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1 Introduction

The Diamond-Mortensen-Pissarides (DMP) model of search and matching offers an intriguing
theory of labor market fluctuations based on the job creation incentives of employers (Diamond
(1982), Pissarides (1985), Mortensen and Pissarides (1994), Pissarides (2000)). When the contri-
bution of a new hire to firm value decreases, employers reduce investment in hiring, decreasing the
number of vacancies and, in turn, increasing unemployment. Due to the glut of jobseekers in the
labor market, vacancies become easier for employers to fill. Therefore, unemployment stabilizes
at a higher level and the number of vacancies at a lower level. That is, labor market tightness
(defined as the ratio of vacancies to unemployment) decreases until the payoff to hiring changes
again.

While the mechanism of the DMP model is intuitively promising, there is a fundamental
question concerning the model: what is the driving force behind the cyclical behavior of job
creation incentives? In the canonical DMP model and numerous successor models, the driving
force is labor productivity. However, explaining labor market volatility based on productivity
fluctuations is difficult, because unemployment and vacancies are much more volatile than labor
productivity (Shimer (2005)). Furthermore, unemployment does not track the movements of labor
productivity, as is particularly apparent in the last three recessions. Rather, these recent data
suggest a link between unemployment and stock market valuations (Hall (2014)).

In this paper, we make use of the DMP mechanism to explain unemployment, as in the prior
literature. However, rather than linking labor market tightness to productivity itself, we propose
an equilibrium model in which fluctuations in labor market tightness arise from a small and time-
varying probability of an economic disaster. We characterize recessions as periods when disaster
risk is high, implying both greater risk in productivity and lower expected growth rates. Thus
even if labor productivity remains constant, disaster fears lower the job-creation incentives of
firms. The labor market equilibrium shifts to a lower point on the vacancy-unemployment locus
(the Beveridge curve), with higher unemployment and lower vacancy openings. At the same time,

stock market valuations decline.



Our model generates a high volatility in unemployment and vacancies, along with a strong
negative correlation between the two. This is consistent with U.S. data. We calibrate wage
dynamics to match the behavior of the labor share in the data and find that matching the observed
low response of wages to labor market conditions is crucial for both labor market volatility and
realistic behavior of financial markets. Furthermore, the search and matching friction in the
labor market and time-varying disaster risk result in a realistic equity premium and stock return
volatility. Because the labor market and the stock market are driven by the same force, the price of
the aggregate stock market and labor market tightness are highly correlated, while the correlation
between labor productivity and tightness is realistically low.

Our paper is related to three strands of literature. First, since Shimer (2005) showed that
the DMP model with standard parameter values implies small movements in unemployment and
vacancies, a strand of literature has further developed the model to generate large responses of
unemployment to aggregate shocks. In these papers, the aggregate shock driving the labor market
is labor productivity. Hagedorn and Manovskii (2008) argue that a calibration of the model with
low bargaining power of workers and a flow value of unemployment close to labor productivity
can reconcile unemployment volatility in the DMP model with the data. Other papers suggest
alternatives to the Nash bargaining assumption in the canonical DMP model to render wages less
responsive to productivity shocks so that they do not rapidly adjust downward following a negative
shock, leading to little destruction of job creation incentives (Hall (2005), Hall and Milgrom (2008),
Gertler and Trigari (2009)). Our paper departs from these in that we do not rely on time-varying
labor market productivity as a driver of labor market tightness, which leads to a counterfactually
high correlation between these variables. Furthermore, we also derive implications for the stock
market, and explain the equity premium and volatility puzzles.

Second, the present work relates to ones that embed the DMP model into the real business cycle
framework, with a representative risk averse household that makes investment and consumption
decisions. In the standard real business cycle (RBC) model (Kydland and Prescott (1982)),
employment is driven by the marginal rate of substitution between consumption and leisure, and,

because the labor market is frictionless, no vacancies go unfilled. Merz (1995) and Andolfatto



(1996) observe that this model has counterfactual predictions for the correlation of productivity
and employment, and build models that incorporate RBC features and search frictions in the
labor market. These models capture the lead-lag relation between employment and productivity
while having more realistic implications for wages and unemployment compared to the baseline
RBC model. In this paper, we also document the lead-lag relation between productivity and
employment in the period that this literature analyzes (1959 - 1988). However, our empirical
analysis shows that this lead-lag relation is absent in more recent data. These papers do not study
asset pricing implications.

Third, our paper is related to the literature on asset prices in dynamic production economies.
In these models, as in the RBC framework described above, consumption and dividend dynamics
are endogenously determined by the optimal equilibrium policy of a representative firm. This
contrasts with the more standard asset-pricing approach of assuming an endowment economy, in
which consumption and dividends are taken as given. The main difficulty in production economies
is endogenous consumption smoothing. While higher risk aversion raises the equity premium in an
endowment economy, this leads to even smoother consumption in production economies resulting
in very little fluctuation in marginal utility. One way of overcoming this problem is to assume
alternative preferences, for example, habit formation as in Jermann (1998), though these can lead
to highly volatile riskfree rates. Another approach is to allow for rare disasters. Gourio (2012)
studies the implications of time-varying disaster risk modeled as large drops in productivity and
destruction of physical capital in a business cycle model with recursive preferences and capital
adjustment costs. Gourio’s model can explain the observed co-movement between investment
and risk premia. However, unlevered equity returns have little volatility, and thus the premium
on unlevered equity is low. This model can be reconciled with the observed equity premium by
adding financial leverage, but the leverage ratio must be high in comparison with the data. Also,
as in RBC models with frictionless labor markets, Gourio’s model does not explain unemployment.
Petrosky-Nadeau, Zhang, and Kuehn (2013) build a model where rare disasters arise endogenously
through a series of negative productivity realizations. Like our paper, they make use of the DMP

model, but with a very different aim and implementation. Their paper incorporates a calibration



of Nash-bargained wages similar to Hagedorn and Manovskii (2008), leading to wages that are
high and rigid. Moreover, their specification of marginal vacancy opening costs includes a fixed
component, implying that it costs more to post a vacancy when labor conditions are slack and
thus when output is low. Finally, they assume that workers separate from their jobs at a rate
that is high compared with the data. The combination of a high separation rate, fixed marginal
costs of vacancy openings and high and inelastic wages amplifies negative shocks to productivity
and produces a negatively skewed output and consumption distribution. Like other DMP-based
models described above, their model implies that labor market tightness is driven by productivity.
Furthermore, while their model can match the equity premium, the fact that their simulations
contain consumption disasters make it unclear whether the model can match the high stock market
volatility and low consumption volatility that characterize the U.S. postwar data.

The paper is organized as follows. Section 2 provides empirical evidence about the relation
between the labor market, labor productivity and the stock market. Section 3 presents the model
and illustrates the mechanism in a simplified version. Section 4 discusses the quantitative results

from the benchmark calibration and alternative calibrations. Section 5 concludes.

2 Labor Market, Labor Productivity and Stock Market
Valuations

In the literature succeeding the canonical DMP model, labor productivity serves as the driving
force behind volatility in unemployment and vacancies. Recent empirical work, however, has
challenged this approach on the grounds that labor productivity is too stable compared with un-
employment and vacancies, and that the variables are at best weakly correlated. In this section we
summarize evidence on the interplay between unemployment, productivity and the stock market.

In Figure 1, we plot the time series of labor productivity Z and of the vacancy-unemployment

ratio V/U, the variable that summarizes the behavior of the labor market in the DMP model.!

LAll variables are measured in real terms. See Appendix F for a description of the data.



Both variables are shown as log deviations from an HP trend.? Figure 1 shows the disconnect
between the volatility of V/U and of productivity: labor productivity Z never deviates by more
than 5 percent from trend, while, in contrast, V/U is highly volatile and deviates up to a full log
point from trend. The lack of volatility in productivity as compared with labor market tightness
is one challenge faced by models seeking to base unemployment on fluctuations in productivity.

Another challenge arises from the co-movement in these variables. Figure 1 shows that tightness
and productivity did track each other in the recessions of the early 1960s and 1980s. However, this
contemporaneous correlation disappears in the later part of the sample. A striking example is the
aftermath of the Great Recession, which simultaneously features a small productivity boom along
with a labor-market collapse. Overall, the contemporaneous correlation between the variables
is 0.10 as measured over the full sample, 0.47 until 1985 and -0.36 afterwards. There is some
evidence that Z leads V/U; the maximum correlation between V/U and lagged Z occurs with a
lag length of one year. However, this relation also does not persist in the second subsample; while
the correlation over the full sample is 0.31, it is 0.62 in the subsample before 1985 and -0.09 after
1985.

How does the labor market relate to the stock market? We will focus on the ratio of stock
market valuation P to labor productivity (output per person in the non-farm business sector) Z
because P/Z has a clean counterpart in our model. P/Z closely tracks Robert Shiller’s cyclically
adjusted price-earnings ratio (P/F), as shown in Figure 2. The correlation between the quarterly
observations of these series is 0.97 for the period from 1951 to 2013.

Figure 3 shows a consistently positive correlation between labor market tightness V/U and val-
uation P/Z. There is no obvious lead-lag relation between V/U and P/Z. The highest correlation
is between V/U and lagged P/Z by 2 quarters with 0.57, and the contemporaneous correlation is
0.47. In the period from 1986 to 2013, the contemporaneous correlation of 0.71 is the maximum
among correlations with leads and lags. Moreover, like V/U, P/Z is volatile, with deviations up

to 0.5 log points below trend. Figure 4 shows that vacancies V' follow a similar pattern to V/U.

2Following Shimer (2005) we use a low-frequency HP filter with smoothing parameter 10° throughout to capture
business cycle fluctuations. All results are robust to using an HP filter with smoothing parameter 1,600.



This evidence motivates a united mechanism of job creation incentives and stock market val-
uations. In recessions, even if productivity does not change, future productivity expectations are
low and uncertainty is high. This leads to lower stock market valuations and a lower present value
of a new hire, increasing unemployment. This is the key mechanism of the model we present in

Section 3.

3 Model

In Section 3.1 we review the DMP model of the labor market with search frictions. In Section 3.2,
we use the DMP model but minimal additional assumptions to demonstrate a link between equity
market valuations and labor market quantities. We confirm that this link holds in the data. In
Section 3.3 we present a general equilibrium model that explains labor market and stock market
volatility in terms of time-varying disaster risk (we will examine the quantitative implications
of this model in Section 4). When the disaster risk is constant, the solution has a closed-form
solution that gives intuition for how disaster risk affects labor market quantities and prices in

financial markets, as we show in Section 3.4.

3.1 Search frictions

The labor market is characterized by the DMP model of search and matching. The representative
firm posts a number of job vacancies V; > 0. The hiring flow is determined according to the
matching function m(NV;, V;), where N; is employment in the economy and lies between 0 and 1.

We assume that the matching function takes the following Cobb-Douglas form:
m(Ny, Vi) = (1 — Nt)nvtl_na (1)

where ¢ is matching efficiency and 7 is the unemployment elasticity of the hiring flow. As a result,

the aggregate law of motion for employment is given by

Nt+1 = (1 — S)Nt + m(Nt, ‘/t); (2)



where s is the separation rate.® Define labor market tightness as follows:

Vi

0, = L.
t U,

The unemployment rate in the economy is given by U; = 1 — N,. Thus the probability of finding
a job for an unemployed worker is m(N, V;)/U, = €6, ". Accordingly, we define the job-finding
rate f(60;) to be

F(6:) = 6,7 (3)

Analogously, the probability of filling a vacancy posted by the representative firm is m(Ny, V;)/V; =

€6, which corresponds to the vacancy-filling rate ¢(6;) in the economy:
q(0y) = €0, (4)

The functional form of f and ¢ provide useful insights about the mechanism of the DMP model.
The job-finding rate is increasing, and the vacancy-filling rate is decreasing in the vacancy-
unemployment ratio. In times of high labor market tightness, namely, when the vacancy rate
is high and/or the unemployment rate is low, the probability of finding a job per unit time in-
creases, whereas filling a vacancy takes more time.

Finally, the representative firm incurs costs x; per vacancy opening. As a result, aggregate

investment in hiring is x;V;.

3.2 Equity Valuation and the Labor Market

In this section we consider a partial-equilibrium model of stock market valuation, using the frame-
work discussed in Section 3.1 but with minimal additional assumptions. We show that a link
between the stock market and the labor market prevails under these very general conditions. Let

M, ., denote the representative household’s stochastic discount factor.* Consider a representative

3The assumption of V; > 0 implies that the maximum drop in employment level is s.

4We use the representative agent framework throughout the model. Appendix A shows the properties of a
market, populated by households with identical preferences and firms facing the same aggregate labor market, that
aggregate to our representative agent model.



firm which produces output given by

S/;f = ZtNt7 (5)

where Z; is the non-negative level of aggregate labor productivity. Assume that labor productivity

follows the process

log Zy11 =log Zy + p + w41, (6)

where, for now, we leave z,,; unspecified; it can be any stationary process. Let Wy = W (Z;, Ny, V)
denote the aggregate wage rate. The firm pays out dividends D;, which is what remains from

output after paying wages and investing in hiring:
Dt = ZtNt — WtNt — '%t‘/t- (7)
The firm then maximizes the present value of current and future dividends

max 1D Z My Dy~ (8)

{Vitr,Ni4r41}22, —0

subject to

Ny = (1 — S)Nt + q(ﬁt)Vt, (9)

where ¢(6;) is given by (4). The firm takes 6, and W; as given in solving (8). The economy is

therefore subject to a congestion externality. By posting more vacancies, firms raise the aggregate

V;, therefore increasing #; and lowering the probability that any one firm will be able to hire.
The following result establishes a general relation between the stock market and the labor

market.

Theorem 1. Assume the production function (5) and that the firm solves (8). Then the ex-

dividend value of the firm is given by
—— Ny, (10)

and the equity return equals

o) _
Rysy = (1 S)q(gtH) + Zia Wt+1. (1)

Kt

q(6:)




Furthermore, if ky = kZ; for fized k, then

Pt K
— = ——N;,1. 12
Zy q(0:) o (12)

See Appendix C for a proof. Note that the assumption k; = kKZ; guarantees the existence of a
balanced growth path, given our assumption of a nonstationary component to productivity in (6).
To understand (10), it is helpful to introduce notation that we use in the proof in Appendix C. Let
l; denote the Lagrange multiplier on the firm’s hiring constraint (9). We can therefore think of [;
as the value of a worker inside the firm at time ¢ + 1. In deciding how many vacancies to post at
time ¢, the firm equates the marginal benefit of an additional worker with marginal cost. Because
the probability of filling a vacancy with a worker is ¢(6;) (see Section 3.1), the marginal benefit is
l:q(0;) while the marginal cost is simply the cost of opening a vacancy, ;. Thus a condition for
optimality is:

ke = 11q(0;). (13)

It follows that l; = k;/q(0;), and furthermore, that the value of the firm equals the number of
workers employed multiplied by the value of each worker.

Equation 11 has a related interpretation. The ¢+ 1 return on the investment of hiring a worker
is the value of the worker employed in the firm at time ¢ + 2 (multiplied by the probability that
the worker remains with the firm), plus productivity minus the wage, all divided by the value of

the worker at time ¢ + 1. Note that the previous discussion implies that the value of the worker

Kt

q(6:)”

Equation 12 describes a relation that we can evaluate empirically. We take the historical

employed at t + 1 is

time series of the price-productivity ratio and of N;;;, which is one minus the unemployment
rate. Given standard parameters for the matching function which we discuss further below, this
implies, by way of (12), a time series for the vacancy-unemployment ratio §;. Figure 5 shows that

the resulting ratio of vacancies to unemployment lines up closely with its counterpart in the data.



3.3 General equilibrium

In this section, we extend our previous results to general equilibrium. Theorem 1 still holds, but
the general equilibrium model allows us to model the underlying source of employment and stock

price fluctuations.

3.3.1 The Representative Household

Following Merz (1995) and Gertler and Trigari (2009), we assume that the representative household
is a continuum of members who provide one another with perfect consumption insurance.” We
normalize the size of the labor force to one.® The household maximizes utility over consumption,
characterized by the recursive utility function introduced by Kreps and Porteus (1978) and Epstein
and Zin (1989):

h=07 1 (E {Jtiﬂ)m] - (14)

where [ is the time discount factor, 7 is relative risk aversion and ) is often interpreted as elasticity
of intertemporal substitution (EIS). In case of v = 1/1, recursive preferences collapse to power
utility. The recursive utility function implies that the stochastic discount factor takes the following

form:

<=
<=
|
2

Jis1

B [J557] =

Ct+1>

Mt+1 :5( Ct

(15)

3.3.2 Wages

The canonical DMP model assumes that wages are determined by Nash bargaining between the
employer and the jobseeker. Both parties observe the surplus of job creation and the bargaining

power of the jobseeker is equal to the fraction of the surplus the jobseeker receives. Pissarides

5Appendix A illustrates the implications of the perfect consumption insurance assumption in an economy pop-
ulated by agents with identical preferences.

6This assumption implies that our model focuses on the transition between employment and unemployment
rather than between in and out of labor force.
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(2000) shows that the Nash-bargained wage, W2, is given by
WY = (1 - B)b + B(Z, + r40y), (16)

where 0 < B < 1 is worker’s bargaining power and b, is the flow value of unemployment.” The
worker threatens the employer to leave the wage bargain and continue to search while receiving
the flow value of unemployment. The Nash-bargained wage can be interpreted as the weighted
average of two components: the opportunity cost of employment and a term that represents the
contribution of the worker to the firm’s profits. If the bargaining power of the worker is high,
the firm has to pay a higher fraction of the output the worker produces as wage, as well as the
foregone costs from not having to hire.

Furthermore, the worker receives a higher fraction of the foregone costs by the firm by employ-
ing the worker which prevents incurring vacancy costs. The compensation of the worker due to
foregone vacancy costs is higher if labor market tightness is high, making it easier for the worker
to find a job and more difficult for the firm to fill the vacancy in case the worker leaves the firm.

Although the Nash-bargained wage is a convenient formulation from a modeling perspective,
it implies wages that are unrealistically responsive to changes in labor market tightness.® For this
reason, we use a wage rule introduced by Hall (2005) that insulates wages from changes in market
conditions:

W, =vWYN + (1 —v)W/, (17)

where

W! = (1— B)b, + B(Z; + k:0). (18)

The parameter v controls the degree of tightness insulation. With v = 1, we are back in the Nash
bargaining case. With v = 0, wages do not respond to labor market tightness. The resulting wage
remains sensitive to productivity but loses some of its sensitivity to tightness. Furthermore, this
formulation allows a direct comparison between versions of the model with and without tightness

insulated wages. The parameters B, x and v jointly determine the dynamics of wages given the

7Appendix B shows that the canonical DMP wage equation holds in our model.
8See Section 4.5 for details.
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dynamics of productivity and labor market tightness. We will calibrate these parameters to match
the behavior of the labor share in postwar U.S. data.

An interesting question related to wage formulation in the search and matching literature
is the interpretation of the flow value of unemployment, b;,. Workers’ bargaining power in the
Nash-bargained wage formulation comes from an alternative benefit they will receive when being
unemployed instead of working for the firm and receiving wages. Therefore, one way to interpret
b; is as the sum of foregone public benefits that the worker would receive in unemployment status.
This interpretation suggests that b, is countercyclical. However, Chodorow-Reich and Karabar-
bounis (2015) use detailed microeconomic data and find that the foregone value of non-working
time is a large and procyclical component of the flow value of unemployment. Moreover, they find
that the procyclical component accounts for most of the fluctuations in b; resulting in a positive
and high elasticity of b; with respect to marginal product of employment. Motivated by this evi-
dence, we assume that the flow value of unemployment is given by b, = bZ;, which also implies a

convenient formulation balanced-growth path.

3.3.3 Technology and the Representative Firm

The representative firm produces output Y; with technology Z;N; given in (5). In normal times,
log Z; follows a random walk with drift. In every period, there is a small and time-varying proba-

bility of a disaster. Thus,
IOg Zt+1 = lOg Zt + 1% + €41 + dt+1Ct+1, (19)
where ¢, 4 N (0,02%). The parameter dy,; is the disaster indicator:

1 with probability A\
dt+1 =
0 with probability 1 — A,

where )\; is the conditional disaster probability. Disaster probability dynamics are given by

log A = px log Ay + (1 — py) log A + ¢}, (20)

12



where € N (0,0%).” Furthermore, ¢ is the size of the downward jump in productivity, has a
time-invariant distribution and takes only negative values. Disaster probability, disaster size and

productivity shocks are independent.

3.3.4 Equilibrium

In equilibrium, the representative household holds all equity shares of the representative firm. The
government bill is in zero net supply. The representative household consumes the output Z; NV,
net of investment in hiring x;V;, and the value of non-market activity b;(1 — IV;) achieved by the
unemployed members:

Ct == ZtNt + bt(l - Nt) — :‘it‘/t. (21)

Note that consumption includes firm wages and dividends; the definition of dividends in (7) shows
that the sum of wages and dividends amounts to Z;N; — k;V;. The household also consumes the
flow value of unemployment. This implies that we are treating this flow value primarily as home
production as opposed to unemployment benefits (which would be a transfer that would net to
zero), consistent with the results of Chodorow-Reich and Karabarbounis (2015) as discussed in
Section 3.3.2. Changing to the alternative assumption that these benefits net to zero, however, does
not impact our results. To ensure that our model-data comparison is valid, when quantitatively
assessing the model we report the model-implied dynamics of consumption from dividends and
wages, namely, Z;N; — k;V;, as this is what is measured in consumption data.

The proportionality assumptions on vacancy costs x; and the flow value of unemployment b,

in productivity Z; imply that we can write:
Ct = ZtNt + bZt(]_ — Nt) - liZt‘/;g. (22)

Therefore, we can define consumption normalized by productivity, ¢; = %, as

Ct = Nt + b(l - Nt) — KJVZ. (23)

9We use a finite-state Markov process to approximate this process in our numerical calibration with all nodes
smaller than one.
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A disaster realization at time ¢ results in the multiplication of aggregate consumption, output and
investment in hiring by e%. The decrease in output, consumption and investment is permanent.
Employment level does not change on impact.

The model has three state variables: disaster probability \; and productivity Z; are the exoge-
nous state variables, and employment level /V; is the endogenous state variable. The homogeneity

in consumption implies that we can normalize the household’s value function by productivity:'°
J(Zt7)\t7Nt) = th<)\t7Nt)‘ (24)

The normalized value function is given by

1

1-1 =
j()\t,Nt) = | vy 3 (Et [6(1—7)(#+6t+1+dt+1§5+1)j(AH_I7 Nt+1)1_7D -y 7 (25)

which implies

1
1 P
>

-3 - €t+1 t+16t+1) 4 - -
JOGN) T = T 4B (Et [6(1 Dickeentdinti) i, Nig)! VD 1 (26)

This normalization makes the optimization problem of the firm stationary. Moreover, the
normalized value function is convenient to study the analytical properties of a version of the

model with constant disaster probability as illustrated in the next section.

3.4 Comparative Statics in a Model with Constant Disaster Probabil-
ity

Before exploring the quantitative implications of our full model in Section 4, we consider the

simplified case of constant disaster probability. We show that, provided that the elasticity of

intermtemporal subtitution is greater than 1, the economy is isomorphic to one without disasters

but where the representative agent invests less in hiring. We show that, with an EIS greater than

1, stock prices are decreasing, and unemployment increasing as a function of disaster probability.

We give intuition for these results.

10See Appendix A.1 for the homogeneity of the value function.
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To derive closed-form solutions, we replace the random variable d;;1(;11 with a compound
Poisson process with intensity A. At our parameter values, the difference between the probability
of a disaster A and the intensity ) is negligible, and we continue to refer to A as the disaster
probability.!? We begin by demonstrating an isomorphism between an economy with disasters

and one without but with a different time-discount factor (5.2

Theorem 2. Assume that disaster risk is constant. The value function in a model with disasters
is the same as the value function in a model without disasters but with a different time-discount

factor. That is, the normalized value function (the value function divided by productivity) solves

1

+ B()‘) (Et [6(1_7)(“+€t+1)j(;\7 -]\']7t—i-1)1_7])ﬁ ) (27)

&=

. _1 1
j()‘7Nt>1 V=0

with the time-discount factor 3(5\) defined by

log B(\) = log 8+

: _z (B [0 1) X, (28)

Moreover, 3(5\) is decreasing in A if and only if ¥ > 1.

Appendix D.2 provides a proof. Note that (27) recursively defines the normalized value function
when there are no disasters. Theorem 2 shows that an economy with disasters is equivalent to
one without, but with a less patient agent when ¢) > 1 and a more patient agent when ¢ < 1. As
these results suggest, the change to the time-discount factor due to disasters reflects a trade-off
between an income and a substitution effect. On the one hand, the presence of disasters lead the
agent to want to shift consumption to the future (the income effect). But the mechanism that the
agent has to shift consumption, namely, investing in hiring, becomes less attractive because there
is a greater chance that the workers will not be productive (the substitution effect). When ¢ > 1,
the substitution effect dominates, and the agent, in effect, becomes less patient.

We can also see the effect of the probability of disaster in rates of return.

11See Appendix D.1 for properties of the compound Poisson process.
12 An analogous isomorphism is present in the models of Gourio (2012) and Gabaix (2011).
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Theorem 3. Assume that disaster risk is constant. The log risk-free rate is given by

1 1 1 - i
log Ry = —log 54_@ (u + 203) —35 <’y + Z}) o2+ (If_fy]E {6(14)( _ 1} _E {ewc _ 1}) X (29)

The riskfree rate is decreasing in \.

See Appendix D.3 for a proof. The risk of a rare disaster increases agents’ desire to save, which
drives down the riskfree rate. In contrast to Theorem 2, this result holds regardless of the value
of ¢. The adjustment to the riskfree rate due to disasters is not equivalent to the adjustment to

the time-discount factor.

Theorem 4. Assume that disaster risk is constant. The equity premium is given by

log (E[j;]> —o? = RE [(e — 1) (£ 1)) (30)

The equity premium is increasing in .

Appendix D.4 provides a proof. The equity premium has two terms. The first represents
the normal-times risk in production and is present without disasters. Given the low volatility
in productivity and consumption, this first term is very small. The second term represents the
effect of rare disasters. A rare disaster causes an increase in marginal utility, represented by the
term e ¢ — 1, at the same time as it causes a decrease in the value of the representative firm, as
represented by e¢ — 1. Because the representative firm declines in value at exactly the wrong time,
its equity carries a risk premium. This also implies that the equity premium is unambiguously
increasing in the probability of a disaster.

These rates of return can be connected back to the effective time-discount factor F() as well
as to the hiring decision of the firm. We connect these concepts through a quantity analogous
to the dividend-price ratio in the literature on endowment economies. Section 3.2 highlights the
importance of the valuation measure l; = x;/q(#), which is the value of a worker employed inside

a firm (see Theorem 1). We can define the “dividend” or payout of the worker as
Di = Zt - Wt — Slt.
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Note that Z; — W, is the output of the worker minus the cost, and sl; is the probability that the
worker will leave, multiplied by the cost of replacing the worker. It is convenient to define the
notation

h()\) = log (1 + %) : (31)

In what follows, we will refer to h(\) as the payout ratio for the worker inside the firm (or, if there
is no ambiguity, simply the payout ratio).!’® The following theorem shows a tight link between

h(\) and the time-discount factor.

Theorem 5. Assume that disaster risk is constant, the labor market is at its steady state, and

define B(N) as in Theorem 2. Define h(\) as in (31). Then

A(R) = h(0) = — (log BY) —log ). (32)

where h(0) is the payout ratio when there is no disaster risk:

h(0) = —log § — (1 - ;) <u+ ;(1 - 7)03>

Thus the steady state payout ratio is increasing in X if and only if 1 > 1.

Appendix D.5 provides a proof. Besides linking h()\) to the time-discount factor, we can also

link it to the rates of return calculated earlier in this section. The effect of disaster risk on A(\) can
be decomposed into a discount rate effect (which in turn can be decomposed into a risk premium
and riskfree rate effect) and an expected growth effect, as in the basic Gordon growth formula (see

also Campbell and Shiller (1988)):'4

1

mm_um:(w‘”@kwwq_g_@ng_ﬁﬁx

I—7

risk-free rate effect

B[ ) (<A (D3 e

risk premium effect expected cash-flow effect

13At the steady state, the employment level is constant. It follows that the payout ratio for the worker inside
the firm is equal to the payout ratio for the firm as a whole. That is D!/l; = D;/P;.

1n discrete-time economies, it is a general result that log(1 + D/P) = g — r, where D/P is the dividend-price
ratio, g the log of the expected growth rate, and r the log of the discount rate.
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which directly follows from Theorems 2, 3, 4 and 5.

The decomposition (33) provides additional intuition for the effect of changes in the disaster
probability on the economy. On the one hand, an increase in the risk of a disaster drives down the
riskfree rate. This will raise valuations, all else equal. However, it also increases the risk premium
and lowers expected cash flows. When ¢ > 1, the risk premium and cash flow effects dominate

the riskfree rate effect and an increase in the disaster probability lowers valuations.

Theorem 6. Assume that disaster risk is constant and the labor market is at its steady state.

The payout ratio for the worker inside the firm, h(S\), is decreasing as a function of labor market
tightness. Thus labor market tightness is decreasing in the probability of a disaster if and only if

v > 1.

The proof follows from the the fact that

1+g:(1—s)lt+Zt—Wt:1_8+ﬂ

lt lt lt

(34)

Note that [; is the value of the worker inside the firm, and equals x;/q(f) (Theorem 1). The
vacancy-filling rate ¢(f) is decreasing as a function of ; as tightness increases, it is harder to fill
vacancies. Thus [; is increasing as a function of #. Furthermore Z; — W, is decreasing in 6 because
wages W, are increasing in 6 (as the labor market becomes tighter, equilibrium wages increase;
see Section 3.3.2). This establishes the first statement.

The second statement follows from the first, combined with Theorem 5: because the payout
ratio is increasing in X if ¢ > 1, labor market tightness must be decreasing in A (and similarly, if
¥ < 1, the payout ratio is decreasing in A and labor market tightness is increasing in 5\) Putting
the pieces together, we see that when a firm is faced with a higher risk of an economy-wide
disaster, it has an incentive to reduce hiring due to higher risk and lower growth. In equilibrium,
this decreases tightness 6; eventually, as # falls enough, the economy equilibrates at a lower point
on the Beveridge curve, with higher unemployment, lower vacancies, and lower firm valuations.

The previous discussion separates the effects of the risk premium and the riskfree rate. What

about the discount rate overall? Hall (2014) considers a reduced-form model where discount rates
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drive fluctuations in labor market tightness. When discount rates rise, stock market valuations
fall and unemployment rises. At the same time the riskfree rate falls, but this effect is more
than countered by the change to the risk premium. As the previous paragraph shows, a similar
mechanism is at work in our general equilibrium model. A subtle distinction is that the above
intuition does not rely on the discount rate itself driving fluctuations in prices and unemployment;
only that the combined effect of the equity premium and expected cash flows outweigh the riskfree
rate (which happens as long as ¢» > 1). The condition that the total discount rate and equity

premium move together is given below:

Theorem 7. Assume that disaster risk is constant. The expected return is increasing in X if and

only if

L-B[€] < 1F (1B [0)). )

For this theorem to hold, it is necessary, but not sufficient, that ¢» > 1 (under the parameter
values we consider in the next section, it does indeed hold).*

The analysis in this section sheds light on the tight link between the valuation mechanism and
the labor market. As we will show in the next section, this mechanism is helpful in quantitatively

explaining historical fluctuations in the labor market.

4 Quantitative Results

4.1 Model Parameters

Table 1 describes model parameters for our benchmark calibration. We calibrate and simulate the
model at a monthly frequency and calculate quarterly and annual values by aggregating monthly
values.

We calibrate the labor productivity process to match the quarterly seasonally adjusted real

average output per person in the non-farm business sector using data compiled by the Bureau

3 The observed expected return in periods without disasters does move in the same direction as the equity
premium whenever ¢ > 1. If we consider this observed return, the left hand side is equal to zero.
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of Labor Statistics (BLS) from Current Employment Statistics (CES). Accordingly, the monthly
growth rate pu and standard deviation o, of log productivity are set to 0.18% and 0.47%.

Labor market parameters determining wages and the aggregate law of motion for employment
are calibrated following the literature. The separation rate s is set to 3.5% following Shimer (2005)
and Hall (2014). Higher values for 7, the elasticity of the Cobb-Douglas matching function, imply
that high volatility in the labor market translates to high volatility in returns, holding everything
else equal. Petrongolo and Pissarides (2001) find that the range of appropriate estimates of 7 is
between 0.3 and 0.5, which is consistent with Yashiv (2000)’s finding that the elasticity of the
matching function in the U.S. with respect to unemployment is lower than that with respect to
vacancies. Hall and Milgrom (2008) and Hall (2014) take the value to be 0.5. We set 7 to 0.35.
Following Hall and Milgrom (2008) and Hall (2014), we set the bargaining power of workers B in
case of Nash bargaining to 0.5 and the flow value of unemployment b to 0.76. The vacancy cost
parameter x, which corresponds to unit costs of vacancy opening normalized by labor productivity
in our model, is set to 0.5, the average of values taken by Hall and Milgrom (2008) and Hagedorn
and Manovskii (2008).'6 The tightness-insulation parameter v is set to 0.05. Parameters B, b,
and v jointly determine dynamics of wages given dynamics of labor market tightness and labor
productivity. The tightness-insulation parameter v is calibrated to match wage dynamics discussed
in Section 4.5. Finally, we set the matching efficiency ¢ to 0.365, targeting a model population
value for unemployment equal to 10%.

We assume the EIS v is equal to 2 and risk aversion « is equal to 5.7. Risk aversion is lower
compared to many asset pricing models (e.g. Bansal and Yaron (2004) and Petrosky-Nadeau,
Zhang, and Kuehn (2013) who assume a risk aversion of 10). It is higher than some models with
disaster risk (e.g. Gourio (2012) and Wachter (2013)), because our average disaster probability is
substantially lower than other models assume.

Section 3.4 shows that, as is standard in production models with recursive utility, the EIS must

be greater than 1 for the model to deliver qualitatively realistic predictions. An important question

6Hagedorn and Manovskii (2008) find a constant and a pro-cyclical component in vacancy costs. We specify
vacancy costs proportional to productivity for simplicity.
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is whether this level of the EIS is consistent with empirical evidence on consumption and interest
rates. Using instrumental variable estimation of consumption growth on interest rates, Hall (1988)
and Campbell (2003) estimate this parameter to be close to zero. Bansal and Yaron (2004) note
that this regression is mis-specified when returns and consumption growth are heteroskedastic, as
is the case in the present model. To see whether this mis-specification is sufficient to match the
empirical findings, we follow Campbell (2003) and regress consumption consumption growth on
government bill rate in simulated data using twice lagged consumption growth, government bill
rate and log price-productivity ratio as instruments. Among 10,000 paths, the mean estimate is
0.15 with a standard error of 0.19. Thus our model is consistent with an observed EIS of less than

one.

4.2 Size Distribution and Probability of Disasters

The distribution of productivity declines in disasters is taken directly from the data on GDP
declines. Barro and Ursua (2008) construct historical data on consumption per capita and GDP
per capita from 42 countries (24 for consumption, 36 for GDP) from 1870 to 2006. Following Barro
and Ursua, we characterize a disaster by a 10% or higher decline in GDP. Some of these disasters
are characterized by default on government bonds. We follow Barro (2006) in assuming that 40%
of disasters result in default. Figure 6 shows the distribution of GDP declines in a disaster, which
corresponds to 1 — €¢ in the model.

We approximate the dynamics of monthly disaster probability A in (20) using a 12-state Markov
process. The nodes, along with their stationary probabilities, are presented in Table 2. The
stationary distribution of probabilities approximates a lognormal distribution with mean 0.20%
and standard deviation 1.97%. Mean disaster probability implies a lower frequency of disasters
compared to the historical annual value of 3.69% calculated by Barro and Ursua (2008) and used
by Gourio (2012) and Wachter (2013). The stationary distribution of disaster probability is highly
skewed. We choose the persistence and the volatility of the disaster probability process to match

the autocorrelation and volatility of unemployment in postwar U.S. data in model population.
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Table 3 describes properties of the disaster probability. The fraction of simulations, including
no disaster realization among 10,000 simulations with length 60 years, is 53%. The mean of
average disaster probability across no-disaster samples is 0.05%, which roughly corresponds to an
annual value of 0.60%. This value is 0.20% across all simulations and in population. Medians are
below mean due to the skewness of the distribution. The distribution of disaster probability in
samples with no disasters has a much lower mean and standard deviation compared to population
values. This implies that our specification of the disaster probability process is conservative
because we evaluate the model’s performance in explaining postwar U.S. data using paths with
no disaster realizations. Model values in the discussion of quantitative results refer to results
from no-disaster simulations unless stated otherwise. While we calibrate the disaster probability
process to unemployment, the model’s performance in explaining the dynamics of vacancies as

well as business cycle and financial moments confirms the accuracy of the mechanism.

4.3 What Happens at a Disaster Realization?

Figure 7 plots the response of macroeconomic variables to a disaster realization. To highlight the
main mechanism in our model, we assume a simplified view of a disaster in which the entire drop
in productivity is instantaneous. Consumption, dividends, and wages are all equal to productivity
multiplied by a function of the stationary variables; therefore they also drop by 15% in a disaster.
Labor market variables, namely employment level N, and the vacancy rate V;, do not change on

impact.

4.4 What Happens when Disaster Probability Increases?

Figure 8 plots the response of macroeconomic variables to an increase in monthly disaster proba-
bility from 0.05% to 0.32%. This represents a close to two-standard-deviation increase in a typical
no-disaster path. Productivity does not change on impact because exogenous shocks in the model
are independent. Following the increase in disaster risk, the optimal level of employment in the

economy decreases. Therefore, the firm substantially lowers investment in hiring by posting fewer
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vacancies. Eventually, vacancies and employment converge to a level below their respective pre-
shock values. Because unemployment is higher, a lower vacancy rate can maintain the optimal
employment level. Within 20 months, employment falls by 6% and the price-productivity ratio
and vacancy rate fall by 25%. The fluctuations in disaster probability generate high volatility in
vacancy and unemployment rates, as well as in asset prices, while keeping consumption volatility
at a reasonable level.

Following the disaster probability shock, consumption rises slightly on impact, and falls below
the pre-shock value after six months. The initial increase in consumption is a result of the high EIS,
combined with the desire to lower investment in hiring. Although consumption rises on impact,
high disaster probability states are still high marginal utility states as can be seen calculating the
stochastic discount factor.

As Figure 9 shows, an increase in the disaster probability sharply lowers the equity return
on impact. This is because it decreases stock prices, mainly through an increase in the equity
premium, as discussed in Section 3.4. Thus following impact, however, the expected return on
equities is higher. Meanwhile, the government bill rate falls on impact and stays low because of

an increased desire to save.

4.5 Labor Market Moments

Table 4 describes labor market moments in the model and in the U.S. data from 1951 to 2013. Panel
A reports U.S. data on unemployment U, vacancies V', the vacancy-unemployment ratio V/U,
labor productivity Z, and the price-productivity ratio P/Z. The labor market results replicate
those reported by Shimer (2005) using more recent data. The vacancy-unemployment ratio has
a quarterly volatility of 39%, twenty times higher than the volatility of labor productivity of 2%.
The correlation between Z and V/U is 10%, whereas the correlation between P/Z and V/U is
47%, consistent with the findings in Section 2.7 The correlation is lower in the pre-1985 sample,

and higher in the post-1985 sample. These findings, together with the more detailed analysis in

17As noted in Section 2, we follow Shimer (2005) in using a low-frequency HP filter with smoothing parameter
10°. We report volatilities of log deviations from trend.
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Section 2, motivate the mechanism in this paper.

Panel B of Table 4 reports the results from no-disaster simulations. Our model generates
a volatility of 33% in V/U. The correlation between V and U is -0.68 compared to the data
value of -0.86. The ability to produce this negative correlation is a test of the plausibility of
our mechanism. Other possible mechanisms, such as shocks to the separation rate, generate
a counterfactual positive correlation between V' and U (Shimer (2005)). Labor market tightness
and price-productivity ratio have a correlation of 0.99. Labor market models that operate through
productivity shocks imply a perfect correlation between V/U and Z, which is much lower in the
data compared to the correlation between V/U and P/Z. Note that this level of correlation
between the labor market and the stock market arises because both are driven by a single state
variable. However, the data analysis shows that this united mechanism of the stock market and the
labor market is a better description of the data compared to models based on realized productivity,
especially for the U.S. data from mid-1980s to today.

Figure 10 shows the Beveridge curve in the data and in the model. While the model values
are concentrated along a downward sloping line, a wide range of values can be generated by the
model, including data values at the lower right corner of the Beveridge curve observed during the
Great Recession.

Table 5 describes the dynamics of wages in the data and in the model. These results show how
the data discipline our choice of wage parameters, specificially, the tightness insulation parameter
v. Following Hagedorn and Manovskii (2008), we calculate wages by multiplying the labor share by
productivity. As Table 5 shows, the volatility and autocorrelation of log deviations of wages from
trend in quarterly data are 1.77% and 0.91, respectively. The elasticity of wages to labor market
tightness is low throughout the sample, while elasticity of wages to labor productivity ranges from
0.67 in the full sample, to over unity in the sample after 1985.'® Our model produces similar results
because wages scale with productivity. Table 5 also shows that the estimate of the elasticity of

labor market tightness to productivity is highly unstable across subsamples, replicating the results

18Tn Table 5, we report Newey-West t-statistics. These may be overstated, as the Newey-West method may not
take into account the true persistence in these processes.
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of Section 2. The model is consistent with these results, in that it implies a theoretical value of
zero, along with estimated values that can vary widely in small samples.

Panel C of Table 5 describes dynamics of the Nash-bargained wage without tightness insulation,
namely v = 1. The volatility of wages is 2.26%, higher than in the data. Furthermore, the elasticity
of wages to labor market tightness is 0.13 and significantly different from zero, which contradicts
the value in the data. This high elasticity sabotages the impact of aggregate shocks on labor market
volatility. When disaster probability increases, labor market tightness decreases only moderately

because wages strongly adjust downward which leads to a weak impact on job creation incentives.

4.6 Business Cycle and Financial Moments

Table 6 describes consumption, GDP, equity return and government bill rate moments in the
data and in the model. There are two independent dimensions to cyclicality in the model, namely,
comovement with labor productivity and with disaster risk. In the model, the effect of productivity
shocks on consumption and output growth is identical. This is not the case for disaster risk,
however. Consumption equals output by the firm, plus home production, minus investment in
hiring. Because both output and investment are pro-cyclical, the consumption response to disaster
probability shocks is weaker than the output response, as shown in Figure 8. This creates a higher
volatility in output growth compared to consumption growth, in line with the data. The model-
implied volatility of consumption growth and output growth in a typical no-disaster path is 2.28%
and 2.47%, respectively.' The median value for the average return on government bills is 3.64%
while the median value for the volatility is 3.83%. While higher than in the data, these are
low compared with the values for equity returns (see below), and lower than in many models of
production. The data fall well within the confidence bands implied by the model

Table 6 reports a historical equity premium of 5.32% and a return volatility of 12.26%. These

returns are calculated by adjusting net market returns for financial leverage, whereas the un-

9Note that our definition of measured consumption does not include the flow value of unemployment as described
in Section 3.3.4, and is therefore directly comparable to consumption expenditures in the data. Model-implied
consumption volatility including the flow value of unemployment, b;(1 — V), is 1.41%.
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adjusted values are 7.90% and 17.55%, respectively.? Although our model does not incorporate
financial leverage, the equity premium in no-disaster paths is 6.66% and return volatility is 19.78%.
A general issue for asset pricing in economies with production is the low riskiness of cash flows,
which makes it difficult to generate the high volatility of equity returns and the high equity pre-
mium in the data. To produce reasonable return volatility, models that focus on investment use
counterfactually high leverage (Gourio (2012)), or model equities as something other than the
dividend claim (Croce (2014)). Our model is also one of investment; posting a vacancy implies
an investment in hiring. However, we are able to match volatility in returns without the use of
leverage. One reason is the operating leverage present in our model: wage rigidity keeps wages
high even when the disaster probability rises. This creates cash flow volatility similar to what one
would see in an endowment economy with consumption equal to dividends. A second reason we
obtain high return volatility is of course the volatility in the probability of a disaster. This results

in risk premia that vary strongly over time.

4.7 Sources of Volatility and Risk Premia

We compare three alternative specifications to our benchmark model to highlight the sources of
volatility and risk premia: a model with constant disaster probability, where disaster probability
is set to 0.20%, the stationary mean in the benchmark model; a model with no disaster risk; and
a model with Nash-bargained wages, namely, v = 1. In all cases, the productivity process up to
disasters remains unchanged.

Table 7 describes labor market volatility in alternative specifications. If risk is not time-varying,
labor market variables and P/Z are constant. This confirms that the only source of fluctuation
in the labor market and stock market valuation is disaster probability. Without tightness in-
sulation, the sensitivity of labor market variables to aggregate shocks decreases. Specifically,
Nash-bargained wages result in an 11% volatility in V/U whereas the benchmark model can gen-

erate a volatility of 33%. This finding is in line with Hagedorn and Manovskii (2008) and Hall

20Lemmon, Roberts, and Zender (2008) report an average market leverage ratio of 28% among U.S. firms from
1965 to 2003. Accordingly, the unlevered equity premium is calculated multiplying stock returns by 0.72.
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(2014). Table 5 describes wage dynamics in the Nash bargaining case, as discussed in Section 4.5.
Nash-bargained wages imply a high elasticity of wages to vacancy-unemployment ratio inconsistent
with the data.

Table 8 describes business cycle and financial moments. In the absence of time-varying risk,
consumption growth and output growth have the same standard deviation. The only source of
variation in these variables is the productivity shock because labor market variables are constant
in these economies. The absence of tightness insulation renders consumption growth and output
growth statistics close because labor market volatility, which is the source of differences between
consumption and output dynamics, as discussed in Section 4.6, is dampened, as shown in Table 7.
A higher proportion of fluctuation is driven by the common productivity component.

The equity premium is extremely low without the tightness insulation of wages. In this case,
investment in the firm becomes very safe because the firm has a cost structure that is highly
sensitive to cyclical conditions in the economy. In times of low disaster probability, employment
increases and wages increase substantially due to the high sensitivity of wages to labor market
tightness. In contrast, when employment falls, wages adjust rapidly downward. Therefore, disaster
probability shocks have little effect on job creation incentives of the firm. This leads to low
volatility and extremely low risk premia because returns become more countercyclical than the
government bill rate.

Panel C of Table 8 describes a version of the model with tightness-insulated wages, but without
disaster risk. The equity premium is close to zero, and the risk-free rate is 5.12%. The only source
of return volatility is labor productivity. This version of the model with realistic wage dynamics
but without disaster risk is similar to a baseline real business cycle model with a labor share lower
than one.

The investigation of the constant disaster risk model described in Panel B of Table 8 highlights
the role of time-varying risk in risk premia and volatility. The equity premium in population
is 13.34% in the benchmark model and 9.94% in the model with constant disaster risk. While
these values might seem to imply that 3/4 of the equity premium comes from the presence of

disaster risk, the median equity premium in the absence of time-variation in disaster risk paths
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is 10.27%, which is higher than 6.66% in the benchmark model with time-varying disaster risk.
The reason is the strong discrepancy in disaster probability characteristics between paths with and
without disasters, as illustrated in Table 3. The constant disaster risk model is calibrated using the
stationary mean (0.20%) of the benchmark disaster probability process. However, the benchmark
model implies a much lower mean for disaster probability (0.05%) in no-disaster simulations.
Finally, the only source of government bill rate volatility in the constant disaster risk model is
disaster realizations, which leads to a positive volatility in population but to a constant rate in

no-disaster paths.

5 Conclusion

This paper shows that a business cycle model with search and matching frictions in the labor
market and a small and time-varying risk of an economic disaster can simultaneously explain labor
market volatility, stock market volatility and the relation between unemployment and stock market
valuations. While tractable, the model can generate high volatility in labor market tightness along
with realistic aggregate wage dynamics. The findings suggest that time variation in aggregate
uncertainty offers an important channel, through which the DMP model of labor market search and
matching can operate. The model provides a mechanism through which job creation incentives of
firms and stock market valuations are tightly linked, as the comovement of labor market tightness
and stock market valuations in the data suggest. While the presence of disaster risk and realistic
wage dynamics generate a high unlevered equity premium, the source of labor market volatility
and stock market volatility is time variation in risk. Finally, the model is consistent with basic

business cycle moments such as consumption growth and output growth.
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Appendix

A Aggregation

A.1 Homogeneity and the Stochastic Discount Factor

In this section, we show that the recursive utility function is homogenous in consumption following
Van Binsbergen, Ferndndez-Villaverde, Koijen, and Rubio-Ramirez (2012). We illustrate that
homogeneity of the utility function implies that all households that receive a constant fraction of
aggregate consumption have the same SDF as the representative household.

We generalize the notation to Cy = C(Z;, N;) and write the representative household’s utility
function J(A, C(Z;, Ny)) as

1
1— =

N
1—v

T, C(Ze, VD) = [COuN)'TF + B (B [T (s, C(Zigr, Nt ) ]) 7 (A1)

We want to show that
J()\t,wiC(Zt,Nt)) = wiJ(At,C'(Zt,Nt)), (AQ)

where w; > 0. If we find a function J that is homogenous in consumption and that satisfies (A.1),

then J needs to be homogenous by uniqueness of the solution to the Bellman equation. Suppose

J (A, wiC(Zyy Ny)) = wid (M, C(Zy, Ny)), then we have

T\, C(Zi, Ny)) = |C(\, N)' 7% + (]Et [J<)\t+1a C(Zisa, Nt+1))1_WD _7]

Wy

1 i R
(@i, N))' T 4 B (Be [T (esr, wiC(Zisa, Neyn))' 7)) ] |

where the term after w% corresponds to J (A, w;C(Zy, Ny)). In other words, we can multiply con-

sumption by w; and still satisfy the Bellman equation which implies (A.2). In the paper, we used
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this to normalize the value function by productivity:
J( A, wiC(Zs, Ny)) = Zpd (M, wiC(1, Ny)) = Zj(As, Ny), (A.4)

using the linearity of consumption in productivity.

Overall, a household that consumes a share w; of aggregate consumption has the same utility
function as the representative household up to the scaling factor w;.

Next, we consider the problem in our paper and the SDF M} 11 of a household that receives
share w; of aggregate consumption in each period. We showed that, if C! = w;C;, then Ji =
J( A, wiC(Zy, Ny)) = wiJ (N, C(Zy, Ny)) = wiJ;. The form of the SDF in (15) reveals that w;

cancels out in both the consumption growth term and the value function term, which implies
Mti—i-l - Mt+1° (A5)

The SDF of a households that receives a constant share of aggregate consumption in each period

is identical to the SDF of the representative household.

A.2 Households

We consider three cases of household structures that add up to the representative household. In
all cases, the productivity of each household is identical and equal to Z;.

The first case is similar to Merz (1995). Let there be N;, households with measure w;, where
vazhl w; = 1. Further, assume that the fraction N; of the members in each household are at
work and each households owns the fraction w; of the representative firm shares. In this case, the
condition Cf = w;C; is satisfied. As shown in Section A.1, the SDF of each household is the same
as the representative household and can be used to solve the firm’s optimization problem.

Second, we consider the case of employed and unemployed households where all households
hold shares of the firm. Let w? (w!) denote the measure of the employed (unemployed) household
7 at time ¢t. The measure of households is the same as their ownership share at the representative

firm. Note that the measure of each family does not change over time, but the employment status
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of a family may change in the future. However, we are interested in a period-by-period aggregation.

Let NF (NY) denote the number of employed (unemployed) households. Then we have
N N
i=1 i=1

We assume that there is a perfect consumption insurance for households. This translates into an
insurance payment from employed to unemployed households that compensates for the wage loss

of unemployed households. Specifically, we have

i WZE”r wf
CtEa —= CLJZEDt + T\ft tNt - Nt It
(A7)
Ui U wi wy
Ct7 :LUZ- Dt+ 1—Ntbt(1_Nt)+ 1—Ntlt’

where CF" and C7*" denote the consumption of the employed and unemployed households with
weights w? and wY, respectively. I; is the aggregate insurance payment. Both types of households
receive a share of the aggregate dividend. Employed households also receive their wage share
while unemployed households are equipped with the value of non-market activity. The insurance

payment that facilitates perfect consumption insurance satisfies

CtE’i = C’tU’i =w;Cy if le =uwY = w;. (A.8)

(2

The aggregate insurance payment that satisfies this condition is
-[t - (]_ - Nt)WtNt - (]_ - Nt)tht7 (Ag)

which corresponds to a compensation for lost wages due to unemployment net of the amount
that employed households need to receive from unemployment benefits to equate consumption in
employment and unemployment. If all households internalize the structure of insurance payments,
household consumption is determined by aggregate quantities and all shareholders have the same
SDF as the representative agent.

Finally, we consider the case where only employed hold shares of the firm. Assume that

unemployed households have no access to the stock market and only employed households own
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shares of the firm. In this case, perfect consumption insurance is achieved with an aggregate

insurance payment that also includes compensation for dividend income. In this case, we have

e WP WP WF
t = ]\Zf Dt‘f‘ﬁtWtNt—ﬁtIt
(A.10)
Ui wU b — N, wZU I
Ci _1—Ntt( t>+1—Ntt‘
The insurance payment that satisfies (A.8) is

A.3 Firms

Suppose the stock market is populated by N¥ firms. Each firm employs the fraction f; of the
employed labor force, namely, Ni = f;N;, where ZjVZFI f; = 1. If we can show that an individual
firm’s dividend, stock price and vacancies are also proportional to the corresponding aggregate

quantities, namely,

D] = f;D,, Pl =fP, V{=fV, (A.12)

we can argue that the ownership structure of firms does not matter for aggregate quantities, and
firm value is only a function of aggregate quantities up to the scaling factor f;. In other words,
different households described in Section A.1 can own different shares at different firms. As long
as the shares of a household ¢ add up to the household’s weight w;, each firm uses the unique SDF
M; .4 to solve for optimal hiring and firms add up to the representative firm in the paper.

We assume that each firm solves the optimization problem taking the aggregate vacancy fill-
ing rate q(NVg, V;) and wages W, as given. In other words, all firms face identical labor market
conditions. The problem of the firm is

P = max By Mo [ZirNi — WiV, — V7] (A.13)
(V2 o NL 3% =0
subject to

NtJrl (1-— S)Nt + q(Ny, Vt)V (A.14)
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The first-order conditions w.r.t. vacancies and employment are

i =E [Mtﬂ(ZtH — Wi + lz+1(1 B S))} ’

where ¥ denotes the Lagrange multiplier on (A.14). Note that I is a function of aggregate quan-
tities k; and q(N;, V;) only, and therefore identical for all firms. Using the recursive substitution
of the first-order conditions in (A.13) as in the paper, the cum-dividend value of firm j can be
written as

P/ = Z,N} — W,N? + 1i(1 — s)Ny. (A.16)

Because we started with N/ = fi N, we have Pl = f;Pf. Furthermore, the law of motion for

labor implies V} = fiVi, and D! = fiD:. As shown in the paper, (A.16) implies

. /ﬁ'/t .
pl— N, A7
t q(Nt,‘/;) t+1 ( )

which establishes P/ = fiP:. The stock price of each firm is proportional to the fraction of the

employed labor force it employs.

B The Nash Wage Bargain

The following proof is adapted from Petrosky-Nadeau, Zhang, and Kuehn (2013) and shows that
the canonical Nash-bargained wage formula of the DMP model holds in our setting. Let .S; denote

the joint surplus from a match in terms of marginal benefits for the household and the firm:

_ Ine = Juy

S,
! Joy

+ Pg — PG, (B.1)

where subscripts denote partial derivatives and time and Py is the cum-dividend value of the firm.
We divide Jn; — Ju by Jeo+ to make the household and firm benefits in units of the consumption

good. The bargaining power B of the household implies

Ine — Juy

BS;, =
! Joy

(B.2)
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The household faces the following resource constraint:
Ct = Dt + WtNt + btUt — Ht‘/ty (BB)

along with the following employment and unemployment dynamics

Nip1 = (1= s)Ne + f(60:)Uy

(B.4)
Ut+1 = SNt -+ (1 — f(9t>)Ut
Taking the partial derivative of J; with respect to C; and N; we have
11
JC,t - Ot v th
41 (B.5)
1—y ﬁ —
Ing = Widor + (Et {JtJrl D E [(1 =) (1= 8)Iner + 5JU,t+1] ;
which results in the following marginal benefit of an employed member for the household
J J J
Nt W, 4R, le lu — )L g th+1“ . (B.6)
Jou Jot+1 Jo+1
Using the same procedure for the unemployment we get
J, J J,
b B M 70054 4 - f00) 72 (B.7)
Jou Joit Jo 1
Next we consider the firm’s value function with optimal policy V;:
Ijtc = max E; Z Mt+7' [(Zt—i-‘r - Wt+T>Nt+T - 'L{';t-l-‘l"/t-‘rﬂ'] (B8)
{Vitr s Netr+1}152 —0
subject to
Nt+1 = (1 — S)Nt + q(@t)‘/; (Bg)
Taking the partial derivative with respect to V; we get
Py = =k + E¢ [Myy1(Zs1 — wer1)q(0:)]
(B.10)

= —r¢ + q(O)E, [Myy1 Fnqa] -

Due to free entry of firms into the labor market, firms open vacancies until the marginal benefit

from vacancy openings is zero which implies P, = 0. This term disappears in the surplus equation.
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Furthermore it implies
Kt

Q(et)

The marginal benefit of employment to the firm is

=By [ M1 Py (B.11)

P]i/v,t - Zt - Wt + Et I:Mt+1(Zt+1 — Wt+1)(1 — S)]

(B.12)
=Zy = Wi+ (1 - s)E, [Mtﬂpzf/,t“} :
Using the marginal benefit equations above, we can write the total match surplus as
Ine — J,
Sy = T P, - P
Joi ’
J J
= Wt + Et lMt+1 [(1 — 5) JN,t-‘rl + SJU,t+1‘|‘|
Cit+1 Ct+1 (B13)
J J
— b —E, [Mtﬂ [fwt) S (1 f(6) ”“H
Jei41 Joi1
+ Zy = Wi+ (1= 8)By [Myy1 PRy ]
Merging terms we have
J — Ji
S, =2 — b+ (1—s)E, [Mtﬂ ( N’“} Gty vatﬂﬂ
Cit+1
7 7 (B.14)
— f(0)E, [Mt+1 N’t+} U’Hl} :
Cit+1
The surplus splitting rule implies
St = Zt - bt + (1 - S)]Et [Mt-i-l‘s’t-i-l] - f(et)BEt [Mt-i-l‘s’t-i-l] . (B15)
Recall the marginal value of employment to the firm is
Py, = (1-B)S;. (B.16)

Plugging (B.15) into (B.16) and using (B.12) we get the canonical wage equation from Nash
bargaining

Wt = (1 — B)bt -+ B(Zt + :‘itet), (Bl?)

which corresponds to the Nash-bargained wage in Pissarides (2000).
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C Equity Return and Firm Value (Proof of Theorem 1)

The representative firm pays out as dividend what is left from output after subtracting wage costs

and investment:

Dt = ZtNt - WtNt - l‘ft‘/;. (C]_)

The firm takes wages W; and labor market tightness 6, as given and maximizes the cum-dividend

value

Pf = max [ Z My [ZiyrNeyr = Wiir Neyr — K Vi (C.2)

{Vitr,Netr11}152, =0

subject to the firm’s law of motion for employment
Nt+1 = (]_ — S)Nt + Q(Qt)v;g (C3)

The first order conditions with respect to V., and N, ., are given by

0= —14,90%) (C.4)
Kt
li = B [Myy1(Zig1r — Wia + L (1 = 5))] (C.5)

where [; is the Lagrange multiplier on the aggregate law of motion for employment level. Combining
the first order conditions we have E; [M; 1 R;1] = 1 where

Zior — Wigr + (1 — s) o=

Rt—‘rl — q(01+1) . (06)

Ky
q(0t)

We can rewrite the return on hiring using x; = kZ; and b, = 0Z;:

1 —wyq + (1 - S) q(9’:+1) (C 7)

Rt = ehtett1tderiGett

a(6:)

Consider the ex-dividend value of equity P, = P — D,. We can rewrite the value of the firm:

F)tc = Pt + ZtNt - WtNt - ’K"/t‘/t (CS)
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Expanding (C.2) and recursively substituting the expressions obtained from the first-order condi-

tions (C.4) and (C.5), we can use

0
Pf = ZuNy — WiN; — Vi — b(Negs — (1 — s) N, — qf;) ke Vi)
t
Q(9t+1)
+ E; Mt+1 Zt+1Nt+1 - Wt+1Nt+1 - Klt—&—lv;f—f—l - lt+1 Nt+2 - (1 - S)Nt+1 - o /ft+1Vt+1
t+1
+ ...
(C.9)
and verify that
.Ptc = ZtNt - WtNt + lt(]_ - S)Nt. (C].O)

Specifically the investment terms in the first line of (C.9) cancel out as a result of (C.4). Fur-
thermore the term [; /Ny, in the first line cancels out with next period’s zero-coupon equity value
value up to the investment terms and l; 1Ny 5 and so on. Therefore, the ex-dividend value of the
firm is given by

Pt = ZtNt — VVtNt + lt(]. - S)Nt — ZtNt + WtNt + Iit‘/t

= Iit‘/; + lt(l — S)Nt

. . (C.11)
= m(NtH —(1—38)Ny) + q(gt)(l — $)N;
= ltNt+1.

Combining (C.11) with (C.4) results in (10).

Now we return to the basic definition of equity return and show that it is equivalent to the
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return on hiring in (C.6):

Py P+ D

Pr— D 2
LNy + Zi i Neyn = Wi Neyr — ke Vi
ltNt-‘rl

Nt+2 . _ Kt-&-l‘/;t-&-l

_ by + 2 = Wi — 5505
ly
. q(0t+1) ’it+1vt+1:| . _ Re1Vaga

_ b1 {1 5T it Nit1 t Zi1 — Wi Ni+1 (C.12>

ly
_ Ziv1 — Wigr + 1y (1 — )
ly
B Ziyr — Wi + (1 — 5) 2

q(0¢y1)

Kt

q(6:)

= Rt+1~

This shows the equivalence between the return on hiring and the equity return leading to (11).

D Constant Disaster Risk Model

D.1 Compound Poisson Process

The algebraic rules for compound Poisson processes illustrated in this section are adapted from

Cont and Tankov (2004). Drechsler and Yaron (2011) model jumps in expected growth and

volatility using compound Poisson processes. Let ():+y1 be a compound Poisson process with

intensity \. Specifically, X represents the expected number of jumps in the time period (¢,t + 1].

Agents in the model view the jumps in (¢,¢ + 1] as occurring at ¢ + 1. Then, Q41 is given by
SN i N — N > 0

Qi1 =
0 if -/\[t+1 - -/\[t - 07

where N, is a Poisson counting process and N, — N, is the number of jumps in the time interval

(t,t + 1]. Jump size ( is iid. We can take conditional expectations with ();+1 using
E, [ethJrl} _ e:\(E[e"C]—l)’ (Dl)
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where log of the right-hand side is the cumulant-generating function of Q) 41. More precisely, the

probability of observing k jumps over the course one period (¢, ¢+ 1] is equal to e;\%. We take the

t to be in units of months in our quantitative assessment of the model.

D.2 Role of the EIS (Proof of Theorem 2)

Consider the normalized value function in (25) and replace the disaster term with the compound

Poisson process (); ;41 with constant intensity A:

1
O\ -5 (1) (e 14 Quen) =]
JON) = [c 7+ B (B [t ltent@uen) (X N, ) 7]) T (D.2)
onditional on time-¢ information, the realizations of €1, Q¢ ++1 and Ny are independent. There-
Conditional on time-t inf; tion, the realizati f Q, d N independent. Th
fore, we can write (27) with

1

a ~ _ ¥

B(X) = BB, [ | T (D.3)
Taking the expectation using the algebra introduced in Appendix D.1, we can compute the log
time discount factor:

log (B(N)) =log(B) + = (E [e"=¢] —1) X,

= (D.4)

Note that ¢ takes only negative values and E [e(l_“’)c} is always positive. There are two cases we

need to investigate: v < 1 and v > 1.2! In both cases, we have

E [6(1—7)4} 1
I—v

Therefore, the log (B (:\)) is decreasing in X is negative if and only if 1 — i > (0 which is equivalent
to ¢ > 1.

< 0. (D.5)

2'We do not consider the case of 4 = 1 which would lead to a different functional form for the value function.
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D.3 Risk-free Rate (Proof of Theorem 3)

Due to the homogeneity of the value function in consumption, the stochastic discount factor

becomes:

n
66*E*7(5t+1+Qt+1)
Mt+1 - 1 . (DG)

@*’Y
E, [6(1*7)(€t+1+Qt+1)] 1=

Taking the expectation in the denominator, the log stochastic discount factor becomes

log(My41) = log(B) — Z — (€41 + Qe41)

(D.7)
1<1 ) 2 ;_V(E[(l V)CD)\
S N ¢ R e -
5\ 7 (1=7) -
It follows that the log risk-free rate log(R;) = —log E[M,4] is given by:
po L1 v 2
log(Rf) = — log(p ++<——7>06
(By) =~log(®) + 5+ 5 (- 2
(D.8)

Note that the term % is bounded above by v/(y —1). The properties of the exponential implies

%E ({e*%} — 1) > ﬁ]E ([6*74} — 1), which, together with the fact that ¢ takes only negative

values, implies that the risk-free rate is decreasing in disaster intensity (Tsai and Wachter (2015)).

D.4 Expected Returns and Equity Premium (Proof of Theorem 4)

Lemma 1. The Euler equation By [M;1Ri+1] = 1 becomes

B(S\)eﬂ(l_i)*‘%(1—’7)(1—l)03 1- w(9t+1) :_ (1 B 5)9:—1 =1, (Dg)

q(0t)

<

where

w(®,) = (1 — B)b+ B(1 + k(vh, + (1 — v)9)). (D.10)

Proof. The result follows from the form of the stochastic discount factor in (D.6) and the hiring
return in (C.6). Note that the only state variable in the economy with constant disaster risk is

employment level N;. In this case, labor market variables are deterministic. At time ¢, Ny is
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known and the policy function for vacancies V; only depends on N;. Therefore, V;,; is known at

time t as well which leads to the fact that 6, is known at time ¢.

Lemma 2. The Euler equation implies the following form for the equity return:

ehtet+t +Qt+1

Ri = ;
t Bo\)eu(l—%)%(1—7)(1—%)02

(D.11)

Moreover, the log expected equity return becomes

logE¢ [Ri41] = — log(B) + Z + ; <@1b — ;Z + 7)

+ (Elef] 1) A
Productivity growth <D12>

. (m (B [¢0-x] - 1)) 5

Labor market

L—w(0r41)+(1-5) 55

A~ 1 1 1y,2\ 1
Proof. The term } in (C.7) can be rewritten as (5(A)e“(1_w)+2(1_7)<1_¢)”€>

)
using (D.9) which implies (D.11). Equation (D.12) follows from taking the expectation of (D.11)
using rules introduced in Section D.1.

Proof of Theorem 4: Log expected return follows directly from Lemma 2. We use the log

risk-free rate from Theorem 3 to compute the equity premium.

D.5 Payout Ratio of a Worker Inside the Firm (Proof of Theorem 5)

When the labor market is in steady state, labor market tightness is constant. In this case, we can

rewrite the Euler equation in Lemma 1 as

—log (1 — s+ 1—10(9)50_77>

) (D.13)
1-1 )
— ﬁ (IE [6(1—7)4 — 1}) A+ log(B) + p <1 — ;) + ;(1 —7) (1 — i}) o2,
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where all terms including 6 are on the left-hand side. Moreover, we can write the payout from a
worker inside the firm as

D,lf = Zt — Wt — Slt. (D14)

which can be seen from
lt = ]Et [Mt+1(Zt+1 — Wt+1 — Slt+1 + lt+1)] . (D15)

From (13), we know that the value of a worker is given by l; = x:/q(6;). As a result, the payout

ratio of a worker is

Di_Zt—Wt—Slt

ly ly

_1—w(9)—sﬁ

K Y

(©)
where the second line follows from normalizing the numerator and the denominator by Z;. We

(D.16)

=}

can then define the transformed payout ratio h(A):

h()\) = log (1 + ?f) : (D.17)

which will correspond to the negative of the left-hand side in (D.13). Theorem 2 implies that the

right-hand side of equation (D.13) is decreasing in X if and only if 1) > 1 which implies Theorem 5.

Moreover, the left-hand side of (D.13) is increasing in 6 which implies Theorem 6.

E Equilibrium Solution

Let 2’ denote the value of the variable z in period t + 1 and x the value at t. We can rewrite the

normalized value function of the household as
g(AN) = j(A,N)' 7. (B.1)

The value function and policy functions are functions of the exogenous state variable A and the
endogenous state variable N. The dynamics of the stochastic discount factor and returns are driven

by four shocks: disaster probability ', normal times productivity shock €', disaster indicator d’ and
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disaster size (’. Let E be the expectation operator over four shocks. In our numerical procedure,
we solve for the consumption policy ¢(A, N) and the value function g(A, N). The market clearing
condition allows us to compute the vacancy rate given the consumption policy.
The stochastic discount factor is characterized by
MO N; N, €,d, ¢ :56*%4%(1*7)(’Y*i)ﬂ?e—v(e’—kd’ﬂ)
-3 . _ (E.2)

L 17'1y 11— !/ N/ Yy i .

The equity return is given by

RN N, €, d () = ert<+d¢ [1 BALGEE D S)M] , (E.3)
aO0ON))
where
w(\,N) = (1—B)b+ B(1+ x((1 —v)0 + vO(\,N))) (E.4)
and
IOLN) = N +b(1 —N)—¢(\N) (E5)

k(1 — N) ’
which follows from (21).

The equilibrium conditions that ¢(\, N) and g(A, V) have to satisfy are
E[M\ N; XN e, d, YR\, N; XN, €, d, ()] =1 (E.6)

and

-1
-1

g
GV, A) = (N, 2)!~F 4 geli- D (=)0 (E [e“—”df’gw,fv')w]) C®D)
We approximate the AR(1) process for log disaster probability by a 12-state Markov process
and use the corresponding probability transition matrix to calculate expectations over X. The
expectations over (' and € can be taken directly since their distributions are 7id.
We approximate the policy function and the value function by a polynomial of employment

level N where the polynomial coefficients are estimated for each value of the disaster probability
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separately. We use n + 1 nodes for employment to conduct the approximation by an n’th order
polynomial. As a result we have 24(n + 1) unknowns and equations resulting from the equilibrium
conditions (E.6) and (E.7). We evaluate the equilibrium conditions at the nodes of the Chebyshev
polynomial of order n. Our quantitative results are not significantly different for polynomial

approximations of order 3 or higher.

F Data Sources

We use data from 1951 to 2013 for all variables.

e 7 is the seasonally adjusted quarterly real average output per person in the nonfarm business
sector, constructed by the Bureau of Labor Statistics (BLS) from National Income and

Product Accounts (NIPA) and the Current Employment Statistics (CES).

e P is the real price of the S&P composite stock price index, downloaded from Robert Shiller’s

website (www.econ.yale.edu/ shiller/data.htm).

e P/F is the cyclically adjusted price-earnings ratio, downloaded from Robert Shiller’s website

(www.econ.yale.edu/ shiller/data.htm).

e P/Z is the price-productivity ratio scaled to have the same value as P/E in the first quarter

of 1951.

e U is the seasonally adjusted unemployment, constructed by the BLS from the Current Pop-

ulation Survey (CPS). Quarterly values are calculated averaging monthly data.

e 1 is the help-wanted advertising index constructed by the Conference Board until June 2006.
We use data on vacancy openings from Job Openings and Labor Turnover Survey (JOLTS)
from 2000 to 2013. We extrapolate the help-advertising index until 2013 and observe that
our extrapolation has a correlation of 0.96 in the period from 2000 to 2006 where both data
sources are available. For data plots, we remove a downward sloping time trend in log V/U.

Quarterly values are calculated averaging monthly data.
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W denotes wages measured as the product of labor productivity Z and labor share from the

BLS. Quarterly values are calculated averaging monthly data.
C' is annual real personal consumption expenditures (GDP) per capita from the BEA.
Y is annual real gross domestic product (GDP) per capita from the BEA.

R is the value weighted return market index return including distributions from CRSP. Real
returns are calculated using inflation rate data from CRSP. Net returns are multiplied by

0.68 to adjust for financial leverage.

Ry is the 1-month Treasury bill rate from CRSP. Real rates are calculated using inflation

rate data from CRSP.

Ac and Ay denote log consumption and log output growth. Annual growth rates from
monthly simulations that we compare to data values are calculated aggregating consumption
and output levels over every year. Let C}j, denote the consumption level in year ¢ and month

h. Annual log consumption growth in the model is calculated as

Z}; Ct+1,z'> . (F.1)

12
i=1 Ct,i

Aciyy = log (

The same method is applied to output growth as well.
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Figure 1: Vacancy-Unemployment Ratio and Labor Productivity: 1951 - 2013
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Notes: The solid line shows the vacancy-unemployment ratio, the dashed line labor productivity.
Both variables are reported as log deviations from an HP trend with smoothing parameter 10°.
Shaded periods are recessions defined by the National Bureau of Economic Research (NBER).
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Figure 2: Valuation Ratios: 1951 - 2013
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Notes: P/Z denotes the price-productivity ratio defined as the real price of the S&P composite
stock price index P divided by labor productivity Z. P/FE is the cyclically adjusted price-earnings
ratio of the S&P composite stock price index. P/Z is scaled such that P/Z and P/E are equal in
the first quarter of 1951.
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Figure 3: Vacancy-Unemployment Ratio and Price-Productivity Ratio: 1951 - 2013
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Notes: The solid line shows the vacancy-unemployment ratio, the dashed line the price-
productivity ratio. Both variables are reported as log deviations from an HP trend with smoothing
parameter 10°. Shaded periods are recessions defined by the National Bureau of Economic Re-
search (NBER).
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Figure 4: Vacancy Openings and Price-Productivity Ratio: 1951 - 2013
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Notes: The solid line shows vacancies, the dashed line the price-productivity ratio. Both variables
are reported as log deviations from an HP trend with smoothing parameter 10°. Shaded periods
are recessions defined by the National Bureau of Economic Research (NBER).
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Figure 5: Vacancy-Unemployment Ratio: Data vs. Model
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Notes: The solid line and the dashed line show the vacancy-unemployment ratio in the data
and in the model, respectively. Model implied vacancies are calculated plugging observed price-
productivity ratio and employment level into equation (12). All values are log deviations from an
HP trend with smoothing parameter 105. Shaded periods are recessions defined by the National

Bureau of Economic Research (NBER).
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Figure 6: Size Distribution of Disaster Realizations
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Notes: Histogram shows the distribution of large declines in GDP per capita (in percentages).
Data are from Barro and Ursua (2008). Values correspond to 1 — ¢ in the model.
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Figure 7: Macroeconomic Response to a Disaster Realization
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Notes: The behavior of consumption C', dividends D and wages W is identical to productivity Z.
Vacancy rate V' and employment N do not change on impact. In month zero, a disaster with size
1 — €S = 0.15 occurs.
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Figure 8: Macroeconomic Response to Increase in Disaster Probability
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Notes: In month zero, monthly disaster probability increases from 0.05% to 0.32% and stays at
0.32% in the remaining months.
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Figure 9: Return Response to Increase in Disaster Probability
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Notes: In month zero, monthly disaster probability increases from 0.05% to 0.32% and stays there

in the remaining months.

58



Figure 10: Beveridge Curve
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Notes: Data are quarterly from 1951 to 2013. Model implied curve is a quarterly sample with
length 10,000 years from the stationary distribution. All values are log deviations from an HP
trend with smoothing parameter 10°.
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Table 1: Parameters Values for Monthly Benchmark Calibration

Parameter Value
Time preference, 3 0.997
Risk aversion, 5.7
Elasticity of intertemporal substitution, v 2
Disaster distribution (GDP), ¢ multinomial
Productivity growth, p 0.0018
Productivity volatility, o, 0.0047
Matching efficiency, & 0.365
Separation rate, s 0.035
Matching function parameter, n 0.35
Bargaining power, B 0.50
Value of non-market activity, b 0.76
Vacancy cost, 0.50
Tightness insulation, v 0.05
Government default probability, ¢ 0.40
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Table 2: Monthly Disaster Probability

Value Stationary
Probability

1x1077 0.0005
7x 1077 0.0054
4 %107 0.0269
3x107° 0.0806
0.0002 0.1611
0.0012 0.2256
0.0076 0.2256
0.0495 0.1611
0.3212 0.0806
2.0827 0.0269
13.5045 0.0054
87.5661 0.0005

Notes: Table lists the nodes of a 12-state Markov process which approximates an AR(1) process
for log probabilities. Disaster probabilities are in percentage terms.
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Table 3: Monthly Disaster Probability in Simulations

No-Disaster All Simulations

Population Mean 5% 50% 95% Mean 5% 50% 95%

E[A] 0.20 0.05 0.01 0.03 0.16 0.20 0.01 0.07 0.75
a(A) 1.97 0.20 0.01 0.11 0.58 0.84 0.02 0.27 281
p(\) 0.91 0.86 0.65 0.89 0.96 0.87 0.66 0.90 0.96

Notes: o denotes volatility, p monthly autocorrelation. Disaster probabilities are in percentage
terms. Population is a sample of 100,000 years. We simulate 10,000 samples with length 60 years
at monthly frequency and report statistics from all simulations as well as from 53% of simulations
that include no disaster realization. All simulations are in monthly frequency.
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Table 4: Labor Market Moments

U 1% V/U A P/Z
Panel A: Data
SsD 0.19 0.21 0.39 0.02 0.16
AC 094 0.94 0.95 0.88 0.89
1 -0.86 -0.96 -0.18 -0.44 U
— 1 0.97 0.03 0.47 Vv
— — 1 0.10 047 V/U
— — — 1 0.00 Z
— — — — 1 P/Z
Panel B: No-Disaster Simulations
SsD 0.17 0.19 0.33 0.02 0.14
(0.04) (0.05) (0.07) (0.01) (0.03)
AC 0.95 0.76 0.90 0.93 0.91
(0.01) (0.04) (0.02) (0.03) (0.02)
1 -0.68 -0.90 -0.06 -0.92 U
— 1 0.93 -0.06 0.90 Vv
— — 1 0.00 099 V/U
— — — 1 0.01 YA
— — — — 1 P/Z
Panel C: Population
SD 0.19 0.22 0.39 0.04 0.17
AC 0.95 0.76 0.90 0.93 0.91
1 -0.69 -091 -0.06 -0.92 U
— 1 0.93 -0.06 0.90 %4
— — 1 0.00 099 V/U
— — — 1 0.01 Z
— — — — 1 P/Z
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Notes: SD denotes standard deviation, AC quarterly autocorrelation. Data are from 1951 to 2013. All data and
model moments are in quarterly terms. U is unemployment, V vacancies, Z labor productivity and P/Z price-
productivity ratio. We simulate 10,000 samples with length 60 years at monthly frequency and report means from
53% of simulations that include no disaster realization in Panel B. Standard errors across simulations are reported
in parentheses. Population values in Panel C are from a path with length 100,000 years at monthly frequency.
Standard deviations, autocorrelations and the correlation matrix are calculated using log deviations from an HP
trend with smoothing parameter 10°.



Table 5: Properties of Aggregate Wages

SD AC Ew,0 W,z €0,z

Panel A: Data

1951 - 2013 1.77 091 0.00 0.67 2.46
— —  [0.33]  [543]  [0.76]
1951-1985 121 091  0.01 035  11.22
— — (275 [3.04  [3.86]
1986 - 2013 229 091  -0.01 107  -8.49
— — 115 [6.79]  [-2.37]

Panel B: Benchmark model

50% 1.71 0.91 0.01 0.99 0.00
5% 1.33 0.87 -0.01 0.95 -6.39
95% 2.31 0.95 0.03 1.05 6.08

Panel C: No tightness insulation

50% 2.26 0.89 0.13 1.00 0.04
5% 1.80 0.83 0.08 0.74 -1.95
95% 2.89 0.93 0.18 1.27 1.93

Notes: SD denotes standard deviation, AC quarterly autocorrelation. Z is labor productivity, 6
labor market tightness. Data are from 1951 to 2013. All data and model moments are in quarterly
terms. We simulate 10,000 samples with length 60 years at monthly frequency and report quantiles
from 53% of simulations that include no disaster realization. €, , is the elasticity of variable x to
y, namely, the regression coefficient of log = on log y. Data t-statistics in brackets are based on
Newey-West standard errors. All variables are used in logs as deviations from an HP trend with
smoothing parameter 10°.
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Table 6: Business Cycle and Financial Moments

ElAc]  E[Ay]  o(Ac)  o(Ay) ER-R] E[R] o(R) o(R)

Data 1.97 1.90 1.78 2.29 5.32 1.01 12.26 2.22
Simulation 50% 2.16 2.16 2.28 2.47 6.66 3.64 19.78 3.83
Simulation 5% 1.80 1.79 1.59 1.71 -0.02 0.06 11.75 0.87
Simulation 95% 2.51 2.54 3.44 3.72 20.39 4.96 33.94  12.50
Population 1.63 1.63 6.85 6.89 13.32 1.22 38.97  12.19

Notes: Ac denotes log consumption growth, Ay log output growth, R the unlevered equity return,
Ry, the government bill rate. All data and model moments are in annual terms. We simulate 10,000
samples with length 60 years at monthly frequency and report quantiles from 53% of simulations
that include no disaster realization. Population values are from a path with length 100,000 years.
Returns and growth rates are aggregated to annual values.
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Table 7: Labor Market Volatility in Comparative Statics

U Vv VU Z P/Z

Data 0.19 0.21 0.39 0.02 0.16
Benchmark 0.17 0.19 0.33 0.02 0.14
Constant A 0.00 0.00 0.00 0.02 0.00
No disaster 0.00 0.00 0.00 0.02 0.00

No tightness insulation 0.06 0.06 0.11 0.02 0.05

Notes: Table reports only standard deviations. U is unemployment, V' vacancies, Z labor pro-
ductivity and P/Z price-productivity ratio. Data are from 1951 to 2013. All data and model
moments are in quarterly terms. We simulate 10,000 samples with length 60 years at monthly
frequency and report means from 53% (24%) of simulations that include no disaster realization
for the benchmark (constant A) model. In the constant disaster probability model, we set dis-
aster probability to 0.20%, the stationary mean of the disaster probability process used in the
benchmark model. Standard deviations are calculated using log deviations from an HP trend with
smoothing parameter 10°.
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Table 8: Business Cycle and Financial Moments in Comparative Statics

E[Ac]  E[Ay] o(Ac) o(Ay) ER—-R) E[R) o(R) o(Rp)

Data 1.97 1.90 1.78 2.29 5.32 1.01 12.26 2.22

Panel A: Benchmark

50% 2.16 2.16 2.28 247 6.66 3.64 19.78 3.83
Population 1.63 1.63 6.85 6.89 13.32 1.22 3897 12.19

Panel B: Constant A

50% 2.16 2.16 1.31 1.31 10.27 -3.48 1.73 0.00
Population 1.59 1.59 4.03 4.03 9.94 -3.66 3.49 2.16

Panel C: No Disaster Risk

50% 2.16 2.16 1.32 1.32 0.16 5.12 1.70 0.00
Population 2.16 2.16 1.32 1.32 0.16 5.12 1.71 0.00

Panel D: No Tightness Insulation

50% 2.16 2.16 1.47 1.52 -49.63 3.67 11.55 3.32
Population 1.68 1.68 6.46 6.44 -47.76 1.53  20.32 11.27

Notes: Ac denotes log consumption growth, Ay log output growth, R the unlevered equity return,
Ry, the government bill rate. All data and model moments are in annual terms. We simulate 10,000
samples with length 60 years at monthly frequency and report the 50% quantile from 53% (24%)
of simulations that include no disaster realization for the benchmark (constant A\) model. In the
constant disaster probability model, we set disaster probability to 0.20%, the stationary mean of
the disaster probability process used in the benchmark model. Population values are from a path
with length 100,000 years. Returns and growth rates are aggregated to annual values.
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