is above the median of the Head Start quality measure, the
education level of the child’s mother, whether the child is age four, whether the child is black, and an indicator for
family income above the poverty line.
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interactions as instruments again yields much more independent variation in Head Start enrollment

than in competing preschools.14 However, now the estimated impact of Head Start is smaller and

competing centers are estimated to yield no gains relative to home care. While these site-based

estimates are nominally more precise than those obtained from the covariate interactions, with 183

instruments the asymptotic standard errors may provide a poor guide to the degree of uncertainty

in the parameter estimates (Bound, Jaeger, and Baker, 1995). We explore this issue in Appendix

Table A.V, which reports limited information maximum likelihood and jackknife IV estimates of

the same model. These approaches yield much larger standard errors and very different point

estimates, suggesting that weak instrument biases are at play here.

To deal with these statistical problems, we use a choice model with discrete unobserved hetero-

geneity (described in more detail later on) to aggregate Head Start sites together into six groups

with similar substitution patterns. Using the site group interactions as instruments yields signifi-

cant independent variation in both Head Start and competing preschool enrollment, and produces

results more in line with those obtained from the covariate interactions. Pooling the site group

and covariate interaction instruments together yields the most precise estimates, which indicate

that both preschool types increase scores relative to home care and that Head Start is slightly

more effective than competing preschools. However, the overidentification test continues to reject

the constant effects model, suggesting that these estimates are still likely to provide a misleading

guide to the underlying subLATEs. Another important limitation of the interacted 2SLS approach

is that it conditions on realized selection patterns and therefore cannot be used to predict the

effects of reforms that change the underlying composition of n− and c− compliers. We now turn

to developing an econometric selection model that allows us to address both of these limitations.

VII.B. Selection Model

Our selection model parametrizes the preferences and potential outcomes introduced in the model

of Section V to motivate a two-step control function estimator. Like the interacted 2SLS approach,

the proposed estimator exploits interactions of the Head Start offer with covariates and site groups

to separately identify the causal effects of care alternatives. Unlike the interacted 2SLS approach,

the control function estimator allows the interacting groups to have different subLATEs that vary

parametrically with the probability of enrolling in Head Start and competing preschools.

Normalizing the value of preschool non-participation to zero, we assume households have utilities

over program alternatives given by:

Ui (h, Zi) = ψh (Xi, Zi) + vih,

Ui (c) = ψc (Xi) + vic, (13)

Ui (n) = 0,

14To avoid extreme imbalance in site size, we grouped the 356 sites in our data into 183 sites with 10 or more
observations. See Appendix G for details.
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where Xi denotes the vector of baseline household and experimental site characteristics listed

in Table I and Zi again denotes the Head Start offer dummy. The stochastic components of

utility (vih, vic) reflect unobserved differences in household demand for Head Start and competing

preschools relative to home care. In addition to pure preference heterogeneity, these terms may

capture unobserved constraints such as whether family members are available to help with child

care. We suppose these components obey a multinomial probit specification:

(vih, vic) |Xi, Zi ∼ N

(
0,

[
1 ρ (Xi)

ρ (Xi) 1

])
,

which allows for violations of the Independence from Irrelevant Alternatives (IIA) condition that

underlies multinomial logit selection models such as that of Dubin and McFadden (1984).

As in the Heckman (1979) selection framework, we model endogeneity in participation decisions

by allowing linear dependence of mean potential outcomes on the unobservables that influence

choices. Specifically, for each program alternative d ∈ {h, c, n}, we assume:

E [Yi (d) |Xi, Zi, vih, vic] = µd (Xi) + γdhvih + γdcvic. (14)

The {γdh, γdc} coefficients in (14) describe the nature of selection on unobservables. This spec-

ification can accommodate a variety of selection schemes. For example, if γdh = γh > 0, then

conditional on observables, selection into Head Start is governed by potential outcome levels –

those most likely to participate in Head Start have higher test scores in all care environments. But

if γhh > 0 and γnh = −γhh, then households engage in Roy (1951)-style selection into Head Start

based upon test score gains – those most likely to participate in Head Start receive larger test score

benefits when they switch from home care to Head Start.

By iterated expectations, (14) implies the conditional expectation of realized outcomes can be

written:

E [Yi|Xi, Zi, Di = d] = µd (Xi) + γdhλh (Xi, Zi, d) + γdcλc (Xi, Zi, d) , (15)

where λh (Xi, Zi, Di) ≡ E [vih|Xi, Zi, Di] and λc (Xi, Zi, Di) ≡ E [vic|Xi, Zi, Di] are generalizations

of the standard inverse Mills ratio terms used in the two-step Heckman (1979) selection correction

(see Appendix F for details). These terms depend on Xi and Zi only through the conditional

probabilities of enrolling in Head Start and other preschools.

VII.C. Identification

To demonstrate identification of the selection coefficients {γdh, γdc} it is useful to eliminate the

main effect of the covariates by differencing (15) across values of the program offer Zi as follows:

E [Yi|Xi, Zi = 1, Di = d]− E [Yi|Xi, Zi = 0, Di = d] = γdh [λh (Xi, 1, d)− λh (Xi, 0, d)]

+γdc [λc (Xi, 1, d)− λc (Xi, 0, d)] . (16)
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This difference measures how selected test score outcomes in a particular care alternative respond

to a Head Start offer. Responses in selected outcomes are driven entirely by compositional changes

– i.e. from compliers switching between alternatives.

With two values of the covariates Xi, equation (16) can be evaluated twice, yielding two equa-

tions in the two unknown selection coefficients. Appendix F details the conditions under which this

system can be solved and provides expressions for the selection coefficients in terms of population

moments. Additive separability of the potential outcomes in observables and unobservables is es-

sential for identification. If the selection coefficients in (16) were allowed to depend on Xi, there

would be two unknowns for every value of the covariates and identification would fail. Heuristically

then, our key assumption is that selection on unobservables works “the same way” for every value of

the covariates, which allows us to exploit variation in selected outcome responses across subgroups

to infer the parameters governing the selection process.

To understand this restriction, suppose (as turns out to be the case) that college educated

mothers are more likely to enroll their children in competing preschools when denied access to

Head Start. Our model allows Head Start and other preschools to have different average treatment

effects on the children of more and less educated mothers. However, it rules out the possibility that

children with college educated mothers sort into Head Start on the basis of potential test score

gains, while children of less educated mothers exhibit no sorting on these gains. As in Brinch et

al. (2012), this restriction is testable when Xi takes more than two values because it implies we

should obtain similar estimates of the selection coefficients based on variation in different subsets

of the covariates. We provide evidence along these lines by contrasting estimates that exploit site

variation with estimates based upon household covariates.

VII.D. Estimation

To make estimation tractable, we approximate ψh (X,Z) and ψc(X) with flexible linear functions.

The non-separability of ψh(X,Z) is captured by linear interactions between Z and the 8 covari-

ates used in our earlier 2SLS analysis. We also allow interactions with the 183 experimental site

indicators but, to avoid incidental parameters problems, constrain the coefficients on those dum-

mies to belong to one of K discrete categories. Results from Bonhomme and Manresa (2015) and

Saggio (2012) suggest that this “grouped fixed effects” approach should yield good finite sample

performance even when some sites have as few as 10 observations. As described in Appendix G,

we choose the number of site groups K using the Bayesian Information Criterion (BIC). Finally,

all of the interacting variables (both site groups and covariates) are allowed to influence the corre-

lation parameter ρ (X). We assume that arctanhρ(X) = 1
2 ln

(
1+ρ(X)
1−ρ(X)

)
is linear in these variables,

a standard transformation that ensures the correlation is between -1 and 1 (Cox, 2008).

The model is fit in two steps. First, we estimate the parameters of the Probit model via sim-

ulated maximum likelihood, evaluating choice probabilities with the Geweke-Hajivassiliou-Keane

(GHK) simulator (Geweke, 1989; Hajivassiliou and McFadden, 1998; Keane, 1994). Models includ-

ing site groups are estimated with an algorithm that alternates between maximizing the likelihood

and reassigning groups, described in detail in Appendix G. Second, we use the parameters of the
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choice model to form control function estimates
(
λ̂h (Xi, Zi, Di) , λ̂c (Xi, Zi, Di)

)
, which are then

used in a second step regression of the form:

Yi = θn0 +X ′θnx + γnhλ̂h (Xi, Zi, Di) + γncλ̂c (Xi, Zi, Di) (17)

+ 1 {Di = c}
[
(θc0 − θn0) +X ′

i (θcx − θnx) + (γch − γnh) λ̂h (Xi, Zi, c) + (γcc − γnc) λ̂c (Xi, Zi, c)
]

+ 1 {Di = h}
[
(θh0 − θn0) +X ′

i (θhx − θnx) + (γhh − γnh) λ̂h (Xi, Zi, h) + (γhc − γnc) λ̂c (Xi, Zi, h)
]

+ εi.

The covariate vector Xi is normed to have unconditional mean zero, so the intercepts θd0 can be

interpreted as average potential outcomes. Hence, the differences θh0 − θn0 and θh0 − θc0 capture

average treatment effects of Head Start and other preschools relative to no preschool. To avoid

overfitting, we restrict variables other than the site types and 8 key covariates to have common

coefficients across care alternatives.15 Inference on the second step parameters is conducted via the

nonparametric block bootstrap, clustered by experimental site.

VIII. Model Estimates

VIII.A. Model Parameters

Table VI reports estimates of the full choice model obtained from exploiting both covariates and site

heterogeneity. The BIC selects a specification with six site groups for the full model (see Appendix

Table A.VI), with group shares that vary between 12% and 21% of the sample. These assignments

comprise the site groups used in the earlier 2SLS analysis of Table V.

Columns (1) and (2) of Table VI show the coefficients governing the mean utility of enrollment

in Head Start. We easily reject the null hypothesis that the program offer interaction effects in the

Head Start utility equation are homogenous. Panel A of Column (2) indicates that the effects of

an offer are greater at high-quality centers and lower among non-poor children that would typically

be ineligible for Head Start enrollment.16 Panel B of Column (2) reveals the presence of significant

heterogeneity across site groups in the response to a program offer, which likely reflects unobserved

market features such as the presence or absence of state provided preschool.

Column (4) of Table VI reports the parameters governing the correlation in unobserved tastes

for Head Start and competing programs. The correlation is positive for four of six site groups,

indicating that most households view preschool alternatives as more similar to each other than

to home care. This establishes that the IIA condition underlying logit-based choice models is

empirically violated. While there is some evidence of heterogeneity in the correlation based upon

mother’s education, we cannot reject the joint null hypothesis that the correlation is constant across

covariate groups. However, we easily reject that the correlation is constant across site groups.

The many sources of heterogeneity captured by the choice model yield substantial variation

15This restriction cannot be statistically rejected and has minimal effects on the point estimates.
16The quality variable aggregates information on center characteristics (teacher and center director education and

qualifications, class size) and practices (variety of literacy and math activities, home visiting, health and nutrition)
measured in interviews with center directors, teachers, and parents of children enrolled in the preschool center.
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in predicted enrollment shares for Head Start and competing preschools. Appendix Figure A.I

shows that these predictions match variation in choice probabilities across subgroups. Moreover,

diagnostics indicate this variation is adequate to secure separate identification of the second stage

control function coefficients. From (16), the model is under-identified if, for any alternative d, the

control function difference λh (Xi, 1, d) − λh (Xi, 0, d) is linearly dependent on the corresponding

difference λc (Xi, 1, d) − λc (Xi, 0, d). Appendix Figure A.II shows that the deviations from linear

dependence are visually apparent and strongly statistically significant.

Table VII reports second-step estimates of the parameters in (17). Column (1) omits all controls

and simply reports differences in mean test scores across care alternatives (the omitted category

is home care). Head Start students score 0.2 standard deviations higher than students in home

care, while the corresponding difference for students in competing preschools is 0.26 standard

deviations. Column (2) adds controls for baseline characteristics. Because the controls include a

third order polynomial in baseline test scores, this column can be thought of as reporting “value-

added” estimates of the sort that have received renewed attention in the education literature (Kane

et al., 2008; Rothstein, 2010; Chetty et al., 2014a). Surprisingly, adding these controls does little

to the estimated effect of Head Start relative to home care but improves precision. By contrast,

the estimated impact of competing preschools relative to home care falls significantly once controls

are added.

Columns (3)-(5) add control functions adjusting for selection on unobservables based on choice

models with covariates, site groups, or both. Unlike the specifications in previous columns, these

control function terms exploit experimental variation in offer assignment. Adjusting for selection

on unobservables dramatically raises the estimated average impact of Head Start relative to home

care. However, the estimates are fairly imprecise. Imprecision in estimates of average treatment

effects is to be expected given that these quantities are only identified via parametric restrictions

that allow us to infer the counterfactual outcomes of always takers and never takers. Below we

consider average treatment effects on compliers, which are estimated more precisely.

While some of the control function coefficient estimates are also imprecise, we reject the hy-

potheses of no selection on levels (γkd = 0 ∀(k, d)) and no selection on gains (γdk = γjk for d 6= j,

k ∈ {h, c}) in our most precise specification. The selection coefficient estimates exhibit some in-

teresting patterns. One regularity is that estimates of γhh − γnh are negative in all specifications

(though insignificant in the model using site groups only). In other words, children who are more

likely to attend Head Start receive smaller achievement benefits when shifted from home care to

Head Start. This “reverse-Roy” pattern of negative selection on test score gains suggests large

benefits for children with unobservables making them less likely to attend the program.17 Other

preschool programs, by contrast, seem to exhibit positive selection on gains: the estimated dif-

ference γcc − γnc is always positive and in the full model is significant. A possible interpretation

of these patterns is that Head Start is viewed by parents as a preschool of last resort, leading to

17Walters (2014) finds a related pattern of negative selection in the context of charter schools, though in his setting
the fallback potential outcome (as opposed to the charter school outcome) appears to respond positively to unobserved
characteristics driving program participation.
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enrollment by the families most desperate to get help with child care. Such households cannot be

selective about whether the local Head Start center is a good match for their child, which results

in lower test score gains. By contrast, households considering enrollment in substitute preschools

may have greater resources that afford them the luxury of being more selective about whether such

programs are a good match for their child.

Estimates of the control function coefficients are very similar in columns (3) and (4), though

the estimates are less precise when only site group interactions are used. This indicates that the

implied nature of selection is the same regardless of whether identification is based on site or

covariate interactions, lending credibility to our assumption that selection works the same way

across subgroups. Also supporting this assumption are the results of score tests for the additive

separability of control functions and covariates, reported in the bottom row of Table VII. These

tests are conducted by regressing residuals from the two-step models on interactions of the control

functions with covariates and site groups, along with the main effects from equation (15). In all

specifications, we fail to reject additive separability at conventional levels (see Appendix F for

some additional goodness of fit tests). While these tests do not have the power to detect all forms

of nonseparability, the correspondence between estimates based on covariate and site variation

suggests that our key identifying assumption is reasonable.

VIII.B. Treatment Effects

Table VIII reports average treatment effects on compliers for each of our selection-corrected models.

The first row uses the model parameters to compute the pooled LATEh, which is nonparametrically

identified by the experiment. The model estimates line up closely with the nonparametric estimate

obtained via IV. Appendix Figure A.III shows that this close correspondence between model and

non-parametric LATEh holds even across different covariate groups, across which there is enormous

heterogeneity. The remaining rows of Table VIII report estimates of average effects for compliers

relative to specific care alternatives (i.e. subLATEs).18 Estimates of the subLATE for n-compliers,

LATEnh, are stable across specifications and indicate that the impact of moving from home care to

Head Start is large – on the order of 0.37 standard deviations. By contrast, estimates of LATEch,

though more variable across specifications, never differ significantly from zero.

Our estimates of LATEnh are somewhat smaller than the average treatment effects of Head

Start relative to home care displayed in Table VII. This is a consequence of the reverse Roy pattern

captured by the control function coefficients: families willing to switch from home care to Head

Start in response to an offer have stronger than average tastes for Head Start, implying smaller

than average gains. We can reject that predicted effects of moving from home care to Head Start

are equal for n-compliers and n-never takers, implying that this pattern is statistically significant

(p = 0.038). Likewise, LATEhc is slightly negative, while the average treatment effect of Head

Start relative to other preschools is positive (0.47 - 0.11). In other words, switching from c to h

18We compute the subLATEs by integrating over the relevant regions of Xi, vih and vic as described in Appendix
F.
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reduces test scores for c-compliers, but would improve the score of an average student. This reflects

a combination of above average tastes for competing preschools among c-compliers and positive

selection on gains into other preschools. Note that the control function coefficients in Table VII

capture selection conditional on covariates and sites, while the treatment effects in Table VIII

average over the distribution of observables for each subgroup. The subLATE estimates show that

the selection patterns discussed above still hold when variation in effects across covariate and site

groups is taken into account.

Another interesting point of comparison is to the 2SLS estimates of Table V. The 2SLS ap-

proach found a somewhat smaller LATEnh than our two-step estimator. It also found that

Head Start preschools were slightly more effective at raising test scores than competing programs

(LATEch > 0), while our full control function estimates suggest the opposite. Importantly, the

control function estimates corroborate the failed overidentification tests of Table V by detecting

substantial heterogeneity in the underlying subLATEs. This can be seen in the last four rows of

Table VIII, which report estimates for the top and bottom quintiles of the model-predicted distri-

bution of LATEh (see Appendix F for details). Fixing each group’s Sc at the population average

brings estimates for the top and bottom quintiles closer together, but a large gap remains due to

subLATE heterogeneity.

Finally, it is worth comparing our findings with those of Feller et al. (2014), who use the principal

stratification framework of Frangakis and Rubin (2002) to estimate effects on n- and c-compliers

in the HSIS. They also find large effects for compliers drawn from home and negligible effects

for compliers drawn from other preschools, though their point estimate of LATEnh is somewhat

smaller than ours (0.21 vs. 0.37). This difference reflects a combination of different test score

outcomes (Feller et al. look only at PPVT scores) and different modeling assumptions. Since

neither estimation approach nests the other, it is reassuring that we find qualitatively similar

results.

IX. Policy Counterfactuals

We now use our model estimates to consider policy counterfactuals that are not non-parametrically

identified by the HSIS experiment.

IX.A. Rationed Substitutes

In the cost-benefit analysis of Section VI we assumed that seats at competing preschools were not

rationed. While this assumption is reasonable in states with universal preschool mandates, other

areas may have preschool programs that face relatively fixed budgets and offer any vacated seats

to new children. In this case, increases in Head Start enrollment will create opportunities for new

children to attend substitute preschools rather than generating cost savings in these programs. Our

model-based estimates allow us to assess the sensitivity of our cost/benefit results to the possibility

of rationing in competing programs.
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From (9), the marginal value of public funds under rationing depends on LATEnc – the average

treatment effect of competing preschools on “n-to-c compliers” who would move from home care

to a competing preschool program in response to an offered seat. We compute the MV PFδ,rat

under three alternative assumptions regarding this parameter. First, we consider the case where

LATEnc = 0. Next, we consider the case where the average test score effect of competing preschools

for marginal students equals the corresponding effect for Head Start compliers drawn from home

care (i.e. LATEnc = LATEnh). Finally, we use our model to construct an estimate for LATEnc.

Specifically, we compute average treatment effects competing preschools relative to home care for

students who would be induced to move along this margin by an increase in Ui(c) equal to the

utility value of the Head Start offer coefficient.19 This calculation assumes that the utility value

households place on an offered seat at a competing program is comparable to the value of a Head

Start offer.

Table IX shows the results of this analysis. Setting LATEnc = 0 yields an MV PFδ,rat of

1.10. This replicates the naive analysis with φc = 0 in the non-rationed analysis. Both of these

cases ignore costs and benefits due to substitution from competing programs. Assuming that

LATEnc = LATEnh produces a benefit-cost ratio of 2.36. Finally, our preferred model estimates

from Section VIII predict that LATEnc = 0.294, which produces a ratio of 2.02. These results

suggest that, under plausible assumptions about the effects of competing programs relative to home

care, accounting for the benefits generated by vacated seats in these programs yields estimated social

returns larger than those displayed in panel B of Table IV.

IX.B. Structural Reforms

We next predict the social benefits of a reform that expands Head Start by making it more attractive

rather than by extending offers to additional households. This reform is modeled as an improvement

in the structural program feature f , as described in Section V. Examples of such reforms might

include increases in transportation services, outreach efforts, or spending on other services that

make Head Start attractive to parents. Increases in f are assumed to draw additional households

into Head Start but to have no effect on potential outcomes, which rules out peer effects generated

by changes in student composition. We use the estimates from our preferred model to compute

marginal treatment effects and marginal values of public funds for such reforms, treating changes

in f as shifts in the mean Head Start utility ψh(X,Z).

Panel A of Figure I displays predicted effects of structural reforms on test scores. Since the

program feature has no intrinsic scale, the horizontal axis is scaled in terms of the Head Start

attendance rate, with a vertical line indicating the current rate (f = 0). The right axis measures
−→
S c – the share of marginal students drawn from other preschools. The left axis measures test

19Ideally we would compute LATEnc for students who do not receive offers to competing programs but would attend
these programs if offered. Since we do not observe offers to substitute preschools, it is not possible to distinguish
between non-offered children and children who decline offers. Our estimate of LATEnc therefore captures a mix of
effects for compliers who would respond to offers and children who currently decline offers but would be induced to
attend competing programs if these programs became more attractive.
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score effects. The Figure plots average treatment effects for subgroups of marginal students drawn

from home care and other preschools, along with MTEh, a weighted average of alternative-specific

effects.

Figure I shows that Head Start’s effects on marginal home compliers increase modestly with

enrollment and then level out in the neighborhood of the current program scale (f = 0). This

pattern is driven by reverse Roy selection for children drawn from home care: increases in f attract

children with weaker tastes for Head Start, leading to increases in effects for compliers who would

otherwise stay home. Predicted effects for children drawn from other preschools are slightly negative

for all values of f . At the current program scale, the model predicts that the share of marginal

students drawn from other preschools is larger for structural reforms than for an increase in the

offer rate (0.44 vs. 0.35). This implies that marginal compliers are more likely to be drawn from

other preschools than inframarginal compliers. As a result, the value of MTEh is comparable to

the experimental LATEh, despite very large effects on marginal children drawn from home care

(roughly 0.5σ).

To investigate the consequences of this pattern for the social return to Head Start, Panel B plots

MV PFf , the marginal value of public funds for structural reforms. This Figure relies on the same

parameter calibrations as Table IV. Calculations of MV PFf must account for the fact that changes

in structural program features may increase the direct costs of the program. This effect is captured

in (12) by the term η which gives the elasticity of the per-child cost of Head Start with respect to

the scale of the program. Without specifying the program feature being manipulated, there is no

natural value for η. We start with the extreme case where η = 0, which allows us to characterize

costs and benefits associated with reforms that draw in children on the margin without changing

the per-capita cost of the program. We then consider how the cost-benefit calculus changes when

η > 0.

As in our basic cost/benefit analysis, the results in panel B of Figure I show that accounting for

the public savings associated with program substitution has an important effect on the marginal

value of public funds. The red curve plots MV PFf setting φc = 0. This calibration suggests

a marginal value of public funds slightly above one at the current program scale, similar to the

naive calibration in Table IV. The blue curve accounts for public savings by setting φc equal to

our preferred value of 0.75φh. This generates an upward shift and steepens the MV PFf schedule,

indicating that both marginal and average social returns increase with program scale. The implied

marginal value of public funds at the current program scale (f = 0) is above 2. This is larger than

the MV PFδ of 1.84 reported in Table IV, which indicates the social returns to marginal expansions

that shift the composition of compliers are greater than those for expansions that simply raise the

offer rate.

The final scenario in Panel B shows MV PFf when φc = 0.75φh and η = 0.5.20 This scenario

implies sharply rising marginal costs of Head Start provision: an increase in f that doubles enroll-

20For this case, marginal costs are obtained by solving the differential equation φ′h(f) = ηφ(f) (∂ lnP (Di = h) /∂f)
with the initial condition φh(0) = $8, 000. This yields the solution φh(f) = $8, 000 exp (η (lnP (Di = h) − lnP0))
where P0 is the initial Head Start attendance rate.
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ment raises per-capita costs by 50 percent. In this simulation the marginal value of public funds is

roughly equal to one when f = 0, and falls below one for higher values. Hence, if η is at least 0.5,

a dollar increase in Head Start spending generated by structural reform will result in less than one

dollar transferred to Head Start applicants. This exercise illustrates the quantitative importance

of determining provision costs when evaluating specific policy changes such as improvements to

transportation services or marketing.

Our analysis of structural reforms suggests increasing returns to the expansion of Head Start in

the neighborhood of the current program scale – expansions will draw in households with weaker

tastes for preschool with above average potential gains. These findings imply that structural reforms

targeting children who are currently unlikely to attend Head Start and children that are likely to

be drawn from non-participation will generate larger effects than reforms that simply create more

seats. Our results also echo other recent studies finding increasing returns to early-childhood invest-

ments, though the mechanism generating increasing returns in these studies is typically dynamic

complementarity in human capital investments rather than selection and effect heterogeneity (see,

e.g., Cunha et al., 2010).

X. Conclusion

Our analysis suggests that Head Start, in its current incarnation, passes a strict cost-benefit test

predicated only upon projected effects on adult earnings. It is reasonable to expect that this

conclusion would be strengthened by incorporating the value of any impacts on crime (e.g. as

in Lochner and Moretti, 2004 and Heckman et al., 2010), or other externalities such as civic

engagement (Milligan et al., 2004), or by incorporating the value to parents of subsidized care (e.g.,

as in Aaberge et al., 2010). We find evidence that Head Start generates especially large benefits for

children who would not otherwise attend preschool and for children with weak unobserved tastes

for the program. This suggests that the program’s rate of return can be boosted by reforms that

target new populations, though this necessitates the existence of a cost-effective technology for

attracting these children.

The finding that returns are on average greater for nonparticipants is potentially informative for

the debate over calls for universal preschool, which might reach high return households. However,

it is important to note that if competing state level preschool programs become ubiquitous, the

rationale for expansions to federal preschool programs could be undermined. To see this, consider

how the marginal value of expanding Head Start changes as the compliance share Sc approaches

one, so that nearly all denied Head Start applicants would otherwise enroll in competing programs.

If Head Start and competing program have equivalent effects on test scores, then (8) indicates that

we should decide between federal and state level provision based entirely on cost criteria. Since

state programs are often cheaper (Council of Economic Advisers, 2015) and are expanding rapidly,

the case for federal preschool may actually be weaker now than at the time of the Head Start

Impact Study.
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It is important to note some other limitations to our analysis. First, our cost-benefit calculations

rely on literature estimates of the link between test score effects and earnings gains. These calcu-

lations are necessarily speculative, as the only way to be sure of Head Start’s long-run effects is to

directly measure long-run outcomes for HSIS participants. Second, we have ignored the possibility

that substantial changes to program features or scale could, in equilibrium, change the education

production technology. For example, implementing recent proposals for universal preschool could

generate a shortage of qualified teachers (Rothstein, forthcoming). Finally, we have ignored the

possibility that administrative program costs might change with program scale, choosing instead

to equate average with marginal provision costs.

Despite these caveats, our analysis has shown that accounting for program substitution in the

HSIS experiment is crucial for an assessment of the Head Start program’s costs and benefits. Similar

issues arise in the evaluation of job training programs (Heckman et al., 2000), health insurance

(Finkelstein et al., 2012), and housing subsidies (Kling et al., 2007; Jacob and Ludwig, 2012). The

tools developed here are potentially applicable to a wide variety of evaluation settings where data

on enrollment in competing programs are available.

29



References

1. Aaberge, R., Bhuller, M., Langørgen, A., and Mogstad, M. (2010). “The Distributional
Impact of Public Services When Needs Differ.” Journal of Public Economics 94(9).

2. Abdulkadiroglu, A., Angrist, J., and Pathak, P. (2014). “The Elite Illusion: Achievement
Effects at Boston and New York Exam Schools.” Econometrica 82(1).

3. Angrist, J., Imbens, G., and Rubin, D. (1996). “Identification of Causal Effects using Instru-
mental Variables.” Journal of the American Statistical Association 91(434).

4. Angrist, J., and Pischke, S. (2009). Mostly Harmless Econometrics. Princeton, NJ: Princeton
University Press.

5. Barnett, W. (2011). “Effectiveness of Early Educational Intervention.” Science 333(6045).

6. Bitler, M., Domina, T., and Hoynes, H. (2014). “Experimental Evidence on Distributional
Effects of Head Start.” NBER Working Paper no. 20434.

7. Bloom, H., and Weiland, C. (2015). “Quantifying Variation in Head Start Effects on Young
Children’s Cognitive and Socio-Emotional Skills Using Data from the National Head Start
Impact Study.” MDRC Report.

8. Bonhomme, S., and Manresa, E. (2015). “Grouped Patterns of Heterogeneity in Panel Data.”
Econometrica 83(3).

9. Bound, J., Jaeger, D. A., and Baker, R. M. (1995). “Problems With Instrumental Variables
Estimation When the Correlation Between the Instruments and the Endogenous Explanatory
Variable is Weak.” Journal of the American Statistical Association 90(430).

10. Brinch, C., Mogstad, M., and Wiswall, M. (2012). “Beyond LATE With a Discrete Instru-
ment: Heterogeneity in the Quantity-Quality Interaction of Children.” Working paper.

11. Carneiro, P., and Ginja, R. (forthcoming). “Long-Term Impacts of Compensatory Preschool
on Health and Behavior: Evidence from Head Start.” American Economic Journal: Economic
Policy.

12. Cascio, E., and Schanzenbach, E. (2013). “The Impacts of Expanding Access to High-Quality
Preschool Education.” Brookings Papers on Economic Activity, Fall 2013.

13. Chetty, R. (2009). “Sufficient Statistics for Welfare Analysis: A Bridge Between Structural
and Reduced-form Methods.” Annual Review of Economics 1.

14. Chetty, R., Friedman, J. N., Hilger, N., Saez, E., Schanzenbach, D. W., and Yagan, D.
(2011). “How Does Your Kindergarten Classroom Affect Your Earnings? Evidence from
Project STAR.” Quarterly Journal of Economics 126(4).

15. Chetty, R., Friedman, J., and Rockoff, J. (2014a). “Measuring the Impacts of Teachers I:
Measuring Bias in Teacher Value-added Estimates.” American Economic Review 104(9).

16. Chetty, R., Friedman, J., and Rockoff, J. (2014b). “Measuring the Impacts of Teachers
II: Teacher Value-added and Student Outcomes in Adulthood.” American Economic Review
104(9).

30



17. Chetty, R., Hendren, N., Kline, P., and Saez, E. (2014c). “Where is the Land of Opportunity?
The Geography of Intergenerational Mobility in the United States.” Quarterly Journal of
Economics 129(4).

18. Congressional Budget Office (2012). “Effective Marginal Tax Rates for Low- and Moderate-
Income Workers.” https://www.cbo.gov/sites/default/files/11-15-2012-MarginalTaxRates.

pdf.

19. Council of Economic Advisers (2015). “The Economics of Early Childhood Investments.”
Report Prepared by the Executive Office of the President of the United States.

20. Cox, N. (2008). “Speaking Stata: Correlation with Confidence, or Fisher’s Z Revisited.” The
Stata Journal 8(3).

21. Cunha, F., Heckman, J., and Schennach, S. (2010). “Estimating the Technology of Cognitive
and Non-cognitive Skill Formation.” Econometrica 78(3).

22. Currie, J. (2001). “Early Childhood Education Programs.” Journal of Economic Perspectives
15(2).

23. Currie, J., and Thomas, D. (1995). “Does Head Start Make a Difference?” American Eco-
nomic Review 85(3).

24. Deming, D. (2009). “Early Childhood Intervention and Life-Cycle Skill Development: Evi-
dence from Head Start.” American Economic Journal: Applied Economics 1(3).

25. Dubin, J., and McFadden, D. (1984). “An Econometric Analysis of Residential Electric
Appliance Holdings.” Econometrica 52 (2).

26. Engberg, J., Epple, D., Imbrogno, J., Sieg, H., and Zimmer, R. (2014). “Evaluating Edu-
cation Programs That Have Lotteried Admission and Selective Attrition.” Journal of Labor
Economics 32(1).

27. Federal Register (2004). “Executive Order 13330 of February 24, 2004” 69 (38), 9185-9187.

28. Feller, A., Grindal, T., Miratrix, L., and Page, L. (2014). “Compared to What? Variation
in the Impact of Early Childhood Education by Alternative Care-Type Settings.” Working
paper.

29. Finkelstein, A., Taubman, S., Wright, B., Bernstein, M., Gruber, J., Newhouse, J., Allen,
H., Baicker, K., and the Oregon Health Study Group (2012). “The Oregon Health Insurance
Experiment: Evidence from the First Year.” Quarterly Journal of Economics 127(3).

30. Frangakis, C., and Rubin, D. (2002). “Principal Stratification in Causal Inference.” Biomet-
rics 58(1).

31. Garces, E., Thomas, D., and Currie, J. (2002). “Longer-term Effects of Head Start.” American
Economic Review 92(4).

32. Gelber, A., and Isen, A. (2013). “Children’s Schooling and Parents’ Investment in Children:
Evidence from the Head Start Impact Study.” Journal of Public Economics 101.

33. Geweke, J. (1989). “Bayesian Inference in Econometric Models Using Monte Carlo Integra-
tion.” Econometrica 57.

31

https://www.cbo.gov/sites/default/files/11-15-2012-MarginalTaxRates.pdf
https://www.cbo.gov/sites/default/files/11-15-2012-MarginalTaxRates.pdf


34. Gibbs, C., Ludwig, J., and Miller, D. (2011). “Does Head Start Do Any Lasting Good?”
NBER Working Paper no. 17452.

35. Hajivassiliou, V., and McFadden, D. (1998). “The Method of Simulated Scores for the Esti-
mation of LDV Models.” Econometrica 66.

36. Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer: New York, NY.

37. Heckman, J. (1979). “Sample Selection Bias as a Specification Error.” Econometrica 47(1).

38. Heckman, J., and Vytlacil, E. (1999). “Local Instrumental Variables and Latent Vari-
able Models for Identifying and Bounding Treatment Effects.” Proceedings of the National
Academy of Sciences 96(8).

39. Heckman, J., Hohmann, N., Smith, J., and Khoo, M. (2000). “Substitution and Dropout
Bias in Social Experiments: A Study of an Influential Social Experiment.” Quarterly Journal
of Economics 115 (2).

40. Heckman, J., Moon, S., Pinto, R., Savelyev, P., and Yavitz, A. (2010). “The Rate of Return
to the High/Scope Perry Preschool Program.” Journal of Public Economics 94.

41. Heckman, J., Malofeeva, L., Pinto, R., and Savelyev, P. (2013). “Understanding the Mech-
anisms Through Which an Influential Early Childhood Program Boosted Adult Outcomes.”
American Economic Review 103(6).

42. Heckman, J., Urzua, S., and Vytlacil, E. (2008). “Instrumental Variables in Models With
Multiple Outcomes: The General Unordered Case.” Annales d’Economie et de Statistique,
91/92.

43. Hendren, N. (2014). “The Policy Elasticity.” Mimeo, Harvard University.

44. Hull, P. (2015). “IsoLATEing: Identifying Counterfactual-Specific Treatment Effects by
Stratified Comparisons.” Working Paper.

45. Imbens, G., and Angrist, J. (1994). “Identification and Estimation of Local Average Treat-
ment Effects.” Econometrica 62.

46. Jacob, B., and Ludwig, J. (2012). “The Effects of Housing Assistance on Labor Supply:
Evidence from a Voucher Lottery.” American Economic Review 102(1).

47. Kane, T., Rockoff, J., and Staiger, D. (2008). “What does Certification Tell Us About Teacher
Effectiveness? Evidence from New York City.” Economics of Education Review 27(6).

48. Keane, M. (1994). “A Computationally Practical Simulation Estimator for Panel Data.”
Econometrica 62.

49. Kirkeboen, L., Leuven, E., and Mogstad, M. (2014). “Field of Study, Earnings, and Self-
Selection.” Working Paper.

50. Klein, J. (2011). “Time to Ax Public Programs That Don’t Yield Results.” Time Magazine.
http://content.time.com/time/nation/article/0,8599,2081778,00.html.

51. Kling, J., Liebman, J., and Katz, L. (2007). “Experimental Analysis of Neighborhood Ef-
fects.” Econometrica 75.

32

http://content.time.com/time/nation/article/0,8599,2081778,00.html


52. Lafontaine, F., and White, K. (1986). “Obtaining any Wald Statistic you Want.” Economics
Letters 21(1).

53. Lee, C., and Solon, G. (2009). “Trends in Intergenerational Income Mobility.” The Review
of Economics and Statistics 91(4).

54. Lochner, L., and Moretti, E. (2004). “The Effect of Education on Crime: Evidence from
Prison Inmates, Arrests, and Self-Reports.” American Economic Review 94(1).

55. Long, Cuiping (2015). “Experimental Evidence of the Effect of Head Start on Maternal
Human Capital Investment.” Working paper.

56. Ludwig, J., and Miller, D. (2007). “Does Head Start Improve Children’s Life Chances?
Evidence from a Regression Discontinuity Design.” Quarterly Journal of Economics 122(1).

57. Ludwig, J., and Phillips, D. (2007). “The Benefits and Costs of Head Start.” NBER Working
Paper no. 12973.

58. Mayshar, J. (1990). “On Measures of Excess Burden and Their Application.” Journal of
Public Economics 43(3).

59. Milligan, K., Moretti, E., and Oreopoulos, P. (2004). “Does Education Improve Citizenship?
Evidence from the United States and the United Kingdom.” Journal of Public Economics
88(9).

60. Noss, A. (2014). “Household Income: 2013.” American Community Survey Briefs.

61. Puma, M., Bell, S., Cook, R., and Heid, C. (2010). “Head Start Impact Study: Final
Report.” U.S. Department of Health and Services. Administration for Children and Families.
Washington, DC.

62. Puma, M., Bell, S., and Heid, C. (2012). “Third Grade Follow-up to the Head Start Impact
Study.” U.S. Department of Health and Human Services. Washington, DC.

63. Rothstein, J. (2010). “Teacher Quality in Educational Production: Tracking, Decay, and
Student Achievement.” Quarterly Journal of Economics 125(1).

64. Rothstein, J. (forthcoming). “Teacher Quality Policy When Supply Matters.” American
Economic Review.

65. Roy, A. (1951). “Some Thoughts on the Distribution of Earnings.” Oxford Economics Papers
3(2).

66. Saggio, R. (2012). “Discrete Unobserved Heterogeneity in Discrete Choice Panel Data Mod-
els.” Master’s Thesis, Center for Monetary and Financial Studies.

67. Schumacher, R., Greenberg, M., and Duffy, J. (2001). “The Impact of TANF Funding on
State Child Care Subsidy Programs.” Center for Law and Social Policy.

68. Stossel, J. (2014). “Head Start Has Little Effect by Grade School?” Fox Business, March
7th, 2014. Television.

69. US Department of Health and Human Services, Administration for Children and Families
(2012). “Child Care and Development Fund Fact Sheet.” http://www.acf.hhs.gov/sites/

default/files/occ/ccdf_factsheet.pdf.

33

http://www.acf.hhs.gov/sites/default/files/occ/ccdf_factsheet.pdf
http://www.acf.hhs.gov/sites/default/files/occ/ccdf_factsheet.pdf


70. US Department of Health and Human Services, Administration for Children and Families
(2013). “Head Start Program Facts, Fiscal Year 2013.” http://eclkc.ohs.acf.hhs.gov/

hslc/mr/factsheets/docs/hs-program-fact-sheet-2011-final.pdf .

71. US Department of Health and Human Services, Administration for Children and Families
(2014). “Head Start Services.” http://www.acf.hhs.gov/programs/ohs/about/head-start.

72. Walters, C. (2015). “Inputs in the Production of Early Childhood Human Capital: Evidence
from Head Start.” American Economic Journal: Applied Economics 7(4).

73. Walters, C. (2014). “The Demand for Effective Charter Schools.” Working Paper

34

http://eclkc.ohs.acf.hhs.gov/hslc/mr/factsheets/docs/hs-program-fact-sheet-2011-final.pdf
http://eclkc.ohs.acf.hhs.gov/hslc/mr/factsheets/docs/hs-program-fact-sheet-2011-final.pdf
http://www.acf.hhs.gov/programs/ohs/about/head-start.


Notes: This figure plots predicted test score effects and marginal values of public funds for various values of the program feature f , which shifts the utility of Head Start attendance. 
Horizontal axes shows the Head Start attendance rate at each f , and a vertical line indicates the HSIS attendance rate (f = 0). Panel A shows marginal treatment effects and competing 
preschool compliance shares. The left axis measures test score effects. MTE h  is the average effect for marginal students, while MTE nh and MTE ch  are effects for subgroups of 
marginal students drawn from home care and other preschools. The right axis measures the share of marginal students drawn from other preschools. The shaded region shows a 90-
percent symmetric bootstrap confidence interval for MTE h . Panel B shows predicted marginal values of public funds for structural reforms, using the same parameter calibrations as 
Table IV. P -values come from bootstrap tests of the hypothesis that the marginal value of public funds is less than or equal to one at  f = 0.

Panel A. Test score effects Panel B. Marginal value of public funds

Figure I. Effects of Structural Reforms
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Offered mean Non-offered mean Differential Head Start Other centers No preschool
Variable (1) (2) (3) (4) (5) (6)

Male 0.494 0.505 -0.011 0.501 0.506 0.492
(0.019)

Black 0.308 0.298 0.010 0.317 0.353 0.250
(0.010)

Hispanic 0.376 0.369 0.007 0.380 0.354 0.373
(0.010)

Teen mother 0.159 0.174 -0.015 0.159 0.169 0.176
(0.014)

Mother married 0.436 0.448 -0.011 0.439 0.420 0.460
(0.017)

Both parents in household 0.497 0.488 0.009 0.497 0.468 0.499
(0.017)

Mother is high school dropout 0.368 0.397 -0.029 0.377 0.322 0.426
(0.017)

Mother attended some college 0.298 0.281 0.017 0.293 0.342 0.253
(0.016)

Spanish speaker 0.287 0.273 0.014 0.296 0.274 0.260
(0.011)

Special education 0.136 0.108 0.028 0.134 0.145 0.091
(0.011)

Only child 0.161 0.139 0.022 0.151 0.190 0.123
(0.012)

Income (fraction of FPL) 0.896 0.896 0.000 0.892 0.983 0.851
(0.024)

Age 4 cohort 0.448 0.451 -0.003 0.426 0.567 0.413
(0.012)

Baseline summary index 0.003 0.012 -0.009 -0.001 0.106 -0.040
(0.027)

Urban 0.833 0.835 -0.002 0.834 0.859 0.819
(0.003)

Center provides transportation 0.606 0.604 0.002 0.586 0.614 0.628
(0.005)

Center quality index 0.465 0.470 -0.005 0.452 0.474 0.488
(0.005)

Joint p -value 0.506
N 2256 1315 3571 2043 598 930

By preschool choice
Table I. Descriptive Statistics

Notes: All statistics weight by the reciprocal of the probability of a child's experimental assignment. Standard errors are clustered at the center level. The 
transportation and quality index variables refer to a child's Head Start center of random assignment. The quality variable combines information on center 
characteristics (teacher and center director education and qualifications, class size) and practices (variety of literacy and math activities, home visiting, 
health and nutrition). Income is missing for 19 percent of observations. Missing values are excluded in statistics for income. The joint p -value is from a 
test of the hypothesis that all coefficients equal zero.

By offer status



Reduced form First stage IV Reduced form First stage IV Reduced form First stage IV
Time period (1) (2) (3) (4) (5) (6) (7) (8) (9)

Year 1 0.194 0.699 0.278 0.141 0.663 0.213 0.168 0.682 0.247
(0.029) (0.025) (0.041) (0.029) (0.022) (0.044) (0.021) (0.018) (0.031)

N 1970 1601 3571

Year 2 0.087 0.356 0.245 -0.015 0.670 -0.022 0.046 0.497 0.093
(0.029) (0.028) (0.080) (0.037) (0.023) (0.054) (0.024) (0.020) (0.049)

N 1760 1416 3176

Year 3 -0.010 0.365 -0.027 0.054 0.666 0.081 0.019 0.500 0.038
(0.031) (0.028) (0.085) (0.040) (0.025) (0.060) (0.025) (0.020) (0.050)

N 1659 1336 2995

Year 4 0.038 0.344 0.110 - -
(0.034) (0.029) (0.098)

N 1599

Table II. Experimental Impacts on Test Scores

Notes: This table reports experimental estimates of the effects of Head Start on a summary index of test scores. Columns (1), (4) and (7) report 
coefficients  from regressions of test scores on an indicator for assignment to Head Start. Columns (2), (5) and (8) report coefficients from first-
stage regressions of Head Start attendance on Head Start assignment. The attendance variable is an indicator equal to one if a child attends Head 
Start at any time prior to the test. Columns (3), (6) and (9) report coefficients from two-stage least squares (2SLS) models that instrument Head 
Start attendance with Head Start assignment. All models weight by the reciprocal of a child's experimental assignment, and control for sex, race, 
Spanish language, teen mother, mother's marital status, presence of both parents in the home, family size, special education status, income quartile 
dummies, urban, and a cubic polynomial in baseline score. Missing values for covariates are set to zero, and dummies for missing are included. 
Standard errors are clustered by center of random assignment.

Three-year-old cohort Four-year-old cohort Cohorts pooled



Other center
Head Start Other centers No preschool Head Start Other centers No preschool complier share

Time period Cohort (1) (2) (3) (4) (5) (6) (7)
Year 1 3-year-olds 0.851 0.058 0.092 0.147 0.256 0.597 0.282

4-year-olds 0.787 0.114 0.099 0.122 0.386 0.492 0.410

Pooled 0.822 0.083 0.095 0.136 0.315 0.550 0.338

Year 2 3-year-olds 0.657 0.262 0.081 0.494 0.379 0.127 0.719

Offered
Table III. Preschool Choices by Year, Cohort, and Offer Status

Notes: This table reports shares of offered and non-offered students attending Head Start, other center-based preschools, and no 
preschool, separately by year and age cohort. All statistics are weighted by the reciprocal of the probability of a child's 
experimental assignment. Column (7) reports estimates of the share of compliers drawn from other preschools, given by minus the 
ratio of the offer's effect on attendance at other preschools to its effect on Head Start attendance.

Not offered



Parameter Description Value Source
(1) (2) (3) (4)

p Effect of a 1 SD increase in test scores on earnings Table A.IV

e US US average present discounted value of lifetime earnings at age 3.4 $438,000 Chetty et al. 2011 with 3% discount rate

e parent /e US Average earnings of Head Start parents relative to US average 0.46 Head Start Program Facts

IGE Intergenerational income elasticity 0.40 Lee and Solon 2009

Average present discounted value of lifetime earnings for Head Start applicants $343,392 [1 - (1 - e parent /e US )IGE]e US

Effect of a 1 SD increase in test scores on earnings of Head Start applicants $34,339

LATE h Local Average Treatment Effect 0.247 HSIS

τ Marginal tax rate for Head Start population 0.35 CBO 2012

S c Share of Head Start population drawn from other preschools 0.34 HSIS

ϕ h Marginal cost of enrollment in Head Start $8,000 Head Start program facts

ϕ c Marginal cost of enrollment in other preschools $0 Naïve assumption: ϕ c  = 0
$4,000 Pessimistic assumption: ϕ c  = 0.5ϕ h

$6,000 Preferred assumption: ϕ c  = 0.75ϕ h

NMB Marginal benefit to Head Start population net of taxes $5,513 (1 - τ )pLATE h

MFC Marginal fiscal cost of Head Start enrollment $5,031  ϕ h  - ϕ c S c  -  τpLATE h , naïve assumption
$3,671 Pessimistic assumption
$2,991 Preferred assumption

MVPF Marginal value of public funds 1.10  (0.22) NMB /MFC (s.e.), naïve assumption
p -value = 0.1

1.50  (0.34) Pessimistic assumption
p-value = 0.00

1.84  (0.47) Preferred assumption
p-value = 0.00

Table IV. Benefits and Costs of Head Start

Panel A. Parameter values

Panel B. Marginal value of public funds

Notes: This table reports results of cost/benefit calculations for Head Start. Parameter values are obtained from the sources listed in column (4). Standard errors for MVPF 
ratios are calculated using the delta method. P -values are from one-tailed tests of the null hypotheses that the MVPF is less than one. These tests are performed via 
nonparametric block bootstrap of the t -statistic, clustered at the Head Start center level. Breakevens give percentage effects of a standard deviation of test scores on earnings 
that set MVPF  equal to one.

ē

0.1ē

0.1ē

Breakeven p/ē = 0.09 (0.01)

Breakeven p/ē = 0.08 (0.01)

Breakeven p/ē = 0.07 (0.01)



One endogenous 
variable

Head Start Head Start Other centers
Instruments (1) (2) (3)

Offer 0.247 - -
(1 instrument) (0.031)

Offer X covariates 0.241 0.384 0.419
(9 instruments) (0.030) (0.127) (0.359)

First-stage F 276.2 17.7 1.8
Overid. p-value 0.007

Offer X sites 0.210 0.213 0.008
(183 instruments) (0.026) (0.039) (0.095)

First-stage F 215.1 90.0 2.7
Overid. p-value 0.002

Offer X site groups 0.229 0.265 0.110
(6 instruments) (0.029) (0.056) (0.146)

First-stage F 1,015.2 339.1 32.6
Overid. p-value 0.077

Offer X covariates and 0.229 0.302 0.225
offer X site groups (14 instruments) (0.029) (0.054) (0.134)

First-stage F 340.2 121.2 13.3
Overid. p-value 0.012

Notes: This table reports two-stage least squares estimates of the effects of Head Start 
and other preschool centers in Spring 2003. The model in the first row instruments 
Head Start attendance with the Head Start offer. Models in the second row instrument 
Head Start and other preschool attendance with interactions of the offer and 
transportation, above-median quality, race, Spanish language, mother's education, an 
indicator for income above the federal poverty line, and baseline score. The third row 
uses the Head Start offer interacted with 183 experimental site indicators as 
instruments. The fourth row uses interactions of the offer and indicators for groups of 
experimental sites obtained from a multinomial probit model with unobserved group 
fixed effects, as described in Appendix G. The fifth row uses both covariate and site 
group interactions. All models control for main effects of the interacting variables 
and baseline covariates. First stage F -statistics are Angrist/Pischke (2009) partial F 's. 
Standard errors are clustered at the center level.

Table V. Two Stage Least Squares Estimates with Interaction Instruments
Two endogenous

0.010

variables

0.006

0.050

0.002



Main effect Offer interaction Other center utility Arctanh ρ
(1) (2) (3) (4)

Center provides 0.022 0.111 0.054 0.096
transportation (0.114) (0.142) (0.087) (0.178)

Above-median -0.233 0.425 -0.115 -0.007
center quality (0.091) (0.102) (0.082) (0.153)

Black 0.095 0.282 0.206 -0.185
(0.108) (0.127) (0.100) (0.166)

Spanish speaker -0.049 -0.273 -0.213 0.262
(0.136) (0.122) (0.169) (0.224)

Mother's education 0.106 0.021 0.105 -0.219
(0.056) (0.060) (0.064) (0.110)

Income above FPL 0.216 -0.305 0.173 0.097
(0.128) (0.121) (0.126) (0.192)

Baseline score 0.080 -0.025 0.292 0.026
(0.094) (0.108) (0.069) (0.094)

Age 4 0.164 -0.277 0.518 0.010
(0.142) (0.166) (0.104) (0.170)

P -values: no heterogeneity 0.015 0.000 0.000 0.666

Group 1 -0.644 2.095 0.424 0.435
(share = 0.215) (0.136) (0.153) (0.085) (0.128)

Group 2 -4.847 6.760 -0.577 -0.496
(share = 0.183) (0.076) (0.158) (0.045) (0.172)

Group 3 -2.148 2.912 -0.768 0.530
(share = 0.183) (0.312) (0.340) (0.081) (0.159)

Group 4 0.488 0.541 -0.139 0.483
(share = 0.151) (0.130) (0.150) (0.226) (0.322)

Group 5 -1.243 2.849 -1.643 -0.772
(share = 0.145) (0.108) (0.171) (0.164) (0.359)

Group 6 0.072 1.191 0.110 2.988
(share = 0.124) (0.127) (0.183) (0.106) (0.925)

P -values: no heterogeneity 0.000 0.000 0.000 0.000

Table VI. Multinomial Probit Estimates

Notes: This table reports simulated maximum likelihood estimates of a multinomial probit model of 
preschool choice. The model includes fixed effects for six unobserved groups of experimental sites, 
estimated as described in Appendix G. The Head Start and other center utilities also include the main 
effects of gender, test language, teen mother, mother's marital status, presence of both parents, family size, 
special education, family income categories, and second- and third-order terms in baseline test scores. The 
likelihood is evaluated using the GHK simulator, and likelihood contributions are weighted by the 
reciprocal of the probability of experimental assignments.  P -values for site heterogeneity are from tests 
that all group-specific constants are equal. P -values for covariate heterogeneity are from tests that all 
covariate coefficients in a column are zero. Standard errors are clustered at the Head Start center level. 

Head Start utility

Panel A. Covariates

Panel B. Experimental site groups



No controls Covariates Covariates Site groups Full model
(1) (2) (3) (4) (5)

Head Start 0.202 0.218 0.483 0.380 0.470
(0.037) (0.022) (0.117) (0.121) (0.101)

Other preschools 0.262 0.151 0.183 0.065 0.109
(0.052) (0.035) (0.269) (0.991) (0.253)

𝜆h - - 0.015 0.004 0.019
(0.053) (0.063) (0.053)

Head Start X 𝜆h -0.167 -0.137 -0.158
(0.080) (0.126) (0.091)

Other preschools X 𝜆h -0.030 -0.047 0.000
(0.109) (0.366) (0.115)

𝜆c -0.333 -0.174 -0.293
(0.203) (0.187) (0.115)

Head Start X 𝜆c 0.224 0.065 0.131
(0.306) (0.453) (0.172)

Other preschools X 𝜆c 0.488 0.440 0.486
(0.248) (0.926) (0.197)

P -values:
No selection 0.016 0.510 0.046

No selection on gains 0.133 0.560 0.084
Additive separability 0.261 0.452 0.349

Notes: This table reports selection-corrected estimates of the effects of Head Start and other preschool 
centers in Spring 2003. Each column shows coefficients from regressions of test scores on an intercept, 
a Head Start indicator, an other preschool indicator, and controls. Column (1) shows estimates with no 
controls. Column (2) adds controls for gender, race, home language, test language, mother's education, 
teen mother, mother's marital status, presence of both parents, family size, special education, income 
categories, experimental site characteristics (transportation, above-median quality, and urban status) 
and a third-order polynomial in baseline test score. This column interacts the preschool variables with 
transportation, above-median quality, race, Spanish language, mother's education, an indicator for 
income above the federal poverty line, and the main effect of baseline score. Covariates are de-meaned 
in the estimation sample, so that main effects can be interpreted as estimates of average treatment 
effects. Column (3) adds control function terms constructed from a multinomial probit model using the 
covariates from column (3) and the Head Start offer. The interacting variables from column (2) are 
allowed to interact with the Head Start offer and enter the preschool taste correlation equation in 
column (3). Column (4) omits observed covariates and includes indicators for experimental site groups, 
constructed using the algorithm described in Appendix G. The multinomial probit model is saturated in 
these site group indicators, and the second step regression interacts site groups with preschool 
alternatives. Column (5) combines the variables used in columns (3) and (4). Standard errors are 
bootstrapped and clustered at the center level. The bottom row shows p -values from a score test of the 
hypothesis that interactions between the control functions and covariates are zero in each preschool 
alternative (see Appendix F for details).

Table VII. Selection-corrected Estimates of Preschool Effects
Least squares Control function



IV Covariates Sites Full model
Parameter (1) (2) (3) (4)
LATE h 0.247 0.261 0.190 0.214

(0.031) (0.032) (0.076) (0.042)

LATE nh - 0.386 0.341 0.370
(0.143) (0.219) (0.088)

LATE ch 0.023 -0.122 -0.093
(0.251) (0.469) (0.154)

Lowest predicted quintile:
LATE h 0.095 0.114 0.027

(0.061) (0.112) (0.067)

LATE h  with fixed S c 0.125 0.125 0.130
(0.060) (0.434) (0.119)

Highest predicted quintile:
LATE h 0.402 0.249 0.472

(0.042) (0.173) (0.079)

LATE h  with fixed S c 0.364 0.289 0.350
(0.056) (1.049) (0.126)

Notes: This table reports estimates of treatment effects for subpopulations. 
Column (1) reports  an IV estimate of the effect of Head Start. Columns (2)-(4) 
show estimates of treatment effects computed from the control function models 
displayed in Table VII. The bottom rows show effects in the lowest and highest 
quintiles of model-predicted LATE. Rows with fixed c -complier shares weight 
subLATEs using the full-sample estimate of this share (0.34). Standard errors 
are boostrapped and clustered at the center level.

Table VIII. Treatment Effects for Subpopulations
Control function



Parameter Description Value Source
(1) (2) (3) (4)

LATE h Head Start Local Average Treatment Effect 0.247 HSIS

LATE nc Effect of other centers for marginal children 0 Naïve assumption: No effect of competing preschools
0.370 Homogeneity assumption: n->c subLATE equals n->h subLATE
0.294 Model-based prediction

NMB Marginal benefit to Head Start population net of taxes $5,513 (1 - τ)p (LATE h +S c LATE nc ), naïve assumption
$8,321 Homogeneity assumption
$7,744 Model-based prediction

MFC Marginal fiscal cost of Head Start enrollment $5,031 ϕ h  - τp (LATE h +S c LATE nc ), naïve assumption
$3,519 Homogeneity assumption
$3,830 Model-based prediction

MVPF Marginal value of public funds 1.10 Naïve assumption
2.36 Homogeneity assumption
2.02 Model-based prediction

Table IX. Benefits and Costs of Head Start when Competing Preschools are Rationed

Notes: This table reports results of a rate of return calculation for Head Start, assuming that competing preschools are rationed and that marginal 
students offered seats in these programs as a result of Head Start expansion would otherwise receive home care. Parameter values are obtained 
from the sources listed in column (4).



Online Appendix

Appendix A: Data

This appendix describes the construction of the sample used in this article. The data come from

the Head Start Impact Study (HSIS). This data set includes information on 4,442 children, each

applying to Head Start at one of 353 experimental sites in Fall 2002. The raw data used here includes

information on test scores, child demographics, preschool attendance, and preschool characteristics.

Our core sample includes 3,571 children (80 percent of experimental participants) with non-missing

values for key variables. We next describe the procedures used to process the raw data and construct

this sample.

Test scores

Outcomes are derived from a series of tests given to students in the Fall of 2002 and each subsequent

Spring. The followup window extends through Spring 2006 for the three-year-old applicant cohort

and Spring 2005 for the four-year-old cohort.

We use these assessments to construct summary indices of cognitive skills in each period. These

summary indices include scores on the Peabody Picture and Vocabulary Test (PPVT) and Wood-

cock Johnson III Preacademic Skills (WJIII) tests. The WJIII Preacademic Skills score combines

performance on several subtests to compute a composite measure of cognitive performance. We use

versions of the PPVT and WJIII scores derived from item response theory (IRT), which uses the

reliability of individual test items to construct more a more accurate measure of student ability than

the simple raw score. The summary index in each period is a simple average of standardized PPVT

and WJIII scores, with each score standardized to have mean zero and standard deviation one in

the control group, separately by applicant cohort and year. Our core sample excludes applicants

without PPVT and WJIII scores in Spring 2003.

The HSIS data includes a number of other test scores in addition to the PPVT and WJIII.

Previous analyses of the HSIS data have looked at different combinations of outcomes: Puma et

al. (2010) show estimates for each individual test, Walters (2015) uses a summary index that

combines all available tests, and Bitler et al. (2014) show separate results for the PPVT and

WJIII. We focus on a summary index of the PPVT and WJIII because these tests are among

the most reliable in the HSIS data (Puma et al., 2010), are consistently measured in each year

(which allows for interpretable intertemporal comparisons), and can be most easily compared to

the previous literature (for example, Currie and Thomas, 1995 estimate effects on PPVT scores).

Estimates that include additional outcomes in the summary index or restrict attention to individual

outcomes produced similar results, though these estimates were typically less precise.

45



Demographics

Baseline demographics come from a parental survey conducted in Fall 2002. Parents of eighty-one

percent of children responded to this survey. We supplement this information with a set of variables

in the HSIS “Covariates and Subgroups” data file, which includes additional data collected during

experimental recruitment to fill in characteristics for non-respondents. When a characteristic is

measured in both files and answers are inconsistent, the “Covariates and Subgroups” value is used.

Our core sample excludes applicants with missing values for baseline covariates except income,

which is missing more often than other variables. We retain children with missing income and

include a missing dummy in all specifications.

Preschool attendance

Preschool attendance is measured from the HSIS “focal arrangement type” variable, which rec-

onciles information from parent interviews and teacher/care provider interviews to construct a

summary measure of the childcare setting. This variable includes codes for centers, non-relative’s

homes, relative’s homes, own home (with a relative or non-relative), parent care, and Head Start.

Children are coded as attending Head Start if this variable is coded “Head Start;” another preschool

center if it is coded “Center;” and no preschool if it takes any other non-missing value. We exclude

children with missing focal arrangement types in constructing the core sample.

Preschool characteristics

Our analysis uses experimental site characteristics and characteristics of the preschools children

attend (if any), such as whether transportation is provided, funding sources, and an index of quality.

This information is derived from interviews with childcare center directors conducted in the Spring

of 2003. This information is provided in a student-level file, with the responses of the director of

a child’s preschool center included as variables. Site characteristics are coded using values of these

variables for treatment group children with focal care arrangements coded as “Head Start” at each

center of random assignment. In a few cases, these values differed for Head Start attendees at the

same site; we used the most frequently-given responses in these cases. An exception is the quality

index, which synthesizes information from parent, center director, and teacher surveys. We use the

mean value of this index reported by Head Start attendees at each site to construct site-specific

measures of quality.

Weights

The probability of assignment to Head Start differed across experimental sites. The HSIS data

includes several weight variables designed to account for these differences. These weights also in-

clude a factor that adjusts for differences in the probability that Head Start centers themselves

were sampled (Puma et al., 2010). This weighting can be used to estimate the average effect of

Head Start participation in the US, rather than the average effect in the sample; these parameters
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may differ if effects differ across sites in a manner related to sampling probabilities. Probabilities of

sampling differed widely across centers, however, leading to very large differences in weights across

children and decreasing precision. Instead of using the HSIS weights, we constructed inverse prob-

ability weights based on the fraction of applicants at each site offered Head Start. The discussion

in Puma et al. (2010) suggests that the numbers of treated and control students at each site were

specified in advance, implying that this fraction correctly measures the ex ante probability that a

child is assigned to the treatment group. Results using other weighting schemes were similar, but

less precise.

We also experimented with models including center fixed effects rather than using weights.

These models produced similar results, but our multinomial probit model is much more difficult to

estimate with fixed effects than with weights. We therefore opted to use weights rather than fixed

effects for all estimates reported in the article.
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Appendix B: Identification of Complier Characteristics

This appendix extends results from Abadie (2002) to show identification of population shares,

characteristics and marginal potential outcome distributions for subpopulations of compliers drawn

from other preschools and no preschool. Under the monotonicity restriction (1), we have

− E [1 {Di = c} |Zi = 1]− E [1 {Di = c} |Zi = 0]

E [1 {Di = h} |Zi = 1]− E [1 {Di = h} |Zi = 0]
= −−E [1 {Di(0) = c} − 1 {Di(1) = c}]

E [1 {Di(1) = h} − 1 {Di(0) = h}]

= −−P (Di(1) = h,Di(0) = c)

P (Di(1) = h,Di(0) 6= h)

= Sc.

The share of compliers drawn from competing preschools can therefore be estimated as minus

the ratio of the Head Start offer’s effect on other preschool attendance to its effet on Head Start

attendance.

Observed characteristics and marginal potential outcome distributions for complier subgroups

are also identified. Let g (Yi, Xi) be any measurable function of outcomes and exogenous covariates.

Consider the quantity

κc ≡
E [g(Yi, Xi) · 1 {Di = c} |Zi = 1]− E [g (Yi, Xi)) · 1 {Di = c} |Zi = 0]

E [1 {Di = c} |Zi = 1]− E [1 {Di = c} |Zi = 0]
.

The numerator can be written

E [g (Yi(Di(1)), Xi) · 1 {Di(1) = c}]− E [g(Yi(Di(0)), Xi) · 1 {Di(0) = c}],

where the conditioning on Zi has been dropped because offers are independent of potential outcomes

and covariates. This simplifies to

κc = E [g (Yi(c), Xi) |Di(1) = c]P (Di(1) = c)− E [g (Yi(c), Xi) |Di(0) = c]P (Di(0) = c)

= E [g (Yi(c), Xi) |Di(1) = c,Di(0) = c]P (Di(1) = c,Di(0) = c)

−E [g (Yi(c), Xi) |Di(1) = c,Di(0) = c]P (Di(1) = c,Di(0) = c)

−E [g (Yi(c), Xi) |Di(1) = h,Di(0) = c]P (Di(1) = h,Di(0) = c)

= −E [g (Yi(c), Xi) |Di(1) = h,Di(0) = c]P (Di(1) = h,Di(0) = c),

where the first equality uses the fact that P (Di(0) = c|Di(1) = c) = 1. The denominator is the

effect of the offer on the probability that Di = c, which is minus the share of the population shifted

from c to h, −P (Di(1) = h,Di(0) = c). Hence,

κc =
−E [g (Yi(c), Xi) |Di(1) = h,Di(0) = c]P (Di(1) = h,Di(0) = c)

−P (Di(1) = h,Di(0) = c)
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= E [g (Yi(c), Xi) |Di(1) = h,Di(0) = c],

which completes the proof.

An analogous argument shows identification of E [g (Yi(n), Xi) |Di(1) = h,Di(0) = n] by replacing

c with n throughout. Moreover, replacing c with h, the same argument shows identification of

E [g (Yi(h), Xi) |Di(1) = h,Di(0) 6= h], which can be used to characterize the distribution of Yi(h)

for the full population of compliers.

Note that κc is the population coefficient from an instrumental variables regression of g(Yi, Xi) ·
1 {Di = c} on 1 {Di = c}, instrumenting with Zi. The characteristics of the population of compliers

shifted from c to h can therefore be estimated using the sample analogue of this regression. In

Appendix Table A.II we estimate the characteristics of non-Head Start preschool centers attended

by compliers drawn from c by setting g (Yi, Xi) equal to a characteristic of the preschool center a

child attends (set to zero for children not in preschool). In Appendix Table A.VII we set g(Yi, Xi) =

Yi to estimate the means of Yi(c), Yi(n), and Yi(h) for compliers.
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Appendix C: Derivation of Marginal Value of Public Funds

This appendix derives the expressions for the marginal value of public funds in equations (8), (9)

and (12). Section C.4 discusses the use of earnings vs. wage changes to value test score impacts.

C.1 Program Scale

First, consider the case where competing programs are not rationed. From (4), the effect of a

change in δ on the average after-tax lifetime income of children is

∂B

∂δ
= (1− τ)p

∂E [Yi]

∂δ
.

The test score for child i can be written

Yi = Yi(Di(1))Zi + Yi(Di(0))(1− Zi),

so

E [Yi] = E [Yi(Di(1))|Zi = 1] δ + E [Yi(Di(0))|Zi = 0] (1− δ)

= E [Yi(Di(1))] δ + E [Yi(Di(0))] (1− δ),

where the second line follows from the assumption that Head Start offers are independent of po-

tential outcomes and potential treatment choices. Then

∂E [Yi]

∂δ
= E [Yi(Di(1))]− E [Yi(Di(0))]

= E [Yi(Di(1))− Yi(Di(0))]

= E [Yi(Di(1))− Yi(Di(0))|Di(1) 6= Di(0)]P (Di(1) 6= Di(0)).

Since Ui(n) and Ui(c) do not depend on Zi and Ui(h, 1) > Ui(h, 0), the condition Di(1) 6= Di(0)

implies that Di(1) = h. We can therefore rewrite the last expression as

∂E [Yi]

∂δ
= E [Yi(h)− Yi(Di(0))|Di(1) = h,Di(0) 6= h]P (Di(1) = h,Di(0) 6= h)

= LATEh · P (Di(1) = h,Di(0) 6= h),

which is equation (6). It follows that

∂B

∂δ
= (1− τ)p · LATEh · P (Di(1) = h,Di(0) 6= h).

From equation (5), the effect of a change in δ on the government budget is

∂C

∂δ
= φh

∂P (Di = h)

∂δ
+ φc

∂P (Di = c)

∂δ
− τp∂E [Yi]

∂δ
.
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The probability of Head Start participation is

P (Di = h) = E [1 {Di(1) = h}] δ + E [1 {Di(0) = h}] (1− δ),

which implies

∂P (Di = h)

∂δ
= E [1 {Di(1) = h}]− E [1 {Di(0) = h}]

= E [1 {Di(1) = h} − 1 {Di(0) = h}]

= E [1 {Di(1) = h,Di(0) 6= h}]

= P (Di(1) = h,Di(0) 6= h),

where the second-to-last equality again used the fact that Di(1) 6= Di(0) implies Di(1) = h.

Similarly,

∂P (Di = c)

∂δ
= E [1 {Di(1) = c} − 1 {Di(0) = c}]

= −E [1 {Di(1) = h,Di(0) = c}]

= −P (Di(1) = h,Di(0) = c).

Plugging these expressions into ∂C/∂δ yields

∂C

∂δ
= φhP (Di(1) = h,Di(0) 6= h)− φcP (Di(1) = h,Di(0) = c)

−τpLATEhP (Di(1) = h,Di(0) 6= h)

= (φh − φcSc − τpLATEh)P (Di(1) = h,Di(0) 6= h) ,

which is equation (7).

The marginal value of public funds associated with a change in δ is the ratio of the impact on

B to the impact on C:

MV PFδ ≡
∂B/∂δ

∂C/∂δ
.

By plugging in expressions for these derivatives we obtain

MV PFδ =
(1− τ)pLATEh

φh − φcSc − τpLATEh
,

which is equation (8).
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C.2 Rationed Substitutes

We next consider the case where seats in competing programs are rationed. As in Head Start, we

assume that seats in the competing program are distributed randomly. Let Zih and Zic denote

offers in options h and c, and let δh and δc denote the corresponding offer probabilities. Preferences

now depend on both offers. Utilities are described by

Ui(h, Zih), Ui(c, Zic), Ui(n),

and preschool enrollment choices are defined by

Di(zh, zc) = arg max
d∈{h,c,n}

Ui(d, zh, zc).

Let πd(zh, zc) = P (Di(zh, zc) = d) denote the probability of enrollment in option d as a function

of the two offers. Total enrollment in option c is

P (Di = c) = δhδcπc(1, 1) + δh(1− δc)πc(1, 0) + (1− δh)δcπc(0, 1) + (1− δh)(1− δc)πc(0, 0). (18)

We assume that competing preschools adjust δc so that dP (Di = c)/dδh = 0. Totally differentiating

equation (18) with respect to δh yields

dδc
dδh

= − δc (πc(1, 1)− πc(0, 1)) + (1− δc) (πc(1, 0)− πc(0, 0))

δh (πc(1, 1)− πc(1, 0)) + (1− δh) (πc(0, 1)− πc(0, 0))
.

=
P (Di(1, Zic) = h,Di(0, Zic) = c)

P (Di(Zih, 1) = c,Di(Zih, 0) 6= c)
.

To keep enrollment constant, δc adjusts by the ratio of the effect of an offer at h on attendance at

c to the effect of an offer at c on attendance at c.

Average test scores are given by

E [Yi] = δh (δcE [Yi(Di(1, 1))] + (1− δc)E [Yi(Di(1, 0))])

+(1− δh) (δcE [Yi(Di(0, 1))] + (1− δc)E [Yi(Di(0, 0))]) ,

so

dE [Yi]

dδh
= δc (E [Yi(Di(1, 1))− Yi(Di(0, 1))])

+(1− δc) (E [Yi(Di(1, 0))]− E [Yi(Di(0, 0))])

+
dδc
dδh
· (δhE [Yi(Di(1, 1))− Yi(Di(1, 0))] + (1− δh)E [Yi(Di(0, 1))− Yi(Di(0, 0)]) ,

which can be rewritten

dE [Yi]

dδh
= E [Yi(Di(1, Zic))− Yi(Di(0, Zic))]
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+
dδc
dδh
· (E [Yi(Di(Zih, 1))− Yi(Di(Zih, 0))])

= LATEh · P (Di(1, Zic) = h,Di(0, Zic) 6= h)

+LATEc · P (Di(1, Zic) = h,Di(0, Zic) = c).

Here the local average treatment effects are defined as

LATEh = E [Yi(h)− Yi(Di(0, Zic))|Di(1, Zic) = h,Di(0, Zic) 6= h],

LATEc = E [Yi(c)− Yi(Di(Zih, 0))|Di(Zih, 1) = c,Di(Zih, 0) 6= c].

This can be further simplified to

dE [Yi]

dδh
= (LATEh + ScLATEc) · P (Di(1, Zic) = h,Di(0, Zic) 6= h).

The effect of an increase in δh on the government’s budget is

dC

dδh
= φh ·

dP (Di = h)

dδh
− τp · dE [Yi]

dδh
.

Since δc adjusts to keep P (Di = c) constant, we have dP (Di = c)/dδh = 0. We assume that

all marginal children drawn into c by offers come from n rather than h. This implies LATEc =

LATEnc, and furthermore

dP (Di = h)

dδh
= P (Di(1, Zic) = h,Di(0, Zic) 6= h).

Then the marginal value of public funds is

MV PFδ,rat =
dB/dδh
dC/dδh

= (1− τ)p (LATEh + ScLATEnc)P (Di(1, Zic) = h,Di(0, Zic) 6= h)

× [φhP (Di(1, Zic) = h,Di(0, Zic) 6= h)− τp (LATEh + ScLATEnc)P (Di(1, Zic) = h,Di(0, Zic) 6= h)]−1

=
(1− τ)p (LATEh + LATEnc · Sc)
φh − τp (LATEh + LATEnc · Sc)

,

which is equation (9).

This implies that MV PFδ,rat > MV PFδ whenever Head Start and other preschools have similar

test score effects and other preschools are cheapt\er. Specifically, when LATEnc = LATEnh =

LATE > 0 and LATEch = 0, we have MV PFδ,rat = (1−τ)pLATE
φh−τpLATE > MV PFδ = (1−τ)pLATE

φh−φcSc
1−Sc

−τpLATE
whenever φc < φh.
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C.3 Structural Reforms

Next, consider structural reforms that alter the program feature f . A change in f generates the

following impacts on income and the government budget:

∂B

∂f
= (1− τ)p

∂E [Yi]

∂f
,

∂C

∂f
= φh

∂P (Di = h)

∂f
+ φ′h(f)P (Di = h) + φc

∂P (Di = c)

∂f
− τp∂E [Yi]

∂f

=
∂P (Di = h)

∂f

[
φh + φ′h(f)∂ (lnP (Di = h)/∂f)−1 + φc

∂P (Di = c)/∂f

∂P (Di = h/∂f)
− τp ∂E [Yi] /∂f

∂P (Di = h)/∂f

]
.

We can write mean test scores as

E [Yi] = E [Yi(h) · 1 {Ui(h, Zi) + f ≥ Ui(c), Ui(h, Zi) + f ≥ 0}]

+E [Yi (c) · 1 {Ui(c) ≥ Ui(h, Zi) + f, Ui(c) ≥ 0}]

+E [Yi(n) · 1 {Ui(h, Zi) + f ≤ 0, Ui(c) ≤ 0}] ,

where we have normalized Ui(n) to zero. The third term in this expression is

E [Yi(n) · 1 {Ui(h, Zi) + f ≤ 0, Ui(c) ≤ 0}] =
´∞
−∞
´ 0
−∞
´ −f
−∞ y · gyu(y, uh, uc)duhducdy,

where gyu(·) is the joint density function of Yi(n), Ui(h, Zi) and Ui(c). Using Leibniz’s rule for

differentiation under the integral sign and Fubini’s theorem, we have

∂E [Yi(n) · 1 {Ui(h, Zi) + f ≤ 0, Ui(c) ≤ 0}]
∂f

=
´∞
−∞
´ 0
−∞

∂

∂f

[´ −f
−∞ y · gyu(y, uh, uc)duh

]
ducdy

=−
ˆ ∞
−∞

ˆ 0

−∞
y · gyu(y,−f, uc)ducdy

=−
ˆ 0

−∞

[ˆ ∞
−∞

y · gy|u (y| − f, uc) dy
]
gu(−f, uc)duc

=−
ˆ 0

−∞
E [Yi(n)|Ui(h, Zi) + f = 0, Ui(c) = uc] gu(−f, uc)duc

=−
ˆ 0

−∞
gu(−f, uc)duc · E [Yi(n)|Ui(h, Zi) + f = 0, Ui(c) < 0]

=− guh(−f)P (Ui(c) < 0|Ui(h, Zi) + f = 0) · E [Yi(n)|Ui(h) + f = 0, Ui(c) < 0]

where gy|u(·) is the density of Yi(n) conditional on the utilities, gu(·) is the joint density of the

utilities, and guh(·) is the marginal density of Ui(h, Zi). The last factor in this expression is the

average of Yi(n) for individuals who are indifferent between Head Start and home care, and strictly
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prefer home care to the competing program. The first two factors give the total density associated

with this event.

Similar arguments show the effects of a change in f on scores in c and h:

∂E [Yi (c) · 1 {Ui(c) ≥ Ui(h, Zi) + f, Ui(c) ≥ 0}]
∂f

= −gc−h(f)P (Ui(c) > 0|Ui(h, Zi) + f = Ui(c))

× E [Yi(c)|Ui(h, Zi) + f = Ui(c), Ui(c) > 0] ,

∂E [Yi(h) · 1 {Ui(h, Zi) + f ≥ Ui(c), Ui(h) + f ≥ 0}]
∂f

= {gc−h(f)P (Ui(c) > 0|Ui(h, Zi) + f = Ui(c))

+ guh(−f)P (Ui(c) < 0|Ui(h, Zi) + f = 0)}

× E [Yi(h)|Ui(h, Zi) + f = max {Ui(c), Ui(n)}] ,

where gc−h(·) is the density of Ui(c)− Ui(h, Zi).
The corresponding effects on choice probabilities are

∂P (Di = h)

∂f
= guh(−f)P (Ui(c) < 0|Ui(h, Zi) + f = 0)

+ gc−h(f)P (Ui(c) > 0|Ui(h, Zi) + f = Ui(c)) ,

∂P (Di = c)

∂f
= −gc−h(f)P (Ui(c) > 0|Ui(h, Zi) + f = Ui(c)).

The share of marginal children drawn from the competing program is then given by

−→
S c = − ∂P (Di = c)/∂f

∂P (Di = h)/∂f

=
gc−h(f)P (Ui(c) > 0|Ui(h, Zi) + f = Ui(c))

guh(−f)P (Ui(c) < 0|Ui(h, Zi) + f = 0) + gc−h(f)P (Ui(c) > 0|Ui(h, Zi) + f = Ui(c))
.

By plugging these equations into the expressions for costs and benefits and dividing by the total

density of marginal compliers, we obtain

MV PFf =
(1− τ)pMTEh

φh(1 + η)− φc
−→
S c − τpMTEh

,

which is equation (12).

C.4 Valuing test score impacts

Here we consider more carefully how to value test score impacts in dollar terms. Specifically,

we show that if test score impacts yield corresponding labor supply responses, an adjustment to

lifetime earnings impacts is necessary to properly capture the welfare benefits of a policy change.
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This argument implies that we should use projected impacts on wages (as opposed to earnings) to

value test score gains.

Letting y denote a child’s human capital level (as proxied by test scores), we are interested in

deriving a child’s willingness to pay (as an adult) for an intervention shifting her human capital

level from y0 to y1 > y0. If this willingness to pay exceeds the net cost to government of financing

the human capital increase, then the intervention is efficiency improving in the Kaldor-Hicks sense

that all parties could be made better off.

We work with a simple static model where children face a competitive labor market with no

uncertainty and are free to choose lifetime labor supply in accord with utility maximization. Sup-

pose children have utility over consumption (q) and leisure (l) given by the function u
(
q, l
)
. The

lifetime budget constraint of a child with human capital level y can be written:

q = w (y)
(
T − l̄

)
+ b,

where w (y) = (1− τ) py ≡ ω is the after-tax wage, T is a time endowment, and b is unearned

income. The uncompensated (Marshallian) labor supply function is l (ω, b).

Define the excess expenditure function:

e (ω, ū) ≡ min
{
q − ω

(
T − l̄

)
: u
(
q, l̄
)
≥ ū

}
as the minimal level level of unearned income necessary to obtain utility level ū at wage level ω.

By the envelope theorem
∂

∂ω
e (ω, ū) = −lc (ω, ū) ,

where lc (ω, ū) is the compensated (Hicksian) labor supply function.

Suppose that at human capital level y0 the child is able to obtain utility level u0. The compen-

sating variation:

CV (y0, y1) ≡ e (w (y0) , u0)− e (w (y1) , u0) ,

measures how much income a child could give away at human capital level y1 and still obtain his

old utility level u0. A first order Taylor approximation yields:

CV (y0, y1) ≈ (1− τ) plc (w (y0) , u0) (y1 − y0)

= (1− τ) pl (w (y0) , b) (y1 − y0) . (19)

In words, the value to a child of a small increase in test scores is given by the mechanical impact

this increase in her wage would have on her lifetime earnings if her labor supply were fixed at

l (w (y0) , b).

This is to be contrasted with the actual effect of the human capital increase on his earnings
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which can be written:

w (y1) l (w (y1) , b)− w (y0) l (w (y0) , b) ≈ (1− τ) pl (w (y0) , b) (1 + ε) (y1 − y0)

where ε ≡ w(y0)
l(w(y0),b)

∂
∂ω l (w (y0) , b) gives the uncompensated elasticity of labor supply. Relative to

(19), this expression has an extra term (1 + ε) that reflects how the child adjusts her lifetime labor

supply in response to the increase in her after-tax wage. By the envelope theorem, these behavioral

changes (when they are small) do not yield additional utility.

The upshot of this analysis is that empirical estimates of the impact of test scores on earnings

need to be deflated by 1
1+ε to reflect the child’s valuation of the intervention. Much of the literature

finds small (or even negative) long run uncompensated labor supply elasticities suggesting that the

necessary adjustment is probably small (Ashenfelter et al., 2010; Blundell et al., 2015). Consistent

with this view, Lindqvist and Vestman (2011) find the proportional response of wages to test scores

to be only slightly below the corresponding response of earnings (see Appendix Table A.IV).
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Appendix D: Empirical Cost Benefit Analysis

This appendix discusses in more detail the assumptions underlying the cost-benefit analysis of

Section VI.

Representativeness of the HSIS data

The HSIS data are a nationally-representative random sample of Head Start applicants, and HSIS

offers are distributed randomly (Puma et al., 2010). The HSIS is therefore ideal for estimating

values of LATEh and Sc in the population of Head Start applicants.21 Fortunately, the current

Head Start application rate is high, which limits the scope for selection into the applicant pool

that might change with program scale. Currie (2006) reports that two-thirds of eligible children

participated in Head Start in 2000. This is higher than the Head Start participation rate in the

HSIS sample (49 percent). However, fifteen percent of participants attend undersubscribed centers

outside the HSIS sample, which implies that about 57 percent (0.85 · 0.49 + 0.15) of all applicants

participate in Head Start (Puma et al., 2010). For this to be consistent with a participation rate

of two-thirds among eligible households, virtually all eligible households must apply. Therefore,

selection into the Head Start applicant pool is unlikely to be quantitatively important for our

analysis.

Program benefits

The term p in equation (4) gives the dollar value of a one standard deviation increase in test

scores. Although earnings are unavailable for the HSIS sample, a growing body of evidence shows

a consistent link between short-run test score effects and earnings impacts. Rather than choose a

particular value for p, we consider a range of values consistent with the literature, focusing on how

low of a value would be necessary to undermine the conclusion that Head Start pays for itself.

Appendix Table A.IV summarizes several studies that compare test score and earnings impacts

for the same intervention. The most closely related study is by Chetty et al. (2011), an analysis

of the Tennessee STAR class size experiment. Chetty et al. (2011, p.7 online appendix) show that

a one standard deviation increase in kindergarten test scores induced by an experimental change

in classroom quality yields a 13.1 percent increase in earnings at age 27.22 The STAR results also

21As detailed in Appendix A, our analysis excludes HSIS applicants without followup data (20 percent of the
sample), and we use weights that capture the probability a child is assigned to Head Start but not the probability a
Head Start center is sampled from the larger population of centers. Our estimates may not be representative of the
full population of Head Start applicants if children without followup data differ systematically from other children
or if applicant populations differ in a way that is systematically related to center-level sampling probabilities.

22Effects in standard deviation units may have different meanings if score distributions differ across populations
or over time. For example, Cascio and Staiger (2012) show that test score norming partially explains fadeout in
effects of educational interventions. Sojourner (2009) shows that the standard deviation of nationally-normed scores
in the STAR sample is 87 percent of the national standard deviation. The standard deviations of Spring 2003 PPVT
and WJIII scores in the HSIS are 70 percent and 91 percent of the national standard deviation, for a mean of 81
percent. This suggests we should rescale the STAR estimate of 13.1 percent to 12.2 percent in our sample; our
baseline calibrations use a more conservative estimate of 10 percent.
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suggest that immediate test score effects of early-childhood programs predict earnings gains better

than test score effects in other periods: classrooms that boost test scores in the short run increase

earnings in the long run despite fadeout of test score impacts in the interim. We therefore project

earnings gains based on our first-year estimates of LATEh.

The STAR classroom quality estimate of 13.1 percent is smaller than a corresponding OLS

estimate controlling for rich family characteristics in the STAR sample (18 percent), and comparable

to estimates from Chetty et al. (2014b) linking test score and earnings impacts for teacher value-

added (10.3 percent for value-added, 12 percent for OLS with controls). The Chetty et al. (2014b)

findings also replicate the pattern of long-run earnings impacts coupled with fadeout of medium-run

test score effects. In an analysis of the Perry Preschool Project, Heckman et al. (2010b) estimate

larger ratios of earnings per standard deviation of test scores (24 to 29 percent). Sibling fixed

effects estimates from studies of Head Start by Currie and Thomas (1995) and Garces et al. (2002)

suggest much larger ratios, though the earnings estimates are also very statistically imprecise. To

be conservative, our baseline calibrations assume an earnings impact of 10 percent per standard

deviation of earnings, which is at the bottom of the range of estimates reported in Table A.IV.23

Calculating percentage changes in earnings requires a prediction of average earnings in the HSIS

population. Chetty et al. (2011) calculate that the average present discounted value of earnings in

the United States is approximately $522,000 at age 12 in 2010 dollars. Using a 3-percent discount

rate, this yields a present discounted value of $438,000 at age 3.4 (the average age of applicants in

the HSIS). Children who participate in Head Start are disadvantaged and therefore likely to earn

less than the US average. The average household participating in Head Start earned 46 percent

of the US average in 2013 (US DHHS, 2013; Noss, 2014). Lee and Solon (2009) find an average

intergenerational income elasticity in the United States of roughly 0.4, implying that the average

child in Head Start is expected to earn 78 percent of the US average (1− (1− 0.46) · 0.4).24 These

calculations yield a present value of earnings ē equal to $343, 492 at age 3.4.

Thus, our baseline estimate is that the marginal benefit of enrolling an additional child in Head

Start is 0.1 · $343, 492 ·LATEh. Using the pooled first-year estimate of LATEh reported in Section

III, we project an earnings impact of 0.1 · $343, 492 · 0.247 = $8, 472. We set τ = 0.35 based upon

estimates from the Congressional Budget Office (2012, Figure 2) that account for federal and state

taxes along with food stamps participation. This generates a discounted after-tax lifetime earnings

gain of $5,513 for compliers.

23The only estimates below 10 percent in Table A.IV are from Murnane et al. (1995) and Currie and Thomas
(1999). Murnane et al. use High School and Beyond data to construct an OLS estimate relating 12th grade scores to
log wages at age 24 for males (7.7 percent). The same approach produces a larger estimate for females (10.9 percent).
Currie and Thomas report partial effects from models that include both math and reading scores. Since these scores
are very highly correlated, the total effect for a single test score is likely to be larger.

24Chetty et al. (2014c) find that the IGE is not constant across the parent income distribution. Appendix Figure
IA in their study shows that the elasticity of mean child income with respect to mean parent income is 0.414 for
families between the 10th and 90th percentile of parent income but lower for families below the 10th percentile. Since
Head Start families are drawn from these poorer populations, it is reasonable to expect that the relevant IGE for this
population is below 0.4, implying that our rate of return calculations are conservative.
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Program costs

Equation (7) shows that the net marginal social cost of Head Start enrollment depends on the

costs to government of enrollment in Head Start and competing preschools along with the share

of compliers drawn from other preschools. Per-pupil expenditure in Head Start is approximately

$8, 000 (US DHHS, 2013). As reported in Column (7) of Table III, the estimated share of compliers

drawn from other preschools is 0.34.

To get an idea of the costs of competing programs, Panel A of Appendix Table A.II reports

information on funding sources for Head Start and competing preschool centers. These data come

from a survey administered to the directors of Head Start centers and other centers attended by

children in the HSIS experiment. Column (2) shows that competing preschools receive financing

from a mix of sources, and many receive public subsidies. Thirty-nine percent of competing centers

did not complete the survey, but among respondents, only 25 percent (0.153/0.606) report parent

fees as their largest source of funding. The modal funding source is state preschool programs

(30 percent), and an additional 16 percent report that other childcare subsidies are their primary

funding source. Column (3) reports characteristics of competing preschools attended by c-compliers,

estimated using a generalization of the methods for characterizing compliers described by Abadie

(2002) (see Appendix B). In the absence of a Head Start offer, c-compliers attend preschools that

rely slightly more on parent fees, but most are financed by a mix of state preschool programs,

childcare subsidies, and other funding sources.

Panel B of Table A.II compares key inputs and practices in Head Start and competing preschool

centers attended by children in the HSIS sample. On some dimensions, Head Start centers appear

to provide higher-quality services than competing programs. Columns (4) and (5) show that Head

Start centers are more likely to provide transportation to preschool and frequent home visiting

than competing centers. Average class size is also smaller in Head Start, and Head Start center

directors have more experience than their counterparts in competing preschools. As a result of

these differences, Head Start centers score higher on a composite measure of quality. On the other

hand, teachers at alternative programs are more likely to have bachelors degrees and certification,

and these programs are more likely to provide full-day service. Column (6) shows that compet-

ing preschools attended by Head Start compliers are very similar to the larger set of alternative

preschools in the HSIS sample.

Table A.II suggests that roughly 75% of competing programs are financed primarily by public

subsidies. Of course, even centers that are financed primarily by fees are likely to receive subsidies

for enrolling the disadvantaged students in our sample (who are unlikely to be able to pay full price).

Based upon this, we use as our “preferred” estimate that φc = 0.75φh, which is a conservative

estimate if Head Start and competing preschools are equally costly and 75% of Head Start eligible

students had their tuition fully subsidized at competing preschools while others receive partial

subsidies. Our “pessimistic” scenario where φc = 0.5φh corresponds roughly to the case where all

of the non-responding centers in Table A.II relied on private fees for financing. Finally, the “naive”

assumption that φc = 0 is useful as a benchmark for assessing the importance of fiscal externalities.
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Appendix E: Interacted Two-stage Least Squares

This Appendix investigates the use of the interacted two-stage least squares approach described

in Section VII to estimate models treating both Head Start and other preschools as endogenous

variables. We begin with a simple example that clarifies the parameters estimated by this strategy,

then apply the strategy to the HSIS data.

Interacted 2SLS estimand

Suppose there is a single binary covariate Xi ∈ {0, 1}. Under the assumptions described in Section

IV, covariate-specific instrumental variables coefficients give local average treatment effects:

E [Yi|Zi = 1, Xi = x]− E [Yi|Zi = 0, Xi = x]

E [1 {Di = h} |Zi = 1, Xi = x]− E [1 {Di = h} |Zi = 0, Xi = x]
= LATEh(x).

Furthermore, we have

LATEh(x) = Sc(x)LATEch(x) + (1− Sc(x))LATEnh(x),

where Sc(x) = P (Di(1)=h,Di(0)=c|Xi=x)
P (Di(1)=h,Di(0)6=h|Xi=x) is the covariate-specific share of compliers drawn from other

preschools. The Sc(x) are identified, but if we assume LATEch and LATEnh vary with x in an

unrestricted way we have two equations in four unknowns and cannot use the available information

to recover subLATEs.

Suppose instead we assume that the subLATEs don’t vary with x, so that LATEdh(x) =

LATEdh ∀x, d ∈ {c, n}. Our two equations are

LATEh(1) = Sc(1)LATEch + (1− Sc(1))LATEnh,

LATEh(0) = Sc(0)LATEch + (1− Sc(0))LATEnh.

The solution to this system is

LATEnh =
Sc(0)LATEh(1)− Sc(1)LATEh(0)

Sc(0)− Sc(1)
,

LATEch =
(1− Sc(0))LATEh(1)− (1− Sc(1))LATEh(0)

(1− Sc(0))− (1− Sc(1))
.

The right-hand sides tell us the probability limits of 2SLS coefficients from a model instrumenting

1 {Di = h} and 1 {Di = c} with Zi and Zi ·Xi and controlling for Xi. Specifically, the Head Start

coefficient from this interacted 2SLS strategy equals LATEnh and the other preschool coefficient

equals LATEnh−LATEch. To see this note that the 2SLS system is just-identified under constant

effects which implies constant subLATEs. There is therefore exactly one way to solve for the two

effects of interest using the available information; since the equations above yield these effects they

must give this solution.

If the constant effects assumption is wrong, the interacted 2SLS strategy yields a Head Start

coefficient equal to

61



LATEnh = Sc(0)Sc(1)
Sc(0)−Sc(1)LATEch(1) + Sc(0)(1−Sc(1))

Sc(0)−Sc(1) LATEnh(1)

− Sc(1)Sc(0)
Sc(0)−Sc(1)LATEch(0)− Sc(1)(1−Sc(0))

Sc(0)−Sc(1) LATEnh(0),

which can be written

LATEnh = Sc(0)Sc(1)
Sc(0)−Sc(1) · (LATEch(1)− LATEch(0))

+ (wn(1)LATEnh(1) + (1− wn(1))LATEnh(0)) ,
(20)

where

wn(1) =
Sc(0)(1− Sc(1))

Sc(0)− Sc(1)
.

This expression shows that the interacted 2SLS strategy yields a Head Start coefficient equal to

a weighted average of the subLATEs LATEnh(x), plus a term that depends on heterogeneity in

LATEch(x). If there is heterogeneity in this other subLATE, this strategy does not recover the

causal effect of h relative to n for any well-defined subpopulation. This result is a special case

of the results in Kirkboen et al. (2014) and Hull (2015), who show that 2SLS does not generally

recover causal effects in models with multiple endogenous variables.
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Appendix F: Selection Model

F.1 Control Functions

This appendix derives the control function terms for the selection model of Section VII. Households

participate in Head Start (Di = h) when

ψh(Xi, Zi) + vih > ψc(Xi) + vic, ψh(Xi, Zi) + vih > 0 ,

which can be re-written

vic − vih√
2 (1− ρ(Xi))

<
ψh(Xi, Zi)− ψc(Xi)√

2(1− ρ(Xi))
, −vih < ψh(Xi).

The random variables

(
vic−vih√
2(1−ρ(Xi)

)
and (−vih) have a bivariate standard normal distribution with

correlation

√
1−ρ(Xi)

2 . Then using the formulas in Tallis (1961) for the expectations of bivariate

standard normal random variables truncated from above, we have

E

[
vic − vih√

2 (1− ρ(Xi))
|Xi, Zi, Di = h

]
= Λ

(
ψh(Xi,Zi)−ψc(Xi)√

2(1−ρ(Xi))
, ψh(Xi);

√
1−ρ(Xi)

2

)
,

E [−vih|Xi, Zi, Di = h] = Λ

(
ψh(Xi),

ψh(Xi,Zi)−ψc(Xi)√
2(1−ρ(Xi))

;

√
1−ρ(Xi)

2

)
,

where

Λ(a1, b1; ξ) ≡ −

φ(a1)Φ

(
b1−ξa1√

1−ξ2

)
+ ξφ (b1) Φ

(
a1−ξb1√

1−ξ2

)
Φb(a1, b1; ξ)

.

Here φ(·) and Φ(·) are the PDF and CDF of the standard normal distribution, while Φb(·) is the

bivariate standard normal CDF.

Defining λd (Xi, Zi, Di) ≡ E [vid|Xi, Zi, Di], this implies that we can write

λh(Xi, Zi, h) = −Λ

(
ψh(Xi),

ψh(Xi,Zi)−ψc(Xi)√
2(1−ρ(Xi))

;

√
1−ρ(Xi)

2

)
,

λc(Xi, Zi, h) = −Λ

(
ψh(Xi),

ψh(Xi,Zi)−ψc(Xi)√
2(1−ρ(Xi))

;

√
1−ρ(Xi)

2

)
+
√

2(1− ρ(Xi)) · Λ
(
ψh(Xi,Zi)−ψc(Xi)√

2(1−ρ(Xi))
, ψh(Xi);

√
1−ρ(Xi)

2

)
.
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Similar calculations for Di = c and Di = n yield

λh(Xi, Zi, c) = −Λ

(
ψc(Xi),

ψc(Xi)−ψh(Xi,Zi)√
2(1−ρ(Xi))

;

√
1−ρ(Xi)

2

)
+
√

2 (1− ρ(Xi)) · Λ
(
ψc(Xi)−ψh(Xi,Zi)√

2(1−ρ(Xi))
, ψc(Xi);

√
1−ρ(Xi)

2

)
,

λc(Xi, Zi, c) = −Λ

(
ψc(Xi),

ψc(Xi)−ψh(Xi,Zi)√
2(1−ρ(Xi))

;

√
1−ρ(Xi)

2

)
,

λh(Xi, Zi, n) = Λ (−ψh(Xi, Zi),−ψc(Xi); ρ(Xi)) ,

λc(Xi, Zi,, n) = Λ (−ψc(Xi),−ψh(Xi, Zi); ρ(Xi)) .

F.2 Identification

We next consider identification of the selection model parameters and the subLATEs in a model

with one binary covariate, Xi ∈ {0, 1}. In this case the choice model is fully saturated and there

are four parameters for each value of Xi: ψh(x, 1), ψh(x, 0), ψc(x), and ρ(x). These parameters are

just-identified and perfectly fit the four independent conditional choice probabilities

πd(x, z) = Pr [Di = d|Xi = x, Zi = z] , d ∈ {h, c}, z ∈ {0, 1}.

The parameters of the selection model are therefore implicit functions of the choice probabilities.

Let ∆d(x) denote the difference in mean outcomes between offered and non-offered children,

conditional on Xi and Di:

∆d(x) = E [Yi|Xi = x, Zi = 1, Di = d]− E [Yi|Xi = x, Zi = 0, Di = d].

Evaluating equation (16) for Xi = 1 and Xi = 0 gives

∆d(1) = γdh (λh(1, 1, d)− λh(1, 0, d)) + γdc (λc(1, 1, d)− λc(1, 0, d)),

∆d(0) = γdh (λh(0, 1, d)− λh(0, 0, d)) + γdc (λc(0, 1, d)− λc(0, 0, d)).

Solving these equations for the selection coefficients yields

γdh =
∆d(1) (λc(0, 1, d)− λc(0, 0, d))−∆d(0) (λc(1, 1, d)− λc(1, 0, d))

(λh(1, 1, d)− λh(1, 0, d)) (λc(0, 1, d)− λc(0, 0, d))− (λh(0, 1, d)− λh(0, 0, d)) (λc(1, 1, d)− λc(1, 0, d))
,

γdc =
∆d(1) (λh(0, 0, d)− λh(0, 1, d))−∆d(0) (λh(1, 0, d)− λh(1, 1, d))

(λh(1, 1, d)− λh(1, 0, d)) (λc(0, 1, d)− λc(0, 0, d))− (λh(0, 1, d)− λh(0, 0, d)) (λc(1, 1, d)− λc(1, 0, d))
.

These expressions have the form of multivariate instrumental variables coefficients. Specifically,

they are coefficients from an infeasible IV model that uses Zi and ZiXi as instruments for vih and

vic in the Di = d sample, controlling for a main effect of Xi. Though vih and vic are unobserved,
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the λd(Xi, Zi, Di) functions capture their conditional means and can therefore be used to construct

the first stage for the IV model.

The expressions for γdh and γdc have the same denominator. A necessary and sufficient con-

dition for identification of the two selection coefficients is that this denominator is non-zero. To

interpret the requirements for identification, note that the λd(·) are functions of the selection model

parameters, so they are implicitly functions of the choice probabilities π(x, z). This implies that

if πd(x, 1) = πd(x, 0) ∀d, then λh(x, 1, d) = λh(x, 0, d) and λc(x, 1, d) = λc(x, 0, d), resulting in a

denominator equal to zero. A necessary condition for identification is therefore that the Head Start

offer shifts choice probabilities for both covariate groups. Similarly, if πd(1, z) = πd(0, z) ∀d for

either z = 0 or z = 1, the denominator equals zero. A second necessary condition is therefore that

choice probabilities differ across covariate groups conditional on the Head Start offer. This requires

differences in compliance group shares (always takers, c-never takers, n-never takers, c-compliers

and n-compliers). Finally, note that the denominator may be zero even if the offer shifts behavior

for both covariate groups and choice probabilities differ conditional on Zi. Identification requires

Head Start offers to shift the conditional means of both vih and vic in such a way that the mean

changes in the two unobservables are not proportional.

F.3 Estimating SubLATEs

After estimating the selection model we use it to predict mean potential outcomes for subpopula-

tions that respond differently to the Head Start offer. We then use these predictions to compute

treatment effects and assess the fit of the model. For example, we construct estimates of LATEnh,

the effect of Head Start relative to home care for children that switch from home care to Head

Start in response to an offer.

N -compliers switch from n to h when offered, and are therefore described by

ψh(Xi, 1) + vih > 0 > ψh(Xi, 0) + vih, ψc(Xi) + vic < 0.

We can rewrite these conditions

−ψh(Xi, 1) < vih < −ψh(Xi, 0), vic < −ψc(Xi).

The selection errors vih and vic are truncated between (−ψh(Xi, 1),−ψh(Xi, 0)) and (−∞,−ψc(Xi))

for n-compliers. Equation (14) therefore implies that mean potential outcomes for n-compliers are

E [Yi(d)|Xi,−ψh(Xi, 1) < vih < −ψh(Xi, 0), vic < −ψc(Xi)] = θd0 +X ′iθdx

+γdhΛ0 (−ψh(Xi, 1),−ψh(Xi, 0),−∞,−ψc(Xi); ρ(Xi))

+γdcΛ0 (−∞,−ψc(Xi),−ψh(Xi, 1),−ψh(Xi, 0); ρ(Xi)) ,
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where

Λ0(a0, a1, b0, b1; ξ) =

φ(a0)

[
Φ

(
b1−ξa0√

1−ξ2

)
− Φ

(
(1−ξ)a0√

1−ξ2

)]
− φ(a1)

[
Φ

(
b1−ξa1√

1−ξ2

)
− Φ

(
b0−ξa1√

1−ξ2

)]
Φb (a1, b1; ξ)− Φb(a1, b0; ξ)− Φb(a0, b1; ξ) + 2Φb(a0, b0; ξ)

+

ξφ(b0)

[
Φ

(
a1−ξb1√

1−ξ2

)
− Φ

(
a0−ξb0√

1−ξ2

)]
− ξφ(b1)

[
Φ

(
a1−ξb1√

1−ξ2

)
− Φ

(
a0−ξb1√

1−ξ2

)]
Φb (a1, b1; ξ)− Φb(a1, b0; ξ)− Φb(a0, b1; ξ) + 2Φb(a0, b0; ξ)

.

The Λ0(·) function gives means of bivariate standard normal random variables truncated from both

sides (Tallis, 1961). Analogous derivations give mean potential outcomes for c-compliers, always

takers, n-never takers, and c-never takers.

An estimate of mean Yi(d) for n compliers with covariates Xi is given by

µ̂nhd (Xi) = θ̂d0 +X ′i θ̂dx +γ̂dhΛ0

(
−ψ̂h(Xi, 1),−ψ̂h(Xi, 0),−∞,−ψ̂c(Xi); ρ̂(Xi)

)
+γ̂dcΛ0

(
−∞,−ψ̂c(Xi),−ψ̂h(Xi, 1),−ψ̂h(Xi, 0); ρ̂(Xi)

)
,

where ψ̂h and ρ̂ come from a first-step multinomial probit model and θ̂d, θ̂
x
d , γ̂hd and γ̂cd come from

a second-step least squares regression. To obtain unconditional estimates, we integrate over the

distribution of Xi for n-compliers. An estimate of the marginal mean of Yi(d) for n-compliers is

given by

µ̂nhd =
∑
i

(
ω̂nhi∑
j ω̂

nh
j

)
µ̂nhd (Xi),

where

ω̂nhi =
[
Φb

(
−ψ̂h(Xi, 0),−ψ̂c(Xi); ρ̂(Xi)

)
− Φb

(
−ψ̂h(Xi, 1),−ψ̂c(Xi); ρ̂(Xi)

)]
wi

is an estimate of the probability that individual i is an n-complier conditional on his or her co-

variates, multiplied by the HSIS sample weight wi. We then construct the subLATE estimate

ˆLATEnh = µ̂nhh − µ̂nhn . Estimates of mean potential outcomes and treatment effects for other

subgroups are obtained via similar calculations.

F.4 Specification tests

Testing for underidentification

The identification argument in Section F.2 shows that the selection coefficients for enrollment

alternative d are identified when there exist an x and x′ in the support of Xi such that

(λh(x, 1, d)− λh(x, 0, d)) (λc(x
′, 1, d)− λc(x′, 0, d)) 6=

(λh(x′, 1, d)− λh(x′, 0, d)) (λc(x, 1, d)− λc(x, 0, d)).

Equivalently, γdh and γdc are not identifed if
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λh(x, 1, d)− λh(x, 0, d) = qd1 × (λc(x, 1, d)− λc(x, 0, d)) ∀x

for some proportionality factor qd. We test the null hypothesis that the model is underidentified

by fitting the least squares regression

λ̂h(Xi, 1, d)− λ̂h(Xi, 0, d) =

3∑
k=0

qdk

(
λ̂c(Xi, 1, d)− λ̂c(Xi, 0, d)

)k
+ ηid (21)

in the sample with Di = d. The null hypothesis that qd0 = qd2 = qd3 = 0 is compatible with

underidentification of the outcome equation for alternative d; if this hypothesis is false, the control

function differences are not proportional and the selection parameters are identified.

To account for estimation error in the first-step multinomial probit parameters we conduct

inference via the nonparametric bootstrap. Let q̂d = (q̂d0, q̂d2, q̂d3)′ denote full-sample estimates

from equation (21) and let q̂bd denote corresponding estimates in bootstrap sample b. We form the

test statistic

F̂d =
q̂′dV̂

−1
qd q̂d

3
,

where

V̂qd =
1

T

T∑
b=1

(
q̂bd − q̄d

)(
q̂bd − q̄d

)′
and q̄d is the mean of q̂bd across bootstrap samples. We then compare F̂d to critical values of the

F (3,∞) distribution. The results of this test are reported in Appendix Figure A.II.

Testing additive separability

The key restriction in equation (14) is additive separability: mean potential outcomes are additively

separable in Xi, vih and vic. As a result, the selection coefficients do not depend on Xi and

these coefficients can be identified via comparisons of gaps in selected outcomes by offer status

across covariate groups. The additive separability restriction cannot be tested with a single binary

covariate, but it is testable if Xi takes more than two values.

To test the additive separability restriction for care alternative d we estimate regressions of the

form

ε̂id = θ̃d0 +X ′i θ̃dx+ γ̃dhλ̂h(Xi, Zi, d) + γ̃dcλ̂c(Xi, Zi, d) + λ̂h(Xi, Zi, d)X ′iξdh+ λ̂c(Xi, Zi, d)X ′iξdc+uid

for each care alternative, where ε̂id is the residual from two-step estimation of (15). We then

construct an F -statistic for the joint null hypothesis that ξdh = ξdc = 0 for all three care alternatives.

Let F̂ denote the full-sample F -statistic for this test, and let ξ̂dh and ξ̂dc denote full-sample estimates

of ξdh and ξdc. In bootstrap sample b we form corresponding estimates ξ̂bdh and ξ̂bdc and test the

hypothesis that ξ̂bdh = ξ̂dh and ξ̂bdc = ξ̂dc for all d, generating the test statistic F̂ b. A bootstrap

p-value for a score test of additive separability is then
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pT =
1

T

T∑
b=1

1
[
F̂ b > F̂

]
.

Table VII reports p-values for this test.

Testing model fit

Our control function approach requires correct specification of both the choice model and the model

for outcomes. To assess the fit of the choice model we use the multinomial probit estimates to predict

probabilities of Head Start and substitute preschool participation, π̂h(Xi, Zi) and π̂c(Xi, Zi). We

then split the sample into 25 cells defined by interactions of quintiles of the two probabilities. Cells

with fewer than 50 observations are grouped into a single cell. Finally, we test that empirical

choice probabilities match mean predicted probabilities in each cell, treating the mean predictions

as fixed. Appendix Figure A.I plots empirical choice probabilities against cell means of the two

model predictions. The nonparametric means are very close to the model predictions and a joint

test of equality does not reject. This suggests that the choice model fits well.

Two additional analyses assess the fit of the model for outcomes. The first splits the sample into

vingtiles of predicted LATEh, and compares model-predicted estimates to IV estimates within these

bins. As shown in Appendix Figure A.III, the model predictions tightly matches the IV estimates

while also capturing substantial effect heterogeneity. We cannot reject that the IV estimates and

model predictions are equal up to sampling error (p = 0.26).

The second analysis compares instrumental variables estimates of mean potential outcomes that

are nonparametrically identified to corresponding estimates from the selection model. As shown in

Appendix B, for example, an estimate of mean Yi(n) for n-compliers can be obtained by estimating

the instrumental variables model

Yi1 {Di = n} = κ0 + κn1 {Di = c}+ ui,

1 {Di = n} = m0 +m1Zi + ei.

The IV estimate κ̂n is a consistent estimate of E [Yi(n)|Di(1) = h,Di(0) = n], which can be com-

pared to the two-step control function estimate µ̂nhn .

We use a bootstrap covariance matrix to test the fit of the outcome model. Let τ̂ denote

a vector of differences between nonparametrically estimated and model-predicted moments (for

example, κ̂n − µ̂nhn ), and let τ̂b denote the corresponding estimate in bootstrap sample b. We form

the test statistic

Ŵ = τ̂ ′V̂ −1
τ τ̂

where

V̂τ =
1

T

T∑
b=1

(τ̂b − τ̄) (τ̂b − τ̄)′.
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Here τ̄ is the mean of τ̂b across bootstrap trials. We then compare Ŵ to critical values of the χ2
t

distribution, where t is the number of elements in τ̂ . The results of this test are shown in Appendix

Table A.VII.
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Appendix G: Site Group Fixed Effects

This appendix describes methods for incorporating experimental site group fixed effects into our

two-step control function estimation procedure. These methods allow us to leverage cross-site

variation while reducing the dimension of heterogeneity across sites, eliminating an incidental pa-

rameters problem that would arise with a full set of site fixed effects. Our approach is similar in

spirit to that of Bonhomme and Manresa (2015), who develop methods that account for grouped

patterns of heterogeneity in linear panel data models. In the translation from panel data to our

multi-site experimental setting, sites play the role of cross-sectional units and experimental subjects

play the role of time periods.

G.1 Model

Experimental sites are indexed by s ∈ {1, .., S}, and s(i) denotes the site for individual i ∈
{1, ..., N}. Each site belongs to one of G unobserved groups, with g(s) ∈ {1, ..., G} the group

for site s. The number of sites S may grow asymptotically with N , but the number of groups G is

assumed to be fixed. Utilities for Head Start, other preschools and home care are given by

Ui(h, Zi) = ψ
g(s(i))
h (Zi) + vih,

Ui(c) = ψg(s(i))c + vic,

Ui(n) = 0,

with

(vih, vic) |Zi, s(i) ∼ N

(
0,

[
1 ρg(s(i))

ρg(s(i)) 1

])
.

Here we have omitted other observed covariates for simplicity, though these can be easily incorpo-

rated. This model implies that preferences depend on the site s(i) through the site group g(s(i)).

This reduces the dimension of cross-site heterogeneity from S to G.

G.2 Estimation

If the site groupings were known, the group-specific parameters Ψ =
{
ψgh(1), ψgh(0), ψgc , ρg

}G
g=1

could

be straightforwardly estimated via a multinomial probit model saturated in group indicators. These

groupings are unknown a priori, however, so the group assignments must be estimated from the

data. Following Bonhomme and Manresa (2015), we use an estimation scheme that alternates be-

tween maximizing the likelihood function conditional on group assignments and reassigning groups

to maximize the likelihood function conditional on the group-specific parameters.

Let g0(s) be the initial type assignment for site s. The estimated group-specific parameters at

iteration k ∈ {0, 1, ...} are given by

70



Ψ̂k = arg max
Ψ

N∑
i=1

logL
(
Di|Zi;ψgk(s(i))

h (1), ψ
gk(s(i))
h (0), ψgk(s(i))

c , ρgk(s(i))
)

,

where L (d|z;ψh(1), ψh(0), ψc, ρ) is the multinomial probit likelihood function. Let
{
ψ̂gkh (1), ψ̂gkh (0), ψ̂gkc , ρ̂gk

}
denote the elements of Ψ̂k corresponding to group g. The new group assignments for iteration k+1

are then

gk+1(s) = arg max
g∈{1...G}

∑
i:s(i)=s

logL
(
Di|Zi; ψ̂gkh (1), ψ̂gkh (0), ψ̂gkc , ρ̂

gk
k

)
.

The algorithm proceeds until the change in the log likelihood from one iteration to the next falls

below a tolerance threshold.

G.3 Implementation

Before implementing the estimation procedure, we group together very small sites until the re-

maining sites have no fewer than 10 observations. Where possible, sites with the smallest numbers

of observations are first grouped together within Head Start program areas until the smallest site

within an area has at least 10 observations (see Puma et al., 2010 for a description of HSIS program

areas and experimental sites). For program areas with fewer than 10 total observations, we then

iteratively group the smallest program areas into sites until the smallest site has no fewer than 10.

This procedure results in 183 sites with average size 19.5.

The group fixed effects estimator described above is then applied to the sites. The objective

function for the group fixed effects estimation procedure may not be globally concave. To aid in

finding the global maximum, we sequentially increase the complexity of the model by estimating

it for each G and using the final group assignments from the previous model to initialize the next

model. Specifically, to estimate a model with G groups, we start with the final assignments from a

model with G− 1 groups and split the group with the lowest final log likelihood at the median log

likelihood. This procedure performed well in Monte Carlo trials.

To avoid overfitting the model, we select the final number of groups based on the Bayesian

Information Criterion (BIC). The BIC penalizes extra parameters in proportion to the log of the

sample size. Let g∗G(s) denote the final group assignment for site s when the total number of groups

is G. The BIC is given by

BIC(G) = −2

N∑
i=1

logL
(
Di|Zi; ψ̂

g∗G(s(i))

h (1), ψ̂
g∗G(s(i))

h (0), ψ̂
g∗G(s(i))
c , ρ̂g

∗
G(s(i))

)
+ (S + 4G) logN .

Here the S in the second term captures parameters corresponding to group assignments for the S

sites, while the 4G captures the estimated group-specific parameters. The final number of groups

is chosen to minimize BIC(G). As shown in Appendix Table A.VI, the BIC selects 7 groups when

the model includes no other covariates and 6 groups when the model includes our full set of baseline

covariates.
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Our two-step models with site group fixed effects include indicators for site groups in all second-

step regressions, fully interacted with preschool alternative. The site groups and group-specific pa-

rameters are reestimated in our bootstrap resampling procedure, with group assignments initialized

at their full-sample values in each bootstrap trial.
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Panel A. Head Start participation Panel B. Substitute preschool participation

Notes: This figure plots empirical probabilities of participating in Head Start and competing preschools against corresponding model predictions. Estimates come from the 
multinomial probit model in Table VI. Cells are defined by interactions of quintiles of the two predicted probabilities from the model. Cells with fewer than 50 observations are 
combined into a single cell. Panel A compares empirical probabilities of Head Start participation against cell means of the corresponding model-predicted probability, and panel B 
shows corresponding results for substitute preschools. Each panel shows the results of a test that the empirical and model-predicted probabilities are equal, treating the model 
predictions as fixed. The joint p -value for a test that the model fits in both panels equals 0.76.

Figure A.I. Multinomial Probit Model Fit
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Notes: This figure plots differences in control functions that predict Head Start and other 
preschool tastes conditional on preschool choices and covariates. Estimates come from the 
multinomial probit model in Table VI. The horizontal axis shows the difference in predicted 
Head Start tastes with the Head Start offer switched on and off, and the vertical axis shows the 
difference in predicted other preschool tastes with the offer switched on and off. Identification of 
the selection model requires that these values do not all lie on a line through the origin for each 
preschool choice. Dashed lines show OLS fits through the origin, and points show means of 
control function differences by percentile of the difference in predicted Head Start tastes. Tests 
are based on regressions of the difference in 𝜆h  on a constant and a third-order polynomial in the 
difference in predicted 𝜆c  for each preschool choice. F -statistics and p -values come from 
bootstrapped Wald tests of the hypothesis that the constant, second- and third-order terms are 
zero. See Appendix F for details. To preserve scale, the figure omits points in the bottom decile 
of the predicted difference in tastes for Head Start.

Figure A.II. Identification of the Selection Model
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Notes: This figure plots model-predicted local average treatment effects against IV 
estimates. Estimates come from the two-step model in column (5) of Table VII. The 
sample is divided into vingtiles on the basis of the model-predicted LATE. Points 
show IV estimates by vingtile vs. average model-predicted LATE by vingtile. The 
dashed line is the 45 degree line. Test statistic and p -value come from a Wald test of 
the hypothesis that the 45 degree line fits all points up to sampling error.

Figure A.III. Model-predicted LATE h vs. IV estimates
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Experimental center Attended center
(1) (2)

Transportation provided 0.421 0.458

Quality index 0.701 0.687

Fraction of staff with bachelor's degree 0.304 0.321

Fraction of staff with teaching license 0.084 0.099

Center director experience 19.08 18.24

Student/staff ratio 6.73 6.96

Full day service 0.750 0.715

More than three home visits per year 0.112 0.110

N
p -value

Table A.I. Characteristics of Head Start Centers Attended by Always Takers

Notes: This table reports characteristics of Head Start centers for children 
assigned to the HSIS control group who attended Head Start. Column (1) shows 
characteristics of the centers of random assignment for these children, while 
column (2) shows characteristics of the centers they attended. The p -value is 
from a test of the hypothesis that all mean center charteristics are the same. The 
sample excludes children with missing values for either characteristics of  the 
center of random assignment or the center attended. 

112
0.318



Other centers attended Other centers attended 
Head Start Other centers  by c  -> h  compliers Head Start Other centers  by c  -> h  compliers

Largest funding source (1) (2) (3) Input (4) (5) (6)
Head Start 0.842 0.027 0.038 Transportation provided 0.629 0.383 0.324

Parent fees 0.004 0.153 0.191 Quality index 0.702 0.453 0.446

Child and adult care food program 0.011 0.026 0.019 Fraction of staff with bachelor's degree 0.345 0.527 0.491

State pre-K program 0.004 0.182 0.155 Fraction of staff with teaching license 0.113 0.260 0.247

Child care subsidies 0.013 0.097 0.107 Center director experience 18.2 12.2 12.6

Other funding or support 0.022 0.118 0.113 Student/staff ratio 6.80 8.24 8.54

No funding or support 0.000 0.003 0.001 Full day service 0.637 0.735 0.698

Missing 0.105 0.394 0.375 More than three home visits per year 0.192 0.073 0.072

Table A.II. Characteristics of Head Start and Substitute Preschool Centers

Notes: This table reports characteristics of Head Start and other preschool centers obtained from surveys of center directors. Panel A displays information on the largest funding source for each center 
type, and panel B shows information on center inputs and practices.  Columns (3) and (6) reports characteristics of other preschool centers attended by non-offered compliers who would be induced to 
attend Head Start by an experimental offer. Estimates in these columns are produced using the methods for characterizing compliers described in Appendix B. 

Panel A. Funding sources Panel B. Inputs and practices



Full-time Full- or part-time
(1) (2)

Offer effect 0.020 -0.005
(0.018) (0.019)

Mean of dep. var. 0.334 0.501

N

Table A.III. Effects on Maternal Labor Supply

Notes: This table reports coefficients from regressions of 
measures of maternal labor supply in Spring 2003 on the 
Head Start offer indicator. Column (1) displays effects on 
the probability of working full-time, while column (2) 
shows effects on the probability of working full- or part-
time. Children with missing values for maternal 
employment are excluded. All models use inverse 
probability weights and control for baseline covariates. 
Standard errors are clustered at the Head Start center 
level.
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Test score effect Log earnings Log wage Ratio: wages or earnings
Intervention (std. dev. units) effect effect /test scores

Study (1) (2) (3) (4) (5)
Chetty et al. (2011) Tennessee STAR 0.024 0.003 - 0.131

(1 s.d. of class quality, kindergarten)a

OLS with controls 1.0 0.18 - 0.18
(kindergarten)b

Chetty et al. (2014b) Teacher value-added 0.13 0.013 - 0.103
(1 s.d. of teacher VA, grades 3-8)c

OLS with controls 1.0 0.12 - 0.12
(grades 3-8)d

Currie and Thomas (1999) OLS with controls 1.0 - Partial effects: 0.076 (math),
(age 7)e 0.076 (math), 0.080 (reading)

0.080 (reading)

Currie and Thomas (1995), Head Start 0.217 0.566 - 2.61
Garces et al. (2002) (whites, mother fixed effects, age 4+)f

Head Start 0.009 0.073 - 8.11
(blacks, mother fixed effects, age 4+)g

Heckman et al. (2006) OLS with controls 1.0 - 0.121 0.121
(males, ages 14-22)h

OLS with controls 1.0 - 0.169 0.169
(females, ages 14-22)i

Heckman et al. (2010b) Perry Preschool Project 0.787 0.189 - 0.240
(males, age 4)j

Perry Preschool Project 0.980 0.286 - 0.292
(females, age 4)k

Lindqvist and Vestman (2011) OLS with controls 1.0 0.136 0.104 0.104
(males, w/controls, ages 18-19)l

Murnane et al. (1995) OLS with controls 1.0 - 0.077 0.077
(males, grade 12)m

OLS with controls 1.0 - 0.109 0.109
(females, grade 12)n

lTable 1: Controlling for a small set of covariates, a one standard deviation increase in cognitive skills at age 18-19 increases log wages by 0.104 at age 32+ for Swedish 
men. Table 3: A one standard deviation increase in cognitive skills increases annual earnings by 43,392 SEK (sample mean 319,800 SEK).

nTable 4: Controlling for covariates, a 1-point increase in senior-year math scores increases age 24 log wages by 0.017 for females in the High School and Beyond 
Survey (the std. dev. of math scores is approximately 6.25 points).

Table A.IV. Estimates of Test Score and Earnings Impacts

Notes: We convert all test score effects to standard deviation units (column (2)) and all earnings effects to percentages (column (3)). 
aTable VIII: A 1 s.d. increase in class quality (peer scores) raises kindergarten test scores by 0.662 percentile points and age 27 earnings by $50.61.
bTable IV: Controlling for covariates, a 1 percentile point increase in kindergarten test scores raises average annual earnings from age 25 to age 27 by $93.79.
cTable III: A 1 s.d. increase in teacher value-added raises test scores by 0.13 standard deviations and boosts age 28 earnings by $285.55.
dAppendix Table III: Controlling for covariates, a 1 s.d. increase in test scores raises age 28 earnings by $2,585.

fCurrie and Thomas (1995), Table 4: Head Start participation raises test scores by 5.88 percentile points at age 4+ for whites. Garces et al. (2002), Table 2: Head Start 
participation raises log earnings between age 23 and age 25 by 0.566 for whites.
gCurrie and Thomas (1995), Table 4: Head Start participation raises test scores by 0.247 percentile points at age 4+ for whites. Garces et al. (2002), Table 2: Head Start 
participation raises log earnings between age 23 and age 25 by 0.073 for blacks.

jAppendix Figure G.1 (a): Treatment increased male IQ by 11.8 points at age 4. Appendix Table H.1: Treatment increased male age 27 earnings by $2,363 (control mean 
$12,495).
kAppendix Figure G.1 (b): Treatment increased female IQ by 14.7 points at age 4. Appendix Table H.2: Treatment increased female age 27 earnings by $2,568 (control 
mean $8,986).

mTable 3: Controlling for covariates, a 1-point increase in senior-year math scores increases age 24 log wages by 0.011 for males in the High School and Beyond Survey 
(the std. dev. of math scores is approximately 6.25 points).

eTables 3 and 4 report partial effects of scoring in the top vs. bottom quartile of reading and math scores at age 7 on log wages at age 33 for British children. We use 
Krueger's (2003) conversion of effects on quartiles to standard deviation units.

hTable 1: Controlling for covariates, a one standard deviation increase in cognitive skills at age 14-22 increases log wages at age 30 by 0.121 for males. Controls include 
non-cognitive skills.
iTable 1: Controlling for covariates, a one standard deviation increase in cognitive skills at age 14-22 increases log wages at age 30 by 0.169 for females. Controls 
include non-cognitive skills.



One endogenous 
variable

Head Start Head Start Other centers
Instruments Estimator (1) (2) (3)

Offer 2SLS 0.247 - -
(1 instrument) (0.031)

Offer X sites 2SLS 0.210 0.213 0.008
(183 instruments) (0.026) (0.039) (0.095)

First-stage F 215.1 90.0 2.7
Overid. p-value 0.002

LIML 0.218 0.029 -0.581
(0.027) (0.139) (0.432)

Overid. p-value 0.002

JIVE 0.217 0.109 -0.329
(0.026) (0.110) (0.332)

Overid. p-value 0.001
Notes: This table reports two-stage least squares estimates of the effects of Head Start and other 
preschool centers in Spring 2003. The model in the first row instruments Head Start attendance with 
the Head Start offer. Models in the remaining rows instrument Head Start and other preschool 
attendance with interactions of the offer and indicators for experimental sites. Sites with fewer than 
10 observations are grouped together within program areas as described in Appendix D. All models 
control for main effects of the interacting variables and baseline covariates. JIVE refers to the JIVE2 
estimator defined in Angrist, Imbens and Krueger (1995), computed after first partialing out the 
exogenous covariates as described by Ackerberg and Devereux (2009). Overidentification tests for 
JIVE are based on Hansen's (1982) J -statistics for 2SLS and LIML. Overidentification tests for JIVE 
are based on the many instrument and heteroskedasticity-robust statistic derived by Chao et al. 
(2013). First stage F -statistics are Angrist/Pischke (2009) partial F 's. Standard errors are robust to 
heteroskedasticity.

Table A.V. Two Stage Least Squares Estimates with Site Interaction Instruments
Two endogenous

variables

0.002

0.076

0.003



Log likelihood BIC Log likelihood BIC
Groups (1) (2) (3) (4)

1 -2,761.7 7,323.1 -2,582.0 7,912.7

2 -2,535.0 6,657.1 -2,366.9 6,811.6

3 -2,435.6 6,490.9 -2,268.3 6,647.1

4 -2,386.9 6,426.4 -2,223.4 6,590.0

5 -2,348.5 6,382.2 -2,184.1 6,544.2

6 -2,309.0 6,336.0 -2,154.9 6,518.6

7 -2,292.2 6,335.0 -2,150.6 6,542.8

8 -2,279.1 6,341.7 -2,141.7 6,557.5

Table A.VI. Model Selection Criteria for Site Group Fixed Effect Models

Notes: This table shows results for multinomial probit models with fixed effects for unobserved experimental site 
groups. Columns (1) and (3) show the maximized log likelihood for each number of site groups, and columns (2) and 
(4) show corresponding values of the Bayesian Information Criterion (BIC), equal to the number of model parameters 
times the log of the sample size minus twice the log likelihood. Columns (1) and (2) include no other covariates, while 
columns (3) and (4) include the covariates listed in the notes to Table VI. See Appendix G for details.

Sites only Covariates and sites



IV Two-step IV Two-step IV Two-step IV Two-step
(1) (2) (3) (4) (5) (6) (7) (8)

n -compliers 0.454 0.454 - 0.303 - -0.323 -0.078 -0.067

c -compliers 0.232 0.231 - 0.078 0.107 0.172 - -0.525

All compliers 0.686 0.685 0.233 0.227 - -0.156 - -0.221

n -never takers 0.095 0.093 - 0.590 - -0.392 -0.035 -0.017

c -never takers 0.083 0.082 - 0.248 0.316 0.309 - -0.530

Always takers 0.136 0.140 -0.028 0.027 - -0.140 - -0.340

Full population 1 1 - - -0.136 - -0.245

P -value: IV = Two-step
P -value for all moments

Table A.VII. Comparison of IV and Model-based Estimates of Mean Potential Outcomes

Notes: This table compares nonparametric estimates of mean potential outcomes for subpopulations to estimates implied by the two-step model in 
column (5) of Table VII.

Type probability E [Y (h )] E [Y (n )]E [Y (c )]

0.589 0.260 0.605 0.731
0.792
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