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ABSTRACT

There is strong evidence that short-run fluctuations in air pollution negatively impact infant health
and contemporaneous adult health, but there is less evidence on the causal link between long-term
exposure to air pollution and increased adult mortality. This project estimates the impact of long-term
exposure to air pollution on mortality by leveraging quasi-random variation in pollution levels generated
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data, we estimate the effect of downwind exposure to highway-generated pollutants on the age-specific
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We find that doubling the percentage of time spent downwind of a highway increases mortality among
individuals 75 and older by 3.6 to 6.8 percent. These estimates are robust and economically significant.
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The effect of air pollution on premature mortality is a fundamental parameter for 
environmental regulation. For example, the United States Environmental Protection Agency 
(US EPA) estimates that the 1990 Clean Air Act Amendments (CAAA) will generate $12 
trillion in gross benefits from 1990 to 2020, with 92 percent of these benefits accruing in the 
form of avoided mortality (US EPA 2011, Ch. 7, p. 8). In the past decade, researchers have 
employed quasi-experimental designs with great success to estimate the effects of air 
pollution on fetal and infant health (Chay and Greenstone 2003; Currie and Neidell 2005; 
Currie, Neidell, and Schmieder 2009; Jayachandran 2009; Currie and Walker 2011; Knittel, 
Miller, and Sanders 2015; Arceo-Gomez, Hanna, and Oliva 2015). There is also strong 
evidence that short-term fluctuations in air pollution negatively impact contemporaneous 
pediatric and adult health (Ransom and Pope 1995; Friedman et al. 2001; Moretti and 
Neidell 2011; Schlenker and Walker 2015). In comparison, however, there is a shortage of 
quasi-experimental evidence linking long-term exposure to air pollution to increased adult 
mortality. This effect is of great policy interest because the goal of most air quality 
regulations, such as the CAAA, is to achieve long-term reductions in ambient pollution 
levels. 

Estimating the effects of long-term exposure to air pollution is challenging for two 
reasons. First, it is difficult to identify quasi-random variation in long-term air pollution 
levels across geographic areas. Second, even if pollution were randomly assigned, individuals 
may endogenously migrate in response to pollution (Banzhaf and Walsh 2008). The 
identifying variation in air pollution thus needs to be cross-sectional in nature (or a very long 
panel), exogenous, and yet subtle enough not to induce migration. 

We exploit quasi-random variation in pollution levels generated by wind patterns 
near major Los Angeles highways to estimate the effect of long-term exposure to air 
pollution on mortality rates. The atmospheric sciences literature has established that certain 
pollutants, and especially ultrafine particles (UFP), are found at elevated levels up to 600 
meters downwind of major highways. In contrast, pollution levels rapidly decline within 100 
meters on the upwind or parallel wind sides of highways. This pattern suggests the use of 
location relative to highways as a proxy for pollution exposure. 

Our research design compares mortality rates for individuals who live within 600 
meters of highways but on different sides, one predominantly upwind and the other 
predominantly downwind. This comparison should isolate variation in long-term pollution 
exposure – the median household in our analytic sample has lived at the same address for 
over two decades – that is uncorrelated with other factors affecting mortality. In particular, 
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after controlling for distance from highway and a fine set of spatial fixed effects, there is 
little reason to believe that individuals who live downwind of highways differ from 
individuals who live upwind of highways, unless people move in response to the pollution 
itself. Such a response seems unlikely because the pollutants in question, UFP, are 
measurable with scientific equipment but not readily perceived by the human senses 
(atmospheric research suggests that coarser particles, which are more readily sensed, do not 
seem to disperse as far). Furthermore, we demonstrate that property values are not lower 
downwind of highways, which would be the natural consequence of endogenous migration 
in response to perceived pollution. 

We find a statistically and economically significant relationship between downwind 
exposure in the Los Angeles Basin and mortality rates among the elderly. For individuals 
over the age of 75 – the most vulnerable group – a one standard deviation increase in share 
of time spent downwind of a highway increases mortality by 3 to 5 percent. When 
instrumenting for percentage of time downwind using bearing to the highway, our estimates 
imply that a one standard deviation increase in time spent downwind of a highway increases 
mortality by 5 to 6 percent. These effects persist across a range of elderly or near-elderly age 
groups (e.g., individuals over 65 or over 70) and spatial bandwidths. While our estimates are 
smaller than existing cross-sectional estimates, they remain economically significant and 
imply substantial benefits from regulating UFP. They represent, to the best of our 
knowledge, the first quasi-experimental evidence on the effects of long-term exposure to 
fine or ultrafine particulate pollution on adult mortality. 

 
I.! Background 

There is compelling evidence that short-term fluctuations in air pollution have 
negative impacts on contemporaneous adult health. Extrapolating the effects of short-term 
fluctuations to long-term exposure, however, is problematic for two reasons. First, the 
effects of exposure may accumulate over time, so that the effect of long-term exposure is 
greater than the effect of short-term exposure. Second, over short time horizons, the 
“harvesting” effect – the possibility that short-term insults to health “harvest” sick 
individuals who were about to die anyway – may underlie some of the contemporaneous 
relationship between pollution shocks and adult mortality. If so, then the effect of 
cumulative exposure to pollution may be smaller than suggested by short-term estimates. In 
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summary, for adults it is difficult to bound the effects of long-term pollution exposure in 
either direction using estimates from short-run pollution fluctuations.1 

 
A.! Particulates and Health 

Particulate pollution has been a focus of air quality regulations since the 1970 CAAA. 
In 1971, the EPA issued CAA standards focusing on total suspended particles (TSPs), or 
particles of approximately 100 micrometers in diameter or less. In 1987, they revised the 
standards to focus on PM10 (particles 10 micrometers in diameter or less), and in 1997 they 
issued standards targeting PM2.5 (particles 2.5 micrometers in diameter or less). The clear 
trend in regulation is toward finer particles over time, and the current research focus on the 
health effects of particulates is on fine particulates (PM2.5) and UFP (particles 0.1 
micrometers in diameter or less). 

The most heavily-cited evidence linking long-term exposure to air pollution and 
premature adult mortality comes from cross-sectional epidemiological studies. The seminal 
paper in this series is the “Six City study” (Dockery et al. 1993), which documents a 
significant relationship between mortality risk and air pollution across six cities. The 
mortality rate in the most polluted city in that study was 26 percent higher than the mortality 
rate in the least polluted city, with the strongest association observed for fine particulates 
(PM2.5). This finding was replicated in a follow-up study covering all US metropolitan areas 
with available pollution data (Pope et al. 2002), and a similar relationship exists for 
cardiovascular events and PM2.5 (Miller et al. 2007). Pope, Ezzati, and Dockery (2009) use 
two repeated cross sections and demonstrate that long-differenced (20 year) changes in PM2.5 
correlate significantly with changes in city-level life expectancy. The EPA applies results 
from this literature when evaluating the CAAA (US EPA 2011), but it is unclear whether the 
observed relationships reflect a causal effect of air pollution on mortality or whether they 
reflect the role of unobserved confounding factors that correlate with air pollution levels 
across cities. 

A small number of papers have employed quasi-experimental methods to estimate 
the effect of long-term pollution exposure on adult mortality. Chay, Greenstone, and 
Dobkin (2003) use variation in the long-run reduction in TSP pollution induced by the 
CAAA of 1970. They find that counties with the largest decreases in TSPs (i.e., the most 
polluted counties prior to 1970) did not experience greater reductions in adult or elderly 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 The issues discussed are less problematic for infants. Because infants are very young, a short-term fluctuation 
in pollution can represent a large change in total lifetime pollution exposure. 
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mortality than counties with smaller decreases in TSPs. However, they urge caution in 
interpreting these results “due to the imprecision of the estimated effects and evidence of 
significant problems with the research design” (Chay, Greenstone, and Dobkin 2003, p. 299). 
Chen et al. (2013) exploit a policy in China that provides coal-fired heat to all cities north of 
the Huai River. Using a regression discontinuity (RD) design, they estimate that TSPs are 55 
percent higher north of the river and that life expectancies are 5.5 years lower. These results 
imply large effects of air pollution on mortality. The implications for regulation in the United 
States (US) and other developed countries are unclear, however, because pollution levels are 
much higher in China. 

The other evidence linking particulates and health comes from laboratory or 
biomarker studies with animals and humans. Elder et al. (2004) and Elder et al. (2007) 
exposed laboratory rats to UFP levels mimicking urban roadside environments and found 
negative effects on white blood cell counts and heart rate. Vinzents et al. (2005) and Brauner 
et al. (2007) document significant relationships between personal exposure to UFP over 
several hours and oxidative DNA damage in humans. Frampton et al. (2006) exposed human 
subjects to UFP and found negative effects on blood leukocytes (white blood cells); Brook et 
al. (2009) exposed human subjects to PM2.5 and found adverse effects on blood pressure. 

 
B.! Pollution Dispersion Near Highways 

Understanding the dispersal of pollutants from highways is critical for implementing 
our identification strategy and interpreting our results. Karner, Eisinger, and Niemeier (2010) 
synthesize results from 41 atmospheric science studies on near-roadway air quality. These 
studies measure pollutant levels at varying distances from busy highways in the upwind, 
downwind, and parallel wind directions. Several clear patterns emerge from this meta-
analysis that inform our research design. 

First, pollutant levels are consistently higher downwind of highways than upwind of 
highways. This implies that the percent of time spent downwind of highways should affect 
pollutant exposure. Second, while many pollutants decay to near background levels within 
150 meters downwind, several do not. Most significant among these are UFP, which have 
demonstrated adverse health effects in laboratory studies, and nitrogen oxides (NO and 
NO2). UFP decay to background levels by 570 to 910 meters downwind, and nitrogen oxides 
decay to background levels by 550 to 570 meters downwind. Notable pollutants whose 
plumes do not extend beyond 100 to 200 meters downwind (or whose concentrations do 
not seem to be strongly affected by wind direction) include carbon monoxide (CO), coarse 
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and fine particulates (PM10 and PM2.5), and ozone (a secondary pollutant). Dispersion of up 
to 500 meters is important because the spatial resolution of our data, while high, becomes 
imprecise for coding at radii of less than 100 meters. Noise is an additional “pollutant” that 
decays with distance from the highway, but recent research reveals that noise levels do not 
vary strongly with wind direction and thus are unlikely to affect our research design (Shu, 
Yang, and Zhu 2014). 

An additional study, conducted after the Karner et al. meta-analysis, is particularly 
relevant to our research design. Quiros et al. (2013) measure UFP concentrations before, 
during, and after a 36-hour shutdown of the I-405 highway in Los Angeles. This July 2011 
event, locally known as “Carmageddon,” was scheduled to accommodate a major highway 
improvement project. During the closure, particle number concentrations – which are 
determined by UFP counts – were 83 percent lower 50 to 300 meters downwind of I-405 
than during comparable non-closure days. There were no substantial trends in particles 
upwind of the freeway.2 These results corroborate the effects of downwind exposure on 
pollution concentrations in the area included in our study. 

Elevated outdoor UFP levels may have limited health effects if the particles do not 
penetrate indoors. Jamriska et al. (1999), Palmgren et al. (2003), and Morawska et al. (2009) 
study the relationship between outdoor and indoor levels of traffic-generated particle 
emissions in a variety of contexts. They find that UFPs have high penetration efficiency into 
buildings unless mitigated with a high efficiency filtration system, which most residential 
buildings lack. 

A final strand of literature directly related to this research estimates the relationship 
between roadway proximity and health. Hoek et al. (2002) examine data in the Netherlands 
and find that the risk of mortality is 41 percent higher for individuals living within 100 
meters of major roads or freeways. Gauderman et al. (2007) find that children living within 
500 meters of California freeways had depressed lung development relative to children living 
more than 1,500 meters from freeways. Currie and Walker (2011) exploit a natural 
experiment arising from the introduction of electronic tolling and find that reductions in 
traffic congestion near toll plazas reduces the incidence of prematurity and low birth weight 
among mothers living within 2,000 meters of the plazas. Rosenbloom et al. (2012) find that 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Quiros et al. also compared downwind weekday particle number concentrations in 2011 to concentrations 
from the same area in 2001 (taken from an earlier study). They found that concentrations fell 60 percent from 
2001 to 2011, suggesting that the effects of being downwind from freeways may have declined during this 
period. 
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all-cause mortality among individuals who have previously suffered from heart attacks is 13 
to 27 percent higher when living within 1,000 meters of a major roadway. 

 
II.! Data 

Our study estimates the effect of downwind exposure from highways in the Los 
Angeles Basin (the area of Los Angeles County that lies northwest of the Pacific Ocean and 
southeast of the mountains). The Los Angeles Basin is an ideal study area for several reasons. 
First, it contains a large population (approximately 5 million in 2000). Second, there are 
many major highways. Third, there are consistent, predictable wind patterns across the Basin. 
This is helpful in assigning wind directions to Census Blocks – our unit of analysis – because 
weather stations are much sparser than Census Blocks. Finally, we have detailed data on Los 
Angeles real estate transactions. This enables property value based falsification tests. 

The data underlying our estimates come from four distinct sources. Our primary 
outcome is the Census Block age-specific mortality rate. To compute this rate, we combine 
two data sets. The first is the California Death Address File.!These data contain information 
on every death in California from 1999 to 2001, including the residential address of each 
decedent. Key variables include age and cause of death. The second data set is the GeoLytics 
CensusCD 2000 Short Form. These data contain 2000 Census Short Form data, aggregated 
and geocoded at the Census Block level. Key variables include population by age group, 
gender, and race. In Los Angeles, each Census Block generally corresponds to a city block 
and averages 150 to 200 meters on each side. We geocoded the Death Address File 
addresses for the entire Los Angeles area and assigned each address to a Census Block. We 
then computed three-year Census Block mortality rates for various census age groups, 
including ≥65, ≥70, and ≥75 years of age.3 For each Census Block, we calculated the 
distance and bearing to the nearest major highway, as defined by ESRI ArcGIS. 

Our independent variable of interest is downwind frequency, or the fraction of time 
spent downwind of a major highway. We define a Census Block as downwind if the wind 
direction is within 45 degrees of a perpendicular ray running from the highway to the Census 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 We define the three year mortality rate for the ≥75 years of age group in Census Block i as follows. The 
numerator is the number of deaths in Census Block i from 1999 to 2001 among people who would be 75 years 
or older in 2000. The denominator is the imputed number of people living in Census Block i in 1999 who 
would be 75 years or older in 2000. The imputed number of people living in Census Block i in 1999 is the 
actual number of people living in Census Block i on 1 April 2000, plus the number of people who died between 
1 January 1999 and 31 March 2000. 
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Block.4 If the wind blows in any other direction or if there is no wind, then the Census Block 
is not downwind. Figure 1 depicts an example of the downwind exposure area for a north-
south highway when the wind is blowing from west to east. In this figure, the downwind 
exposure area is the right-hand quadrant of the circle, between the dashed lines. The circle is 
centered on the highway and has a 600 meter radius (the bandwidth we use to define our 
analytic sample). In Section V.A, we experiment with an alternative definition of downwind 
that weights exposure by the cosine of the difference in angles between the wind direction 
and a perpendicular ray from the highway to the Census Block. 

We collected one year of wind data for 20 available Los Angeles Basin weather 
stations from MesoWest. We matched each Census Block to its nearest weather station and 
assigned wind directions and wind speeds using this match. The average distance to the 
nearest weather station in our analytic sample is 4.9 kilometers, with a standard deviation of 
2.1 kilometers and a maximum distance of 11.1 kilometers. We verify the accuracy of these 
data by predicting the measured downwind frequency at Census Blocks within 500 meters of 
a weather station using data from the next nearest weather station. The correlation 
coefficient between predicted downwind frequency and actual downwind frequency is 0.87 
(N = 64). However, this figure understates the accuracy of our predictions because the 
average distance to the next nearest weather station is higher than the average distance to the 
nearest weather station. If we limit the sample to Census Blocks where the next nearest 
weather station is less than 7.4 kilometers away, the average distance to the next nearest 
weather station (5.0 km) becomes similar to the average distance to the nearest weather 
station in our analytic sample (4.9 km). In this restricted sample, the correlation between 
predicted downwind frequency and actual downwind frequency is 0.96 (N = 32). 

The last data set is our data on property sales. We use these data to conduct 
falsification tests using property values and to make inferences about the frequency at which 
households in our sample move. These data come from DataQuick and represent the 
universe of real estate transactions involving single-family homes in Los Angeles County 
between 1990 and 1998. The data include address, date of transaction, transaction price, and 
square footage. 

Table 1 presents summary statistics for key variables. There are 27,908 Census 
Blocks in our overall sample (the Los Angeles Basin), but only 9,314 lie in our analytic 
sample (i.e., between 50 and 600 meters from a major highway). In both samples, the three-

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 “Wind direction” in this case refers to the direction toward which the wind blows. However, in 
meteorological data, “wind direction” refers to the direction from which the wind blows. 
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year mortality rate among individuals 75 and older is approximately 0.15, with two-thirds of 
that due to cardio-respiratory causes and under 20 percent due to cancer. The average block 
is downwind of the closest highway approximately 15 percent of the time, and the winds do 
not blow at all approximately 42 percent of the time. The average block contains 
approximately 165 individuals, 8 of whom are over the age of 75. Approximately half of all 
households in both samples own their own homes. The share of black individuals is lower in 
the analytic sample (11.8 percent) than in the full sample (14.3 percent). 

Figure 2 overlays our analytic sample on a map of the Los Angeles Basin. The 
Census Blocks in our sample are tightly clustered around highways. In a few cases – for 
example, just below the exact center of the map – the distribution of Census Blocks appears 
asymmetric, with a much higher density of blocks on one side of the highway. This occurs 
when one side of the highway is primarily residential, while the other side is primarily 
industrial or commercial. To ensure that this type of imbalance does not bias our research 
design, we employ a spatial fixed effects strategy, discussed in Section III, that limits 
comparisons to areas in which we have residential Census Blocks on both sides of the 
highway.5 

A critical question for our research design is how long the average individual in our 
sample has lived near the highway. If mobility is high in our sample, then the average length 
of exposure to elevated pollution levels will be short. The Census Short Form does not have 
a question on how long a household has lived at the current location, but the Census Long 
Form, which is available at the Census Tract level, does. The median individual over 75 
living in one of our analytic sample’s Census Tracts has lived at the current location for 25 
years, and 78 percent of them have lived at the current location for over 10 years.6 Thus, 
most “downwind” individuals in our sample have been exposed to elevated pollution levels 
for over a decade, and many for over two decades. 

 
III.! Empirical Strategy 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
5 Areas that lack residential Census Blocks on one side of the highway have no variation in downwind exposure 
within a small spatial radius. Thus, these areas do not contribute to our estimates when employing our spatial 
fixed effects design. Areas with a few residential Census Blocks on one side of the highway do contribute to 
our estimates, but the implicit weight they receive is very low because they have little variation in downwind 
exposure within a small spatial radius. 
6 To calculate these figures, we match each Census Block from the analytic sample to its Census Tract and 
calculate the statistics across matched Census Tracts, weighting each Census Tract by the number of matched 
Census Blocks. If we expand our focus to all individuals over age 65, the median individual has lived at the 
current location for 25 years, and 73 percent of them have lived at the current location for at least 10 years.  
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Our empirical strategy compares Census Blocks that are close together but differ in 
downwind exposure from highways. Because downwind exposure changes discontinuously 
at the highway, and because we limit comparisons to households that are spatially proximate, 
our strategy shares features with a boundary discontinuity design. In a typical boundary 
discontinuity design, identification relies on the assumption that housing supply and demand 
are smooth across the boundary (in this case, the highway). That assumption may not hold 
for a single highway segment, because highways often form dividing lines between 
neighborhoods. However, in our case there are at least eight highways and over two dozen 
highway segments (where a segment refers to a multi-mile stretch of highway that does not 
intersect any other highways). Thus, our identification relies on the assumption that, if there 
are discontinuous changes in housing supply or demand at highways, these changes are not 
consistently related to the prevailing wind directions. In Section V.B, we test for failures in 
this assumption by examining the relationship between downwind exposure and household 
characteristics or property values. 

To implement our strategy, we trim the sample along the dimension that is 
orthogonal to the highway. We then generate spatial fixed effects along the dimension that is 
parallel to the highway, which we refer to as “highway segment fixed effects.” We estimate 
two sets of regressions using these data. First, we estimate ordinary least squares (OLS) 
regressions of Census Block mortality rates on percentage of time spent downwind of a 
highway, controlling for distance to the highway and highway segment fixed effects. Later, 
we estimate two stage least squares (2SLS) regressions in which time spent downwind of a 
highway is the endogenous regressor and bearing to the highway is the instrument. 

Our analytic sample consists of all Census Blocks located between 50 and 600 meters 
from major highways in the Los Angeles Basin. We set a minimum distance from the 
highway because our geocoding of residential addresses to Census Blocks and Census Blocks 
to highways is only accurate to within 50 to 100 meters. This inaccuracy occurs for several 
reasons. First, the GeoLytics Census Block boundaries are inexact. In theory, they should 
precisely overlay the road network, which is the primary delineator of Census Blocks in the 
Los Angeles Basin, but in practice we observe some slippage. Second, Los Angeles highways 
are wide – often 50 to 75 meters – so their network representation in the ArcGIS shape file 
is not exact. Third, the mapping of addresses to coordinates is only approximate in many 
cases. The ArcGIS shape file assigns each road segment an address range, and addresses 
within that range are linearly interpolated. For example, in a road segment assigned an 
address range of 101 through 109, the geocoder assumes that the address of 105 lies at the 
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midpoint of that road segment. All of these issues combine to generate measurement error 
in the assignment of addresses to Census Blocks. Further from the highway, this generates 
noise in the dependent variable (Census Block mortality rates) but not the independent 
variable (downwind exposure to the highway), since a Census Block that is far from the 
highway should have the same downwind exposure as its neighbor. Adjacent to the highway, 
however, the measurement error affects the independent variable as well, causing attenuation 
bias. We thus set a minimum distance of 50 meters to the highway in selecting our analytic 
sample. This minimum distance threshold is analogous to a “donut RD” in the regression 
discontinuity framework (Barreca et al. 2011). 

We take our maximum distance from the highway of 600 meters from the 
atmospheric sciences literature summarized in Karner et al. (2010). This literature finds 
elevated UFP levels out to 570 meters when normalizing concentrations against those found 
upwind of highways.7 The 600 meter figure lies near the middle of the range of spatial 
bandwidths used in existing studies of roadway proximity and health (see Section I.B). We 
test the sensitivity of our results to different maximum (and minimum) distances in Section 
V. 

We generate our highway segment fixed effects after trimming our sample on 
distance from the highway. Our highway segment fixed effects are similar to the spatial fixed 
effects (SFE) that have appeared in other spatial analyses (Conley and Udry 2008; Goldstein 
and Udry 2008; Magruder 2012). The SFE estimator is analogous to a standard fixed effects 
estimator in that it demeans each observation i relative to other nearby observations. It then 

estimates the regression !" − !" = %('" − '"), where !" and '" represent the mean values 
for observations within a radius r of observation i. Unlike a standard fixed effects estimator, 
however, SFE cannot be represented as a set of dummy variables, because the relevant 
comparison group changes continuously as one moves through space. 

Our highway segment fixed effects modify the SFE estimator to demean observation 
i relative to observations lying within a radius r along the dimension parallel to the highway.8 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
7 Karner et al. report that elevated UFP concentrations persist out to 910 meters downwind of highways when 
normalized against background concentrations far from highways. However, given our research design, 
normalizing against upwind levels is more relevant than normalizing against concentrations in areas with no 
highways. 
8 For Census Block i, we calculate the distance to any point j along the dimension parallel to the highway 

nearest Block i as )"* = +,-* − +,-"
.
+ +01* − +01"

.
∙ sin tan89

:;<=8:;<>

:?@=8:?@>
− A" , where lat and lon 

represent latitude and longitude (normalized to meters), and A" is the bearing of a perpendicular ray from the 
highway nearest i to Census Block i (converted to radians). Block j is included in the neighborhood mean for 
Block i if and only if dij is less than r (and both blocks lie within 600 meters of the same highway).B
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We implement highway segment fixed effects rather than standard spatial fixed effects 
because they allow us to independently control the spatial bandwidth along two orthogonal 
dimensions: distance from the highway and distance along the highway. For example, 
suppose that r = 800 meters and that observation i lies 400 meters south of an east-west 
highway. Observation i is compared to all other observations on that highway that are within 
800 meters in the east-west direction. This includes observations over 400 meters north of 
the highway, even though these observations are more than 800 meters away from 
observation i in two-dimensional space. With standard spatial fixed effects, it is impossible to 
assess the sensitivity of our results to decreasing the radius of the SFE without also 
decreasing the bandwidth around the highway. Independent manipulation of both 
bandwidths is important because our highway segment fixed effects are meant to control 
omitted variables bias, while our bandwidth around the highway determines the composition 
of our sample (and potentially the average treatment effect). 

After trimming our sample to Census Blocks located between 50 and 600 meters and 
transforming our data with highway segment fixed effects, we estimate OLS regressions of 
the form 

(1)   !" = %C" + '"D + E" 
where yi represents the three-year mortality rate in Census Block i among individuals 75 and 
older, wi represents the fraction of time that Census Block i is downwind of a highway, and xi 

represents other covariates. We define the transformation F" = F" − F" , where F" is the 
mean of observations lying within r meters of observation i along a line parallel to the 
highway. We set a default highway segment fixed effect bandwidth of r = 800 meters but test 
our results’ robustness to different bandwidths. Covariates in the vector xi include distance 
to the highway and weather station fixed effects. 

We augment our OLS estimates with 2SLS estimates that employ bearing to highway 
as an instrument for downwind exposure. 2SLS estimates have two potential advantages 
over OLS estimates. First, the 2SLS estimates should be less sensitive to the exclusion of 
spatial fixed effects because bearing to the highway is evenly distributed throughout the Los 
Angeles Basin. Second, the 2SLS estimates should reduce the measurement error in 
downwind frequency that arises because most Census Blocks do not contain weather 
stations. Because the measurement error will likely attenuate the OLS estimates, we expect – 
and find – that the 2SLS estimates exceed the OLS estimates in magnitude. 

We parameterize our instrument, bearing to the nearest major highway, as a set of 
seven dummy variables. Each dummy variable represents a 45-degree range (e.g., 22.5 
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degrees to 67.5 degrees, 67.5 degrees to 112.5 degrees, etc.), and the excluded category is 
north (337.5 degrees to 22.5 degrees). Our first stage regression is thus 

(2)   C" = G"H + '"I + J" 

where zi represents the set of 45 degree range dummy variables, and wi, xi, and the 

transformation F" are as defined above. The second stage estimates the equation: 

(3)   !" = %C" + '"D + E" 

where C" are the fitted values from the first-stage results. 
In all regressions (OLS and 2SLS), we compute standard errors that are robust to 

spatial dependence, following Conley (1999). We employ a spatial bandwidth of 3,200 meters 
(two miles) in computing the standard errors, and their size is insensitive to reasonable 
variations in this bandwidth. 

 
IV.! Results 

We begin with a graphical analysis of the relationship between downwind exposure and 
mortality. Figure 3 presents results from a local linear regression of the three-year mortality 
rate among individuals 75 and older on the frequency of downwind exposure to a major 
highway. In this figure, both mortality rates and downwind exposure are residualized with 
respect to 800 meter highway segment fixed effects; downwind frequency is thus negative 
for a small number of Census Blocks. Figure 3 reveals that Census Blocks with a high 
frequency of downwind exposure have higher mortality rates than Census Blocks with a low 
frequency of downwind exposure. The relationship appears approximately linear, except for 
modest convexity at low levels and strong concavity at very high levels of downwind 
exposure, though the number of observations, and thus the precision of the estimates, is low 
at the extremes. 

Figure 4 presents the instrumental variables analog of Figure 3. Figure 4 plots the 
relationships of two variables with respect to bearing to the highway (the instrument).9 The 
first plot – the dashed blue line – is the relationship between downwind frequency and 
bearing to the highway. This plot is the graphical analog of the first-stage regression. It 
reveals that Census Blocks located east and north of highways (i.e., those whose bearing to 
the highway is west or south) are downwind much more often than those located west or 
south of highways. The second plot – the solid red line – is the relationship between the 
three-year mortality rate among individuals 75 and older and bearing to the highway. This 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
9 As in Figure 3, all variables in Figure 4 are residualized with respect to 800 meter highway segment fixed 
effects. 
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plot is the graphical equivalent of the reduced-form regression. It reveals that Census Blocks 
located east and north of highways have higher mortality rates than those located west or (to 
a lesser extent) south of highways. The visible correlation between the dashed blue line and 
the solid red line suggests a relationship between downwind frequency and mortality, 
consistent with Figure 3. 

Our results tables report the coefficient on downwind frequency, which ranges from 
zero to one. However, the raw coefficient is not directly relevant because a change in 
downwind frequency from zero to one represents a shift of almost eight standard deviations 
and is far outside the support of our data. In the text, we thus refer to effects of a one 
standard deviation (0.13 unit) change in downwind frequency; by coincidence, this is 
approximately equivalent to doubling downwind frequency from its average level of 0.154 
units. 

Table 2 presents results from estimating equation (1) via least squares. Column (1) 
regresses the three-year mortality rate among individuals 75 and older on frequency 
downwind, plus controls for distance to the highway and weather station fixed effects. It 
does not transform the data using highway segment fixed effects, instead including flexible 
controls for latitude and longitude (quintics in latitude and longitude, plus first and second 
order interactions between latitude and longitude). A one standard deviation (or 0.13 unit) 
increase in downwind frequency is associated with a 0.5 percentage point (or 3 percent) 
increase in the all-cause mortality rate. This result is statistically significant (t = 2.3). Column 
(2) transforms the data using highway segment fixed effects and corresponds to equation (1); 
this is our preferred OLS specification. The effect of a one standard deviation change in 
downwind frequency increases to 0.8 percentage points (5 percent) and becomes highly 
significant (t = 3.6). 

Columns (3) through (8) in Table 2 report results for mortality from specific causes. 
Columns (3) and (4) report effects on cardio-respiratory related mortality using the same 
regressions as columns (1) and (2), respectively. Previous epidemiological studies, as well as 
laboratory studies, suggest that air pollution should have pronounced impacts on 
cardiovascular health. Columns (3) and (4) reveal that over half the effect on overall 
mortality is due to deaths from cardio-respiratory diseases, and the specification with 
highway segment fixed effects achieves statistical significance (t = 3.0). Columns (5) and (6) 
report effects on lung cancer deaths, while columns (7) and (8) report effects on deaths from 
other cancers. In all cases, the effects are positive but statistically insignificant. 
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Table 3 presents results from the first-stage regression of downwind frequency on 
bearing to the nearest highway. Column (1) estimates the relationship with the default set of 
controls plus flexible controls for latitude and longitude, and column (2) implements 
highway segment fixed effects. The coefficients in both columns are similar and confirm the 
visual relationship in Figure 4; Census Blocks with a highway to the west or south (i.e., 
located east or north of the highway) are downwind at a higher frequency than Census 
Blocks with a highway to the east or north. Since we parameterize bearing to the nearest 
highway as seven indicator variables, the possibility of many weak instruments is a concern. 
However, the F-statistic on the instruments ranges from 26.6 to 30.6, which is well above 
the suggested critical values for first-stage F-statistics in Stock, Wright, and Yogo (2002). 
Furthermore, the partial R2 for the instruments exceeds 0.55 in both columns, implying that 
our instruments explain the majority of the variation in downwind frequency.10 

Table 4 reports 2SLS estimates of the effect of downwind exposure to highways on 
mortality. Columns (1) and (2) present the effects on overall mortality among 75+ year olds. 
The first column includes the default controls and flexible functions of latitude and 
longitude but no highway segment fixed effects, while the second column adds highway 
segment fixed effects and is our preferred 2SLS specification. The estimated effect on 
mortality rates of a one standard deviation increase in downwind exposure is 0.8 percentage 
points (5 percent) without highway segment fixed effects and 0.9 percentage points (6 
percent) with highway segment fixed effects. Both estimates are highly significant (t = 2.9 
and t = 3.0) and pass overidentification tests (i.e., we fail to reject the hypothesis that all of 
our instruments estimate the same parameter). The 2SLS estimates are less sensitive than the 
OLS estimates to the use of highway segment fixed effects, presumably because bearing to 
the highway is more balanced across space than is downwind frequency. 

Columns (3) and (4) report 2SLS estimates of the effects on cardio-respiratory mortality. 
As with the OLS estimates, the effect on cardio-respiratory mortality accounts for the 
majority of the overall mortality effect. A one standard deviation increase in downwind 
frequency raises the cardio-respiratory mortality rate by 0.4 (Column 3) or 0.5 (Column 4) 
percentage points. Both estimates are marginally significant (t = 1.9 and t = 2.0). Columns 
(5) through (8) report 2SLS estimates of the effects on mortality from lung cancer and other 
cancers. All point estimates are positive, but most are statistically insignificant. The one 
exception occurs for lung cancer, which achieves marginal significance in Column (6) (t = 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
10 Estimating the effects using LIML, whose median is generally close to the population parameter to be 
estimated even in cases with many instruments, generates estimates that are nearly identical to the 2SLS 
estimates. 
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1.9); the point estimate implies that a one standard deviation increase in downwind exposure 
increases lung cancer mortality by 0.1 percentage points (17 percent). 

 
V.! Robustness and Falsification Tests 

The estimated effects of downwind exposure on mortality are conditional on choices 
about the affected population and the appropriate spatial bandwidths. In this section, we 
explore our estimates’ sensitivity to these choices and conduct a series of falsification 
exercises to test whether the relationship between mortality and downwind exposure could 
be due to residential sorting. 

 
A.! Robustness to Parameter Choices 

Our regressions estimate the effect of downwind exposure on mortality rates among a 
specific population: 75+ year olds living 50 to 600 meters from highways. As we describe in 
Section III, data limitations dictate the minimum distance from a highway (50 meters), and 
the results from the atmospheric sciences literature inform the maximum distance from a 
highway (600 meters). We use a radius of 800 meters for our spatial fixed effects because it 
corresponds to one-half mile and is close in magnitude to the 600 meter radius that we apply 
around the highways. We focus on 75+ year olds because previous cross-sectional studies 
have found that the relationship between air pollution and negative health events increases 
with age in both proportional and absolute terms (Miller et al. 2007). Finally, for simplicity, 
we define “downwind” to mean that the wind direction is within 45 degrees of a 
perpendicular ray running from the highway to the Census Block. Tables 5 and 6 examine 
how our estimates change with respect to these parameter choices. 

Table 5 reports estimates from our preferred OLS and 2SLS specifications for a variety 
of spatial bandwidths. Each coefficient represents a separate regression. Columns (1) and (2) 
report effects of downwind exposure on all-cause mortality, and columns (3) and (4) report 
effects of downwind exposure on cardio-respiratory mortality. The top set of rows 
reproduces the baseline OLS and 2SLS estimates, taken from Tables 2 and 4, for comparison 
purposes. 

The first set of rows (following the top set) presents results from regressions that change 
the definition of downwind frequency. The alternative definition of downwind frequency 
weights exposure by the cosine of the difference in angles between the wind direction and a 

perpendicular ray from the highway to the Census Block. Formally, the weight is w = cos(K 

– 90), where K is the angle between the wind direction and the highway. This implies w = 1 
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when the wind blows perpendicular to the highway, w = 0.71 when the wind blows at a 45-
degree angle to the highway, and w = 0 when the wind blows parallel to the highway. We set 
a zero lower bound on w so that it does not become negative when a Census Block is 
upwind. With this alternative definition, Census Blocks receive some downwind exposure 
even when the wind blows at angles between 0 and 45 degrees to the highway. Using this 
alternative definition, we find estimates that are slightly smaller in magnitude than our 
baseline estimates but remain highly significant. 

The next two sets of rows present estimates that apply spatial fixed effects with radii of 
400 meters (one-quarter mile) and 1,600 meters (one mile). In all columns, the estimates are 
reasonably close to our baseline estimates, implying that our results are not very sensitive to 
changes in the radius of our spatial fixed effects. The subsequent two sets of rows present 
estimates that change the “donut size,” or minimum distance from a highway, to 25 meters 
or 100 meters. Reducing the donut size to 25 meters decreases the OLS (2SLS) effects on 
all-cause mortality by 15 percent (21 percent). The OLS (2SLS) effects on cardio-respiratory 
mortality drop by 21 percent (33 percent). Increasing the donut size to 100 meters has the 
opposite effect, with effect sizes increasing by approximately 20 percent, except in column 
(3), where they increase by 12 percent. These patterns are consistent with the fact that 
measurement error in a Census Block’s location relative to the highway becomes more 
severe as the donut size shrinks. 

The bottom two sets of rows present estimates that change the maximum distance from 
a highway to 400 meters or 800 meters. Reducing the maximum distance to 400 meters has 
the largest impact of any spatial bandwidth modification; the OLS effect on all-cause 
mortality drops by 23 percent, though it remains statistically significant (t = 2.4). The 2SLS 
effect is less impacted, dropping by 16 percent. The effects on cardio-respiratory mortality 
are also less impacted, dropping by 6 to 21 percent (though they lose significance due to a 
decrease in the coefficients and an increase in the standard errors). Increasing the maximum 
distance to 800 meters has minimal impact on most estimates except the 2SLS effect on 
cardio-respiratory mortality, which decreases by 28 percent and loses statistical significance. 

Table 6 reports estimates from our preferred OLS and 2SLS specifications for different 
age groups.11 Columns (1) through (4) report effects on all-cause mortality and cardio-
respiratory mortality for 70+ year olds. The effects are 8 to 35 percent smaller in absolute 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
11 The sample size increases in Table 6 as the age groups expand because the likelihood of a Census Block 
containing a positive number of people in a given age group grows with the size of the age group. Restricting 
the samples to include only Census Blocks that are in our baseline sample for 75+ year olds generates 
coefficient estimates of similar magnitudes to those reported in Table 6. 
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magnitude than for 75+ year olds, but statistical significance remains unchanged. Columns 
(5) through (8) report effects on all-cause mortality and cardio-respiratory mortality for 65+ 
year olds. The effects diminish further but, with the exception of the 2SLS coefficient for 
cardio-respiratory mortality, remain statistically significant. Columns (9) through (12) report 
effects for a much younger age group, 50+ year olds. The coefficients are close to zero and 
reveal no significant effects for this younger group. 

Overall, while the estimates do vary with some spatial bandwidths, both the OLS and 
2SLS effects on all-cause mortality are always significant. The effects decrease for younger 
age groups, as expected, but persist when expanding the population to include 70-74 year 
olds and, in most cases, 65-69 year olds. 

 
B.! Falsification Tests 

Identification in our study hinges on the assumption that an individual’s bearing to the 
nearest highway is “as good as randomly assigned.” There are two ways in which this 
assumption could fail. One would be if there were discrete changes in housing supply or 
demand at highways that were unrelated to winds but consistently occurred in the direction 
of prevailing winds. In practice, this would entail northern and eastern sides of highways 
being consistently poorer than southern and western sides. The second would be if 
households moved in response to the wind-driven pollution. This is unlikely since UFP 
pollution is undetectable to human senses, and any movement in response to illness would 
attenuate our effects rather than inflate them. In either scenario, however, we would expect 
demographic characteristics and property values to vary with downwind exposure. Tables 7 
and 8 thus estimate the relationships between these characteristics and downwind exposure. 

Table 7 presents results from OLS and 2SLS regressions in which the dependent variable 
is a measure that should be unrelated to downwind exposure if our research design is valid. 
Columns (1) and (2) estimate OLS and 2SLS regressions in which the dependent variable is 
the share of households that own their own home. The coefficients are statistically 
insignificant, and the point estimates imply that downwind Census Blocks have higher rates 
of home ownership, contrary to what we might expect if residential sorting were occurring. 
In either column, we can reject the hypothesis that a one standard deviation increase in 
downwind exposure correlates with a greater than 0.5 percentage point (1 percent) decline in 
homeownership rates. Columns (3) and (4) estimate regressions in which the dependent 
variable is the share of individuals who are African-American. The coefficients are 
statistically insignificant, and the point estimates imply that downwind Census Blocks are less 
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likely to contain African-Americans. Columns (5) through (8) estimate regressions in which 
the dependent variable is the external-cause mortality rate – i.e., deaths from accidents, 
homicide, or suicide – among 75+ year olds (the fifth and sixth columns) or among all 
individuals (the seventh and eighth columns). In all cases, the coefficients are statistically 
insignificant, although in general they are imprecisely estimated relative to the mean because 
external-cause mortality is a rare outcome. 

Table 8 presents results from OLS and 2SLS regressions in which the dependent 
variables are housing prices or housing characteristics. The unit of observation is a house or 
condominium sale, and we match each sale to a Census Block to assign downwind frequency. 
These regressions represent a more powerful test of the research design in that any large-
scale residential sorting should manifest itself in housing prices. The data for these 
regressions come from DataQuick (1990 to 2000 sales) or the Los Angeles County 
Assessor’s Office (2006 to 2010 sales). The DataQuick data’s date range fits our study period 
better, but they only include sales of single-family homes and only cover the City of Los 
Angeles (which does not contain the entire Los Angeles Basin). The Assessor’s Office data 
covers sales of all residential units in the entire Los Angeles Basin, but the date range is 
somewhat later than our study’s data. Given these limitations, we present estimates for each 
data source separately. 

Column (1) of Table 8 reports results from OLS regressions of log price on downwind 
frequency, as well as our standard controls. Panel A reports estimates on the 1990 to 2000 
sales sample (DataQuick), and Panel B reports estimates from the 2006 to 2010 sales sample 
(Assessor’s Office). A one standard deviation (0.13 unit) increase in downwind exposure is 
associated with a statistically insignificant 0.2 percent increase in property values in either data 
set. Column (2) reports analogous estimates from 2SLS regressions, and the effects are 
negative but statistically and economically insignificant. For example, the largest coefficient 
(–0.113 in Column (2) of Panel A) implies that a one standard deviation increase in 
downwind frequency is associated with a statistically insignificant 1 percent decrease in 
property values. Columns (3) and (4) estimate the same regressions as Columns (1) and (2) 
but include log square footage and a cubic in date sold as controls to increase precision. The 
standard errors fall by 37 to 46 percent, but all coefficients remain statistically and 
economically insignificant. Columns (5) and (6) estimate OLS and 2SLS regressions in which 
the dependent variable is square footage to check that square footage is not endogenously 
determined by downwind frequency. A one standard deviation increase in downwind 
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frequency is associated with a statistically insignificant 13 to 27 square foot increase in house 
size. 

 
VI.! Discussion 

Our results imply that living downwind of highways increases mortality rates among the 
elderly. However, it is difficult to interpret the magnitude of our “reduced-form” estimates 
without a “first stage” relating downwind frequency to pollution. Estimating this first-stage 
relationship is challenging because air quality monitors are sparsely located and do not 
measure UFP.12 

 
A.! “First-Stage” Estimates 

As a proxy for UFP, we consider measurements of NO2. Vehicles are the primary source 
of NO2 in Los Angeles, accounting for 85 percent of nitrogen oxide emissions (US EPA 
2014). Furthermore, the near-roadway dispersion pattern of NO2 mimics UFP more closely 
than other pollutants mimic UFP (Karner et al. 2010). We calculate the downwind frequency 
of air pollution monitors near highways in the Los Angeles Basin, and estimate a first-stage 
relationship between downwind frequency and NO2 concentrations. We compare these first-
stage estimates to results from the atmospheric sciences literature and apply them in 
interpreting our reduced-form results. 

Four air pollution monitors in the Los Angeles Basin are close to highways: the West 
Los Angeles-Veterans Administration (VA) Hospital monitor near Santa Monica, the Los 
Angeles-Westchester Parkway monitor near Los Angeles International Airport (LAX), the 
North Long Beach monitor, and the Lynwood monitor. The first two lie southwest of the 
nearest highways and are thus primarily upwind, and the latter two lie northeast of the 
nearest highways and are thus primarily downwind. We collected hourly NO2 measurements 
from these monitors from 1995 to 2009.13 

Figure 5 plots average hourly NO2 concentration against downwind frequency for each 
monitor. The relationship appears to be approximately linear, although there are only four 
points of support because downwind frequency is constant within a monitor. Table 9 
presents estimates from regressions of hourly NO2 concentrations on monitor downwind 
frequency. Column (1) reveals that a one standard deviation (0.13 unit) increase in downwind 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
12 The absence of UFP monitoring is not surprising since UFPs are not currently a regulated pollutant. 
13 One monitor started collecting data in 2004, and another stopped collecting data in 2008. To ensure that an 
imbalance in sample periods across monitors does not affect our results, we estimate first-stage regressions 
with day-of-sample fixed effects. 
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frequency is associated with a 9.2 part per billion (ppb) increase in NO2 concentrations, or 
33 percent of the mean level. Column (2) adds day-of-sample fixed effects to increase 
precision and eliminate bias from any imbalance in sample periods across monitors. A one 
standard deviation increase in downwind frequency is associated with a 7.9 ppb increase in 
NO2 concentrations (29 percent of the mean level). 

A primary concern in interpreting these estimates is that we cannot control for monitor-
specific characteristics. For example, one upwind monitor is near LAX, and one downwind 
monitor is near the Port of Long Beach. An idealized research design would include highway 
segment spatial fixed effects to control for any local factors that might affect NO2 
concentrations at a monitor, but we lack sufficient monitors for this design. Stated another 
way, we would like to cluster at the monitor level, but it is infeasible to do so with only four 
monitors. As an alternative robustness check, Figure 6 plots coefficients from two sets of 
regressions, each estimated separately by hour of day. The first set of regressions – the solid 
line – regresses hourly downwind frequency on average downwind frequency (which is fixed 
within a monitor). The relationship between these two variables is close to zero from 
midnight until 8 a.m., and then becomes strongly positive from 10 a.m. until 8 p.m. This 
pattern reveals that most of the downwind exposure at downwind monitors accrues during 
daylight hours when the winds blow consistently. It also implies that we should expect the 
relationship between NO2 levels and average downwind frequency to be stronger during the 
day than during the night. The second set of regressions – the dashed line – regresses NO2 
concentrations (which vary by hour) on average downwind frequency. This reveals that the 
relationship between NO2 concentrations and average downwind frequency is strong during 
the day, when downwind monitors are actually downwind, and weak during the night, when 
they are not. These patterns are consistent with the hypothesis that downwind exposure 
generates the observed differences in NO2 concentrations across monitors and are 
inconsistent with the hypothesis that monitor-specific characteristics generate the observed 
differences in NO2 concentrations across monitors. If the latter were true, we would expect 
NO2 concentrations to be consistently higher throughout the day at downwind monitors, 
contrary to Figure 6. For completeness, we note that the small NO2 coefficients during 
nighttime hours are not the result of an absence of NO2 during these hours; NO2 
concentrations from midnight to 8 a.m. are nearly identical to the overall average. 

Our first-stage estimates are broadly consistent with the results in the atmospheric 
sciences literature. Karner et al. (2010) report that, across 11 studies, NO2 concentrations are 
on average 1.7 to 2.2 times higher than ambient levels on the prevailing downwind side of 
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the highway. Our preferred estimate (Column (2) of Table 9) implies that average NO2 
concentrations at the two downwind monitors are 2.1 times higher than ambient levels.14 
This 2.1-times figure is also consistent with the results from Quiros et al. (2013) following 
the shutdown of I-405 in Los Angeles. Quiros et al. find that NO levels are approximately 
twice as high on the downwind side of I-405 when it is open relative to when it is closed.15 

We combine our first-stage estimates with our reduced-form results to generate a back-
of-the-envelope estimate of the elasticity of mortality with respect to pollution. Our first-
stage estimates imply that moving from the upwind side to the downwind side increases 
downwind frequency by 15.5 percentage points and average pollution levels by 43 percent,16 
and our reduced-form estimates imply that a 15.5 percentage point increase in downwind 
frequency raises mortality rates by 3.6 to 6.8 percent. The “IV” estimate thus suggests an 
elasticity of mortality rates (among 75+ year olds) with respect to near-roadway pollution in 
the range of 0.10 to 0.18. 

 
B.! Policy Estimates 

Two natural questions are how our estimates compare to estimates from the existing 
literature and what their potential policy implications are. We consider three relevant 
comparisons from the existing literature: the cross-sectional estimates from Dockery et al. 
(1993) (the “Six City study”); the long-differences estimates from Pope et al. (2009); and the 
RD estimates from Chen et al. (2013). Making these comparisons requires some 
transformation of our results. 

Dockery et al. find an elasticity of mortality rates with respect to fine particle pollution 
(PM2.5) of approximately 0.2. However, their outcome is the 15-year mortality rate amongst 
individuals from age 25 to 74 at baseline. To compare their results against ours, we construct 
a life table using observed mortality rates in Census Tracts within one kilometer of Los 
Angeles Basin highways. We then compute the effect of an increase in mortality rates 
amongst 75+ year olds on overall mortality rates for a cohort of 25 to 74 year olds followed 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
14 On average, the two downwind monitors are downwind 26.8 percent of the time. The intercept for the 
regression in Column (2) of Table 9 is 15.0, so the implied average NO2 concentration at the downwind 
monitors is 15.0 + 61.1*0.268 = 31.4. This figure is 2.1 times higher than the intercept of 15.0 (i.e., a theoretical 
monitor that is never downwind of the highway).  
15 Quiros et al. take measurements at several distances on the eastern (downwind) side of I-405, but, past 150 
meters, the NO concentrations on operational days stabilize at double the concentrations of the closure day.  
16 On average, the two downwind monitors are downwind 26.8 percent of the time, while the two upwind 
monitors are downwind 11.3 percent of the time. The intercept for the regression in Column (2) of Table 9 is 
15.0, so the implied average NO2 concentration at the downwind monitors is 15.0 + 61.1*0.268 = 31.4, and the 
implied average NO2 concentration at the upwind monitors is 15.0 + 61.1*0.113 = 21.9. The proportional 
increase in average NO2 concentration from moving from upwind to downwind is thus 31.4/21.9 = 1.43. 
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over 15 years. The result is an elasticity of mortality rates amongst 25 to 74 year olds with 
respect to near-roadway pollution of approximately 0.03,17 which is approximately seven 
times smaller than the cross-sectional estimate from Dockery et al. 

Pope et al. estimate that a 10 percent (2 µg/m3) decrease in PM2.5 in the US increases life 

expectancy by 0.12 years. Using our life table, and assuming the mortality effects occur only 
at age 75 and beyond, we compute that a 10 percent change in near-roadway air pollution 
changes life expectancy at birth by 0.05 years.18 This is approximately 60 percent smaller than 
the estimate from Pope et al. 

Chen et al. estimate that a 55 percent increase in TSPs in China reduces life expectancy 
at birth by 5.5 years. Using our life table, and assuming that mortality effects occur only at 
age 75 and beyond, we compute that a 55 percent increase in near-roadway air pollution 
reduces life expectancy at birth by 0.2 years.19 This is approximately 27 times smaller than 
the estimate from Chen et al. Pollution levels in China, however, are much higher than in the 

US; average TSP levels in the US were about 60 µg/m3 in 1990 (Chay and Greenstone 2003), 

while Chen et al. report average Chinese TSP levels of 350 to 550 µg/m3 (six to nine times 

higher). 
When reconciling our results with the existing literature, several factors are important to 

consider. First, the relevant particulates differ across papers. We focus on UFP. Dockery et 
al. and Pope et al. focus on coarser PM2.5, and Chen et al. focus on still coarser TSPs. Second, 
Dockery et al. and, to a lesser degree, Pope et al. do not employ quasi-experimental research 
designs, so their estimates may reflect some degree of selection bias. Third, the pollution 
exposure period may differ. While the median 75-year old in our study has lived at the same 
location for over 25 years, younger individuals have shorter occupancy durations. The 
median 45-to-54 year old in our study area, for example, has lived in the same location for 
only eight years. An eight-year exposure period is roughly comparable to the implicit 
exposure period in Pope et al. but is shorter than the exposure periods in Dockery et al. and 
Chen et al. The briefer exposure period for younger individuals could contribute to the null 
effects we observe on those younger than 65. Finally, the sparsity of pollution monitors and 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
17 Our smallest estimate (OLS with no highway segment FE) generates an elasticity of 0.02, and our largest 
estimate (2SLS with highway segment FE) generates an elasticity of 0.04. 
18 Our smallest estimate (OLS with no highway segment FE) generates an effect on life expectancy of 0.035 
years, and our largest estimate (2SLS with highway segment FE) generates an effect on life expectancy of 0.060 
years. 
19 Our smallest estimate (OLS with no highway segment FE) generates an effect on life expectancy of 0.14 
years, and our largest estimate (2SLS with highway segment FE) generates an effect on life expectancy of 0.28 
years. 
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lack of UFP monitoring affects the reliability of our “first-stage” estimates. If we have 
overestimated the first stage, then we will underestimate the IV coefficient. 

To gauge the potential benefits from regulating UFP, we consider a policy in which we 
replace all cars on Los Angeles-area highways with zero-emission vehicles (ZEVs). To 
calculate the impact of this policy, we construct a counterfactual scenario in which no 
Census Blocks are ever downwind of a highway. In this scenario, applying our 2SLS 
estimates to the life table reveals a 0.24-year increase in life expectancy at birth. This increase 
equates to an additional 372,000 life-years gained across the 1.55 million individuals in our 
analytic sample. The economic value of this life-expectancy gain totals $37.2 billion when 
valuing each life-year at $100,000 (Neumann, Cohen, and Weinstein 2014). We do not 
attempt to calculate the exact cost of replacing every car in the Los Angeles Basin with a 
ZEV over several decades. Nevertheless, we note that there are approximately 2.9 million 
cars in the Los Angeles Basin, and the value of applying the federal electric vehicle tax credit 
to all of these vehicles equates to $21.8 billion.20 In that sense, the local air pollution benefits 
alone may justify a significant fraction of the current electric vehicle credit, at least in dense 
urban areas.21 

 
VII.! Conclusion 

We find statistically and economically significant effects of downwind exposure to near-
roadway pollution on mortality amongst the elderly. Based on the findings from a rich 
atmospheric sciences literature on near-roadway pollution, we believe the most likely 
mechanism generating the observed effects is exposure to ultrafine particulates. We find no 
evidence of selection bias or residential sorting – both demographic characteristics and 
property values appear unrelated to downwind exposure – suggesting that households are 
generally unaware of the invisible pollution gradient. 

When comparing our estimates to estimates from the existing literature, the overall trend 
that emerges within the United States is that studies leveraging more plausibly exogenous 
pollution variation appear to find smaller elasticities of mortality with respect to pollution. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
20 Los Angeles County contained approximately 5.9 million registered automobiles in 2008 (California 
Department of Finance 2009), and the Los Angeles Basin contains approximately half the population of Los 
Angeles County. The federal electric vehicle tax credit is $7,500, so $7,500*2.9 million = $21.8 billion. 
21 Complicating the comparison is the fact that both the costs and benefits evolve dynamically. The benefits 
figure does not take into account that the “treated” population will include future cohorts not yet born, while 
the costs figure does not take into account that even low-maintenance electric vehicles will need replacement 
after two or three decades. The purpose of the comparison is thus not to conduct a precise benefit-cost analysis 
but to establish that the value of the life-expectancy gains and the electric vehicle credit are of the same order 
of magnitude. 
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The largest elasticities arise in cross-sectional studies such as Dockery et al. (1993) and Pope 
et al. (2002). Pope et al. (2009) employ a long-differencing strategy across cities and find 
elasticities that are smaller than the cross-sectional studies but larger than the ones reported 
here. 

Chen et al. (2013) find a much larger elasticity of life expectancy with respect to 
pollution – 20 to 30 times larger – than our estimates imply. While higher Chinese pollution 
levels will directly generate larger elasticities if the dose-response relationship remains 
constant, this factor alone cannot explain the full difference (since Chinese pollution levels 
are “only” six to nine times higher than in the US). The larger estimates in Chen et al. thus 
suggest potential convexity in the relationship between air pollution levels and mortality rates. 

Our estimates imply that near-highway pollution has economically significant impacts on 
life expectancy, with a value totaling tens of billions of dollars in the Los Angeles area alone. 
Given that over 70 percent of the US population lives in urbanized areas (US Census Bureau 
2015), the potential nationwide impacts of near-highway pollution are considerably larger. 
Our results thus suggest significant potential benefits to regulating UFP, which currently are 
not subject to any standard. 
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Figure 1: Downwind Exposure Area Example 

 
Figure 2: Analytic Sample Census Blocks 
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Mean Range N Mean Range N
3-yr mortality rate among 
75+ year olds from:
All causes 0.157 0.000–0.857 27,908 0.154 0.000–0.833 9,314

(0.178) (0.179)
Cardio-respiratory 0.103 0.000–0.800 27,908 0.102 0.000–0.800 9,314

(0.145) (0.147)
Cancer 0.029 0.000–0.667 27,908 0.029 0.000–0.667 9,314

(0.076) (0.077)
External causes 0.002 0.000–0.500 27,908 0.002 0.000–0.500 9,314

(0.019) (0.020)
Other variables
Frequency downwind 0.150 0.003–0.490 27,908 0.153 0.003–0.490 9,314
   of major highway (0.130) (0.130)
Frequency dead wind 0.423 0.101–0.660 27,908 0.420 0.101–0.660 9,314

(0.135) (0.131)
Population 164.8 1–6,375 27,908 166.9 1–2,215 9,314

(180.2) (167.9)
Population aged 75+ 8.5 1–542 27,908 8.0 1–542 9,314

(15.1) (15.3)
Distance to highway 1,182 0–7,666 27,908 313 50–600 9,314
   (meters) (1,035) (158)
Share owner occupied 0.548 0–1 27,869 0.521 0–1 9,301

(0.323) (0.317)
Share black 0.143 0–1 27,908 0.118 0–1 9,314

(0.240) (0.202)

Table 1:  Summary statistics

Notes: The observation is the Census Block. Parentheses contain standard deviations.
The analytic sample is limited to Census Blocks with centroids between 50 and 600
meters from major highways.

Full sample Analytic sample



Dependent Variable:

(1) (2) (3) (4) (5) (6) (7) (8)

Frequency downwind 0.036 0.062 0.019 0.042 0.002 0.006 0.007 0.005
(0.016) (0.017) (0.013) (0.014) (0.003) (0.004) (0.007) (0.009)

Highway segment FE Yes Yes Yes Yes

Dependent variable mean 0.154 0.154 0.102 0.102 0.006 0.006 0.022 0.022

N 9,314 9,314 9,314 9,314 9,314 9,314 9,314 9,314
Notes: Each column represents a separate regression of the dependent variable on the percent of time spent
downwind of a major highway. The observation is the Census Block, and the sample is limited to Census
Blocks with centroids between 50 and 600 meters from major highways. Parentheses contain spatial
standard errors with a 3,200 meter bandwidth. All regressions include controls for distance to highway and
weather station fixed effects. Regressions without highway segment fixed effects include quintics in latitude
and longitude and first and second order interactions between latitude and longitude. Regressions with
highway segment fixed effects include highway segments fixed effects with an 800 meter bandwidth.

Table 2: OLS Effects of Frequency Downwind of Highways
3-year mortality rate for 75+ year olds from:

All causes Cardio-respiratory Lung cancer Other cancer



Dependent Variable:

(1) (2)

Highway northeast 0.005 -0.025
(0.010) (0.009)

Highway east 0.031 -0.023
(0.016) (0.023)

Highway southeast 0.070 0.054
(0.014) (0.012)

Highway south 0.108 0.109
(0.013) (0.012)

Highway southwest 0.222 0.195
(0.026) (0.024)

Highway west 0.243 0.188
(0.036) (0.034)

Highway northwest 0.028 0.025
(0.028) (0.022)

F-statistic 30.6 26.6

Partial R 2 0.552 0.656

Highway segment FE Yes

N 9,314 9,314
Notes:  Each column represents a separate regression of the 
frequency downwind on seven indicators summarzing
bearing to the nearest major highway. The omitted
category is north. The observation is the Census Block,
and the sample is limited to Census Blocks with centroids
between 50 and 600 meters from major highways.
Parentheses contain standard errors clustered on a spatial
grid with a width of 0.05 degrees longitude or latitude in
each cell. All regressions include controls for distance to
highway and weather station fixed effects. Regressions
without highway segment fixed effects include quintics in
latitude and longitude and first and second order
interactions between latitude and longitude. Regressions
with highway segment fixed effects include highway
segments fixed effects with an 800 meter bandwidth. The
F-statistic tests the hypothesis that all seven bearing

indicators equal zero; the partial R 2 is the R 2 generated by
these seven bearing indicators after partialing out controls.

Frequency downwind

Table 3: First-stage relationship between bearing to 
highway and frequency downwind



Dependent Variable:

(1) (2) (3) (4) (5) (6) (7) (8)

Frequency downwind 0.064 0.068 0.033 0.036 0.003 0.008 0.014 0.015
(0.022) (0.023) (0.017) (0.018) (0.004) (0.004) (0.009) (0.010)

Highway segment FE Yes Yes Yes Yes

Dependent variable mean 0.154 0.154 0.102 0.102 0.006 0.006 0.022 0.022

Over-ID test p -value 0.13 0.12 0.49 0.24 0.29 0.59 0.32 0.48

N 9,314 9,314 9,314 9,314 9,314 9,314 9,314 9,314
Notes: Each column represents a separate 2SLS regression of the dependent variable on the instrumented
percent of time spent downwind of a major highway. The observation is the Census Block, and the sample
is limited to Census Blocks with centroids between 50 and 600 meters from major highways. The
instruments are a set of seven indicator variables summarizing bearing to the nearest major highway.
Parentheses contain spatial standard errors with a 3,200 meter bandwidth. All regressions include controls
for distance to highway and weather station fixed effects. Regressions without highway segment fixed
effects include quintics in latitude and longitude and first and second order interactions between latitude
and longitude. Regressions with highway segment fixed effects include highway segments fixed effects
with an 800 meter bandwidth. Overidentification test statistics are for Sargan’s chi-squared test.

Table 4: 2SLS Effects of Frequency Downwind of Highways
3-year mortality rate for 75+ year olds from:

All causes Cardio-respiratory Lung cancer Other cancer



Dependent Variable: N

(1) (2) (3) (4)
Estimation method: OLS 2SLS OLS 2SLS
Baseline estimate 0.062 0.068 0.042 0.036 9,314

(0.017) (0.023) (0.014) (0.018)
Modification:
Cosine-weighted downwind 0.058 0.059 0.037 0.033 9,314
   frequency (0.017) (0.021) (0.014) (0.017)

400 m hwy segment FE 0.072 0.072 0.052 0.039 9,314
(0.018) (0.024) (0.015) (0.020)

1,600 m hwy segment FE 0.054 0.065 0.036 0.037 9,314
(0.017) (0.022) (0.014) (0.017)

25 m “donut” around hwy 0.053 0.054 0.033 0.024 9,601
(0.018) (0.024) (0.014) (0.019)

100 m “donut” around hwy 0.077 0.083 0.047 0.044 8,461
(0.021) (0.026) (0.016) (0.020)

Within 400 m of hwy 0.048 0.057 0.033 0.034 6,240
(0.020) (0.027) (0.017) (0.022)

Within 800 m of hwy 0.064 0.062 0.036 0.026 12,230
(0.015) (0.020) (0.012) (0.016)

Notes: Each cell represents a separate regression of the dependent variable on
the percent of time spent downwind of a major highway (OLS) or instrumented
percent of time spent downwind of a major highway (2SLS). The observation is
the Census Block, and the sample is limited to Census Blocks with centroids
between a minimum of 25/50/100 meters (50 m is the baseline) and a maximum
of 400/600/800 meters from major highways (600 m is the baseline). The
instruments are a set of seven indicator variables summarizing bearing to the
nearest major highway. Parentheses contain spatial standard errors with a 3,200
meter bandwidth. All regressions include controls for distance to highway,
weather station fixed effects, and highway segment fixed effects.

3-year mortality rate for 75+ year olds from:

Table 5: Robustness of Effects to Different Spatial Parameters

All causes Cardio-respiratory



Dependent Variable:

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Estimation method: OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS

Frequency downwind 0.040 0.050 0.030 0.033 0.026 0.032 0.024 0.020 0.005 0.009 0.003 0.002
(0.015) (0.020) (0.011) (0.016) (0.011) (0.016) (0.009) (0.012) (0.006) (0.009) (0.005) (0.006)

Dependent variable mean 0.135 0.135 0.086 0.086 0.115 0.115 0.071 0.071 0.062 0.062 0.036 0.036

N 10,096 10,096 10,096 10,096 10,512 10,512 10,512 10,512 11,040 11,040 11,040 11,040

3-yr mortality rate for 50+ year olds from:
All causes Cardio-respiratory

Table 6: Effects of Frequency Downwind for Different Age Groups

Notes: Each cell represents a separate regression of the dependent variable on the percent of time spent downwind of a major highway (OLS) or instrumented
percent of time spent downwind of a major highway (2SLS). The observation is the Census Block, and the sample is limited to Census Blocks with centroids between
a minimum of 50 meters and a maximum of 600 meters from major highways. The instruments are a set of seven indicator variables summarizing bearing to the
nearest major highway. Parentheses contain spatial standard errors with a 3,200 meter bandwidth. All regressions include controls for distance to highway, weather
station fixed effects, and 800 meter highway segment fixed effects.

3-yr mortality rate for 65+ year olds from:
All causes Cardio-respiratory

3-yr mortality rate for 70+ year olds from:
All causes Cardio-respiratory



Dependent Variable:

(1) (2) (3) (4) (5) (6) (7) (8)
Estimation method: OLS 2SLS OLS 2SLS OLS 2SLS OLS 2SLS

Frequency downwind 0.081 0.090 -0.009 -0.035 -0.0001 -0.0004 -0.0013 -0.0020
(0.071) (0.074) (0.028) (0.036) (0.0017) (0.0023) (0.0009) (0.0014)

Dependent variable mean 0.521 0.521 0.118 0.118 0.0021 0.0021 0.0013 0.0013

N 9,301 9,301 9,314 9,314 9,314 9,314 9,314 9,314
Notes: Each cell represents a separate regression of the dependent variable on the percent of time spent downwind
of a major highway (OLS) or instrumented percent of time spent downwind of a major highway (2SLS). The
observation is the Census Block, and the sample is limited to Census Blocks with centroids between a minimum of
50 meters and a maximum of 600 meters from major highways. The instruments are a set of seven indicator
variables summarizing bearing to the nearest major highway. Parentheses contain spatial standard errors with a
3,200 meter bandwidth. All regressions include controls for distance to highway, weather station fixed effects, and
800 meter highway segment fixed effects.

Table 7: Effects of Frequency Downwind on Placebo Measures

External-cause mortality rate among:
Share owner occupied Share African-American 75+ year olds All residents



Dependent Variable:

(1) (2) (3) (4) (5) (6)
Estimation method: OLS 2SLS OLS 2SLS OLS 2SLS

Panel A: 1990-2000 sales
Frequency downwind 0.017 -0.113 -0.037 -0.140 208.5 124.7

(0.078) (0.173) (0.049) (0.094) (186.2) (351.3)

Control for log sq ft and date sold Yes Yes

Dependent variable mean 11.961 11.961 11.961 11.961 1,311.2 1,311.2

N 21,456 21,456 21,456 21,456 21,456 21,456

Panel B: 2006-2010 sales
Frequency downwind 0.017 -0.026 -0.069 -0.091 162.3 97.1

(0.094) (0.103) (0.058) (0.065) (138.5) (144.5)

Control for log sq ft and date sold Yes Yes

Dependent variable mean 13.029 13.029 13.029 13.029 1,385.1 1,385.1

N 21,713 21,713 21,713 21,713 21,713 21,713
Notes: Each cell represents a separate regression of the dependent variable on the percent
of time spent downwind of a major highway (OLS) or instrumented percent of time spent
downwind of a major highway (2SLS). The observation is a housing sale, and the sample is
limited to sales in Census Blocks with centroids between a minimum of 50 meters and a
maximum of 600 meters from major highways. The instruments are a set of seven indicator
variables summarizing bearing to the nearest major highway. Parentheses contain spatial
standard errors with a 3,200 meter bandwidth. All regressions include controls for distance
to highway, weather station fixed effects, and 800 meter highway segment fixed effects.
Regressions in Columns (3) and (4) include controls for log square footage and a cubic in
time of sale (measured at the daily frequency).

Table 8: Effects of Frequency Downwind on Property Values

Square feetLog price



Dependent Variable:

(1) (2)

Frequency downwind 70.5 61.1
(2.1) (1.6)

Day-of-sample FE Yes

Dependent variable mean 27.4 27.4

N 400,218 400,218
Notes: Each column represents a separate OLS
regression of the dependent variable on the percent
of time spent downwind of a major highway. The
observation is the hour-by-site. Parentheses contain
standard errors clustered by month of sample.

Table 9: Relationship Between NO2 and Frequency Downwind of Highways

NO2 Concentration (ppb)


