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ABSTRACT

Popular literature suggests a rapid narrowing of the technology gap between China and the U.S. based
on large percentage increases in Chinese patent applications, and equally large increases in college
registrants and completed PhDs (especially in sciences) in China in recent years. Little literature attempts
to measure the technology gap directly using estimates of country aggregate technologies. This gap
is usually thought to be smaller than differences in GDP per capita since the later reflect both differing
factor endowments and technology parameters. This paper assesses changes in China’s technology
gaps both with the U.S. and India between 1979 and 2008, comparing the technology level of these
economies using a CES production framework in which the technology gap is reflected in the change
of technology parameters. Our measure is related to but differs from the Malmquist index. We determine
the parameter values for country technology by using calibration procedures. Our calculations suggest
that the technology gap between China and the U.S. is significantly larger than that between India
and the U.S. for the period before 2008. The pairwise gaps between the U.S. and China, and the U.S.
and India remain large while narrowing at a slower rate than GDP per worker. Although China has
a higher growth rate of total factor productivity than India over the period, the bilateral technology
gap between China and India is still in India’s favor. India had higher income per worker than China
in the 1970’s, and China’s much more rapid physical and human capital accumulation has allowed
China to move ahead, but a bilateral technology gap remains.
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1. Introduction

In this paper, we report calculations of the technology gaps between China and

the U.S. as well as China and India between 1979 and 2008 using a CES production

framework. A technology gap is defined as the difference in output using foreign

technology and domestic (or foreign) factors relative to output using domestic

technology and domestic (or foreign) factors. Our measure is related to but differs

from the Malmquist productivity index discussed by Caves, Christensen and Diewert

(1982a, 1982b). An advantage of using the technology gap measure instead of the

Malmquist productivity index is that our concept is flexible to the structure of the

aggregate production function, and can be conveniently generalized to include

technological improvements embodied in the production function besides the

multiplicative productivity factor (for example, technological improvements due to a

change in the substitution elasticity or factor-augmenting technological change in a

CES production function, or increasing returns to scale).

Our results suggest that although China has a higher growth rate of total factor

productivity than India over the period, the bilateral technology gap between China

and India is still in India’s favor. India had higher income per worker than China in

the 1970’s, and China’s much more rapid physical and human capital accumulation

has allowed China to move ahead, but a bilateral technology gap remains. Also, we

find that the technology gap between China and the U.S. is significantly larger than

that between India and the U.S. for the period before 2008. The pairwise gaps

between China and the U.S., and India and the U.S. remain large while narrowing at a
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slower rate than GDP per worker.

The paper is organized as follows. We provide a brief background related to our

analysis in Section 2, and discuss the technology gap concept and the methodology

we apply in Section 3. We describe the data sets we use in Section 4, and present our

empirical results in Section 5. As a comparison, and also for robustness purposes, we

report technology gap calculations for the widely used Cobb-Douglas case in Section

6. We offer concluding remarks in Section 7.
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2. Background

A major development in the world economy over the last quarter of the 20th

century has been strong economic growth and poverty reduction in both China and

India. The Penn World Tables show that the real GDP (or real GDP per worker) in

2008 was almost 14.6 (or 9.4) and 5.3 (or 2.9) times that in 1979 for China and India

respectively, while the same number for the U.S. was 2.3 (or 1.6). Figure 1 reports

indices of real GDP per worker for these three countries between 1979 and 2008 (year

of 1979=100). All of these data are in constant 2005 purchasing power parity dollars.

Figure 1. Indices of Real GDP/Worker for China, India and the U.S. 1979-2008

Note: Year of 1979=100.
Source: Authors’ calculations using Extended Penn World Tables v.4.0, Marquetti & Foley (2011).

China and India’s large economic size combined with rapid growth has meant

that their economic rise has had large impacts on the global economy, although their

absolute income levels are still quite low (the real GDP per worker of China and India

in 2008 were about 12.9 and 9.2 percent of that of the U.S., respectively). Recent

literature analyzes China and India’s growing presence in the world economy (see

Wang, Medianu & Whalley (2011) for related discussion), and also conducts

comparative growth accounting studies for these two countries (see Herd &
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Dougherty (2007) and Bosworth & Collins (2008), for example).

It is widely recognized that technology or efficiency is at least as important as

physical and human capital accumulation in explaining income differences across

different countries (Hall & Jones, 1999; Caselli, 2005). Since the Cobb-Douglas

specification is the most widely used for the aggregate production function,

differences in technology or efficiency across countries can be simplified as TFP

(Total Factor Productivity) differences, or in other words, can be summarized by the

multiplicative factor A. Howitt (2000) and Klenow & Rodríguez-Clare (2005) show

how large TFP differences can emerge in a world with slow technology diffusion from

advanced countries to other countries, while Hsieh & Klenow (2009) estimate the

effects of resource misallocation on China and India’s manufacturing TFP and find

that if capital and labor are hypothetically reallocated to equalize marginal products to

the extent observed in the U.S., the TFP could be boosted by 30%–50% in China and

by 40%–60% in India.

But as Caselli (2005) emphasizes, the Cobb-Douglas specification is key to the

literature explaining income differences across countries, and a generalization of the

TFP assumption from Cobb-Douglas to CES (constant elasticity of substitution)

specification can lead to major changes in results. Notably, there has been increasing

recent empirical evidence that rejects the (unitary-elasticity) Cobb-Douglas

specification in favor of CES (generally below unity substitution elasticity) aggregate

production functions (see Chirinko et al. (1999), Duffy & Papageorgiou (2000),

Chirinko (2008), and Klump et al. (2007, 2011), for example).
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It is also noteworthy that China’s real GDP per worker did not surpass that of

India until the year 1998 to 2000 (as shown in Figure 2). We can conjecture naturally

that the more rapid accumulation of physical capital in China (as shown in Figure 3)

may suggest a lower technology level for China compared to that of India at least

before the middle of the 1990s.

Figure 2. Real GDP perWorker for China and India 1979-2008

Note: In Chain indexed constant 2005 purchasing power parity dollars.
Source: Data from Extended Penn World Tables v.4.0, Marquetti and Foley (2011).

Figure 3. Indices of Capital Labor Ratio for China, India and the U.S. 1979-2008

Note: Year of 1979=100.
Source: Authors’ calculations using Extended Penn World Tables v.4.0, Marquetti & Foley (2011).
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3. Methodology

In this section we set out the methodology we use to measure the pairwise

technology gaps between China, India and the U.S. over time. We measure the

technology gap between two economies 1 and 2 in terms of the ratio between actual

output in economy 1 using economy 1’s technology and inputs, and hypothetical

output using economy 2’s technology with economy 1’s inputs. The roles of

economies 1 and 2 in such a comparison can be reversed to yield an alternative

pairwise measure. We assume that each of the two economies produce a single final

good Y with two factors, capital and labor. However, the two economies can have

different technologies in production, i.e., they may have different parameters in (or

even have different structures of) production function. They can also have different

factor endowments.

Specifically, we can write the production function as follows:

  2,1,  iLKFY iiii (1)

Here, 2,1i refer to the two different economies, and iF represents different

technologies for production.

We denote 1̂Y as the actual output of economy 1, i.e., 1̂Y is realized with

endowments 1K and 1L using its own technology of production 1F . 2̂Y is defined

as the hypothetical output of economy 1 that it could produce with endowments 1K

and 1L using the technology of economy 2, 2F . Thus we have:

 1111 ,ˆ LKFY  (2)

 1122 ,ˆ LKFY  (3)



9

We can then define the technology gap between economies 1 and 2 as the ratio of

hypothetical to actual output in economy 1:

1

2
12 ˆ

ˆ
Y

YG  (4)

Correspondingly, we can also define 1Y as the hypothetical output of economy

2 that it produces with endowments 2K and 2L using the technology in production

1F , while 2Y is the actual output of economy 2 with endowments 2K and 2L

using its own technology, 2F . Thus we have:

 2211 ,LKFY  (5)

 2222 ,LKFY  (6)

And we can define the reverse technology gap as:

1

2
21 Y

YG  (7)

If we use a CES production function with Hicks-neutral technological change

   iiii
tiiiti

t
iit LKeY  

1

1 
(8)

Here 2,1i refers to the two different economies, t is a time variable, i is an

efficiency parameter, i is the rate of disembodied (or Hicks-neutral) technological

change, i is the distribution parameter, and i is the substitution parameter. Then

from equations (2)-(3) and (5)-(6), we have:

   1111

1

111111 1ˆ   tt
t

t LKeY   (9)

   2222

1

121222 1ˆ   tt
t

t LKeY  
(10)

   1111

1

212111 1   tt
t

t LKeY   (11)

   2222

1

222222 1   tt
t

t LKeY   (12)
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We can thus calculate the technology gaps 12G and 21G as in equations (4) and (7).

Similarly, for the CES production function with factor-augmenting technological

change

      iiLiiKi
ti

t
Liiit

t
Kiiit LeKeY  

1

1   (13)

and the Cobb-Douglas production function

  1
tiit

t
iit LKeY i (14)

we can also calculate the technology gaps 12G and 21G using equations (2)-(7).

Our definition of technology gaps is related to but differs from the Malmquist

productivity index, a widely used productivity measure developed by Caves,

Christensen and Diewert (CCD) (1982a, 1982b). An advantage of using the

technology gap measures 12G and 21G set out above rather than a Malmquist

productivity index is that our concept is flexible in the structure of the aggregate

production function, and can be conveniently generalized to include technological

improvements embodied in other parts of the production function besides the

multiplicative productivity factor t
iit

ieA   (for example, improvements due to a

change in the elasticity of substitution or factor-augmenting technological change in a

CES production function, or increasing returns to scale). It is also worthy of note that

if the aggregate production functions of the two economies [as equations (9)-(10) or

(11)-(12)] have the same values for parameters i and i , and only differ from

each other on the multiplicative productivity factor t
iit

ieA   , then both the

technology gaps
t

G12 and
t

G21 can be simplified to
t

t

A
A

1

2 . As Bjurek (1996)
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mentions, to establish a relationship between the productivity indices and the

corresponding Malmquist indices, CCD made the assumption that the underlying

technologies were translog with equal second-order parameters. Although CCD

(1982b) showed that their superlative index numbers could also be used to make

multilateral output, input and productivity comparisons, if we allow for different

assumptions on the production technologies, the productivity index might not be

expressed easily in terms of a quantity index.

For a CES production function with Hicks-neutral technological change as in

equation (8), or a CES function with factor-augmenting technological change as in

equation (13), the key issues in calculating the technology gap measures 12G and

21G are how to parameterize the corresponding production functions by the observed

data of the two economies, and specifically, for the production function equation (8)

how to parameterize the two equations (9) and (12). Parameterization of the

production function and calculation of the technology gap measures 12G and 21G

can be made using a variety of techniques. Earlier literature uses the Kmenta

approximation (Kmenta, 1967) or estimates a restricted translog function with

traditional econometric methods. Klump et al. (2007) estimate a supply-side system

for the U.S. economy using a normalized CES function with factor-augmenting

technological change. Henningsen & Henningsen (2011) offer an R-package to

estimate the CES function directly using different nonlinear optimization algorithms.

Luoma & Luoto (2010) estimate a normalized CES production function with

factor-augmenting technological change of the Finnish economy directly with
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Bayesian approach.

However, estimation of restricted translog functions or utilization of the Kmenta

approximation has been proved unsuitable when the underlying CES function differs

from the Cobb-Douglas form (Thursby & Lovell, 1978; Henningsen & Henningsen,

2011). Results based on using nonlinear optimization techniques in many cases seem

not to be stable; while the estimation of the supply-side system presented by Klump et

al. (2007) encounters problems of data availability. As a result, the calibration

approach is now the more commonly used method in recent literature (Caselli, 2005).

Since we also compare results from different forms of production function (a

Cobb-Douglas function and a CES function with Hicks-neutral or factor-augmenting

technological change) or different values of the elasticity of substitution, considering

the number of experiments we report on in this paper, we adopt the calibration

approach.

We specify as our benchmark a CES production function with Hicks-neutral

technological change that also incorporates human capital. As in Caselli (2005), we

use a Hall and Jones’ (1999) formulation for human capital

    iiii
titiiiti

t
iit LhKeY  

1

1 
(15)

where itK is the aggregate capital stock of economy i at time t , itL is the

corresponding number of workers, ith is their average human capital, and ititLh can

be interpreted as the “quality adjusted” workforce.

In per-worker terms the production function (15) can be rewritten as

   iiii
tiiiti

t
iit hkey  

1

1 
(16)
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where ity is the output per worker of economy i at time t , and
it

it
it L

Kk  is

the corresponding capital-labor ratio.

Accordingly, the technology gaps at time t ,
t

G12 and
t

G21 , can also be

rewritten as

t

t
t y

yG
1

2
12 ˆ

ˆ
 (17)

t

t
t y

yG
1

2
21  (18)

Here
t

y1ˆ and
t

y2ˆ are actual and hypothetical output per worker of economy 1 at

time t , respectively; while
t

y1 and
t

y2 are hypothetical and actual output per

worker of economy 2 at time t , respectively [corresponding to equations (4) and (7)].

In order to calculate the technology gaps of interest here using a CES production

function with Hicks-neutral technological change as in equation (16), we need the

data sets for ity , itk and ith , and the value of the efficiency parameter i , the rate

of technological change i , the distribution parameter i , and the substitution

parameter i .
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4. Data Sets for China, India and the U.S.

The data sets used in this paper combine variables from two different sources.

The first is Version 4.0 of the Extended Penn World Tables (EPWT version 4.0,

Marquetti & Foley, 2011). We extract from the EPWT Version 4.0 data set for the

countries we study data on labor productivity (output per worker ity , expressed in

real GDP per worker in chain indexed 2005 purchasing power parity dollars), and

capital-labor ratio (physical capital per worker itk , expressed in 2005 purchasing

power parity dollars). The EPWT Version 4.0 data set include time series for China

from 1965 to 2008, time series for India from 1963 to 2008, and those for the U.S.

from 1963 to 2009. We extract data from these sources for the period 1979 to 2008.

To construct data on human capital, we use Barro & Lee (2011) estimates of the

average years of schooling in the population over 15 years old (Barro & Lee v.1.2).

Data on the average years of schooling of China, India and the U.S. used here are

available online (at http:/www.barrolee.com/, Last Updated: 2011.09.04). Barro and

Lee’s (2011) data set has both the average years of schooling in the population over

15 and 25 years old. However, as Caselli (2005) suggests, the average years of

schooling in the population over 25 years old may be more appropriate for rich

countries with a large share of college graduates, but it may be less appropriate for

developing countries.

Following Caselli (2005), we turn these data into a measure of human capital

using the formula of Hall and Jones (1999):

 seh  (19)
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Where s is the average years of schooling, and  s is a piecewise linear function

with slope 0.134 for 4s , 0.101 for 84  s , and 0.068 for 8s . The Hall and

Jones’s (1999) measure involving the parameter values 0.134, 0.101, and 0.068 is

used here to accommodate the log-linearity in the wage-schooling relationship at the

country level consistent with the convexity of returns to education across countries.

Specifically, the function  s can be written as:

 














8068.04101.04134.0
84101.04134.0

4134.0

sfors
sfors

sfors
s (20)

Barro and Lee’s (2011) data set of average years of schooling s is available for

every five year period between 1950 and 2010. Since s changes slowly over time,

we treat s as invariant before new data is available, i.e., we apply the 1980 data of

s to the period 1980-1984, the 1985 data to the period 1985-1989, and so forth.

As is common in calibration exercises, besides data on ity , itk and ith , we

also need to determine the values of key technology parameters (the substitution

parameter i , the distribution parameter i , the efficiency parameter i , and the

rate of technological change i ).

Recent empirical evidence suggests that the U.S. and other developed economies

should be better represented by a CES aggregate production function with an

elasticity of substitution below unity rather than the unitary-elasticity Cobb-Douglas

specification (Chirinko, 2008; Klump et al., 2007, 2011). While according to Duffy &

Papageorgiou’s (2000) estimates, elasticity of substitution with human capital

adjusted labor could be lower than estimates without human capital. As a result, we
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set as a benchmark the elasticity of substitution between capital and labor 8.0i ,

which gives a substitution parameter 25.0i (also giving
i

i
i 

 1
 ).

The distribution parameter i in a CES aggregate production function [in

per-worker terms as in equation (16)] can be written as a function of the capital-labor

ratio itk , the average human capital index ith , the substitution parameter i , and the

capital share i . As in Caselli (2005), we assume that factor markets are competitive,

and for the aggregate CES function in equations (15) or (16) we have

  ii

i

itiiti

iti
i hk

k





 






1
(21)

Since the distribution parameter i is a function of the two time series itk

(capital-labor ratio) and ith (the average human capital), in the calibration procedure

we can firstly calculate a series of it , and then take i as the geometric mean of

the series it . Before calculating the country distribution parameters i , we also

need the value of the capital share i . For our benchmark situation, as elsewhere in

the literature (Caselli (2005) and Hsieh and Klenow (2009), for example), we use U.S.

data on the capital share for all the three country parameters i . The long-run

average value is around 1/3, and we adopt this setting. Due to problems of data

quality and availability, we have not adopted the actual capital shares for China and

India. We will vary these parameters later in robustness analyses.

Given the values of the substitution parameters i and the distribution

parameters i , we can then estimate the efficiency parameters i and the rates of

technological change i . Following Caselli (2005), we define    iii
tiiiti

kh
it hky  

1

1 ,
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and rewrite equation (16) as

kh
it

t
iit yey i   (22)

or

kh
it

itt
i y

ye i  (23)

It is noteworthy, however, that the values of the series kh
ity and the distribution

parameters i , and consequently the estimates of parameters i and i are

sensitive to the measurement (or unit) of time series itk (capital-labor ratio), ith

(the average human capital) and ity (output per worker). For consistency and

reliability, we normalize all the time series of ity , itk and ith by the corresponding

U.S. data in 1979.2 We also choose different years or different countries as reference

points. Both different reference points for the normalized CES function and different

measurements (or units) of time series for un-normalized CES function will change

the estimates of the parameters i and i . Results are, however, comparatively

more consistent with a normalized CES production function.

Following Klump & Saam (2008), for a reference point with 0y as output per

capita at 0k and 0h , we assume

  ii

i

hk
k

i 




 






0000

00

1
(24)

   iii hky  
1

00000 1   (25)

Where 0 is the capital share at the reference point, and  is a efficiency parameter.

With equations (24) and (25), we can then express equation (16) as

2 The normalized CES production function was introduced by La Grandville (1989) and advanced by Klump & de
La Grandville (2000), Klump & Preissler (2000) and Klump & Saam (2008), see Klump et al. (2011) for a recent
survey of the related literature.
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 
iii

i

h
h

k
ke

y
y tiitt

i
it


 

1

0
0

0
0

*

0

1 





























 

(26)

Here

 i

i 
* . By defining  

iii

h
h

k
ky tiitkh

it





1

0
0

0
0

* 1 





























 , the equations

(22) and (23) now become

**

0

kh
it

t
i

it ye
y
y

i   (27)

*
0*

kh
it

it
t

i y
y

y
e i  (28)

The series
0y

yit ,
0k

kit and
0h

hit used in equations (26)-(28) are data normalized

with the reference point (U.S. data in 1979 in the benchmark situation). The key to the

normalization procedures used here is to normalize all the data ity , itk and ith of

the three countries using a common reference point. Otherwise, all the efficiency

parameters *
i of these countries will become 1, and the differences in efficiency or

technology level will disappear.
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5. Empirical Results

Figure 4 presents the indices of technology or efficiency level t
iit

ieA   *

between 1979 and 2008 for China, India and the U.S. calculated using equation (28),

and also the estimated parameters *
i and i derived from a standard curve fitting

procedure. The technology level index for the U.S. in 1979 is 1, as all the time series

of ity , itk and ith are normalized by the corresponding U.S. data in 1979. We can

see from Figure 4 that the rate of technological change in China is much higher than

India (as emphasized in literature on TFP growth rates), while the latter is still higher

than that of the U.S. However, while both the efficiency or technology levels of China

and India are much lower than that of the U.S., at least before the year 2008, the

technology level of India is higher than that of China. Although factor accumulation

rates in China exceed those of India, and economic growth rates in China also exceed

those of India, the technology gap is in favor of India before 2008 since the initial gap

is in India’s favor and closing more slowly than relative GDP growth rates.

Figure 4. Technology Levels with CES Function for China, India and the U.S.
1979-2008

Notes: Index of “CN”, “IN” and “US” denote China, India and the U.S.; and Index of “cb” and
“ft” denote calibrated and fitted data, respectively.
Source: Authors’ calculations.
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Using the data presented in Figure 4, we can also parameterize equation (26) for

China, India and the U.S., respectively. Results are shown in Table 1. Since different

reference points or reference countries may have substantial impacts on the estimates,

for comparative purposes, we also give results using time series normalized by China

and India’s data in 1979. As shown in Table 1, estimated growth rates of technological

change i in China and India are close to the results of Herd & Dougherty (2007)

and Bosworth & Collins (2008). The estimated efficiency parameters *
i of the U.S.

are about 3.6, 4.5 or 4.9 times of India, and 8.0, 11.1 or 12.3 times of China, and those

of India are about 2.2, 2.4 or 2.5 times of China, when we use time series normalized

by the U.S., India or China’s data in 1979 respectively. It is also noteworthy that by

comparing estimates with different reference points, the results show that rates of

technological change i seem lower with a decrease in the efficiency parameters *
i .

Nevertheless, trends are similar as shown in Figure 4.

Table 1. Parameters of CES Production Functions for China, India and the U.S.

Parameter *
i i 0 i i

Normalized
with 1979
data of U.S.

U.S. 0.9471 0.008
1/3 0.8 -0.25India 0.263 0.0102

China 0.1187 0.0322
Normalized
with 1979
data of India

U.S. 4.2904 0.0103
1/3 0.8 -0.25India 0.9461 0.0134

China 0.3882 0.0406
Normalized
with 1979

data of China

U.S. 10.984 0.011
1/3 0.8 -0.25India 2.2537 0.0145

China 0.8965 0.0433
Source: Authors’ calculations.

The technology gaps of China and India both with the U.S. and with each other
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calculated using equations (17) and (18) are shown in Figure 5 [ itŷ and ity are

calculated from equation (26); the reference point is U.S. data in 1979]. These

calculations suggest that if China and India’s input factors were hypothetically used

with U.S. technology, the hypothetical output would be much larger; and if China’s

input factors were hypothetically used with India’s technology, the hypothetical

output would also be higher. Conversely, if U.S. inputs were hypothetically used with

China or India’s technology, the hypothetical output would be much lower; and if

India’s input factors were hypothetically used with China’s technology, the

hypothetical output would also be lower. Note that since we assume the aggregate

production functions of all the three economies [as equation (26)] have the same

values for parameters i and i , and only differ from each other on the

multiplicative productivity factor t
iit

ieA   , as mentioned earlier in Section 3, both

the technology gaps
t

G12 and
t

G21 are simplified to
t

t

A
A

1

2 .

Figure 5. Pairwise Technology Gaps with CES Function between China, India
and the U.S.

Notes: Technology gaps denote “US-CN” and “US-IN” are China and India’s hypothetical
output/worker with U.S. technology divided by their estimated output/worker with own technology,
and technology gap “IN-CN” is China’s hypothetical output/worker with India’s technology
divided by its estimated output/worker with own technology.
Source: Authors’ calculations.
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Figure 5 also indicates that between 1979 and 2008, the technology gaps of

China and India relative to the U.S. decrease from about 7.79 and 3.59 to 3.86 and

3.37, respectively. These results confirm that the technology gap between China and

the U.S. is larger than that between India and the U.S., while both the gaps of China

and India narrow at a slower rate than GDP per worker (also consistent to the pattern

shown in Figure 4). The technology gap of China between 1979 and 2008 relative to

India decreases from 2.17 to 1.15. Since all the measures of the technology gap of

China relative to India over the period are greater than 1, the technology gap is in

favor of India before 2008 since the initial gap is in India’s favor. These trends of the

pairwise measures of technology gaps between China, India and the U.S. as shown in

Figure 5 are consistent with different estimated values for parameters of *
i and i

shown in Table 1, i.e., different reference points or reference countries do not change

the trends described here.

These findings are noteworthy, since recent literature emphasizes the much

higher growth rate of total factor productivity in China than in India, and misses

China’s comparatively lower technology level compared to India.



23

6. Robustness Checks

For comparative purposes, we also present results calculated using an aggregate

Cobb-Douglas production function
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(29)

We use U.S. data on the capital share for i again, i.e., we again use its long-run

average value 3/1i (capital share i is 0 in Table 1 at Section 5). Thus the

only difference between the Cobb-Douglas production function used here and

equation (26) used in Section 5 is the elasticity of substitution i (or equivalently

the substitution parameter i ).

Figure 6 presents the indices of technology level t
iit

ieA   * for China, India

and the U.S. between 1979 and 2008 calculated using equation (29), and also the

estimated parameters *
i and i derived from a standard curve fitting procedure,

with U.S. data of 1979 as the reference point (the efficiency level index of the U.S. in

1979 is 1). Comparing Figures 4 and 6, we can see that these two figures give similar

trends: the growth rate of technological change in China is higher than India, and the

latter is still higher than that of the U.S; while both the technology levels (measured

by the efficiency level indices in the figures) of China and India are much lower than

that of the U.S., the technology level of India is higher than that of China. Our

previous conclusion that the technology gap is in favor of India before 2008 since the

initial gap is in India’s favor still holds. The major difference between Figures 4 and 6

is that with a Cobb-Douglas production function, efficiency level indices are slightly

lower, and the rates of technological change are slightly higher for China and India
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than that for the CES case in Section 5; while for the U.S., the contrary is true.

Figure 6. Technology Levels for China, India and the U.S. Using C-D Function
1979-2008

Notes: Indices of “CN”, “IN” and “US” denote China, India and the U.S.; and Indices of “cb”
and “ft” denote calibrated and fitted data, respectively.
Source: Authors’ calculations.

Table 2. Parameters of C-D Production Functions for China, India and the U.S.

Parameter *
i i 0 i

Normalized
with 1979
data of U.S.

U.S. 0.9496 0.0077
1/3 1India 0.2302 0.0129

China 0.094 0.0399
Normalized
with 1979
data of India

U.S. 3.9203 0.0077
1/3 1India 0.9503 0.0129

China 0.3879 0.0399
Normalized
with 1979

data of China

U.S. 9.2667 0.0077
1/3 1India 2.2462 0.0129

China 0.9168 0.0399
Source: Authors’ calculations.

For comparative purposes, we also present results with different reference points

(China, India and U.S. data in 1979) in Table 2. As shown in Table 2, the estimated

growth rates of technological change i in China and India are still close to the

results of Herd & Dougherty (2007) and Bosworth & Collins (2008). The estimated

values of efficiency parameters *
i of the U.S. are about 4.1 times of India and 10.1

times of China, and those of India are about 2.4 times of China. Data in Table 2 also
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confirm that when the aggregate production function is Cobb-Douglas, different

reference points (for
0y

yit ,
0k

kit and
0h

hit ) or different measures (or units) of the

times series (such as ity , itk and ith ) only change the levels of the efficiency

parameters *
i , while having no effects on both the ratios of *

i and the values of

i .

Figure 7. Pairwise Technology Gaps between China, India and the U.S. Using
C-D Function

Notes: Technology gaps denoted by “US-CN” and “US-IN” are China and India’s hypothetical
output/worker with U.S. technology divided by their estimated output/worker with own technology,
and technology gap denoted by “IN-CN” is China’s hypothetical output/worker with India’s
technology divided by its estimated output/worker with own technology.
Source: Authors’ calculations.

The technology gaps of China and India both with the U.S. and with each other

calculated with a Cobb-Douglas aggregate production function are shown in Figure 7

[ itŷ and ity in equations (17) and (18) are calculated from equation (29); the

reference point is U.S. data in 1979]. Since we assume the Cobb-Douglas aggregate

production functions of all the three economies have the same values of capital share

i , and only differ from each other in the multiplicative productivity factor

t
iit

ieA   , both the technology gaps
t

G12 and
t

G21 are simplified to
t

t

A
A

1

2 . We

can see from Figure 7 that between 1979 and 2008, the technology gaps of China and

India relative to the U.S. decrease from about 9.78 and 4.10 to 3.84 and 3.53,
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respectively. While the technology gap of China relative to India during the period

decreases from 2.38 to 1.09. Although the measures of the pairwise technology gaps

in Figure 7 change slightly compare to Figure 5, and the initial gaps in the

Cobb-Douglas scenario become larger, our previous conclusion still holds.

For robustness purposes, we now consider relaxing further the assumptions on

the elasticity of substitution i and the capital share 0 (or i ), and investigate

the variation of the estimated efficiency parameters *
i and the estimated rates of

technological change i (hence the variation of the technology gaps) when the

elasticity of substitution i increases by a step of 0.1 from 0.3 to 1.2. Due to

problems of data quality or availability in China and India, we previously set the

capital share 0 (or i ) of all the three countries at the U.S. long-run average value

1/3. Based on recent Chinese literature (see Zhang & Zhang (2010), for example), we

set the capital share 0 for China in an interval from 1/3 to 3/5. For comparative

purposes, we set the same interval for the capital share for India as well.

Table 3. Sensitivity Analysis of Calibrated Technology Parameters *
i and i

to Elasticities of Substitution and Capital Share

Parameter
*
i i

China India U.S. China India U.S.

3.0i ; 3
1

0  0.4174 0.6146 0.9301 -0.0044 -0.0045 0.0104

4.0i ; 3
1

0  0.316 0.4901 0.936 0.0019 -0.0017 0.0096

5.0i ; 3
1

0  0.2338 0.3957 0.9401 0.0104 0.002 0.009

6.0i ; 3
1

0  0.1773 0.3321 0.9431 0.019 0.0054 0.0086

7.0i ; 3
1

0  0.1414 0.2906 0.9453 0.0264 0.0081 0.0083

8.0i ; 3
1

0  0.1187 0.263 0.9471 0.0322 0.0102 0.008



27

9.0i ; 3
1

0  0.1039 0.2439 0.9485 0.0366 0.0117 0.0078

0.1i ; 3
1

0  0.094 0.2302 0.9496 0.0399 0.0129 0.0077

1.1i ; 3
1

0  0.0869 0.22 0.9506 0.0425 0.0138 0.0075

2.1i ; 3
1

0  0.0817 0.2122 0.9514 0.0445 0.0146 0.0074

8.0i ; 3
1'0  0.1187 0.263 0.9471 0.0322 0.0102 0.008

8.0i ; 4.0'0  0.1464 0.3064 0.9471 0.0271 0.0082 0.008

8.0i ; 5.0'0  0.1971 0.3814 0.9471 0.02 0.0054 0.008

8.0i ; 6.0'0  0.2604 0.4697 0.9471 0.0136 0.0028 0.008

0.1i ; 3
1'0  0.094 0.2302 0.9496 0.0399 0.0129 0.0077

0.1i ; 4.0'0  0.1146 0.2662 0.9496 0.0352 0.011 0.0077

0.1i ; 5.0'0  0.1544 0.3311 0.9496 0.0281 0.0082 0.0077

0.1i ; 6.0'0  0.2079 0.4119 0.9496 0.0209 0.0054 0.0077
Notes: Changes in '0 only applies to China and India,

0 for the U.S. does not change.

Source: Authors’ calculations.

Results of sensitivity analysis on the parameters *
i and i to changes of the

elasticity of substitution i and capital share 0 (or i ) are shown in Table 3.

Results in Table 3 show that, for China and India, the efficiency parameters *
i

decrease, but the growth rates of technological change i increase with the elasticity

of substitution i from 0.3 to 1.2. For the U.S., the contrary is true. Further

experiments show that the reason the U.S. has a different relationship between *
i

and i is because it is set as a reference country. The capital share 0 (or i )

presents quite different effects to the parameters *
i and i . We can see from Table

3 that independent of whether 8.0i or 1i , both for China and India, *
i

increases and i decreases when 0 (or i ) increases from 1/3 to 3/5. Considering

differences in the initial gaps and the growth rates of technological change as shown

in Table 3, our previous inference on changes in the technology gaps of China and
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India both with the U.S. and with each other seems robust.

Results of the technology gaps tG12 and tG21 for China relative to India using

different key parameters are shown in Table 4. Note that if the two economies have

different capital share 0 , then the technology gaps
t

G12 and
t

G21 may differ, and

can no longer be simplified to
t

t

A
A

1

2 . We can see from Table 4 that, with any

non-extreme values of key parameters elasticity of substitution i and capital share

0 (or i ), at least before the year 2008, the technology gap of China relative to

India still remains in India’s favor.

Table 4. Sensitivity Analysis on Technology Gaps tG12 and tG21 for China

Relative to India

Parameter
tG12 tG21

1979 2008 1979 2008

3.0i ; 3
1

0  1.472 1.468 1.472 1.468

4.0i ; 3
1

0  1.545 1.392 1.545 1.392

5.0i ; 3
1

0  1.678 1.315 1.678 1.315

6.0i ; 3
1

0  1.848 1.246 1.848 1.246

7.0i ; 3
1

0  2.018 1.187 2.018 1.187

8.0i ; 3
1

0  2.167 1.145 2.167 1.145

9.0i ; 3
1

0  2.290 1.112 2.290 1.112

0.1i ; 3
1

0  2.384 1.089 2.384 1.089

1.1i ; 3
1

0  2.460 1.070 2.460 1.070

2.1i ; 3
1

0  2.521 1.059 2.521 1.059

8.0i ; 3
1

0 
i ; 4.00 c 2.140 1.139 2.033 1.167

8.0i ; 3
1

0 
i ; 5.00 c 2.101 1.129 1.861 1.199

8.0i ; 3
1

0 
i ; 6.00 c 2.064 1.114 1.719 1.225

8.0i ; 5
3

0 
i ; 3

1
0 c 1.874 1.341 2.250 1.220
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8.0i ; 5
3

0 
i ; 4.00 c 1.850 1.333 2.111 1.243

8.0i ; 5
3

0 
i ; 5.00 c 1.816 1.321 1.933 1.277

8.0i ; 5
3

0 
i ; 6.00 c 1.784 1.305 1.784 1.305

0.1i ; 3
1

0 
i ; 4.00 c 2.347 1.076 2.195 1.099

0.1i ; 3
1

0 
i ; 5.00 c 2.290 1.056 2.004 1.104

0.1i ; 3
1

0 
i ; 6.00 c 2.237 1.040 1.872 1.163

0.1i ; 5
3

0 
i ; 3

1
0 c 2.079 1.303 2.483 1.166

0.1i ; 5
3

0 
i ; 4.00 c 2.047 1.287 2.287 1.177

0.1i ; 5
3

0 
i ; 5.00 c 1.997 1.263 2.088 1.182

0.1i ; 5
3

0 
i ; 6.00 c 1.951 1.244 1.951 1.244

Notes: Technology gap tG12 denotes China’s hypothetical output/worker with India’s technology
divided by its estimated output/worker with its own technology. tG21 denotes India’s estimated
output/worker with its own technology divided by its hypothetical output/worker with China’s
technology. c

0 and i
0 denote China and India’s capital share, respectively.

Source: Authors’ calculations.
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7. Conclusion

Our paper reports calculations of the technology gaps for China and India

compared both to the U.S. and to each other between 1979 and 2008 using a CES

framework. These gaps reflect differences between actual output per worker and

hypothetical output using other countries’ technology with domestic inputs. By

comparing with the U.S., we investigate changes in the technology gaps between

China and India through time, and also make comparisons of the efficiency or

technology level of the two countries.

We find that the pairwise gaps between China and the U.S., and India and the

U.S. remain large while narrowing at a slower rate than GDP per worker. The

technology gap between China and the U.S. is significantly larger than that between

India and the U.S. for the period before 2008. Notably, the variations of China and

India’s technology gaps relative to the U.S. present different behavior. The technology

gap for China relative to the U.S. is narrowing much more rapidly than India. The

calculations we report here also suggest that although China has a much higher

growth rate of total factor productivity than India over the period, the bilateral

technology gap between China and India is still in India’s favor. India had higher

initial income per worker than China in the 1970’s, and China’s much more rapid

physical and human capital accumulation has allowed China to move ahead, but a

bilateral technology gap remains.

These findings are noteworthy, since it seems that in the existing literature little

attention is paid to the technology gap between China and India. Recent literature
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seems more inclined to emphasize the much higher growth rate of total factor

productivity (or technological change) in China than that in India, and thus misses

China’s comparatively lower aggregate efficiency or technology level compared to

India.
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